]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
Update copyright years.
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
cbe34bb5 2 Copyright (C) 1997-2017 Free Software Foundation, Inc.
9ae8ffe7
JL
3 Contributed by John Carr (jfc@mit.edu).
4
1322177d 5This file is part of GCC.
9ae8ffe7 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
9ae8ffe7 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
9ae8ffe7
JL
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5
AM
25#include "target.h"
26#include "rtl.h"
c7131fb2
AM
27#include "tree.h"
28#include "gimple.h"
c7131fb2 29#include "df.h"
4d0cdd0c 30#include "memmodel.h"
957060b5
AM
31#include "tm_p.h"
32#include "gimple-ssa.h"
957060b5 33#include "emit-rtl.h"
40e23961 34#include "alias.h"
40e23961 35#include "fold-const.h"
d8a2d370 36#include "varasm.h"
eab5c70a 37#include "cselib.h"
d23c55c2 38#include "langhooks.h"
60393bbc 39#include "cfganal.h"
403837b4 40#include "rtl-iter.h"
54363f8a 41#include "cgraph.h"
ea900239
DB
42
43/* The aliasing API provided here solves related but different problems:
44
c22cacf3 45 Say there exists (in c)
ea900239
DB
46
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
51
52 struct Y y2, *py;
53 struct Z z2, *pz;
54
55
308a3fe2 56 py = &x1.y1;
ea900239
DB
57 px2 = &x1;
58
59 Consider the four questions:
60
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
ea900239
DB
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
65
66 The answer to these questions can be yes, yes, yes, and maybe.
67
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
073a8998 70 a store through a pointer to an X can overwrite any field that is
ea900239
DB
71 contained (recursively) in an X (unless we know that px1 != px2).
72
308a3fe2
DS
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
ea900239
DB
80
81 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 82 instances do not escape across the compilation boundary.
ea900239
DB
83
84 Historically in GCC, these two problems were combined and a single
308a3fe2 85 data structure that was used to represent the solution to these
ea900239 86 problems. We now have two similar but different data structures,
308a3fe2
DS
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
ea900239 91*/
3932261a
MM
92
93/* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
3932261a 97
01d28c3f 98 struct S { int i; double d; };
3932261a
MM
99
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
c22cacf3
MS
104 struct S
105 / \
3932261a 106 / \
c22cacf3
MS
107 |/_ _\|
108 int double
3932261a 109
ac3d9668
RK
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
113
3bdf5ad1
RK
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
95bd1dd7 116 past immediate descendants, however, since we propagate all
3bdf5ad1 117 grandchildren up one level.
3932261a
MM
118
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
122
e0702244 123struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
de144fb2 124
02ced957 125struct GTY(()) alias_set_entry {
3932261a 126 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 127 alias_set_type alias_set;
3932261a
MM
128
129 /* The children of the alias set. These are not just the immediate
95bd1dd7 130 children, but, in fact, all descendants. So, if we have:
3932261a 131
ca7fd9cd 132 struct T { struct S s; float f; }
3932261a
MM
133
134 continuing our example above, the children here will be all of
135 `int', `double', `float', and `struct S'. */
fb5c464a 136 hash_map<alias_set_hash, int> *children;
6e042ef4
JH
137
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 bool has_zero_child;
141 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
142 aggregate contaiing pointer.
143 This is used for a special case where we need an universal pointer type
144 compatible with all other pointer types. */
145 bool is_pointer;
146 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
147 bool has_pointer;
b604074c 148};
9ae8ffe7 149
ed7a4b4b 150static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 151static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 152static void record_set (rtx, const_rtx, void *);
ef4bddc2
RS
153static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
4682ae04 155static rtx find_base_value (rtx);
4f588890 156static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
02ced957 157static alias_set_entry *get_alias_set_entry (alias_set_type);
4682ae04 158static tree decl_for_component_ref (tree);
bd280792 159static int write_dependence_p (const_rtx,
ef4bddc2 160 const_rtx, machine_mode, rtx,
bd280792 161 bool, bool, bool);
73e48cb3 162static int compare_base_symbol_refs (const_rtx, const_rtx);
4682ae04 163
aa317c97 164static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7 165
3ecf9d13
JH
166/* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
168
169static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
6e042ef4 175 unsigned long long num_universal;
3ecf9d13
JH
176 unsigned long long num_disambiguated;
177} alias_stats;
178
179
9ae8ffe7
JL
180/* Set up all info needed to perform alias analysis on memory references. */
181
d4b60170 182/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
183#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184
ea64ef27 185/* Cap the number of passes we make over the insns propagating alias
131db6b8
SB
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
ea64ef27 190#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 191
9ae8ffe7
JL
192/* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
196 of the first set.
