]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
Update copyright years.
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
a5544970 2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
9ae8ffe7
JL
3 Contributed by John Carr (jfc@mit.edu).
4
1322177d 5This file is part of GCC.
9ae8ffe7 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
9ae8ffe7 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
9ae8ffe7
JL
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5
AM
25#include "target.h"
26#include "rtl.h"
c7131fb2
AM
27#include "tree.h"
28#include "gimple.h"
c7131fb2 29#include "df.h"
4d0cdd0c 30#include "memmodel.h"
957060b5
AM
31#include "tm_p.h"
32#include "gimple-ssa.h"
957060b5 33#include "emit-rtl.h"
40e23961 34#include "alias.h"
40e23961 35#include "fold-const.h"
d8a2d370 36#include "varasm.h"
eab5c70a 37#include "cselib.h"
d23c55c2 38#include "langhooks.h"
60393bbc 39#include "cfganal.h"
403837b4 40#include "rtl-iter.h"
54363f8a 41#include "cgraph.h"
ea900239
DB
42
43/* The aliasing API provided here solves related but different problems:
44
c22cacf3 45 Say there exists (in c)
ea900239
DB
46
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
51
52 struct Y y2, *py;
53 struct Z z2, *pz;
54
55
308a3fe2 56 py = &x1.y1;
ea900239
DB
57 px2 = &x1;
58
59 Consider the four questions:
60
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
ea900239
DB
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
65
66 The answer to these questions can be yes, yes, yes, and maybe.
67
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
073a8998 70 a store through a pointer to an X can overwrite any field that is
ea900239
DB
71 contained (recursively) in an X (unless we know that px1 != px2).
72
308a3fe2
DS
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
ea900239
DB
80
81 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 82 instances do not escape across the compilation boundary.
ea900239
DB
83
84 Historically in GCC, these two problems were combined and a single
308a3fe2 85 data structure that was used to represent the solution to these
ea900239 86 problems. We now have two similar but different data structures,
308a3fe2
DS
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
ea900239 91*/
3932261a
MM
92
93/* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
3932261a 97
01d28c3f 98 struct S { int i; double d; };
3932261a
MM
99
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
c22cacf3
MS
104 struct S
105 / \
3932261a 106 / \
c22cacf3
MS
107 |/_ _\|
108 int double
3932261a 109
ac3d9668
RK
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
113
3bdf5ad1
RK
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
95bd1dd7 116 past immediate descendants, however, since we propagate all
3bdf5ad1 117 grandchildren up one level.
3932261a
MM
118
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
122
e0702244 123struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
de144fb2 124
02ced957 125struct GTY(()) alias_set_entry {
3932261a 126 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 127 alias_set_type alias_set;
3932261a 128
6e042ef4
JH
129 /* Nonzero if would have a child of zero: this effectively makes this
130 alias set the same as alias set zero. */
131 bool has_zero_child;
132 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133 aggregate contaiing pointer.
134 This is used for a special case where we need an universal pointer type
135 compatible with all other pointer types. */
136 bool is_pointer;
137 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
138 bool has_pointer;
34e82342
RB
139
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
142
143 struct T { struct S s; float f; }
144
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 hash_map<alias_set_hash, int> *children;
b604074c 148};
9ae8ffe7 149
ed7a4b4b 150static int rtx_equal_for_memref_p (const_rtx, const_rtx);
7bc980e1 151static void record_set (rtx, const_rtx, void *);
ef4bddc2
RS
152static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 machine_mode);
4682ae04 154static rtx find_base_value (rtx);
4f588890 155static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
02ced957 156static alias_set_entry *get_alias_set_entry (alias_set_type);
4682ae04 157static tree decl_for_component_ref (tree);
bd280792 158static int write_dependence_p (const_rtx,
ef4bddc2 159 const_rtx, machine_mode, rtx,
bd280792 160 bool, bool, bool);
73e48cb3 161static int compare_base_symbol_refs (const_rtx, const_rtx);
4682ae04 162
aa317c97 163static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7 164
3ecf9d13
JH
165/* Query statistics for the different low-level disambiguators.
166 A high-level query may trigger multiple of them. */
167
168static struct {
169 unsigned long long num_alias_zero;
170 unsigned long long num_same_alias_set;
171 unsigned long long num_same_objects;
172 unsigned long long num_volatile;
173 unsigned long long num_dag;
6e042ef4 174 unsigned long long num_universal;
3ecf9d13
JH
175 unsigned long long num_disambiguated;
176} alias_stats;
177
178
9ae8ffe7
JL
179/* Set up all info needed to perform alias analysis on memory references. */
180
d4b60170 181/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
182#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
183
ea64ef27 184/* Cap the number of passes we make over the insns propagating alias
131db6b8
SB
185 information through set chains.
186 ??? 10 is a completely arbitrary choice. This should be based on the
187 maximum loop depth in the CFG, but we do not have this information
188 available (even if current_loops _is_ available). */
ea64ef27 189#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 190
9ae8ffe7
JL
191/* reg_base_value[N] gives an address to which register N is related.
192 If all sets after the first add or subtract to the current value
193 or otherwise modify it so it does not point to a different top level
194 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
195 of the first set.
196
197 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
9fc37b2b 198 expressions represent three types of base:
b3b5ad95 199
9fc37b2b
RS
200 1. incoming arguments. There is just one ADDRESS to represent all
201 arguments, since we do not know at this level whether accesses
202 based on different arguments can alias. The ADDRESS has id 0.
b3b5ad95 203
9fc37b2b
RS
204 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
205 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
206 Each of these rtxes has a separate ADDRESS associated with it,
207 each with a negative id.
208
209 GCC is (and is required to be) precise in which register it
210 chooses to access a particular region of stack. We can therefore
211 assume that accesses based on one of these rtxes do not alias
212 accesses based on another of these rtxes.
213
214 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
215 Each such piece of memory has a separate ADDRESS associated
216 with it, each with an id greater than 0.
217
218 Accesses based on one ADDRESS do not alias accesses based on other
219 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
220 alias globals either; the ADDRESSes have Pmode to indicate this.
221 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
222 indicate this. */
2a2c8203 223
9771b263 224static GTY(()) vec<rtx, va_gc> *reg_base_value;
ac606739 225static rtx *new_reg_base_value;
c582d54a 226
9fc37b2b
RS
227/* The single VOIDmode ADDRESS that represents all argument bases.
228 It has id 0. */
229static GTY(()) rtx arg_base_value;
230
231/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
232static int unique_id;
233
c582d54a
JH
234/* We preserve the copy of old array around to avoid amount of garbage
235 produced. About 8% of garbage produced were attributed to this
236 array. */
9771b263 237static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
d4b60170 238
9e412ca3
RS
239/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
240 registers. */
241#define UNIQUE_BASE_VALUE_SP -1
242#define UNIQUE_BASE_VALUE_ARGP -2
243#define UNIQUE_BASE_VALUE_FP -3
244#define UNIQUE_BASE_VALUE_HFP -4
245
7bf84454
RS
246#define static_reg_base_value \
247 (this_target_rtl->x_static_reg_base_value)
bf1660a6 248
9771b263
DN
249#define REG_BASE_VALUE(X) \
250 (REGNO (X) < vec_safe_length (reg_base_value) \
251 ? (*reg_base_value)[REGNO (X)] : 0)
9ae8ffe7 252
c13e8210 253/* Vector indexed by N giving the initial (unchanging) value known for
9ff3c7ca 254 pseudo-register N. This vector is initialized in init_alias_analysis,
bb1acb3e 255 and does not change until end_alias_analysis is called. */
9771b263 256static GTY(()) vec<rtx, va_gc> *reg_known_value;
9ae8ffe7
JL
257
258/* Vector recording for each reg_known_value whether it is due to a
259 REG_EQUIV note. Future passes (viz., reload) may replace the
260 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
261 dependences that would be introduced if that happens.
262
263 The REG_EQUIV notes created in assign_parms may mention the arg
264 pointer, and there are explicit insns in the RTL that modify the
265 arg pointer. Thus we must ensure that such insns don't get
266 scheduled across each other because that would invalidate the
267 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
268 wrong, but solving the problem in the scheduler will likely give
269 better code, so we do it here. */
9ff3c7ca 270static sbitmap reg_known_equiv_p;
9ae8ffe7 271
2a2c8203
JC
272/* True when scanning insns from the start of the rtl to the
273 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 274static bool copying_arguments;
9ae8ffe7 275
1a5640b4 276
3932261a 277/* The splay-tree used to store the various alias set entries. */
02ced957 278static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
ac3d9668 279\f
55b34b5f
RG
280/* Build a decomposed reference object for querying the alias-oracle
281 from the MEM rtx and store it in *REF.
282 Returns false if MEM is not suitable for the alias-oracle. */
283
284static bool
285ao_ref_from_mem (ao_ref *ref, const_rtx mem)
286{
287 tree expr = MEM_EXPR (mem);
288 tree base;
289
290 if (!expr)
291 return false;
292
293 ao_ref_init (ref, expr);
294
295 /* Get the base of the reference and see if we have to reject or
296 adjust it. */
297 base = ao_ref_base (ref);
298 if (base == NULL_TREE)
299 return false;
300
ef7a9fb8
RB
301 /* The tree oracle doesn't like bases that are neither decls
302 nor indirect references of SSA names. */
303 if (!(DECL_P (base)
304 || (TREE_CODE (base) == MEM_REF
305 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
306 || (TREE_CODE (base) == TARGET_MEM_REF
307 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
d15adbeb 308 return false;
55b34b5f
RG
309
310 /* If this is a reference based on a partitioned decl replace the
ef7a9fb8 311 base with a MEM_REF of the pointer representative we
55b34b5f 312 created during stack slot partitioning. */
8813a647 313 if (VAR_P (base)
ef7a9fb8 314 && ! is_global_var (base)
55b34b5f
RG
315 && cfun->gimple_df->decls_to_pointers != NULL)
316 {
39c8aaa4 317 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
55b34b5f 318 if (namep)
39c8aaa4 319 ref->base = build_simple_mem_ref (*namep);
d15adbeb 320 }
55b34b5f
RG
321
322 ref->ref_alias_set = MEM_ALIAS_SET (mem);
323
f68396a1
RG
324 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
325 is conservative, so trust it. */
527210c4 326 if (!MEM_OFFSET_KNOWN_P (mem)
f5541398 327 || !MEM_SIZE_KNOWN_P (mem))
f68396a1 328 return true;
366f945f 329
e8024441
RB
330 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
331 drop ref->ref. */
d05d7551 332 if (maybe_lt (MEM_OFFSET (mem), 0)
b9c25734
RS
333 || (ref->max_size_known_p ()
334 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
335 ref->max_size)))
e8024441 336 ref->ref = NULL_TREE;
b0e96404 337
e8024441
RB
338 /* Refine size and offset we got from analyzing MEM_EXPR by using
339 MEM_SIZE and MEM_OFFSET. */
f68396a1 340
527210c4 341 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
f5541398 342 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
b0e96404
RG
343
344 /* The MEM may extend into adjacent fields, so adjust max_size if
345 necessary. */
b9c25734
RS
346 if (ref->max_size_known_p ())
347 ref->max_size = upper_bound (ref->max_size, ref->size);
b0e96404 348
b9c25734 349 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
b0e96404
RG
350 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
351 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
b9c25734 352 && (maybe_lt (ref->offset, 0)
b0e96404 353 || (DECL_P (ref->base)
807e902e 354 && (DECL_SIZE (ref->base) == NULL_TREE
b9c25734
RS
355 || !poly_int_tree_p (DECL_SIZE (ref->base))
356 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
357 ref->offset + ref->size)))))
b0e96404 358 return false;
55b34b5f
RG
359
360 return true;
361}
362
363/* Query the alias-oracle on whether the two memory rtx X and MEM may
364 alias. If TBAA_P is set also apply TBAA. Returns true if the
365 two rtxen may alias, false otherwise. */
366
367static bool
368rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
369{
370 ao_ref ref1, ref2;
371
372 if (!ao_ref_from_mem (&ref1, x)
373 || !ao_ref_from_mem (&ref2, mem))
374 return true;
375
55e3bc4c
RG
376 return refs_may_alias_p_1 (&ref1, &ref2,
377 tbaa_p
378 && MEM_ALIAS_SET (x) != 0
379 && MEM_ALIAS_SET (mem) != 0);
55b34b5f
RG
380}
381
3932261a
MM
382/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
383 such an entry, or NULL otherwise. */
384
02ced957 385static inline alias_set_entry *
4862826d 386get_alias_set_entry (alias_set_type alias_set)
3932261a 387{
9771b263 388 return (*alias_sets)[alias_set];
3932261a
MM
389}
390
ac3d9668
RK
391/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
392 the two MEMs cannot alias each other. */
3932261a 393
9ddb66ca 394static inline int
4f588890 395mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 396{
598f8eca
RB
397 return (flag_strict_aliasing
398 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
399 MEM_ALIAS_SET (mem2)));
1da68f56 400}
3932261a 401
c58936b6
DB
402/* Return true if the first alias set is a subset of the second. */
403
404bool
4862826d 405alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6 406{
02ced957 407 alias_set_entry *ase2;
c58936b6 408
bd04cddf
JH
409 /* Disable TBAA oracle with !flag_strict_aliasing. */
410 if (!flag_strict_aliasing)
411 return true;
412
c58936b6
DB
413 /* Everything is a subset of the "aliases everything" set. */
414 if (set2 == 0)
415 return true;
416
6e042ef4
JH
417 /* Check if set1 is a subset of set2. */
418 ase2 = get_alias_set_entry (set2);
419 if (ase2 != 0
420 && (ase2->has_zero_child
421 || (ase2->children && ase2->children->get (set1))))
c58936b6 422 return true;
6e042ef4
JH
423
424 /* As a special case we consider alias set of "void *" to be both subset
425 and superset of every alias set of a pointer. This extra symmetry does
426 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
427 to return true on the following testcase:
428
429 void *ptr;
430 char **ptr2=(char **)&ptr;
431 *ptr2 = ...
432
433 Additionally if a set contains universal pointer, we consider every pointer
434 to be a subset of it, but we do not represent this explicitely - doing so
435 would require us to update transitive closure each time we introduce new
436 pointer type. This makes aliasing_component_refs_p to return true
437 on the following testcase:
438
439 struct a {void *ptr;}
440 char **ptr = (char **)&a.ptr;
441 ptr = ...
442
443 This makes void * truly universal pointer type. See pointer handling in
444 get_alias_set for more details. */
445 if (ase2 && ase2->has_pointer)
446 {
02ced957 447 alias_set_entry *ase1 = get_alias_set_entry (set1);
6e042ef4
JH
448
449 if (ase1 && ase1->is_pointer)
450 {
451 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
452 /* If one is ptr_type_node and other is pointer, then we consider
453 them subset of each other. */
454 if (set1 == voidptr_set || set2 == voidptr_set)
455 return true;
456 /* If SET2 contains universal pointer's alias set, then we consdier
457 every (non-universal) pointer. */
458 if (ase2->children && set1 != voidptr_set
459 && ase2->children->get (voidptr_set))
460 return true;
461 }
462 }
c58936b6
DB
463 return false;
464}
465
1da68f56
RK
466/* Return 1 if the two specified alias sets may conflict. */
467
468int
4862826d 469alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56 470{
02ced957
TS
471 alias_set_entry *ase1;
472 alias_set_entry *ase2;
1da68f56 473
836f7794
EB
474 /* The easy case. */
475 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 476 return 1;
3932261a 477
3bdf5ad1 478 /* See if the first alias set is a subset of the second. */
6e042ef4
JH
479 ase1 = get_alias_set_entry (set1);
480 if (ase1 != 0
481 && ase1->children && ase1->children->get (set2))
3ecf9d13
JH
482 {
483 ++alias_stats.num_dag;
484 return 1;
485 }
3932261a
MM
486
487 /* Now do the same, but with the alias sets reversed. */
6e042ef4
JH
488 ase2 = get_alias_set_entry (set2);
489 if (ase2 != 0
490 && ase2->children && ase2->children->get (set1))
3ecf9d13
JH
491 {
492 ++alias_stats.num_dag;
493 return 1;
494 }
6e042ef4
JH
495
496 /* We want void * to be compatible with any other pointer without
497 really dropping it to alias set 0. Doing so would make it
498 compatible with all non-pointer types too.
