]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
* target.h: Remove texi jargons in comments.
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
d9221e01 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
1afdf91c 3 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
9ae8ffe7
JL
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
9ae8ffe7 27#include "rtl.h"
7790df19 28#include "tree.h"
6baf1cc8 29#include "tm_p.h"
49ad7cfa 30#include "function.h"
9ae8ffe7
JL
31#include "expr.h"
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
264fac34 36#include "output.h"
2e107e9e 37#include "toplev.h"
eab5c70a 38#include "cselib.h"
3932261a 39#include "splay-tree.h"
ac606739 40#include "ggc.h"
d23c55c2 41#include "langhooks.h"
0d446150 42#include "timevar.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
9ddb66ca 45#include "varray.h"
3932261a
MM
46
47/* The alias sets assigned to MEMs assist the back-end in determining
48 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
49 different alias sets cannot alias each other, with one important
50 exception. Consider something like:
3932261a 51
01d28c3f 52 struct S { int i; double d; };
3932261a
MM
53
54 a store to an `S' can alias something of either type `int' or type
55 `double'. (However, a store to an `int' cannot alias a `double'
56 and vice versa.) We indicate this via a tree structure that looks
57 like:
58 struct S
59 / \
60 / \
61 |/_ _\|
62 int double
63
ac3d9668
RK
64 (The arrows are directed and point downwards.)
65 In this situation we say the alias set for `struct S' is the
66 `superset' and that those for `int' and `double' are `subsets'.
67
3bdf5ad1
RK
68 To see whether two alias sets can point to the same memory, we must
69 see if either alias set is a subset of the other. We need not trace
95bd1dd7 70 past immediate descendants, however, since we propagate all
3bdf5ad1 71 grandchildren up one level.
3932261a
MM
72
73 Alias set zero is implicitly a superset of all other alias sets.
74 However, this is no actual entry for alias set zero. It is an
75 error to attempt to explicitly construct a subset of zero. */
76
b604074c 77struct alias_set_entry GTY(())
d4b60170 78{
3932261a 79 /* The alias set number, as stored in MEM_ALIAS_SET. */
3bdf5ad1 80 HOST_WIDE_INT alias_set;
3932261a
MM
81
82 /* The children of the alias set. These are not just the immediate
95bd1dd7 83 children, but, in fact, all descendants. So, if we have:
3932261a 84
ca7fd9cd 85 struct T { struct S s; float f; }
3932261a
MM
86
87 continuing our example above, the children here will be all of
88 `int', `double', `float', and `struct S'. */
b604074c 89 splay_tree GTY((param1_is (int), param2_is (int))) children;
2bf105ab
RK
90
91 /* Nonzero if would have a child of zero: this effectively makes this
92 alias set the same as alias set zero. */
93 int has_zero_child;
b604074c
GK
94};
95typedef struct alias_set_entry *alias_set_entry;
9ae8ffe7 96
4682ae04
AJ
97static int rtx_equal_for_memref_p (rtx, rtx);
98static rtx find_symbolic_term (rtx);
4682ae04
AJ
99static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
100static void record_set (rtx, rtx, void *);
101static int base_alias_check (rtx, rtx, enum machine_mode,
102 enum machine_mode);
103static rtx find_base_value (rtx);
104static int mems_in_disjoint_alias_sets_p (rtx, rtx);
105static int insert_subset_children (splay_tree_node, void*);
106static tree find_base_decl (tree);
107static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
108static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
109 int (*) (rtx, int));
110static int aliases_everything_p (rtx);
111static bool nonoverlapping_component_refs_p (tree, tree);
112static tree decl_for_component_ref (tree);
113static rtx adjust_offset_for_component_ref (tree, rtx);
114static int nonoverlapping_memrefs_p (rtx, rtx);
d2399d75 115static int write_dependence_p (rtx, rtx, int, int);
4682ae04
AJ
116
117static int nonlocal_mentioned_p_1 (rtx *, void *);
118static int nonlocal_mentioned_p (rtx);
119static int nonlocal_referenced_p_1 (rtx *, void *);
120static int nonlocal_referenced_p (rtx);
121static int nonlocal_set_p_1 (rtx *, void *);
122static int nonlocal_set_p (rtx);
123static void memory_modified_1 (rtx, rtx, void *);
9ae8ffe7
JL
124
125/* Set up all info needed to perform alias analysis on memory references. */
126
d4b60170 127/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
128#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
129
41472af8 130/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
131 different alias sets. We ignore alias sets in functions making use
132 of variable arguments because the va_arg macros on some systems are
133 not legal ANSI C. */
134#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 135 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 136
ea64ef27 137/* Cap the number of passes we make over the insns propagating alias
ac3d9668 138 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 139#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 140
9ae8ffe7
JL
141/* reg_base_value[N] gives an address to which register N is related.
142 If all sets after the first add or subtract to the current value
143 or otherwise modify it so it does not point to a different top level
144 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
145 of the first set.
146
147 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
148 expressions represent certain special values: function arguments and
ca7fd9cd 149 the stack, frame, and argument pointers.
b3b5ad95
JL
150
151 The contents of an ADDRESS is not normally used, the mode of the
152 ADDRESS determines whether the ADDRESS is a function argument or some
153 other special value. Pointer equality, not rtx_equal_p, determines whether
154 two ADDRESS expressions refer to the same base address.
155
156 The only use of the contents of an ADDRESS is for determining if the
157 current function performs nonlocal memory memory references for the
158 purposes of marking the function as a constant function. */
2a2c8203 159
c582d54a 160static GTY(()) varray_type reg_base_value;
ac606739 161static rtx *new_reg_base_value;
c582d54a
JH
162
163/* We preserve the copy of old array around to avoid amount of garbage
164 produced. About 8% of garbage produced were attributed to this
165 array. */
166static GTY((deletable (""))) varray_type old_reg_base_value;
d4b60170 167
bf1660a6
JL
168/* Static hunks of RTL used by the aliasing code; these are initialized
169 once per function to avoid unnecessary RTL allocations. */
170static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
171
9ae8ffe7 172#define REG_BASE_VALUE(X) \
c582d54a
JH
173 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
174 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
9ae8ffe7 175
de12be17
JC
176/* Vector of known invariant relationships between registers. Set in
177 loop unrolling. Indexed by register number, if nonzero the value
178 is an expression describing this register in terms of another.
179
180 The length of this array is REG_BASE_VALUE_SIZE.
181
182 Because this array contains only pseudo registers it has no effect
183 after reload. */
184static rtx *alias_invariant;
c582d54a 185unsigned int alias_invariant_size;
de12be17 186
c13e8210
MM
187/* Vector indexed by N giving the initial (unchanging) value known for
188 pseudo-register N. This array is initialized in
189 init_alias_analysis, and does not change until end_alias_analysis
190 is called. */
9ae8ffe7
JL
191rtx *reg_known_value;
192
193/* Indicates number of valid entries in reg_known_value. */
770ae6cc 194static unsigned int reg_known_value_size;
9ae8ffe7
JL
195
196/* Vector recording for each reg_known_value whether it is due to a
197 REG_EQUIV note. Future passes (viz., reload) may replace the
198 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
199 dependences that would be introduced if that happens.
200
201 The REG_EQUIV notes created in assign_parms may mention the arg
202 pointer, and there are explicit insns in the RTL that modify the
203 arg pointer. Thus we must ensure that such insns don't get
204 scheduled across each other because that would invalidate the
205 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
206 wrong, but solving the problem in the scheduler will likely give
207 better code, so we do it here. */
9ae8ffe7
JL
208char *reg_known_equiv_p;
209
2a2c8203
JC
210/* True when scanning insns from the start of the rtl to the
211 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 212static bool copying_arguments;
9ae8ffe7 213
3932261a 214/* The splay-tree used to store the various alias set entries. */
b604074c 215static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
ac3d9668 216\f
3932261a
MM
217/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
218 such an entry, or NULL otherwise. */
219
9ddb66ca 220static inline alias_set_entry
4682ae04 221get_alias_set_entry (HOST_WIDE_INT alias_set)
3932261a 222{
9ddb66ca 223 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
3932261a
MM
224}
225
ac3d9668
RK
226/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
227 the two MEMs cannot alias each other. */
3932261a 228
9ddb66ca 229static inline int
4682ae04 230mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
3932261a 231{
ca7fd9cd 232#ifdef ENABLE_CHECKING
3932261a
MM
233/* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
d4b60170
RK
240 if (! flag_strict_aliasing
241 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
3932261a
MM
242 abort ();
243#endif
244
1da68f56
RK
245 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
246}
3932261a 247
1da68f56
RK
248/* Insert the NODE into the splay tree given by DATA. Used by
249 record_alias_subset via splay_tree_foreach. */
250
251static int
4682ae04 252insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
253{
254 splay_tree_insert ((splay_tree) data, node->key, node->value);
255
256 return 0;
257}
258
259/* Return 1 if the two specified alias sets may conflict. */
260
261int
4682ae04 262alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
1da68f56
RK
263{
264 alias_set_entry ase;
265
266 /* If have no alias set information for one of the operands, we have
267 to assume it can alias anything. */
268 if (set1 == 0 || set2 == 0
269 /* If the two alias sets are the same, they may alias. */
270 || set1 == set2)
271 return 1;
3932261a 272
3bdf5ad1 273 /* See if the first alias set is a subset of the second. */
1da68f56 274 ase = get_alias_set_entry (set1);
2bf105ab
RK
275 if (ase != 0
276 && (ase->has_zero_child
277 || splay_tree_lookup (ase->children,
1da68f56
RK
278 (splay_tree_key) set2)))
279 return 1;
3932261a
MM
280
281 /* Now do the same, but with the alias sets reversed. */
1da68f56 282 ase = get_alias_set_entry (set2);
2bf105ab
RK
283 if (ase != 0
284 && (ase->has_zero_child
285 || splay_tree_lookup (ase->children,
1da68f56
RK
286 (splay_tree_key) set1)))
287 return 1;
3932261a 288
1da68f56 289 /* The two alias sets are distinct and neither one is the
3932261a 290 child of the other. Therefore, they cannot alias. */
1da68f56 291 return 0;
3932261a 292}
1da68f56
RK
293\f
294/* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
295 has any readonly fields. If any of the fields have types that
296 contain readonly fields, return true as well. */
3932261a 297
1da68f56 298int
4682ae04 299readonly_fields_p (tree type)
3932261a 300{
1da68f56
RK
301 tree field;
302
303 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
304 && TREE_CODE (type) != QUAL_UNION_TYPE)
305 return 0;
306
307 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
308 if (TREE_CODE (field) == FIELD_DECL
309 && (TREE_READONLY (field)
310 || readonly_fields_p (TREE_TYPE (field))))
311 return 1;
3932261a
MM
312
313 return 0;
314}
3bdf5ad1 315\f
1da68f56
RK
316/* Return 1 if any MEM object of type T1 will always conflict (using the
317 dependency routines in this file) with any MEM object of type T2.
318 This is used when allocating temporary storage. If T1 and/or T2 are
319 NULL_TREE, it means we know nothing about the storage. */
320
321int
4682ae04 322objects_must_conflict_p (tree t1, tree t2)
1da68f56 323{
82d610ec
RK
324 HOST_WIDE_INT set1, set2;
325
e8ea2809
RK
326 /* If neither has a type specified, we don't know if they'll conflict
327 because we may be using them to store objects of various types, for
328 example the argument and local variables areas of inlined functions. */
981a4c34 329 if (t1 == 0 && t2 == 0)
e8ea2809
RK
330 return 0;
331
66cce54d
RH
332 /* If one or the other has readonly fields or is readonly,
333 then they may not conflict. */
334 if ((t1 != 0 && readonly_fields_p (t1))
335 || (t2 != 0 && readonly_fields_p (t2))
a3b88570
MM
336 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
337 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
66cce54d
RH
338 return 0;
339
1da68f56
RK
340 /* If they are the same type, they must conflict. */
341 if (t1 == t2
342 /* Likewise if both are volatile. */
343 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
344 return 1;
345
82d610ec
RK
346 set1 = t1 ? get_alias_set (t1) : 0;
347 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 348
82d610ec
RK
349 /* Otherwise they conflict if they have no alias set or the same. We
350 can't simply use alias_sets_conflict_p here, because we must make
351 sure that every subtype of t1 will conflict with every subtype of
352 t2 for which a pair of subobjects of these respective subtypes
353 overlaps on the stack. */
354 return set1 == 0 || set2 == 0 || set1 == set2;
1da68f56
RK
355}
356\f
3bdf5ad1
RK
357/* T is an expression with pointer type. Find the DECL on which this
358 expression is based. (For example, in `a[i]' this would be `a'.)