197
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
9fc37b2b 199 expressions represent three types of base:
b3b5ad95 200
9fc37b2b
RS
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
b3b5ad95 204
9fc37b2b
RS
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
209
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
214
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
218
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
2a2c8203 224
9771b263 225static GTY(()) vec<rtx, va_gc> *reg_base_value;
ac606739 226static rtx *new_reg_base_value;
c582d54a 227
9fc37b2b
RS
228/* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230static GTY(()) rtx arg_base_value;
231
232/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233static int unique_id;
234
c582d54a
JH
235/* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
9771b263 238static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
d4b60170 239
9e412ca3
RS
240/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242#define UNIQUE_BASE_VALUE_SP -1
243#define UNIQUE_BASE_VALUE_ARGP -2
244#define UNIQUE_BASE_VALUE_FP -3
245#define UNIQUE_BASE_VALUE_HFP -4
246
7bf84454
RS
247#define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
bf1660a6 249
9771b263
DN
250#define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
9ae8ffe7 253
c13e8210 254/* Vector indexed by N giving the initial (unchanging) value known for
9ff3c7ca 255 pseudo-register N. This vector is initialized in init_alias_analysis,
bb1acb3e 256 and does not change until end_alias_analysis is called. */
9771b263 257static GTY(()) vec<rtx, va_gc> *reg_known_value;
9ae8ffe7
JL
258
259/* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
262 dependences that would be introduced if that happens.
263
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
9ff3c7ca 271static sbitmap reg_known_equiv_p;
9ae8ffe7 272
2a2c8203
JC
273/* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 275static bool copying_arguments;
9ae8ffe7 276
1a5640b4 277
3932261a 278/* The splay-tree used to store the various alias set entries. */
02ced957 279static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
ac3d9668 280\f
55b34b5f
RG
281/* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
284
285static bool
286ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287{
288 tree expr = MEM_EXPR (mem);
289 tree base;
290
291 if (!expr)
292 return false;
293
294 ao_ref_init (ref, expr);
295
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
301
ef7a9fb8
RB
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
d15adbeb 309 return false;
55b34b5f
RG
310
311 /* If this is a reference based on a partitioned decl replace the
ef7a9fb8 312 base with a MEM_REF of the pointer representative we
55b34b5f 313 created during stack slot partitioning. */
8813a647 314 if (VAR_P (base)
ef7a9fb8 315 && ! is_global_var (base)
55b34b5f
RG
316 && cfun->gimple_df->decls_to_pointers != NULL)
317 {
39c8aaa4 318 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
55b34b5f 319 if (namep)
39c8aaa4 320 ref->base = build_simple_mem_ref (*namep);
d15adbeb 321 }
55b34b5f
RG
322
323 ref->ref_alias_set = MEM_ALIAS_SET (mem);
324
f68396a1
RG
325 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
326 is conservative, so trust it. */
527210c4 327 if (!MEM_OFFSET_KNOWN_P (mem)
f5541398 328 || !MEM_SIZE_KNOWN_P (mem))
f68396a1 329 return true;
366f945f 330
e8024441
RB
331 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
332 drop ref->ref. */
527210c4 333 if (MEM_OFFSET (mem) < 0
e8024441
RB
334 || (ref->max_size != -1
335 && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
336 > ref->max_size)))