499
500 This is not strictly necessary by the C/C++ language
501 standards, but avoids common type punning mistakes. In
502 addition to that, we need the existence of such universal
503 pointer to implement Fortran's C_PTR type (which is defined as
504 type compatible with all C pointers). */
505 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
506 {
507 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
508
509 /* If one of the sets corresponds to universal pointer,
510 we consider it to conflict with anything that is
511 or contains pointer. */
512 if (set1 == voidptr_set || set2 == voidptr_set)
513 {
514 ++alias_stats.num_universal;
515 return true;
516 }
517 /* If one of sets is (non-universal) pointer and the other
518 contains universal pointer, we also get conflict. */
519 if (ase1->is_pointer && set2 != voidptr_set
520 && ase2->children && ase2->children->get (voidptr_set))
521 {
522 ++alias_stats.num_universal;
523 return true;
524 }
525 if (ase2->is_pointer && set1 != voidptr_set
526 && ase1->children && ase1->children->get (voidptr_set))
527 {
528 ++alias_stats.num_universal;
529 return true;
530 }
531 }
532
3ecf9d13 533 ++alias_stats.num_disambiguated;
3932261a 534
1da68f56 535 /* The two alias sets are distinct and neither one is the
836f7794 536 child of the other. Therefore, they cannot conflict. */
1da68f56 537 return 0;
3932261a 538}
5399d643 539
836f7794 540/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
541
542int
4862826d 543alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643 544{
bd04cddf
JH
545 /* Disable TBAA oracle with !flag_strict_aliasing. */
546 if (!flag_strict_aliasing)
547 return 1;
3ecf9d13
JH
548 if (set1 == 0 || set2 == 0)
549 {
550 ++alias_stats.num_alias_zero;
551 return 1;
552 }
553 if (set1 == set2)
554 {
555 ++alias_stats.num_same_alias_set;
556 return 1;
557 }
5399d643
JW
558
559 return 0;
560}
561
1da68f56
RK
562/* Return 1 if any MEM object of type T1 will always conflict (using the
563 dependency routines in this file) with any MEM object of type T2.
564 This is used when allocating temporary storage. If T1 and/or T2 are
565 NULL_TREE, it means we know nothing about the storage. */
566
567int
4682ae04 568objects_must_conflict_p (tree t1, tree t2)
1da68f56 569{
4862826d 570 alias_set_type set1, set2;
82d610ec 571
e8ea2809
RK
572 /* If neither has a type specified, we don't know if they'll conflict
573 because we may be using them to store objects of various types, for
574 example the argument and local variables areas of inlined functions. */
981a4c34 575 if (t1 == 0 && t2 == 0)
e8ea2809
RK
576 return 0;
577
1da68f56 578 /* If they are the same type, they must conflict. */
3ecf9d13
JH
579 if (t1 == t2)
580 {
581 ++alias_stats.num_same_objects;
582 return 1;
583 }
584 /* Likewise if both are volatile. */
585 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
586 {
587 ++alias_stats.num_volatile;
588 return 1;
589 }
1da68f56 590
82d610ec
RK
591 set1 = t1 ? get_alias_set (t1) : 0;
592 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 593
836f7794
EB
594 /* We can't use alias_sets_conflict_p because we must make sure
595 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
596 t2 for which a pair of subobjects of these respective subtypes
597 overlaps on the stack. */
836f7794 598 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
599}
600\f
b4ada065
RB
601/* Return the outermost parent of component present in the chain of
602 component references handled by get_inner_reference in T with the
603 following property:
dc3221e1 604 - the component is non-addressable
b4ada065
RB
605 or NULL_TREE if no such parent exists. In the former cases, the alias
606 set of this parent is the alias set that must be used for T itself. */
607
608tree
609component_uses_parent_alias_set_from (const_tree t)
6e24b709 610{
b4ada065 611 const_tree found = NULL_TREE;
afe84921 612
b4ada065
RB
613 while (handled_component_p (t))
614 {
afe84921
RH
615 switch (TREE_CODE (t))
616 {
617 case COMPONENT_REF:
618 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
b4ada065 619 found = t;
4aa83879
RB
620 /* Permit type-punning when accessing a union, provided the access
621 is directly through the union. For example, this code does not
622 permit taking the address of a union member and then storing
623 through it. Even the type-punning allowed here is a GCC
624 extension, albeit a common and useful one; the C standard says
625 that such accesses have implementation-defined behavior. */
626 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
627 found = t;
afe84921
RH
628 break;
629
630 case ARRAY_REF:
631 case ARRAY_RANGE_REF:
632 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
b4ada065 633 found = t;
afe84921
RH
634 break;
635
636 case REALPART_EXPR:
637 case IMAGPART_EXPR:
638 break;
639
b4ada065
RB
640 case BIT_FIELD_REF:
641 case VIEW_CONVERT_EXPR:
afe84921 642 /* Bitfields and casts are never addressable. */
b4ada065
RB
643 found = t;
644 break;
645
646 default:
647 gcc_unreachable ();
afe84921
RH
648 }
649
650 t = TREE_OPERAND (t, 0);
651 }
b4ada065
RB
652
653 if (found)
654 return TREE_OPERAND (found, 0);
655
656 return NULL_TREE;
6e24b709
RK
657}
658
f40333af
RB
659
660/* Return whether the pointer-type T effective for aliasing may
661 access everything and thus the reference has to be assigned
662 alias-set zero. */
663
664static bool
665ref_all_alias_ptr_type_p (const_tree t)
666{
667 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
668 || TYPE_REF_CAN_ALIAS_ALL (t));
669}
670
5006671f
RG
671/* Return the alias set for the memory pointed to by T, which may be
672 either a type or an expression. Return -1 if there is nothing
673 special about dereferencing T. */
674
675static alias_set_type
676get_deref_alias_set_1 (tree t)
677{
5b21f0f3 678 /* All we care about is the type. */
5006671f 679 if (! TYPE_P (t))
5b21f0f3 680 t = TREE_TYPE (t);
5006671f
RG
681
682 /* If we have an INDIRECT_REF via a void pointer, we don't
683 know anything about what that might alias. Likewise if the
684 pointer is marked that way. */
f40333af 685 if (ref_all_alias_ptr_type_p (t))
5006671f
RG
686 return 0;
687
688 return -1;
689}
690
691/* Return the alias set for the memory pointed to by T, which may be
692 either a type or an expression. */
693
694alias_set_type
695get_deref_alias_set (tree t)
696{
f40333af
RB
697 /* If we're not doing any alias analysis, just assume everything
698 aliases everything else. */
699 if (!flag_strict_aliasing)
700 return 0;
701
5006671f
RG
702 alias_set_type set = get_deref_alias_set_1 (t);
703
704 /* Fall back to the alias-set of the pointed-to type. */
705 if (set == -1)
706 {
707 if (! TYPE_P (t))
708 t = TREE_TYPE (t);
709 set = get_alias_set (TREE_TYPE (t));
710 }
711
712 return set;
713}
714
f40333af
RB
715/* Return the pointer-type relevant for TBAA purposes from the
716 memory reference tree *T or NULL_TREE in which case *T is
717 adjusted to point to the outermost component reference that
718 can be used for assigning an alias set. */
719
720static tree
721reference_alias_ptr_type_1 (tree *t)
722{
723 tree inner;
724
725 /* Get the base object of the reference. */
726 inner = *t;
727 while (handled_component_p (inner))
728 {
729 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
730 the type of any component references that wrap it to
731 determine the alias-set. */
732 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
733 *t = TREE_OPERAND (inner, 0);
734 inner = TREE_OPERAND (inner, 0);
735 }
736
737 /* Handle pointer dereferences here, they can override the
738 alias-set. */
739 if (INDIRECT_REF_P (inner)
740 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
741 return TREE_TYPE (TREE_OPERAND (inner, 0));
742 else if (TREE_CODE (inner) == TARGET_MEM_REF)
743 return TREE_TYPE (TMR_OFFSET (inner));
744 else if (TREE_CODE (inner) == MEM_REF
745 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
746 return TREE_TYPE (TREE_OPERAND (inner, 1));
747
748 /* If the innermost reference is a MEM_REF that has a
749 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
750 using the memory access type for determining the alias-set. */
751 if (TREE_CODE (inner) == MEM_REF
752 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
753 != TYPE_MAIN_VARIANT
754 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
755 return TREE_TYPE (TREE_OPERAND (inner, 1));
756
b4ada065
RB
757 /* Otherwise, pick up the outermost object that we could have
758 a pointer to. */
759 tree tem = component_uses_parent_alias_set_from (*t);
760 if (tem)
761 *t = tem;
f40333af
RB
762
763 return NULL_TREE;
764}
765
766/* Return the pointer-type relevant for TBAA purposes from the
767 gimple memory reference tree T. This is the type to be used for
768 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
769 and guarantees that get_alias_set will return the same alias
770 set for T and the replacement. */
771
772tree
773reference_alias_ptr_type (tree t)
774{
ebc1b29e
RB
775 /* If the frontend assigns this alias-set zero, preserve that. */
776 if (lang_hooks.get_alias_set (t) == 0)
777 return ptr_type_node;
778
f40333af
RB
779 tree ptype = reference_alias_ptr_type_1 (&t);
780 /* If there is a given pointer type for aliasing purposes, return it. */
781 if (ptype != NULL_TREE)
782 return ptype;
783
784 /* Otherwise build one from the outermost component reference we
785 may use. */
786 if (TREE_CODE (t) == MEM_REF
787 || TREE_CODE (t) == TARGET_MEM_REF)
788 return TREE_TYPE (TREE_OPERAND (t, 1));
789 else
790 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
791}
792
793/* Return whether the pointer-types T1 and T2 used to determine
794 two alias sets of two references will yield the same answer
795 from get_deref_alias_set. */
796
797bool
798alias_ptr_types_compatible_p (tree t1, tree t2)
799{
800 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
801 return true;
802
803 if (ref_all_alias_ptr_type_p (t1)
804 || ref_all_alias_ptr_type_p (t2))
805 return false;
806
807 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
808 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
809}
810
6e042ef4
JH
811/* Create emptry alias set entry. */
812
02ced957 813alias_set_entry *
6e042ef4
JH
814init_alias_set_entry (alias_set_type set)
815{
02ced957 816 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
6e042ef4
JH
817 ase->alias_set = set;
818 ase->children = NULL;
819 ase->has_zero_child = false;
820 ase->is_pointer = false;
821 ase->has_pointer = false;
822 gcc_checking_assert (!get_alias_set_entry (set));
823 (*alias_sets)[set] = ase;
824 return ase;
825}
826
3bdf5ad1
RK
827/* Return the alias set for T, which may be either a type or an
828 expression. Call language-specific routine for help, if needed. */
829
4862826d 830alias_set_type
4682ae04 831get_alias_set (tree t)
3bdf5ad1 832{
4862826d 833 alias_set_type set;
3bdf5ad1 834
bd04cddf
JH
835 /* We can not give up with -fno-strict-aliasing because we need to build
836 proper type representation for possible functions which are build with
e8444ca6 837 -fstrict-aliasing. */
bd04cddf
JH
838
839 /* return 0 if this or its type is an error. */
840 if (t == error_mark_node
3bdf5ad1
RK
841 || (! TYPE_P (t)
842 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
843 return 0;
844
845 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
846 language-specific routine may make mutually-recursive calls to each other
847 to figure out what to do. At each juncture, we see if this is a tree
848 that the language may need to handle specially. First handle things that
738cc472 849 aren't types. */
f824e5c3 850 if (! TYPE_P (t))
3bdf5ad1 851 {
70f34814
RG
852 /* Give the language a chance to do something with this tree
853 before we look at it. */
8ac61af7 854 STRIP_NOPS (t);
ae2bcd98 855 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
856 if (set != -1)
857 return set;
858
f40333af
RB
859 /* Get the alias pointer-type to use or the outermost object
860 that we could have a pointer to. */
861 tree ptype = reference_alias_ptr_type_1 (&t);
862 if (ptype != NULL)
863 return get_deref_alias_set (ptype);
f824e5c3 864
738cc472
RK
865 /* If we've already determined the alias set for a decl, just return
866 it. This is necessary for C++ anonymous unions, whose component
867 variables don't look like union members (boo!). */
8813a647 868 if (VAR_P (t)
3c0cb5de 869 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
870 return MEM_ALIAS_SET (DECL_RTL (t));
871
f824e5c3
RK
872 /* Now all we care about is the type. */
873 t = TREE_TYPE (t);
3bdf5ad1
RK
874 }
875
3bdf5ad1 876 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 877 variant. */
3bdf5ad1 878 t = TYPE_MAIN_VARIANT (t);
daad0278 879
350792ff
RB
880 if (AGGREGATE_TYPE_P (t)
881 && TYPE_TYPELESS_STORAGE (t))
882 return 0;
883
daad0278
RG
884 /* Always use the canonical type as well. If this is a type that
885 requires structural comparisons to identify compatible types
886 use alias set zero. */
887 if (TYPE_STRUCTURAL_EQUALITY_P (t))
cb9c2485
JM
888 {
889 /* Allow the language to specify another alias set for this
890 type. */
891 set = lang_hooks.get_alias_set (t);
892 if (set != -1)
893 return set;
aea50b45
JH
894 /* Handle structure type equality for pointer types, arrays and vectors.
895 This is easy to do, because the code bellow ignore canonical types on
896 these anyway. This is important for LTO, where TYPE_CANONICAL for
897 pointers can not be meaningfuly computed by the frotnend. */
898 if (canonical_type_used_p (t))
f85d2487
JH
899 {
900 /* In LTO we set canonical types for all types where it makes
901 sense to do so. Double check we did not miss some type. */
902 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
903 return 0;
904 }
905 }
906 else
907 {
908 t = TYPE_CANONICAL (t);
909 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
cb9c2485 910 }
daad0278
RG
911
912 /* If this is a type with a known alias set, return it. */
ba6a6a1d 913 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
738cc472 914 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
915 return TYPE_ALIAS_SET (t);
916
36784d0e
RG
917 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
918 if (!COMPLETE_TYPE_P (t))
919 {
920 /* For arrays with unknown size the conservative answer is the
921 alias set of the element type. */
922 if (TREE_CODE (t) == ARRAY_TYPE)
923 return get_alias_set (TREE_TYPE (t));
924
925 /* But return zero as a conservative answer for incomplete types. */
926 return 0;
927 }
928
3bdf5ad1 929 /* See if the language has special handling for this type. */
ae2bcd98 930 set = lang_hooks.get_alias_set (t);
8ac61af7 931 if (set != -1)
738cc472 932 return set;
2bf105ab 933
3bdf5ad1
RK
934 /* There are no objects of FUNCTION_TYPE, so there's no point in
935 using up an alias set for them. (There are, of course, pointers
936 and references to functions, but that's different.) */
7be7d292 937 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 938 set = 0;
74d86f4f
RH
939
940 /* Unless the language specifies otherwise, let vector types alias
941 their components. This avoids some nasty type punning issues in
942 normal usage. And indeed lets vectors be treated more like an
943 array slice. */
944 else if (TREE_CODE (t) == VECTOR_TYPE)
945 set = get_alias_set (TREE_TYPE (t));
946
4653cae5
RG
947 /* Unless the language specifies otherwise, treat array types the
948 same as their components. This avoids the asymmetry we get
949 through recording the components. Consider accessing a
950 character(kind=1) through a reference to a character(kind=1)[1:1].