359 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 360 NULL_TREE is returned. */
3bdf5ad1
RK
361
362static tree
4682ae04 363find_base_decl (tree t)
3bdf5ad1
RK
364{
365 tree d0, d1, d2;
366
367 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
368 return 0;
369
370 /* If this is a declaration, return it. */
371 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
372 return t;
373
374 /* Handle general expressions. It would be nice to deal with
375 COMPONENT_REFs here. If we could tell that `a' and `b' were the
376 same, then `a->f' and `b->f' are also the same. */
377 switch (TREE_CODE_CLASS (TREE_CODE (t)))
378 {
379 case '1':
380 return find_base_decl (TREE_OPERAND (t, 0));
381
382 case '2':
383 /* Return 0 if found in neither or both are the same. */
384 d0 = find_base_decl (TREE_OPERAND (t, 0));
385 d1 = find_base_decl (TREE_OPERAND (t, 1));
386 if (d0 == d1)
387 return d0;
388 else if (d0 == 0)
389 return d1;
390 else if (d1 == 0)
391 return d0;
392 else
393 return 0;
394
395 case '3':
396 d0 = find_base_decl (TREE_OPERAND (t, 0));
397 d1 = find_base_decl (TREE_OPERAND (t, 1));
3bdf5ad1
RK
398 d2 = find_base_decl (TREE_OPERAND (t, 2));
399
400 /* Set any nonzero values from the last, then from the first. */
401 if (d1 == 0) d1 = d2;
402 if (d0 == 0) d0 = d1;
403 if (d1 == 0) d1 = d0;
404 if (d2 == 0) d2 = d1;
405
406 /* At this point all are nonzero or all are zero. If all three are the
407 same, return it. Otherwise, return zero. */
408 return (d0 == d1 && d1 == d2) ? d0 : 0;
409
410 default:
411 return 0;
412 }
413}
414
6e24b709
RK
415/* Return 1 if all the nested component references handled by
416 get_inner_reference in T are such that we can address the object in T. */
417
10b76d73 418int
4682ae04 419can_address_p (tree t)
6e24b709
RK
420{
421 /* If we're at the end, it is vacuously addressable. */
422 if (! handled_component_p (t))
423 return 1;
424
425 /* Bitfields are never addressable. */
426 else if (TREE_CODE (t) == BIT_FIELD_REF)
427 return 0;
428
8ac61af7
RK
429 /* Fields are addressable unless they are marked as nonaddressable or
430 the containing type has alias set 0. */
6e24b709
RK
431 else if (TREE_CODE (t) == COMPONENT_REF
432 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
8ac61af7 433 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
434 && can_address_p (TREE_OPERAND (t, 0)))
435 return 1;
436
8ac61af7 437 /* Likewise for arrays. */
b4e3fabb 438 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
6e24b709 439 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
8ac61af7 440 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
441 && can_address_p (TREE_OPERAND (t, 0)))
442 return 1;
443
444 return 0;
445}
446
3bdf5ad1
RK
447/* Return the alias set for T, which may be either a type or an
448 expression. Call language-specific routine for help, if needed. */
449
450HOST_WIDE_INT
4682ae04 451get_alias_set (tree t)
3bdf5ad1
RK
452{
453 HOST_WIDE_INT set;
3bdf5ad1
RK
454
455 /* If we're not doing any alias analysis, just assume everything
456 aliases everything else. Also return 0 if this or its type is
457 an error. */
458 if (! flag_strict_aliasing || t == error_mark_node
459 || (! TYPE_P (t)
460 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
461 return 0;
462
463 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
464 language-specific routine may make mutually-recursive calls to each other
465 to figure out what to do. At each juncture, we see if this is a tree
466 that the language may need to handle specially. First handle things that
738cc472 467 aren't types. */
f824e5c3 468 if (! TYPE_P (t))
3bdf5ad1 469 {
738cc472
RK
470 tree inner = t;
471 tree placeholder_ptr = 0;
472
8ac61af7
RK
473 /* Remove any nops, then give the language a chance to do
474 something with this tree before we look at it. */
475 STRIP_NOPS (t);
476 set = (*lang_hooks.get_alias_set) (t);
477 if (set != -1)
478 return set;
479
738cc472 480 /* First see if the actual object referenced is an INDIRECT_REF from a
8ac61af7 481 restrict-qualified pointer or a "void *". Replace
738cc472 482 PLACEHOLDER_EXPRs. */
8ac61af7 483 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
738cc472
RK
484 || handled_component_p (inner))
485 {
486 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
487 inner = find_placeholder (inner, &placeholder_ptr);
488 else
489 inner = TREE_OPERAND (inner, 0);
8ac61af7
RK
490
491 STRIP_NOPS (inner);
738cc472
RK
492 }
493
494 /* Check for accesses through restrict-qualified pointers. */
495 if (TREE_CODE (inner) == INDIRECT_REF)
496 {
497 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
498
499 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
500 {
e5837c07 501 /* If we haven't computed the actual alias set, do it now. */
738cc472
RK
502 if (DECL_POINTER_ALIAS_SET (decl) == -2)
503 {
504 /* No two restricted pointers can point at the same thing.
505 However, a restricted pointer can point at the same thing
506 as an unrestricted pointer, if that unrestricted pointer
507 is based on the restricted pointer. So, we make the
508 alias set for the restricted pointer a subset of the
509 alias set for the type pointed to by the type of the
510 decl. */
511 HOST_WIDE_INT pointed_to_alias_set
512 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
513
514 if (pointed_to_alias_set == 0)
515 /* It's not legal to make a subset of alias set zero. */
e7844ffb 516 DECL_POINTER_ALIAS_SET (decl) = 0;
738cc472
RK
517 else
518 {
519 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
ca7fd9cd
KH
520 record_alias_subset (pointed_to_alias_set,
521 DECL_POINTER_ALIAS_SET (decl));
738cc472
RK
522 }
523 }
524
525 /* We use the alias set indicated in the declaration. */
526 return DECL_POINTER_ALIAS_SET (decl);
527 }
528
529 /* If we have an INDIRECT_REF via a void pointer, we don't
530 know anything about what that might alias. */
531 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
532 return 0;
533 }
534
535 /* Otherwise, pick up the outermost object that we could have a pointer
536 to, processing conversion and PLACEHOLDER_EXPR as above. */
537 placeholder_ptr = 0;
8ac61af7 538 while (TREE_CODE (t) == PLACEHOLDER_EXPR
f47e9b4e
RK
539 || (handled_component_p (t) && ! can_address_p (t)))
540 {
f47e9b4e 541 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
738cc472 542 t = find_placeholder (t, &placeholder_ptr);
f47e9b4e
RK
543 else
544 t = TREE_OPERAND (t, 0);
f824e5c3 545
8ac61af7
RK
546 STRIP_NOPS (t);
547 }
f824e5c3 548
738cc472
RK
549 /* If we've already determined the alias set for a decl, just return
550 it. This is necessary for C++ anonymous unions, whose component
551 variables don't look like union members (boo!). */
5755cd38
JM
552 if (TREE_CODE (t) == VAR_DECL
553 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
554 return MEM_ALIAS_SET (DECL_RTL (t));
555
f824e5c3
RK
556 /* Now all we care about is the type. */
557 t = TREE_TYPE (t);
3bdf5ad1
RK
558 }
559
3bdf5ad1
RK
560 /* Variant qualifiers don't affect the alias set, so get the main
561 variant. If this is a type with a known alias set, return it. */
562 t = TYPE_MAIN_VARIANT (t);
738cc472 563 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
564 return TYPE_ALIAS_SET (t);
565
566 /* See if the language has special handling for this type. */
8ac61af7
RK
567 set = (*lang_hooks.get_alias_set) (t);
568 if (set != -1)
738cc472 569 return set;
2bf105ab 570
3bdf5ad1
RK
571 /* There are no objects of FUNCTION_TYPE, so there's no point in
572 using up an alias set for them. (There are, of course, pointers
573 and references to functions, but that's different.) */
574 else if (TREE_CODE (t) == FUNCTION_TYPE)
575 set = 0;
74d86f4f
RH
576
577 /* Unless the language specifies otherwise, let vector types alias
578 their components. This avoids some nasty type punning issues in
579 normal usage. And indeed lets vectors be treated more like an
580 array slice. */
581 else if (TREE_CODE (t) == VECTOR_TYPE)
582 set = get_alias_set (TREE_TYPE (t));
583
3bdf5ad1
RK
584 else
585 /* Otherwise make a new alias set for this type. */
586 set = new_alias_set ();
587
588 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
589
590 /* If this is an aggregate type, we must record any component aliasing
591 information. */
1d79fd2c 592 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
593 record_component_aliases (t);
594
3bdf5ad1
RK
595 return set;
596}
597
598/* Return a brand-new alias set. */
599
f103e34d
GK
600static GTY(()) HOST_WIDE_INT last_alias_set;
601
3bdf5ad1 602HOST_WIDE_INT
4682ae04 603new_alias_set (void)
3bdf5ad1 604{
3bdf5ad1 605 if (flag_strict_aliasing)
9ddb66ca 606 {
3416f5c2
JH
607 if (!alias_sets)
608 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
609 else
610 VARRAY_GROW (alias_sets, last_alias_set + 2);
9ddb66ca
JH
611 return ++last_alias_set;
612 }
3bdf5ad1
RK
613 else
614 return 0;
615}
3932261a 616
01d28c3f
JM
617/* Indicate that things in SUBSET can alias things in SUPERSET, but that
618 not everything that aliases SUPERSET also aliases SUBSET. For example,
619 in C, a store to an `int' can alias a load of a structure containing an
620 `int', and vice versa. But it can't alias a load of a 'double' member
621 of the same structure. Here, the structure would be the SUPERSET and
622 `int' the SUBSET. This relationship is also described in the comment at
623 the beginning of this file.
624
625 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
626
627 It is illegal for SUPERSET to be zero; everything is implicitly a
628 subset of alias set zero. */
629
630void
4682ae04 631record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
3932261a
MM
632{
633 alias_set_entry superset_entry;
634 alias_set_entry subset_entry;
635
f47e9b4e
RK
636 /* It is possible in complex type situations for both sets to be the same,
637 in which case we can ignore this operation. */
638 if (superset == subset)
639 return;
640
3932261a
MM
641 if (superset == 0)
642 abort ();
643
644 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 645 if (superset_entry == 0)
3932261a
MM
646 {
647 /* Create an entry for the SUPERSET, so that we have a place to
648 attach the SUBSET. */
b604074c 649 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
3932261a 650 superset_entry->alias_set = superset;
ca7fd9cd 651 superset_entry->children
b604074c 652 = splay_tree_new_ggc (splay_tree_compare_ints);
570eb5c8 653 superset_entry->has_zero_child = 0;
9ddb66ca 654 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
3932261a
MM
655 }
656
2bf105ab
RK
657 if (subset == 0)
658 superset_entry->has_zero_child = 1;
659 else
660 {
661 subset_entry = get_alias_set_entry (subset);
662 /* If there is an entry for the subset, enter all of its children
663 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 664 if (subset_entry)
2bf105ab
RK
665 {
666 if (subset_entry->has_zero_child)
667 superset_entry->has_zero_child = 1;
d4b60170 668
2bf105ab
RK
669 splay_tree_foreach (subset_entry->children, insert_subset_children,
670 superset_entry->children);
671 }
3932261a 672
2bf105ab 673 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 674 splay_tree_insert (superset_entry->children,
2bf105ab
RK
675 (splay_tree_key) subset, 0);
676 }
3932261a
MM
677}
678
a0c33338
RK
679/* Record that component types of TYPE, if any, are part of that type for
680 aliasing purposes. For record types, we only record component types
681 for fields that are marked addressable. For array types, we always
682 record the component types, so the front end should not call this
683 function if the individual component aren't addressable. */
684
685void
4682ae04 686record_component_aliases (tree type)
a0c33338 687{
3bdf5ad1 688 HOST_WIDE_INT superset = get_alias_set (type);
a0c33338
RK
689 tree field;
690
691 if (superset == 0)
692 return;
693
694 switch (TREE_CODE (type))
695 {
696 case ARRAY_TYPE:
2bf105ab
RK
697 if (! TYPE_NONALIASED_COMPONENT (type))
698 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
a0c33338
RK
699 break;
700
701 case RECORD_TYPE:
702 case UNION_TYPE:
703 case QUAL_UNION_TYPE:
6614fd40 704 /* Recursively record aliases for the base classes, if there are any. */
61eece67 705 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
ca7fd9cd
KH
706 {
707 int i;
708 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
709 {
710 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
711 record_alias_subset (superset,
61eece67 712 get_alias_set (BINFO_TYPE (binfo)));
ca7fd9cd
KH
713 }
714 }
a0c33338 715 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b16a49a1 716 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
2bf105ab 717 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
718 break;
719
1d79fd2c
JW
720 case COMPLEX_TYPE:
721 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
722 break;
723
a0c33338
RK
724 default:
725 break;
726 }
727}
728
3bdf5ad1
RK
729/* Allocate an alias set for use in storing and reading from the varargs
730 spill area. */
731
f103e34d
GK
732static GTY(()) HOST_WIDE_INT varargs_set = -1;
733
3bdf5ad1 734HOST_WIDE_INT
4682ae04 735get_varargs_alias_set (void)
3bdf5ad1 736{
f103e34d
GK
737 if (varargs_set == -1)
738 varargs_set = new_alias_set ();
3bdf5ad1 739
f103e34d 740 return varargs_set;
3bdf5ad1
RK
741}
742
743/* Likewise, but used for the fixed portions of the frame, e.g., register
744 save areas. */
745
f103e34d
GK
746static GTY(()) HOST_WIDE_INT frame_set = -1;
747
3bdf5ad1 748HOST_WIDE_INT
4682ae04 749get_frame_alias_set (void)
3bdf5ad1 750{
f103e34d
GK
751 if (frame_set == -1)
752 frame_set = new_alias_set ();
3bdf5ad1 753
f103e34d 754 return frame_set;
3bdf5ad1
RK
755}
756
2a2c8203
JC
757/* Inside SRC, the source of a SET, find a base address. */
758
9ae8ffe7 759static rtx
4682ae04 760find_base_value (rtx src)
9ae8ffe7 761{
713f41f9 762 unsigned int regno;
0aacc8ed 763
9ae8ffe7
JL
764 switch (GET_CODE (src))
765 {
766 case SYMBOL_REF:
767 case LABEL_REF:
768 return src;
769
770 case REG:
fb6754f0 771 regno = REGNO (src);
d4b60170 772 /* At the start of a function, argument registers have known base
2a2c8203
JC
773 values which may be lost later. Returning an ADDRESS
774 expression here allows optimization based on argument values
775 even when the argument registers are used for other purposes. */
713f41f9
BS
776 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
777 return new_reg_base_value[regno];
73774bc7 778
eaf407a5 779 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
780 for non-fixed hard regs since it can result in a circular
781 dependency chain for registers which have values at function entry.
