]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
re PR target/68770 (Conditional jump or move depends on uninitialised value(s) defaul...
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
818ab71a 2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
9ae8ffe7
JL
3 Contributed by John Carr (jfc@mit.edu).
4
1322177d 5This file is part of GCC.
9ae8ffe7 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
9ae8ffe7 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
9ae8ffe7
JL
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5
AM
25#include "target.h"
26#include "rtl.h"
c7131fb2
AM
27#include "tree.h"
28#include "gimple.h"
c7131fb2 29#include "df.h"
957060b5
AM
30#include "tm_p.h"
31#include "gimple-ssa.h"
957060b5 32#include "emit-rtl.h"
40e23961 33#include "alias.h"
40e23961 34#include "fold-const.h"
d8a2d370 35#include "varasm.h"
eab5c70a 36#include "cselib.h"
d23c55c2 37#include "langhooks.h"
60393bbc 38#include "cfganal.h"
403837b4 39#include "rtl-iter.h"
54363f8a 40#include "cgraph.h"
ea900239
DB
41
42/* The aliasing API provided here solves related but different problems:
43
c22cacf3 44 Say there exists (in c)
ea900239
DB
45
46 struct X {
47 struct Y y1;
48 struct Z z2;
49 } x1, *px1, *px2;
50
51 struct Y y2, *py;
52 struct Z z2, *pz;
53
54
308a3fe2 55 py = &x1.y1;
ea900239
DB
56 px2 = &x1;
57
58 Consider the four questions:
59
60 Can a store to x1 interfere with px2->y1?
61 Can a store to x1 interfere with px2->z2?
ea900239
DB
62 Can a store to x1 change the value pointed to by with py?
63 Can a store to x1 change the value pointed to by with pz?
64
65 The answer to these questions can be yes, yes, yes, and maybe.
66
67 The first two questions can be answered with a simple examination
68 of the type system. If structure X contains a field of type Y then
073a8998 69 a store through a pointer to an X can overwrite any field that is
ea900239
DB
70 contained (recursively) in an X (unless we know that px1 != px2).
71
308a3fe2
DS
72 The last two questions can be solved in the same way as the first
73 two questions but this is too conservative. The observation is
74 that in some cases we can know which (if any) fields are addressed
75 and if those addresses are used in bad ways. This analysis may be
76 language specific. In C, arbitrary operations may be applied to
77 pointers. However, there is some indication that this may be too
78 conservative for some C++ types.
ea900239
DB
79
80 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 81 instances do not escape across the compilation boundary.
ea900239
DB
82
83 Historically in GCC, these two problems were combined and a single
308a3fe2 84 data structure that was used to represent the solution to these
ea900239 85 problems. We now have two similar but different data structures,
308a3fe2
DS
86 The data structure to solve the last two questions is similar to
87 the first, but does not contain the fields whose address are never
88 taken. For types that do escape the compilation unit, the data
89 structures will have identical information.
ea900239 90*/
3932261a
MM
91
92/* The alias sets assigned to MEMs assist the back-end in determining
93 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
94 different alias sets cannot alias each other, with one important
95 exception. Consider something like:
3932261a 96
01d28c3f 97 struct S { int i; double d; };
3932261a
MM
98
99 a store to an `S' can alias something of either type `int' or type
100 `double'. (However, a store to an `int' cannot alias a `double'
101 and vice versa.) We indicate this via a tree structure that looks
102 like:
c22cacf3
MS
103 struct S
104 / \
3932261a 105 / \
c22cacf3
MS
106 |/_ _\|
107 int double
3932261a 108
ac3d9668
RK
109 (The arrows are directed and point downwards.)
110 In this situation we say the alias set for `struct S' is the
111 `superset' and that those for `int' and `double' are `subsets'.
112
3bdf5ad1
RK
113 To see whether two alias sets can point to the same memory, we must
114 see if either alias set is a subset of the other. We need not trace
95bd1dd7 115 past immediate descendants, however, since we propagate all
3bdf5ad1 116 grandchildren up one level.
3932261a
MM
117
118 Alias set zero is implicitly a superset of all other alias sets.
119 However, this is no actual entry for alias set zero. It is an
120 error to attempt to explicitly construct a subset of zero. */
121
e0702244 122struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
de144fb2 123
02ced957 124struct GTY(()) alias_set_entry {
3932261a 125 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 126 alias_set_type alias_set;
3932261a
MM
127
128 /* The children of the alias set. These are not just the immediate
95bd1dd7 129 children, but, in fact, all descendants. So, if we have:
3932261a 130
ca7fd9cd 131 struct T { struct S s; float f; }
3932261a
MM
132
133 continuing our example above, the children here will be all of
134 `int', `double', `float', and `struct S'. */
fb5c464a 135 hash_map<alias_set_hash, int> *children;
6e042ef4
JH
136
137 /* Nonzero if would have a child of zero: this effectively makes this
138 alias set the same as alias set zero. */
139 bool has_zero_child;
140 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
141 aggregate contaiing pointer.
142 This is used for a special case where we need an universal pointer type
143 compatible with all other pointer types. */
144 bool is_pointer;
145 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
146 bool has_pointer;
b604074c 147};
9ae8ffe7 148
ed7a4b4b 149static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 150static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 151static void record_set (rtx, const_rtx, void *);
ef4bddc2
RS
152static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 machine_mode);
4682ae04 154static rtx find_base_value (rtx);
4f588890 155static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
02ced957 156static alias_set_entry *get_alias_set_entry (alias_set_type);
4682ae04 157static tree decl_for_component_ref (tree);
bd280792 158static int write_dependence_p (const_rtx,
ef4bddc2 159 const_rtx, machine_mode, rtx,
bd280792 160 bool, bool, bool);
4682ae04 161
aa317c97 162static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7 163
3ecf9d13
JH
164/* Query statistics for the different low-level disambiguators.
165 A high-level query may trigger multiple of them. */
166
167static struct {
168 unsigned long long num_alias_zero;
169 unsigned long long num_same_alias_set;
170 unsigned long long num_same_objects;
171 unsigned long long num_volatile;
172 unsigned long long num_dag;
6e042ef4 173 unsigned long long num_universal;
3ecf9d13
JH
174 unsigned long long num_disambiguated;
175} alias_stats;
176
177
9ae8ffe7
JL
178/* Set up all info needed to perform alias analysis on memory references. */
179
d4b60170 180/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
181#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
182
ea64ef27 183/* Cap the number of passes we make over the insns propagating alias
131db6b8
SB
184 information through set chains.
185 ??? 10 is a completely arbitrary choice. This should be based on the
186 maximum loop depth in the CFG, but we do not have this information
187 available (even if current_loops _is_ available). */
ea64ef27 188#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 189
9ae8ffe7
JL
190/* reg_base_value[N] gives an address to which register N is related.
191 If all sets after the first add or subtract to the current value
192 or otherwise modify it so it does not point to a different top level
193 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
194 of the first set.
195
196 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
9fc37b2b 197 expressions represent three types of base:
b3b5ad95 198
9fc37b2b
RS
199 1. incoming arguments. There is just one ADDRESS to represent all
200 arguments, since we do not know at this level whether accesses
201 based on different arguments can alias. The ADDRESS has id 0.
b3b5ad95 202
9fc37b2b
RS
203 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
204 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
205 Each of these rtxes has a separate ADDRESS associated with it,
206 each with a negative id.
207
208 GCC is (and is required to be) precise in which register it
209 chooses to access a particular region of stack. We can therefore
210 assume that accesses based on one of these rtxes do not alias
211 accesses based on another of these rtxes.
212
213 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
214 Each such piece of memory has a separate ADDRESS associated
215 with it, each with an id greater than 0.
216
217 Accesses based on one ADDRESS do not alias accesses based on other
218 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
219 alias globals either; the ADDRESSes have Pmode to indicate this.
220 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
221 indicate this. */
2a2c8203 222
9771b263 223static GTY(()) vec<rtx, va_gc> *reg_base_value;
ac606739 224static rtx *new_reg_base_value;
c582d54a 225
9fc37b2b
RS
226/* The single VOIDmode ADDRESS that represents all argument bases.
227 It has id 0. */
228static GTY(()) rtx arg_base_value;
229
230/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
231static int unique_id;
232
c582d54a
JH
233/* We preserve the copy of old array around to avoid amount of garbage
234 produced. About 8% of garbage produced were attributed to this
235 array. */
9771b263 236static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
d4b60170 237
9e412ca3
RS
238/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
239 registers. */
240#define UNIQUE_BASE_VALUE_SP -1
241#define UNIQUE_BASE_VALUE_ARGP -2
242#define UNIQUE_BASE_VALUE_FP -3
243#define UNIQUE_BASE_VALUE_HFP -4
244
7bf84454
RS
245#define static_reg_base_value \
246 (this_target_rtl->x_static_reg_base_value)
bf1660a6 247
9771b263
DN
248#define REG_BASE_VALUE(X) \
249 (REGNO (X) < vec_safe_length (reg_base_value) \
250 ? (*reg_base_value)[REGNO (X)] : 0)
9ae8ffe7 251
c13e8210 252/* Vector indexed by N giving the initial (unchanging) value known for
9ff3c7ca 253 pseudo-register N. This vector is initialized in init_alias_analysis,
bb1acb3e 254 and does not change until end_alias_analysis is called. */
9771b263 255static GTY(()) vec<rtx, va_gc> *reg_known_value;
9ae8ffe7
JL
256
257/* Vector recording for each reg_known_value whether it is due to a
258 REG_EQUIV note. Future passes (viz., reload) may replace the
259 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
260 dependences that would be introduced if that happens.
261
262 The REG_EQUIV notes created in assign_parms may mention the arg
263 pointer, and there are explicit insns in the RTL that modify the
264 arg pointer. Thus we must ensure that such insns don't get
265 scheduled across each other because that would invalidate the
266 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
267 wrong, but solving the problem in the scheduler will likely give
268 better code, so we do it here. */
9ff3c7ca 269static sbitmap reg_known_equiv_p;
9ae8ffe7 270
2a2c8203
JC
271/* True when scanning insns from the start of the rtl to the
272 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 273static bool copying_arguments;
9ae8ffe7 274
1a5640b4 275
3932261a 276/* The splay-tree used to store the various alias set entries. */
02ced957 277static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
ac3d9668 278\f
55b34b5f
RG
279/* Build a decomposed reference object for querying the alias-oracle
280 from the MEM rtx and store it in *REF.
281 Returns false if MEM is not suitable for the alias-oracle. */
282
283static bool
284ao_ref_from_mem (ao_ref *ref, const_rtx mem)
285{
286 tree expr = MEM_EXPR (mem);
287 tree base;
288
289 if (!expr)
290 return false;
291
292 ao_ref_init (ref, expr);
293
294 /* Get the base of the reference and see if we have to reject or
295 adjust it. */
296 base = ao_ref_base (ref);
297 if (base == NULL_TREE)
298 return false;
299
ef7a9fb8
RB
300 /* The tree oracle doesn't like bases that are neither decls
301 nor indirect references of SSA names. */
302 if (!(DECL_P (base)
303 || (TREE_CODE (base) == MEM_REF
304 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
305 || (TREE_CODE (base) == TARGET_MEM_REF
306 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
d15adbeb 307 return false;
55b34b5f
RG
308
309 /* If this is a reference based on a partitioned decl replace the
ef7a9fb8 310 base with a MEM_REF of the pointer representative we
55b34b5f
RG
311 created during stack slot partitioning. */
312 if (TREE_CODE (base) == VAR_DECL
ef7a9fb8 313 && ! is_global_var (base)
55b34b5f
RG
314 && cfun->gimple_df->decls_to_pointers != NULL)
315 {
39c8aaa4 316 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
55b34b5f 317 if (namep)
39c8aaa4 318 ref->base = build_simple_mem_ref (*namep);
d15adbeb 319 }
55b34b5f
RG
320
321 ref->ref_alias_set = MEM_ALIAS_SET (mem);
322
f68396a1
RG
323 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
324 is conservative, so trust it. */
527210c4 325 if (!MEM_OFFSET_KNOWN_P (mem)
f5541398 326 || !MEM_SIZE_KNOWN_P (mem))
f68396a1 327 return true;
366f945f 328
e8024441
RB
329 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
330 drop ref->ref. */
527210c4 331 if (MEM_OFFSET (mem) < 0
e8024441
RB
332 || (ref->max_size != -1
333 && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
334 > ref->max_size)))
335 ref->ref = NULL_TREE;
b0e96404 336
e8024441
RB
337 /* Refine size and offset we got from analyzing MEM_EXPR by using
338 MEM_SIZE and MEM_OFFSET. */
f68396a1 339
527210c4 340 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
f5541398 341 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
b0e96404
RG
342
343 /* The MEM may extend into adjacent fields, so adjust max_size if
344 necessary. */
345 if (ref->max_size != -1
346 && ref->size > ref->max_size)
347 ref->max_size = ref->size;
348
349 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
350 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
351 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
352 && (ref->offset < 0
353 || (DECL_P (ref->base)
807e902e
KZ
354 && (DECL_SIZE (ref->base) == NULL_TREE
355 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
356 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
357 ref->offset + ref->size)))))
b0e96404 358 return false;
55b34b5f
RG
359
360 return true;
361}
362
363/* Query the alias-oracle on whether the two memory rtx X and MEM may
364 alias. If TBAA_P is set also apply TBAA. Returns true if the
365 two rtxen may alias, false otherwise. */
366
367static bool
368rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
369{
370 ao_ref ref1, ref2;
371
372 if (!ao_ref_from_mem (&ref1, x)
373 || !ao_ref_from_mem (&ref2, mem))
374 return true;
375
55e3bc4c
RG
376 return refs_may_alias_p_1 (&ref1, &ref2,
377 tbaa_p
378 && MEM_ALIAS_SET (x) != 0
379 && MEM_ALIAS_SET (mem) != 0);
55b34b5f
RG
380}
381
3932261a
MM
382/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
383 such an entry, or NULL otherwise. */
384
02ced957 385static inline alias_set_entry *
4862826d 386get_alias_set_entry (alias_set_type alias_set)
3932261a 387{
9771b263 388 return (*alias_sets)[alias_set];
3932261a
MM
389}
390
ac3d9668
RK
391/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
392 the two MEMs cannot alias each other. */
3932261a 393
9ddb66ca 394static inline int
4f588890 395mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 396{
598f8eca
RB
397 return (flag_strict_aliasing
398 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
399 MEM_ALIAS_SET (mem2)));
1da68f56 400}
3932261a 401
c58936b6
DB
402/* Return true if the first alias set is a subset of the second. */
403
404bool
4862826d 405alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6 406{
02ced957 407 alias_set_entry *ase2;
c58936b6 408
bd04cddf
JH
409 /* Disable TBAA oracle with !flag_strict_aliasing. */
410 if (!flag_strict_aliasing)
411 return true;
412
c58936b6
DB
413 /* Everything is a subset of the "aliases everything" set. */
414 if (set2 == 0)
415 return true;
416
6e042ef4
JH
417 /* Check if set1 is a subset of set2. */
418 ase2 = get_alias_set_entry (set2);
419 if (ase2 != 0
420 && (ase2->has_zero_child
421 || (ase2->children && ase2->children->get (set1))))
c58936b6 422 return true;
6e042ef4
JH
423
424 /* As a special case we consider alias set of "void *" to be both subset
425 and superset of every alias set of a pointer. This extra symmetry does
426 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
427 to return true on the following testcase:
428
429 void *ptr;
430 char **ptr2=(char **)&ptr;
431 *ptr2 = ...