337 ref->ref = NULL_TREE;
b0e96404 338
e8024441
RB
339 /* Refine size and offset we got from analyzing MEM_EXPR by using
340 MEM_SIZE and MEM_OFFSET. */
f68396a1 341
527210c4 342 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
f5541398 343 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
b0e96404
RG
344
345 /* The MEM may extend into adjacent fields, so adjust max_size if
346 necessary. */
347 if (ref->max_size != -1
348 && ref->size > ref->max_size)
349 ref->max_size = ref->size;
350
351 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
352 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
353 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
354 && (ref->offset < 0
355 || (DECL_P (ref->base)
807e902e
KZ
356 && (DECL_SIZE (ref->base) == NULL_TREE
357 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
358 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
359 ref->offset + ref->size)))))
b0e96404 360 return false;
55b34b5f
RG
361
362 return true;
363}
364
365/* Query the alias-oracle on whether the two memory rtx X and MEM may
366 alias. If TBAA_P is set also apply TBAA. Returns true if the
367 two rtxen may alias, false otherwise. */
368
369static bool
370rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
371{
372 ao_ref ref1, ref2;
373
374 if (!ao_ref_from_mem (&ref1, x)
375 || !ao_ref_from_mem (&ref2, mem))
376 return true;
377
55e3bc4c
RG
378 return refs_may_alias_p_1 (&ref1, &ref2,
379 tbaa_p
380 && MEM_ALIAS_SET (x) != 0
381 && MEM_ALIAS_SET (mem) != 0);
55b34b5f
RG
382}
383
3932261a
MM
384/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
385 such an entry, or NULL otherwise. */
386
02ced957 387static inline alias_set_entry *
4862826d 388get_alias_set_entry (alias_set_type alias_set)
3932261a 389{
9771b263 390 return (*alias_sets)[alias_set];
3932261a
MM
391}
392
ac3d9668
RK
393/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
394 the two MEMs cannot alias each other. */
3932261a 395
9ddb66ca 396static inline int
4f588890 397mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 398{
598f8eca
RB
399 return (flag_strict_aliasing
400 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
401 MEM_ALIAS_SET (mem2)));
1da68f56 402}
3932261a 403
c58936b6
DB
404/* Return true if the first alias set is a subset of the second. */
405
406bool
4862826d 407alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6 408{
02ced957 409 alias_set_entry *ase2;
c58936b6 410
bd04cddf
JH
411 /* Disable TBAA oracle with !flag_strict_aliasing. */
412 if (!flag_strict_aliasing)
413 return true;
414
c58936b6
DB
415 /* Everything is a subset of the "aliases everything" set. */
416 if (set2 == 0)
417 return true;
418
6e042ef4
JH
419 /* Check if set1 is a subset of set2. */
420 ase2 = get_alias_set_entry (set2);
421 if (ase2 != 0
422 && (ase2->has_zero_child
423 || (ase2->children && ase2->children->get (set1))))
c58936b6 424 return true;
6e042ef4
JH
425
426 /* As a special case we consider alias set of "void *" to be both subset
427 and superset of every alias set of a pointer. This extra symmetry does
428 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
429 to return true on the following testcase:
430
431 void *ptr;
432 char **ptr2=(char **)&ptr;
433 *ptr2 = ...
434
435 Additionally if a set contains universal pointer, we consider every pointer
436 to be a subset of it, but we do not represent this explicitely - doing so
437 would require us to update transitive closure each time we introduce new
438 pointer type. This makes aliasing_component_refs_p to return true
439 on the following testcase:
440
441 struct a {void *ptr;}
442 char **ptr = (char **)&a.ptr;
443 ptr = ...