eaf407a5
JL
782
783 The test above is not sufficient because the scheduler may move
784 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 785 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
c582d54a 786 && regno < VARRAY_SIZE (reg_base_value))
83bbd9b6
RH
787 {
788 /* If we're inside init_alias_analysis, use new_reg_base_value
789 to reduce the number of relaxation iterations. */
1afdf91c
RH
790 if (new_reg_base_value && new_reg_base_value[regno]
791 && REG_N_SETS (regno) == 1)
83bbd9b6
RH
792 return new_reg_base_value[regno];
793
c582d54a
JH
794 if (VARRAY_RTX (reg_base_value, regno))
795 return VARRAY_RTX (reg_base_value, regno);
83bbd9b6 796 }
73774bc7 797
e3f049a8 798 return 0;
9ae8ffe7
JL
799
800 case MEM:
801 /* Check for an argument passed in memory. Only record in the
802 copying-arguments block; it is too hard to track changes
803 otherwise. */
804 if (copying_arguments
805 && (XEXP (src, 0) == arg_pointer_rtx
806 || (GET_CODE (XEXP (src, 0)) == PLUS
807 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 808 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
809 return 0;
810
811 case CONST:
812 src = XEXP (src, 0);
813 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
814 break;
d4b60170 815
ec5c56db 816 /* ... fall through ... */
2a2c8203 817
9ae8ffe7
JL
818 case PLUS:
819 case MINUS:
2a2c8203 820 {
ec907dd8
JL
821 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
822
0134bf2d
DE
823 /* If either operand is a REG that is a known pointer, then it
824 is the base. */
825 if (REG_P (src_0) && REG_POINTER (src_0))
826 return find_base_value (src_0);
827 if (REG_P (src_1) && REG_POINTER (src_1))
828 return find_base_value (src_1);
829
ec907dd8
JL
830 /* If either operand is a REG, then see if we already have
831 a known value for it. */
0134bf2d 832 if (REG_P (src_0))
ec907dd8
JL
833 {
834 temp = find_base_value (src_0);
d4b60170 835 if (temp != 0)
ec907dd8
JL
836 src_0 = temp;
837 }
838
0134bf2d 839 if (REG_P (src_1))
ec907dd8
JL
840 {
841 temp = find_base_value (src_1);
d4b60170 842 if (temp!= 0)
ec907dd8
JL
843 src_1 = temp;
844 }
2a2c8203 845
0134bf2d
DE
846 /* If either base is named object or a special address
847 (like an argument or stack reference), then use it for the
848 base term. */
849 if (src_0 != 0
850 && (GET_CODE (src_0) == SYMBOL_REF
851 || GET_CODE (src_0) == LABEL_REF
852 || (GET_CODE (src_0) == ADDRESS
853 && GET_MODE (src_0) != VOIDmode)))
854 return src_0;
855
856 if (src_1 != 0
857 && (GET_CODE (src_1) == SYMBOL_REF
858 || GET_CODE (src_1) == LABEL_REF
859 || (GET_CODE (src_1) == ADDRESS
860 && GET_MODE (src_1) != VOIDmode)))
861 return src_1;
862
d4b60170 863 /* Guess which operand is the base address:
ec907dd8
JL
864 If either operand is a symbol, then it is the base. If
865 either operand is a CONST_INT, then the other is the base. */
d4b60170 866 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 867 return find_base_value (src_0);
d4b60170 868 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
869 return find_base_value (src_1);
870
9ae8ffe7 871 return 0;
2a2c8203
JC
872 }
873
874 case LO_SUM:
875 /* The standard form is (lo_sum reg sym) so look only at the
876 second operand. */
877 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
878
879 case AND:
880 /* If the second operand is constant set the base
ec5c56db 881 address to the first operand. */
2a2c8203
JC
882 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
883 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
884 return 0;
885
61f0131c
R
886 case TRUNCATE:
887 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
888 break;
889 /* Fall through. */
9ae8ffe7 890 case HIGH:
d288e53d
DE
891 case PRE_INC:
892 case PRE_DEC:
893 case POST_INC:
894 case POST_DEC:
895 case PRE_MODIFY:
896 case POST_MODIFY:
2a2c8203 897 return find_base_value (XEXP (src, 0));
1d300e19 898
0aacc8ed
RK
899 case ZERO_EXTEND:
900 case SIGN_EXTEND: /* used for NT/Alpha pointers */
901 {
902 rtx temp = find_base_value (XEXP (src, 0));
903
5ae6cd0d 904 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 905 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
906
907 return temp;
908 }
909
1d300e19
KG
910 default:
911 break;
9ae8ffe7
JL
912 }
913
914 return 0;
915}
916
917/* Called from init_alias_analysis indirectly through note_stores. */
918
d4b60170 919/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
920 register N has been set in this function. */
921static char *reg_seen;
922
13309a5f
JC
923/* Addresses which are known not to alias anything else are identified
924 by a unique integer. */
ec907dd8
JL
925static int unique_id;
926
2a2c8203 927static void
4682ae04 928record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 929{
b3694847 930 unsigned regno;
9ae8ffe7 931 rtx src;
c28b4e40 932 int n;
9ae8ffe7
JL
933
934 if (GET_CODE (dest) != REG)
935 return;
936
fb6754f0 937 regno = REGNO (dest);
9ae8ffe7 938
c582d54a 939 if (regno >= VARRAY_SIZE (reg_base_value))
ac606739
GS
940 abort ();
941
c28b4e40
JW
942 /* If this spans multiple hard registers, then we must indicate that every
943 register has an unusable value. */
944 if (regno < FIRST_PSEUDO_REGISTER)
66fd46b6 945 n = hard_regno_nregs[regno][GET_MODE (dest)];
c28b4e40
JW
946 else
947 n = 1;
948 if (n != 1)
949 {
950 while (--n >= 0)
951 {
952 reg_seen[regno + n] = 1;
953 new_reg_base_value[regno + n] = 0;
954 }
955 return;
956 }
957
9ae8ffe7
JL
958 if (set)
959 {
960 /* A CLOBBER wipes out any old value but does not prevent a previously
961 unset register from acquiring a base address (i.e. reg_seen is not
962 set). */
963 if (GET_CODE (set) == CLOBBER)
964 {
ec907dd8 965 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
966 return;
967 }
968 src = SET_SRC (set);
969 }
970 else
971 {
9ae8ffe7
JL
972 if (reg_seen[regno])
973 {
ec907dd8 974 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
975 return;
976 }
977 reg_seen[regno] = 1;
38a448ca
RH
978 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
979 GEN_INT (unique_id++));
9ae8ffe7
JL
980 return;
981 }
982
983 /* This is not the first set. If the new value is not related to the
984 old value, forget the base value. Note that the following code is
985 not detected:
986 extern int x, y; int *p = &x; p += (&y-&x);
987 ANSI C does not allow computing the difference of addresses
988 of distinct top level objects. */
ec907dd8 989 if (new_reg_base_value[regno])
9ae8ffe7
JL
990 switch (GET_CODE (src))
991 {
2a2c8203 992 case LO_SUM:
9ae8ffe7
JL
993 case MINUS:
994 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 995 new_reg_base_value[regno] = 0;
9ae8ffe7 996 break;
61f0131c
R
997 case PLUS:
998 /* If the value we add in the PLUS is also a valid base value,
999 this might be the actual base value, and the original value
1000 an index. */
1001 {
1002 rtx other = NULL_RTX;
1003
1004 if (XEXP (src, 0) == dest)
1005 other = XEXP (src, 1);
1006 else if (XEXP (src, 1) == dest)
1007 other = XEXP (src, 0);
1008
1009 if (! other || find_base_value (other))
1010 new_reg_base_value[regno] = 0;
1011 break;
1012 }
9ae8ffe7
JL
1013 case AND:
1014 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1015 new_reg_base_value[regno] = 0;
9ae8ffe7 1016 break;
9ae8ffe7 1017 default:
ec907dd8 1018 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1019 break;
1020 }
1021 /* If this is the first set of a register, record the value. */
1022 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1023 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1024 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1025
1026 reg_seen[regno] = 1;
1027}
1028
ac3d9668
RK
1029/* Called from loop optimization when a new pseudo-register is
1030 created. It indicates that REGNO is being set to VAL. f INVARIANT
1031 is true then this value also describes an invariant relationship
1032 which can be used to deduce that two registers with unknown values
1033 are different. */
d4b60170 1034
9ae8ffe7 1035void
4682ae04 1036record_base_value (unsigned int regno, rtx val, int invariant)
9ae8ffe7 1037{
c582d54a 1038 if (invariant && alias_invariant && regno < alias_invariant_size)
de12be17
JC
1039 alias_invariant[regno] = val;
1040
c582d54a
JH
1041 if (regno >= VARRAY_SIZE (reg_base_value))
1042 VARRAY_GROW (reg_base_value, max_reg_num ());
1043
9ae8ffe7
JL
1044 if (GET_CODE (val) == REG)
1045 {
c582d54a
JH
1046 VARRAY_RTX (reg_base_value, regno)
1047 = REG_BASE_VALUE (val);
9ae8ffe7
JL
1048 return;
1049 }
c582d54a
JH
1050 VARRAY_RTX (reg_base_value, regno)
1051 = find_base_value (val);
9ae8ffe7
JL
1052}
1053
43fe47ca
JW
1054/* Clear alias info for a register. This is used if an RTL transformation
1055 changes the value of a register. This is used in flow by AUTO_INC_DEC
1056 optimizations. We don't need to clear reg_base_value, since flow only
1057 changes the offset. */
1058
1059void
4682ae04 1060clear_reg_alias_info (rtx reg)
43fe47ca 1061{
4e1a4144
JW
1062 unsigned int regno = REGNO (reg);
1063
1064 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1065 reg_known_value[regno] = reg;
43fe47ca
JW
1066}
1067
db048faf
MM
1068/* Returns a canonical version of X, from the point of view alias
1069 analysis. (For example, if X is a MEM whose address is a register,
1070 and the register has a known value (say a SYMBOL_REF), then a MEM
1071 whose address is the SYMBOL_REF is returned.) */
1072
1073rtx
4682ae04 1074canon_rtx (rtx x)
9ae8ffe7
JL
1075{
1076 /* Recursively look for equivalences. */
fb6754f0
BS
1077 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1078 && REGNO (x) < reg_known_value_size)
1079 return reg_known_value[REGNO (x)] == x
1080 ? x : canon_rtx (reg_known_value[REGNO (x)]);
9ae8ffe7
JL
1081 else if (GET_CODE (x) == PLUS)
1082 {
1083 rtx x0 = canon_rtx (XEXP (x, 0));
1084 rtx x1 = canon_rtx (XEXP (x, 1));
1085
1086 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1087 {
9ae8ffe7 1088 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1089 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1090 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1091 return plus_constant (x0, INTVAL (x1));
38a448ca 1092 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1093 }
1094 }
d4b60170 1095
9ae8ffe7
JL
1096 /* This gives us much better alias analysis when called from
1097 the loop optimizer. Note we want to leave the original
1098 MEM alone, but need to return the canonicalized MEM with
1099 all the flags with their original values. */
1100 else if (GET_CODE (x) == MEM)
f1ec5147 1101 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1102
9ae8ffe7
JL