951 Or consider if we want to assign integer(kind=4)[0:D.1387] and
952 integer(kind=4)[4] the same alias set or not.
953 Just be pragmatic here and make sure the array and its element
954 type get the same alias set assigned. */
aea50b45
JH
955 else if (TREE_CODE (t) == ARRAY_TYPE
956 && (!TYPE_NONALIASED_COMPONENT (t)
957 || TYPE_STRUCTURAL_EQUALITY_P (t)))
4653cae5
RG
958 set = get_alias_set (TREE_TYPE (t));
959
0ceb0201
RG
960 /* From the former common C and C++ langhook implementation:
961
962 Unfortunately, there is no canonical form of a pointer type.
963 In particular, if we have `typedef int I', then `int *', and
964 `I *' are different types. So, we have to pick a canonical
965 representative. We do this below.
966
967 Technically, this approach is actually more conservative that
968 it needs to be. In particular, `const int *' and `int *'
969 should be in different alias sets, according to the C and C++
970 standard, since their types are not the same, and so,
971 technically, an `int **' and `const int **' cannot point at
972 the same thing.
973
974 But, the standard is wrong. In particular, this code is
975 legal C++:
976
977 int *ip;
978 int **ipp = &ip;
979 const int* const* cipp = ipp;
980 And, it doesn't make sense for that to be legal unless you
981 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
982 the pointed-to types. This issue has been reported to the
983 C++ committee.
984
6e042ef4
JH
985 For this reason go to canonical type of the unqalified pointer type.
986 Until GCC 6 this code set all pointers sets to have alias set of
987 ptr_type_node but that is a bad idea, because it prevents disabiguations
988 in between pointers. For Firefox this accounts about 20% of all
989 disambiguations in the program. */
f85d2487 990 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
6e042ef4
JH
991 {
992 tree p;
993 auto_vec <bool, 8> reference;
994
995 /* Unnest all pointers and references.
f85d2487
JH
996 We also want to make pointer to array/vector equivalent to pointer to
997 its element (see the reasoning above). Skip all those types, too. */
6e042ef4 998 for (p = t; POINTER_TYPE_P (p)
aea50b45
JH
999 || (TREE_CODE (p) == ARRAY_TYPE
1000 && (!TYPE_NONALIASED_COMPONENT (p)
1001 || !COMPLETE_TYPE_P (p)
1002 || TYPE_STRUCTURAL_EQUALITY_P (p)))
f85d2487 1003 || TREE_CODE (p) == VECTOR_TYPE;
6e042ef4
JH
1004 p = TREE_TYPE (p))
1005 {
54363f8a
JH
1006 /* Ada supports recusive pointers. Instead of doing recrusion check
1007 just give up once the preallocated space of 8 elements is up.
1008 In this case just punt to void * alias set. */
1009 if (reference.length () == 8)
1010 {
1011 p = ptr_type_node;
1012 break;
1013 }
6e042ef4 1014 if (TREE_CODE (p) == REFERENCE_TYPE)
f85d2487
JH
1015 /* In LTO we want languages that use references to be compatible
1016 with languages that use pointers. */
1017 reference.safe_push (true && !in_lto_p);
6e042ef4
JH
1018 if (TREE_CODE (p) == POINTER_TYPE)
1019 reference.safe_push (false);
1020 }
1021 p = TYPE_MAIN_VARIANT (p);
1022
1023 /* Make void * compatible with char * and also void **.
1024 Programs are commonly violating TBAA by this.
1025
1026 We also make void * to conflict with every pointer
1027 (see record_component_aliases) and thus it is safe it to use it for
1028 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1029 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1030 set = get_alias_set (ptr_type_node);
1031 else
1032 {
f85d2487 1033 /* Rebuild pointer type starting from canonical types using
6e042ef4
JH
1034 unqualified pointers and references only. This way all such
1035 pointers will have the same alias set and will conflict with
1036 each other.
1037
1038 Most of time we already have pointers or references of a given type.
1039 If not we build new one just to be sure that if someone later
1040 (probably only middle-end can, as we should assign all alias
1041 classes only after finishing translation unit) builds the pointer
1042 type, the canonical type will match. */
1043 p = TYPE_CANONICAL (p);
1044 while (!reference.is_empty ())
1045 {
1046 if (reference.pop ())
1047 p = build_reference_type (p);
1048 else
1049 p = build_pointer_type (p);
f85d2487
JH
1050 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1051 /* build_pointer_type should always return the canonical type.
1052 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1053 them. Be sure that frontends do not glob canonical types of
1054 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1055 in all other cases. */
1056 gcc_checking_assert (!TYPE_CANONICAL (p)
1057 || p == TYPE_CANONICAL (p));
6e042ef4 1058 }
6e042ef4
JH
1059
1060 /* Assign the alias set to both p and t.
1061 We can not call get_alias_set (p) here as that would trigger
1062 infinite recursion when p == t. In other cases it would just
1063 trigger unnecesary legwork of rebuilding the pointer again. */
ba6a6a1d 1064 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
6e042ef4
JH
1065 if (TYPE_ALIAS_SET_KNOWN_P (p))
1066 set = TYPE_ALIAS_SET (p);
1067 else
1068 {
1069 set = new_alias_set ();
1070 TYPE_ALIAS_SET (p) = set;
1071 }
1072 }
1073 }
f85d2487
JH
1074 /* Alias set of ptr_type_node is special and serve as universal pointer which
1075 is TBAA compatible with every other pointer type. Be sure we have the
1076 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1077 of pointer types NULL. */
1078 else if (t == ptr_type_node)
1079 set = new_alias_set ();
0ceb0201 1080
7be7d292 1081 /* Otherwise make a new alias set for this type. */
3bdf5ad1 1082 else
96d91dcf
RG
1083 {
1084 /* Each canonical type gets its own alias set, so canonical types
1085 shouldn't form a tree. It doesn't really matter for types
1086 we handle specially above, so only check it where it possibly
1087 would result in a bogus alias set. */
1088 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1089
1090 set = new_alias_set ();
1091 }
3bdf5ad1
RK
1092
1093 TYPE_ALIAS_SET (t) = set;
2bf105ab 1094
7be7d292
EB
1095 /* If this is an aggregate type or a complex type, we must record any
1096 component aliasing information. */
1d79fd2c 1097 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
1098 record_component_aliases (t);
1099
6e042ef4
JH
1100 /* We treat pointer types specially in alias_set_subset_of. */
1101 if (POINTER_TYPE_P (t) && set)
1102 {
02ced957 1103 alias_set_entry *ase = get_alias_set_entry (set);
6e042ef4
JH
1104 if (!ase)
1105 ase = init_alias_set_entry (set);
1106 ase->is_pointer = true;
1107 ase->has_pointer = true;
1108 }
1109
3bdf5ad1
RK
1110 return set;
1111}
1112
1113/* Return a brand-new alias set. */
1114
4862826d 1115alias_set_type
4682ae04 1116new_alias_set (void)
3bdf5ad1 1117{
bd04cddf
JH
1118 if (alias_sets == 0)
1119 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1120 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1121 return alias_sets->length () - 1;
3bdf5ad1 1122}
3932261a 1123
01d28c3f
JM
1124/* Indicate that things in SUBSET can alias things in SUPERSET, but that
1125 not everything that aliases SUPERSET also aliases SUBSET. For example,
1126 in C, a store to an `int' can alias a load of a structure containing an
1127 `int', and vice versa. But it can't alias a load of a 'double' member
1128 of the same structure. Here, the structure would be the SUPERSET and
1129 `int' the SUBSET. This relationship is also described in the comment at
1130 the beginning of this file.
1131
1132 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
1133
1134 It is illegal for SUPERSET to be zero; everything is implicitly a
1135 subset of alias set zero. */
1136
794511d2 1137void
4862826d 1138record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a 1139{
02ced957
TS
1140 alias_set_entry *superset_entry;
1141 alias_set_entry *subset_entry;
3932261a 1142
f47e9b4e
RK
1143 /* It is possible in complex type situations for both sets to be the same,
1144 in which case we can ignore this operation. */
1145 if (superset == subset)
1146 return;
1147
298e6adc 1148 gcc_assert (superset);
3932261a
MM
1149
1150 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 1151 if (superset_entry == 0)
3932261a
MM
1152 {
1153 /* Create an entry for the SUPERSET, so that we have a place to
1154 attach the SUBSET. */
6e042ef4 1155 superset_entry = init_alias_set_entry (superset);
3932261a
MM
1156 }
1157
2bf105ab
RK
1158 if (subset == 0)
1159 superset_entry->has_zero_child = 1;
1160 else
1161 {
1162 subset_entry = get_alias_set_entry (subset);
6e042ef4
JH
1163 if (!superset_entry->children)
1164 superset_entry->children
fb5c464a 1165 = hash_map<alias_set_hash, int>::create_ggc (64);
2bf105ab
RK
1166 /* If there is an entry for the subset, enter all of its children
1167 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 1168 if (subset_entry)
2bf105ab
RK
1169 {
1170 if (subset_entry->has_zero_child)
6e042ef4
JH
1171 superset_entry->has_zero_child = true;
1172 if (subset_entry->has_pointer)
1173 superset_entry->has_pointer = true;
d4b60170 1174
6e042ef4
JH
1175 if (subset_entry->children)
1176 {
fb5c464a 1177 hash_map<alias_set_hash, int>::iterator iter
6e042ef4
JH
1178 = subset_entry->children->begin ();
1179 for (; iter != subset_entry->children->end (); ++iter)
1180 superset_entry->children->put ((*iter).first, (*iter).second);
1181 }
2bf105ab 1182 }
3932261a 1183
2bf105ab 1184 /* Enter the SUBSET itself as a child of the SUPERSET. */
de144fb2 1185 superset_entry->children->put (subset, 0);
2bf105ab 1186 }
3932261a
MM
1187}
1188
a0c33338
RK
1189/* Record that component types of TYPE, if any, are part of that type for
1190 aliasing purposes. For record types, we only record component types
b5487346
EB
1191 for fields that are not marked non-addressable. For array types, we
1192 only record the component type if it is not marked non-aliased. */
a0c33338
RK
1193
1194void
4682ae04 1195record_component_aliases (tree type)
a0c33338 1196{
4862826d 1197 alias_set_type superset = get_alias_set (type);
a0c33338
RK
1198 tree field;
1199
1200 if (superset == 0)
1201 return;
1202
1203 switch (TREE_CODE (type))
1204 {
a0c33338
RK
1205 case RECORD_TYPE:
1206 case UNION_TYPE:
1207 case QUAL_UNION_TYPE:
910ad8de 1208 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
b5487346 1209 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
f85d2487
JH
1210 {
1211 /* LTO type merging does not make any difference between
1212 component pointer types. We may have
1213
1214 struct foo {int *a;};
1215
1216 as TYPE_CANONICAL of
1217
1218 struct bar {float *a;};
1219
1220 Because accesses to int * and float * do not alias, we would get
1221 false negative when accessing the same memory location by
1222 float ** and bar *. We thus record the canonical type as:
1223
1224 struct {void *a;};
1225
1226 void * is special cased and works as a universal pointer type.
1227 Accesses to it conflicts with accesses to any other pointer
1228 type. */
1229 tree t = TREE_TYPE (field);
1230 if (in_lto_p)
1231 {
1232 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1233 element type and that type has to be normalized to void *,
1234 too, in the case it is a pointer. */
aea50b45
JH
1235 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1236 {
1237 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1238 t = TREE_TYPE (t);
1239 }
f85d2487
JH
1240 if (POINTER_TYPE_P (t))
1241 t = ptr_type_node;
aea50b45
JH
1242 else if (flag_checking)
1243 gcc_checking_assert (get_alias_set (t)
1244 == get_alias_set (TREE_TYPE (field)));
f85d2487 1245 }
aea50b45 1246
f85d2487
JH
1247 record_alias_subset (superset, get_alias_set (t));
1248 }
a0c33338
RK
1249 break;
1250
1d79fd2c
JW
1251 case COMPLEX_TYPE:
1252 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1253 break;
1254
4653cae5
RG
1255 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1256 element type. */
1257
a0c33338
RK
1258 default:
1259 break;
1260 }
1261}
1262
3bdf5ad1
RK
1263/* Allocate an alias set for use in storing and reading from the varargs
1264 spill area. */
1265
4862826d 1266static GTY(()) alias_set_type varargs_set = -1;
f103e34d 1267
4862826d 1268alias_set_type
4682ae04 1269get_varargs_alias_set (void)
3bdf5ad1 1270{
cd3ce9b4
JM
1271#if 1
1272 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1273 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1274 consistently use the varargs alias set for loads from the varargs
1275 area. So don't use it anywhere. */
1276 return 0;
1277#else
f103e34d
GK
1278 if (varargs_set == -1)
1279 varargs_set = new_alias_set ();
3bdf5ad1 1280
f103e34d 1281 return varargs_set;
cd3ce9b4 1282#endif
3bdf5ad1
RK
1283}
1284
1285/* Likewise, but used for the fixed portions of the frame, e.g., register
1286 save areas. */
1287
4862826d 1288static GTY(()) alias_set_type frame_set = -1;
f103e34d 1289
4862826d 1290alias_set_type
4682ae04 1291get_frame_alias_set (void)
3bdf5ad1 1292{
f103e34d
GK
1293 if (frame_set == -1)
1294 frame_set = new_alias_set ();
3bdf5ad1 1295
f103e34d 1296 return frame_set;
3bdf5ad1
RK
1297}
1298
9fc37b2b
RS
1299/* Create a new, unique base with id ID. */
1300
1301static rtx
1302unique_base_value (HOST_WIDE_INT id)
1303{
1304 return gen_rtx_ADDRESS (Pmode, id);
1305}
1306
1307/* Return true if accesses based on any other base value cannot alias
1308 those based on X. */
1309
1310static bool
1311unique_base_value_p (rtx x)
1312{
1313 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1314}
1315
1316/* Return true if X is known to be a base value. */
1317
1318static bool
1319known_base_value_p (rtx x)
1320{
1321 switch (GET_CODE (x))
1322 {
1323 case LABEL_REF:
1324 case SYMBOL_REF:
1325 return true;
1326
1327 case ADDRESS:
1328 /* Arguments may or may not be bases; we don't know for sure. */
1329 return GET_MODE (x) != VOIDmode;
1330
1331 default:
1332 return false;
1333 }
1334}
1335
2a2c8203
JC
1336/* Inside SRC, the source of a SET, find a base address. */
1337
9ae8ffe7 1338static rtx
4682ae04 1339find_base_value (rtx src)
9ae8ffe7 1340{
713f41f9 1341 unsigned int regno;
6645d841 1342 scalar_int_mode int_mode;
0aacc8ed 1343
53451050
RS
1344#if defined (FIND_BASE_TERM)
1345 /* Try machine-dependent ways to find the base term. */
1346 src = FIND_BASE_TERM (src);
1347#endif
1348
9ae8ffe7
JL
1349 switch (GET_CODE (src))
1350 {
1351 case SYMBOL_REF:
1352 case LABEL_REF:
1353 return src;
1354
1355 case REG:
fb6754f0 1356 regno = REGNO (src);
d4b60170 1357 /* At the start of a function, argument registers have known base
2a2c8203
JC
1358 values which may be lost later. Returning an ADDRESS
1359 expression here allows optimization based on argument values
1360 even when the argument registers are used for other purposes. */
713f41f9
BS
1361 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1362 return new_reg_base_value[regno];
73774bc7 1363
eaf407a5 1364 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
1365 for non-fixed hard regs since it can result in a circular
1366 dependency chain for registers which have values at function entry.