432
433 Additionally if a set contains universal pointer, we consider every pointer
434 to be a subset of it, but we do not represent this explicitely - doing so
435 would require us to update transitive closure each time we introduce new
436 pointer type. This makes aliasing_component_refs_p to return true
437 on the following testcase:
438
439 struct a {void *ptr;}
440 char **ptr = (char **)&a.ptr;
441 ptr = ...
442
443 This makes void * truly universal pointer type. See pointer handling in
444 get_alias_set for more details. */
445 if (ase2 && ase2->has_pointer)
446 {
02ced957 447 alias_set_entry *ase1 = get_alias_set_entry (set1);
6e042ef4
JH
448
449 if (ase1 && ase1->is_pointer)
450 {
451 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
452 /* If one is ptr_type_node and other is pointer, then we consider
453 them subset of each other. */
454 if (set1 == voidptr_set || set2 == voidptr_set)
455 return true;
456 /* If SET2 contains universal pointer's alias set, then we consdier
457 every (non-universal) pointer. */
458 if (ase2->children && set1 != voidptr_set
459 && ase2->children->get (voidptr_set))
460 return true;
461 }
462 }
c58936b6
DB
463 return false;
464}
465
1da68f56
RK
466/* Return 1 if the two specified alias sets may conflict. */
467
468int
4862826d 469alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56 470{
02ced957
TS
471 alias_set_entry *ase1;
472 alias_set_entry *ase2;
1da68f56 473
836f7794
EB
474 /* The easy case. */
475 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 476 return 1;
3932261a 477
3bdf5ad1 478 /* See if the first alias set is a subset of the second. */
6e042ef4
JH
479 ase1 = get_alias_set_entry (set1);
480 if (ase1 != 0
481 && ase1->children && ase1->children->get (set2))
3ecf9d13
JH
482 {
483 ++alias_stats.num_dag;
484 return 1;
485 }
3932261a
MM
486
487 /* Now do the same, but with the alias sets reversed. */
6e042ef4
JH
488 ase2 = get_alias_set_entry (set2);
489 if (ase2 != 0
490 && ase2->children && ase2->children->get (set1))
3ecf9d13
JH
491 {
492 ++alias_stats.num_dag;
493 return 1;
494 }
6e042ef4
JH
495
496 /* We want void * to be compatible with any other pointer without
497 really dropping it to alias set 0. Doing so would make it
498 compatible with all non-pointer types too.
499
500 This is not strictly necessary by the C/C++ language
501 standards, but avoids common type punning mistakes. In
502 addition to that, we need the existence of such universal
503 pointer to implement Fortran's C_PTR type (which is defined as
504 type compatible with all C pointers). */
505 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
506 {
507 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
508
509 /* If one of the sets corresponds to universal pointer,
510 we consider it to conflict with anything that is
511 or contains pointer. */
512 if (set1 == voidptr_set || set2 == voidptr_set)
513 {
514 ++alias_stats.num_universal;
515 return true;
516 }
517 /* If one of sets is (non-universal) pointer and the other
518 contains universal pointer, we also get conflict. */
519 if (ase1->is_pointer && set2 != voidptr_set
520 && ase2->children && ase2->children->get (voidptr_set))
521 {
522 ++alias_stats.num_universal;
523 return true;
524 }
525 if (ase2->is_pointer && set1 != voidptr_set
526 && ase1->children && ase1->children->get (voidptr_set))
527 {
528 ++alias_stats.num_universal;
529 return true;
530 }
531 }
532
3ecf9d13 533 ++alias_stats.num_disambiguated;
3932261a 534
1da68f56 535 /* The two alias sets are distinct and neither one is the
836f7794 536 child of the other. Therefore, they cannot conflict. */
1da68f56 537 return 0;
3932261a 538}
5399d643 539
836f7794 540/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
541
542int
4862826d 543alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643 544{
bd04cddf
JH
545 /* Disable TBAA oracle with !flag_strict_aliasing. */
546 if (!flag_strict_aliasing)
547 return 1;
3ecf9d13
JH
548 if (set1 == 0 || set2 == 0)
549 {
550 ++alias_stats.num_alias_zero;
551 return 1;
552 }
553 if (set1 == set2)
554 {
555 ++alias_stats.num_same_alias_set;
556 return 1;
557 }
5399d643
JW
558
559 return 0;
560}
561
1da68f56
RK
562/* Return 1 if any MEM object of type T1 will always conflict (using the
563 dependency routines in this file) with any MEM object of type T2.
564 This is used when allocating temporary storage. If T1 and/or T2 are
565 NULL_TREE, it means we know nothing about the storage. */
566
567int
4682ae04 568objects_must_conflict_p (tree t1, tree t2)
1da68f56 569{
4862826d 570 alias_set_type set1, set2;
82d610ec 571
e8ea2809
RK
572 /* If neither has a type specified, we don't know if they'll conflict
573 because we may be using them to store objects of various types, for
574 example the argument and local variables areas of inlined functions. */
981a4c34 575 if (t1 == 0 && t2 == 0)
e8ea2809
RK
576 return 0;
577
1da68f56 578 /* If they are the same type, they must conflict. */
3ecf9d13
JH
579 if (t1 == t2)
580 {
581 ++alias_stats.num_same_objects;
582 return 1;
583 }
584 /* Likewise if both are volatile. */
585 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
586 {
587 ++alias_stats.num_volatile;
588 return 1;
589 }
1da68f56 590
82d610ec
RK
591 set1 = t1 ? get_alias_set (t1) : 0;
592 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 593
836f7794
EB
594 /* We can't use alias_sets_conflict_p because we must make sure
595 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
596 t2 for which a pair of subobjects of these respective subtypes
597 overlaps on the stack. */
836f7794 598 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
599}
600\f
b4ada065
RB
601/* Return the outermost parent of component present in the chain of
602 component references handled by get_inner_reference in T with the
603 following property:
604 - the component is non-addressable, or
605 - the parent has alias set zero,
606 or NULL_TREE if no such parent exists. In the former cases, the alias
607 set of this parent is the alias set that must be used for T itself. */
608
609tree
610component_uses_parent_alias_set_from (const_tree t)
6e24b709 611{
b4ada065 612 const_tree found = NULL_TREE;
afe84921 613
b4ada065
RB
614 while (handled_component_p (t))
615 {
afe84921
RH
616 switch (TREE_CODE (t))
617 {
618 case COMPONENT_REF:
619 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
b4ada065 620 found = t;
afe84921
RH
621 break;
622
623 case ARRAY_REF:
624 case ARRAY_RANGE_REF:
625 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
b4ada065 626 found = t;
afe84921
RH
627 break;
628
629 case REALPART_EXPR:
630 case IMAGPART_EXPR:
631 break;
632
b4ada065
RB
633 case BIT_FIELD_REF:
634 case VIEW_CONVERT_EXPR:
afe84921 635 /* Bitfields and casts are never addressable. */
b4ada065
RB
636 found = t;
637 break;
638
639 default:
640 gcc_unreachable ();
afe84921
RH
641 }
642
b4ada065
RB
643 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
644 found = t;
645
afe84921
RH
646 t = TREE_OPERAND (t, 0);
647 }
b4ada065
RB
648
649 if (found)
650 return TREE_OPERAND (found, 0);
651
652 return NULL_TREE;
6e24b709
RK
653}
654
f40333af
RB
655
656/* Return whether the pointer-type T effective for aliasing may
657 access everything and thus the reference has to be assigned
658 alias-set zero. */
659
660static bool
661ref_all_alias_ptr_type_p (const_tree t)
662{
663 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
664 || TYPE_REF_CAN_ALIAS_ALL (t));
665}
666
5006671f
RG
667/* Return the alias set for the memory pointed to by T, which may be
668 either a type or an expression. Return -1 if there is nothing
669 special about dereferencing T. */
670
671static alias_set_type
672get_deref_alias_set_1 (tree t)
673{
5b21f0f3 674 /* All we care about is the type. */
5006671f 675 if (! TYPE_P (t))
5b21f0f3 676 t = TREE_TYPE (t);
5006671f
RG
677
678 /* If we have an INDIRECT_REF via a void pointer, we don't
679 know anything about what that might alias. Likewise if the
680 pointer is marked that way. */
f40333af 681 if (ref_all_alias_ptr_type_p (t))
5006671f
RG
682 return 0;
683
684 return -1;
685}
686
687/* Return the alias set for the memory pointed to by T, which may be
688 either a type or an expression. */
689
690alias_set_type
691get_deref_alias_set (tree t)
692{
f40333af
RB
693 /* If we're not doing any alias analysis, just assume everything
694 aliases everything else. */
695 if (!flag_strict_aliasing)
696 return 0;
697
5006671f
RG
698 alias_set_type set = get_deref_alias_set_1 (t);
699
700 /* Fall back to the alias-set of the pointed-to type. */
701 if (set == -1)
702 {
703 if (! TYPE_P (t))
704 t = TREE_TYPE (t);
705 set = get_alias_set (TREE_TYPE (t));
706 }
707
708 return set;
709}
710
f40333af
RB
711/* Return the pointer-type relevant for TBAA purposes from the
712 memory reference tree *T or NULL_TREE in which case *T is
713 adjusted to point to the outermost component reference that
714 can be used for assigning an alias set. */
715
716static tree
717reference_alias_ptr_type_1 (tree *t)
718{
719 tree inner;
720
721 /* Get the base object of the reference. */
722 inner = *t;
723 while (handled_component_p (inner))
724 {
725 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
726 the type of any component references that wrap it to
727 determine the alias-set. */
728 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
729 *t = TREE_OPERAND (inner, 0);
730 inner = TREE_OPERAND (inner, 0);
731 }
732
733 /* Handle pointer dereferences here, they can override the
734 alias-set. */
735 if (INDIRECT_REF_P (inner)
736 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
737 return TREE_TYPE (TREE_OPERAND (inner, 0));
738 else if (TREE_CODE (inner) == TARGET_MEM_REF)
739 return TREE_TYPE (TMR_OFFSET (inner));
740 else if (TREE_CODE (inner) == MEM_REF
741 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
742 return TREE_TYPE (TREE_OPERAND (inner, 1));
743
744 /* If the innermost reference is a MEM_REF that has a
745 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
746 using the memory access type for determining the alias-set. */
747 if (TREE_CODE (inner) == MEM_REF
748 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
749 != TYPE_MAIN_VARIANT
750 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
751 return TREE_TYPE (TREE_OPERAND (inner, 1));
752
b4ada065
RB
753 /* Otherwise, pick up the outermost object that we could have
754 a pointer to. */
755 tree tem = component_uses_parent_alias_set_from (*t);
756 if (tem)
757 *t = tem;
f40333af
RB
758
759 return NULL_TREE;
760}
761
762/* Return the pointer-type relevant for TBAA purposes from the
763 gimple memory reference tree T. This is the type to be used for
764 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
765 and guarantees that get_alias_set will return the same alias
766 set for T and the replacement. */
767
768tree
769reference_alias_ptr_type (tree t)
770{
771 tree ptype = reference_alias_ptr_type_1 (&t);
772 /* If there is a given pointer type for aliasing purposes, return it. */
773 if (ptype != NULL_TREE)
774 return ptype;
775
776 /* Otherwise build one from the outermost component reference we
777 may use. */
778 if (TREE_CODE (t) == MEM_REF
779 || TREE_CODE (t) == TARGET_MEM_REF)
780 return TREE_TYPE (TREE_OPERAND (t, 1));
781 else
782 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
783}
784
785/* Return whether the pointer-types T1 and T2 used to determine
786 two alias sets of two references will yield the same answer
787 from get_deref_alias_set. */
788
789bool
790alias_ptr_types_compatible_p (tree t1, tree t2)
791{
792 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
793 return true;
794
795 if (ref_all_alias_ptr_type_p (t1)
796 || ref_all_alias_ptr_type_p (t2))
797 return false;
798
799 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
800 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
801}
802
6e042ef4
JH
803/* Create emptry alias set entry. */
804
02ced957 805alias_set_entry *
6e042ef4
JH
806init_alias_set_entry (alias_set_type set)
807{
02ced957 808 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
6e042ef4
JH
809 ase->alias_set = set;
810 ase->children = NULL;
811 ase->has_zero_child = false;
812 ase->is_pointer = false;
813 ase->has_pointer = false;
814 gcc_checking_assert (!get_alias_set_entry (set));
815 (*alias_sets)[set] = ase;
816 return ase;
817}
818
3bdf5ad1
RK
819/* Return the alias set for T, which may be either a type or an
820 expression. Call language-specific routine for help, if needed. */
821
4862826d 822alias_set_type
4682ae04 823get_alias_set (tree t)
3bdf5ad1 824{
4862826d 825 alias_set_type set;
3bdf5ad1 826
bd04cddf
JH
827 /* We can not give up with -fno-strict-aliasing because we need to build
828 proper type representation for possible functions which are build with
829 -fstirct-aliasing. */
830
831 /* return 0 if this or its type is an error. */
832 if (t == error_mark_node
3bdf5ad1
RK
833 || (! TYPE_P (t)
834 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
835 return 0;
836
837 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
838 language-specific routine may make mutually-recursive calls to each other
839 to figure out what to do. At each juncture, we see if this is a tree
840 that the language may need to handle specially. First handle things that
738cc472 841 aren't types. */
f824e5c3 842 if (! TYPE_P (t))
3bdf5ad1 843 {
70f34814
RG
844 /* Give the language a chance to do something with this tree
845 before we look at it. */
8ac61af7 846 STRIP_NOPS (t);
ae2bcd98 847 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
848 if (set != -1)
849 return set;
850
f40333af
RB
851 /* Get the alias pointer-type to use or the outermost object
852 that we could have a pointer to. */
853 tree ptype = reference_alias_ptr_type_1 (&t);
854 if (ptype != NULL)
855 return get_deref_alias_set (ptype);
f824e5c3 856
738cc472
RK
857 /* If we've already determined the alias set for a decl, just return
858 it. This is necessary for C++ anonymous unions, whose component
859 variables don't look like union members (boo!). */
5755cd38 860 if (TREE_CODE (t) == VAR_DECL
3c0cb5de 861 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
862 return MEM_ALIAS_SET (DECL_RTL (t));
863
f824e5c3
RK
864 /* Now all we care about is the type. */
865 t = TREE_TYPE (t);
3bdf5ad1
RK
866 }
867
3bdf5ad1 868 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 869 variant. */
3bdf5ad1 870 t = TYPE_MAIN_VARIANT (t);
daad0278
RG
871
872 /* Always use the canonical type as well. If this is a type that
873 requires structural comparisons to identify compatible types
874 use alias set zero. */
875 if (TYPE_STRUCTURAL_EQUALITY_P (t))
cb9c2485
JM
876 {
877 /* Allow the language to specify another alias set for this
878 type. */
879 set = lang_hooks.get_alias_set (t);
880 if (set != -1)
881 return set;
aea50b45
JH
882 /* Handle structure type equality for pointer types, arrays and vectors.
