]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
re PR rtl-optimization/52573 (regrename creates overlapping register allocations...
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
d1e082c2 2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
9ae8ffe7
JL
3 Contributed by John Carr (jfc@mit.edu).
4
1322177d 5This file is part of GCC.
9ae8ffe7 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
9ae8ffe7 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
9ae8ffe7
JL
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6
ZW
23#include "coretypes.h"
24#include "tm.h"
9ae8ffe7 25#include "rtl.h"
7790df19 26#include "tree.h"
6baf1cc8 27#include "tm_p.h"
49ad7cfa 28#include "function.h"
78528714
JQ
29#include "alias.h"
30#include "emit-rtl.h"
9ae8ffe7
JL
31#include "regs.h"
32#include "hard-reg-set.h"
e004f2f7 33#include "basic-block.h"
9ae8ffe7 34#include "flags.h"
718f9c0f 35#include "diagnostic-core.h"
eab5c70a 36#include "cselib.h"
3932261a 37#include "splay-tree.h"
ac606739 38#include "ggc.h"
d23c55c2 39#include "langhooks.h"
0d446150 40#include "timevar.h"
7ee2468b 41#include "dumpfile.h"
ab780373 42#include "target.h"
b255a036 43#include "cgraph.h"
6fb5fa3c 44#include "df.h"
55b34b5f
RG
45#include "tree-ssa-alias.h"
46#include "pointer-set.h"
47#include "tree-flow.h"
ea900239
DB
48
49/* The aliasing API provided here solves related but different problems:
50
c22cacf3 51 Say there exists (in c)
ea900239
DB
52
53 struct X {
54 struct Y y1;
55 struct Z z2;
56 } x1, *px1, *px2;
57
58 struct Y y2, *py;
59 struct Z z2, *pz;
60
61
308a3fe2 62 py = &x1.y1;
ea900239
DB
63 px2 = &x1;
64
65 Consider the four questions:
66
67 Can a store to x1 interfere with px2->y1?
68 Can a store to x1 interfere with px2->z2?
ea900239
DB
69 Can a store to x1 change the value pointed to by with py?
70 Can a store to x1 change the value pointed to by with pz?
71
72 The answer to these questions can be yes, yes, yes, and maybe.
73
74 The first two questions can be answered with a simple examination
75 of the type system. If structure X contains a field of type Y then
073a8998 76 a store through a pointer to an X can overwrite any field that is
ea900239
DB
77 contained (recursively) in an X (unless we know that px1 != px2).
78
308a3fe2
DS
79 The last two questions can be solved in the same way as the first
80 two questions but this is too conservative. The observation is
81 that in some cases we can know which (if any) fields are addressed
82 and if those addresses are used in bad ways. This analysis may be
83 language specific. In C, arbitrary operations may be applied to
84 pointers. However, there is some indication that this may be too
85 conservative for some C++ types.
ea900239
DB
86
87 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 88 instances do not escape across the compilation boundary.
ea900239
DB
89
90 Historically in GCC, these two problems were combined and a single
308a3fe2 91 data structure that was used to represent the solution to these
ea900239 92 problems. We now have two similar but different data structures,
308a3fe2
DS
93 The data structure to solve the last two questions is similar to
94 the first, but does not contain the fields whose address are never
95 taken. For types that do escape the compilation unit, the data
96 structures will have identical information.
ea900239 97*/
3932261a
MM
98
99/* The alias sets assigned to MEMs assist the back-end in determining
100 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
101 different alias sets cannot alias each other, with one important
102 exception. Consider something like:
3932261a 103
01d28c3f 104 struct S { int i; double d; };
3932261a
MM
105
106 a store to an `S' can alias something of either type `int' or type
107 `double'. (However, a store to an `int' cannot alias a `double'
108 and vice versa.) We indicate this via a tree structure that looks
109 like:
c22cacf3
MS
110 struct S
111 / \
3932261a 112 / \
c22cacf3
MS
113 |/_ _\|
114 int double
3932261a 115
ac3d9668
RK
116 (The arrows are directed and point downwards.)
117 In this situation we say the alias set for `struct S' is the
118 `superset' and that those for `int' and `double' are `subsets'.
119
3bdf5ad1
RK
120 To see whether two alias sets can point to the same memory, we must
121 see if either alias set is a subset of the other. We need not trace
95bd1dd7 122 past immediate descendants, however, since we propagate all
3bdf5ad1 123 grandchildren up one level.
3932261a
MM
124
125 Alias set zero is implicitly a superset of all other alias sets.
126 However, this is no actual entry for alias set zero. It is an
127 error to attempt to explicitly construct a subset of zero. */
128
7e5487a2 129struct GTY(()) alias_set_entry_d {
3932261a 130 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 131 alias_set_type alias_set;
3932261a 132
4c067742
RG
133 /* Nonzero if would have a child of zero: this effectively makes this
134 alias set the same as alias set zero. */
135 int has_zero_child;
136
3932261a 137 /* The children of the alias set. These are not just the immediate
95bd1dd7 138 children, but, in fact, all descendants. So, if we have:
3932261a 139
ca7fd9cd 140 struct T { struct S s; float f; }
3932261a
MM
141
142 continuing our example above, the children here will be all of
143 `int', `double', `float', and `struct S'. */
b604074c 144 splay_tree GTY((param1_is (int), param2_is (int))) children;
b604074c 145};
7e5487a2 146typedef struct alias_set_entry_d *alias_set_entry;
9ae8ffe7 147
ed7a4b4b 148static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 149static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 150static void record_set (rtx, const_rtx, void *);
4682ae04
AJ
151static int base_alias_check (rtx, rtx, enum machine_mode,
152 enum machine_mode);
153static rtx find_base_value (rtx);
4f588890 154static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
4682ae04 155static int insert_subset_children (splay_tree_node, void*);
4862826d 156static alias_set_entry get_alias_set_entry (alias_set_type);
175a7536 157static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
4682ae04 158static tree decl_for_component_ref (tree);
4f588890 159static int write_dependence_p (const_rtx, const_rtx, int);
4682ae04 160
aa317c97 161static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7
JL
162
163/* Set up all info needed to perform alias analysis on memory references. */
164
d4b60170 165/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
166#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
167
ea64ef27 168/* Cap the number of passes we make over the insns propagating alias
131db6b8
SB
169 information through set chains.
170 ??? 10 is a completely arbitrary choice. This should be based on the
171 maximum loop depth in the CFG, but we do not have this information
172 available (even if current_loops _is_ available). */
ea64ef27 173#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 174
9ae8ffe7
JL
175/* reg_base_value[N] gives an address to which register N is related.
176 If all sets after the first add or subtract to the current value
177 or otherwise modify it so it does not point to a different top level
178 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
179 of the first set.
180
181 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
9fc37b2b 182 expressions represent three types of base:
b3b5ad95 183
9fc37b2b
RS
184 1. incoming arguments. There is just one ADDRESS to represent all
185 arguments, since we do not know at this level whether accesses
186 based on different arguments can alias. The ADDRESS has id 0.
b3b5ad95 187
9fc37b2b
RS
188 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
189 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
190 Each of these rtxes has a separate ADDRESS associated with it,
191 each with a negative id.
192
193 GCC is (and is required to be) precise in which register it
194 chooses to access a particular region of stack. We can therefore
195 assume that accesses based on one of these rtxes do not alias
196 accesses based on another of these rtxes.
197
198 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
199 Each such piece of memory has a separate ADDRESS associated
200 with it, each with an id greater than 0.
201
202 Accesses based on one ADDRESS do not alias accesses based on other
203 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
204 alias globals either; the ADDRESSes have Pmode to indicate this.
205 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
206 indicate this. */
2a2c8203 207
9771b263 208static GTY(()) vec<rtx, va_gc> *reg_base_value;
ac606739 209static rtx *new_reg_base_value;
c582d54a 210
9fc37b2b
RS
211/* The single VOIDmode ADDRESS that represents all argument bases.
212 It has id 0. */
213static GTY(()) rtx arg_base_value;
214
215/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
216static int unique_id;
217
c582d54a
JH
218/* We preserve the copy of old array around to avoid amount of garbage
219 produced. About 8% of garbage produced were attributed to this
220 array. */
9771b263 221static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
d4b60170 222
9e412ca3
RS
223/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
224 registers. */
225#define UNIQUE_BASE_VALUE_SP -1
226#define UNIQUE_BASE_VALUE_ARGP -2
227#define UNIQUE_BASE_VALUE_FP -3
228#define UNIQUE_BASE_VALUE_HFP -4
229
7bf84454
RS
230#define static_reg_base_value \
231 (this_target_rtl->x_static_reg_base_value)
bf1660a6 232
9771b263
DN
233#define REG_BASE_VALUE(X) \
234 (REGNO (X) < vec_safe_length (reg_base_value) \
235 ? (*reg_base_value)[REGNO (X)] : 0)
9ae8ffe7 236
c13e8210 237/* Vector indexed by N giving the initial (unchanging) value known for
9ff3c7ca 238 pseudo-register N. This vector is initialized in init_alias_analysis,
bb1acb3e 239 and does not change until end_alias_analysis is called. */
9771b263 240static GTY(()) vec<rtx, va_gc> *reg_known_value;
9ae8ffe7
JL
241
242/* Vector recording for each reg_known_value whether it is due to a
243 REG_EQUIV note. Future passes (viz., reload) may replace the
244 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
245 dependences that would be introduced if that happens.
246
247 The REG_EQUIV notes created in assign_parms may mention the arg
248 pointer, and there are explicit insns in the RTL that modify the
249 arg pointer. Thus we must ensure that such insns don't get
250 scheduled across each other because that would invalidate the
251 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
252 wrong, but solving the problem in the scheduler will likely give
253 better code, so we do it here. */
9ff3c7ca 254static sbitmap reg_known_equiv_p;
9ae8ffe7 255
2a2c8203
JC
256/* True when scanning insns from the start of the rtl to the
257 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 258static bool copying_arguments;
9ae8ffe7 259
1a5640b4 260
3932261a 261/* The splay-tree used to store the various alias set entries. */
9771b263 262static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
ac3d9668 263\f
55b34b5f
RG
264/* Build a decomposed reference object for querying the alias-oracle
265 from the MEM rtx and store it in *REF.