444
445 This makes void * truly universal pointer type. See pointer handling in
446 get_alias_set for more details. */
447 if (ase2 && ase2->has_pointer)
448 {
02ced957 449 alias_set_entry *ase1 = get_alias_set_entry (set1);
6e042ef4
JH
450
451 if (ase1 && ase1->is_pointer)
452 {
453 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
454 /* If one is ptr_type_node and other is pointer, then we consider
455 them subset of each other. */
456 if (set1 == voidptr_set || set2 == voidptr_set)
457 return true;
458 /* If SET2 contains universal pointer's alias set, then we consdier
459 every (non-universal) pointer. */
460 if (ase2->children && set1 != voidptr_set
461 && ase2->children->get (voidptr_set))
462 return true;
463 }
464 }
c58936b6
DB
465 return false;
466}
467
1da68f56
RK
468/* Return 1 if the two specified alias sets may conflict. */
469
470int
4862826d 471alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56 472{
02ced957
TS
473 alias_set_entry *ase1;
474 alias_set_entry *ase2;
1da68f56 475
836f7794
EB
476 /* The easy case. */
477 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 478 return 1;
3932261a 479
3bdf5ad1 480 /* See if the first alias set is a subset of the second. */
6e042ef4
JH
481 ase1 = get_alias_set_entry (set1);
482 if (ase1 != 0
483 && ase1->children && ase1->children->get (set2))
3ecf9d13
JH
484 {
485 ++alias_stats.num_dag;
486 return 1;
487 }
3932261a
MM
488
489 /* Now do the same, but with the alias sets reversed. */
6e042ef4
JH
490 ase2 = get_alias_set_entry (set2);
491 if (ase2 != 0
492 && ase2->children && ase2->children->get (set1))
3ecf9d13
JH
493 {
494 ++alias_stats.num_dag;
495 return 1;
496 }
6e042ef4
JH
497
498 /* We want void * to be compatible with any other pointer without
499 really dropping it to alias set 0. Doing so would make it
500 compatible with all non-pointer types too.
501
502 This is not strictly necessary by the C/C++ language
503 standards, but avoids common type punning mistakes. In
504 addition to that, we need the existence of such universal
505 pointer to implement Fortran's C_PTR type (which is defined as
506 type compatible with all C pointers). */
507 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
508 {
509 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
510
511 /* If one of the sets corresponds to universal pointer,
512 we consider it to conflict with anything that is
513 or contains pointer. */
514 if (set1 == voidptr_set || set2 == voidptr_set)
515 {
516 ++alias_stats.num_universal;
517 return true;
518 }
519 /* If one of sets is (non-universal) pointer and the other
520 contains universal pointer, we also get conflict. */
521 if (ase1->is_pointer && set2 != voidptr_set
522 && ase2->children && ase2->children->get (voidptr_set))
523 {
524 ++alias_stats.num_universal;
525 return true;
526 }
527 if (ase2->is_pointer && set1 != voidptr_set
528 && ase1->children && ase1->children->get (voidptr_set))
529 {
530 ++alias_stats.num_universal;
531 return true;
532 }
533 }
534
3ecf9d13 535 ++alias_stats.num_disambiguated;
3932261a 536
1da68f56 537 /* The two alias sets are distinct and neither one is the
836f7794 538 child of the other. Therefore, they cannot conflict. */
1da68f56 539 return 0;
3932261a 540}
5399d643 541
836f7794 542/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
543
544int
4862826d 545alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643 546{
bd04cddf
JH
547 /* Disable TBAA oracle with !flag_strict_aliasing. */
548 if (!flag_strict_aliasing)
549 return 1;
3ecf9d13
JH
550 if (set1 == 0 || set2 == 0)
551 {
552 ++alias_stats.num_alias_zero;
553 return 1;
554 }
555 if (set1 == set2)
556 {
557 ++alias_stats.num_same_alias_set;
558 return 1;
559 }
5399d643
JW
560
561 return 0;
562}
563
1da68f56
RK
564/* Return 1 if any MEM object of type T1 will always conflict (using the
565 dependency routines in this file) with any MEM object of type T2.