1103 return x;
1104}
1105
1106/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1107 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1108
1109 We use the data in reg_known_value above to see if two registers with
1110 different numbers are, in fact, equivalent. */
1111
1112static int
4682ae04 1113rtx_equal_for_memref_p (rtx x, rtx y)
9ae8ffe7 1114{
b3694847
SS
1115 int i;
1116 int j;
1117 enum rtx_code code;
1118 const char *fmt;
9ae8ffe7
JL
1119
1120 if (x == 0 && y == 0)
1121 return 1;
1122 if (x == 0 || y == 0)
1123 return 0;
d4b60170 1124
9ae8ffe7
JL
1125 if (x == y)
1126 return 1;
1127
1128 code = GET_CODE (x);
1129 /* Rtx's of different codes cannot be equal. */
1130 if (code != GET_CODE (y))
1131 return 0;
1132
1133 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1134 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1135
1136 if (GET_MODE (x) != GET_MODE (y))
1137 return 0;
1138
db048faf
MM
1139 /* Some RTL can be compared without a recursive examination. */
1140 switch (code)
1141 {
1142 case REG:
1143 return REGNO (x) == REGNO (y);
1144
1145 case LABEL_REF:
1146 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1147
db048faf
MM
1148 case SYMBOL_REF:
1149 return XSTR (x, 0) == XSTR (y, 0);
1150
40e02b4a 1151 case VALUE:
db048faf
MM
1152 case CONST_INT:
1153 case CONST_DOUBLE:
1154 /* There's no need to compare the contents of CONST_DOUBLEs or
1155 CONST_INTs because pointer equality is a good enough
1156 comparison for these nodes. */
1157 return 0;
1158
1159 case ADDRESSOF:
831ecbd4 1160 return (XINT (x, 1) == XINT (y, 1)
45183e03 1161 && rtx_equal_for_memref_p (XEXP (x, 0),
4682ae04 1162 XEXP (y, 0)));
db048faf
MM
1163
1164 default:
1165 break;
1166 }
9ae8ffe7 1167
45183e03
JH
1168 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1169 if (code == PLUS)
9ae8ffe7
JL
1170 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1171 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1172 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1173 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1174 /* For commutative operations, the RTX match if the operand match in any
1175 order. Also handle the simple binary and unary cases without a loop. */
1176 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1177 {
1178 rtx xop0 = canon_rtx (XEXP (x, 0));
1179 rtx yop0 = canon_rtx (XEXP (y, 0));
1180 rtx yop1 = canon_rtx (XEXP (y, 1));
1181
1182 return ((rtx_equal_for_memref_p (xop0, yop0)
1183 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1184 || (rtx_equal_for_memref_p (xop0, yop1)
1185 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1186 }
9ae8ffe7 1187 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
45183e03
JH
1188 {
1189 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1190 canon_rtx (XEXP (y, 0)))
45183e03
JH
1191 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1192 canon_rtx (XEXP (y, 1))));
1193 }
9ae8ffe7 1194 else if (GET_RTX_CLASS (code) == '1')
45183e03 1195 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1196 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1197
1198 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1199 fail to match, return 0 for the whole things.
1200
1201 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1202
1203 fmt = GET_RTX_FORMAT (code);
1204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1205 {
1206 switch (fmt[i])
1207 {
9ae8ffe7
JL
1208 case 'i':
1209 if (XINT (x, i) != XINT (y, i))
1210 return 0;
1211 break;
1212
9ae8ffe7
JL
1213 case 'E':
1214 /* Two vectors must have the same length. */
1215 if (XVECLEN (x, i) != XVECLEN (y, i))
1216 return 0;
1217
1218 /* And the corresponding elements must match. */
1219 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1220 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1221 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1222 return 0;
1223 break;
1224
1225 case 'e':
45183e03
JH
1226 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1227 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1228 return 0;
1229 break;
1230
3237ac18
AH
1231 /* This can happen for asm operands. */
1232 case 's':
1233 if (strcmp (XSTR (x, i), XSTR (y, i)))
1234 return 0;
1235 break;
1236
aee21ba9
JL
1237 /* This can happen for an asm which clobbers memory. */
1238 case '0':
1239 break;
1240
9ae8ffe7
JL
1241 /* It is believed that rtx's at this level will never
1242 contain anything but integers and other rtx's,
1243 except for within LABEL_REFs and SYMBOL_REFs. */
1244 default:
1245 abort ();
1246 }
1247 }
1248 return 1;
1249}
1250
1251/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1252 X and return it, or return 0 if none found. */
1253
1254static rtx
4682ae04 1255find_symbolic_term (rtx x)
9ae8ffe7 1256{
b3694847
SS
1257 int i;
1258 enum rtx_code code;
1259 const char *fmt;
9ae8ffe7
JL
1260
1261 code = GET_CODE (x);
1262 if (code == SYMBOL_REF || code == LABEL_REF)
1263 return x;
1264 if (GET_RTX_CLASS (code) == 'o')
1265 return 0;
1266
1267 fmt = GET_RTX_FORMAT (code);
1268 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1269 {
1270 rtx t;
1271
1272 if (fmt[i] == 'e')
1273 {
1274 t = find_symbolic_term (XEXP (x, i));
1275 if (t != 0)
1276 return t;
1277 }
1278 else if (fmt[i] == 'E')
1279 break;
1280 }
1281 return 0;
1282}
1283
94f24ddc 1284rtx
4682ae04 1285find_base_term (rtx x)
9ae8ffe7 1286{
eab5c70a
BS
1287 cselib_val *val;
1288 struct elt_loc_list *l;
1289
b949ea8b
JW
1290#if defined (FIND_BASE_TERM)
1291 /* Try machine-dependent ways to find the base term. */
1292 x = FIND_BASE_TERM (x);
1293#endif
1294
9ae8ffe7
JL
1295 switch (GET_CODE (x))
1296 {
1297 case REG:
1298 return REG_BASE_VALUE (x);
1299
d288e53d
DE
1300 case TRUNCATE:
1301 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1302 return 0;
d288e53d 1303 /* Fall through. */
9ae8ffe7 1304 case HIGH:
6d849a2a
JL
1305 case PRE_INC:
1306 case PRE_DEC:
1307 case POST_INC:
1308 case POST_DEC:
d288e53d
DE
1309 case PRE_MODIFY:
1310 case POST_MODIFY:
6d849a2a
JL
1311 return find_base_term (XEXP (x, 0));
1312
1abade85
RK
1313 case ZERO_EXTEND:
1314 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1315 {
1316 rtx temp = find_base_term (XEXP (x, 0));
1317
5ae6cd0d 1318 if (temp != 0 && CONSTANT_P (temp))
1abade85 1319 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1320
1321 return temp;
1322 }
1323
eab5c70a
BS
1324 case VALUE:
1325 val = CSELIB_VAL_PTR (x);
40e02b4a
JH
1326 if (!val)
1327 return 0;
eab5c70a
BS
1328 for (l = val->locs; l; l = l->next)
1329 if ((x = find_base_term (l->loc)) != 0)
1330 return x;
1331 return 0;
1332
9ae8ffe7
JL
1333 case CONST:
1334 x = XEXP (x, 0);
1335 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1336 return 0;
938d968e 1337 /* Fall through. */
9ae8ffe7
JL
1338 case LO_SUM:
1339 case PLUS:
1340 case MINUS:
1341 {
3c567fae
JL
1342 rtx tmp1 = XEXP (x, 0);
1343 rtx tmp2 = XEXP (x, 1);
1344
f5143c46 1345 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1346 the two operands represents the real base address. Otherwise this
1347 routine may return the index register instead of the base register.
1348
1349 That may cause us to believe no aliasing was possible, when in
1350 fact aliasing is possible.
1351
1352 We use a few simple tests to guess the base register. Additional
1353 tests can certainly be added. For example, if one of the operands
1354 is a shift or multiply, then it must be the index register and the
1355 other operand is the base register. */
ca7fd9cd 1356
b949ea8b
JW
1357 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1358 return find_base_term (tmp2);
1359
3c567fae
JL
1360 /* If either operand is known to be a pointer, then use it
1361 to determine the base term. */
3502dc9c 1362 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1363 return find_base_term (tmp1);
1364
3502dc9c 1365 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1366 return find_base_term (tmp2);
1367
1368 /* Neither operand was known to be a pointer. Go ahead and find the
1369 base term for both operands. */
1370 tmp1 = find_base_term (tmp1);
1371 tmp2 = find_base_term (tmp2);
1372
1373 /* If either base term is named object or a special address
1374 (like an argument or stack reference), then use it for the
1375 base term. */
d4b60170 1376 if (tmp1 != 0
3c567fae
JL
1377 && (GET_CODE (tmp1) == SYMBOL_REF
1378 || GET_CODE (tmp1) == LABEL_REF
1379 || (GET_CODE (tmp1) == ADDRESS
1380 && GET_MODE (tmp1) != VOIDmode)))
1381 return tmp1;
1382
d4b60170 1383 if (tmp2 != 0
3c567fae
JL
1384 && (GET_CODE (tmp2) == SYMBOL_REF
1385 || GET_CODE (tmp2) == LABEL_REF
1386 || (GET_CODE (tmp2) == ADDRESS
1387 && GET_MODE (tmp2) != VOIDmode)))
1388 return tmp2;
1389
1390 /* We could not determine which of the two operands was the
1391 base register and which was the index. So we can determine
1392 nothing from the base alias check. */
1393 return 0;
9ae8ffe7
JL
1394 }
1395
1396 case AND:
d288e53d
DE
1397 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1398 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1399 return 0;
1400
1401 case SYMBOL_REF:
1402 case LABEL_REF:
1403 return x;
1404
d982e46e 1405 case ADDRESSOF:
bb07060a 1406 return REG_BASE_VALUE (frame_pointer_rtx);
d982e46e 1407
9ae8ffe7
JL
1408 default:
1409 return 0;
1410 }
1411}
1412
1413/* Return 0 if the addresses X and Y are known to point to different
1414 objects, 1 if they might be pointers to the same object. */
1415
1416static int
4682ae04
AJ
1417base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1418 enum machine_mode y_mode)
9ae8ffe7
JL
1419{
1420 rtx x_base = find_base_term (x);
1421 rtx y_base = find_base_term (y);
1422
1c72c7f6
JC
1423 /* If the address itself has no known base see if a known equivalent
1424 value has one. If either address still has no known base, nothing
1425 is known about aliasing. */
1426 if (x_base == 0)
1427 {
1428 rtx x_c;
d4b60170 1429
1c72c7f6
JC
1430 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1431 return 1;
d4b60170 1432
1c72c7f6
JC
1433 x_base = find_base_term (x_c);
1434 if (x_base == 0)
1435 return 1;
1436 }
9ae8ffe7 1437
1c72c7f6
JC
1438 if (y_base == 0)
1439 {
1440 rtx y_c;
1441 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1442 return 1;
d4b60170 1443
1c72c7f6
JC
1444 y_base = find_base_term (y_c);
1445 if (y_base == 0)
1446 return 1;
1447 }
1448
1449 /* If the base addresses are equal nothing is known about aliasing. */
1450 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1451 return 1;
1452
ca7fd9cd 1453 /* The base addresses of the read and write are different expressions.