266 Returns false if MEM is not suitable for the alias-oracle. */
267
268static bool
269ao_ref_from_mem (ao_ref *ref, const_rtx mem)
270{
271 tree expr = MEM_EXPR (mem);
272 tree base;
273
274 if (!expr)
275 return false;
276
277 ao_ref_init (ref, expr);
278
279 /* Get the base of the reference and see if we have to reject or
280 adjust it. */
281 base = ao_ref_base (ref);
282 if (base == NULL_TREE)
283 return false;
284
ef7a9fb8
RB
285 /* The tree oracle doesn't like bases that are neither decls
286 nor indirect references of SSA names. */
287 if (!(DECL_P (base)
288 || (TREE_CODE (base) == MEM_REF
289 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
290 || (TREE_CODE (base) == TARGET_MEM_REF
291 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
d15adbeb 292 return false;
55b34b5f
RG
293
294 /* If this is a reference based on a partitioned decl replace the
ef7a9fb8 295 base with a MEM_REF of the pointer representative we
55b34b5f
RG
296 created during stack slot partitioning. */
297 if (TREE_CODE (base) == VAR_DECL
ef7a9fb8 298 && ! is_global_var (base)
55b34b5f
RG
299 && cfun->gimple_df->decls_to_pointers != NULL)
300 {
301 void *namep;
302 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
303 if (namep)
70f34814 304 ref->base = build_simple_mem_ref (*(tree *)namep);
d15adbeb 305 }
55b34b5f
RG
306
307 ref->ref_alias_set = MEM_ALIAS_SET (mem);
308
f68396a1
RG
309 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
310 is conservative, so trust it. */
527210c4 311 if (!MEM_OFFSET_KNOWN_P (mem)
f5541398 312 || !MEM_SIZE_KNOWN_P (mem))
f68396a1 313 return true;
366f945f 314
b0e96404
RG
315 /* If the base decl is a parameter we can have negative MEM_OFFSET in
316 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
317 here. */
527210c4
RS
318 if (MEM_OFFSET (mem) < 0
319 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
b0e96404
RG
320 return true;
321
f68396a1
RG
322 /* Otherwise continue and refine size and offset we got from analyzing
323 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
324
527210c4 325 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
f5541398 326 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
b0e96404
RG
327
328 /* The MEM may extend into adjacent fields, so adjust max_size if
329 necessary. */
330 if (ref->max_size != -1
331 && ref->size > ref->max_size)
332 ref->max_size = ref->size;
333
334 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
335 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
336 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
337 && (ref->offset < 0
338 || (DECL_P (ref->base)
339 && (!host_integerp (DECL_SIZE (ref->base), 1)
340 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
341 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
342 return false;
55b34b5f
RG
343
344 return true;
345}
346
347/* Query the alias-oracle on whether the two memory rtx X and MEM may
348 alias. If TBAA_P is set also apply TBAA. Returns true if the
349 two rtxen may alias, false otherwise. */
350
351static bool
352rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
353{
354 ao_ref ref1, ref2;
355
356 if (!ao_ref_from_mem (&ref1, x)
357 || !ao_ref_from_mem (&ref2, mem))
358 return true;
359
55e3bc4c
RG
360 return refs_may_alias_p_1 (&ref1, &ref2,
361 tbaa_p
362 && MEM_ALIAS_SET (x) != 0
363 && MEM_ALIAS_SET (mem) != 0);
55b34b5f
RG
364}
365
3932261a
MM
366/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
367 such an entry, or NULL otherwise. */
368
9ddb66ca 369static inline alias_set_entry
4862826d 370get_alias_set_entry (alias_set_type alias_set)
3932261a 371{
9771b263 372 return (*alias_sets)[alias_set];
3932261a
MM
373}
374
ac3d9668
RK
375/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
376 the two MEMs cannot alias each other. */
3932261a 377
9ddb66ca 378static inline int
4f588890 379mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 380{
3932261a
MM
381/* Perform a basic sanity check. Namely, that there are no alias sets
382 if we're not using strict aliasing. This helps to catch bugs
383 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
384 where a MEM is allocated in some way other than by the use of
385 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
386 use alias sets to indicate that spilled registers cannot alias each
387 other, we might need to remove this check. */
298e6adc
NS
388 gcc_assert (flag_strict_aliasing
389 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
3932261a 390
1da68f56
RK
391 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
392}
3932261a 393
1da68f56
RK
394/* Insert the NODE into the splay tree given by DATA. Used by
395 record_alias_subset via splay_tree_foreach. */
396
397static int
4682ae04 398insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
399{
400 splay_tree_insert ((splay_tree) data, node->key, node->value);
401
402 return 0;
403}
404
c58936b6
DB
405/* Return true if the first alias set is a subset of the second. */
406
407bool
4862826d 408alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6
DB
409{
410 alias_set_entry ase;
411
412 /* Everything is a subset of the "aliases everything" set. */
413 if (set2 == 0)
414 return true;
415
416 /* Otherwise, check if set1 is a subset of set2. */
417 ase = get_alias_set_entry (set2);
418 if (ase != 0
038a39d1 419 && (ase->has_zero_child
a7a512be
RG
420 || splay_tree_lookup (ase->children,
421 (splay_tree_key) set1)))
c58936b6
DB
422 return true;
423 return false;
424}
425
1da68f56
RK
426/* Return 1 if the two specified alias sets may conflict. */
427
428int
4862826d 429alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56
RK
430{
431 alias_set_entry ase;
432
836f7794
EB
433 /* The easy case. */
434 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 435 return 1;
3932261a 436
3bdf5ad1 437 /* See if the first alias set is a subset of the second. */
1da68f56 438 ase = get_alias_set_entry (set1);
2bf105ab
RK
439 if (ase != 0
440 && (ase->has_zero_child
441 || splay_tree_lookup (ase->children,
1da68f56
RK
442 (splay_tree_key) set2)))
443 return 1;
3932261a
MM
444
445 /* Now do the same, but with the alias sets reversed. */
1da68f56 446 ase = get_alias_set_entry (set2);
2bf105ab
RK
447 if (ase != 0
448 && (ase->has_zero_child
449 || splay_tree_lookup (ase->children,
1da68f56
RK
450 (splay_tree_key) set1)))
451 return 1;
3932261a 452
1da68f56 453 /* The two alias sets are distinct and neither one is the
836f7794 454 child of the other. Therefore, they cannot conflict. */
1da68f56 455 return 0;
3932261a 456}
5399d643 457
836f7794 458/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
459
460int
4862826d 461alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643
JW
462{
463 if (set1 == 0 || set2 == 0 || set1 == set2)
464 return 1;
465
466 return 0;
467}
468
1da68f56
RK
469/* Return 1 if any MEM object of type T1 will always conflict (using the
470 dependency routines in this file) with any MEM object of type T2.
471 This is used when allocating temporary storage. If T1 and/or T2 are
472 NULL_TREE, it means we know nothing about the storage. */
473
474int
4682ae04 475objects_must_conflict_p (tree t1, tree t2)
1da68f56 476{
4862826d 477 alias_set_type set1, set2;
82d610ec 478
e8ea2809
RK
479 /* If neither has a type specified, we don't know if they'll conflict
480 because we may be using them to store objects of various types, for
481 example the argument and local variables areas of inlined functions. */
981a4c34 482 if (t1 == 0 && t2 == 0)
e8ea2809
RK
483 return 0;
484
1da68f56
RK
485 /* If they are the same type, they must conflict. */
486 if (t1 == t2
487 /* Likewise if both are volatile. */
488 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
489 return 1;
490
82d610ec
RK
491 set1 = t1 ? get_alias_set (t1) : 0;
492 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 493
836f7794
EB
494 /* We can't use alias_sets_conflict_p because we must make sure
495 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
496 t2 for which a pair of subobjects of these respective subtypes
497 overlaps on the stack. */
836f7794 498 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
499}
500\f
2039d7aa
RH
501/* Return true if all nested component references handled by
502 get_inner_reference in T are such that we should use the alias set
503 provided by the object at the heart of T.
504
505 This is true for non-addressable components (which don't have their
506 own alias set), as well as components of objects in alias set zero.
507 This later point is a special case wherein we wish to override the
508 alias set used by the component, but we don't have per-FIELD_DECL
509 assignable alias sets. */
510
511bool
22ea9ec0 512component_uses_parent_alias_set (const_tree t)
6e24b709 513{
afe84921
RH
514 while (1)
515 {
2039d7aa 516 /* If we're at the end, it vacuously uses its own alias set. */
afe84921 517 if (!handled_component_p (t))
2039d7aa 518 return false;
afe84921
RH
519
520 switch (TREE_CODE (t))
521 {
522 case COMPONENT_REF:
523 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
2039d7aa 524 return true;
afe84921
RH
525 break;
526
527 case ARRAY_REF:
528 case ARRAY_RANGE_REF:
529 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
2039d7aa 530 return true;
afe84921
RH
531 break;
532
533 case REALPART_EXPR:
534 case IMAGPART_EXPR:
535 break;
536
537 default:
538 /* Bitfields and casts are never addressable. */
2039d7aa 539 return true;
afe84921
RH
540 }
541
542 t = TREE_OPERAND (t, 0);
2039d7aa
RH
543 if (get_alias_set (TREE_TYPE (t)) == 0)
544 return true;
afe84921 545 }
6e24b709
RK
546}
547
5006671f
RG
548/* Return the alias set for the memory pointed to by T, which may be
549 either a type or an expression. Return -1 if there is nothing
550 special about dereferencing T. */
551
552static alias_set_type
553get_deref_alias_set_1 (tree t)
554{
555 /* If we're not doing any alias analysis, just assume everything
556 aliases everything else. */
557 if (!flag_strict_aliasing)
558 return 0;
559
5b21f0f3 560 /* All we care about is the type. */
5006671f 561 if (! TYPE_P (t))
5b21f0f3 562 t = TREE_TYPE (t);
5006671f
RG
563
564 /* If we have an INDIRECT_REF via a void pointer, we don't
565 know anything about what that might alias. Likewise if the
566 pointer is marked that way. */
567 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
568 || TYPE_REF_CAN_ALIAS_ALL (t))
569 return 0;
570
571 return -1;
572}
573
574/* Return the alias set for the memory pointed to by T, which may be
575 either a type or an expression. */
576
577alias_set_type
578get_deref_alias_set (tree t)
579{
580 alias_set_type set = get_deref_alias_set_1 (t);
581
582 /* Fall back to the alias-set of the pointed-to type. */
583 if (set == -1)
584 {
585 if (! TYPE_P (t))
586 t = TREE_TYPE (t);
587 set = get_alias_set (TREE_TYPE (t));
588 }
589
590 return set;
591}
592
3bdf5ad1
RK
593/* Return the alias set for T, which may be either a type or an
594 expression. Call language-specific routine for help, if needed. */
595
4862826d 596alias_set_type
4682ae04 597get_alias_set (tree t)
3bdf5ad1 598{
4862826d 599 alias_set_type set;
3bdf5ad1
RK
600
601 /* If we're not doing any alias analysis, just assume everything
602 aliases everything else. Also return 0 if this or its type is
603 an error. */
604 if (! flag_strict_aliasing || t == error_mark_node
605 || (! TYPE_P (t)
606 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
607 return 0;
608
609 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
610 language-specific routine may make mutually-recursive calls to each other
611 to figure out what to do. At each juncture, we see if this is a tree
612 that the language may need to handle specially. First handle things that
738cc472 613 aren't types. */
f824e5c3 614 if (! TYPE_P (t))
3bdf5ad1 615 {
ebcc3d93 616 tree inner;
738cc472 617
70f34814
RG
618 /* Give the language a chance to do something with this tree
619 before we look at it. */
8ac61af7 620 STRIP_NOPS (t);
ae2bcd98 621 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
622 if (set != -1)
623 return set;
624
70f34814 625 /* Get the base object of the reference. */
ebcc3d93 626 inner = t;
6fce44af 627 while (handled_component_p (inner))
738cc472 628 {
70f34814
RG
629 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
630 the type of any component references that wrap it to
631 determine the alias-set. */
632 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
633 t = TREE_OPERAND (inner, 0);
6fce44af 634 inner = TREE_OPERAND (inner, 0);
738cc472
RK
635 }
636
70f34814
RG
637 /* Handle pointer dereferences here, they can override the
638 alias-set. */
1b096a0a 639 if (INDIRECT_REF_P (inner))
738cc472 640 {
5006671f
RG
641 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
642 if (set != -1)
643 return set;
738cc472 644 }
4b228e61
RG
645 else if (TREE_CODE (inner) == TARGET_MEM_REF)
646 return get_deref_alias_set (TMR_OFFSET (inner));
70f34814
RG
647 else if (TREE_CODE (inner) == MEM_REF)
648 {
649 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
650 if (set != -1)
651 return set;
652 }
653
654 /* If the innermost reference is a MEM_REF that has a
655 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
656 using the memory access type for determining the alias-set. */
657 if (TREE_CODE (inner) == MEM_REF
7be7d292
EB
658 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
659 != TYPE_MAIN_VARIANT
660 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
70f34814 661 return get_deref_alias_set (TREE_OPERAND (inner, 1));
738cc472
RK
662
663 /* Otherwise, pick up the outermost object that we could have a pointer
6fce44af 664 to, processing conversions as above. */
2039d7aa 665 while (component_uses_parent_alias_set (t))
f47e9b4e 666 {
6fce44af 667 t = TREE_OPERAND (t, 0);
8ac61af7
RK
668 STRIP_NOPS (t);
669 }
f824e5c3 670
738cc472
RK
671 /* If we've already determined the alias set for a decl, just return
672 it. This is necessary for C++ anonymous unions, whose component
673 variables don't look like union members (boo!). */
5755cd38 674 if (TREE_CODE (t) == VAR_DECL
3c0cb5de 675 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
676 return MEM_ALIAS_SET (DECL_RTL (t));
677
f824e5c3
RK
678 /* Now all we care about is the type. */
679 t = TREE_TYPE (t);
3bdf5ad1
RK
680 }
681
3bdf5ad1 682 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 683 variant. */
3bdf5ad1 684 t = TYPE_MAIN_VARIANT (t);
daad0278
RG
685
686 /* Always use the canonical type as well. If this is a type that
687 requires structural comparisons to identify compatible types
688 use alias set zero. */
689 if (TYPE_STRUCTURAL_EQUALITY_P (t))
cb9c2485
JM
690 {
691 /* Allow the language to specify another alias set for this
692 type. */
693 set = lang_hooks.get_alias_set (t);
694 if (set != -1)
695 return set;
696 return 0;
697 }
7be7d292 698
daad0278 699 t = TYPE_CANONICAL (t);
7be7d292 700
96d91dcf
RG
701 /* The canonical type should not require structural equality checks. */
702 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
daad0278
RG
703
704 /* If this is a type with a known alias set, return it. */
738cc472 705 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
706 return TYPE_ALIAS_SET (t);
707
36784d0e
RG
708 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
709 if (!COMPLETE_TYPE_P (t))
710 {
711 /* For arrays with unknown size the conservative answer is the
712 alias set of the element type. */
713 if (TREE_CODE (t) == ARRAY_TYPE)
714 return get_alias_set (TREE_TYPE (t));
715
716 /* But return zero as a conservative answer for incomplete types. */
717 return 0;
718 }
719
3bdf5ad1 720 /* See if the language has special handling for this type. */
ae2bcd98 721 set = lang_hooks.get_alias_set (t);
8ac61af7 722 if (set != -1)
738cc472 723 return set;
2bf105ab 724
3bdf5ad1
RK
725 /* There are no objects of FUNCTION_TYPE, so there's no point in
726 using up an alias set for them. (There are, of course, pointers
727 and references to functions, but that's different.) */
7be7d292 728 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 729 set = 0;
74d86f4f
RH
730
731 /* Unless the language specifies otherwise, let vector types alias
732 their components. This avoids some nasty type punning issues in
733 normal usage. And indeed lets vectors be treated more like an
734 array slice. */
735 else if (TREE_CODE (t) == VECTOR_TYPE)
736 set = get_alias_set (TREE_TYPE (t));
737
4653cae5
RG
738 /* Unless the language specifies otherwise, treat array types the
739 same as their components. This avoids the asymmetry we get
740 through recording the components. Consider accessing a
741 character(kind=1) through a reference to a character(kind=1)[1:1].