eaf407a5
JL
1367
1368 The test above is not sufficient because the scheduler may move
1369 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 1370 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
9771b263 1371 && regno < vec_safe_length (reg_base_value))
83bbd9b6
RH
1372 {
1373 /* If we're inside init_alias_analysis, use new_reg_base_value
1374 to reduce the number of relaxation iterations. */
1afdf91c 1375 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 1376 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
1377 return new_reg_base_value[regno];
1378
9771b263
DN
1379 if ((*reg_base_value)[regno])
1380 return (*reg_base_value)[regno];
83bbd9b6 1381 }
73774bc7 1382
e3f049a8 1383 return 0;
9ae8ffe7
JL
1384
1385 case MEM:
1386 /* Check for an argument passed in memory. Only record in the
1387 copying-arguments block; it is too hard to track changes
1388 otherwise. */
1389 if (copying_arguments
1390 && (XEXP (src, 0) == arg_pointer_rtx
1391 || (GET_CODE (XEXP (src, 0)) == PLUS
1392 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
9fc37b2b 1393 return arg_base_value;
9ae8ffe7
JL
1394 return 0;
1395
1396 case CONST:
1397 src = XEXP (src, 0);
1398 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1399 break;
d4b60170 1400
191816a3 1401 /* fall through */
2a2c8203 1402
9ae8ffe7
JL
1403 case PLUS:
1404 case MINUS:
2a2c8203 1405 {
ec907dd8
JL
1406 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1407
0134bf2d
DE
1408 /* If either operand is a REG that is a known pointer, then it
1409 is the base. */
1410 if (REG_P (src_0) && REG_POINTER (src_0))
1411 return find_base_value (src_0);
1412 if (REG_P (src_1) && REG_POINTER (src_1))
1413 return find_base_value (src_1);
1414
ec907dd8
JL
1415 /* If either operand is a REG, then see if we already have
1416 a known value for it. */
0134bf2d 1417 if (REG_P (src_0))
ec907dd8
JL
1418 {
1419 temp = find_base_value (src_0);
d4b60170 1420 if (temp != 0)
ec907dd8
JL
1421 src_0 = temp;
1422 }
1423
0134bf2d 1424 if (REG_P (src_1))
ec907dd8
JL
1425 {
1426 temp = find_base_value (src_1);
d4b60170 1427 if (temp!= 0)
ec907dd8
JL
1428 src_1 = temp;
1429 }
2a2c8203 1430
0134bf2d
DE
1431 /* If either base is named object or a special address
1432 (like an argument or stack reference), then use it for the
1433 base term. */
9fc37b2b 1434 if (src_0 != 0 && known_base_value_p (src_0))
0134bf2d
DE
1435 return src_0;
1436
9fc37b2b 1437 if (src_1 != 0 && known_base_value_p (src_1))
0134bf2d
DE
1438 return src_1;
1439
d4b60170 1440 /* Guess which operand is the base address:
ec907dd8
JL
1441 If either operand is a symbol, then it is the base. If
1442 either operand is a CONST_INT, then the other is the base. */
481683e1 1443 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1444 return find_base_value (src_0);
481683e1 1445 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1446 return find_base_value (src_1);
1447
9ae8ffe7 1448 return 0;
2a2c8203
JC
1449 }
1450
1451 case LO_SUM:
1452 /* The standard form is (lo_sum reg sym) so look only at the
1453 second operand. */
1454 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1455
1456 case AND:
1457 /* If the second operand is constant set the base
ec5c56db 1458 address to the first operand. */
481683e1 1459 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
2a2c8203 1460 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1461 return 0;
1462
61f0131c 1463 case TRUNCATE:
5932a4d4 1464 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1465 handle this only if the target does not support different pointer or
1466 address modes depending on the address space. */
1467 if (!target_default_pointer_address_modes_p ())
1468 break;
6645d841
RS
1469 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1470 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
61f0131c
R
1471 break;
1472 /* Fall through. */
9ae8ffe7 1473 case HIGH:
d288e53d
DE
1474 case PRE_INC:
1475 case PRE_DEC:
1476 case POST_INC:
1477 case POST_DEC:
1478 case PRE_MODIFY:
1479 case POST_MODIFY:
2a2c8203 1480 return find_base_value (XEXP (src, 0));
1d300e19 1481
0aacc8ed
RK
1482 case ZERO_EXTEND:
1483 case SIGN_EXTEND: /* used for NT/Alpha pointers */
5932a4d4 1484 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1485 handle this only if the target does not support different pointer or
1486 address modes depending on the address space. */
1487 if (!target_default_pointer_address_modes_p ())
1488 break;
1489
0aacc8ed
RK
1490 {
1491 rtx temp = find_base_value (XEXP (src, 0));
1492
5ae6cd0d 1493 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1494 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1495
1496 return temp;
1497 }
1498
1d300e19
KG
1499 default:
1500 break;
9ae8ffe7
JL
1501 }
1502
1503 return 0;
1504}
1505
9fc37b2b
RS
1506/* Called from init_alias_analysis indirectly through note_stores,
1507 or directly if DEST is a register with a REG_NOALIAS note attached.
1508 SET is null in the latter case. */
9ae8ffe7 1509
d4b60170 1510/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7 1511 register N has been set in this function. */
d630245f 1512static sbitmap reg_seen;
9ae8ffe7 1513
2a2c8203 1514static void
7bc980e1 1515record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1516{
b3694847 1517 unsigned regno;
9ae8ffe7 1518 rtx src;
c28b4e40 1519 int n;
9ae8ffe7 1520
f8cfc6aa 1521 if (!REG_P (dest))
9ae8ffe7
JL
1522 return;
1523
fb6754f0 1524 regno = REGNO (dest);
9ae8ffe7 1525
9771b263 1526 gcc_checking_assert (regno < reg_base_value->length ());
ac606739 1527
dc8afb70 1528 n = REG_NREGS (dest);
c28b4e40
JW
1529 if (n != 1)
1530 {
1531 while (--n >= 0)
1532 {
d7c028c0 1533 bitmap_set_bit (reg_seen, regno + n);
c28b4e40
JW
1534 new_reg_base_value[regno + n] = 0;
1535 }
1536 return;
1537 }
1538
9ae8ffe7
JL
1539 if (set)
1540 {
1541 /* A CLOBBER wipes out any old value but does not prevent a previously
1542 unset register from acquiring a base address (i.e. reg_seen is not
1543 set). */
1544 if (GET_CODE (set) == CLOBBER)
1545 {
ec907dd8 1546 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1547 return;
1548 }
8df47bdf
AH
1549 /* A CLOBBER_HIGH only wipes out the old value if the mode of the old
1550 value is greater than that of the clobber. */
1551 else if (GET_CODE (set) == CLOBBER_HIGH)
1552 {
1553 if (new_reg_base_value[regno] != 0
1554 && reg_is_clobbered_by_clobber_high (
1555 regno, GET_MODE (new_reg_base_value[regno]), XEXP (set, 0)))
1556 new_reg_base_value[regno] = 0;
1557 return;
1558 }
1559
9ae8ffe7
JL
1560 src = SET_SRC (set);
1561 }
1562 else
1563 {
9fc37b2b 1564 /* There's a REG_NOALIAS note against DEST. */
d7c028c0 1565 if (bitmap_bit_p (reg_seen, regno))
9ae8ffe7 1566 {
ec907dd8 1567 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1568 return;
1569 }
d7c028c0 1570 bitmap_set_bit (reg_seen, regno);
9fc37b2b 1571 new_reg_base_value[regno] = unique_base_value (unique_id++);
9ae8ffe7
JL
1572 return;
1573 }
1574
5da6f168
RS
1575 /* If this is not the first set of REGNO, see whether the new value
1576 is related to the old one. There are two cases of interest:
1577
1578 (1) The register might be assigned an entirely new value
1579 that has the same base term as the original set.
1580
1581 (2) The set might be a simple self-modification that
1582 cannot change REGNO's base value.
1583
1584 If neither case holds, reject the original base value as invalid.
1585 Note that the following situation is not detected:
1586
c22cacf3 1587 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1588
9ae8ffe7
JL
1589 ANSI C does not allow computing the difference of addresses
1590 of distinct top level objects. */
5da6f168
RS
1591 if (new_reg_base_value[regno] != 0
1592 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1593 switch (GET_CODE (src))
1594 {
2a2c8203 1595 case LO_SUM:
9ae8ffe7
JL
1596 case MINUS:
1597 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1598 new_reg_base_value[regno] = 0;
9ae8ffe7 1599 break;
61f0131c
R
1600 case PLUS:
1601 /* If the value we add in the PLUS is also a valid base value,
1602 this might be the actual base value, and the original value
1603 an index. */
1604 {
1605 rtx other = NULL_RTX;
1606
1607 if (XEXP (src, 0) == dest)
1608 other = XEXP (src, 1);
1609 else if (XEXP (src, 1) == dest)
1610 other = XEXP (src, 0);
1611
1612 if (! other || find_base_value (other))
1613 new_reg_base_value[regno] = 0;
1614 break;
1615 }
9ae8ffe7 1616 case AND:
481683e1 1617 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1618 new_reg_base_value[regno] = 0;
9ae8ffe7 1619 break;
9ae8ffe7 1620 default:
ec907dd8 1621 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1622 break;
1623 }
1624 /* If this is the first set of a register, record the value. */
1625 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
d7c028c0 1626 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
ec907dd8 1627 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7 1628
d7c028c0 1629 bitmap_set_bit (reg_seen, regno);
9ae8ffe7
JL
1630}
1631
8fd0a474
AM
1632/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1633 using hard registers with non-null REG_BASE_VALUE for renaming. */
1634rtx
1635get_reg_base_value (unsigned int regno)
1636{
9771b263 1637 return (*reg_base_value)[regno];
8fd0a474
AM
1638}
1639
bb1acb3e
RH
1640/* If a value is known for REGNO, return it. */
1641
c22cacf3 1642rtx
bb1acb3e
RH
1643get_reg_known_value (unsigned int regno)
1644{
1645 if (regno >= FIRST_PSEUDO_REGISTER)
1646 {
1647 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1648 if (regno < vec_safe_length (reg_known_value))
1649 return (*reg_known_value)[regno];
bb1acb3e
RH
1650 }
1651 return NULL;
43fe47ca
JW
1652}
1653
bb1acb3e
RH
1654/* Set it. */
1655
1656static void
1657set_reg_known_value (unsigned int regno, rtx val)
1658{
1659 if (regno >= FIRST_PSEUDO_REGISTER)
1660 {
1661 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1662 if (regno < vec_safe_length (reg_known_value))
1663 (*reg_known_value)[regno] = val;
bb1acb3e
RH
1664 }
1665}
1666
1667/* Similarly for reg_known_equiv_p. */
1668
1669bool
1670get_reg_known_equiv_p (unsigned int regno)
1671{
1672 if (regno >= FIRST_PSEUDO_REGISTER)
1673 {
1674 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1675 if (regno < vec_safe_length (reg_known_value))
d7c028c0 1676 return bitmap_bit_p (reg_known_equiv_p, regno);
bb1acb3e
RH
1677 }
1678 return false;
1679}
1680
1681static void
1682set_reg_known_equiv_p (unsigned int regno, bool val)
1683{
1684 if (regno >= FIRST_PSEUDO_REGISTER)
1685 {
1686 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1687 if (regno < vec_safe_length (reg_known_value))
9ff3c7ca
SB
1688 {
1689 if (val)
d7c028c0 1690 bitmap_set_bit (reg_known_equiv_p, regno);
9ff3c7ca 1691 else
d7c028c0 1692 bitmap_clear_bit (reg_known_equiv_p, regno);
9ff3c7ca 1693 }
bb1acb3e
RH
1694 }
1695}
1696
1697
db048faf
MM
1698/* Returns a canonical version of X, from the point of view alias
1699 analysis. (For example, if X is a MEM whose address is a register,
1700 and the register has a known value (say a SYMBOL_REF), then a MEM
1701 whose address is the SYMBOL_REF is returned.) */
1702
1703rtx
4682ae04 1704canon_rtx (rtx x)
9ae8ffe7
JL
1705{
1706 /* Recursively look for equivalences. */
f8cfc6aa 1707 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1708 {
1709 rtx t = get_reg_known_value (REGNO (x));
1710 if (t == x)
1711 return x;
1712 if (t)
1713 return canon_rtx (t);
1714 }
1715
1716 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1717 {
1718 rtx x0 = canon_rtx (XEXP (x, 0));
1719 rtx x1 = canon_rtx (XEXP (x, 1));
1720
1721 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
231314e3 1722 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
9ae8ffe7 1723 }
d4b60170 1724
9ae8ffe7
JL
1725 /* This gives us much better alias analysis when called from
1726 the loop optimizer. Note we want to leave the original
1727 MEM alone, but need to return the canonicalized MEM with
1728 all the flags with their original values. */
3c0cb5de 1729 else if (MEM_P (x))
f1ec5147 1730 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1731
9ae8ffe7
JL
1732 return x;
1733}
1734
1735/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1736 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1737
1738 We use the data in reg_known_value above to see if two registers with
1739 different numbers are, in fact, equivalent. */
1740
1741static int
ed7a4b4b 1742rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1743{
b3694847
SS
1744 int i;
1745 int j;
1746 enum rtx_code code;
1747 const char *fmt;
9ae8ffe7
JL
1748
1749 if (x == 0 && y == 0)
1750 return 1;
1751 if (x == 0 || y == 0)
1752 return 0;
d4b60170 1753
9ae8ffe7
JL
1754 if (x == y)
1755 return 1;
1756
1757 code = GET_CODE (x);
1758 /* Rtx's of different codes cannot be equal. */
1759 if (code != GET_CODE (y))
1760 return 0;
1761
1762 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1763 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1764
1765 if (GET_MODE (x) != GET_MODE (y))
1766 return 0;
1767
db048faf
MM
1768 /* Some RTL can be compared without a recursive examination. */
1769 switch (code)
1770 {
1771 case REG:
1772 return REGNO (x) == REGNO (y);
1773
1774 case LABEL_REF:
04a121a7 1775 return label_ref_label (x) == label_ref_label (y);
ca7fd9cd 1776
db048faf 1777 case SYMBOL_REF:
73e48cb3 1778 return compare_base_symbol_refs (x, y) == 1;
db048faf 1779
af6236c1
AO
1780 case ENTRY_VALUE:
1781 /* This is magic, don't go through canonicalization et al. */
1782 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1783
40e02b4a 1784 case VALUE:
d8116890 1785 CASE_CONST_UNIQUE:
807e902e 1786 /* Pointer equality guarantees equality for these nodes. */
db048faf
MM
1787 return 0;
1788
db048faf
MM
1789 default:
1790 break;
1791 }
9ae8ffe7 1792
45183e03
JH
1793 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1794 if (code == PLUS)
9ae8ffe7
JL
1795 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1796 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1797 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1798 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1799 /* For commutative operations, the RTX match if the operand match in any
1800 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1801 if (COMMUTATIVE_P (x))
45183e03
JH
1802 {
1803 rtx xop0 = canon_rtx (XEXP (x, 0));
1804 rtx yop0 = canon_rtx (XEXP (y, 0));
1805 rtx yop1 = canon_rtx (XEXP (y, 1));
1806
1807 return ((rtx_equal_for_memref_p (xop0, yop0)
1808 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1809 || (rtx_equal_for_memref_p (xop0, yop1)
1810 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1811 }
ec8e098d 1812 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1813 {
1814 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1815 canon_rtx (XEXP (y, 0)))
45183e03
JH
1816 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1817 canon_rtx (XEXP (y, 1))));
1818 }
ec8e098d 1819 else if (UNARY_P (x))
45183e03 1820 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1821 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1822
1823 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1824 fail to match, return 0 for the whole things.