883 This is easy to do, because the code bellow ignore canonical types on
884 these anyway. This is important for LTO, where TYPE_CANONICAL for
885 pointers can not be meaningfuly computed by the frotnend. */
886 if (canonical_type_used_p (t))
f85d2487
JH
887 {
888 /* In LTO we set canonical types for all types where it makes
889 sense to do so. Double check we did not miss some type. */
890 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
891 return 0;
892 }
893 }
894 else
895 {
896 t = TYPE_CANONICAL (t);
897 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
cb9c2485 898 }
daad0278
RG
899
900 /* If this is a type with a known alias set, return it. */
ba6a6a1d 901 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
738cc472 902 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
903 return TYPE_ALIAS_SET (t);
904
36784d0e
RG
905 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
906 if (!COMPLETE_TYPE_P (t))
907 {
908 /* For arrays with unknown size the conservative answer is the
909 alias set of the element type. */
910 if (TREE_CODE (t) == ARRAY_TYPE)
911 return get_alias_set (TREE_TYPE (t));
912
913 /* But return zero as a conservative answer for incomplete types. */
914 return 0;
915 }
916
3bdf5ad1 917 /* See if the language has special handling for this type. */
ae2bcd98 918 set = lang_hooks.get_alias_set (t);
8ac61af7 919 if (set != -1)
738cc472 920 return set;
2bf105ab 921
3bdf5ad1
RK
922 /* There are no objects of FUNCTION_TYPE, so there's no point in
923 using up an alias set for them. (There are, of course, pointers
924 and references to functions, but that's different.) */
7be7d292 925 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 926 set = 0;
74d86f4f
RH
927
928 /* Unless the language specifies otherwise, let vector types alias
929 their components. This avoids some nasty type punning issues in
930 normal usage. And indeed lets vectors be treated more like an
931 array slice. */
932 else if (TREE_CODE (t) == VECTOR_TYPE)
933 set = get_alias_set (TREE_TYPE (t));
934
4653cae5
RG
935 /* Unless the language specifies otherwise, treat array types the
936 same as their components. This avoids the asymmetry we get
937 through recording the components. Consider accessing a
938 character(kind=1) through a reference to a character(kind=1)[1:1].
939 Or consider if we want to assign integer(kind=4)[0:D.1387] and
940 integer(kind=4)[4] the same alias set or not.
941 Just be pragmatic here and make sure the array and its element
942 type get the same alias set assigned. */
aea50b45
JH
943 else if (TREE_CODE (t) == ARRAY_TYPE
944 && (!TYPE_NONALIASED_COMPONENT (t)
945 || TYPE_STRUCTURAL_EQUALITY_P (t)))
4653cae5
RG
946 set = get_alias_set (TREE_TYPE (t));
947
0ceb0201
RG
948 /* From the former common C and C++ langhook implementation:
949
950 Unfortunately, there is no canonical form of a pointer type.
951 In particular, if we have `typedef int I', then `int *', and
952 `I *' are different types. So, we have to pick a canonical
953 representative. We do this below.
954
955 Technically, this approach is actually more conservative that
956 it needs to be. In particular, `const int *' and `int *'
957 should be in different alias sets, according to the C and C++
958 standard, since their types are not the same, and so,
959 technically, an `int **' and `const int **' cannot point at
960 the same thing.
961
962 But, the standard is wrong. In particular, this code is
963 legal C++:
964
965 int *ip;
966 int **ipp = &ip;
967 const int* const* cipp = ipp;
968 And, it doesn't make sense for that to be legal unless you
969 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
970 the pointed-to types. This issue has been reported to the
971 C++ committee.
972
6e042ef4
JH
973 For this reason go to canonical type of the unqalified pointer type.
974 Until GCC 6 this code set all pointers sets to have alias set of
975 ptr_type_node but that is a bad idea, because it prevents disabiguations
976 in between pointers. For Firefox this accounts about 20% of all
977 disambiguations in the program. */
f85d2487 978 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
6e042ef4
JH
979 {
980 tree p;
981 auto_vec <bool, 8> reference;
982
983 /* Unnest all pointers and references.
f85d2487
JH
984 We also want to make pointer to array/vector equivalent to pointer to
985 its element (see the reasoning above). Skip all those types, too. */
6e042ef4 986 for (p = t; POINTER_TYPE_P (p)
aea50b45
JH
987 || (TREE_CODE (p) == ARRAY_TYPE
988 && (!TYPE_NONALIASED_COMPONENT (p)
989 || !COMPLETE_TYPE_P (p)
990 || TYPE_STRUCTURAL_EQUALITY_P (p)))
f85d2487 991 || TREE_CODE (p) == VECTOR_TYPE;
6e042ef4
JH
992 p = TREE_TYPE (p))
993 {
54363f8a
JH
994 /* Ada supports recusive pointers. Instead of doing recrusion check
995 just give up once the preallocated space of 8 elements is up.
996 In this case just punt to void * alias set. */
997 if (reference.length () == 8)
998 {
999 p = ptr_type_node;
1000 break;
1001 }
6e042ef4 1002 if (TREE_CODE (p) == REFERENCE_TYPE)
f85d2487
JH
1003 /* In LTO we want languages that use references to be compatible
1004 with languages that use pointers. */
1005 reference.safe_push (true && !in_lto_p);
6e042ef4
JH
1006 if (TREE_CODE (p) == POINTER_TYPE)
1007 reference.safe_push (false);
1008 }
1009 p = TYPE_MAIN_VARIANT (p);
1010
1011 /* Make void * compatible with char * and also void **.
1012 Programs are commonly violating TBAA by this.
1013
1014 We also make void * to conflict with every pointer
1015 (see record_component_aliases) and thus it is safe it to use it for
1016 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1017 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1018 set = get_alias_set (ptr_type_node);
1019 else
1020 {
f85d2487 1021 /* Rebuild pointer type starting from canonical types using
6e042ef4
JH
1022 unqualified pointers and references only. This way all such
1023 pointers will have the same alias set and will conflict with
1024 each other.
1025
1026 Most of time we already have pointers or references of a given type.
1027 If not we build new one just to be sure that if someone later
1028 (probably only middle-end can, as we should assign all alias
1029 classes only after finishing translation unit) builds the pointer
1030 type, the canonical type will match. */
1031 p = TYPE_CANONICAL (p);
1032 while (!reference.is_empty ())
1033 {
1034 if (reference.pop ())
1035 p = build_reference_type (p);
1036 else
1037 p = build_pointer_type (p);
f85d2487
JH
1038 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1039 /* build_pointer_type should always return the canonical type.
1040 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1041 them. Be sure that frontends do not glob canonical types of
1042 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1043 in all other cases. */
1044 gcc_checking_assert (!TYPE_CANONICAL (p)
1045 || p == TYPE_CANONICAL (p));
6e042ef4 1046 }
6e042ef4
JH
1047
1048 /* Assign the alias set to both p and t.
1049 We can not call get_alias_set (p) here as that would trigger
1050 infinite recursion when p == t. In other cases it would just
1051 trigger unnecesary legwork of rebuilding the pointer again. */
ba6a6a1d 1052 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
6e042ef4
JH
1053 if (TYPE_ALIAS_SET_KNOWN_P (p))
1054 set = TYPE_ALIAS_SET (p);
1055 else
1056 {
1057 set = new_alias_set ();
1058 TYPE_ALIAS_SET (p) = set;
1059 }
1060 }
1061 }
f85d2487
JH
1062 /* Alias set of ptr_type_node is special and serve as universal pointer which
1063 is TBAA compatible with every other pointer type. Be sure we have the
1064 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1065 of pointer types NULL. */
1066 else if (t == ptr_type_node)
1067 set = new_alias_set ();
0ceb0201 1068
7be7d292 1069 /* Otherwise make a new alias set for this type. */
3bdf5ad1 1070 else
96d91dcf
RG
1071 {
1072 /* Each canonical type gets its own alias set, so canonical types
1073 shouldn't form a tree. It doesn't really matter for types
1074 we handle specially above, so only check it where it possibly
1075 would result in a bogus alias set. */
1076 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1077
1078 set = new_alias_set ();
1079 }
3bdf5ad1
RK
1080
1081 TYPE_ALIAS_SET (t) = set;
2bf105ab 1082
7be7d292
EB
1083 /* If this is an aggregate type or a complex type, we must record any
1084 component aliasing information. */
1d79fd2c 1085 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
1086 record_component_aliases (t);
1087
6e042ef4
JH
1088 /* We treat pointer types specially in alias_set_subset_of. */
1089 if (POINTER_TYPE_P (t) && set)
1090 {
02ced957 1091 alias_set_entry *ase = get_alias_set_entry (set);
6e042ef4
JH
1092 if (!ase)
1093 ase = init_alias_set_entry (set);
1094 ase->is_pointer = true;
1095 ase->has_pointer = true;
1096 }
1097
3bdf5ad1
RK
1098 return set;
1099}
1100
1101/* Return a brand-new alias set. */
1102
4862826d 1103alias_set_type
4682ae04 1104new_alias_set (void)
3bdf5ad1 1105{
bd04cddf
JH
1106 if (alias_sets == 0)
1107 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1108 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1109 return alias_sets->length () - 1;
3bdf5ad1 1110}
3932261a 1111
01d28c3f
JM
1112/* Indicate that things in SUBSET can alias things in SUPERSET, but that
1113 not everything that aliases SUPERSET also aliases SUBSET. For example,
1114 in C, a store to an `int' can alias a load of a structure containing an
1115 `int', and vice versa. But it can't alias a load of a 'double' member
1116 of the same structure. Here, the structure would be the SUPERSET and
1117 `int' the SUBSET. This relationship is also described in the comment at
1118 the beginning of this file.
1119
1120 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
1121
1122 It is illegal for SUPERSET to be zero; everything is implicitly a
1123 subset of alias set zero. */
1124
794511d2 1125void
4862826d 1126record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a 1127{
02ced957
TS
1128 alias_set_entry *superset_entry;
1129 alias_set_entry *subset_entry;
3932261a 1130
f47e9b4e
RK
1131 /* It is possible in complex type situations for both sets to be the same,
1132 in which case we can ignore this operation. */
1133 if (superset == subset)
1134 return;
1135
298e6adc 1136 gcc_assert (superset);
3932261a
MM
1137
1138 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 1139 if (superset_entry == 0)
3932261a
MM
1140 {
1141 /* Create an entry for the SUPERSET, so that we have a place to
1142 attach the SUBSET. */
6e042ef4 1143 superset_entry = init_alias_set_entry (superset);
3932261a
MM
1144 }
1145
2bf105ab
RK
1146 if (subset == 0)
1147 superset_entry->has_zero_child = 1;
1148 else
1149 {
1150 subset_entry = get_alias_set_entry (subset);
6e042ef4
JH
1151 if (!superset_entry->children)
1152 superset_entry->children
fb5c464a 1153 = hash_map<alias_set_hash, int>::create_ggc (64);
2bf105ab
RK
1154 /* If there is an entry for the subset, enter all of its children
1155 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 1156 if (subset_entry)
2bf105ab
RK
1157 {
1158 if (subset_entry->has_zero_child)
6e042ef4
JH
1159 superset_entry->has_zero_child = true;
1160 if (subset_entry->has_pointer)
1161 superset_entry->has_pointer = true;
d4b60170 1162
6e042ef4
JH
1163 if (subset_entry->children)
1164 {
fb5c464a 1165 hash_map<alias_set_hash, int>::iterator iter
6e042ef4
JH
1166 = subset_entry->children->begin ();
1167 for (; iter != subset_entry->children->end (); ++iter)
1168 superset_entry->children->put ((*iter).first, (*iter).second);
1169 }
2bf105ab 1170 }
3932261a 1171
2bf105ab 1172 /* Enter the SUBSET itself as a child of the SUPERSET. */
de144fb2 1173 superset_entry->children->put (subset, 0);
2bf105ab 1174 }
3932261a
MM
1175}
1176
a0c33338
RK
1177/* Record that component types of TYPE, if any, are part of that type for
1178 aliasing purposes. For record types, we only record component types
b5487346
EB
1179 for fields that are not marked non-addressable. For array types, we
1180 only record the component type if it is not marked non-aliased. */
a0c33338
RK
1181
1182void
4682ae04 1183record_component_aliases (tree type)
a0c33338 1184{
4862826d 1185 alias_set_type superset = get_alias_set (type);
a0c33338
RK
1186 tree field;
1187
1188 if (superset == 0)
1189 return;
1190
1191 switch (TREE_CODE (type))
1192 {
a0c33338
RK
1193 case RECORD_TYPE:
1194 case UNION_TYPE:
1195 case QUAL_UNION_TYPE:
910ad8de 1196 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
b5487346 1197 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
f85d2487
JH
1198 {
1199 /* LTO type merging does not make any difference between
1200 component pointer types. We may have
1201
1202 struct foo {int *a;};
1203
1204 as TYPE_CANONICAL of
1205
1206 struct bar {float *a;};
1207
1208 Because accesses to int * and float * do not alias, we would get
1209 false negative when accessing the same memory location by
1210 float ** and bar *. We thus record the canonical type as:
1211
1212 struct {void *a;};
1213
1214 void * is special cased and works as a universal pointer type.