742 Or consider if we want to assign integer(kind=4)[0:D.1387] and
743 integer(kind=4)[4] the same alias set or not.
744 Just be pragmatic here and make sure the array and its element
745 type get the same alias set assigned. */
7be7d292 746 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
4653cae5
RG
747 set = get_alias_set (TREE_TYPE (t));
748
0ceb0201
RG
749 /* From the former common C and C++ langhook implementation:
750
751 Unfortunately, there is no canonical form of a pointer type.
752 In particular, if we have `typedef int I', then `int *', and
753 `I *' are different types. So, we have to pick a canonical
754 representative. We do this below.
755
756 Technically, this approach is actually more conservative that
757 it needs to be. In particular, `const int *' and `int *'
758 should be in different alias sets, according to the C and C++
759 standard, since their types are not the same, and so,
760 technically, an `int **' and `const int **' cannot point at
761 the same thing.
762
763 But, the standard is wrong. In particular, this code is
764 legal C++:
765
766 int *ip;
767 int **ipp = &ip;
768 const int* const* cipp = ipp;
769 And, it doesn't make sense for that to be legal unless you
770 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
771 the pointed-to types. This issue has been reported to the
772 C++ committee.
773
774 In addition to the above canonicalization issue, with LTO
775 we should also canonicalize `T (*)[]' to `T *' avoiding
776 alias issues with pointer-to element types and pointer-to
777 array types.
778
779 Likewise we need to deal with the situation of incomplete
780 pointed-to types and make `*(struct X **)&a' and
781 `*(struct X {} **)&a' alias. Otherwise we will have to
782 guarantee that all pointer-to incomplete type variants
783 will be replaced by pointer-to complete type variants if
784 they are available.
785
786 With LTO the convenient situation of using `void *' to
787 access and store any pointer type will also become
788 more apparent (and `void *' is just another pointer-to
789 incomplete type). Assigning alias-set zero to `void *'
790 and all pointer-to incomplete types is a not appealing
791 solution. Assigning an effective alias-set zero only
792 affecting pointers might be - by recording proper subset
793 relationships of all pointer alias-sets.
794
795 Pointer-to function types are another grey area which
796 needs caution. Globbing them all into one alias-set
797 or the above effective zero set would work.
798
799 For now just assign the same alias-set to all pointers.
800 That's simple and avoids all the above problems. */
801 else if (POINTER_TYPE_P (t)
802 && t != ptr_type_node)
96d91dcf 803 set = get_alias_set (ptr_type_node);
0ceb0201 804
7be7d292 805 /* Otherwise make a new alias set for this type. */
3bdf5ad1 806 else
96d91dcf
RG
807 {
808 /* Each canonical type gets its own alias set, so canonical types
809 shouldn't form a tree. It doesn't really matter for types
810 we handle specially above, so only check it where it possibly
811 would result in a bogus alias set. */
812 gcc_checking_assert (TYPE_CANONICAL (t) == t);
813
814 set = new_alias_set ();
815 }
3bdf5ad1
RK
816
817 TYPE_ALIAS_SET (t) = set;
2bf105ab 818
7be7d292
EB
819 /* If this is an aggregate type or a complex type, we must record any
820 component aliasing information. */
1d79fd2c 821 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
822 record_component_aliases (t);
823
3bdf5ad1
RK
824 return set;
825}
826
827/* Return a brand-new alias set. */
828
4862826d 829alias_set_type
4682ae04 830new_alias_set (void)
3bdf5ad1 831{
3bdf5ad1 832 if (flag_strict_aliasing)
9ddb66ca 833 {
1a5640b4 834 if (alias_sets == 0)
9771b263
DN
835 vec_safe_push (alias_sets, (alias_set_entry) 0);
836 vec_safe_push (alias_sets, (alias_set_entry) 0);
837 return alias_sets->length () - 1;
9ddb66ca 838 }
3bdf5ad1
RK
839 else
840 return 0;
841}
3932261a 842
01d28c3f
JM
843/* Indicate that things in SUBSET can alias things in SUPERSET, but that
844 not everything that aliases SUPERSET also aliases SUBSET. For example,
845 in C, a store to an `int' can alias a load of a structure containing an
846 `int', and vice versa. But it can't alias a load of a 'double' member
847 of the same structure. Here, the structure would be the SUPERSET and
848 `int' the SUBSET. This relationship is also described in the comment at
849 the beginning of this file.
850
851 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
852
853 It is illegal for SUPERSET to be zero; everything is implicitly a
854 subset of alias set zero. */
855
794511d2 856void
4862826d 857record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a
MM
858{
859 alias_set_entry superset_entry;
860 alias_set_entry subset_entry;
861
f47e9b4e
RK
862 /* It is possible in complex type situations for both sets to be the same,
863 in which case we can ignore this operation. */
864 if (superset == subset)
865 return;
866
298e6adc 867 gcc_assert (superset);
3932261a
MM
868
869 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 870 if (superset_entry == 0)
3932261a
MM
871 {
872 /* Create an entry for the SUPERSET, so that we have a place to
873 attach the SUBSET. */
a9429e29 874 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
3932261a 875 superset_entry->alias_set = superset;
ca7fd9cd 876 superset_entry->children
a9429e29
LB
877 = splay_tree_new_ggc (splay_tree_compare_ints,
878 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
879 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
570eb5c8 880 superset_entry->has_zero_child = 0;
9771b263 881 (*alias_sets)[superset] = superset_entry;
3932261a
MM
882 }
883
2bf105ab
RK
884 if (subset == 0)
885 superset_entry->has_zero_child = 1;
886 else
887 {
888 subset_entry = get_alias_set_entry (subset);
889 /* If there is an entry for the subset, enter all of its children
890 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 891 if (subset_entry)
2bf105ab
RK
892 {
893 if (subset_entry->has_zero_child)
894 superset_entry->has_zero_child = 1;
d4b60170 895
2bf105ab
RK
896 splay_tree_foreach (subset_entry->children, insert_subset_children,
897 superset_entry->children);
898 }
3932261a 899
2bf105ab 900 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 901 splay_tree_insert (superset_entry->children,
2bf105ab
RK
902 (splay_tree_key) subset, 0);
903 }
3932261a
MM
904}
905
a0c33338
RK
906/* Record that component types of TYPE, if any, are part of that type for
907 aliasing purposes. For record types, we only record component types
b5487346
EB
908 for fields that are not marked non-addressable. For array types, we
909 only record the component type if it is not marked non-aliased. */
a0c33338
RK
910
911void
4682ae04 912record_component_aliases (tree type)
a0c33338 913{
4862826d 914 alias_set_type superset = get_alias_set (type);
a0c33338
RK
915 tree field;
916
917 if (superset == 0)
918 return;
919
920 switch (TREE_CODE (type))
921 {
a0c33338
RK
922 case RECORD_TYPE:
923 case UNION_TYPE:
924 case QUAL_UNION_TYPE:
6614fd40 925 /* Recursively record aliases for the base classes, if there are any. */
fa743e8c 926 if (TYPE_BINFO (type))
ca7fd9cd
KH
927 {
928 int i;
fa743e8c 929 tree binfo, base_binfo;
c22cacf3 930
fa743e8c
NS
931 for (binfo = TYPE_BINFO (type), i = 0;
932 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
933 record_alias_subset (superset,
934 get_alias_set (BINFO_TYPE (base_binfo)));
ca7fd9cd 935 }
910ad8de 936 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
b5487346 937 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
2bf105ab 938 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
939 break;
940
1d79fd2c
JW
941 case COMPLEX_TYPE:
942 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
943 break;
944
4653cae5
RG
945 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
946 element type. */
947
a0c33338
RK
948 default:
949 break;
950 }
951}
952
3bdf5ad1
RK
953/* Allocate an alias set for use in storing and reading from the varargs
954 spill area. */
955
4862826d 956static GTY(()) alias_set_type varargs_set = -1;
f103e34d 957
4862826d 958alias_set_type
4682ae04 959get_varargs_alias_set (void)
3bdf5ad1 960{
cd3ce9b4
JM
961#if 1
962 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
963 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
964 consistently use the varargs alias set for loads from the varargs
965 area. So don't use it anywhere. */
966 return 0;
967#else
f103e34d
GK
968 if (varargs_set == -1)
969 varargs_set = new_alias_set ();
3bdf5ad1 970
f103e34d 971 return varargs_set;
cd3ce9b4 972#endif
3bdf5ad1
RK
973}
974
975/* Likewise, but used for the fixed portions of the frame, e.g., register
976 save areas. */
977
4862826d 978static GTY(()) alias_set_type frame_set = -1;
f103e34d 979
4862826d 980alias_set_type
4682ae04 981get_frame_alias_set (void)
3bdf5ad1 982{
f103e34d
GK
983 if (frame_set == -1)
984 frame_set = new_alias_set ();
3bdf5ad1 985
f103e34d 986 return frame_set;
3bdf5ad1
RK
987}
988
9fc37b2b
RS
989/* Create a new, unique base with id ID. */
990
991static rtx
992unique_base_value (HOST_WIDE_INT id)
993{
994 return gen_rtx_ADDRESS (Pmode, id);
995}
996
997/* Return true if accesses based on any other base value cannot alias
998 those based on X. */
999
1000static bool
1001unique_base_value_p (rtx x)
1002{
1003 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1004}
1005
1006/* Return true if X is known to be a base value. */
1007
1008static bool
1009known_base_value_p (rtx x)
1010{
1011 switch (GET_CODE (x))
1012 {
1013 case LABEL_REF:
1014 case SYMBOL_REF:
1015 return true;
1016
1017 case ADDRESS:
1018 /* Arguments may or may not be bases; we don't know for sure. */
1019 return GET_MODE (x) != VOIDmode;
1020
1021 default:
1022 return false;
1023 }
1024}
1025
2a2c8203
JC
1026/* Inside SRC, the source of a SET, find a base address. */
1027
9ae8ffe7 1028static rtx
4682ae04 1029find_base_value (rtx src)
9ae8ffe7 1030{
713f41f9 1031 unsigned int regno;
0aacc8ed 1032
53451050
RS
1033#if defined (FIND_BASE_TERM)
1034 /* Try machine-dependent ways to find the base term. */
1035 src = FIND_BASE_TERM (src);
1036#endif
1037
9ae8ffe7
JL
1038 switch (GET_CODE (src))
1039 {
1040 case SYMBOL_REF:
1041 case LABEL_REF:
1042 return src;
1043
1044 case REG:
fb6754f0 1045 regno = REGNO (src);
d4b60170 1046 /* At the start of a function, argument registers have known base
2a2c8203
JC
1047 values which may be lost later. Returning an ADDRESS
1048 expression here allows optimization based on argument values
1049 even when the argument registers are used for other purposes. */
713f41f9
BS
1050 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1051 return new_reg_base_value[regno];
73774bc7 1052
eaf407a5 1053 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
1054 for non-fixed hard regs since it can result in a circular
1055 dependency chain for registers which have values at function entry.