56ee9281
RH
1454 If they are both symbols and they are not accessed via AND, there is
1455 no conflict. We can bring knowledge of object alignment into play
1456 here. For example, on alpha, "char a, b;" can alias one another,
1457 though "char a; long b;" cannot. */
9ae8ffe7 1458 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 1459 {
56ee9281
RH
1460 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1461 return 1;
1462 if (GET_CODE (x) == AND
1463 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8fa2140d 1464 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
56ee9281
RH
1465 return 1;
1466 if (GET_CODE (y) == AND
1467 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8fa2140d 1468 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
56ee9281 1469 return 1;
b2972551
JL
1470 /* Differing symbols never alias. */
1471 return 0;
c02f035f 1472 }
9ae8ffe7
JL
1473
1474 /* If one address is a stack reference there can be no alias:
1475 stack references using different base registers do not alias,
1476 a stack reference can not alias a parameter, and a stack reference
1477 can not alias a global. */
1478 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1479 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1480 return 0;
1481
1482 if (! flag_argument_noalias)
1483 return 1;
1484
1485 if (flag_argument_noalias > 1)
1486 return 0;
1487
ec5c56db 1488 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1489 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1490}
1491
eab5c70a
BS
1492/* Convert the address X into something we can use. This is done by returning
1493 it unchanged unless it is a value; in the latter case we call cselib to get
1494 a more useful rtx. */
3bdf5ad1 1495
a13d4ebf 1496rtx
4682ae04 1497get_addr (rtx x)
eab5c70a
BS
1498{
1499 cselib_val *v;
1500 struct elt_loc_list *l;
1501
1502 if (GET_CODE (x) != VALUE)
1503 return x;
1504 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
1505 if (v)
1506 {
1507 for (l = v->locs; l; l = l->next)
1508 if (CONSTANT_P (l->loc))
1509 return l->loc;
1510 for (l = v->locs; l; l = l->next)
1511 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1512 return l->loc;
1513 if (v->locs)
1514 return v->locs->loc;
1515 }
eab5c70a
BS
1516 return x;
1517}
1518
39cec1ac
MH
1519/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1520 where SIZE is the size in bytes of the memory reference. If ADDR
1521 is not modified by the memory reference then ADDR is returned. */
1522
1523rtx
4682ae04 1524addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1525{
1526 int offset = 0;
ca7fd9cd 1527
39cec1ac
MH
1528 switch (GET_CODE (addr))
1529 {
1530 case PRE_INC:
1531 offset = (n_refs + 1) * size;
1532 break;
1533 case PRE_DEC:
1534 offset = -(n_refs + 1) * size;
1535 break;
1536 case POST_INC:
1537 offset = n_refs * size;
1538 break;
1539 case POST_DEC:
1540 offset = -n_refs * size;
1541 break;
1542
1543 default:
1544 return addr;
1545 }
ca7fd9cd 1546
39cec1ac 1547 if (offset)
45183e03
JH
1548 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1549 GEN_INT (offset));
39cec1ac
MH
1550 else
1551 addr = XEXP (addr, 0);
45183e03 1552 addr = canon_rtx (addr);
39cec1ac
MH
1553
1554 return addr;
1555}
1556
9ae8ffe7
JL
1557/* Return nonzero if X and Y (memory addresses) could reference the
1558 same location in memory. C is an offset accumulator. When
1559 C is nonzero, we are testing aliases between X and Y + C.
1560 XSIZE is the size in bytes of the X reference,
1561 similarly YSIZE is the size in bytes for Y.
45183e03 1562 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1563
1564 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1565 referenced (the reference was BLKmode), so make the most pessimistic
1566 assumptions.
1567
c02f035f
RH
1568 If XSIZE or YSIZE is negative, we may access memory outside the object
1569 being referenced as a side effect. This can happen when using AND to
1570 align memory references, as is done on the Alpha.
1571
9ae8ffe7 1572 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1573 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1574
9ae8ffe7 1575static int
4682ae04 1576memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1577{
eab5c70a
BS
1578 if (GET_CODE (x) == VALUE)
1579 x = get_addr (x);
1580 if (GET_CODE (y) == VALUE)
1581 y = get_addr (y);
9ae8ffe7
JL
1582 if (GET_CODE (x) == HIGH)
1583 x = XEXP (x, 0);
1584 else if (GET_CODE (x) == LO_SUM)
1585 x = XEXP (x, 1);
1586 else
45183e03 1587 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1588 if (GET_CODE (y) == HIGH)
1589 y = XEXP (y, 0);
1590 else if (GET_CODE (y) == LO_SUM)
1591 y = XEXP (y, 1);
1592 else
45183e03 1593 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1594
1595 if (rtx_equal_for_memref_p (x, y))
1596 {
c02f035f 1597 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1598 return 1;
1599 if (c >= 0 && xsize > c)
1600 return 1;
1601 if (c < 0 && ysize+c > 0)
1602 return 1;
1603 return 0;
1604 }
1605
6e73e666
JC
1606 /* This code used to check for conflicts involving stack references and
1607 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1608
1609 if (GET_CODE (x) == PLUS)
1610 {
1611 /* The fact that X is canonicalized means that this
1612 PLUS rtx is canonicalized. */
1613 rtx x0 = XEXP (x, 0);
1614 rtx x1 = XEXP (x, 1);
1615
1616 if (GET_CODE (y) == PLUS)
1617 {
1618 /* The fact that Y is canonicalized means that this
1619 PLUS rtx is canonicalized. */
1620 rtx y0 = XEXP (y, 0);
1621 rtx y1 = XEXP (y, 1);
1622
1623 if (rtx_equal_for_memref_p (x1, y1))
1624 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1625 if (rtx_equal_for_memref_p (x0, y0))
1626 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1627 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1628 {
1629 if (GET_CODE (y1) == CONST_INT)
1630 return memrefs_conflict_p (xsize, x0, ysize, y0,
1631 c - INTVAL (x1) + INTVAL (y1));
1632 else
1633 return memrefs_conflict_p (xsize, x0, ysize, y,
1634 c - INTVAL (x1));
1635 }
9ae8ffe7
JL
1636 else if (GET_CODE (y1) == CONST_INT)
1637 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1638
6e73e666 1639 return 1;
9ae8ffe7
JL
1640 }
1641 else if (GET_CODE (x1) == CONST_INT)
1642 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1643 }
1644 else if (GET_CODE (y) == PLUS)
1645 {
1646 /* The fact that Y is canonicalized means that this
1647 PLUS rtx is canonicalized. */
1648 rtx y0 = XEXP (y, 0);
1649 rtx y1 = XEXP (y, 1);
1650
1651 if (GET_CODE (y1) == CONST_INT)
1652 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1653 else
1654 return 1;
1655 }
1656
1657 if (GET_CODE (x) == GET_CODE (y))
1658 switch (GET_CODE (x))
1659 {
1660 case MULT:
1661 {
1662 /* Handle cases where we expect the second operands to be the
1663 same, and check only whether the first operand would conflict
1664 or not. */
1665 rtx x0, y0;
1666 rtx x1 = canon_rtx (XEXP (x, 1));
1667 rtx y1 = canon_rtx (XEXP (y, 1));
1668 if (! rtx_equal_for_memref_p (x1, y1))
1669 return 1;
1670 x0 = canon_rtx (XEXP (x, 0));
1671 y0 = canon_rtx (XEXP (y, 0));
1672 if (rtx_equal_for_memref_p (x0, y0))
1673 return (xsize == 0 || ysize == 0
1674 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1675
1676 /* Can't properly adjust our sizes. */
1677 if (GET_CODE (x1) != CONST_INT)
1678 return 1;
1679 xsize /= INTVAL (x1);
1680 ysize /= INTVAL (x1);
1681 c /= INTVAL (x1);
1682 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1683 }
1d300e19 1684
de12be17
JC
1685 case REG:
1686 /* Are these registers known not to be equal? */
1687 if (alias_invariant)
1688 {
e51712db 1689 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
1690 rtx i_x, i_y; /* invariant relationships of X and Y */
1691
c582d54a
JH
1692 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1693 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
de12be17
JC
1694
1695 if (i_x == 0 && i_y == 0)
1696 break;
1697
1698 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1699 ysize, i_y ? i_y : y, c))
1700 return 0;
1701 }
1702 break;
1703
1d300e19
KG
1704 default:
1705 break;
9ae8ffe7
JL
1706 }
1707
1708 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1709 as an access with indeterminate size. Assume that references
56ee9281
RH
1710 besides AND are aligned, so if the size of the other reference is
1711 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1712 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1713 {
02e3377d 1714 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1715 xsize = -1;
45183e03 1716 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1717 }
9ae8ffe7 1718 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1719 {
56ee9281 1720 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1721 may yet be able to determine that we can not overlap. But we
c02f035f 1722 also need to that we are far enough from the end not to overlap
56ee9281 1723 a following reference, so we do nothing with that for now. */
02e3377d 1724 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1725 ysize = -1;
45183e03 1726 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1727 }
9ae8ffe7 1728
b24ea077
JW
1729 if (GET_CODE (x) == ADDRESSOF)
1730 {
1731 if (y == frame_pointer_rtx
1732 || GET_CODE (y) == ADDRESSOF)
1733 return xsize <= 0 || ysize <= 0;
1734 }
1735 if (GET_CODE (y) == ADDRESSOF)
1736 {
1737 if (x == frame_pointer_rtx)
1738 return xsize <= 0 || ysize <= 0;
1739 }
d982e46e 1740
9ae8ffe7
JL
1741 if (CONSTANT_P (x))
1742 {
1743 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1744 {
1745 c += (INTVAL (y) - INTVAL (x));
c02f035f 1746 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1747 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1748 }
1749
1750 if (GET_CODE (x) == CONST)
1751 {
1752 if (GET_CODE (y) == CONST)
1753 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1754 ysize, canon_rtx (XEXP (y, 0)), c);
1755 else
1756 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1757 ysize, y, c);
1758 }
1759 if (GET_CODE (y) == CONST)
1760 return memrefs_conflict_p (xsize, x, ysize,
1761 canon_rtx (XEXP (y, 0)), c);
1762
1763 if (CONSTANT_P (y))
b949ea8b 1764 return (xsize <= 0 || ysize <= 0
c02f035f 1765 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1766 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1767
1768 return 1;
1769 }
1770 return 1;
1771}
1772
1773/* Functions to compute memory dependencies.
1774
1775 Since we process the insns in execution order, we can build tables
1776 to keep track of what registers are fixed (and not aliased), what registers
1777 are varying in known ways, and what registers are varying in unknown
1778 ways.
1779
1780 If both memory references are volatile, then there must always be a
1781 dependence between the two references, since their order can not be
1782 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1783 though.
9ae8ffe7 1784
dc1618bc
RK
1785 A MEM_IN_STRUCT reference at a non-AND varying address can never
1786 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1787 also must allow AND addresses, because they may generate accesses
1788 outside the object being referenced. This is used to generate
1789 aligned addresses from unaligned addresses, for instance, the alpha
1790 storeqi_unaligned pattern. */
9ae8ffe7
JL
1791
1792/* Read dependence: X is read after read in MEM takes place. There can
1793 only be a dependence here if both reads are volatile. */
1794
1795int
4682ae04 1796read_dependence (rtx mem, rtx x)
9ae8ffe7
JL
1797{
1798 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1799}
1800
c6df88cb
MM
1801/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1802 MEM2 is a reference to a structure at a varying address, or returns
1803 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1804 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1805 to decide whether or not an address may vary; it should return
eab5c70a
BS
1806 nonzero whenever variation is possible.