1215 Accesses to it conflicts with accesses to any other pointer
1216 type. */
1217 tree t = TREE_TYPE (field);
1218 if (in_lto_p)
1219 {
1220 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1221 element type and that type has to be normalized to void *,
1222 too, in the case it is a pointer. */
aea50b45
JH
1223 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1224 {
1225 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1226 t = TREE_TYPE (t);
1227 }
f85d2487
JH
1228 if (POINTER_TYPE_P (t))
1229 t = ptr_type_node;
aea50b45
JH
1230 else if (flag_checking)
1231 gcc_checking_assert (get_alias_set (t)
1232 == get_alias_set (TREE_TYPE (field)));
f85d2487 1233 }
aea50b45 1234
f85d2487
JH
1235 record_alias_subset (superset, get_alias_set (t));
1236 }
a0c33338
RK
1237 break;
1238
1d79fd2c
JW
1239 case COMPLEX_TYPE:
1240 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1241 break;
1242
4653cae5
RG
1243 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1244 element type. */
1245
a0c33338
RK
1246 default:
1247 break;
1248 }
1249}
1250
3bdf5ad1
RK
1251/* Allocate an alias set for use in storing and reading from the varargs
1252 spill area. */
1253
4862826d 1254static GTY(()) alias_set_type varargs_set = -1;
f103e34d 1255
4862826d 1256alias_set_type
4682ae04 1257get_varargs_alias_set (void)
3bdf5ad1 1258{
cd3ce9b4
JM
1259#if 1
1260 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1261 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1262 consistently use the varargs alias set for loads from the varargs
1263 area. So don't use it anywhere. */
1264 return 0;
1265#else
f103e34d
GK
1266 if (varargs_set == -1)
1267 varargs_set = new_alias_set ();
3bdf5ad1 1268
f103e34d 1269 return varargs_set;
cd3ce9b4 1270#endif
3bdf5ad1
RK
1271}
1272
1273/* Likewise, but used for the fixed portions of the frame, e.g., register
1274 save areas. */
1275
4862826d 1276static GTY(()) alias_set_type frame_set = -1;
f103e34d 1277
4862826d 1278alias_set_type
4682ae04 1279get_frame_alias_set (void)
3bdf5ad1 1280{
f103e34d
GK
1281 if (frame_set == -1)
1282 frame_set = new_alias_set ();
3bdf5ad1 1283
f103e34d 1284 return frame_set;
3bdf5ad1
RK
1285}
1286
9fc37b2b
RS
1287/* Create a new, unique base with id ID. */
1288
1289static rtx
1290unique_base_value (HOST_WIDE_INT id)
1291{
1292 return gen_rtx_ADDRESS (Pmode, id);
1293}
1294
1295/* Return true if accesses based on any other base value cannot alias
1296 those based on X. */
1297
1298static bool
1299unique_base_value_p (rtx x)
1300{
1301 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1302}
1303
1304/* Return true if X is known to be a base value. */
1305
1306static bool
1307known_base_value_p (rtx x)
1308{
1309 switch (GET_CODE (x))
1310 {
1311 case LABEL_REF:
1312 case SYMBOL_REF:
1313 return true;
1314
1315 case ADDRESS:
1316 /* Arguments may or may not be bases; we don't know for sure. */
1317 return GET_MODE (x) != VOIDmode;
1318
1319 default:
1320 return false;
1321 }
1322}
1323
2a2c8203
JC
1324/* Inside SRC, the source of a SET, find a base address. */
1325
9ae8ffe7 1326static rtx
4682ae04 1327find_base_value (rtx src)
9ae8ffe7 1328{
713f41f9 1329 unsigned int regno;
0aacc8ed 1330
53451050
RS
1331#if defined (FIND_BASE_TERM)
1332 /* Try machine-dependent ways to find the base term. */
1333 src = FIND_BASE_TERM (src);
1334#endif
1335
9ae8ffe7
JL
1336 switch (GET_CODE (src))
1337 {
1338 case SYMBOL_REF:
1339 case LABEL_REF:
1340 return src;
1341
1342 case REG:
fb6754f0 1343 regno = REGNO (src);
d4b60170 1344 /* At the start of a function, argument registers have known base
2a2c8203
JC
1345 values which may be lost later. Returning an ADDRESS
1346 expression here allows optimization based on argument values
1347 even when the argument registers are used for other purposes. */
713f41f9
BS
1348 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1349 return new_reg_base_value[regno];
73774bc7 1350
eaf407a5 1351 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
1352 for non-fixed hard regs since it can result in a circular
1353 dependency chain for registers which have values at function entry.
eaf407a5
JL
1354
1355 The test above is not sufficient because the scheduler may move
1356 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 1357 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
9771b263 1358 && regno < vec_safe_length (reg_base_value))
83bbd9b6
RH
1359 {
1360 /* If we're inside init_alias_analysis, use new_reg_base_value
1361 to reduce the number of relaxation iterations. */
1afdf91c 1362 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 1363 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
1364 return new_reg_base_value[regno];
1365
9771b263
DN
1366 if ((*reg_base_value)[regno])
1367 return (*reg_base_value)[regno];
83bbd9b6 1368 }
73774bc7 1369
e3f049a8 1370 return 0;
9ae8ffe7
JL
1371
1372 case MEM:
1373 /* Check for an argument passed in memory. Only record in the
1374 copying-arguments block; it is too hard to track changes
1375 otherwise. */
1376 if (copying_arguments
1377 && (XEXP (src, 0) == arg_pointer_rtx
1378 || (GET_CODE (XEXP (src, 0)) == PLUS
1379 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
9fc37b2b 1380 return arg_base_value;
9ae8ffe7
JL
1381 return 0;
1382
1383 case CONST:
1384 src = XEXP (src, 0);
1385 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1386 break;
d4b60170 1387
ec5c56db 1388 /* ... fall through ... */
2a2c8203 1389
9ae8ffe7
JL
1390 case PLUS:
1391 case MINUS:
2a2c8203 1392 {
ec907dd8
JL
1393 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1394
0134bf2d
DE
1395 /* If either operand is a REG that is a known pointer, then it
1396 is the base. */
1397 if (REG_P (src_0) && REG_POINTER (src_0))
1398 return find_base_value (src_0);
1399 if (REG_P (src_1) && REG_POINTER (src_1))
1400 return find_base_value (src_1);
1401
ec907dd8
JL
1402 /* If either operand is a REG, then see if we already have
1403 a known value for it. */
0134bf2d 1404 if (REG_P (src_0))
ec907dd8
JL
1405 {
1406 temp = find_base_value (src_0);
d4b60170 1407 if (temp != 0)
ec907dd8
JL
1408 src_0 = temp;
1409 }
1410
0134bf2d 1411 if (REG_P (src_1))
ec907dd8
JL
1412 {
1413 temp = find_base_value (src_1);
d4b60170 1414 if (temp!= 0)
ec907dd8
JL
1415 src_1 = temp;
1416 }
2a2c8203 1417
0134bf2d
DE
1418 /* If either base is named object or a special address
1419 (like an argument or stack reference), then use it for the
1420 base term. */
9fc37b2b 1421 if (src_0 != 0 && known_base_value_p (src_0))
0134bf2d
DE
1422 return src_0;
1423
9fc37b2b 1424 if (src_1 != 0 && known_base_value_p (src_1))
0134bf2d
DE
1425 return src_1;
1426
d4b60170 1427 /* Guess which operand is the base address:
ec907dd8
JL
1428 If either operand is a symbol, then it is the base. If
1429 either operand is a CONST_INT, then the other is the base. */
481683e1 1430 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1431 return find_base_value (src_0);
481683e1 1432 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1433 return find_base_value (src_1);
1434
9ae8ffe7 1435 return 0;
2a2c8203
JC
1436 }
1437
1438 case LO_SUM:
1439 /* The standard form is (lo_sum reg sym) so look only at the
1440 second operand. */
1441 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1442
1443 case AND:
1444 /* If the second operand is constant set the base
ec5c56db 1445 address to the first operand. */
481683e1 1446 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
2a2c8203 1447 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1448 return 0;
1449
61f0131c 1450 case TRUNCATE:
5932a4d4 1451 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1452 handle this only if the target does not support different pointer or
1453 address modes depending on the address space. */
1454 if (!target_default_pointer_address_modes_p ())
1455 break;
61f0131c
R
1456 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1457 break;
1458 /* Fall through. */
9ae8ffe7 1459 case HIGH:
d288e53d
DE
1460 case PRE_INC:
1461 case PRE_DEC:
1462 case POST_INC:
1463 case POST_DEC:
1464 case PRE_MODIFY:
1465 case POST_MODIFY:
2a2c8203 1466 return find_base_value (XEXP (src, 0));
1d300e19 1467
0aacc8ed
RK
1468 case ZERO_EXTEND:
1469 case SIGN_EXTEND: /* used for NT/Alpha pointers */
5932a4d4 1470 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1471 handle this only if the target does not support different pointer or
1472 address modes depending on the address space. */
1473 if (!target_default_pointer_address_modes_p ())
1474 break;
1475
0aacc8ed
RK
1476 {
1477 rtx temp = find_base_value (XEXP (src, 0));
1478
5ae6cd0d 1479 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1480 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1481
1482 return temp;
1483 }
1484
1d300e19
KG
1485 default:
1486 break;
9ae8ffe7
JL
1487 }
1488
1489 return 0;
1490}
1491
9fc37b2b
RS
1492/* Called from init_alias_analysis indirectly through note_stores,
1493 or directly if DEST is a register with a REG_NOALIAS note attached.
1494 SET is null in the latter case. */
9ae8ffe7 1495
d4b60170 1496/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7 1497 register N has been set in this function. */
d630245f 1498static sbitmap reg_seen;
9ae8ffe7 1499
2a2c8203 1500static void
7bc980e1 1501record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1502{
b3694847 1503 unsigned regno;
9ae8ffe7 1504 rtx src;
c28b4e40 1505 int n;
9ae8ffe7 1506
f8cfc6aa 1507 if (!REG_P (dest))
9ae8ffe7
JL
1508 return;
1509
fb6754f0 1510 regno = REGNO (dest);
9ae8ffe7 1511
9771b263 1512 gcc_checking_assert (regno < reg_base_value->length ());
ac606739 1513
dc8afb70 1514 n = REG_NREGS (dest);
c28b4e40
JW
1515 if (n != 1)
1516 {
1517 while (--n >= 0)
1518 {
d7c028c0 1519 bitmap_set_bit (reg_seen, regno + n);
c28b4e40
JW
1520 new_reg_base_value[regno + n] = 0;
1521 }
1522 return;
1523 }
1524
9ae8ffe7
JL
1525 if (set)
1526 {
1527 /* A CLOBBER wipes out any old value but does not prevent a previously
1528 unset register from acquiring a base address (i.e. reg_seen is not
1529 set). */
1530 if (GET_CODE (set) == CLOBBER)
1531 {
ec907dd8 1532 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1533 return;
1534 }
1535 src = SET_SRC (set);
1536 }
1537 else
1538 {
9fc37b2b 1539 /* There's a REG_NOALIAS note against DEST. */
d7c028c0 1540 if (bitmap_bit_p (reg_seen, regno))
9ae8ffe7 1541 {
ec907dd8 1542 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1543 return;
1544 }
d7c028c0 1545 bitmap_set_bit (reg_seen, regno);
9fc37b2b 1546 new_reg_base_value[regno] = unique_base_value (unique_id++);
9ae8ffe7
JL
1547 return;
1548 }
1549
5da6f168
RS
1550 /* If this is not the first set of REGNO, see whether the new value
1551 is related to the old one. There are two cases of interest:
1552
1553 (1) The register might be assigned an entirely new value
1554 that has the same base term as the original set.
1555
1556 (2) The set might be a simple self-modification that
1557 cannot change REGNO's base value.
1558
1559 If neither case holds, reject the original base value as invalid.
1560 Note that the following situation is not detected:
1561
c22cacf3 1562 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1563
9ae8ffe7
JL
1564 ANSI C does not allow computing the difference of addresses
1565 of distinct top level objects. */
5da6f168
RS
1566 if (new_reg_base_value[regno] != 0
1567 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1568 switch (GET_CODE (src))
1569 {
2a2c8203 1570 case LO_SUM:
9ae8ffe7
JL
1571 case MINUS:
1572 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1573 new_reg_base_value[regno] = 0;
9ae8ffe7 1574 break;
61f0131c
R
1575 case PLUS:
1576 /* If the value we add in the PLUS is also a valid base value,
1577 this might be the actual base value, and the original value
1578 an index. */
1579 {
1580 rtx other = NULL_RTX;
1581
1582 if (XEXP (src, 0) == dest)
1583 other = XEXP (src, 1);
1584 else if (XEXP (src, 1) == dest)
1585 other = XEXP (src, 0);
1586
1587 if (! other || find_base_value (other))
1588 new_reg_base_value[regno] = 0;
1589 break;
1590 }
9ae8ffe7 1591 case AND:
481683e1 1592 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1593 new_reg_base_value[regno] = 0;
9ae8ffe7 1594 break;
9ae8ffe7 1595 default:
ec907dd8 1596 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1597 break;
1598 }
1599 /* If this is the first set of a register, record the value. */
1600 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
d7c028c0 1601 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
ec907dd8 1602 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7 1603
d7c028c0 1604 bitmap_set_bit (reg_seen, regno);
9ae8ffe7
JL
1605}
1606
8fd0a474
AM
1607/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1608 using hard registers with non-null REG_BASE_VALUE for renaming. */
1609rtx
1610get_reg_base_value (unsigned int regno)
1611{
9771b263 1612 return (*reg_base_value)[regno];
8fd0a474
AM
1613}
1614
bb1acb3e
RH
1615/* If a value is known for REGNO, return it. */
1616
c22cacf3 1617rtx
bb1acb3e
RH
1618get_reg_known_value (unsigned int regno)
1619{
1620 if (regno >= FIRST_PSEUDO_REGISTER)
1621 {
1622 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1623 if (regno < vec_safe_length (reg_known_value))
1624 return (*reg_known_value)[regno];
bb1acb3e
RH
1625 }
1626 return NULL;
43fe47ca
JW
1627}
1628
bb1acb3e
RH
1629/* Set it. */
1630
1631static void
1632set_reg_known_value (unsigned int regno, rtx val)
1633{
1634 if (regno >= FIRST_PSEUDO_REGISTER)
1635 {
1636 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1637 if (regno < vec_safe_length (reg_known_value))
1638 (*reg_known_value)[regno] = val;
bb1acb3e
RH
1639 }
1640}
1641
1642/* Similarly for reg_known_equiv_p. */
1643
1644bool
1645get_reg_known_equiv_p (unsigned int regno)
1646{
1647 if (regno >= FIRST_PSEUDO_REGISTER)
1648 {
1649 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1650 if (regno < vec_safe_length (reg_known_value))
d7c028c0 1651 return bitmap_bit_p (reg_known_equiv_p, regno);
bb1acb3e
RH
1652 }
1653 return false;
1654}
1655
1656static void
1657set_reg_known_equiv_p (unsigned int regno, bool val)
1658{
1659 if (regno >= FIRST_PSEUDO_REGISTER)
1660 {
1661 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1662 if (regno < vec_safe_length (reg_known_value))
9ff3c7ca
SB
1663 {
1664 if (val)
d7c028c0 1665 bitmap_set_bit (reg_known_equiv_p, regno);
9ff3c7ca 1666 else
d7c028c0 1667 bitmap_clear_bit (reg_known_equiv_p, regno);
9ff3c7ca 1668 }
bb1acb3e
RH
1669 }
1670}
1671
1672
db048faf
MM
1673/* Returns a canonical version of X, from the point of view alias
1674 analysis. (For example, if X is a MEM whose address is a register,
1675 and the register has a known value (say a SYMBOL_REF), then a MEM
1676 whose address is the SYMBOL_REF is returned.) */
1677
1678rtx
4682ae04 1679canon_rtx (rtx x)
9ae8ffe7
JL
1680{
1681 /* Recursively look for equivalences. */
f8cfc6aa 1682 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1683 {
1684 rtx t = get_reg_known_value (REGNO (x));
1685 if (t == x)
1686 return x;
1687 if (t)
1688 return canon_rtx (t);
1689 }
1690
1691 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1692 {
1693 rtx x0 = canon_rtx (XEXP (x, 0));
1694 rtx x1 = canon_rtx (XEXP (x, 1));
1695
1696 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1697 {
481683e1 1698 if (CONST_INT_P (x0))
0a81f074 1699 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
481683e1 1700 else if (CONST_INT_P (x1))
0a81f074 1701 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
38a448ca 1702 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1703 }
1704 }
d4b60170 1705
9ae8ffe7
JL
1706 /* This gives us much better alias analysis when called from
1707 the loop optimizer. Note we want to leave the original
1708 MEM alone, but need to return the canonicalized MEM with
1709 all the flags with their original values. */
3c0cb5de 1710 else if (MEM_P (x))
f1ec5147 1711 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1712
9ae8ffe7
JL
1713 return x;
1714}
1715
1716/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1717 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1718
1719 We use the data in reg_known_value above to see if two registers with
1720 different numbers are, in fact, equivalent. */
1721
1722static int
ed7a4b4b 1723rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1724{
b3694847
SS
1725 int i;
1726 int j;
1727 enum rtx_code code;
1728 const char *fmt;
9ae8ffe7
JL
1729
1730 if (x == 0 && y == 0)
1731 return 1;
1732 if (x == 0 || y == 0)
1733 return 0;
d4b60170 1734
9ae8ffe7
JL
1735 if (x == y)
1736 return 1;
1737
1738 code = GET_CODE (x);
1739 /* Rtx's of different codes cannot be equal. */
1740 if (code != GET_CODE (y))
1741 return 0;
1742
1743 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1744 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1745
1746 if (GET_MODE (x) != GET_MODE (y))
1747 return 0;
1748
db048faf
MM
1749 /* Some RTL can be compared without a recursive examination. */
1750 switch (code)
1751 {
1752 case REG:
1753 return REGNO (x) == REGNO (y);
1754
1755 case LABEL_REF:
a827d9b1 1756 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
ca7fd9cd 1757
db048faf 1758 case SYMBOL_REF:
54363f8a
JH
1759 {
1760 tree x_decl = SYMBOL_REF_DECL (x);
1761 tree y_decl = SYMBOL_REF_DECL (y);
1762
1763 if (!x_decl || !y_decl)
1764 return XSTR (x, 0) == XSTR (y, 0);
1765 else
1766 return compare_base_decls (x_decl, y_decl) == 1;
1767 }
db048faf 1768
af6236c1
AO
1769 case ENTRY_VALUE:
1770 /* This is magic, don't go through canonicalization et al. */
1771 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1772
40e02b4a 1773 case VALUE:
d8116890 1774 CASE_CONST_UNIQUE:
807e902e 1775 /* Pointer equality guarantees equality for these nodes. */
db048faf
MM
1776 return 0;
1777
db048faf
MM
1778 default:
1779 break;
1780 }
9ae8ffe7 1781
45183e03
JH
1782 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1783 if (code == PLUS)
9ae8ffe7
JL
1784 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1785 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1786 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1787 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1788 /* For commutative operations, the RTX match if the operand match in any
1789 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1790 if (COMMUTATIVE_P (x))
45183e03
JH
1791 {
1792 rtx xop0 = canon_rtx (XEXP (x, 0));
1793 rtx yop0 = canon_rtx (XEXP (y, 0));
1794 rtx yop1 = canon_rtx (XEXP (y, 1));
1795
1796 return ((rtx_equal_for_memref_p (xop0, yop0)
1797 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1798 || (rtx_equal_for_memref_p (xop0, yop1)
1799 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1800 }
ec8e098d 1801 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1802 {
1803 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1804 canon_rtx (XEXP (y, 0)))
45183e03
JH
1805 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1806 canon_rtx (XEXP (y, 1))));
1807 }
ec8e098d 1808 else if (UNARY_P (x))
45183e03 1809 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1810 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1811
1812 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1813 fail to match, return 0 for the whole things.