eaf407a5
JL
1056
1057 The test above is not sufficient because the scheduler may move
1058 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 1059 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
9771b263 1060 && regno < vec_safe_length (reg_base_value))
83bbd9b6
RH
1061 {
1062 /* If we're inside init_alias_analysis, use new_reg_base_value
1063 to reduce the number of relaxation iterations. */
1afdf91c 1064 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 1065 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
1066 return new_reg_base_value[regno];
1067
9771b263
DN
1068 if ((*reg_base_value)[regno])
1069 return (*reg_base_value)[regno];
83bbd9b6 1070 }
73774bc7 1071
e3f049a8 1072 return 0;
9ae8ffe7
JL
1073
1074 case MEM:
1075 /* Check for an argument passed in memory. Only record in the
1076 copying-arguments block; it is too hard to track changes
1077 otherwise. */
1078 if (copying_arguments
1079 && (XEXP (src, 0) == arg_pointer_rtx
1080 || (GET_CODE (XEXP (src, 0)) == PLUS
1081 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
9fc37b2b 1082 return arg_base_value;
9ae8ffe7
JL
1083 return 0;
1084
1085 case CONST:
1086 src = XEXP (src, 0);
1087 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1088 break;
d4b60170 1089
ec5c56db 1090 /* ... fall through ... */
2a2c8203 1091
9ae8ffe7
JL
1092 case PLUS:
1093 case MINUS:
2a2c8203 1094 {
ec907dd8
JL
1095 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1096
0134bf2d
DE
1097 /* If either operand is a REG that is a known pointer, then it
1098 is the base. */
1099 if (REG_P (src_0) && REG_POINTER (src_0))
1100 return find_base_value (src_0);
1101 if (REG_P (src_1) && REG_POINTER (src_1))
1102 return find_base_value (src_1);
1103
ec907dd8
JL
1104 /* If either operand is a REG, then see if we already have
1105 a known value for it. */
0134bf2d 1106 if (REG_P (src_0))
ec907dd8
JL
1107 {
1108 temp = find_base_value (src_0);
d4b60170 1109 if (temp != 0)
ec907dd8
JL
1110 src_0 = temp;
1111 }
1112
0134bf2d 1113 if (REG_P (src_1))
ec907dd8
JL
1114 {
1115 temp = find_base_value (src_1);
d4b60170 1116 if (temp!= 0)
ec907dd8
JL
1117 src_1 = temp;
1118 }
2a2c8203 1119
0134bf2d
DE
1120 /* If either base is named object or a special address
1121 (like an argument or stack reference), then use it for the
1122 base term. */
9fc37b2b 1123 if (src_0 != 0 && known_base_value_p (src_0))
0134bf2d
DE
1124 return src_0;
1125
9fc37b2b 1126 if (src_1 != 0 && known_base_value_p (src_1))
0134bf2d
DE
1127 return src_1;
1128
d4b60170 1129 /* Guess which operand is the base address:
ec907dd8
JL
1130 If either operand is a symbol, then it is the base. If
1131 either operand is a CONST_INT, then the other is the base. */
481683e1 1132 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1133 return find_base_value (src_0);
481683e1 1134 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1135 return find_base_value (src_1);
1136
9ae8ffe7 1137 return 0;
2a2c8203
JC
1138 }
1139
1140 case LO_SUM:
1141 /* The standard form is (lo_sum reg sym) so look only at the
1142 second operand. */
1143 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1144
1145 case AND:
1146 /* If the second operand is constant set the base
ec5c56db 1147 address to the first operand. */
481683e1 1148 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
2a2c8203 1149 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1150 return 0;
1151
61f0131c 1152 case TRUNCATE:
5932a4d4 1153 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1154 handle this only if the target does not support different pointer or
1155 address modes depending on the address space. */
1156 if (!target_default_pointer_address_modes_p ())
1157 break;
61f0131c
R
1158 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1159 break;
1160 /* Fall through. */
9ae8ffe7 1161 case HIGH:
d288e53d
DE
1162 case PRE_INC:
1163 case PRE_DEC:
1164 case POST_INC:
1165 case POST_DEC:
1166 case PRE_MODIFY:
1167 case POST_MODIFY:
2a2c8203 1168 return find_base_value (XEXP (src, 0));
1d300e19 1169
0aacc8ed
RK
1170 case ZERO_EXTEND:
1171 case SIGN_EXTEND: /* used for NT/Alpha pointers */
5932a4d4 1172 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1173 handle this only if the target does not support different pointer or
1174 address modes depending on the address space. */
1175 if (!target_default_pointer_address_modes_p ())
1176 break;
1177
0aacc8ed
RK
1178 {
1179 rtx temp = find_base_value (XEXP (src, 0));
1180
5ae6cd0d 1181 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1182 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1183
1184 return temp;
1185 }
1186
1d300e19
KG
1187 default:
1188 break;
9ae8ffe7
JL
1189 }
1190
1191 return 0;
1192}
1193
9fc37b2b
RS
1194/* Called from init_alias_analysis indirectly through note_stores,
1195 or directly if DEST is a register with a REG_NOALIAS note attached.
1196 SET is null in the latter case. */
9ae8ffe7 1197
d4b60170 1198/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7 1199 register N has been set in this function. */
d630245f 1200static sbitmap reg_seen;
9ae8ffe7 1201
2a2c8203 1202static void
7bc980e1 1203record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1204{
b3694847 1205 unsigned regno;
9ae8ffe7 1206 rtx src;
c28b4e40 1207 int n;
9ae8ffe7 1208
f8cfc6aa 1209 if (!REG_P (dest))
9ae8ffe7
JL
1210 return;
1211
fb6754f0 1212 regno = REGNO (dest);
9ae8ffe7 1213
9771b263 1214 gcc_checking_assert (regno < reg_base_value->length ());
ac606739 1215
c28b4e40
JW
1216 /* If this spans multiple hard registers, then we must indicate that every
1217 register has an unusable value. */
1218 if (regno < FIRST_PSEUDO_REGISTER)
66fd46b6 1219 n = hard_regno_nregs[regno][GET_MODE (dest)];
c28b4e40
JW
1220 else
1221 n = 1;
1222 if (n != 1)
1223 {
1224 while (--n >= 0)
1225 {
d7c028c0 1226 bitmap_set_bit (reg_seen, regno + n);
c28b4e40
JW
1227 new_reg_base_value[regno + n] = 0;
1228 }
1229 return;
1230 }
1231
9ae8ffe7
JL
1232 if (set)
1233 {
1234 /* A CLOBBER wipes out any old value but does not prevent a previously
1235 unset register from acquiring a base address (i.e. reg_seen is not
1236 set). */
1237 if (GET_CODE (set) == CLOBBER)
1238 {
ec907dd8 1239 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1240 return;
1241 }
1242 src = SET_SRC (set);
1243 }
1244 else
1245 {
9fc37b2b 1246 /* There's a REG_NOALIAS note against DEST. */
d7c028c0 1247 if (bitmap_bit_p (reg_seen, regno))
9ae8ffe7 1248 {
ec907dd8 1249 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1250 return;
1251 }
d7c028c0 1252 bitmap_set_bit (reg_seen, regno);
9fc37b2b 1253 new_reg_base_value[regno] = unique_base_value (unique_id++);
9ae8ffe7
JL
1254 return;
1255 }
1256
5da6f168
RS
1257 /* If this is not the first set of REGNO, see whether the new value
1258 is related to the old one. There are two cases of interest:
1259
1260 (1) The register might be assigned an entirely new value
1261 that has the same base term as the original set.
1262
1263 (2) The set might be a simple self-modification that
1264 cannot change REGNO's base value.
1265
1266 If neither case holds, reject the original base value as invalid.
1267 Note that the following situation is not detected:
1268
c22cacf3 1269 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1270
9ae8ffe7
JL
1271 ANSI C does not allow computing the difference of addresses
1272 of distinct top level objects. */
5da6f168
RS
1273 if (new_reg_base_value[regno] != 0
1274 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1275 switch (GET_CODE (src))
1276 {
2a2c8203 1277 case LO_SUM:
9ae8ffe7
JL
1278 case MINUS:
1279 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1280 new_reg_base_value[regno] = 0;
9ae8ffe7 1281 break;
61f0131c
R
1282 case PLUS:
1283 /* If the value we add in the PLUS is also a valid base value,
1284 this might be the actual base value, and the original value
1285 an index. */
1286 {
1287 rtx other = NULL_RTX;
1288
1289 if (XEXP (src, 0) == dest)
1290 other = XEXP (src, 1);
1291 else if (XEXP (src, 1) == dest)
1292 other = XEXP (src, 0);
1293
1294 if (! other || find_base_value (other))
1295 new_reg_base_value[regno] = 0;
1296 break;
1297 }
9ae8ffe7 1298 case AND:
481683e1 1299 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1300 new_reg_base_value[regno] = 0;
9ae8ffe7 1301 break;
9ae8ffe7 1302 default:
ec907dd8 1303 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1304 break;
1305 }
1306 /* If this is the first set of a register, record the value. */
1307 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
d7c028c0 1308 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
ec907dd8 1309 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7 1310
d7c028c0 1311 bitmap_set_bit (reg_seen, regno);
9ae8ffe7
JL
1312}
1313
8fd0a474
AM
1314/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1315 using hard registers with non-null REG_BASE_VALUE for renaming. */
1316rtx
1317get_reg_base_value (unsigned int regno)
1318{
9771b263 1319 return (*reg_base_value)[regno];
8fd0a474
AM
1320}
1321
bb1acb3e
RH
1322/* If a value is known for REGNO, return it. */
1323
c22cacf3 1324rtx
bb1acb3e
RH
1325get_reg_known_value (unsigned int regno)
1326{
1327 if (regno >= FIRST_PSEUDO_REGISTER)
1328 {
1329 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1330 if (regno < vec_safe_length (reg_known_value))
1331 return (*reg_known_value)[regno];
bb1acb3e
RH
1332 }
1333 return NULL;
43fe47ca
JW
1334}
1335
bb1acb3e
RH
1336/* Set it. */
1337
1338static void
1339set_reg_known_value (unsigned int regno, rtx val)
1340{
1341 if (regno >= FIRST_PSEUDO_REGISTER)
1342 {
1343 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1344 if (regno < vec_safe_length (reg_known_value))
1345 (*reg_known_value)[regno] = val;
bb1acb3e
RH
1346 }
1347}
1348
1349/* Similarly for reg_known_equiv_p. */
1350
1351bool
1352get_reg_known_equiv_p (unsigned int regno)
1353{
1354 if (regno >= FIRST_PSEUDO_REGISTER)
1355 {
1356 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1357 if (regno < vec_safe_length (reg_known_value))
d7c028c0 1358 return bitmap_bit_p (reg_known_equiv_p, regno);
bb1acb3e
RH
1359 }
1360 return false;
1361}
1362
1363static void
1364set_reg_known_equiv_p (unsigned int regno, bool val)
1365{
1366 if (regno >= FIRST_PSEUDO_REGISTER)
1367 {
1368 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1369 if (regno < vec_safe_length (reg_known_value))
9ff3c7ca
SB
1370 {
1371 if (val)
d7c028c0 1372 bitmap_set_bit (reg_known_equiv_p, regno);
9ff3c7ca 1373 else
d7c028c0 1374 bitmap_clear_bit (reg_known_equiv_p, regno);
9ff3c7ca 1375 }
bb1acb3e
RH
1376 }
1377}
1378
1379
db048faf
MM
1380/* Returns a canonical version of X, from the point of view alias
1381 analysis. (For example, if X is a MEM whose address is a register,
1382 and the register has a known value (say a SYMBOL_REF), then a MEM
1383 whose address is the SYMBOL_REF is returned.) */
1384
1385rtx
4682ae04 1386canon_rtx (rtx x)
9ae8ffe7
JL
1387{
1388 /* Recursively look for equivalences. */
f8cfc6aa 1389 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1390 {
1391 rtx t = get_reg_known_value (REGNO (x));
1392 if (t == x)
1393 return x;
1394 if (t)
1395 return canon_rtx (t);
1396 }
1397
1398 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1399 {
1400 rtx x0 = canon_rtx (XEXP (x, 0));
1401 rtx x1 = canon_rtx (XEXP (x, 1));
1402
1403 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1404 {
481683e1 1405 if (CONST_INT_P (x0))
0a81f074 1406 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
481683e1 1407 else if (CONST_INT_P (x1))
0a81f074 1408 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
38a448ca 1409 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1410 }
1411 }
d4b60170 1412
9ae8ffe7
JL
1413 /* This gives us much better alias analysis when called from
1414 the loop optimizer. Note we want to leave the original
1415 MEM alone, but need to return the canonicalized MEM with
1416 all the flags with their original values. */
3c0cb5de 1417 else if (MEM_P (x))
f1ec5147 1418 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1419
9ae8ffe7
JL
1420 return x;
1421}
1422
1423/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1424 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1425
1426 We use the data in reg_known_value above to see if two registers with
1427 different numbers are, in fact, equivalent. */
1428
1429static int
ed7a4b4b 1430rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1431{
b3694847
SS
1432 int i;
1433 int j;
1434 enum rtx_code code;
1435 const char *fmt;
9ae8ffe7
JL
1436
1437 if (x == 0 && y == 0)
1438 return 1;
1439 if (x == 0 || y == 0)
1440 return 0;
d4b60170 1441
9ae8ffe7
JL
1442 if (x == y)
1443 return 1;
1444
1445 code = GET_CODE (x);
1446 /* Rtx's of different codes cannot be equal. */
1447 if (code != GET_CODE (y))
1448 return 0;
1449
1450 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1451 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1452
1453 if (GET_MODE (x) != GET_MODE (y))
1454 return 0;
1455
db048faf
MM
1456 /* Some RTL can be compared without a recursive examination. */
1457 switch (code)
1458 {
1459 case REG:
1460 return REGNO (x) == REGNO (y);
1461
1462 case LABEL_REF:
1463 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1464
db048faf
MM
1465 case SYMBOL_REF:
1466 return XSTR (x, 0) == XSTR (y, 0);
1467
40e02b4a 1468 case VALUE:
d8116890 1469 CASE_CONST_UNIQUE:
db048faf
MM
1470 /* There's no need to compare the contents of CONST_DOUBLEs or
1471 CONST_INTs because pointer equality is a good enough
1472 comparison for these nodes. */
1473 return 0;
1474
db048faf
MM
1475 default:
1476 break;
1477 }
9ae8ffe7 1478
45183e03
JH
1479 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1480 if (code == PLUS)
9ae8ffe7
JL
1481 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1482 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1483 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1484 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1485 /* For commutative operations, the RTX match if the operand match in any
1486 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1487 if (COMMUTATIVE_P (x))
45183e03
JH
1488 {
1489 rtx xop0 = canon_rtx (XEXP (x, 0));
1490 rtx yop0 = canon_rtx (XEXP (y, 0));
1491 rtx yop1 = canon_rtx (XEXP (y, 1));
1492
1493 return ((rtx_equal_for_memref_p (xop0, yop0)
1494 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1495 || (rtx_equal_for_memref_p (xop0, yop1)
1496 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1497 }
ec8e098d 1498 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1499 {
1500 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1501 canon_rtx (XEXP (y, 0)))
45183e03
JH
1502 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1503 canon_rtx (XEXP (y, 1))));
1504 }
ec8e098d 1505 else if (UNARY_P (x))
45183e03 1506 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1507 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1508
1509 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1510 fail to match, return 0 for the whole things.