1807 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1808
2c72b78f 1809static rtx
4682ae04
AJ
1810fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1811 rtx mem2_addr,
1812 int (*varies_p) (rtx, int))
ca7fd9cd 1813{
3e0abe15
GK
1814 if (! flag_strict_aliasing)
1815 return NULL_RTX;
1816
ca7fd9cd 1817 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1818 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1819 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1820 varying address. */
1821 return mem1;
1822
ca7fd9cd 1823 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1824 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1825 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1826 varying address. */
1827 return mem2;
1828
1829 return NULL_RTX;
1830}
1831
1832/* Returns nonzero if something about the mode or address format MEM1
1833 indicates that it might well alias *anything*. */
1834
2c72b78f 1835static int
4682ae04 1836aliases_everything_p (rtx mem)
c6df88cb 1837{
c6df88cb
MM
1838 if (GET_CODE (XEXP (mem, 0)) == AND)
1839 /* If the address is an AND, its very hard to know at what it is
1840 actually pointing. */
1841 return 1;
ca7fd9cd 1842
c6df88cb
MM
1843 return 0;
1844}
1845
998d7deb
RH
1846/* Return true if we can determine that the fields referenced cannot
1847 overlap for any pair of objects. */
1848
1849static bool
4682ae04 1850nonoverlapping_component_refs_p (tree x, tree y)
998d7deb
RH
1851{
1852 tree fieldx, fieldy, typex, typey, orig_y;
1853
1854 do
1855 {
1856 /* The comparison has to be done at a common type, since we don't
d6a7951f 1857 know how the inheritance hierarchy works. */
998d7deb
RH
1858 orig_y = y;
1859 do
1860 {
1861 fieldx = TREE_OPERAND (x, 1);
1862 typex = DECL_FIELD_CONTEXT (fieldx);
1863
1864 y = orig_y;
1865 do
1866 {
1867 fieldy = TREE_OPERAND (y, 1);
1868 typey = DECL_FIELD_CONTEXT (fieldy);
1869
1870 if (typex == typey)
1871 goto found;
1872
1873 y = TREE_OPERAND (y, 0);
1874 }
1875 while (y && TREE_CODE (y) == COMPONENT_REF);
1876
1877 x = TREE_OPERAND (x, 0);
1878 }
1879 while (x && TREE_CODE (x) == COMPONENT_REF);
1880
1881 /* Never found a common type. */
1882 return false;
1883
1884 found:
1885 /* If we're left with accessing different fields of a structure,
1886 then no overlap. */
1887 if (TREE_CODE (typex) == RECORD_TYPE
1888 && fieldx != fieldy)
1889 return true;
1890
1891 /* The comparison on the current field failed. If we're accessing
1892 a very nested structure, look at the next outer level. */
1893 x = TREE_OPERAND (x, 0);
1894 y = TREE_OPERAND (y, 0);
1895 }
1896 while (x && y
1897 && TREE_CODE (x) == COMPONENT_REF
1898 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 1899
998d7deb
RH
1900 return false;
1901}
1902
1903/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1904
1905static tree
4682ae04 1906decl_for_component_ref (tree x)
998d7deb
RH
1907{
1908 do
1909 {
1910 x = TREE_OPERAND (x, 0);
1911 }
1912 while (x && TREE_CODE (x) == COMPONENT_REF);
1913
1914 return x && DECL_P (x) ? x : NULL_TREE;
1915}
1916
1917/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1918 offset of the field reference. */
1919
1920static rtx
4682ae04 1921adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
1922{
1923 HOST_WIDE_INT ioffset;
1924
1925 if (! offset)
1926 return NULL_RTX;
1927
1928 ioffset = INTVAL (offset);
ca7fd9cd 1929 do
998d7deb
RH
1930 {
1931 tree field = TREE_OPERAND (x, 1);
1932
1933 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1934 return NULL_RTX;
1935 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1936 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1937 / BITS_PER_UNIT));
1938
1939 x = TREE_OPERAND (x, 0);
1940 }
1941 while (x && TREE_CODE (x) == COMPONENT_REF);
1942
1943 return GEN_INT (ioffset);
1944}
1945
95bd1dd7 1946/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
1947 X and Y and they do not overlap. */
1948
1949static int
4682ae04 1950nonoverlapping_memrefs_p (rtx x, rtx y)
a4311dfe 1951{
998d7deb 1952 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
1953 rtx rtlx, rtly;
1954 rtx basex, basey;
998d7deb 1955 rtx moffsetx, moffsety;
a4311dfe
RK
1956 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1957
998d7deb
RH
1958 /* Unless both have exprs, we can't tell anything. */
1959 if (exprx == 0 || expry == 0)
1960 return 0;
1961
1962 /* If both are field references, we may be able to determine something. */
1963 if (TREE_CODE (exprx) == COMPONENT_REF
1964 && TREE_CODE (expry) == COMPONENT_REF
1965 && nonoverlapping_component_refs_p (exprx, expry))
1966 return 1;
1967
1968 /* If the field reference test failed, look at the DECLs involved. */
1969 moffsetx = MEM_OFFSET (x);
1970 if (TREE_CODE (exprx) == COMPONENT_REF)
1971 {
1972 tree t = decl_for_component_ref (exprx);
1973 if (! t)
1974 return 0;
1975 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1976 exprx = t;
1977 }
c67a1cf6
RH
1978 else if (TREE_CODE (exprx) == INDIRECT_REF)
1979 {
1980 exprx = TREE_OPERAND (exprx, 0);
1981 if (flag_argument_noalias < 2
1982 || TREE_CODE (exprx) != PARM_DECL)
1983 return 0;
1984 }
1985
998d7deb
RH
1986 moffsety = MEM_OFFSET (y);
1987 if (TREE_CODE (expry) == COMPONENT_REF)
1988 {
1989 tree t = decl_for_component_ref (expry);
1990 if (! t)
1991 return 0;
1992 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1993 expry = t;
1994 }
c67a1cf6
RH
1995 else if (TREE_CODE (expry) == INDIRECT_REF)
1996 {
1997 expry = TREE_OPERAND (expry, 0);
1998 if (flag_argument_noalias < 2
1999 || TREE_CODE (expry) != PARM_DECL)
2000 return 0;
2001 }
998d7deb
RH
2002
2003 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2004 return 0;
2005
998d7deb
RH
2006 rtlx = DECL_RTL (exprx);
2007 rtly = DECL_RTL (expry);
a4311dfe 2008
1edcd60b
RK
2009 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2010 can't overlap unless they are the same because we never reuse that part
2011 of the stack frame used for locals for spilled pseudos. */
2012 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2013 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2014 return 1;
2015
2016 /* Get the base and offsets of both decls. If either is a register, we
2017 know both are and are the same, so use that as the base. The only
2018 we can avoid overlap is if we can deduce that they are nonoverlapping
2019 pieces of that decl, which is very rare. */
1edcd60b 2020 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2021 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2022 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2023
1edcd60b 2024 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2025 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2026 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2027
d746694a 2028 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2029 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2030 stack frame. Otherwise a different base means we can't tell if they
2031 overlap or not. */
2032 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2033 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2034 || (CONSTANT_P (basex) && REG_P (basey)
2035 && REGNO_PTR_FRAME_P (REGNO (basey)))
2036 || (CONSTANT_P (basey) && REG_P (basex)
2037 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2038
998d7deb 2039 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2040 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2041 : -1);
998d7deb 2042 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2043 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2044 -1);
2045
0af5bc3e
RK
2046 /* If we have an offset for either memref, it can update the values computed
2047 above. */
998d7deb
RH
2048 if (moffsetx)
2049 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2050 if (moffsety)
2051 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2052
0af5bc3e 2053 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2054 We can't do this if the offset isn't known because we must view this
0af5bc3e 2055 memref as being anywhere inside the DECL's MEM. */
998d7deb 2056 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2057 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2058 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2059 sizey = INTVAL (MEM_SIZE (y));
2060
2061 /* Put the values of the memref with the lower offset in X's values. */
2062 if (offsetx > offsety)
2063 {
2064 tem = offsetx, offsetx = offsety, offsety = tem;
2065 tem = sizex, sizex = sizey, sizey = tem;
2066 }
2067
2068 /* If we don't know the size of the lower-offset value, we can't tell
2069 if they conflict. Otherwise, we do the test. */
a6f7c915 2070 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2071}
2072
9ae8ffe7
JL
2073/* True dependence: X is read after store in MEM takes place. */
2074
2075int
4682ae04
AJ
2076true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2077 int (*varies) (rtx, int))
9ae8ffe7 2078{
b3694847 2079 rtx x_addr, mem_addr;
49982682 2080 rtx base;
9ae8ffe7
JL
2081
2082 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2083 return 1;
2084
c4484b8f
RH
2085 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2086 This is used in epilogue deallocation functions. */
2087 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2088 return 1;
2089 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2090 return 1;
2091
41472af8
MM
2092 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2093 return 0;
2094
b949ea8b
JW
2095 /* Unchanging memory can't conflict with non-unchanging memory.
2096 A non-unchanging read can conflict with a non-unchanging write.
2097 An unchanging read can conflict with an unchanging write since
2098 there may be a single store to this address to initialize it.
ec569656
RK
2099 Note that an unchanging store can conflict with a non-unchanging read
2100 since we have to make conservative assumptions when we have a
2101 record with readonly fields and we are copying the whole thing.
b949ea8b
JW
2102 Just fall through to the code below to resolve potential conflicts.
2103 This won't handle all cases optimally, but the possible performance
2104 loss should be negligible. */
ec569656 2105 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
9ae8ffe7
JL
2106 return 0;
2107
a4311dfe
RK
2108 if (nonoverlapping_memrefs_p (mem, x))
2109 return 0;
2110
56ee9281
RH
2111 if (mem_mode == VOIDmode)
2112 mem_mode = GET_MODE (mem);
2113
eab5c70a
BS
2114 x_addr = get_addr (XEXP (x, 0));
2115 mem_addr = get_addr (XEXP (mem, 0));
2116
55efb413
JW
2117 base = find_base_term (x_addr);
2118 if (base && (GET_CODE (base) == LABEL_REF
2119 || (GET_CODE (base) == SYMBOL_REF
2120 && CONSTANT_POOL_ADDRESS_P (base))))
2121 return 0;
2122
eab5c70a 2123 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2124 return 0;
2125
eab5c70a
BS
2126 x_addr = canon_rtx (x_addr);
2127 mem_addr = canon_rtx (mem_addr);
6e73e666 2128
0211b6ab
JW
2129 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2130 SIZE_FOR_MODE (x), x_addr, 0))
2131 return 0;
2132
c6df88cb 2133 if (aliases_everything_p (x))
0211b6ab
JW
2134 return 1;
2135
f5143c46 2136 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2137 at MEM_MODE, rather than GET_MODE (MEM). */
2138 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2139 return 1;
2140
2141 /* In true_dependence we also allow BLKmode to alias anything. Why
2142 don't we do this in anti_dependence and output_dependence? */
2143 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2144 return 1;
2145
2146 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2147 varies);
2148}
2149
2150/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2151 Variant of true_dependence which assumes MEM has already been
2152 canonicalized (hence we no longer do that here).
2153 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2154 this value prior to canonicalizing. */
2155
2156int
4682ae04
AJ
2157canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2158 rtx x, int (*varies) (rtx, int))
a13d4ebf 2159{
b3694847 2160 rtx x_addr;
a13d4ebf
AM
2161
2162 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2163 return 1;
2164
0fe854a7
RH
2165 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2166 This is used in epilogue deallocation functions. */
2167 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2168 return 1;
2169 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2170 return 1;
2171
a13d4ebf
AM
2172 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2173 return 0;
2174
2175 /* If X is an unchanging read, then it can't possibly conflict with any
2176 non-unchanging store. It may conflict with an unchanging write though,
2177 because there may be a single store to this address to initialize it.