1814
1815 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1816
1817 fmt = GET_RTX_FORMAT (code);
1818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1819 {
1820 switch (fmt[i])
1821 {
9ae8ffe7
JL
1822 case 'i':
1823 if (XINT (x, i) != XINT (y, i))
1824 return 0;
1825 break;
1826
9ae8ffe7
JL
1827 case 'E':
1828 /* Two vectors must have the same length. */
1829 if (XVECLEN (x, i) != XVECLEN (y, i))
1830 return 0;
1831
1832 /* And the corresponding elements must match. */
1833 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1834 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1835 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1836 return 0;
1837 break;
1838
1839 case 'e':
45183e03
JH
1840 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1841 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1842 return 0;
1843 break;
1844
3237ac18
AH
1845 /* This can happen for asm operands. */
1846 case 's':
1847 if (strcmp (XSTR (x, i), XSTR (y, i)))
1848 return 0;
1849 break;
1850
aee21ba9
JL
1851 /* This can happen for an asm which clobbers memory. */
1852 case '0':
1853 break;
1854
9ae8ffe7
JL
1855 /* It is believed that rtx's at this level will never
1856 contain anything but integers and other rtx's,
1857 except for within LABEL_REFs and SYMBOL_REFs. */
1858 default:
298e6adc 1859 gcc_unreachable ();
9ae8ffe7
JL
1860 }
1861 }
1862 return 1;
1863}
1864
9e412ca3 1865static rtx
4682ae04 1866find_base_term (rtx x)
9ae8ffe7 1867{
eab5c70a 1868 cselib_val *val;
6f2ffb4b
AO
1869 struct elt_loc_list *l, *f;
1870 rtx ret;
eab5c70a 1871
b949ea8b
JW
1872#if defined (FIND_BASE_TERM)
1873 /* Try machine-dependent ways to find the base term. */
1874 x = FIND_BASE_TERM (x);
1875#endif
1876
9ae8ffe7
JL
1877 switch (GET_CODE (x))
1878 {
1879 case REG:
1880 return REG_BASE_VALUE (x);
1881
d288e53d 1882 case TRUNCATE:
5932a4d4 1883 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1884 handle this only if the target does not support different pointer or
1885 address modes depending on the address space. */
1886 if (!target_default_pointer_address_modes_p ())
1887 return 0;
d288e53d 1888 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1889 return 0;
d288e53d 1890 /* Fall through. */
9ae8ffe7 1891 case HIGH:
6d849a2a
JL
1892 case PRE_INC:
1893 case PRE_DEC:
1894 case POST_INC:
1895 case POST_DEC:
d288e53d
DE
1896 case PRE_MODIFY:
1897 case POST_MODIFY:
6d849a2a
JL
1898 return find_base_term (XEXP (x, 0));
1899
1abade85
RK
1900 case ZERO_EXTEND:
1901 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
5932a4d4 1902 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1903 handle this only if the target does not support different pointer or
1904 address modes depending on the address space. */
1905 if (!target_default_pointer_address_modes_p ())
1906 return 0;
1907
1abade85
RK
1908 {
1909 rtx temp = find_base_term (XEXP (x, 0));
1910
5ae6cd0d 1911 if (temp != 0 && CONSTANT_P (temp))
1abade85 1912 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1913
1914 return temp;
1915 }
1916
eab5c70a
BS
1917 case VALUE:
1918 val = CSELIB_VAL_PTR (x);
6f2ffb4b
AO
1919 ret = NULL_RTX;
1920
40e02b4a 1921 if (!val)
6f2ffb4b
AO
1922 return ret;
1923
0fe03ac3
JJ
1924 if (cselib_sp_based_value_p (val))
1925 return static_reg_base_value[STACK_POINTER_REGNUM];
1926
6f2ffb4b
AO
1927 f = val->locs;
1928 /* Temporarily reset val->locs to avoid infinite recursion. */
1929 val->locs = NULL;
1930
1931 for (l = f; l; l = l->next)
1932 if (GET_CODE (l->loc) == VALUE
1933 && CSELIB_VAL_PTR (l->loc)->locs
1934 && !CSELIB_VAL_PTR (l->loc)->locs->next
1935 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1936 continue;
1937 else if ((ret = find_base_term (l->loc)) != 0)
1938 break;
1939
1940 val->locs = f;
1941 return ret;
eab5c70a 1942
023f059b
JJ
1943 case LO_SUM:
1944 /* The standard form is (lo_sum reg sym) so look only at the
1945 second operand. */
1946 return find_base_term (XEXP (x, 1));
1947
9ae8ffe7
JL
1948 case CONST:
1949 x = XEXP (x, 0);
1950 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1951 return 0;
938d968e 1952 /* Fall through. */
9ae8ffe7
JL
1953 case PLUS:
1954 case MINUS:
1955 {
3c567fae
JL
1956 rtx tmp1 = XEXP (x, 0);
1957 rtx tmp2 = XEXP (x, 1);
1958
f5143c46 1959 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1960 the two operands represents the real base address. Otherwise this
1961 routine may return the index register instead of the base register.
1962
1963 That may cause us to believe no aliasing was possible, when in
1964 fact aliasing is possible.
1965
1966 We use a few simple tests to guess the base register. Additional
1967 tests can certainly be added. For example, if one of the operands
1968 is a shift or multiply, then it must be the index register and the
1969 other operand is the base register. */
ca7fd9cd 1970
b949ea8b
JW
1971 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1972 return find_base_term (tmp2);
1973
31b0a960 1974 /* If either operand is known to be a pointer, then prefer it
3c567fae 1975 to determine the base term. */
3502dc9c 1976 if (REG_P (tmp1) && REG_POINTER (tmp1))
31b0a960
RB
1977 ;
1978 else if (REG_P (tmp2) && REG_POINTER (tmp2))
a7c75343
JJ
1979 std::swap (tmp1, tmp2);
1980 /* If second argument is constant which has base term, prefer it
1981 over variable tmp1. See PR64025. */
1982 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1983 std::swap (tmp1, tmp2);
3c567fae 1984
31b0a960
RB
1985 /* Go ahead and find the base term for both operands. If either base
1986 term is from a pointer or is a named object or a special address
3c567fae
JL
1987 (like an argument or stack reference), then use it for the
1988 base term. */
481be1c4
RB
1989 rtx base = find_base_term (tmp1);
1990 if (base != NULL_RTX
31b0a960 1991 && ((REG_P (tmp1) && REG_POINTER (tmp1))
481be1c4
RB
1992 || known_base_value_p (base)))
1993 return base;
1994 base = find_base_term (tmp2);
1995 if (base != NULL_RTX
31b0a960 1996 && ((REG_P (tmp2) && REG_POINTER (tmp2))
481be1c4
RB
1997 || known_base_value_p (base)))
1998 return base;
3c567fae
JL
1999
2000 /* We could not determine which of the two operands was the
2001 base register and which was the index. So we can determine
2002 nothing from the base alias check. */
2003 return 0;
9ae8ffe7
JL
2004 }
2005
2006 case AND:
481683e1 2007 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
d288e53d 2008 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
2009 return 0;
2010
2011 case SYMBOL_REF:
2012 case LABEL_REF:
2013 return x;
2014
2015 default:
2016 return 0;
2017 }
2018}
2019
9e412ca3
RS
2020/* Return true if accesses to address X may alias accesses based
2021 on the stack pointer. */
2022
2023bool
2024may_be_sp_based_p (rtx x)
2025{
2026 rtx base = find_base_term (x);
2027 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2028}
2029
54363f8a
JH
2030/* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2031 if they refer to different objects and -1 if we can not decide. */
2032
2033int
2034compare_base_decls (tree base1, tree base2)
2035{
2036 int ret;
2037 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2038 if (base1 == base2)
2039 return 1;
2040
54363f8a
JH
2041 /* Declarations of non-automatic variables may have aliases. All other
2042 decls are unique. */
7ec4f343
NS
2043 if (!decl_in_symtab_p (base1)
2044 || !decl_in_symtab_p (base2))
54363f8a 2045 return 0;
7ec4f343 2046
54363f8a
JH
2047 ret = symtab_node::get_create (base1)->equal_address_to
2048 (symtab_node::get_create (base2), true);
2049 if (ret == 2)
2050 return -1;
2051 return ret;
2052}
2053
9ae8ffe7
JL
2054/* Return 0 if the addresses X and Y are known to point to different
2055 objects, 1 if they might be pointers to the same object. */
2056
2057static int
31b0a960 2058base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
ef4bddc2 2059 machine_mode x_mode, machine_mode y_mode)
9ae8ffe7 2060{
1c72c7f6
JC
2061 /* If the address itself has no known base see if a known equivalent
2062 value has one. If either address still has no known base, nothing
2063 is known about aliasing. */
2064 if (x_base == 0)
2065 {
2066 rtx x_c;
d4b60170 2067
1c72c7f6
JC
2068 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2069 return 1;
d4b60170 2070
1c72c7f6
JC
2071 x_base = find_base_term (x_c);
2072 if (x_base == 0)
2073 return 1;
2074 }
9ae8ffe7 2075
1c72c7f6
JC
2076 if (y_base == 0)
2077 {
2078 rtx y_c;
2079 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2080 return 1;
d4b60170 2081
1c72c7f6
JC
2082 y_base = find_base_term (y_c);
2083 if (y_base == 0)
2084 return 1;
2085 }
2086
2087 /* If the base addresses are equal nothing is known about aliasing. */
2088 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
2089 return 1;
2090
54363f8a
JH
2091 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2092 {
2093 tree x_decl = SYMBOL_REF_DECL (x_base);
2094 tree y_decl = SYMBOL_REF_DECL (y_base);
2095
2096 /* We can assume that no stores are made to labels. */
2097 if (!x_decl || !y_decl)
2098 return 0;
2099 return compare_base_decls (x_decl, y_decl) != 0;
2100 }
2101
435da628
UB
2102 /* The base addresses are different expressions. If they are not accessed
2103 via AND, there is no conflict. We can bring knowledge of object
2104 alignment into play here. For example, on alpha, "char a, b;" can
2105 alias one another, though "char a; long b;" cannot. AND addesses may
2106 implicitly alias surrounding objects; i.e. unaligned access in DImode
2107 via AND address can alias all surrounding object types except those
2108 with aligment 8 or higher. */
2109 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2110 return 1;
2111 if (GET_CODE (x) == AND
481683e1 2112 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
2113 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2114 return 1;
2115 if (GET_CODE (y) == AND
481683e1 2116 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
2117 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2118 return 1;
2119
2120 /* Differing symbols not accessed via AND never alias. */
9ae8ffe7 2121 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 2122 return 0;
9ae8ffe7 2123
9fc37b2b 2124 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
9ae8ffe7
JL
2125 return 0;
2126
0d3c82d6 2127 return 1;
9ae8ffe7
JL
2128}
2129
a5628378 2130/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
c779924e 2131 (or equal to) that of V. */
a5628378
AO
2132
2133static bool
403837b4 2134refs_newer_value_p (const_rtx expr, rtx v)
a5628378
AO
2135{
2136 int minuid = CSELIB_VAL_PTR (v)->uid;
403837b4
RS
2137 subrtx_iterator::array_type array;
2138 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
c779924e 2139 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
403837b4
RS
2140 return true;
2141 return false;
a5628378
AO
2142}
2143
eab5c70a
BS
2144/* Convert the address X into something we can use. This is done by returning
2145 it unchanged unless it is a value; in the latter case we call cselib to get
2146 a more useful rtx. */
3bdf5ad1 2147
a13d4ebf 2148rtx
4682ae04 2149get_addr (rtx x)
eab5c70a
BS
2150{
2151 cselib_val *v;
2152 struct elt_loc_list *l;
2153
2154 if (GET_CODE (x) != VALUE)
2155 return x;
2156 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
2157 if (v)
2158 {
0f68ba3e
AO
2159 bool have_equivs = cselib_have_permanent_equivalences ();
2160 if (have_equivs)
2161 v = canonical_cselib_val (v);
40e02b4a
JH
2162 for (l = v->locs; l; l = l->next)
2163 if (CONSTANT_P (l->loc))
2164 return l->loc;
2165 for (l = v->locs; l; l = l->next)
0f68ba3e
AO
2166 if (!REG_P (l->loc) && !MEM_P (l->loc)
2167 /* Avoid infinite recursion when potentially dealing with
2168 var-tracking artificial equivalences, by skipping the
2169 equivalences themselves, and not choosing expressions
2170 that refer to newer VALUEs. */
2171 && (!have_equivs
2172 || (GET_CODE (l->loc) != VALUE
2173 && !refs_newer_value_p (l->loc, x))))
a5628378 2174 return l->loc;
0f68ba3e
AO
2175 if (have_equivs)
2176 {
2177 for (l = v->locs; l; l = l->next)
2178 if (REG_P (l->loc)
2179 || (GET_CODE (l->loc) != VALUE
2180 && !refs_newer_value_p (l->loc, x)))
2181 return l->loc;
2182 /* Return the canonical value. */
2183 return v->val_rtx;
2184 }
2185 if (v->locs)
2186 return v->locs->loc;
40e02b4a 2187 }
eab5c70a
BS
2188 return x;
2189}
2190
39cec1ac
MH
2191/* Return the address of the (N_REFS + 1)th memory reference to ADDR
2192 where SIZE is the size in bytes of the memory reference. If ADDR
2193 is not modified by the memory reference then ADDR is returned. */
2194
04e2b4d3 2195static rtx
4682ae04 2196addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
2197{
2198 int offset = 0;
ca7fd9cd 2199
39cec1ac
MH
2200 switch (GET_CODE (addr))
2201 {
2202 case PRE_INC:
2203 offset = (n_refs + 1) * size;
2204 break;
2205 case PRE_DEC:
2206 offset = -(n_refs + 1) * size;
2207 break;
2208 case POST_INC:
2209 offset = n_refs * size;
2210 break;
2211 case POST_DEC:
2212 offset = -n_refs * size;
2213 break;
2214
2215 default:
2216 return addr;
2217 }
ca7fd9cd 2218
39cec1ac 2219 if (offset)
45183e03 2220 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
4789c0ce 2221 gen_int_mode (offset, GET_MODE (addr)));
39cec1ac
MH
2222 else
2223 addr = XEXP (addr, 0);
45183e03 2224 addr = canon_rtx (addr);
39cec1ac
MH
2225
2226 return addr;
2227}
2228
3aa03517
AO
2229/* Return TRUE if an object X sized at XSIZE bytes and another object
2230 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2231 any of the sizes is zero, assume an overlap, otherwise use the
2232 absolute value of the sizes as the actual sizes. */
2233
2234static inline bool
2235offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2236{
2237 return (xsize == 0 || ysize == 0
2238 || (c >= 0
2239 ? (abs (xsize) > c)
2240 : (abs (ysize) > -c)));
2241}
2242
f47e08d9
RG
2243/* Return one if X and Y (memory addresses) reference the
2244 same location in memory or if the references overlap.