1511
1512 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1513
1514 fmt = GET_RTX_FORMAT (code);
1515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1516 {
1517 switch (fmt[i])
1518 {
9ae8ffe7
JL
1519 case 'i':
1520 if (XINT (x, i) != XINT (y, i))
1521 return 0;
1522 break;
1523
9ae8ffe7
JL
1524 case 'E':
1525 /* Two vectors must have the same length. */
1526 if (XVECLEN (x, i) != XVECLEN (y, i))
1527 return 0;
1528
1529 /* And the corresponding elements must match. */
1530 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1531 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1532 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1533 return 0;
1534 break;
1535
1536 case 'e':
45183e03
JH
1537 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1538 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1539 return 0;
1540 break;
1541
3237ac18
AH
1542 /* This can happen for asm operands. */
1543 case 's':
1544 if (strcmp (XSTR (x, i), XSTR (y, i)))
1545 return 0;
1546 break;
1547
aee21ba9
JL
1548 /* This can happen for an asm which clobbers memory. */
1549 case '0':
1550 break;
1551
9ae8ffe7
JL
1552 /* It is believed that rtx's at this level will never
1553 contain anything but integers and other rtx's,
1554 except for within LABEL_REFs and SYMBOL_REFs. */
1555 default:
298e6adc 1556 gcc_unreachable ();
9ae8ffe7
JL
1557 }
1558 }
1559 return 1;
1560}
1561
9e412ca3 1562static rtx
4682ae04 1563find_base_term (rtx x)
9ae8ffe7 1564{
eab5c70a 1565 cselib_val *val;
6f2ffb4b
AO
1566 struct elt_loc_list *l, *f;
1567 rtx ret;
eab5c70a 1568
b949ea8b
JW
1569#if defined (FIND_BASE_TERM)
1570 /* Try machine-dependent ways to find the base term. */
1571 x = FIND_BASE_TERM (x);
1572#endif
1573
9ae8ffe7
JL
1574 switch (GET_CODE (x))
1575 {
1576 case REG:
1577 return REG_BASE_VALUE (x);
1578
d288e53d 1579 case TRUNCATE:
5932a4d4 1580 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1581 handle this only if the target does not support different pointer or
1582 address modes depending on the address space. */
1583 if (!target_default_pointer_address_modes_p ())
1584 return 0;
d288e53d 1585 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1586 return 0;
d288e53d 1587 /* Fall through. */
9ae8ffe7 1588 case HIGH:
6d849a2a
JL
1589 case PRE_INC:
1590 case PRE_DEC:
1591 case POST_INC:
1592 case POST_DEC:
d288e53d
DE
1593 case PRE_MODIFY:
1594 case POST_MODIFY:
6d849a2a
JL
1595 return find_base_term (XEXP (x, 0));
1596
1abade85
RK
1597 case ZERO_EXTEND:
1598 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
5932a4d4 1599 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1600 handle this only if the target does not support different pointer or
1601 address modes depending on the address space. */
1602 if (!target_default_pointer_address_modes_p ())
1603 return 0;
1604
1abade85
RK
1605 {
1606 rtx temp = find_base_term (XEXP (x, 0));
1607
5ae6cd0d 1608 if (temp != 0 && CONSTANT_P (temp))
1abade85 1609 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1610
1611 return temp;
1612 }
1613
eab5c70a
BS
1614 case VALUE:
1615 val = CSELIB_VAL_PTR (x);
6f2ffb4b
AO
1616 ret = NULL_RTX;
1617
40e02b4a 1618 if (!val)
6f2ffb4b
AO
1619 return ret;
1620
0fe03ac3
JJ
1621 if (cselib_sp_based_value_p (val))
1622 return static_reg_base_value[STACK_POINTER_REGNUM];
1623
6f2ffb4b
AO
1624 f = val->locs;
1625 /* Temporarily reset val->locs to avoid infinite recursion. */
1626 val->locs = NULL;
1627
1628 for (l = f; l; l = l->next)
1629 if (GET_CODE (l->loc) == VALUE
1630 && CSELIB_VAL_PTR (l->loc)->locs
1631 && !CSELIB_VAL_PTR (l->loc)->locs->next
1632 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1633 continue;
1634 else if ((ret = find_base_term (l->loc)) != 0)
1635 break;
1636
1637 val->locs = f;
1638 return ret;
eab5c70a 1639
023f059b
JJ
1640 case LO_SUM:
1641 /* The standard form is (lo_sum reg sym) so look only at the
1642 second operand. */
1643 return find_base_term (XEXP (x, 1));
1644
9ae8ffe7
JL
1645 case CONST:
1646 x = XEXP (x, 0);
1647 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1648 return 0;
938d968e 1649 /* Fall through. */
9ae8ffe7
JL
1650 case PLUS:
1651 case MINUS:
1652 {
3c567fae
JL
1653 rtx tmp1 = XEXP (x, 0);
1654 rtx tmp2 = XEXP (x, 1);
1655
f5143c46 1656 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1657 the two operands represents the real base address. Otherwise this
1658 routine may return the index register instead of the base register.
1659
1660 That may cause us to believe no aliasing was possible, when in
1661 fact aliasing is possible.
1662
1663 We use a few simple tests to guess the base register. Additional
1664 tests can certainly be added. For example, if one of the operands
1665 is a shift or multiply, then it must be the index register and the
1666 other operand is the base register. */
ca7fd9cd 1667
b949ea8b
JW
1668 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1669 return find_base_term (tmp2);
1670
3c567fae
JL
1671 /* If either operand is known to be a pointer, then use it
1672 to determine the base term. */
3502dc9c 1673 if (REG_P (tmp1) && REG_POINTER (tmp1))
7eba2d1f
LM
1674 {
1675 rtx base = find_base_term (tmp1);
1676 if (base)
1677 return base;
1678 }
3c567fae 1679
3502dc9c 1680 if (REG_P (tmp2) && REG_POINTER (tmp2))
7eba2d1f
LM
1681 {
1682 rtx base = find_base_term (tmp2);
1683 if (base)
1684 return base;
1685 }
3c567fae
JL
1686
1687 /* Neither operand was known to be a pointer. Go ahead and find the
1688 base term for both operands. */
1689 tmp1 = find_base_term (tmp1);
1690 tmp2 = find_base_term (tmp2);
1691
1692 /* If either base term is named object or a special address
1693 (like an argument or stack reference), then use it for the
1694 base term. */
9fc37b2b 1695 if (tmp1 != 0 && known_base_value_p (tmp1))
3c567fae
JL
1696 return tmp1;
1697
9fc37b2b 1698 if (tmp2 != 0 && known_base_value_p (tmp2))
3c567fae
JL
1699 return tmp2;
1700
1701 /* We could not determine which of the two operands was the
1702 base register and which was the index. So we can determine
1703 nothing from the base alias check. */
1704 return 0;
9ae8ffe7
JL
1705 }
1706
1707 case AND:
481683e1 1708 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
d288e53d 1709 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1710 return 0;
1711
1712 case SYMBOL_REF:
1713 case LABEL_REF:
1714 return x;
1715
1716 default:
1717 return 0;
1718 }
1719}
1720
9e412ca3
RS
1721/* Return true if accesses to address X may alias accesses based
1722 on the stack pointer. */
1723
1724bool
1725may_be_sp_based_p (rtx x)
1726{
1727 rtx base = find_base_term (x);
1728 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1729}
1730
9ae8ffe7
JL
1731/* Return 0 if the addresses X and Y are known to point to different
1732 objects, 1 if they might be pointers to the same object. */
1733
1734static int
4682ae04
AJ
1735base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1736 enum machine_mode y_mode)
9ae8ffe7
JL
1737{
1738 rtx x_base = find_base_term (x);
1739 rtx y_base = find_base_term (y);
1740
1c72c7f6
JC
1741 /* If the address itself has no known base see if a known equivalent
1742 value has one. If either address still has no known base, nothing
1743 is known about aliasing. */
1744 if (x_base == 0)
1745 {
1746 rtx x_c;
d4b60170 1747
1c72c7f6
JC
1748 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1749 return 1;
d4b60170 1750
1c72c7f6
JC
1751 x_base = find_base_term (x_c);
1752 if (x_base == 0)
1753 return 1;
1754 }
9ae8ffe7 1755
1c72c7f6
JC
1756 if (y_base == 0)
1757 {
1758 rtx y_c;
1759 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1760 return 1;
d4b60170 1761
1c72c7f6
JC
1762 y_base = find_base_term (y_c);
1763 if (y_base == 0)
1764 return 1;
1765 }
1766
1767 /* If the base addresses are equal nothing is known about aliasing. */
1768 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1769 return 1;
1770
435da628
UB
1771 /* The base addresses are different expressions. If they are not accessed
1772 via AND, there is no conflict. We can bring knowledge of object
1773 alignment into play here. For example, on alpha, "char a, b;" can
1774 alias one another, though "char a; long b;" cannot. AND addesses may
1775 implicitly alias surrounding objects; i.e. unaligned access in DImode
1776 via AND address can alias all surrounding object types except those
1777 with aligment 8 or higher. */
1778 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1779 return 1;
1780 if (GET_CODE (x) == AND
481683e1 1781 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
1782 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1783 return 1;
1784 if (GET_CODE (y) == AND
481683e1 1785 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
1786 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1787 return 1;
1788
1789 /* Differing symbols not accessed via AND never alias. */
9ae8ffe7 1790 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 1791 return 0;
9ae8ffe7 1792
9fc37b2b 1793 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
9ae8ffe7
JL
1794 return 0;
1795
0d3c82d6 1796 return 1;
9ae8ffe7
JL
1797}
1798
a5628378
AO
1799/* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1800 whose UID is greater than the int uid that D points to. */
1801
1802static int
1803refs_newer_value_cb (rtx *x, void *d)
1804{
1805 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1806 return 1;
1807
1808 return 0;
1809}
1810
1811/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1812 that of V. */
1813
1814static bool
1815refs_newer_value_p (rtx expr, rtx v)
1816{
1817 int minuid = CSELIB_VAL_PTR (v)->uid;
1818
1819 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1820}
1821
eab5c70a
BS
1822/* Convert the address X into something we can use. This is done by returning
1823 it unchanged unless it is a value; in the latter case we call cselib to get
1824 a more useful rtx. */
3bdf5ad1 1825
a13d4ebf 1826rtx
4682ae04 1827get_addr (rtx x)
eab5c70a
BS
1828{
1829 cselib_val *v;
1830 struct elt_loc_list *l;
1831
1832 if (GET_CODE (x) != VALUE)
1833 return x;
1834 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
1835 if (v)
1836 {
0f68ba3e
AO
1837 bool have_equivs = cselib_have_permanent_equivalences ();
1838 if (have_equivs)
1839 v = canonical_cselib_val (v);
40e02b4a
JH
1840 for (l = v->locs; l; l = l->next)
1841 if (CONSTANT_P (l->loc))
1842 return l->loc;
1843 for (l = v->locs; l; l = l->next)
0f68ba3e
AO
1844 if (!REG_P (l->loc) && !MEM_P (l->loc)
1845 /* Avoid infinite recursion when potentially dealing with
1846 var-tracking artificial equivalences, by skipping the
1847 equivalences themselves, and not choosing expressions
1848 that refer to newer VALUEs. */
1849 && (!have_equivs
1850 || (GET_CODE (l->loc) != VALUE
1851 && !refs_newer_value_p (l->loc, x))))
a5628378 1852 return l->loc;
0f68ba3e
AO
1853 if (have_equivs)
1854 {
1855 for (l = v->locs; l; l = l->next)
1856 if (REG_P (l->loc)
1857 || (GET_CODE (l->loc) != VALUE
1858 && !refs_newer_value_p (l->loc, x)))
1859 return l->loc;
1860 /* Return the canonical value. */
1861 return v->val_rtx;
1862 }
1863 if (v->locs)
1864 return v->locs->loc;
40e02b4a 1865 }
eab5c70a
BS
1866 return x;
1867}
1868
39cec1ac
MH
1869/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1870 where SIZE is the size in bytes of the memory reference. If ADDR
1871 is not modified by the memory reference then ADDR is returned. */
1872
04e2b4d3 1873static rtx
4682ae04 1874addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1875{
1876 int offset = 0;
ca7fd9cd 1877
39cec1ac
MH
1878 switch (GET_CODE (addr))
1879 {
1880 case PRE_INC:
1881 offset = (n_refs + 1) * size;
1882 break;
1883 case PRE_DEC:
1884 offset = -(n_refs + 1) * size;
1885 break;
1886 case POST_INC:
1887 offset = n_refs * size;
1888 break;
1889 case POST_DEC:
1890 offset = -n_refs * size;
1891 break;
1892
1893 default:
1894 return addr;
1895 }
ca7fd9cd 1896
39cec1ac 1897 if (offset)
45183e03 1898 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
c22cacf3 1899 GEN_INT (offset));
39cec1ac
MH
1900 else
1901 addr = XEXP (addr, 0);
45183e03 1902 addr = canon_rtx (addr);
39cec1ac
MH
1903
1904 return addr;
1905}
1906
f47e08d9
RG
1907/* Return one if X and Y (memory addresses) reference the
1908 same location in memory or if the references overlap.
1909 Return zero if they do not overlap, else return
1910 minus one in which case they still might reference the same location.