1825
1826 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1827
1828 fmt = GET_RTX_FORMAT (code);
1829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1830 {
1831 switch (fmt[i])
1832 {
9ae8ffe7
JL
1833 case 'i':
1834 if (XINT (x, i) != XINT (y, i))
1835 return 0;
1836 break;
1837
91914e56
RS
1838 case 'p':
1839 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1840 return 0;
1841 break;
1842
9ae8ffe7
JL
1843 case 'E':
1844 /* Two vectors must have the same length. */
1845 if (XVECLEN (x, i) != XVECLEN (y, i))
1846 return 0;
1847
1848 /* And the corresponding elements must match. */
1849 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1850 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1851 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1852 return 0;
1853 break;
1854
1855 case 'e':
45183e03
JH
1856 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1857 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1858 return 0;
1859 break;
1860
3237ac18
AH
1861 /* This can happen for asm operands. */
1862 case 's':
1863 if (strcmp (XSTR (x, i), XSTR (y, i)))
1864 return 0;
1865 break;
1866
aee21ba9
JL
1867 /* This can happen for an asm which clobbers memory. */
1868 case '0':
1869 break;
1870
9ae8ffe7
JL
1871 /* It is believed that rtx's at this level will never
1872 contain anything but integers and other rtx's,
1873 except for within LABEL_REFs and SYMBOL_REFs. */
1874 default:
298e6adc 1875 gcc_unreachable ();
9ae8ffe7
JL
1876 }
1877 }
1878 return 1;
1879}
1880
9e412ca3 1881static rtx
6ca83833
RB
1882find_base_term (rtx x, vec<std::pair<cselib_val *,
1883 struct elt_loc_list *> > &visited_vals)
9ae8ffe7 1884{
eab5c70a 1885 cselib_val *val;
6f2ffb4b
AO
1886 struct elt_loc_list *l, *f;
1887 rtx ret;
6645d841 1888 scalar_int_mode int_mode;
eab5c70a 1889
b949ea8b
JW
1890#if defined (FIND_BASE_TERM)
1891 /* Try machine-dependent ways to find the base term. */
1892 x = FIND_BASE_TERM (x);
1893#endif
1894
9ae8ffe7
JL
1895 switch (GET_CODE (x))
1896 {
1897 case REG:
1898 return REG_BASE_VALUE (x);
1899
d288e53d 1900 case TRUNCATE:
5932a4d4 1901 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1902 handle this only if the target does not support different pointer or
1903 address modes depending on the address space. */
1904 if (!target_default_pointer_address_modes_p ())
1905 return 0;
6645d841
RS
1906 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1907 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
ca7fd9cd 1908 return 0;
d288e53d 1909 /* Fall through. */
9ae8ffe7 1910 case HIGH:
6d849a2a
JL
1911 case PRE_INC:
1912 case PRE_DEC:
1913 case POST_INC:
1914 case POST_DEC:
d288e53d
DE
1915 case PRE_MODIFY:
1916 case POST_MODIFY:
6ca83833 1917 return find_base_term (XEXP (x, 0), visited_vals);
6d849a2a 1918
1abade85
RK
1919 case ZERO_EXTEND:
1920 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
5932a4d4 1921 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1922 handle this only if the target does not support different pointer or
1923 address modes depending on the address space. */
1924 if (!target_default_pointer_address_modes_p ())
1925 return 0;
1926
1abade85 1927 {
6ca83833 1928 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1abade85 1929
5ae6cd0d 1930 if (temp != 0 && CONSTANT_P (temp))
1abade85 1931 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1932
1933 return temp;
1934 }
1935
eab5c70a
BS
1936 case VALUE:
1937 val = CSELIB_VAL_PTR (x);
6f2ffb4b
AO
1938 ret = NULL_RTX;
1939
40e02b4a 1940 if (!val)
6f2ffb4b
AO
1941 return ret;
1942
0fe03ac3
JJ
1943 if (cselib_sp_based_value_p (val))
1944 return static_reg_base_value[STACK_POINTER_REGNUM];
1945
6f2ffb4b 1946 f = val->locs;
6ca83833
RB
1947 /* Reset val->locs to avoid infinite recursion. */
1948 if (f)
1949 visited_vals.safe_push (std::make_pair (val, f));
6f2ffb4b
AO
1950 val->locs = NULL;
1951
1952 for (l = f; l; l = l->next)
1953 if (GET_CODE (l->loc) == VALUE
1954 && CSELIB_VAL_PTR (l->loc)->locs
1955 && !CSELIB_VAL_PTR (l->loc)->locs->next
1956 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1957 continue;
6ca83833 1958 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
6f2ffb4b
AO
1959 break;
1960
6f2ffb4b 1961 return ret;
eab5c70a 1962
023f059b
JJ
1963 case LO_SUM:
1964 /* The standard form is (lo_sum reg sym) so look only at the
1965 second operand. */
6ca83833 1966 return find_base_term (XEXP (x, 1), visited_vals);
023f059b 1967
9ae8ffe7
JL
1968 case CONST:
1969 x = XEXP (x, 0);
1970 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1971 return 0;
938d968e 1972 /* Fall through. */
9ae8ffe7
JL
1973 case PLUS:
1974 case MINUS:
1975 {
3c567fae
JL
1976 rtx tmp1 = XEXP (x, 0);
1977 rtx tmp2 = XEXP (x, 1);
1978
f5143c46 1979 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1980 the two operands represents the real base address. Otherwise this
1981 routine may return the index register instead of the base register.
1982
1983 That may cause us to believe no aliasing was possible, when in
1984 fact aliasing is possible.
1985
1986 We use a few simple tests to guess the base register. Additional
1987 tests can certainly be added. For example, if one of the operands
1988 is a shift or multiply, then it must be the index register and the
1989 other operand is the base register. */
ca7fd9cd 1990
b949ea8b 1991 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
6ca83833 1992 return find_base_term (tmp2, visited_vals);
b949ea8b 1993
31b0a960 1994 /* If either operand is known to be a pointer, then prefer it
3c567fae 1995 to determine the base term. */
3502dc9c 1996 if (REG_P (tmp1) && REG_POINTER (tmp1))
31b0a960
RB
1997 ;
1998 else if (REG_P (tmp2) && REG_POINTER (tmp2))
a7c75343
JJ
1999 std::swap (tmp1, tmp2);
2000 /* If second argument is constant which has base term, prefer it
2001 over variable tmp1. See PR64025. */
2002 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2003 std::swap (tmp1, tmp2);
3c567fae 2004
31b0a960
RB
2005 /* Go ahead and find the base term for both operands. If either base
2006 term is from a pointer or is a named object or a special address
3c567fae
JL
2007 (like an argument or stack reference), then use it for the
2008 base term. */
6ca83833 2009 rtx base = find_base_term (tmp1, visited_vals);
481be1c4 2010 if (base != NULL_RTX
31b0a960 2011 && ((REG_P (tmp1) && REG_POINTER (tmp1))
481be1c4
RB
2012 || known_base_value_p (base)))
2013 return base;
6ca83833 2014 base = find_base_term (tmp2, visited_vals);
481be1c4 2015 if (base != NULL_RTX
31b0a960 2016 && ((REG_P (tmp2) && REG_POINTER (tmp2))
481be1c4
RB
2017 || known_base_value_p (base)))
2018 return base;
3c567fae
JL
2019
2020 /* We could not determine which of the two operands was the
2021 base register and which was the index. So we can determine
2022 nothing from the base alias check. */
2023 return 0;
9ae8ffe7
JL
2024 }
2025
2026 case AND:
481683e1 2027 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
6ca83833 2028 return find_base_term (XEXP (x, 0), visited_vals);
9ae8ffe7
JL
2029 return 0;
2030
2031 case SYMBOL_REF:
2032 case LABEL_REF:
2033 return x;
2034
2035 default:
2036 return 0;
2037 }
2038}
2039
6ca83833
RB
2040/* Wrapper around the worker above which removes locs from visited VALUEs
2041 to avoid visiting them multiple times. We unwind that changes here. */
2042
2043static rtx
2044find_base_term (rtx x)
2045{
2046 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2047 rtx res = find_base_term (x, visited_vals);
2048 for (unsigned i = 0; i < visited_vals.length (); ++i)
2049 visited_vals[i].first->locs = visited_vals[i].second;
2050 return res;
2051}
2052
9e412ca3
RS
2053/* Return true if accesses to address X may alias accesses based
2054 on the stack pointer. */
2055
2056bool
2057may_be_sp_based_p (rtx x)
2058{
2059 rtx base = find_base_term (x);
2060 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2061}
2062
54363f8a
JH
2063/* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2064 if they refer to different objects and -1 if we can not decide. */
2065
2066int
2067compare_base_decls (tree base1, tree base2)
2068{
2069 int ret;
2070 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2071 if (base1 == base2)
2072 return 1;
2073
bed3fd46 2074 /* If we have two register decls with register specification we
816c4ba2 2075 cannot decide unless their assembler names are the same. */
bed3fd46
RB
2076 if (DECL_REGISTER (base1)
2077 && DECL_REGISTER (base2)
816c4ba2
NS
2078 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2079 && HAS_DECL_ASSEMBLER_NAME_P (base2)
bed3fd46
RB
2080 && DECL_ASSEMBLER_NAME_SET_P (base1)
2081 && DECL_ASSEMBLER_NAME_SET_P (base2))
2082 {
816c4ba2 2083 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
bed3fd46
RB
2084 return 1;
2085 return -1;
2086 }
2087
54363f8a
JH
2088 /* Declarations of non-automatic variables may have aliases. All other
2089 decls are unique. */
7ec4f343
NS
2090 if (!decl_in_symtab_p (base1)
2091 || !decl_in_symtab_p (base2))
54363f8a 2092 return 0;
7ec4f343 2093
929710d9
NS
2094 /* Don't cause symbols to be inserted by the act of checking. */
2095 symtab_node *node1 = symtab_node::get (base1);
2096 if (!node1)
2097 return 0;
2098 symtab_node *node2 = symtab_node::get (base2);
2099 if (!node2)
2100 return 0;
2101
2102 ret = node1->equal_address_to (node2, true);
54363f8a
JH
2103 return ret;
2104}
2105
73e48cb3
JH
2106/* Same as compare_base_decls but for SYMBOL_REF. */
2107
2108static int
2109compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2110{
2111 tree x_decl = SYMBOL_REF_DECL (x_base);
2112 tree y_decl = SYMBOL_REF_DECL (y_base);
2113 bool binds_def = true;
2114
2115 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2116 return 1;
2117 if (x_decl && y_decl)
2118 return compare_base_decls (x_decl, y_decl);
2119 if (x_decl || y_decl)
2120 {
2121 if (!x_decl)
2122 {
2123 std::swap (x_decl, y_decl);
2124 std::swap (x_base, y_base);
2125 }
2126 /* We handle specially only section anchors and assume that other
2127 labels may overlap with user variables in an arbitrary way. */
2128 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2129 return -1;
2130 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2131 to ignore CONST_DECLs because they are readonly. */
8813a647 2132 if (!VAR_P (x_decl)
73e48cb3
JH
2133 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2134 return 0;
2135
2136 symtab_node *x_node = symtab_node::get_create (x_decl)
2137 ->ultimate_alias_target ();
2138 /* External variable can not be in section anchor. */
2139 if (!x_node->definition)
2140 return 0;
2141 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2142 /* If not in anchor, we can disambiguate. */
2143 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2144 return 0;
2145
2146 /* We have an alias of anchored variable. If it can be interposed;
2147 we must assume it may or may not alias its anchor. */
2148 binds_def = decl_binds_to_current_def_p (x_decl);
2149 }
2150 /* If we have variable in section anchor, we can compare by offset. */
2151 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2152 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2153 {
2154 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2155 return 0;
2156 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2157 return binds_def ? 1 : -1;
2158 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2159 return -1;
2160 return 0;
2161 }
2162 /* In general we assume that memory locations pointed to by different labels
2163 may overlap in undefined ways. */
2164 return -1;
2165}
2166
9ae8ffe7
JL
2167/* Return 0 if the addresses X and Y are known to point to different
2168 objects, 1 if they might be pointers to the same object. */
2169
2170static int
31b0a960 2171base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
ef4bddc2 2172 machine_mode x_mode, machine_mode y_mode)
9ae8ffe7 2173{
1c72c7f6
JC
2174 /* If the address itself has no known base see if a known equivalent
2175 value has one. If either address still has no known base, nothing
2176 is known about aliasing. */
2177 if (x_base == 0)
2178 {
2179 rtx x_c;
d4b60170 2180
1c72c7f6
JC
2181 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2182 return 1;
d4b60170 2183
1c72c7f6
JC
2184 x_base = find_base_term (x_c);
2185 if (x_base == 0)
2186 return 1;
2187 }
9ae8ffe7 2188
1c72c7f6
JC
2189 if (y_base == 0)
2190 {
2191 rtx y_c;
2192 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2193 return 1;
d4b60170 2194
1c72c7f6
JC
2195 y_base = find_base_term (y_c);
2196 if (y_base == 0)
2197 return 1;
2198 }
2199
2200 /* If the base addresses are equal nothing is known about aliasing. */
2201 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
2202 return 1;
2203
435da628
UB
2204 /* The base addresses are different expressions. If they are not accessed
2205 via AND, there is no conflict. We can bring knowledge of object
2206 alignment into play here. For example, on alpha, "char a, b;" can
5764ee3c 2207 alias one another, though "char a; long b;" cannot. AND addresses may
435da628
UB
2208 implicitly alias surrounding objects; i.e. unaligned access in DImode
2209 via AND address can alias all surrounding object types except those
2210 with aligment 8 or higher. */
2211 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2212 return 1;
2213 if (GET_CODE (x) == AND
481683e1 2214 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
2215 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2216 return 1;
2217 if (GET_CODE (y) == AND
481683e1 2218 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
2219 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2220 return 1;
2221
73e48cb3 2222 /* Differing symbols not accessed via AND never alias. */
3a28db46 2223 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
73e48cb3 2224 return compare_base_symbol_refs (x_base, y_base) != 0;
3a28db46 2225
9ae8ffe7 2226 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 2227 return 0;
9ae8ffe7 2228
9fc37b2b 2229 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
9ae8ffe7
JL
2230 return 0;
2231
0d3c82d6 2232 return 1;
9ae8ffe7
JL
2233}
2234
a5628378 2235/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
c779924e 2236 (or equal to) that of V. */
a5628378
AO
2237
2238static bool
403837b4 2239refs_newer_value_p (const_rtx expr, rtx v)
a5628378
AO
2240{
2241 int minuid = CSELIB_VAL_PTR (v)->uid;
403837b4
RS
2242 subrtx_iterator::array_type array;
2243 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
c779924e 2244 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
403837b4
RS
2245 return true;
2246 return false;
a5628378
AO
2247}
2248
eab5c70a 2249/* Convert the address X into something we can use. This is done by returning
569efc34
JJ
2250 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2251 we call cselib to get a more useful rtx. */
3bdf5ad1 2252
a13d4ebf 2253rtx
4682ae04 2254get_addr (rtx x)
eab5c70a
BS
2255{
2256 cselib_val *v;
2257 struct elt_loc_list *l;
2258
2259 if (GET_CODE (x) != VALUE)
569efc34
JJ
2260 {
2261 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2262 && GET_CODE (XEXP (x, 0)) == VALUE
2263 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2264 {
2265 rtx op0 = get_addr (XEXP (x, 0));
2266 if (op0 != XEXP (x, 0))
2267 {
5284e559 2268 poly_int64 c;
569efc34 2269 if (GET_CODE (x) == PLUS
5284e559
RS
2270 && poly_int_rtx_p (XEXP (x, 1), &c))
2271 return plus_constant (GET_MODE (x), op0, c);
569efc34
JJ
2272 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2273 op0, XEXP (x, 1));
2274 }
2275 }
2276 return x;
2277 }
eab5c70a 2278 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
2279 if (v)
2280 {
0f68ba3e
AO
2281 bool have_equivs = cselib_have_permanent_equivalences ();
2282 if (have_equivs)
2283 v = canonical_cselib_val (v);
40e02b4a
JH
2284 for (l = v->locs; l; l = l->next)
2285 if (CONSTANT_P (l->loc))
2286 return l->loc;
2287 for (l = v->locs; l; l = l->next)
0f68ba3e
AO
2288 if (!REG_P (l->loc) && !MEM_P (l->loc)
2289 /* Avoid infinite recursion when potentially dealing with
2290 var-tracking artificial equivalences, by skipping the
2291 equivalences themselves, and not choosing expressions
2292 that refer to newer VALUEs. */
2293 && (!have_equivs
2294 || (GET_CODE (l->loc) != VALUE
2295 && !refs_newer_value_p (l->loc, x))))
a5628378 2296 return l->loc;
0f68ba3e
AO
2297 if (have_equivs)
2298 {
2299 for (l = v->locs; l; l = l->next)
2300 if (REG_P (l->loc)
2301 || (GET_CODE (l->loc) != VALUE
2302 && !refs_newer_value_p (l->loc, x)))
2303 return l->loc;
2304 /* Return the canonical value. */
2305 return v->val_rtx;
2306 }
2307 if (v->locs)
2308 return v->locs->loc;
40e02b4a 2309 }
eab5c70a
BS
2310 return x;
2311}
2312
39cec1ac
MH
2313/* Return the address of the (N_REFS + 1)th memory reference to ADDR
2314 where SIZE is the size in bytes of the memory reference. If ADDR
2315 is not modified by the memory reference then ADDR is returned. */
2316
04e2b4d3 2317static rtx
9f61be58 2318addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
39cec1ac 2319{
9f61be58 2320 poly_int64 offset = 0;
ca7fd9cd 2321
39cec1ac
MH
2322 switch (GET_CODE (addr))
2323 {
2324 case PRE_INC:
2325 offset = (n_refs + 1) * size;
2326 break;
2327 case PRE_DEC:
2328 offset = -(n_refs + 1) * size;
2329 break;
2330 case POST_INC:
2331 offset = n_refs * size;
2332 break;
2333 case POST_DEC:
2334 offset = -n_refs * size;
2335 break;
2336
2337 default:
2338 return addr;
2339 }
ca7fd9cd 2340
9f61be58 2341 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
45183e03 2342 addr = canon_rtx (addr);
39cec1ac
MH
2343
2344 return addr;
2345}
2346
3aa03517
AO
2347/* Return TRUE if an object X sized at XSIZE bytes and another object
2348 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2349 any of the sizes is zero, assume an overlap, otherwise use the
2350 absolute value of the sizes as the actual sizes. */
2351
2352static inline bool
d05d7551 2353offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
3aa03517 2354{
d05d7551
RS
2355 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2356 return true;
2357
2358 if (maybe_ge (c, 0))
2359 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2360 else
2361 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
3aa03517
AO
2362}
2363
f47e08d9
RG
2364/* Return one if X and Y (memory addresses) reference the
2365 same location in memory or if the references overlap.