2245 Return zero if they do not overlap, else return
2246 minus one in which case they still might reference the same location.
2247
2248 C is an offset accumulator. When
9ae8ffe7
JL
2249 C is nonzero, we are testing aliases between X and Y + C.
2250 XSIZE is the size in bytes of the X reference,
2251 similarly YSIZE is the size in bytes for Y.
45183e03 2252 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
2253
2254 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2255 referenced (the reference was BLKmode), so make the most pessimistic
2256 assumptions.
2257
c02f035f
RH
2258 If XSIZE or YSIZE is negative, we may access memory outside the object
2259 being referenced as a side effect. This can happen when using AND to
2260 align memory references, as is done on the Alpha.
2261
9ae8ffe7 2262 Nice to notice that varying addresses cannot conflict with fp if no
f47e08d9
RG
2263 local variables had their addresses taken, but that's too hard now.
2264
2265 ??? Contrary to the tree alias oracle this does not return
2266 one for X + non-constant and Y + non-constant when X and Y are equal.
2267 If that is fixed the TBAA hack for union type-punning can be removed. */
9ae8ffe7 2268
9ae8ffe7 2269static int
4682ae04 2270memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 2271{
eab5c70a 2272 if (GET_CODE (x) == VALUE)
5312b066
JJ
2273 {
2274 if (REG_P (y))
2275 {
24f8d71e
JJ
2276 struct elt_loc_list *l = NULL;
2277 if (CSELIB_VAL_PTR (x))
a5628378
AO
2278 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2279 l; l = l->next)
24f8d71e
JJ
2280 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2281 break;
5312b066
JJ
2282 if (l)
2283 x = y;
2284 else
2285 x = get_addr (x);
2286 }
2287 /* Don't call get_addr if y is the same VALUE. */
2288 else if (x != y)
2289 x = get_addr (x);
2290 }
eab5c70a 2291 if (GET_CODE (y) == VALUE)
5312b066
JJ
2292 {
2293 if (REG_P (x))
2294 {
24f8d71e
JJ
2295 struct elt_loc_list *l = NULL;
2296 if (CSELIB_VAL_PTR (y))
a5628378
AO
2297 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2298 l; l = l->next)
24f8d71e
JJ
2299 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2300 break;
5312b066
JJ
2301 if (l)
2302 y = x;
2303 else
2304 y = get_addr (y);
2305 }
2306 /* Don't call get_addr if x is the same VALUE. */
2307 else if (y != x)
2308 y = get_addr (y);
2309 }
9ae8ffe7
JL
2310 if (GET_CODE (x) == HIGH)
2311 x = XEXP (x, 0);
2312 else if (GET_CODE (x) == LO_SUM)
2313 x = XEXP (x, 1);
2314 else
3aa03517 2315 x = addr_side_effect_eval (x, abs (xsize), 0);
9ae8ffe7
JL
2316 if (GET_CODE (y) == HIGH)
2317 y = XEXP (y, 0);
2318 else if (GET_CODE (y) == LO_SUM)
2319 y = XEXP (y, 1);
2320 else
3aa03517 2321 y = addr_side_effect_eval (y, abs (ysize), 0);
9ae8ffe7 2322
54363f8a
JH
2323 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2324 {
2325 tree x_decl = SYMBOL_REF_DECL (x);
2326 tree y_decl = SYMBOL_REF_DECL (y);
2327 int cmp;
2328
2329 if (!x_decl || !y_decl)
2330 {
2331 /* Label and normal symbol are never the same. */
2332 if (x_decl != y_decl)
2333 return 0;
2334 return offset_overlap_p (c, xsize, ysize);
2335 }
2336 else
2337 cmp = compare_base_decls (x_decl, y_decl);
2338
2339 /* If both decls are the same, decide by offsets. */
2340 if (cmp == 1)
2341 return offset_overlap_p (c, xsize, ysize);
2342 /* If decls are different or we know by offsets that there is no overlap,
2343 we win. */
2344 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2345 return 0;
2346 /* Decls may or may not be different and offsets overlap....*/
2347 return -1;
2348 }
2349 else if (rtx_equal_for_memref_p (x, y))
9ae8ffe7 2350 {
3aa03517 2351 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2352 }
2353
6e73e666
JC
2354 /* This code used to check for conflicts involving stack references and
2355 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
2356
2357 if (GET_CODE (x) == PLUS)
2358 {
2359 /* The fact that X is canonicalized means that this
2360 PLUS rtx is canonicalized. */
2361 rtx x0 = XEXP (x, 0);
2362 rtx x1 = XEXP (x, 1);
2363
2d88904a
AO
2364 /* However, VALUEs might end up in different positions even in
2365 canonical PLUSes. Comparing their addresses is enough. */
2366 if (x0 == y)
2367 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2368 else if (x1 == y)
2369 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2370
9ae8ffe7
JL
2371 if (GET_CODE (y) == PLUS)
2372 {
2373 /* The fact that Y is canonicalized means that this
2374 PLUS rtx is canonicalized. */
2375 rtx y0 = XEXP (y, 0);
2376 rtx y1 = XEXP (y, 1);
2377
2d88904a
AO
2378 if (x0 == y1)
2379 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2380 if (x1 == y0)
2381 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2382
9ae8ffe7
JL
2383 if (rtx_equal_for_memref_p (x1, y1))
2384 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2385 if (rtx_equal_for_memref_p (x0, y0))
2386 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
481683e1 2387 if (CONST_INT_P (x1))
63be02db 2388 {
481683e1 2389 if (CONST_INT_P (y1))
63be02db
JM
2390 return memrefs_conflict_p (xsize, x0, ysize, y0,
2391 c - INTVAL (x1) + INTVAL (y1));
2392 else
2393 return memrefs_conflict_p (xsize, x0, ysize, y,
2394 c - INTVAL (x1));
2395 }
481683e1 2396 else if (CONST_INT_P (y1))
9ae8ffe7
JL
2397 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2398
f47e08d9 2399 return -1;
9ae8ffe7 2400 }
481683e1 2401 else if (CONST_INT_P (x1))
9ae8ffe7
JL
2402 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2403 }
2404 else if (GET_CODE (y) == PLUS)
2405 {
2406 /* The fact that Y is canonicalized means that this
2407 PLUS rtx is canonicalized. */
2408 rtx y0 = XEXP (y, 0);
2409 rtx y1 = XEXP (y, 1);
2410
2d88904a
AO
2411 if (x == y0)
2412 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2413 if (x == y1)
2414 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2415
481683e1 2416 if (CONST_INT_P (y1))
9ae8ffe7
JL
2417 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2418 else
f47e08d9 2419 return -1;
9ae8ffe7
JL
2420 }
2421
2422 if (GET_CODE (x) == GET_CODE (y))
2423 switch (GET_CODE (x))
2424 {
2425 case MULT:
2426 {
2427 /* Handle cases where we expect the second operands to be the
2428 same, and check only whether the first operand would conflict
2429 or not. */
2430 rtx x0, y0;
2431 rtx x1 = canon_rtx (XEXP (x, 1));
2432 rtx y1 = canon_rtx (XEXP (y, 1));
2433 if (! rtx_equal_for_memref_p (x1, y1))
f47e08d9 2434 return -1;
9ae8ffe7
JL
2435 x0 = canon_rtx (XEXP (x, 0));
2436 y0 = canon_rtx (XEXP (y, 0));
2437 if (rtx_equal_for_memref_p (x0, y0))
3aa03517 2438 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2439
2440 /* Can't properly adjust our sizes. */
481683e1 2441 if (!CONST_INT_P (x1))
f47e08d9 2442 return -1;
9ae8ffe7
JL
2443 xsize /= INTVAL (x1);
2444 ysize /= INTVAL (x1);
2445 c /= INTVAL (x1);
2446 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2447 }
1d300e19
KG
2448
2449 default:
2450 break;
9ae8ffe7
JL
2451 }
2452
a9bf4fe2
AO
2453 /* Deal with alignment ANDs by adjusting offset and size so as to
2454 cover the maximum range, without taking any previously known
5147bf6a
AO
2455 alignment into account. Make a size negative after such an
2456 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2457 assume a potential overlap, because they may end up in contiguous
2458 memory locations and the stricter-alignment access may span over
2459 part of both. */
481683e1 2460 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 2461 {
a9bf4fe2
AO
2462 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2463 unsigned HOST_WIDE_INT uc = sc;
5147bf6a 2464 if (sc < 0 && -uc == (uc & -uc))
a9bf4fe2 2465 {
5147bf6a
AO
2466 if (xsize > 0)
2467 xsize = -xsize;
3aa03517
AO
2468 if (xsize)
2469 xsize += sc + 1;
fe8fb1c4 2470 c -= sc + 1;
a9bf4fe2
AO
2471 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2472 ysize, y, c);
2473 }
56ee9281 2474 }
481683e1 2475 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 2476 {
a9bf4fe2
AO
2477 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2478 unsigned HOST_WIDE_INT uc = sc;
5147bf6a 2479 if (sc < 0 && -uc == (uc & -uc))
a9bf4fe2 2480 {
5147bf6a
AO
2481 if (ysize > 0)
2482 ysize = -ysize;
3aa03517
AO
2483 if (ysize)
2484 ysize += sc + 1;
fe8fb1c4 2485 c += sc + 1;
a9bf4fe2
AO
2486 return memrefs_conflict_p (xsize, x,
2487 ysize, canon_rtx (XEXP (y, 0)), c);
2488 }
c02f035f 2489 }
9ae8ffe7
JL
2490
2491 if (CONSTANT_P (x))
2492 {
481683e1 2493 if (CONST_INT_P (x) && CONST_INT_P (y))
9ae8ffe7
JL
2494 {
2495 c += (INTVAL (y) - INTVAL (x));
3aa03517 2496 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2497 }
2498
2499 if (GET_CODE (x) == CONST)
2500 {
2501 if (GET_CODE (y) == CONST)
2502 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2503 ysize, canon_rtx (XEXP (y, 0)), c);
2504 else
2505 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2506 ysize, y, c);
2507 }
2508 if (GET_CODE (y) == CONST)
2509 return memrefs_conflict_p (xsize, x, ysize,
2510 canon_rtx (XEXP (y, 0)), c);
2511
3aa03517
AO
2512 /* Assume a potential overlap for symbolic addresses that went
2513 through alignment adjustments (i.e., that have negative
2514 sizes), because we can't know how far they are from each
2515 other. */
9ae8ffe7 2516 if (CONSTANT_P (y))
3aa03517 2517 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
9ae8ffe7 2518
f47e08d9 2519 return -1;
9ae8ffe7 2520 }
f47e08d9
RG
2521
2522 return -1;
9ae8ffe7
JL
2523}
2524
2525/* Functions to compute memory dependencies.
2526
2527 Since we process the insns in execution order, we can build tables
2528 to keep track of what registers are fixed (and not aliased), what registers
2529 are varying in known ways, and what registers are varying in unknown
2530 ways.
2531
2532 If both memory references are volatile, then there must always be a
2533 dependence between the two references, since their order can not be
2534 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 2535 though.