1911
1912 C is an offset accumulator. When
9ae8ffe7
JL
1913 C is nonzero, we are testing aliases between X and Y + C.
1914 XSIZE is the size in bytes of the X reference,
1915 similarly YSIZE is the size in bytes for Y.
45183e03 1916 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1917
1918 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1919 referenced (the reference was BLKmode), so make the most pessimistic
1920 assumptions.
1921
c02f035f
RH
1922 If XSIZE or YSIZE is negative, we may access memory outside the object
1923 being referenced as a side effect. This can happen when using AND to
1924 align memory references, as is done on the Alpha.
1925
9ae8ffe7 1926 Nice to notice that varying addresses cannot conflict with fp if no
f47e08d9
RG
1927 local variables had their addresses taken, but that's too hard now.
1928
1929 ??? Contrary to the tree alias oracle this does not return
1930 one for X + non-constant and Y + non-constant when X and Y are equal.
1931 If that is fixed the TBAA hack for union type-punning can be removed. */
9ae8ffe7 1932
9ae8ffe7 1933static int
4682ae04 1934memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1935{
eab5c70a 1936 if (GET_CODE (x) == VALUE)
5312b066
JJ
1937 {
1938 if (REG_P (y))
1939 {
24f8d71e
JJ
1940 struct elt_loc_list *l = NULL;
1941 if (CSELIB_VAL_PTR (x))
a5628378
AO
1942 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
1943 l; l = l->next)
24f8d71e
JJ
1944 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1945 break;
5312b066
JJ
1946 if (l)
1947 x = y;
1948 else
1949 x = get_addr (x);
1950 }
1951 /* Don't call get_addr if y is the same VALUE. */
1952 else if (x != y)
1953 x = get_addr (x);
1954 }
eab5c70a 1955 if (GET_CODE (y) == VALUE)
5312b066
JJ
1956 {
1957 if (REG_P (x))
1958 {
24f8d71e
JJ
1959 struct elt_loc_list *l = NULL;
1960 if (CSELIB_VAL_PTR (y))
a5628378
AO
1961 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
1962 l; l = l->next)
24f8d71e
JJ
1963 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1964 break;
5312b066
JJ
1965 if (l)
1966 y = x;
1967 else
1968 y = get_addr (y);
1969 }
1970 /* Don't call get_addr if x is the same VALUE. */
1971 else if (y != x)
1972 y = get_addr (y);
1973 }
9ae8ffe7
JL
1974 if (GET_CODE (x) == HIGH)
1975 x = XEXP (x, 0);
1976 else if (GET_CODE (x) == LO_SUM)
1977 x = XEXP (x, 1);
1978 else
45183e03 1979 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1980 if (GET_CODE (y) == HIGH)
1981 y = XEXP (y, 0);
1982 else if (GET_CODE (y) == LO_SUM)
1983 y = XEXP (y, 1);
1984 else
45183e03 1985 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1986
1987 if (rtx_equal_for_memref_p (x, y))
1988 {
c02f035f 1989 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1990 return 1;
1991 if (c >= 0 && xsize > c)
1992 return 1;
1993 if (c < 0 && ysize+c > 0)
1994 return 1;
1995 return 0;
1996 }
1997
6e73e666
JC
1998 /* This code used to check for conflicts involving stack references and
1999 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
2000
2001 if (GET_CODE (x) == PLUS)
2002 {
2003 /* The fact that X is canonicalized means that this
2004 PLUS rtx is canonicalized. */
2005 rtx x0 = XEXP (x, 0);
2006 rtx x1 = XEXP (x, 1);
2007
2008 if (GET_CODE (y) == PLUS)
2009 {
2010 /* The fact that Y is canonicalized means that this
2011 PLUS rtx is canonicalized. */
2012 rtx y0 = XEXP (y, 0);
2013 rtx y1 = XEXP (y, 1);
2014
2015 if (rtx_equal_for_memref_p (x1, y1))
2016 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2017 if (rtx_equal_for_memref_p (x0, y0))
2018 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
481683e1 2019 if (CONST_INT_P (x1))
63be02db 2020 {
481683e1 2021 if (CONST_INT_P (y1))
63be02db
JM
2022 return memrefs_conflict_p (xsize, x0, ysize, y0,
2023 c - INTVAL (x1) + INTVAL (y1));
2024 else
2025 return memrefs_conflict_p (xsize, x0, ysize, y,
2026 c - INTVAL (x1));
2027 }
481683e1 2028 else if (CONST_INT_P (y1))
9ae8ffe7
JL
2029 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2030
f47e08d9 2031 return -1;
9ae8ffe7 2032 }
481683e1 2033 else if (CONST_INT_P (x1))
9ae8ffe7
JL
2034 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2035 }
2036 else if (GET_CODE (y) == PLUS)
2037 {
2038 /* The fact that Y is canonicalized means that this
2039 PLUS rtx is canonicalized. */
2040 rtx y0 = XEXP (y, 0);
2041 rtx y1 = XEXP (y, 1);
2042
481683e1 2043 if (CONST_INT_P (y1))
9ae8ffe7
JL
2044 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2045 else
f47e08d9 2046 return -1;
9ae8ffe7
JL
2047 }
2048
2049 if (GET_CODE (x) == GET_CODE (y))
2050 switch (GET_CODE (x))
2051 {
2052 case MULT:
2053 {
2054 /* Handle cases where we expect the second operands to be the
2055 same, and check only whether the first operand would conflict
2056 or not. */
2057 rtx x0, y0;
2058 rtx x1 = canon_rtx (XEXP (x, 1));
2059 rtx y1 = canon_rtx (XEXP (y, 1));
2060 if (! rtx_equal_for_memref_p (x1, y1))
f47e08d9 2061 return -1;
9ae8ffe7
JL
2062 x0 = canon_rtx (XEXP (x, 0));
2063 y0 = canon_rtx (XEXP (y, 0));
2064 if (rtx_equal_for_memref_p (x0, y0))
2065 return (xsize == 0 || ysize == 0
2066 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2067
2068 /* Can't properly adjust our sizes. */
481683e1 2069 if (!CONST_INT_P (x1))
f47e08d9 2070 return -1;
9ae8ffe7
JL
2071 xsize /= INTVAL (x1);
2072 ysize /= INTVAL (x1);
2073 c /= INTVAL (x1);
2074 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2075 }
1d300e19
KG
2076
2077 default:
2078 break;
9ae8ffe7
JL
2079 }
2080
a9bf4fe2
AO
2081 /* Deal with alignment ANDs by adjusting offset and size so as to
2082 cover the maximum range, without taking any previously known
5147bf6a
AO
2083 alignment into account. Make a size negative after such an
2084 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2085 assume a potential overlap, because they may end up in contiguous
2086 memory locations and the stricter-alignment access may span over
2087 part of both. */
481683e1 2088 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 2089 {
a9bf4fe2
AO
2090 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2091 unsigned HOST_WIDE_INT uc = sc;
5147bf6a 2092 if (sc < 0 && -uc == (uc & -uc))
a9bf4fe2 2093 {
5147bf6a
AO
2094 if (xsize > 0)
2095 xsize = -xsize;
2096 xsize += sc + 1;
fe8fb1c4 2097 c -= sc + 1;
a9bf4fe2
AO
2098 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2099 ysize, y, c);
2100 }
56ee9281 2101 }
481683e1 2102 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 2103 {
a9bf4fe2
AO
2104 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2105 unsigned HOST_WIDE_INT uc = sc;
5147bf6a 2106 if (sc < 0 && -uc == (uc & -uc))
a9bf4fe2 2107 {
5147bf6a
AO
2108 if (ysize > 0)
2109 ysize = -ysize;
2110 ysize += sc + 1;
fe8fb1c4 2111 c += sc + 1;
a9bf4fe2
AO
2112 return memrefs_conflict_p (xsize, x,
2113 ysize, canon_rtx (XEXP (y, 0)), c);
2114 }
c02f035f 2115 }
9ae8ffe7
JL
2116
2117 if (CONSTANT_P (x))
2118 {
481683e1 2119 if (CONST_INT_P (x) && CONST_INT_P (y))
9ae8ffe7
JL
2120 {
2121 c += (INTVAL (y) - INTVAL (x));
c02f035f 2122 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
2123 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2124 }
2125
2126 if (GET_CODE (x) == CONST)
2127 {
2128 if (GET_CODE (y) == CONST)
2129 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2130 ysize, canon_rtx (XEXP (y, 0)), c);
2131 else
2132 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2133 ysize, y, c);
2134 }
2135 if (GET_CODE (y) == CONST)
2136 return memrefs_conflict_p (xsize, x, ysize,
2137 canon_rtx (XEXP (y, 0)), c);
2138
2139 if (CONSTANT_P (y))
b949ea8b 2140 return (xsize <= 0 || ysize <= 0
c02f035f 2141 || (rtx_equal_for_memref_p (x, y)
b949ea8b 2142 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7 2143
f47e08d9 2144 return -1;
9ae8ffe7 2145 }
f47e08d9
RG
2146
2147 return -1;
9ae8ffe7
JL
2148}
2149
2150/* Functions to compute memory dependencies.
2151
2152 Since we process the insns in execution order, we can build tables
2153 to keep track of what registers are fixed (and not aliased), what registers
2154 are varying in known ways, and what registers are varying in unknown
2155 ways.
2156
2157 If both memory references are volatile, then there must always be a
2158 dependence between the two references, since their order can not be
2159 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 2160 though.
9ae8ffe7 2161
53d9622b
RS
2162 We also must allow AND addresses, because they may generate accesses
2163 outside the object being referenced. This is used to generate aligned
2164 addresses from unaligned addresses, for instance, the alpha
dc1618bc 2165 storeqi_unaligned pattern. */
9ae8ffe7
JL
2166
2167/* Read dependence: X is read after read in MEM takes place. There can
96672a3e
RH
2168 only be a dependence here if both reads are volatile, or if either is
2169 an explicit barrier. */
9ae8ffe7
JL
2170
2171int
4f588890 2172read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2173{
96672a3e
RH
2174 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2175 return true;
2176 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2177 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2178 return true;
2179 return false;
9ae8ffe7
JL
2180}
2181
998d7deb
RH
2182/* Return true if we can determine that the fields referenced cannot
2183 overlap for any pair of objects. */
2184
2185static bool
175a7536 2186nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
998d7deb 2187{
175a7536 2188 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
4f588890 2189 const_tree fieldx, fieldy, typex, typey, orig_y;
998d7deb 2190
175a7536
MM
2191 if (!flag_strict_aliasing
2192 || !x || !y
2193 || TREE_CODE (x) != COMPONENT_REF
2194 || TREE_CODE (y) != COMPONENT_REF)
4c7af939
AB
2195 return false;
2196
998d7deb
RH
2197 do
2198 {
2199 /* The comparison has to be done at a common type, since we don't
d6a7951f 2200 know how the inheritance hierarchy works. */
998d7deb
RH
2201 orig_y = y;
2202 do
2203 {
2204 fieldx = TREE_OPERAND (x, 1);
c05a0766 2205 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
998d7deb
RH
2206
2207 y = orig_y;
2208 do
2209 {
2210 fieldy = TREE_OPERAND (y, 1);
c05a0766 2211 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
998d7deb
RH
2212
2213 if (typex == typey)
2214 goto found;
2215
2216 y = TREE_OPERAND (y, 0);
2217 }
2218 while (y && TREE_CODE (y) == COMPONENT_REF);
2219
2220 x = TREE_OPERAND (x, 0);
2221 }
2222 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb 2223 /* Never found a common type. */
c05a0766 2224 return false;
998d7deb
RH
2225
2226 found:
ee88e690 2227 /* If we're left with accessing different fields of a structure, then no
8bed6809 2228 possible overlap, unless they are both bitfields. */
ee88e690 2229 if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
8bed6809 2230 return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
998d7deb
RH
2231
2232 /* The comparison on the current field failed. If we're accessing
2233 a very nested structure, look at the next outer level. */
2234 x = TREE_OPERAND (x, 0);
2235 y = TREE_OPERAND (y, 0);
2236 }
2237 while (x && y
2238 && TREE_CODE (x) == COMPONENT_REF
2239 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 2240
998d7deb
RH
2241 return false;
2242}
2243
2244/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2245
2246static tree
4682ae04 2247decl_for_component_ref (tree x)
998d7deb
RH
2248{
2249 do
2250 {
2251 x = TREE_OPERAND (x, 0);
2252 }
2253 while (x && TREE_CODE (x) == COMPONENT_REF);
2254
2255 return x && DECL_P (x) ? x : NULL_TREE;
2256}
2257
527210c4
RS
2258/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2259 for the offset of the field reference. *KNOWN_P says whether the
2260 offset is known. */
998d7deb 2261
527210c4
RS
2262static void
2263adjust_offset_for_component_ref (tree x, bool *known_p,
2264 HOST_WIDE_INT *offset)
998d7deb 2265{
527210c4
RS
2266 if (!*known_p)
2267 return;
ca7fd9cd 2268 do
998d7deb 2269 {
527210c4 2270 tree xoffset = component_ref_field_offset (x);
998d7deb
RH
2271 tree field = TREE_OPERAND (x, 1);
2272
527210c4
RS
2273 if (! host_integerp (xoffset, 1))
2274 {
2275 *known_p = false;
2276 return;
2277 }
2278 *offset += (tree_low_cst (xoffset, 1)
998d7deb
RH
2279 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2280 / BITS_PER_UNIT));
2281
2282 x = TREE_OPERAND (x, 0);
2283 }
2284 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb
RH
2285}
2286
95bd1dd7 2287/* Return nonzero if we can determine the exprs corresponding to memrefs