2178 Just fall through to the code below to resolve the case where we have
2179 both an unchanging read and an unchanging write. This won't handle all
2180 cases optimally, but the possible performance loss should be
2181 negligible. */
2182 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2183 return 0;
2184
a4311dfe
RK
2185 if (nonoverlapping_memrefs_p (x, mem))
2186 return 0;
2187
a13d4ebf
AM
2188 x_addr = get_addr (XEXP (x, 0));
2189
2190 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2191 return 0;
2192
2193 x_addr = canon_rtx (x_addr);
2194 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2195 SIZE_FOR_MODE (x), x_addr, 0))
2196 return 0;
2197
2198 if (aliases_everything_p (x))
2199 return 1;
2200
f5143c46 2201 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2202 at MEM_MODE, rather than GET_MODE (MEM). */
2203 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2204 return 1;
0211b6ab 2205
c6df88cb
MM
2206 /* In true_dependence we also allow BLKmode to alias anything. Why
2207 don't we do this in anti_dependence and output_dependence? */
2208 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2209 return 1;
0211b6ab 2210
eab5c70a
BS
2211 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2212 varies);
9ae8ffe7
JL
2213}
2214
da7d8304 2215/* Returns nonzero if a write to X might alias a previous read from
83a00410 2216 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
d2399d75 2217 honor the RTX_UNCHANGING_P flags on X and MEM. */
9ae8ffe7 2218
2c72b78f 2219static int
d2399d75 2220write_dependence_p (rtx mem, rtx x, int writep, int constp)
9ae8ffe7 2221{
6e73e666 2222 rtx x_addr, mem_addr;
c6df88cb 2223 rtx fixed_scalar;
49982682 2224 rtx base;
6e73e666 2225
9ae8ffe7
JL
2226 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2227 return 1;
2228
c4484b8f
RH
2229 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2230 This is used in epilogue deallocation functions. */
2231 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2232 return 1;
2233 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2234 return 1;
2235
eab5c70a
BS
2236 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2237 return 0;
2238
d2399d75
RS
2239 if (constp)
2240 {
2241 /* Unchanging memory can't conflict with non-unchanging memory. */
2242 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2243 return 0;
b949ea8b 2244
d2399d75
RS
2245 /* If MEM is an unchanging read, then it can't possibly conflict with
2246 the store to X, because there is at most one store to MEM, and it
2247 must have occurred somewhere before MEM. */
2248 if (! writep && RTX_UNCHANGING_P (mem))
2249 return 0;
2250 }
55efb413 2251
a4311dfe
RK
2252 if (nonoverlapping_memrefs_p (x, mem))
2253 return 0;
2254
55efb413
JW
2255 x_addr = get_addr (XEXP (x, 0));
2256 mem_addr = get_addr (XEXP (mem, 0));
2257
49982682
JW
2258 if (! writep)
2259 {
55efb413 2260 base = find_base_term (mem_addr);
49982682
JW
2261 if (base && (GET_CODE (base) == LABEL_REF
2262 || (GET_CODE (base) == SYMBOL_REF
2263 && CONSTANT_POOL_ADDRESS_P (base))))
2264 return 0;
2265 }
2266
eab5c70a
BS
2267 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2268 GET_MODE (mem)))
41472af8
MM
2269 return 0;
2270
eab5c70a
BS
2271 x_addr = canon_rtx (x_addr);
2272 mem_addr = canon_rtx (mem_addr);
6e73e666 2273
c6df88cb
MM
2274 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2275 SIZE_FOR_MODE (x), x_addr, 0))
2276 return 0;
2277
ca7fd9cd 2278 fixed_scalar
eab5c70a
BS
2279 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2280 rtx_addr_varies_p);
2281
c6df88cb
MM
2282 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2283 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2284}
2285
2286/* Anti dependence: X is written after read in MEM takes place. */
2287
2288int
4682ae04 2289anti_dependence (rtx mem, rtx x)
c6df88cb 2290{
d2399d75 2291 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
9ae8ffe7
JL
2292}
2293
2294/* Output dependence: X is written after store in MEM takes place. */
2295
2296int
4682ae04 2297output_dependence (rtx mem, rtx x)
9ae8ffe7 2298{
d2399d75
RS
2299 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2300}
2301
2302/* Unchanging anti dependence: Like anti_dependence but ignores
2303 the UNCHANGING_RTX_P property on const variable references. */
2304
2305int
2306unchanging_anti_dependence (rtx mem, rtx x)
2307{
2308 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
9ae8ffe7 2309}
c14b9960
JW
2310\f
2311/* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2312 something which is not local to the function and is not constant. */
7790df19
JW
2313
2314static int
4682ae04 2315nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
7790df19 2316{
c14b9960 2317 rtx x = *loc;
7790df19 2318 rtx base;
7790df19
JW
2319 int regno;
2320
c14b9960
JW
2321 if (! x)
2322 return 0;
7790df19 2323
c14b9960 2324 switch (GET_CODE (x))
7790df19
JW
2325 {
2326 case SUBREG:
2327 if (GET_CODE (SUBREG_REG (x)) == REG)
2328 {
2329 /* Global registers are not local. */
2330 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
ddef6bc7 2331 && global_regs[subreg_regno (x)])
7790df19
JW
2332 return 1;
2333 return 0;
2334 }
2335 break;
2336
2337 case REG:
2338 regno = REGNO (x);
2339 /* Global registers are not local. */
2340 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2341 return 1;
2342 return 0;
2343
2344 case SCRATCH:
2345 case PC:
2346 case CC0:
2347 case CONST_INT:
2348 case CONST_DOUBLE:
69ef87e2 2349 case CONST_VECTOR:
7790df19
JW
2350 case CONST:
2351 case LABEL_REF:
2352 return 0;
2353
2354 case SYMBOL_REF:
2355 /* Constants in the function's constants pool are constant. */
2356 if (CONSTANT_POOL_ADDRESS_P (x))
2357 return 0;
2358 return 1;
2359
2360 case CALL:
bf6d9fd7 2361 /* Non-constant calls and recursion are not local. */
7790df19
JW
2362 return 1;
2363
2364 case MEM:
2365 /* Be overly conservative and consider any volatile memory
2366 reference as not local. */
2367 if (MEM_VOLATILE_P (x))
2368 return 1;
2369 base = find_base_term (XEXP (x, 0));
2370 if (base)
2371 {
b3b5ad95
JL
2372 /* A Pmode ADDRESS could be a reference via the structure value
2373 address or static chain. Such memory references are nonlocal.
2374
2375 Thus, we have to examine the contents of the ADDRESS to find
2376 out if this is a local reference or not. */
2377 if (GET_CODE (base) == ADDRESS
2378 && GET_MODE (base) == Pmode
2379 && (XEXP (base, 0) == stack_pointer_rtx
2380 || XEXP (base, 0) == arg_pointer_rtx
2381#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2382 || XEXP (base, 0) == hard_frame_pointer_rtx
2383#endif
2384 || XEXP (base, 0) == frame_pointer_rtx))
7790df19
JW
2385 return 0;
2386 /* Constants in the function's constant pool are constant. */
2387 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2388 return 0;
2389 }
2390 return 1;
2391
bf6d9fd7 2392 case UNSPEC_VOLATILE:
7790df19 2393 case ASM_INPUT:
7790df19
JW
2394 return 1;
2395
bf6d9fd7
JW
2396 case ASM_OPERANDS:
2397 if (MEM_VOLATILE_P (x))
2398 return 1;
2399
5d3cc252 2400 /* Fall through. */
bf6d9fd7 2401
7790df19
JW
2402 default:
2403 break;
2404 }
2405
c14b9960
JW
2406 return 0;
2407}
2408
da7d8304 2409/* Returns nonzero if X might mention something which is not
c14b9960 2410 local to the function and is not constant. */
7790df19 2411
c14b9960 2412static int
4682ae04 2413nonlocal_mentioned_p (rtx x)
c14b9960 2414{
c14b9960
JW
2415 if (INSN_P (x))
2416 {
2417 if (GET_CODE (x) == CALL_INSN)
2418 {
2419 if (! CONST_OR_PURE_CALL_P (x))
2420 return 1;
2421 x = CALL_INSN_FUNCTION_USAGE (x);
2422 if (x == 0)
2423 return 0;
ca7fd9cd 2424 }
c14b9960 2425 else
ca7fd9cd 2426 x = PATTERN (x);
c14b9960
JW
2427 }
2428
2429 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2430}
2431
2432/* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2433 something which is not local to the function and is not constant. */
2434
2435static int
4682ae04 2436nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2437{
2438 rtx x = *loc;
2439
2440 if (! x)
2441 return 0;
2442
2443 switch (GET_CODE (x))
2444 {
2445 case MEM:
2446 case REG:
2447 case SYMBOL_REF:
2448 case SUBREG:
2449 return nonlocal_mentioned_p (x);
2450
2451 case CALL:
2452 /* Non-constant calls and recursion are not local. */
2453 return 1;
2454
2455 case SET:
2456 if (nonlocal_mentioned_p (SET_SRC (x)))
2457 return 1;
2458
2459 if (GET_CODE (SET_DEST (x)) == MEM)
2460 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2461
2462 /* If the destination is anything other than a CC0, PC,
2463 MEM, REG, or a SUBREG of a REG that occupies all of
2464 the REG, then X references nonlocal memory if it is
2465 mentioned in the destination. */
2466 if (GET_CODE (SET_DEST (x)) != CC0
2467 && GET_CODE (SET_DEST (x)) != PC
2468 && GET_CODE (SET_DEST (x)) != REG
2469 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2470 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2471 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2472 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2473 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2474 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2475 return nonlocal_mentioned_p (SET_DEST (x));
2476 return 0;
2477
2478 case CLOBBER:
2479 if (GET_CODE (XEXP (x, 0)) == MEM)
2480 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2481 return 0;
2482
2483 case USE:
2484 return nonlocal_mentioned_p (XEXP (x, 0));
2485
2486 case ASM_INPUT:
2487 case UNSPEC_VOLATILE:
2488 return 1;
2489
2490 case ASM_OPERANDS:
2491 if (MEM_VOLATILE_P (x))
2492 return 1;
2493
5d3cc252 2494 /* Fall through. */
c14b9960
JW
2495
2496 default:
2497 break;
2498 }
2499
2500 return 0;
2501}
2502
da7d8304 2503/* Returns nonzero if X might reference something which is not
c14b9960
JW
2504 local to the function and is not constant. */
2505
2506static int
4682ae04 2507nonlocal_referenced_p (rtx x)
c14b9960 2508{
c14b9960
JW
2509 if (INSN_P (x))
2510 {
2511 if (GET_CODE (x) == CALL_INSN)
2512 {
2513 if (! CONST_OR_PURE_CALL_P (x))
2514 return 1;
2515 x = CALL_INSN_FUNCTION_USAGE (x);
2516 if (x == 0)
2517 return 0;
ca7fd9cd 2518 }
c14b9960 2519 else
ca7fd9cd 2520 x = PATTERN (x);
c14b9960
JW
2521 }
2522
2523 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2524}
2525
2526/* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2527 something which is not local to the function and is not constant. */
2528
2529static int
4682ae04 2530nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2531{
2532 rtx x = *loc;
2533
2534 if (! x)
2535 return 0;
2536
2537 switch (GET_CODE (x))
2538 {
2539 case CALL:
2540 /* Non-constant calls and recursion are not local. */
2541 return 1;
2542
2543 case PRE_INC:
2544 case PRE_DEC:
2545 case POST_INC:
2546 case POST_DEC:
2547 case PRE_MODIFY:
2548 case POST_MODIFY:
2549 return nonlocal_mentioned_p (XEXP (x, 0));
2550
2551 case SET:
2552 if (nonlocal_mentioned_p (SET_DEST (x)))
2553 return 1;
2554 return nonlocal_set_p (SET_SRC (x));
2555
2556 case CLOBBER:
2557 return nonlocal_mentioned_p (XEXP (x, 0));
2558
2559 case USE:
2560 return 0;
2561
2562 case ASM_INPUT:
2563 case UNSPEC_VOLATILE:
2564 return 1;
2565
2566 case ASM_OPERANDS:
2567 if (MEM_VOLATILE_P (x))
2568 return 1;
2569
5d3cc252 2570 /* Fall through. */
c14b9960
JW
2571
2572 default:
2573 break;
2574 }
7790df19
JW
2575
2576 return 0;
2577}
2578
da7d8304 2579/* Returns nonzero if X might set something which is not
c14b9960
JW
2580 local to the function and is not constant. */
2581
2582static int
4682ae04 2583nonlocal_set_p (rtx x)
c14b9960 2584{
c14b9960
JW
2585 if (INSN_P (x))
2586 {
2587 if (GET_CODE (x) == CALL_INSN)
2588 {
2589 if (! CONST_OR_PURE_CALL_P (x))
2590 return 1;
2591 x = CALL_INSN_FUNCTION_USAGE (x);
2592 if (x == 0)
2593 return 0;
ca7fd9cd 2594 }
c14b9960 2595 else
ca7fd9cd 2596 x = PATTERN (x);
c14b9960
JW
2597 }
2598
2599 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2600}
2601
c57ddcf1 2602/* Mark the function if it is pure or constant. */
7790df19
JW
2603
2604void
4682ae04 2605mark_constant_function (void)
7790df19
JW
2606{
2607 rtx insn;
c14b9960 2608 int nonlocal_memory_referenced;
7790df19 2609
ab780373 2610 if (TREE_READONLY (current_function_decl)
bf6d9fd7 2611 || DECL_IS_PURE (current_function_decl)
7790df19 2612 || TREE_THIS_VOLATILE (current_function_decl)
ab780373
RH
2613 || current_function_has_nonlocal_goto
2614 || !(*targetm.binds_local_p) (current_function_decl))
7790df19
JW
2615 return;
2616
e004f2f7 2617 /* A loop might not return which counts as a side effect. */
0ecf09f9 2618 if (mark_dfs_back_edges ())
e004f2f7
JW
2619 return;
2620
c14b9960 2621 nonlocal_memory_referenced = 0;