9ae8ffe7 2536
53d9622b
RS
2537 We also must allow AND addresses, because they may generate accesses
2538 outside the object being referenced. This is used to generate aligned
2539 addresses from unaligned addresses, for instance, the alpha
dc1618bc 2540 storeqi_unaligned pattern. */
9ae8ffe7
JL
2541
2542/* Read dependence: X is read after read in MEM takes place. There can
96672a3e
RH
2543 only be a dependence here if both reads are volatile, or if either is
2544 an explicit barrier. */
9ae8ffe7
JL
2545
2546int
4f588890 2547read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2548{
96672a3e
RH
2549 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2550 return true;
2551 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2552 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2553 return true;
2554 return false;
9ae8ffe7
JL
2555}
2556
998d7deb
RH
2557/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2558
2559static tree
4682ae04 2560decl_for_component_ref (tree x)
998d7deb
RH
2561{
2562 do
2563 {
2564 x = TREE_OPERAND (x, 0);
2565 }
2566 while (x && TREE_CODE (x) == COMPONENT_REF);
2567
2568 return x && DECL_P (x) ? x : NULL_TREE;
2569}
2570
527210c4
RS
2571/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2572 for the offset of the field reference. *KNOWN_P says whether the
2573 offset is known. */
998d7deb 2574
527210c4
RS
2575static void
2576adjust_offset_for_component_ref (tree x, bool *known_p,
2577 HOST_WIDE_INT *offset)
998d7deb 2578{
527210c4
RS
2579 if (!*known_p)
2580 return;
ca7fd9cd 2581 do
998d7deb 2582 {
527210c4 2583 tree xoffset = component_ref_field_offset (x);
998d7deb 2584 tree field = TREE_OPERAND (x, 1);
807e902e
KZ
2585 if (TREE_CODE (xoffset) != INTEGER_CST)
2586 {
2587 *known_p = false;
2588 return;
2589 }
998d7deb 2590
807e902e
KZ
2591 offset_int woffset
2592 = (wi::to_offset (xoffset)
2593 + wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field)),
2594 LOG2_BITS_PER_UNIT));
2595 if (!wi::fits_uhwi_p (woffset))
527210c4
RS
2596 {
2597 *known_p = false;
2598 return;
2599 }
807e902e 2600 *offset += woffset.to_uhwi ();
998d7deb
RH
2601
2602 x = TREE_OPERAND (x, 0);
2603 }
2604 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb
RH
2605}
2606
95bd1dd7 2607/* Return nonzero if we can determine the exprs corresponding to memrefs
c6ea834c
BM
2608 X and Y and they do not overlap.
2609 If LOOP_VARIANT is set, skip offset-based disambiguation */
a4311dfe 2610
2e4e39f6 2611int
c6ea834c 2612nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
a4311dfe 2613{
998d7deb 2614 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2615 rtx rtlx, rtly;
2616 rtx basex, basey;
527210c4
RS
2617 bool moffsetx_known_p, moffsety_known_p;
2618 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
4e1952ab 2619 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
a4311dfe 2620
998d7deb
RH
2621 /* Unless both have exprs, we can't tell anything. */
2622 if (exprx == 0 || expry == 0)
2623 return 0;
2b22e382
RG
2624
2625 /* For spill-slot accesses make sure we have valid offsets. */
2626 if ((exprx == get_spill_slot_decl (false)
527210c4 2627 && ! MEM_OFFSET_KNOWN_P (x))
2b22e382 2628 || (expry == get_spill_slot_decl (false)
527210c4 2629 && ! MEM_OFFSET_KNOWN_P (y)))
2b22e382 2630 return 0;
c22cacf3 2631
998d7deb 2632 /* If the field reference test failed, look at the DECLs involved. */
527210c4
RS
2633 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2634 if (moffsetx_known_p)
2635 moffsetx = MEM_OFFSET (x);
998d7deb
RH
2636 if (TREE_CODE (exprx) == COMPONENT_REF)
2637 {
2e0c984c
RG
2638 tree t = decl_for_component_ref (exprx);
2639 if (! t)
2640 return 0;
527210c4 2641 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2e0c984c 2642 exprx = t;
998d7deb 2643 }
c67a1cf6 2644
527210c4
RS
2645 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2646 if (moffsety_known_p)
2647 moffsety = MEM_OFFSET (y);
998d7deb
RH
2648 if (TREE_CODE (expry) == COMPONENT_REF)
2649 {
2e0c984c
RG
2650 tree t = decl_for_component_ref (expry);
2651 if (! t)
2652 return 0;
527210c4 2653 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2e0c984c 2654 expry = t;
998d7deb
RH
2655 }
2656
2657 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2658 return 0;
2659
1f9ceff1
AO
2660 /* If we refer to different gimple registers, or one gimple register
2661 and one non-gimple-register, we know they can't overlap. First,
2662 gimple registers don't have their addresses taken. Now, there
2663 could be more than one stack slot for (different versions of) the
2664 same gimple register, but we can presumably tell they don't
2665 overlap based on offsets from stack base addresses elsewhere.
2666 It's important that we don't proceed to DECL_RTL, because gimple
2667 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2668 able to do anything about them since no SSA information will have
2669 remained to guide it. */
2670 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2d88904a
AO
2671 return exprx != expry
2672 || (moffsetx_known_p && moffsety_known_p
2673 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2674 && !offset_overlap_p (moffsety - moffsetx,
2675 MEM_SIZE (x), MEM_SIZE (y)));
1f9ceff1 2676
1307c758
RG
2677 /* With invalid code we can end up storing into the constant pool.
2678 Bail out to avoid ICEing when creating RTL for this.
2679 See gfortran.dg/lto/20091028-2_0.f90. */
2680 if (TREE_CODE (exprx) == CONST_DECL
2681 || TREE_CODE (expry) == CONST_DECL)
2682 return 1;
2683
998d7deb
RH
2684 rtlx = DECL_RTL (exprx);
2685 rtly = DECL_RTL (expry);
a4311dfe 2686
1edcd60b
RK
2687 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2688 can't overlap unless they are the same because we never reuse that part
2689 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2690 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2691 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2692 return 1;
2693
5932a4d4 2694 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2695 potentially overlap), we cannot easily tell from the addresses
2696 whether the references overlap. */
2697 if (MEM_P (rtlx) && MEM_P (rtly)
2698 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2699 return 0;
2700
a4311dfe
RK
2701 /* Get the base and offsets of both decls. If either is a register, we
2702 know both are and are the same, so use that as the base. The only
2703 we can avoid overlap is if we can deduce that they are nonoverlapping
2704 pieces of that decl, which is very rare. */
3c0cb5de 2705 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
481683e1 2706 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
a4311dfe
RK
2707 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2708
3c0cb5de 2709 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
481683e1 2710 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
a4311dfe
RK
2711 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2712
d746694a 2713 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2714 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2715 stack frame. Otherwise a different base means we can't tell if they
2716 overlap or not. */
54363f8a 2717 if (compare_base_decls (exprx, expry) == 0)
ca7fd9cd
KH
2718 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2719 || (CONSTANT_P (basex) && REG_P (basey)
2720 && REGNO_PTR_FRAME_P (REGNO (basey)))
2721 || (CONSTANT_P (basey) && REG_P (basex)
2722 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2723
c6ea834c
BM
2724 /* Offset based disambiguation not appropriate for loop invariant */
2725 if (loop_invariant)
2726 return 0;
2727
54363f8a
JH
2728 /* Offset based disambiguation is OK even if we do not know that the
2729 declarations are necessarily different
2730 (i.e. compare_base_decls (exprx, expry) == -1) */
2731
3c0cb5de 2732 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
f5541398 2733 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
a4311dfe 2734 : -1);
3c0cb5de 2735 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
f5541398
RS
2736 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2737 : -1);
a4311dfe 2738
0af5bc3e
RK
2739 /* If we have an offset for either memref, it can update the values computed
2740 above. */
527210c4
RS
2741 if (moffsetx_known_p)
2742 offsetx += moffsetx, sizex -= moffsetx;
2743 if (moffsety_known_p)
2744 offsety += moffsety, sizey -= moffsety;
a4311dfe 2745
0af5bc3e 2746 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2747 We can't do this if the offset isn't known because we must view this
0af5bc3e 2748 memref as being anywhere inside the DECL's MEM. */
527210c4 2749 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
f5541398 2750 sizex = MEM_SIZE (x);
527210c4 2751 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
f5541398 2752 sizey = MEM_SIZE (y);
a4311dfe
RK
2753
2754 /* Put the values of the memref with the lower offset in X's values. */
2755 if (offsetx > offsety)
2756 {
4e1952ab
KT
2757 std::swap (offsetx, offsety);
2758 std::swap (sizex, sizey);
a4311dfe
RK
2759 }
2760
2761 /* If we don't know the size of the lower-offset value, we can't tell
2762 if they conflict. Otherwise, we do the test. */
a6f7c915 2763 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2764}
2765
9362286d
SB
2766/* Helper for true_dependence and canon_true_dependence.
2767 Checks for true dependence: X is read after store in MEM takes place.
9ae8ffe7 2768
9362286d
SB
2769 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2770 NULL_RTX, and the canonical addresses of MEM and X are both computed
2771 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2772
2773 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2774
2775 Returns 1 if there is a true dependence, 0 otherwise. */
2776
2777static int
ef4bddc2 2778true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 2779 const_rtx x, rtx x_addr, bool mem_canonicalized)
9ae8ffe7 2780{
0777fc02 2781 rtx true_mem_addr;
49982682 2782 rtx base;
f47e08d9 2783 int ret;
9ae8ffe7 2784
9362286d
SB
2785 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2786 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2787
9ae8ffe7
JL
2788 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2789 return 1;
2790
c4484b8f 2791 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2792 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2793 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2794 return 1;
2795 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2796 return 1;
9cd9e512
RH
2797 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2798 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2799 return 1;
c4484b8f 2800
0777fc02
UB
2801 if (! x_addr)
2802 x_addr = XEXP (x, 0);
2803 x_addr = get_addr (x_addr);
2804
9362286d
SB
2805 if (! mem_addr)
2806 {
2807 mem_addr = XEXP (mem, 0);
2808 if (mem_mode == VOIDmode)
2809 mem_mode = GET_MODE (mem);
2810 }
0777fc02 2811 true_mem_addr = get_addr (mem_addr);
eab5c70a 2812
878f5596
UB
2813 /* Read-only memory is by definition never modified, and therefore can't
2814 conflict with anything. However, don't assume anything when AND
2815 addresses are involved and leave to the code below to determine
2816 dependence. We don't expect to find read-only set on MEM, but
2817 stupid user tricks can produce them, so don't die. */
2818 if (MEM_READONLY_P (x)
2819 && GET_CODE (x_addr) != AND
0777fc02 2820 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
2821 return 0;
2822
2823 /* If we have MEMs referring to different address spaces (which can
2824 potentially overlap), we cannot easily tell from the addresses
2825 whether the references overlap. */
2826 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2827 return 1;
2828
55efb413
JW
2829 base = find_base_term (x_addr);
2830 if (base && (GET_CODE (base) == LABEL_REF
2831 || (GET_CODE (base) == SYMBOL_REF
2832 && CONSTANT_POOL_ADDRESS_P (base))))
2833 return 0;
2834
0777fc02
UB
2835 rtx mem_base = find_base_term (true_mem_addr);
2836 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
31b0a960 2837 GET_MODE (x), mem_mode))
1c72c7f6
JC
2838 return 0;
2839
eab5c70a 2840 x_addr = canon_rtx (x_addr);
9362286d 2841 if (!mem_canonicalized)
0777fc02 2842 mem_addr = canon_rtx (true_mem_addr);
6e73e666 2843
f47e08d9
RG
2844 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2845 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2846 return ret;
2847
a95b3cc7 2848 if (mems_in_disjoint_alias_sets_p (x, mem))
f47e08d9
RG
2849 return 0;
2850
c6ea834c 2851 if (nonoverlapping_memrefs_p (mem, x, false))
0211b6ab 2852 return 0;
175a7536 2853
55b34b5f 2854 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
2855}
2856
9362286d
SB
2857/* True dependence: X is read after store in MEM takes place. */
2858
2859int
ef4bddc2 2860true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
9362286d
SB
2861{
2862 return true_dependence_1 (mem, mem_mode, NULL_RTX,
53d9622b 2863 x, NULL_RTX, /*mem_canonicalized=*/false);
9362286d
SB
2864}
2865
a13d4ebf 2866/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2867 Variant of true_dependence which assumes MEM has already been
2868 canonicalized (hence we no longer do that here).
9362286d
SB
2869 The mem_addr argument has been added, since true_dependence_1 computed
2870 this value prior to canonicalizing. */
a13d4ebf
AM
2871
2872int
ef4bddc2 2873canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 2874 const_rtx x, rtx x_addr)
a13d4ebf 2875{
9362286d 2876 return true_dependence_1 (mem, mem_mode, mem_addr,
53d9622b 2877 x, x_addr, /*mem_canonicalized=*/true);
9ae8ffe7
JL
2878}
2879
da7d8304 2880/* Returns nonzero if a write to X might alias a previous read from
393f9fed 2881 (or, if WRITEP is true, a write to) MEM.
bd280792
JR
2882 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2883 and X_MODE the mode for that access.
2884 If MEM_CANONICALIZED is true, MEM is canonicalized. */
9ae8ffe7 2885
2c72b78f 2886static int
bd280792 2887write_dependence_p (const_rtx mem,
ef4bddc2 2888 const_rtx x, machine_mode x_mode, rtx x_addr,
bd280792 2889 bool mem_canonicalized, bool x_canonicalized, bool writep)
9ae8ffe7 2890{
bd280792 2891 rtx mem_addr;
0777fc02 2892 rtx true_mem_addr, true_x_addr;
49982682 2893 rtx base;
f47e08d9 2894 int ret;
6e73e666 2895
bd280792
JR
2896 gcc_checking_assert (x_canonicalized
2897 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2898 : (x_addr == NULL_RTX && x_mode == VOIDmode));
393f9fed 2899
9ae8ffe7
JL
2900 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2901 return 1;
2902
c4484b8f
RH
2903 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2904 This is used in epilogue deallocation functions. */
2905 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2906 return 1;
2907 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2908 return 1;
9cd9e512
RH
2909 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2910 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2911 return 1;
c4484b8f 2912
bd280792 2913 if (!x_addr)
0777fc02
UB
2914 x_addr = XEXP (x, 0);
2915 true_x_addr = get_addr (x_addr);
2916
2917 mem_addr = XEXP (mem, 0);
2918 true_mem_addr = get_addr (mem_addr);
55efb413 2919
878f5596
UB
2920 /* A read from read-only memory can't conflict with read-write memory.