2366 Return zero if they do not overlap, else return
2367 minus one in which case they still might reference the same location.
2368
2369 C is an offset accumulator. When
9ae8ffe7
JL
2370 C is nonzero, we are testing aliases between X and Y + C.
2371 XSIZE is the size in bytes of the X reference,
2372 similarly YSIZE is the size in bytes for Y.
45183e03 2373 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
2374
2375 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2376 referenced (the reference was BLKmode), so make the most pessimistic
2377 assumptions.
2378
c02f035f
RH
2379 If XSIZE or YSIZE is negative, we may access memory outside the object
2380 being referenced as a side effect. This can happen when using AND to
2381 align memory references, as is done on the Alpha.
2382
9ae8ffe7 2383 Nice to notice that varying addresses cannot conflict with fp if no
f47e08d9
RG
2384 local variables had their addresses taken, but that's too hard now.
2385
2386 ??? Contrary to the tree alias oracle this does not return
2387 one for X + non-constant and Y + non-constant when X and Y are equal.
2388 If that is fixed the TBAA hack for union type-punning can be removed. */
9ae8ffe7 2389
9ae8ffe7 2390static int
9f61be58
RS
2391memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2392 poly_int64 c)
9ae8ffe7 2393{
eab5c70a 2394 if (GET_CODE (x) == VALUE)
5312b066
JJ
2395 {
2396 if (REG_P (y))
2397 {
24f8d71e
JJ
2398 struct elt_loc_list *l = NULL;
2399 if (CSELIB_VAL_PTR (x))
a5628378
AO
2400 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2401 l; l = l->next)
24f8d71e
JJ
2402 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2403 break;
5312b066
JJ
2404 if (l)
2405 x = y;
2406 else
2407 x = get_addr (x);
2408 }
2409 /* Don't call get_addr if y is the same VALUE. */
2410 else if (x != y)
2411 x = get_addr (x);
2412 }
eab5c70a 2413 if (GET_CODE (y) == VALUE)
5312b066
JJ
2414 {
2415 if (REG_P (x))
2416 {
24f8d71e
JJ
2417 struct elt_loc_list *l = NULL;
2418 if (CSELIB_VAL_PTR (y))
a5628378
AO
2419 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2420 l; l = l->next)
24f8d71e
JJ
2421 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2422 break;
5312b066
JJ
2423 if (l)
2424 y = x;
2425 else
2426 y = get_addr (y);
2427 }
2428 /* Don't call get_addr if x is the same VALUE. */
2429 else if (y != x)
2430 y = get_addr (y);
2431 }
9ae8ffe7
JL
2432 if (GET_CODE (x) == HIGH)
2433 x = XEXP (x, 0);
2434 else if (GET_CODE (x) == LO_SUM)
2435 x = XEXP (x, 1);
2436 else
9f61be58 2437 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
9ae8ffe7
JL
2438 if (GET_CODE (y) == HIGH)
2439 y = XEXP (y, 0);
2440 else if (GET_CODE (y) == LO_SUM)
2441 y = XEXP (y, 1);
2442 else
9f61be58 2443 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
9ae8ffe7 2444
54363f8a
JH
2445 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2446 {
73e48cb3 2447 int cmp = compare_base_symbol_refs (x,y);
54363f8a
JH
2448
2449 /* If both decls are the same, decide by offsets. */
2450 if (cmp == 1)
2451 return offset_overlap_p (c, xsize, ysize);
3a28db46
UB
2452 /* Assume a potential overlap for symbolic addresses that went
2453 through alignment adjustments (i.e., that have negative
2454 sizes), because we can't know how far they are from each
2455 other. */
9f61be58 2456 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
3a28db46 2457 return -1;
54363f8a
JH
2458 /* If decls are different or we know by offsets that there is no overlap,
2459 we win. */
2460 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2461 return 0;
2462 /* Decls may or may not be different and offsets overlap....*/
2463 return -1;
2464 }
2465 else if (rtx_equal_for_memref_p (x, y))
9ae8ffe7 2466 {
3aa03517 2467 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2468 }
2469
6e73e666
JC
2470 /* This code used to check for conflicts involving stack references and
2471 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
2472
2473 if (GET_CODE (x) == PLUS)
2474 {
2475 /* The fact that X is canonicalized means that this
2476 PLUS rtx is canonicalized. */
2477 rtx x0 = XEXP (x, 0);
2478 rtx x1 = XEXP (x, 1);
2479
2d88904a
AO
2480 /* However, VALUEs might end up in different positions even in
2481 canonical PLUSes. Comparing their addresses is enough. */
2482 if (x0 == y)
2483 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2484 else if (x1 == y)
2485 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2486
9f61be58 2487 poly_int64 cx1, cy1;
9ae8ffe7
JL
2488 if (GET_CODE (y) == PLUS)
2489 {
2490 /* The fact that Y is canonicalized means that this
2491 PLUS rtx is canonicalized. */
2492 rtx y0 = XEXP (y, 0);
2493 rtx y1 = XEXP (y, 1);
2494
2d88904a
AO
2495 if (x0 == y1)
2496 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2497 if (x1 == y0)
2498 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2499
9ae8ffe7
JL
2500 if (rtx_equal_for_memref_p (x1, y1))
2501 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2502 if (rtx_equal_for_memref_p (x0, y0))
2503 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
9f61be58 2504 if (poly_int_rtx_p (x1, &cx1))
63be02db 2505 {
9f61be58 2506 if (poly_int_rtx_p (y1, &cy1))
63be02db 2507 return memrefs_conflict_p (xsize, x0, ysize, y0,
9f61be58 2508 c - cx1 + cy1);
63be02db 2509 else
9f61be58 2510 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
63be02db 2511 }
9f61be58
RS
2512 else if (poly_int_rtx_p (y1, &cy1))
2513 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
9ae8ffe7 2514
f47e08d9 2515 return -1;
9ae8ffe7 2516 }
9f61be58
RS
2517 else if (poly_int_rtx_p (x1, &cx1))
2518 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
9ae8ffe7
JL
2519 }
2520 else if (GET_CODE (y) == PLUS)
2521 {
2522 /* The fact that Y is canonicalized means that this
2523 PLUS rtx is canonicalized. */
2524 rtx y0 = XEXP (y, 0);
2525 rtx y1 = XEXP (y, 1);
2526
2d88904a
AO
2527 if (x == y0)
2528 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2529 if (x == y1)
2530 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2531
9f61be58
RS
2532 poly_int64 cy1;
2533 if (poly_int_rtx_p (y1, &cy1))
2534 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
9ae8ffe7 2535 else
f47e08d9 2536 return -1;
9ae8ffe7
JL
2537 }
2538
2539 if (GET_CODE (x) == GET_CODE (y))
2540 switch (GET_CODE (x))
2541 {
2542 case MULT:
2543 {
2544 /* Handle cases where we expect the second operands to be the
2545 same, and check only whether the first operand would conflict
2546 or not. */
2547 rtx x0, y0;
2548 rtx x1 = canon_rtx (XEXP (x, 1));
2549 rtx y1 = canon_rtx (XEXP (y, 1));
2550 if (! rtx_equal_for_memref_p (x1, y1))
f47e08d9 2551 return -1;
9ae8ffe7
JL
2552 x0 = canon_rtx (XEXP (x, 0));
2553 y0 = canon_rtx (XEXP (y, 0));
2554 if (rtx_equal_for_memref_p (x0, y0))
3aa03517 2555 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2556
2557 /* Can't properly adjust our sizes. */
5284e559
RS
2558 poly_int64 c1;
2559 if (!poly_int_rtx_p (x1, &c1)
2560 || !can_div_trunc_p (xsize, c1, &xsize)
2561 || !can_div_trunc_p (ysize, c1, &ysize)
2562 || !can_div_trunc_p (c, c1, &c))
f47e08d9 2563 return -1;
9ae8ffe7
JL
2564 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2565 }
1d300e19
KG
2566
2567 default:
2568 break;
9ae8ffe7
JL
2569 }
2570
a9bf4fe2
AO
2571 /* Deal with alignment ANDs by adjusting offset and size so as to
2572 cover the maximum range, without taking any previously known
5147bf6a
AO
2573 alignment into account. Make a size negative after such an
2574 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2575 assume a potential overlap, because they may end up in contiguous
2576 memory locations and the stricter-alignment access may span over
2577 part of both. */
481683e1 2578 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 2579 {
a9bf4fe2
AO
2580 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2581 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2582 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2583 {
9f61be58 2584 if (maybe_gt (xsize, 0))
5147bf6a 2585 xsize = -xsize;
9f61be58 2586 if (maybe_ne (xsize, 0))
3aa03517 2587 xsize += sc + 1;
fe8fb1c4 2588 c -= sc + 1;
a9bf4fe2
AO
2589 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2590 ysize, y, c);
2591 }
56ee9281 2592 }
481683e1 2593 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 2594 {
a9bf4fe2
AO
2595 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2596 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2597 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2598 {
9f61be58 2599 if (maybe_gt (ysize, 0))
5147bf6a 2600 ysize = -ysize;
9f61be58 2601 if (maybe_ne (ysize, 0))
3aa03517 2602 ysize += sc + 1;
fe8fb1c4 2603 c += sc + 1;
a9bf4fe2
AO
2604 return memrefs_conflict_p (xsize, x,
2605 ysize, canon_rtx (XEXP (y, 0)), c);
2606 }
c02f035f 2607 }
9ae8ffe7
JL
2608
2609 if (CONSTANT_P (x))
2610 {
9f61be58
RS
2611 poly_int64 cx, cy;
2612 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
9ae8ffe7 2613 {
9f61be58 2614 c += cy - cx;
3aa03517 2615 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2616 }
2617
2618 if (GET_CODE (x) == CONST)
2619 {
2620 if (GET_CODE (y) == CONST)
2621 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2622 ysize, canon_rtx (XEXP (y, 0)), c);
2623 else
2624 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2625 ysize, y, c);
2626 }
2627 if (GET_CODE (y) == CONST)
2628 return memrefs_conflict_p (xsize, x, ysize,
2629 canon_rtx (XEXP (y, 0)), c);
2630
3aa03517
AO
2631 /* Assume a potential overlap for symbolic addresses that went
2632 through alignment adjustments (i.e., that have negative
2633 sizes), because we can't know how far they are from each
2634 other. */
9ae8ffe7 2635 if (CONSTANT_P (y))
9f61be58
RS
2636 return (maybe_lt (xsize, 0)
2637 || maybe_lt (ysize, 0)
2638 || offset_overlap_p (c, xsize, ysize));
9ae8ffe7 2639
f47e08d9 2640 return -1;
9ae8ffe7 2641 }
f47e08d9
RG
2642
2643 return -1;
9ae8ffe7
JL
2644}
2645
2646/* Functions to compute memory dependencies.
2647
2648 Since we process the insns in execution order, we can build tables
2649 to keep track of what registers are fixed (and not aliased), what registers
2650 are varying in known ways, and what registers are varying in unknown
2651 ways.
2652
2653 If both memory references are volatile, then there must always be a
2654 dependence between the two references, since their order can not be
2655 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 2656 though.