bf6d9fd7
JW
2622
2623 init_alias_analysis ();
2624
c14b9960 2625 /* Determine if this is a constant or pure function. */
7790df19
JW
2626
2627 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
c14b9960
JW
2628 {
2629 if (! INSN_P (insn))
2630 continue;
bf6d9fd7 2631
c14b9960
JW
2632 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2633 || volatile_refs_p (PATTERN (insn)))
ca7fd9cd 2634 break;
7790df19 2635
c14b9960
JW
2636 if (! nonlocal_memory_referenced)
2637 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2638 }
ca7fd9cd 2639
c14b9960 2640 end_alias_analysis ();
ca7fd9cd 2641
7790df19 2642 /* Mark the function. */
ca7fd9cd 2643
c14b9960
JW
2644 if (insn)
2645 ;
2646 else if (nonlocal_memory_referenced)
c57ddcf1
RS
2647 {
2648 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2649 DECL_IS_PURE (current_function_decl) = 1;
2650 }
c14b9960 2651 else
c57ddcf1
RS
2652 {
2653 cgraph_rtl_info (current_function_decl)->const_function = 1;
2654 TREE_READONLY (current_function_decl) = 1;
2655 }
7790df19 2656}
c14b9960 2657\f
6e73e666 2658
6e73e666 2659void
4682ae04 2660init_alias_once (void)
6e73e666 2661{
b3694847 2662 int i;
6e73e666 2663
6e73e666
JC
2664 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2665 /* Check whether this register can hold an incoming pointer
2666 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2667 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2668 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2669 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2670 static_reg_base_value[i]
2671 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2672
bf1660a6
JL
2673 static_reg_base_value[STACK_POINTER_REGNUM]
2674 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2675 static_reg_base_value[ARG_POINTER_REGNUM]
2676 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2677 static_reg_base_value[FRAME_POINTER_REGNUM]
2678 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2679#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2680 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2681 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2682#endif
2683}
2684
7b52eede
JH
2685/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2686 to be memory reference. */
2687static bool memory_modified;
2688static void
4682ae04 2689memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede
JH
2690{
2691 if (GET_CODE (x) == MEM)
2692 {
2693 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2694 memory_modified = true;
2695 }
2696}
2697
2698
2699/* Return true when INSN possibly modify memory contents of MEM
2700 (ie address can be modified). */
2701bool
4682ae04 2702memory_modified_in_insn_p (rtx mem, rtx insn)
7b52eede
JH
2703{
2704 if (!INSN_P (insn))
2705 return false;
2706 memory_modified = false;
2707 note_stores (PATTERN (insn), memory_modified_1, mem);
2708 return memory_modified;
2709}
2710
c13e8210
MM
2711/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2712 array. */
2713
9ae8ffe7 2714void
4682ae04 2715init_alias_analysis (void)
9ae8ffe7 2716{
c582d54a 2717 unsigned int maxreg = max_reg_num ();
ea64ef27 2718 int changed, pass;
b3694847
SS
2719 int i;
2720 unsigned int ui;
2721 rtx insn;
9ae8ffe7 2722
0d446150
JH
2723 timevar_push (TV_ALIAS_ANALYSIS);
2724
9ae8ffe7
JL
2725 reg_known_value_size = maxreg;
2726
ca7fd9cd 2727 reg_known_value
e05e2395
MM
2728 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2729 - FIRST_PSEUDO_REGISTER;
ca7fd9cd 2730 reg_known_equiv_p
e05e2395 2731 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
9ae8ffe7 2732 - FIRST_PSEUDO_REGISTER;
9ae8ffe7 2733
6e73e666
JC
2734 /* Overallocate reg_base_value to allow some growth during loop
2735 optimization. Loop unrolling can create a large number of
2736 registers. */
c582d54a
JH
2737 if (old_reg_base_value)
2738 {
2739 reg_base_value = old_reg_base_value;
2740 /* If varray gets large zeroing cost may get important. */
2741 if (VARRAY_SIZE (reg_base_value) > 256
2742 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2743 VARRAY_GROW (reg_base_value, maxreg);
2744 VARRAY_CLEAR (reg_base_value);
2745 if (VARRAY_SIZE (reg_base_value) < maxreg)
2746 VARRAY_GROW (reg_base_value, maxreg);
2747 }
2748 else
2749 {
2750 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2751 }
ac606739 2752
c582d54a
JH
2753 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2754 reg_seen = xmalloc (maxreg);
b17d5d7c 2755 if (! reload_completed && flag_old_unroll_loops)
de12be17 2756 {
ac606739 2757 /* ??? Why are we realloc'ing if we're just going to zero it? */
703ad42b 2758 alias_invariant = xrealloc (alias_invariant,
c582d54a
JH
2759 maxreg * sizeof (rtx));
2760 memset (alias_invariant, 0, maxreg * sizeof (rtx));
2761 alias_invariant_size = maxreg;
de12be17 2762 }
ec907dd8
JL
2763
2764 /* The basic idea is that each pass through this loop will use the
2765 "constant" information from the previous pass to propagate alias
2766 information through another level of assignments.
2767
2768 This could get expensive if the assignment chains are long. Maybe
2769 we should throttle the number of iterations, possibly based on
6e73e666 2770 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2771
2772 We could propagate more information in the first pass by making use
2773 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
2774 for a pseudo is "constant".
2775
2776 A program with an uninitialized variable can cause an infinite loop
2777 here. Instead of doing a full dataflow analysis to detect such problems
2778 we just cap the number of iterations for the loop.
2779
2780 The state of the arrays for the set chain in question does not matter
2781 since the program has undefined behavior. */
6e73e666 2782
ea64ef27 2783 pass = 0;
6e73e666 2784 do
ec907dd8
JL
2785 {
2786 /* Assume nothing will change this iteration of the loop. */
2787 changed = 0;
2788
ec907dd8
JL
2789 /* We want to assign the same IDs each iteration of this loop, so
2790 start counting from zero each iteration of the loop. */
2791 unique_id = 0;
2792
f5143c46 2793 /* We're at the start of the function each iteration through the
ec907dd8 2794 loop, so we're copying arguments. */
83bbd9b6 2795 copying_arguments = true;
9ae8ffe7 2796
6e73e666 2797 /* Wipe the potential alias information clean for this pass. */
c582d54a 2798 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 2799
6e73e666 2800 /* Wipe the reg_seen array clean. */
c582d54a 2801 memset (reg_seen, 0, maxreg);
9ae8ffe7 2802
6e73e666
JC
2803 /* Mark all hard registers which may contain an address.
2804 The stack, frame and argument pointers may contain an address.
2805 An argument register which can hold a Pmode value may contain
2806 an address even if it is not in BASE_REGS.
8072f69c 2807
6e73e666
JC
2808 The address expression is VOIDmode for an argument and
2809 Pmode for other registers. */
2810
7f243674
JL
2811 memcpy (new_reg_base_value, static_reg_base_value,
2812 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2813
ec907dd8
JL
2814 /* Walk the insns adding values to the new_reg_base_value array. */
2815 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2816 {
2c3c49de 2817 if (INSN_P (insn))
ec907dd8 2818 {
6e73e666 2819 rtx note, set;
efc9bd41
RK
2820
2821#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2822 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2823 insn chain until after reload has completed. Thus,
2824 there is no sense wasting time checking if INSN is in
2825 the prologue/epilogue until after reload has completed. */
2826 if (reload_completed
2827 && prologue_epilogue_contains (insn))
efc9bd41
RK
2828 continue;
2829#endif
2830
ec907dd8
JL
2831 /* If this insn has a noalias note, process it, Otherwise,
2832 scan for sets. A simple set will have no side effects
ec5c56db 2833 which could change the base value of any other register. */
6e73e666 2834
ec907dd8 2835 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2836 && REG_NOTES (insn) != 0
2837 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2838 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2839 else
84832317 2840 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2841
2842 set = single_set (insn);
2843
2844 if (set != 0
2845 && GET_CODE (SET_DEST (set)) == REG
fb6754f0 2846 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2847 {
fb6754f0 2848 unsigned int regno = REGNO (SET_DEST (set));
713f41f9
BS
2849 rtx src = SET_SRC (set);
2850
2851 if (REG_NOTES (insn) != 0
2852 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2853 && REG_N_SETS (regno) == 1)
2854 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2855 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2856 && ! rtx_varies_p (XEXP (note, 0), 1)
713f41f9
BS
2857 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2858 {
2859 reg_known_value[regno] = XEXP (note, 0);
2860 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2861 }
2862 else if (REG_N_SETS (regno) == 1
2863 && GET_CODE (src) == PLUS
2864 && GET_CODE (XEXP (src, 0)) == REG
fb6754f0
BS
2865 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2866 && (reg_known_value[REGNO (XEXP (src, 0))])
713f41f9
BS
2867 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2868 {
2869 rtx op0 = XEXP (src, 0);
bb2cf916 2870 op0 = reg_known_value[REGNO (op0)];
713f41f9 2871 reg_known_value[regno]
ed8908e7 2872 = plus_constant (op0, INTVAL (XEXP (src, 1)));
713f41f9
BS
2873 reg_known_equiv_p[regno] = 0;
2874 }
2875 else if (REG_N_SETS (regno) == 1
2876 && ! rtx_varies_p (src, 1))
2877 {
2878 reg_known_value[regno] = src;
2879 reg_known_equiv_p[regno] = 0;
2880 }
6e73e666 2881 }
ec907dd8
JL
2882 }
2883 else if (GET_CODE (insn) == NOTE
2884 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2885 copying_arguments = false;
6e73e666 2886 }
ec907dd8 2887
6e73e666 2888 /* Now propagate values from new_reg_base_value to reg_base_value. */
c582d54a
JH
2889 if (maxreg != (unsigned int) max_reg_num())
2890 abort ();
2891 for (ui = 0; ui < maxreg; ui++)
6e73e666 2892 {
e51712db 2893 if (new_reg_base_value[ui]
c582d54a
JH
2894 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2895 && ! rtx_equal_p (new_reg_base_value[ui],
2896 VARRAY_RTX (reg_base_value, ui)))
ec907dd8 2897 {
c582d54a 2898 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
6e73e666 2899 changed = 1;
ec907dd8 2900 }
9ae8ffe7 2901 }
9ae8ffe7 2902 }
6e73e666 2903 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2904
2905 /* Fill in the remaining entries. */
c582d54a 2906 for (i = FIRST_PSEUDO_REGISTER; i < (int)maxreg; i++)
9ae8ffe7
JL
2907 if (reg_known_value[i] == 0)
2908 reg_known_value[i] = regno_reg_rtx[i];
2909
9ae8ffe7
JL
2910 /* Simplify the reg_base_value array so that no register refers to
2911 another register, except to special registers indirectly through
2912 ADDRESS expressions.
2913
2914 In theory this loop can take as long as O(registers^2), but unless
2915 there are very long dependency chains it will run in close to linear
ea64ef27
JL
2916 time.
2917
2918 This loop may not be needed any longer now that the main loop does
2919 a better job at propagating alias information. */
2920 pass = 0;
9ae8ffe7
JL
2921 do
2922 {
2923 changed = 0;
ea64ef27 2924 pass++;
c582d54a 2925 for (ui = 0; ui < maxreg; ui++)
9ae8ffe7 2926 {
c582d54a 2927 rtx base = VARRAY_RTX (reg_base_value, ui);
9ae8ffe7
JL
2928 if (base && GET_CODE (base) == REG)
2929 {
fb6754f0 2930 unsigned int base_regno = REGNO (base);
e51712db 2931 if (base_regno == ui) /* register set from itself */
c582d54a 2932 VARRAY_RTX (reg_base_value, ui) = 0;
9ae8ffe7 2933 else
c582d54a
JH
2934 VARRAY_RTX (reg_base_value, ui)
2935 = VARRAY_RTX (reg_base_value, base_regno);
9ae8ffe7
JL
2936 changed = 1;
2937 }
2938 }
2939 }
ea64ef27 2940 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 2941
e05e2395
MM
2942 /* Clean up. */
2943 free (new_reg_base_value);
ec907dd8 2944 new_reg_base_value = 0;
e05e2395 2945 free (reg_seen);
9ae8ffe7 2946 reg_seen = 0;
0d446150 2947 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2948}
2949
2950void
4682ae04 2951end_alias_analysis (void)
9ae8ffe7 2952{
c582d54a 2953 old_reg_base_value = reg_base_value;
e05e2395 2954 free (reg_known_value + FIRST_PSEUDO_REGISTER);
9ae8ffe7 2955 reg_known_value = 0;
ac606739 2956 reg_known_value_size = 0;
e05e2395
MM
2957 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2958 reg_known_equiv_p = 0;
de12be17
JC
2959 if (alias_invariant)
2960 {
ac606739 2961 free (alias_invariant);
de12be17 2962 alias_invariant = 0;
c582d54a 2963 alias_invariant_size = 0;
de12be17 2964 }
9ae8ffe7 2965}
e2500fed
GK
2966
2967#include "gt-alias.h"