c6ea834c
BM
2288 X and Y and they do not overlap.
2289 If LOOP_VARIANT is set, skip offset-based disambiguation */
a4311dfe 2290
2e4e39f6 2291int
c6ea834c 2292nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
a4311dfe 2293{
998d7deb 2294 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2295 rtx rtlx, rtly;
2296 rtx basex, basey;
527210c4
RS
2297 bool moffsetx_known_p, moffsety_known_p;
2298 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
a4311dfe
RK
2299 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2300
998d7deb
RH
2301 /* Unless both have exprs, we can't tell anything. */
2302 if (exprx == 0 || expry == 0)
2303 return 0;
2b22e382
RG
2304
2305 /* For spill-slot accesses make sure we have valid offsets. */
2306 if ((exprx == get_spill_slot_decl (false)
527210c4 2307 && ! MEM_OFFSET_KNOWN_P (x))
2b22e382 2308 || (expry == get_spill_slot_decl (false)
527210c4 2309 && ! MEM_OFFSET_KNOWN_P (y)))
2b22e382 2310 return 0;
c22cacf3 2311
998d7deb 2312 /* If the field reference test failed, look at the DECLs involved. */
527210c4
RS
2313 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2314 if (moffsetx_known_p)
2315 moffsetx = MEM_OFFSET (x);
998d7deb
RH
2316 if (TREE_CODE (exprx) == COMPONENT_REF)
2317 {
2e0c984c
RG
2318 tree t = decl_for_component_ref (exprx);
2319 if (! t)
2320 return 0;
527210c4 2321 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2e0c984c 2322 exprx = t;
998d7deb 2323 }
c67a1cf6 2324
527210c4
RS
2325 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2326 if (moffsety_known_p)
2327 moffsety = MEM_OFFSET (y);
998d7deb
RH
2328 if (TREE_CODE (expry) == COMPONENT_REF)
2329 {
2e0c984c
RG
2330 tree t = decl_for_component_ref (expry);
2331 if (! t)
2332 return 0;
527210c4 2333 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2e0c984c 2334 expry = t;
998d7deb
RH
2335 }
2336
2337 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2338 return 0;
2339
1307c758
RG
2340 /* With invalid code we can end up storing into the constant pool.
2341 Bail out to avoid ICEing when creating RTL for this.
2342 See gfortran.dg/lto/20091028-2_0.f90. */
2343 if (TREE_CODE (exprx) == CONST_DECL
2344 || TREE_CODE (expry) == CONST_DECL)
2345 return 1;
2346
998d7deb
RH
2347 rtlx = DECL_RTL (exprx);
2348 rtly = DECL_RTL (expry);
a4311dfe 2349
1edcd60b
RK
2350 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2351 can't overlap unless they are the same because we never reuse that part
2352 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2353 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2354 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2355 return 1;
2356
5932a4d4 2357 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2358 potentially overlap), we cannot easily tell from the addresses
2359 whether the references overlap. */
2360 if (MEM_P (rtlx) && MEM_P (rtly)
2361 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2362 return 0;
2363
a4311dfe
RK
2364 /* Get the base and offsets of both decls. If either is a register, we
2365 know both are and are the same, so use that as the base. The only
2366 we can avoid overlap is if we can deduce that they are nonoverlapping
2367 pieces of that decl, which is very rare. */
3c0cb5de 2368 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
481683e1 2369 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
a4311dfe
RK
2370 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2371
3c0cb5de 2372 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
481683e1 2373 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
a4311dfe
RK
2374 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2375
d746694a 2376 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2377 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2378 stack frame. Otherwise a different base means we can't tell if they
2379 overlap or not. */
2380 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2381 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2382 || (CONSTANT_P (basex) && REG_P (basey)
2383 && REGNO_PTR_FRAME_P (REGNO (basey)))
2384 || (CONSTANT_P (basey) && REG_P (basex)
2385 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2386
c6ea834c
BM
2387 /* Offset based disambiguation not appropriate for loop invariant */
2388 if (loop_invariant)
2389 return 0;
2390
3c0cb5de 2391 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
f5541398 2392 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
a4311dfe 2393 : -1);
3c0cb5de 2394 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
f5541398
RS
2395 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2396 : -1);
a4311dfe 2397
0af5bc3e
RK
2398 /* If we have an offset for either memref, it can update the values computed
2399 above. */
527210c4
RS
2400 if (moffsetx_known_p)
2401 offsetx += moffsetx, sizex -= moffsetx;
2402 if (moffsety_known_p)
2403 offsety += moffsety, sizey -= moffsety;
a4311dfe 2404
0af5bc3e 2405 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2406 We can't do this if the offset isn't known because we must view this
0af5bc3e 2407 memref as being anywhere inside the DECL's MEM. */
527210c4 2408 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
f5541398 2409 sizex = MEM_SIZE (x);
527210c4 2410 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
f5541398 2411 sizey = MEM_SIZE (y);
a4311dfe
RK
2412
2413 /* Put the values of the memref with the lower offset in X's values. */
2414 if (offsetx > offsety)
2415 {
2416 tem = offsetx, offsetx = offsety, offsety = tem;
2417 tem = sizex, sizex = sizey, sizey = tem;
2418 }
2419
2420 /* If we don't know the size of the lower-offset value, we can't tell
2421 if they conflict. Otherwise, we do the test. */
a6f7c915 2422 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2423}
2424
9362286d
SB
2425/* Helper for true_dependence and canon_true_dependence.
2426 Checks for true dependence: X is read after store in MEM takes place.
9ae8ffe7 2427
9362286d
SB
2428 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2429 NULL_RTX, and the canonical addresses of MEM and X are both computed
2430 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2431
2432 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2433
2434 Returns 1 if there is a true dependence, 0 otherwise. */
2435
2436static int
2437true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
53d9622b 2438 const_rtx x, rtx x_addr, bool mem_canonicalized)
9ae8ffe7 2439{
49982682 2440 rtx base;
f47e08d9 2441 int ret;
9ae8ffe7 2442
9362286d
SB
2443 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2444 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2445
9ae8ffe7
JL
2446 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2447 return 1;
2448
c4484b8f 2449 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2450 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2451 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2452 return 1;
2453 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2454 return 1;
9cd9e512
RH
2455 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2456 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2457 return 1;
c4484b8f 2458
389fdba0
RH
2459 /* Read-only memory is by definition never modified, and therefore can't
2460 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2461 but stupid user tricks can produce them, so don't die. */
389fdba0 2462 if (MEM_READONLY_P (x))
9ae8ffe7
JL
2463 return 0;
2464
5932a4d4 2465 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2466 potentially overlap), we cannot easily tell from the addresses
2467 whether the references overlap. */
2468 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2469 return 1;
2470
9362286d
SB
2471 if (! mem_addr)
2472 {
2473 mem_addr = XEXP (mem, 0);
2474 if (mem_mode == VOIDmode)
2475 mem_mode = GET_MODE (mem);
2476 }
2477
2478 if (! x_addr)
2147c71c 2479 {
a522de15
SB
2480 x_addr = XEXP (x, 0);
2481 if (!((GET_CODE (x_addr) == VALUE
2482 && GET_CODE (mem_addr) != VALUE
2483 && reg_mentioned_p (x_addr, mem_addr))
2484 || (GET_CODE (x_addr) != VALUE
2485 && GET_CODE (mem_addr) == VALUE
2486 && reg_mentioned_p (mem_addr, x_addr))))
2487 {
2488 x_addr = get_addr (x_addr);
2489 if (! mem_canonicalized)
2490 mem_addr = get_addr (mem_addr);
2491 }
2147c71c 2492 }
eab5c70a 2493
55efb413
JW
2494 base = find_base_term (x_addr);
2495 if (base && (GET_CODE (base) == LABEL_REF
2496 || (GET_CODE (base) == SYMBOL_REF
2497 && CONSTANT_POOL_ADDRESS_P (base))))
2498 return 0;
2499
eab5c70a 2500 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2501 return 0;
2502
eab5c70a 2503 x_addr = canon_rtx (x_addr);
9362286d
SB
2504 if (!mem_canonicalized)
2505 mem_addr = canon_rtx (mem_addr);
6e73e666 2506
f47e08d9
RG
2507 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2508 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2509 return ret;
2510
a95b3cc7 2511 if (mems_in_disjoint_alias_sets_p (x, mem))
f47e08d9
RG
2512 return 0;
2513
c6ea834c 2514 if (nonoverlapping_memrefs_p (mem, x, false))
0211b6ab 2515 return 0;
175a7536
MM
2516
2517 if (nonoverlapping_component_refs_p (mem, x))
2518 return 0;
0211b6ab 2519
55b34b5f 2520 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
2521}
2522
9362286d
SB
2523/* True dependence: X is read after store in MEM takes place. */
2524
2525int
53d9622b 2526true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
9362286d
SB
2527{
2528 return true_dependence_1 (mem, mem_mode, NULL_RTX,
53d9622b 2529 x, NULL_RTX, /*mem_canonicalized=*/false);
9362286d
SB
2530}
2531
a13d4ebf 2532/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2533 Variant of true_dependence which assumes MEM has already been
2534 canonicalized (hence we no longer do that here).