2921 Don't assume anything when AND addresses are involved and leave to
2922 the code below to determine dependence. */
2923 if (!writep
2924 && MEM_READONLY_P (mem)
0777fc02
UB
2925 && GET_CODE (true_x_addr) != AND
2926 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
2927 return 0;
2928
2929 /* If we have MEMs referring to different address spaces (which can
2930 potentially overlap), we cannot easily tell from the addresses
2931 whether the references overlap. */
2932 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2933 return 1;
2934
0777fc02 2935 base = find_base_term (true_mem_addr);
31b0a960
RB
2936 if (! writep
2937 && base
2938 && (GET_CODE (base) == LABEL_REF
2939 || (GET_CODE (base) == SYMBOL_REF
2940 && CONSTANT_POOL_ADDRESS_P (base))))
2941 return 0;
49982682 2942
0777fc02
UB
2943 rtx x_base = find_base_term (true_x_addr);
2944 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
2945 GET_MODE (x), GET_MODE (mem)))
41472af8
MM
2946 return 0;
2947
bd280792 2948 if (!x_canonicalized)
393f9fed 2949 {
0777fc02 2950 x_addr = canon_rtx (true_x_addr);
bd280792 2951 x_mode = GET_MODE (x);
393f9fed 2952 }
bd280792 2953 if (!mem_canonicalized)
0777fc02 2954 mem_addr = canon_rtx (true_mem_addr);
6e73e666 2955
bd280792
JR
2956 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2957 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
f47e08d9
RG
2958 return ret;
2959
c6ea834c 2960 if (nonoverlapping_memrefs_p (x, mem, false))
c6df88cb
MM
2961 return 0;
2962
55b34b5f 2963 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
2964}
2965
2966/* Anti dependence: X is written after read in MEM takes place. */
2967
2968int
4f588890 2969anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 2970{
bd280792
JR
2971 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2972 /*mem_canonicalized=*/false,
2973 /*x_canonicalized*/false, /*writep=*/false);
393f9fed
JR
2974}
2975
bd280792
JR
2976/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2977 Also, consider X in X_MODE (which might be from an enclosing
2978 STRICT_LOW_PART / ZERO_EXTRACT).
2979 If MEM_CANONICALIZED is true, MEM is canonicalized. */
393f9fed
JR
2980
2981int
bd280792 2982canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
ef4bddc2 2983 const_rtx x, machine_mode x_mode, rtx x_addr)
393f9fed 2984{
bd280792
JR
2985 return write_dependence_p (mem, x, x_mode, x_addr,
2986 mem_canonicalized, /*x_canonicalized=*/true,
2987 /*writep=*/false);
9ae8ffe7
JL
2988}
2989
2990/* Output dependence: X is written after store in MEM takes place. */
2991
2992int
4f588890 2993output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2994{
bd280792
JR
2995 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2996 /*mem_canonicalized=*/false,
2997 /*x_canonicalized*/false, /*writep=*/true);
9ae8ffe7 2998}
c14b9960 2999\f
6e73e666 3000
c6ea834c
BM
3001
3002/* Check whether X may be aliased with MEM. Don't do offset-based
3003 memory disambiguation & TBAA. */
3004int
3005may_alias_p (const_rtx mem, const_rtx x)
3006{
3007 rtx x_addr, mem_addr;
c6ea834c
BM
3008
3009 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3010 return 1;
3011
a95b3cc7
RG
3012 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3013 This is used in epilogue deallocation functions. */
3014 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3015 return 1;
3016 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
c6ea834c 3017 return 1;
c6ea834c
BM
3018 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3019 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3020 return 1;
3021
c6ea834c 3022 x_addr = XEXP (x, 0);
0777fc02
UB
3023 x_addr = get_addr (x_addr);
3024
c6ea834c 3025 mem_addr = XEXP (mem, 0);
0777fc02 3026 mem_addr = get_addr (mem_addr);
c6ea834c 3027
878f5596
UB
3028 /* Read-only memory is by definition never modified, and therefore can't
3029 conflict with anything. However, don't assume anything when AND
3030 addresses are involved and leave to the code below to determine
3031 dependence. We don't expect to find read-only set on MEM, but
3032 stupid user tricks can produce them, so don't die. */
3033 if (MEM_READONLY_P (x)
3034 && GET_CODE (x_addr) != AND
3035 && GET_CODE (mem_addr) != AND)
3036 return 0;
3037
3038 /* If we have MEMs referring to different address spaces (which can
3039 potentially overlap), we cannot easily tell from the addresses
3040 whether the references overlap. */
3041 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3042 return 1;
3043
31b0a960
RB
3044 rtx x_base = find_base_term (x_addr);
3045 rtx mem_base = find_base_term (mem_addr);
3046 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3047 GET_MODE (x), GET_MODE (mem_addr)))
c6ea834c
BM
3048 return 0;
3049
c6ea834c
BM
3050 if (nonoverlapping_memrefs_p (mem, x, true))
3051 return 0;
3052
c6ea834c
BM
3053 /* TBAA not valid for loop_invarint */
3054 return rtx_refs_may_alias_p (x, mem, false);
3055}
3056
6e73e666 3057void
b5deb7b6 3058init_alias_target (void)
6e73e666 3059{
b3694847 3060 int i;
6e73e666 3061
9fc37b2b
RS
3062 if (!arg_base_value)
3063 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3064
b5deb7b6
SL
3065 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3066
6e73e666
JC
3067 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3068 /* Check whether this register can hold an incoming pointer
3069 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 3070 numbers, so translate if necessary due to register windows. */
6e73e666
JC
3071 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3072 && HARD_REGNO_MODE_OK (i, Pmode))
9fc37b2b
RS
3073 static_reg_base_value[i] = arg_base_value;
3074
757e8ba2
JJ
3075 static_reg_base_value[STACK_POINTER_REGNUM]
3076 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3077 static_reg_base_value[ARG_POINTER_REGNUM]
3078 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3079 static_reg_base_value[FRAME_POINTER_REGNUM]
3080 = unique_base_value (UNIQUE_BASE_VALUE_FP);
c3e08036
TS
3081 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3082 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3083 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
bf1660a6
JL
3084}
3085
7b52eede
JH
3086/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3087 to be memory reference. */
3088static bool memory_modified;
3089static void
aa317c97 3090memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 3091{
3c0cb5de 3092 if (MEM_P (x))
7b52eede 3093 {
9678086d 3094 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
3095 memory_modified = true;
3096 }
3097}
3098
3099
3100/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 3101 (i.e. address can be modified). */
7b52eede 3102bool
9678086d 3103memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
3104{
3105 if (!INSN_P (insn))
3106 return false;
3107 memory_modified = false;
aa317c97 3108 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
3109 return memory_modified;
3110}
3111
a7b159a4
AH
3112/* Return TRUE if the destination of a set is rtx identical to
3113 ITEM. */
3114static inline bool
3115set_dest_equal_p (const_rtx set, const_rtx item)
3116{
3117 rtx dest = SET_DEST (set);
3118 return rtx_equal_p (dest, item);
3119}
3120
c13e8210
MM
3121/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3122 array. */
3123
9ae8ffe7 3124void
4682ae04 3125init_alias_analysis (void)
9ae8ffe7 3126{
c582d54a 3127 unsigned int maxreg = max_reg_num ();
ea64ef27 3128 int changed, pass;
b3694847
SS
3129 int i;
3130 unsigned int ui;
d36a28b8
DM
3131 rtx_insn *insn;
3132 rtx val;
131db6b8
SB
3133 int rpo_cnt;
3134 int *rpo;
9ae8ffe7 3135
0d446150
JH
3136 timevar_push (TV_ALIAS_ANALYSIS);
3137
92390dd1 3138 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
9ff3c7ca 3139 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
dd3d1ec0 3140 bitmap_clear (reg_known_equiv_p);
9ae8ffe7 3141
08c79682 3142 /* If we have memory allocated from the previous run, use it. */
c582d54a 3143 if (old_reg_base_value)
08c79682
KH
3144 reg_base_value = old_reg_base_value;
3145
3146 if (reg_base_value)
9771b263 3147 reg_base_value->truncate (0);
08c79682 3148
9771b263 3149 vec_safe_grow_cleared (reg_base_value, maxreg);
ac606739 3150
5ed6ace5 3151 new_reg_base_value = XNEWVEC (rtx, maxreg);
d630245f 3152 reg_seen = sbitmap_alloc (maxreg);
ec907dd8
JL
3153
3154 /* The basic idea is that each pass through this loop will use the
3155 "constant" information from the previous pass to propagate alias
3156 information through another level of assignments.
3157
131db6b8
SB
3158 The propagation is done on the CFG in reverse post-order, to propagate
3159 things forward as far as possible in each iteration.
3160
ec907dd8
JL
3161 This could get expensive if the assignment chains are long. Maybe
3162 we should throttle the number of iterations, possibly based on
6e73e666 3163 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
3164
3165 We could propagate more information in the first pass by making use
6fb5fa3c 3166 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
3167 for a pseudo is "constant".
3168
3169 A program with an uninitialized variable can cause an infinite loop
3170 here. Instead of doing a full dataflow analysis to detect such problems
3171 we just cap the number of iterations for the loop.
3172
3173 The state of the arrays for the set chain in question does not matter
3174 since the program has undefined behavior. */
6e73e666 3175
0cae8d31 3176 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
131db6b8
SB
3177 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3178
e86a9946
RS
3179 /* The prologue/epilogue insns are not threaded onto the
3180 insn chain until after reload has completed. Thus,
3181 there is no sense wasting time checking if INSN is in
3182 the prologue/epilogue until after reload has completed. */
3183 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3184 || targetm.have_epilogue ())
3185 && reload_completed);
3186
ea64ef27 3187 pass = 0;
6e73e666 3188 do
ec907dd8
JL
3189 {
3190 /* Assume nothing will change this iteration of the loop. */
3191 changed = 0;
3192
ec907dd8 3193 /* We want to assign the same IDs each iteration of this loop, so
9fc37b2b
RS
3194 start counting from one each iteration of the loop. */
3195 unique_id = 1;
ec907dd8 3196
f5143c46 3197 /* We're at the start of the function each iteration through the
ec907dd8 3198 loop, so we're copying arguments. */
83bbd9b6 3199 copying_arguments = true;
9ae8ffe7 3200
6e73e666 3201 /* Wipe the potential alias information clean for this pass. */
c582d54a 3202 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 3203
6e73e666 3204 /* Wipe the reg_seen array clean. */
f61e445a 3205 bitmap_clear (reg_seen);
9ae8ffe7 3206
356610cb
EB
3207 /* Initialize the alias information for this pass. */
3208 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3209 if (static_reg_base_value[i])
3210 {
3211 new_reg_base_value[i] = static_reg_base_value[i];
3212 bitmap_set_bit (reg_seen, i);
3213 }
6e73e666 3214
ec907dd8 3215 /* Walk the insns adding values to the new_reg_base_value array. */
131db6b8 3216 for (i = 0; i < rpo_cnt; i++)
9ae8ffe7 3217 {
06e28de2 3218 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
131db6b8 3219 FOR_BB_INSNS (bb, insn)
ec907dd8 3220 {
131db6b8
SB
3221 if (NONDEBUG_INSN_P (insn))
3222 {
3223 rtx note, set;
efc9bd41 3224
e86a9946 3225 if (could_be_prologue_epilogue
131db6b8
SB
3226 && prologue_epilogue_contains (insn))
3227 continue;
efc9bd41 3228
131db6b8
SB
3229 /* If this insn has a noalias note, process it, Otherwise,
3230 scan for sets. A simple set will have no side effects
3231 which could change the base value of any other register. */
6e73e666 3232
131db6b8
SB
3233 if (GET_CODE (PATTERN (insn)) == SET
3234 && REG_NOTES (insn) != 0
3235 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3236 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3237 else
3238 note_stores (PATTERN (insn), record_set, NULL);
6e73e666 3239
131db6b8 3240 set = single_set (insn);
6e73e666 3241
131db6b8
SB
3242 if (set != 0
3243 && REG_P (SET_DEST (set))
3244 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
713f41f9 3245 {
131db6b8
SB
3246 unsigned int regno = REGNO (SET_DEST (set));
3247 rtx src = SET_SRC (set);
3248 rtx t;
3249
3250 note = find_reg_equal_equiv_note (insn);
3251 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3252 && DF_REG_DEF_COUNT (regno) != 1)
3253 note = NULL_RTX;
3254
3255 if (note != NULL_RTX
3256 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3257 && ! rtx_varies_p (XEXP (note, 0), 1)
3258 && ! reg_overlap_mentioned_p (SET_DEST (set),
3259 XEXP (note, 0)))
3260 {
3261 set_reg_known_value (regno, XEXP (note, 0));
3262 set_reg_known_equiv_p (regno,
3263 REG_NOTE_KIND (note) == REG_EQUIV);
3264 }
3265 else if (DF_REG_DEF_COUNT (regno) == 1
3266 && GET_CODE (src) == PLUS
3267 && REG_P (XEXP (src, 0))
3268 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3269 && CONST_INT_P (XEXP (src, 1)))
3270 {
3271 t = plus_constant (GET_MODE (src), t,
3272 INTVAL (XEXP (src, 1)));
3273 set_reg_known_value (regno, t);
3274 set_reg_known_equiv_p (regno, false);
3275 }
3276 else if (DF_REG_DEF_COUNT (regno) == 1
3277 && ! rtx_varies_p (src, 1))
3278 {
3279 set_reg_known_value (regno, src);
3280 set_reg_known_equiv_p (regno, false);
3281 }
713f41f9 3282 }
6e73e666 3283 }
131db6b8
SB
3284 else if (NOTE_P (insn)
3285 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3286 copying_arguments = false;
ec907dd8 3287 }
6e73e666 3288 }
ec907dd8 3289
6e73e666 3290 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 3291 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 3292
c582d54a 3293 for (ui = 0; ui < maxreg; ui++)
6e73e666 3294 {
e51712db 3295 if (new_reg_base_value[ui]
9771b263
DN
3296 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3297 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
ec907dd8 3298 {
9771b263 3299 (*reg_base_value)[ui] = new_reg_base_value[ui];
6e73e666 3300 changed = 1;
ec907dd8 3301 }
9ae8ffe7 3302 }
9ae8ffe7 3303 }
6e73e666 3304 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
131db6b8 3305 XDELETEVEC (rpo);
9ae8ffe7
JL
3306
3307 /* Fill in the remaining entries. */
9771b263 3308 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
9ff3c7ca
SB
3309 {
3310 int regno = i + FIRST_PSEUDO_REGISTER;
3311 if (! val)
3312 set_reg_known_value (regno, regno_reg_rtx[regno]);
3313 }
9ae8ffe7 3314
e05e2395
MM
3315 /* Clean up. */
3316 free (new_reg_base_value);
ec907dd8 3317 new_reg_base_value = 0;
d630245f 3318 sbitmap_free (reg_seen);
9ae8ffe7 3319 reg_seen = 0;
0d446150 3320 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
3321}
3322
61630b27
JJ
3323/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3324 Special API for var-tracking pass purposes. */
3325
3326void
3327vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3328{
9771b263 3329 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
61630b27
JJ
3330}
3331
9ae8ffe7 3332void
4682ae04 3333end_alias_analysis (void)
9ae8ffe7 3334{
c582d54a 3335 old_reg_base_value = reg_base_value;
9771b263 3336 vec_free (reg_known_value);
9ff3c7ca 3337 sbitmap_free (reg_known_equiv_p);
9ae8ffe7 3338}
e2500fed 3339
3ecf9d13
JH
3340void
3341dump_alias_stats_in_alias_c (FILE *s)
3342{
3343 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3344 " %llu are in alias set 0\n"
3345 " %llu queries asked about the same object\n"
3346 " %llu queries asked about the same alias set\n"
3347 " %llu access volatile\n"
6e042ef4
JH
3348 " %llu are dependent in the DAG\n"
3349 " %llu are aritificially in conflict with void *\n",
3ecf9d13
JH
3350 alias_stats.num_disambiguated,
3351 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3352 + alias_stats.num_same_objects + alias_stats.num_volatile
6e042ef4
JH
3353 + alias_stats.num_dag + alias_stats.num_disambiguated
3354 + alias_stats.num_universal,
3ecf9d13 3355 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
6e042ef4
JH
3356 alias_stats.num_same_objects, alias_stats.num_volatile,
3357 alias_stats.num_dag, alias_stats.num_universal);
3ecf9d13 3358}
e2500fed 3359#include "gt-alias.h"