9ae8ffe7 2657
53d9622b
RS
2658 We also must allow AND addresses, because they may generate accesses
2659 outside the object being referenced. This is used to generate aligned
2660 addresses from unaligned addresses, for instance, the alpha
dc1618bc 2661 storeqi_unaligned pattern. */
9ae8ffe7
JL
2662
2663/* Read dependence: X is read after read in MEM takes place. There can
96672a3e
RH
2664 only be a dependence here if both reads are volatile, or if either is
2665 an explicit barrier. */
9ae8ffe7
JL
2666
2667int
4f588890 2668read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2669{
96672a3e
RH
2670 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2671 return true;
2672 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2673 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2674 return true;
2675 return false;
9ae8ffe7
JL
2676}
2677
998d7deb
RH
2678/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2679
2680static tree
4682ae04 2681decl_for_component_ref (tree x)
998d7deb
RH
2682{
2683 do
2684 {
2685 x = TREE_OPERAND (x, 0);
2686 }
2687 while (x && TREE_CODE (x) == COMPONENT_REF);
2688
2689 return x && DECL_P (x) ? x : NULL_TREE;
2690}
2691
527210c4
RS
2692/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2693 for the offset of the field reference. *KNOWN_P says whether the
2694 offset is known. */
998d7deb 2695
527210c4
RS
2696static void
2697adjust_offset_for_component_ref (tree x, bool *known_p,
d05d7551 2698 poly_int64 *offset)
998d7deb 2699{
527210c4
RS
2700 if (!*known_p)
2701 return;
ca7fd9cd 2702 do
998d7deb 2703 {
527210c4 2704 tree xoffset = component_ref_field_offset (x);
998d7deb 2705 tree field = TREE_OPERAND (x, 1);
6e246559 2706 if (!poly_int_tree_p (xoffset))
807e902e
KZ
2707 {
2708 *known_p = false;
2709 return;
2710 }
998d7deb 2711
6e246559
RS
2712 poly_offset_int woffset
2713 = (wi::to_poly_offset (xoffset)
8de73453 2714 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
6e246559
RS
2715 >> LOG2_BITS_PER_UNIT)
2716 + *offset);
2717 if (!woffset.to_shwi (offset))
527210c4
RS
2718 {
2719 *known_p = false;
2720 return;
2721 }
998d7deb
RH
2722
2723 x = TREE_OPERAND (x, 0);
2724 }
2725 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb
RH
2726}
2727
95bd1dd7 2728/* Return nonzero if we can determine the exprs corresponding to memrefs
c6ea834c
BM
2729 X and Y and they do not overlap.
2730 If LOOP_VARIANT is set, skip offset-based disambiguation */
a4311dfe 2731
2e4e39f6 2732int
c6ea834c 2733nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
a4311dfe 2734{
998d7deb 2735 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2736 rtx rtlx, rtly;
2737 rtx basex, basey;
527210c4 2738 bool moffsetx_known_p, moffsety_known_p;
d05d7551
RS
2739 poly_int64 moffsetx = 0, moffsety = 0;
2740 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
a4311dfe 2741
998d7deb
RH
2742 /* Unless both have exprs, we can't tell anything. */
2743 if (exprx == 0 || expry == 0)
2744 return 0;
2b22e382
RG
2745
2746 /* For spill-slot accesses make sure we have valid offsets. */
2747 if ((exprx == get_spill_slot_decl (false)
527210c4 2748 && ! MEM_OFFSET_KNOWN_P (x))
2b22e382 2749 || (expry == get_spill_slot_decl (false)
527210c4 2750 && ! MEM_OFFSET_KNOWN_P (y)))
2b22e382 2751 return 0;
c22cacf3 2752
998d7deb 2753 /* If the field reference test failed, look at the DECLs involved. */
527210c4
RS
2754 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2755 if (moffsetx_known_p)
2756 moffsetx = MEM_OFFSET (x);
998d7deb
RH
2757 if (TREE_CODE (exprx) == COMPONENT_REF)
2758 {
2e0c984c
RG
2759 tree t = decl_for_component_ref (exprx);
2760 if (! t)
2761 return 0;
527210c4 2762 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2e0c984c 2763 exprx = t;
998d7deb 2764 }
c67a1cf6 2765
527210c4
RS
2766 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2767 if (moffsety_known_p)
2768 moffsety = MEM_OFFSET (y);
998d7deb
RH
2769 if (TREE_CODE (expry) == COMPONENT_REF)
2770 {
2e0c984c
RG
2771 tree t = decl_for_component_ref (expry);
2772 if (! t)
2773 return 0;
527210c4 2774 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2e0c984c 2775 expry = t;
998d7deb
RH
2776 }
2777
2778 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2779 return 0;
2780
1f9ceff1
AO
2781 /* If we refer to different gimple registers, or one gimple register
2782 and one non-gimple-register, we know they can't overlap. First,
2783 gimple registers don't have their addresses taken. Now, there
2784 could be more than one stack slot for (different versions of) the
2785 same gimple register, but we can presumably tell they don't
2786 overlap based on offsets from stack base addresses elsewhere.
2787 It's important that we don't proceed to DECL_RTL, because gimple
2788 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2789 able to do anything about them since no SSA information will have
2790 remained to guide it. */
2791 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2d88904a
AO
2792 return exprx != expry
2793 || (moffsetx_known_p && moffsety_known_p
2794 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2795 && !offset_overlap_p (moffsety - moffsetx,
2796 MEM_SIZE (x), MEM_SIZE (y)));
1f9ceff1 2797
1307c758
RG
2798 /* With invalid code we can end up storing into the constant pool.
2799 Bail out to avoid ICEing when creating RTL for this.
2800 See gfortran.dg/lto/20091028-2_0.f90. */
2801 if (TREE_CODE (exprx) == CONST_DECL
2802 || TREE_CODE (expry) == CONST_DECL)
2803 return 1;
2804
dca16798
JJ
2805 /* If one decl is known to be a function or label in a function and
2806 the other is some kind of data, they can't overlap. */
2807 if ((TREE_CODE (exprx) == FUNCTION_DECL
2808 || TREE_CODE (exprx) == LABEL_DECL)
2809 != (TREE_CODE (expry) == FUNCTION_DECL
2810 || TREE_CODE (expry) == LABEL_DECL))
2811 return 1;
2812
5f4cebba
JJ
2813 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2814 living in multiple places), we can't tell anything. Exception
2815 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2816 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2817 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2818 return 0;
2819
998d7deb
RH
2820 rtlx = DECL_RTL (exprx);
2821 rtly = DECL_RTL (expry);
a4311dfe 2822
1edcd60b
RK
2823 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2824 can't overlap unless they are the same because we never reuse that part
2825 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2826 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2827 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2828 return 1;
2829
5932a4d4 2830 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2831 potentially overlap), we cannot easily tell from the addresses
2832 whether the references overlap. */
2833 if (MEM_P (rtlx) && MEM_P (rtly)
2834 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2835 return 0;
2836
a4311dfe
RK
2837 /* Get the base and offsets of both decls. If either is a register, we
2838 know both are and are the same, so use that as the base. The only
2839 we can avoid overlap is if we can deduce that they are nonoverlapping
2840 pieces of that decl, which is very rare. */
3c0cb5de 2841 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
d05d7551 2842 basex = strip_offset_and_add (basex, &offsetx);
a4311dfe 2843
3c0cb5de 2844 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
d05d7551 2845 basey = strip_offset_and_add (basey, &offsety);
a4311dfe 2846
d746694a 2847 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2848 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2849 stack frame. Otherwise a different base means we can't tell if they
2850 overlap or not. */
54363f8a 2851 if (compare_base_decls (exprx, expry) == 0)
ca7fd9cd
KH
2852 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2853 || (CONSTANT_P (basex) && REG_P (basey)
2854 && REGNO_PTR_FRAME_P (REGNO (basey)))
2855 || (CONSTANT_P (basey) && REG_P (basex)
2856 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2857
c6ea834c
BM
2858 /* Offset based disambiguation not appropriate for loop invariant */
2859 if (loop_invariant)
dca16798 2860 return 0;
c6ea834c 2861
54363f8a
JH
2862 /* Offset based disambiguation is OK even if we do not know that the
2863 declarations are necessarily different
2864 (i.e. compare_base_decls (exprx, expry) == -1) */
2865
d05d7551 2866 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
f5541398 2867 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
a4311dfe 2868 : -1);
d05d7551 2869 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
f5541398
RS
2870 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2871 : -1);
a4311dfe 2872
0af5bc3e
RK
2873 /* If we have an offset for either memref, it can update the values computed
2874 above. */
527210c4
RS
2875 if (moffsetx_known_p)
2876 offsetx += moffsetx, sizex -= moffsetx;
2877 if (moffsety_known_p)
2878 offsety += moffsety, sizey -= moffsety;
a4311dfe 2879
0af5bc3e 2880 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2881 We can't do this if the offset isn't known because we must view this
0af5bc3e 2882 memref as being anywhere inside the DECL's MEM. */
527210c4 2883 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
f5541398 2884 sizex = MEM_SIZE (x);
527210c4 2885 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
f5541398 2886 sizey = MEM_SIZE (y);
a4311dfe 2887
d05d7551 2888 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
a4311dfe
RK
2889}
2890
9362286d
SB
2891/* Helper for true_dependence and canon_true_dependence.
2892 Checks for true dependence: X is read after store in MEM takes place.
9ae8ffe7 2893
9362286d
SB
2894 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2895 NULL_RTX, and the canonical addresses of MEM and X are both computed
2896 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2897
2898 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2899
2900 Returns 1 if there is a true dependence, 0 otherwise. */
2901
2902static int
ef4bddc2 2903true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 2904 const_rtx x, rtx x_addr, bool mem_canonicalized)
9ae8ffe7 2905{
0777fc02 2906 rtx true_mem_addr;
49982682 2907 rtx base;
f47e08d9 2908 int ret;
9ae8ffe7 2909
9362286d
SB
2910 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2911 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2912
9ae8ffe7
JL
2913 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2914 return 1;
2915
c4484b8f 2916 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2917 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2918 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2919 return 1;
2920 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2921 return 1;
9cd9e512
RH
2922 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2923 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2924 return 1;
c4484b8f 2925
0777fc02
UB
2926 if (! x_addr)
2927 x_addr = XEXP (x, 0);
2928 x_addr = get_addr (x_addr);
2929
9362286d
SB
2930 if (! mem_addr)
2931 {
2932 mem_addr = XEXP (mem, 0);
2933 if (mem_mode == VOIDmode)
2934 mem_mode = GET_MODE (mem);
2935 }
0777fc02 2936 true_mem_addr = get_addr (mem_addr);
eab5c70a 2937
878f5596
UB
2938 /* Read-only memory is by definition never modified, and therefore can't
2939 conflict with anything. However, don't assume anything when AND
2940 addresses are involved and leave to the code below to determine
2941 dependence. We don't expect to find read-only set on MEM, but
2942 stupid user tricks can produce them, so don't die. */
2943 if (MEM_READONLY_P (x)
2944 && GET_CODE (x_addr) != AND
0777fc02 2945 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
2946 return 0;
2947
2948 /* If we have MEMs referring to different address spaces (which can
2949 potentially overlap), we cannot easily tell from the addresses
2950 whether the references overlap. */
2951 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2952 return 1;
2953
55efb413
JW
2954 base = find_base_term (x_addr);
2955 if (base && (GET_CODE (base) == LABEL_REF
2956 || (GET_CODE (base) == SYMBOL_REF
2957 && CONSTANT_POOL_ADDRESS_P (base))))
2958 return 0;
2959
0777fc02
UB
2960 rtx mem_base = find_base_term (true_mem_addr);
2961 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
31b0a960 2962 GET_MODE (x), mem_mode))
1c72c7f6
JC
2963 return 0;
2964
eab5c70a 2965 x_addr = canon_rtx (x_addr);
9362286d 2966 if (!mem_canonicalized)
0777fc02 2967 mem_addr = canon_rtx (true_mem_addr);
6e73e666 2968
f47e08d9
RG
2969 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2970 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2971 return ret;
2972
a95b3cc7 2973 if (mems_in_disjoint_alias_sets_p (x, mem))
f47e08d9
RG
2974 return 0;
2975
c6ea834c 2976 if (nonoverlapping_memrefs_p (mem, x, false))
0211b6ab 2977 return 0;
175a7536 2978
55b34b5f 2979 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
2980}
2981
9362286d
SB
2982/* True dependence: X is read after store in MEM takes place. */
2983
2984int
ef4bddc2 2985true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
9362286d
SB
2986{
2987 return true_dependence_1 (mem, mem_mode, NULL_RTX,
53d9622b 2988 x, NULL_RTX, /*mem_canonicalized=*/false);
9362286d
SB
2989}
2990
a13d4ebf 2991/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2992 Variant of true_dependence which assumes MEM has already been
2993 canonicalized (hence we no longer do that here).
9362286d
SB
2994 The mem_addr argument has been added, since true_dependence_1 computed
2995 this value prior to canonicalizing. */
a13d4ebf
AM
2996
2997int
ef4bddc2 2998canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 2999 const_rtx x, rtx x_addr)
a13d4ebf 3000{
9362286d 3001 return true_dependence_1 (mem, mem_mode, mem_addr,
53d9622b 3002 x, x_addr, /*mem_canonicalized=*/true);
9ae8ffe7
JL
3003}
3004
da7d8304 3005/* Returns nonzero if a write to X might alias a previous read from
393f9fed 3006 (or, if WRITEP is true, a write to) MEM.
bd280792
JR
3007 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3008 and X_MODE the mode for that access.
3009 If MEM_CANONICALIZED is true, MEM is canonicalized. */
9ae8ffe7 3010
2c72b78f 3011static int
bd280792 3012write_dependence_p (const_rtx mem,
ef4bddc2 3013 const_rtx x, machine_mode x_mode, rtx x_addr,
bd280792 3014 bool mem_canonicalized, bool x_canonicalized, bool writep)
9ae8ffe7 3015{
bd280792 3016 rtx mem_addr;
0777fc02 3017 rtx true_mem_addr, true_x_addr;
49982682 3018 rtx base;
f47e08d9 3019 int ret;
6e73e666 3020
bd280792 3021 gcc_checking_assert (x_canonicalized
6f5799be
JJ
3022 ? (x_addr != NULL_RTX
3023 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
bd280792 3024 : (x_addr == NULL_RTX && x_mode == VOIDmode));
393f9fed 3025
9ae8ffe7
JL
3026 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3027 return 1;
3028
c4484b8f
RH
3029 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3030 This is used in epilogue deallocation functions. */
3031 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3032 return 1;
3033 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3034 return 1;
9cd9e512
RH
3035 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3036 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3037 return 1;
c4484b8f 3038
bd280792 3039 if (!x_addr)
0777fc02
UB
3040 x_addr = XEXP (x, 0);
3041 true_x_addr = get_addr (x_addr);
3042
3043 mem_addr = XEXP (mem, 0);
3044 true_mem_addr = get_addr (mem_addr);
55efb413 3045
878f5596
UB
3046 /* A read from read-only memory can't conflict with read-write memory.