9362286d
SB
2535 The mem_addr argument has been added, since true_dependence_1 computed
2536 this value prior to canonicalizing. */
a13d4ebf
AM
2537
2538int
4f588890 2539canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
53d9622b 2540 const_rtx x, rtx x_addr)
a13d4ebf 2541{
9362286d 2542 return true_dependence_1 (mem, mem_mode, mem_addr,
53d9622b 2543 x, x_addr, /*mem_canonicalized=*/true);
9ae8ffe7
JL
2544}
2545
da7d8304 2546/* Returns nonzero if a write to X might alias a previous read from
389fdba0 2547 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2548
2c72b78f 2549static int
4f588890 2550write_dependence_p (const_rtx mem, const_rtx x, int writep)
9ae8ffe7 2551{
6e73e666 2552 rtx x_addr, mem_addr;
49982682 2553 rtx base;
f47e08d9 2554 int ret;
6e73e666 2555
9ae8ffe7
JL
2556 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2557 return 1;
2558
c4484b8f
RH
2559 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2560 This is used in epilogue deallocation functions. */
2561 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2562 return 1;
2563 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2564 return 1;
9cd9e512
RH
2565 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2566 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2567 return 1;
c4484b8f 2568
389fdba0
RH
2569 /* A read from read-only memory can't conflict with read-write memory. */
2570 if (!writep && MEM_READONLY_P (mem))
2571 return 0;
55efb413 2572
5932a4d4 2573 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2574 potentially overlap), we cannot easily tell from the addresses
2575 whether the references overlap. */
2576 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2577 return 1;
2578
2147c71c
L
2579 x_addr = XEXP (x, 0);
2580 mem_addr = XEXP (mem, 0);
2581 if (!((GET_CODE (x_addr) == VALUE
2582 && GET_CODE (mem_addr) != VALUE
2583 && reg_mentioned_p (x_addr, mem_addr))
2584 || (GET_CODE (x_addr) != VALUE
2585 && GET_CODE (mem_addr) == VALUE
2586 && reg_mentioned_p (mem_addr, x_addr))))
2587 {
2588 x_addr = get_addr (x_addr);
2589 mem_addr = get_addr (mem_addr);
2590 }
55efb413 2591
49982682
JW
2592 if (! writep)
2593 {
55efb413 2594 base = find_base_term (mem_addr);
49982682
JW
2595 if (base && (GET_CODE (base) == LABEL_REF
2596 || (GET_CODE (base) == SYMBOL_REF
2597 && CONSTANT_POOL_ADDRESS_P (base))))
2598 return 0;
2599 }
2600
eab5c70a
BS
2601 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2602 GET_MODE (mem)))
41472af8
MM
2603 return 0;
2604
eab5c70a
BS
2605 x_addr = canon_rtx (x_addr);
2606 mem_addr = canon_rtx (mem_addr);
6e73e666 2607
f47e08d9
RG
2608 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2609 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2610 return ret;
2611
c6ea834c 2612 if (nonoverlapping_memrefs_p (x, mem, false))
c6df88cb
MM
2613 return 0;
2614
55b34b5f 2615 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
2616}
2617
2618/* Anti dependence: X is written after read in MEM takes place. */
2619
2620int
4f588890 2621anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 2622{
389fdba0 2623 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2624}
2625
2626/* Output dependence: X is written after store in MEM takes place. */
2627
2628int
4f588890 2629output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2630{
389fdba0 2631 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2632}
c14b9960 2633\f
6e73e666 2634
c6ea834c
BM
2635
2636/* Check whether X may be aliased with MEM. Don't do offset-based
2637 memory disambiguation & TBAA. */
2638int
2639may_alias_p (const_rtx mem, const_rtx x)
2640{
2641 rtx x_addr, mem_addr;
c6ea834c
BM
2642
2643 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2644 return 1;
2645
a95b3cc7
RG
2646 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2647 This is used in epilogue deallocation functions. */
2648 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2649 return 1;
2650 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
c6ea834c 2651 return 1;
c6ea834c
BM
2652 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2653 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2654 return 1;
2655
2656 /* Read-only memory is by definition never modified, and therefore can't
2657 conflict with anything. We don't expect to find read-only set on MEM,
2658 but stupid user tricks can produce them, so don't die. */
2659 if (MEM_READONLY_P (x))
2660 return 0;
2661
5932a4d4 2662 /* If we have MEMs referring to different address spaces (which can
c6ea834c
BM
2663 potentially overlap), we cannot easily tell from the addresses
2664 whether the references overlap. */
2665 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2666 return 1;
2667
2668 x_addr = XEXP (x, 0);
2669 mem_addr = XEXP (mem, 0);
2670 if (!((GET_CODE (x_addr) == VALUE
2671 && GET_CODE (mem_addr) != VALUE
2672 && reg_mentioned_p (x_addr, mem_addr))
2673 || (GET_CODE (x_addr) != VALUE
2674 && GET_CODE (mem_addr) == VALUE
2675 && reg_mentioned_p (mem_addr, x_addr))))
2676 {
2677 x_addr = get_addr (x_addr);
2678 mem_addr = get_addr (mem_addr);
2679 }
2680
2681 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2682 return 0;
2683
2684 x_addr = canon_rtx (x_addr);
2685 mem_addr = canon_rtx (mem_addr);
2686
2687 if (nonoverlapping_memrefs_p (mem, x, true))
2688 return 0;
2689
c6ea834c
BM
2690 /* TBAA not valid for loop_invarint */
2691 return rtx_refs_may_alias_p (x, mem, false);
2692}
2693
6e73e666 2694void
b5deb7b6 2695init_alias_target (void)
6e73e666 2696{
b3694847 2697 int i;
6e73e666 2698
9fc37b2b
RS
2699 if (!arg_base_value)
2700 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2701
b5deb7b6
SL
2702 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2703
6e73e666
JC
2704 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2705 /* Check whether this register can hold an incoming pointer
2706 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2707 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2708 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2709 && HARD_REGNO_MODE_OK (i, Pmode))
9fc37b2b
RS
2710 static_reg_base_value[i] = arg_base_value;
2711
757e8ba2
JJ
2712 static_reg_base_value[STACK_POINTER_REGNUM]
2713 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2714 static_reg_base_value[ARG_POINTER_REGNUM]
2715 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2716 static_reg_base_value[FRAME_POINTER_REGNUM]
2717 = unique_base_value (UNIQUE_BASE_VALUE_FP);
e3339d0f 2718#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
757e8ba2
JJ
2719 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2720 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
bf1660a6
JL
2721#endif
2722}
2723
7b52eede
JH
2724/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2725 to be memory reference. */
2726static bool memory_modified;
2727static void
aa317c97 2728memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 2729{
3c0cb5de 2730 if (MEM_P (x))
7b52eede 2731 {
9678086d 2732 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
2733 memory_modified = true;
2734 }
2735}
2736
2737
2738/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 2739 (i.e. address can be modified). */
7b52eede 2740bool
9678086d 2741memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
2742{
2743 if (!INSN_P (insn))
2744 return false;
2745 memory_modified = false;
aa317c97 2746 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
2747 return memory_modified;
2748}
2749
a7b159a4
AH
2750/* Return TRUE if the destination of a set is rtx identical to
2751 ITEM. */
2752static inline bool
2753set_dest_equal_p (const_rtx set, const_rtx item)
2754{
2755 rtx dest = SET_DEST (set);
2756 return rtx_equal_p (dest, item);
2757}
2758
2759/* Like memory_modified_in_insn_p, but return TRUE if INSN will
2760 *DEFINITELY* modify the memory contents of MEM. */
2761bool
2762memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2763{
2764 if (!INSN_P (insn))
2765 return false;
2766 insn = PATTERN (insn);
2767 if (GET_CODE (insn) == SET)
2768 return set_dest_equal_p (insn, mem);
2769 else if (GET_CODE (insn) == PARALLEL)
2770 {
2771 int i;
2772 for (i = 0; i < XVECLEN (insn, 0); i++)
2773 {
2774 rtx sub = XVECEXP (insn, 0, i);
2775 if (GET_CODE (sub) == SET
2776 && set_dest_equal_p (sub, mem))
2777 return true;
2778 }
2779 }
2780 return false;
2781}
2782
c13e8210
MM
2783/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2784 array. */
2785
9ae8ffe7 2786void
4682ae04 2787init_alias_analysis (void)
9ae8ffe7 2788{
c582d54a 2789 unsigned int maxreg = max_reg_num ();
ea64ef27 2790 int changed, pass;
b3694847
SS
2791 int i;
2792 unsigned int ui;
9ff3c7ca 2793 rtx insn, val;
131db6b8
SB
2794 int rpo_cnt;
2795 int *rpo;
9ae8ffe7 2796
0d446150
JH
2797 timevar_push (TV_ALIAS_ANALYSIS);
2798
92390dd1 2799 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
9ff3c7ca 2800 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
9ae8ffe7 2801
08c79682 2802 /* If we have memory allocated from the previous run, use it. */
c582d54a 2803 if (old_reg_base_value)
08c79682
KH
2804 reg_base_value = old_reg_base_value;
2805
2806 if (reg_base_value)
9771b263 2807 reg_base_value->truncate (0);
08c79682 2808
9771b263 2809 vec_safe_grow_cleared (reg_base_value, maxreg);
ac606739 2810
5ed6ace5 2811 new_reg_base_value = XNEWVEC (rtx, maxreg);
d630245f 2812 reg_seen = sbitmap_alloc (maxreg);
ec907dd8
JL
2813
2814 /* The basic idea is that each pass through this loop will use the
2815 "constant" information from the previous pass to propagate alias
2816 information through another level of assignments.
2817
131db6b8
SB
2818 The propagation is done on the CFG in reverse post-order, to propagate
2819 things forward as far as possible in each iteration.
2820
ec907dd8
JL
2821 This could get expensive if the assignment chains are long. Maybe
2822 we should throttle the number of iterations, possibly based on
6e73e666 2823 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2824
2825 We could propagate more information in the first pass by making use
6fb5fa3c 2826 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
2827 for a pseudo is "constant".
2828
2829 A program with an uninitialized variable can cause an infinite loop
2830 here. Instead of doing a full dataflow analysis to detect such problems
2831 we just cap the number of iterations for the loop.
2832
2833 The state of the arrays for the set chain in question does not matter
2834 since the program has undefined behavior. */
6e73e666 2835
131db6b8
SB
2836 rpo = XNEWVEC (int, n_basic_blocks);
2837 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2838
ea64ef27 2839 pass = 0;
6e73e666 2840 do
ec907dd8
JL
2841 {
2842 /* Assume nothing will change this iteration of the loop. */
2843 changed = 0;
2844
ec907dd8 2845 /* We want to assign the same IDs each iteration of this loop, so
9fc37b2b
RS
2846 start counting from one each iteration of the loop. */
2847 unique_id = 1;
ec907dd8 2848
f5143c46 2849 /* We're at the start of the function each iteration through the
ec907dd8 2850 loop, so we're copying arguments. */
83bbd9b6 2851 copying_arguments = true;
9ae8ffe7 2852
6e73e666 2853 /* Wipe the potential alias information clean for this pass. */
c582d54a 2854 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 2855
6e73e666 2856 /* Wipe the reg_seen array clean. */
f61e445a 2857 bitmap_clear (reg_seen);
9ae8ffe7 2858
6e73e666
JC
2859 /* Mark all hard registers which may contain an address.
2860 The stack, frame and argument pointers may contain an address.
2861 An argument register which can hold a Pmode value may contain
2862 an address even if it is not in BASE_REGS.
8072f69c 2863
6e73e666
JC
2864 The address expression is VOIDmode for an argument and
2865 Pmode for other registers. */
2866
7f243674
JL
2867 memcpy (new_reg_base_value, static_reg_base_value,
2868 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2869
ec907dd8 2870 /* Walk the insns adding values to the new_reg_base_value array. */
131db6b8 2871 for (i = 0; i < rpo_cnt; i++)
9ae8ffe7 2872 {
131db6b8
SB
2873 basic_block bb = BASIC_BLOCK (rpo[i]);
2874 FOR_BB_INSNS (bb, insn)
ec907dd8 2875 {
131db6b8
SB
2876 if (NONDEBUG_INSN_P (insn))
2877 {
2878 rtx note, set;
efc9bd41
RK
2879
2880#if defined (HAVE_prologue) || defined (HAVE_epilogue)
131db6b8
SB
2881 /* The prologue/epilogue insns are not threaded onto the
2882 insn chain until after reload has completed. Thus,
2883 there is no sense wasting time checking if INSN is in
2884 the prologue/epilogue until after reload has completed. */
2885 if (reload_completed
2886 && prologue_epilogue_contains (insn))
2887 continue;
efc9bd41
RK
2888#endif
2889
131db6b8
SB
2890 /* If this insn has a noalias note, process it, Otherwise,
2891 scan for sets. A simple set will have no side effects
2892 which could change the base value of any other register. */
6e73e666 2893
131db6b8
SB
2894 if (GET_CODE (PATTERN (insn)) == SET
2895 && REG_NOTES (insn) != 0
2896 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2897 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2898 else
2899 note_stores (PATTERN (insn), record_set, NULL);
6e73e666 2900
131db6b8 2901 set = single_set (insn);
6e73e666 2902
131db6b8
SB
2903 if (set != 0
2904 && REG_P (SET_DEST (set))
2905 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
713f41f9 2906 {
131db6b8
SB
2907 unsigned int regno = REGNO (SET_DEST (set));
2908 rtx src = SET_SRC (set);
2909 rtx t;
2910
2911 note = find_reg_equal_equiv_note (insn);
2912 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2913 && DF_REG_DEF_COUNT (regno) != 1)
2914 note = NULL_RTX;
2915
2916 if (note != NULL_RTX
2917 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2918 && ! rtx_varies_p (XEXP (note, 0), 1)
2919 && ! reg_overlap_mentioned_p (SET_DEST (set),
2920 XEXP (note, 0)))
2921 {
2922 set_reg_known_value (regno, XEXP (note, 0));
2923 set_reg_known_equiv_p (regno,
2924 REG_NOTE_KIND (note) == REG_EQUIV);
2925 }
2926 else if (DF_REG_DEF_COUNT (regno) == 1
2927 && GET_CODE (src) == PLUS
2928 && REG_P (XEXP (src, 0))
2929 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2930 && CONST_INT_P (XEXP (src, 1)))
2931 {
2932 t = plus_constant (GET_MODE (src), t,
2933 INTVAL (XEXP (src, 1)));
2934 set_reg_known_value (regno, t);
2935 set_reg_known_equiv_p (regno, false);
2936 }
2937 else if (DF_REG_DEF_COUNT (regno) == 1
2938 && ! rtx_varies_p (src, 1))
2939 {
2940 set_reg_known_value (regno, src);
2941 set_reg_known_equiv_p (regno, false);
2942 }
713f41f9 2943 }
6e73e666 2944 }
131db6b8
SB
2945 else if (NOTE_P (insn)
2946 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2947 copying_arguments = false;
ec907dd8 2948 }
6e73e666 2949 }
ec907dd8 2950
6e73e666 2951 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 2952 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 2953
c582d54a 2954 for (ui = 0; ui < maxreg; ui++)
6e73e666 2955 {
e51712db 2956 if (new_reg_base_value[ui]
9771b263
DN
2957 && new_reg_base_value[ui] != (*reg_base_value)[ui]
2958 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
ec907dd8 2959 {
9771b263 2960 (*reg_base_value)[ui] = new_reg_base_value[ui];
6e73e666 2961 changed = 1;
ec907dd8 2962 }
9ae8ffe7 2963 }
9ae8ffe7 2964 }
6e73e666 2965 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
131db6b8 2966 XDELETEVEC (rpo);
9ae8ffe7
JL
2967
2968 /* Fill in the remaining entries. */
9771b263 2969 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
9ff3c7ca
SB
2970 {
2971 int regno = i + FIRST_PSEUDO_REGISTER;
2972 if (! val)
2973 set_reg_known_value (regno, regno_reg_rtx[regno]);
2974 }
9ae8ffe7 2975
e05e2395
MM
2976 /* Clean up. */
2977 free (new_reg_base_value);
ec907dd8 2978 new_reg_base_value = 0;
d630245f 2979 sbitmap_free (reg_seen);
9ae8ffe7 2980 reg_seen = 0;
0d446150 2981 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2982}
2983
61630b27
JJ
2984/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2985 Special API for var-tracking pass purposes. */
2986
2987void
2988vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2989{
9771b263 2990 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
61630b27
JJ
2991}
2992
9ae8ffe7 2993void
4682ae04 2994end_alias_analysis (void)
9ae8ffe7 2995{
c582d54a 2996 old_reg_base_value = reg_base_value;
9771b263 2997 vec_free (reg_known_value);
9ff3c7ca 2998 sbitmap_free (reg_known_equiv_p);
9ae8ffe7 2999}
e2500fed
GK
3000
3001#include "gt-alias.h"