3047 Don't assume anything when AND addresses are involved and leave to
3048 the code below to determine dependence. */
3049 if (!writep
3050 && MEM_READONLY_P (mem)
0777fc02
UB
3051 && GET_CODE (true_x_addr) != AND
3052 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
3053 return 0;
3054
3055 /* If we have MEMs referring to different address spaces (which can
3056 potentially overlap), we cannot easily tell from the addresses
3057 whether the references overlap. */
3058 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3059 return 1;
3060
0777fc02 3061 base = find_base_term (true_mem_addr);
31b0a960
RB
3062 if (! writep
3063 && base
3064 && (GET_CODE (base) == LABEL_REF
3065 || (GET_CODE (base) == SYMBOL_REF
3066 && CONSTANT_POOL_ADDRESS_P (base))))
3067 return 0;
49982682 3068
0777fc02
UB
3069 rtx x_base = find_base_term (true_x_addr);
3070 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3071 GET_MODE (x), GET_MODE (mem)))
41472af8
MM
3072 return 0;
3073
bd280792 3074 if (!x_canonicalized)
393f9fed 3075 {
0777fc02 3076 x_addr = canon_rtx (true_x_addr);
bd280792 3077 x_mode = GET_MODE (x);
393f9fed 3078 }
bd280792 3079 if (!mem_canonicalized)
0777fc02 3080 mem_addr = canon_rtx (true_mem_addr);
6e73e666 3081
bd280792
JR
3082 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3083 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
f47e08d9
RG
3084 return ret;
3085
c6ea834c 3086 if (nonoverlapping_memrefs_p (x, mem, false))
c6df88cb
MM
3087 return 0;
3088
55b34b5f 3089 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
3090}
3091
3092/* Anti dependence: X is written after read in MEM takes place. */
3093
3094int
4f588890 3095anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 3096{
bd280792
JR
3097 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3098 /*mem_canonicalized=*/false,
3099 /*x_canonicalized*/false, /*writep=*/false);
393f9fed
JR
3100}
3101
bd280792
JR
3102/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3103 Also, consider X in X_MODE (which might be from an enclosing
3104 STRICT_LOW_PART / ZERO_EXTRACT).
3105 If MEM_CANONICALIZED is true, MEM is canonicalized. */
393f9fed
JR
3106
3107int
bd280792 3108canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
ef4bddc2 3109 const_rtx x, machine_mode x_mode, rtx x_addr)
393f9fed 3110{
bd280792
JR
3111 return write_dependence_p (mem, x, x_mode, x_addr,
3112 mem_canonicalized, /*x_canonicalized=*/true,
3113 /*writep=*/false);
9ae8ffe7
JL
3114}
3115
3116/* Output dependence: X is written after store in MEM takes place. */
3117
3118int
4f588890 3119output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 3120{
bd280792
JR
3121 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3122 /*mem_canonicalized=*/false,
3123 /*x_canonicalized*/false, /*writep=*/true);
9ae8ffe7 3124}
43b9f499
RB
3125
3126/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3127 Also, consider X in X_MODE (which might be from an enclosing
3128 STRICT_LOW_PART / ZERO_EXTRACT).
3129 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3130
3131int
3132canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3133 const_rtx x, machine_mode x_mode, rtx x_addr)
3134{
3135 return write_dependence_p (mem, x, x_mode, x_addr,
3136 mem_canonicalized, /*x_canonicalized=*/true,
3137 /*writep=*/true);
3138}
c14b9960 3139\f
6e73e666 3140
c6ea834c
BM
3141
3142/* Check whether X may be aliased with MEM. Don't do offset-based
3143 memory disambiguation & TBAA. */
3144int
3145may_alias_p (const_rtx mem, const_rtx x)
3146{
3147 rtx x_addr, mem_addr;
c6ea834c
BM
3148
3149 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3150 return 1;
3151
a95b3cc7
RG
3152 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3153 This is used in epilogue deallocation functions. */
3154 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3155 return 1;
3156 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
c6ea834c 3157 return 1;
c6ea834c
BM
3158 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3159 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3160 return 1;
3161
c6ea834c 3162 x_addr = XEXP (x, 0);
0777fc02
UB
3163 x_addr = get_addr (x_addr);
3164
c6ea834c 3165 mem_addr = XEXP (mem, 0);
0777fc02 3166 mem_addr = get_addr (mem_addr);
c6ea834c 3167
878f5596
UB
3168 /* Read-only memory is by definition never modified, and therefore can't
3169 conflict with anything. However, don't assume anything when AND
3170 addresses are involved and leave to the code below to determine
3171 dependence. We don't expect to find read-only set on MEM, but
3172 stupid user tricks can produce them, so don't die. */
3173 if (MEM_READONLY_P (x)
3174 && GET_CODE (x_addr) != AND
3175 && GET_CODE (mem_addr) != AND)
3176 return 0;
3177
3178 /* If we have MEMs referring to different address spaces (which can
3179 potentially overlap), we cannot easily tell from the addresses
3180 whether the references overlap. */
3181 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3182 return 1;
3183
31b0a960
RB
3184 rtx x_base = find_base_term (x_addr);
3185 rtx mem_base = find_base_term (mem_addr);
3186 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3187 GET_MODE (x), GET_MODE (mem_addr)))
c6ea834c
BM
3188 return 0;
3189
c6ea834c
BM
3190 if (nonoverlapping_memrefs_p (mem, x, true))
3191 return 0;
3192
c6ea834c
BM
3193 /* TBAA not valid for loop_invarint */
3194 return rtx_refs_may_alias_p (x, mem, false);
3195}
3196
6e73e666 3197void
b5deb7b6 3198init_alias_target (void)
6e73e666 3199{
b3694847 3200 int i;
6e73e666 3201
9fc37b2b
RS
3202 if (!arg_base_value)
3203 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3204
b5deb7b6
SL
3205 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3206
6e73e666
JC
3207 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3208 /* Check whether this register can hold an incoming pointer
3209 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 3210 numbers, so translate if necessary due to register windows. */
6e73e666 3211 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
f939c3e6 3212 && targetm.hard_regno_mode_ok (i, Pmode))
9fc37b2b
RS
3213 static_reg_base_value[i] = arg_base_value;
3214
e6eacdc9
RS
3215 /* RTL code is required to be consistent about whether it uses the
3216 stack pointer, the frame pointer or the argument pointer to
3217 access a given area of the frame. We can therefore use the
3218 base address to distinguish between the different areas. */
757e8ba2
JJ
3219 static_reg_base_value[STACK_POINTER_REGNUM]
3220 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3221 static_reg_base_value[ARG_POINTER_REGNUM]
3222 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3223 static_reg_base_value[FRAME_POINTER_REGNUM]
3224 = unique_base_value (UNIQUE_BASE_VALUE_FP);
e6eacdc9
RS
3225
3226 /* The above rules extend post-reload, with eliminations applying
3227 consistently to each of the three pointers. Cope with cases in
3228 which the frame pointer is eliminated to the hard frame pointer
3229 rather than the stack pointer. */
c3e08036
TS
3230 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3231 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3232 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
bf1660a6
JL
3233}
3234
7b52eede
JH
3235/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3236 to be memory reference. */
3237static bool memory_modified;
3238static void
aa317c97 3239memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 3240{
3c0cb5de 3241 if (MEM_P (x))
7b52eede 3242 {
9678086d 3243 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
3244 memory_modified = true;
3245 }
3246}
3247
3248
3249/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 3250 (i.e. address can be modified). */
7b52eede 3251bool
9678086d 3252memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
3253{
3254 if (!INSN_P (insn))
3255 return false;
bc36c711
JJ
3256 /* Conservatively assume all non-readonly MEMs might be modified in
3257 calls. */
3258 if (CALL_P (insn))
3259 return true;
7b52eede 3260 memory_modified = false;
aa317c97 3261 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
3262 return memory_modified;
3263}
3264
c13e8210
MM
3265/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3266 array. */
3267
9ae8ffe7 3268void
4682ae04 3269init_alias_analysis (void)
9ae8ffe7 3270{
c582d54a 3271 unsigned int maxreg = max_reg_num ();
ea64ef27 3272 int changed, pass;
b3694847
SS
3273 int i;
3274 unsigned int ui;
d36a28b8
DM
3275 rtx_insn *insn;
3276 rtx val;
131db6b8
SB
3277 int rpo_cnt;
3278 int *rpo;
9ae8ffe7 3279
0d446150
JH
3280 timevar_push (TV_ALIAS_ANALYSIS);
3281
92390dd1 3282 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
9ff3c7ca 3283 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
dd3d1ec0 3284 bitmap_clear (reg_known_equiv_p);
9ae8ffe7 3285
08c79682 3286 /* If we have memory allocated from the previous run, use it. */
c582d54a 3287 if (old_reg_base_value)
08c79682
KH
3288 reg_base_value = old_reg_base_value;
3289
3290 if (reg_base_value)
9771b263 3291 reg_base_value->truncate (0);
08c79682 3292
9771b263 3293 vec_safe_grow_cleared (reg_base_value, maxreg);
ac606739 3294
5ed6ace5 3295 new_reg_base_value = XNEWVEC (rtx, maxreg);
d630245f 3296 reg_seen = sbitmap_alloc (maxreg);
ec907dd8
JL
3297
3298 /* The basic idea is that each pass through this loop will use the
3299 "constant" information from the previous pass to propagate alias
3300 information through another level of assignments.
3301
131db6b8
SB
3302 The propagation is done on the CFG in reverse post-order, to propagate
3303 things forward as far as possible in each iteration.
3304
ec907dd8
JL
3305 This could get expensive if the assignment chains are long. Maybe
3306 we should throttle the number of iterations, possibly based on
6e73e666 3307 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
3308
3309 We could propagate more information in the first pass by making use
6fb5fa3c 3310 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
3311 for a pseudo is "constant".
3312
3313 A program with an uninitialized variable can cause an infinite loop
3314 here. Instead of doing a full dataflow analysis to detect such problems
3315 we just cap the number of iterations for the loop.
3316
3317 The state of the arrays for the set chain in question does not matter
3318 since the program has undefined behavior. */
6e73e666 3319
0cae8d31 3320 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
131db6b8
SB
3321 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3322
e86a9946
RS
3323 /* The prologue/epilogue insns are not threaded onto the
3324 insn chain until after reload has completed. Thus,
3325 there is no sense wasting time checking if INSN is in
3326 the prologue/epilogue until after reload has completed. */
3327 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3328 || targetm.have_epilogue ())
3329 && reload_completed);
3330
ea64ef27 3331 pass = 0;
6e73e666 3332 do
ec907dd8
JL
3333 {
3334 /* Assume nothing will change this iteration of the loop. */
3335 changed = 0;
3336
ec907dd8 3337 /* We want to assign the same IDs each iteration of this loop, so
9fc37b2b
RS
3338 start counting from one each iteration of the loop. */
3339 unique_id = 1;
ec907dd8 3340
f5143c46 3341 /* We're at the start of the function each iteration through the
ec907dd8 3342 loop, so we're copying arguments. */
83bbd9b6 3343 copying_arguments = true;
9ae8ffe7 3344
6e73e666 3345 /* Wipe the potential alias information clean for this pass. */
c582d54a 3346 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 3347
6e73e666 3348 /* Wipe the reg_seen array clean. */
f61e445a 3349 bitmap_clear (reg_seen);
9ae8ffe7 3350
356610cb
EB
3351 /* Initialize the alias information for this pass. */
3352 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e6eacdc9
RS
3353 if (static_reg_base_value[i]
3354 /* Don't treat the hard frame pointer as special if we
3355 eliminated the frame pointer to the stack pointer instead. */
3356 && !(i == HARD_FRAME_POINTER_REGNUM
3357 && reload_completed
3358 && !frame_pointer_needed
3359 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3360 STACK_POINTER_REGNUM)))
356610cb
EB
3361 {
3362 new_reg_base_value[i] = static_reg_base_value[i];
3363 bitmap_set_bit (reg_seen, i);
3364 }
6e73e666 3365
ec907dd8 3366 /* Walk the insns adding values to the new_reg_base_value array. */
131db6b8 3367 for (i = 0; i < rpo_cnt; i++)
9ae8ffe7 3368 {
06e28de2 3369 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
131db6b8 3370 FOR_BB_INSNS (bb, insn)
ec907dd8 3371 {
131db6b8
SB
3372 if (NONDEBUG_INSN_P (insn))
3373 {
3374 rtx note, set;
efc9bd41 3375
e86a9946 3376 if (could_be_prologue_epilogue
131db6b8
SB
3377 && prologue_epilogue_contains (insn))
3378 continue;
efc9bd41 3379
131db6b8
SB
3380 /* If this insn has a noalias note, process it, Otherwise,
3381 scan for sets. A simple set will have no side effects
3382 which could change the base value of any other register. */
6e73e666 3383
131db6b8
SB
3384 if (GET_CODE (PATTERN (insn)) == SET
3385 && REG_NOTES (insn) != 0
3386 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3387 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3388 else
3389 note_stores (PATTERN (insn), record_set, NULL);
6e73e666 3390
131db6b8 3391 set = single_set (insn);
6e73e666 3392
131db6b8
SB
3393 if (set != 0
3394 && REG_P (SET_DEST (set))
3395 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
713f41f9 3396 {
131db6b8
SB
3397 unsigned int regno = REGNO (SET_DEST (set));
3398 rtx src = SET_SRC (set);
3399 rtx t;
3400
3401 note = find_reg_equal_equiv_note (insn);
3402 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3403 && DF_REG_DEF_COUNT (regno) != 1)
3404 note = NULL_RTX;
3405
5284e559 3406 poly_int64 offset;
131db6b8
SB
3407 if (note != NULL_RTX
3408 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3409 && ! rtx_varies_p (XEXP (note, 0), 1)
3410 && ! reg_overlap_mentioned_p (SET_DEST (set),
3411 XEXP (note, 0)))
3412 {
3413 set_reg_known_value (regno, XEXP (note, 0));
3414 set_reg_known_equiv_p (regno,
3415 REG_NOTE_KIND (note) == REG_EQUIV);
3416 }
3417 else if (DF_REG_DEF_COUNT (regno) == 1
3418 && GET_CODE (src) == PLUS
3419 && REG_P (XEXP (src, 0))
3420 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
5284e559 3421 && poly_int_rtx_p (XEXP (src, 1), &offset))
131db6b8 3422 {
5284e559 3423 t = plus_constant (GET_MODE (src), t, offset);
131db6b8
SB
3424 set_reg_known_value (regno, t);
3425 set_reg_known_equiv_p (regno, false);
3426 }
3427 else if (DF_REG_DEF_COUNT (regno) == 1
3428 && ! rtx_varies_p (src, 1))
3429 {
3430 set_reg_known_value (regno, src);
3431 set_reg_known_equiv_p (regno, false);
3432 }
713f41f9 3433 }
6e73e666 3434 }
131db6b8
SB
3435 else if (NOTE_P (insn)
3436 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3437 copying_arguments = false;
ec907dd8 3438 }
6e73e666 3439 }
ec907dd8 3440
6e73e666 3441 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 3442 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 3443
c582d54a 3444 for (ui = 0; ui < maxreg; ui++)
6e73e666 3445 {
e51712db 3446 if (new_reg_base_value[ui]
9771b263
DN
3447 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3448 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
ec907dd8 3449 {
9771b263 3450 (*reg_base_value)[ui] = new_reg_base_value[ui];
6e73e666 3451 changed = 1;
ec907dd8 3452 }
9ae8ffe7 3453 }
9ae8ffe7 3454 }
6e73e666 3455 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
131db6b8 3456 XDELETEVEC (rpo);
9ae8ffe7
JL
3457
3458 /* Fill in the remaining entries. */
9771b263 3459 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
9ff3c7ca
SB
3460 {
3461 int regno = i + FIRST_PSEUDO_REGISTER;
3462 if (! val)
3463 set_reg_known_value (regno, regno_reg_rtx[regno]);
3464 }
9ae8ffe7 3465
e05e2395
MM
3466 /* Clean up. */
3467 free (new_reg_base_value);
ec907dd8 3468 new_reg_base_value = 0;
d630245f 3469 sbitmap_free (reg_seen);
9ae8ffe7 3470 reg_seen = 0;
0d446150 3471 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
3472}
3473
61630b27
JJ
3474/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3475 Special API for var-tracking pass purposes. */
3476
3477void
3478vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3479{
9771b263 3480 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
61630b27
JJ
3481}
3482
9ae8ffe7 3483void
4682ae04 3484end_alias_analysis (void)
9ae8ffe7 3485{
c582d54a 3486 old_reg_base_value = reg_base_value;
9771b263 3487 vec_free (reg_known_value);
9ff3c7ca 3488 sbitmap_free (reg_known_equiv_p);
9ae8ffe7 3489}
e2500fed 3490
3ecf9d13
JH
3491void
3492dump_alias_stats_in_alias_c (FILE *s)
3493{
3494 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3495 " %llu are in alias set 0\n"
3496 " %llu queries asked about the same object\n"
3497 " %llu queries asked about the same alias set\n"
3498 " %llu access volatile\n"
6e042ef4
JH
3499 " %llu are dependent in the DAG\n"
3500 " %llu are aritificially in conflict with void *\n",
3ecf9d13
JH
3501 alias_stats.num_disambiguated,
3502 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3503 + alias_stats.num_same_objects + alias_stats.num_volatile
6e042ef4
JH
3504 + alias_stats.num_dag + alias_stats.num_disambiguated
3505 + alias_stats.num_universal,
3ecf9d13 3506 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
6e042ef4
JH
3507 alias_stats.num_same_objects, alias_stats.num_volatile,
3508 alias_stats.num_dag, alias_stats.num_universal);
3ecf9d13 3509}
e2500fed 3510#include "gt-alias.h"