566 This is used when allocating temporary storage. If T1 and/or T2 are
567 NULL_TREE, it means we know nothing about the storage. */
568
569int
4682ae04 570objects_must_conflict_p (tree t1, tree t2)
1da68f56 571{
4862826d 572 alias_set_type set1, set2;
82d610ec 573
e8ea2809
RK
574 /* If neither has a type specified, we don't know if they'll conflict
575 because we may be using them to store objects of various types, for
576 example the argument and local variables areas of inlined functions. */
981a4c34 577 if (t1 == 0 && t2 == 0)
e8ea2809
RK
578 return 0;
579
1da68f56 580 /* If they are the same type, they must conflict. */
3ecf9d13
JH
581 if (t1 == t2)
582 {
583 ++alias_stats.num_same_objects;
584 return 1;
585 }
586 /* Likewise if both are volatile. */
587 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
588 {
589 ++alias_stats.num_volatile;
590 return 1;
591 }
1da68f56 592
82d610ec
RK
593 set1 = t1 ? get_alias_set (t1) : 0;
594 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 595
836f7794
EB
596 /* We can't use alias_sets_conflict_p because we must make sure
597 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
598 t2 for which a pair of subobjects of these respective subtypes
599 overlaps on the stack. */
836f7794 600 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
601}
602\f
b4ada065
RB
603/* Return the outermost parent of component present in the chain of
604 component references handled by get_inner_reference in T with the
605 following property:
606 - the component is non-addressable, or
607 - the parent has alias set zero,
608 or NULL_TREE if no such parent exists. In the former cases, the alias
609 set of this parent is the alias set that must be used for T itself. */
610
611tree
612component_uses_parent_alias_set_from (const_tree t)
6e24b709 613{
b4ada065 614 const_tree found = NULL_TREE;
afe84921 615
b4ada065
RB
616 while (handled_component_p (t))
617 {
afe84921
RH
618 switch (TREE_CODE (t))
619 {
620 case COMPONENT_REF:
621 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
b4ada065 622 found = t;
4aa83879
RB
623 /* Permit type-punning when accessing a union, provided the access
624 is directly through the union. For example, this code does not
625 permit taking the address of a union member and then storing
626 through it. Even the type-punning allowed here is a GCC
627 extension, albeit a common and useful one; the C standard says
628 that such accesses have implementation-defined behavior. */
629 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
630 found = t;
afe84921
RH
631 break;
632
633 case ARRAY_REF:
634 case ARRAY_RANGE_REF:
635 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
b4ada065 636 found = t;
afe84921
RH
637 break;
638
639 case REALPART_EXPR:
640 case IMAGPART_EXPR:
641 break;
642
b4ada065
RB
643 case BIT_FIELD_REF:
644 case VIEW_CONVERT_EXPR:
afe84921 645 /* Bitfields and casts are never addressable. */
b4ada065
RB
646 found = t;
647 break;
648
649 default:
650 gcc_unreachable ();
afe84921
RH
651 }
652
b4ada065
RB
653 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
654 found = t;
655
afe84921
RH
656 t = TREE_OPERAND (t, 0);
657 }
b4ada065
RB
658
659 if (found)
660 return TREE_OPERAND (found, 0);
661
662 return NULL_TREE;
6e24b709
RK
663}
664
f40333af
RB
665
666/* Return whether the pointer-type T effective for aliasing may
667 access everything and thus the reference has to be assigned
668 alias-set zero. */
669
670static bool
671ref_all_alias_ptr_type_p (const_tree t)
672{
673 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
674 || TYPE_REF_CAN_ALIAS_ALL (t));
675}
676
5006671f
RG
677/* Return the alias set for the memory pointed to by T, which may be
678 either a type or an expression. Return -1 if there is nothing
679 special about dereferencing T. */
680
681static alias_set_type
682get_deref_alias_set_1 (tree t)
683{
5b21f0f3 684 /* All we care about is the type. */
5006671f 685 if (! TYPE_P (t))
5b21f0f3 686 t = TREE_TYPE (t);
5006671f
RG
687
688 /* If we have an INDIRECT_REF via a void pointer, we don't
689 know anything about what that might alias. Likewise if the
690 pointer is marked that way. */
f40333af 691 if (ref_all_alias_ptr_type_p (t))
5006671f
RG
692 return 0;
693
694 return -1;
695}
696
697/* Return the alias set for the memory pointed to by T, which may be
698 either a type or an expression. */
699
700alias_set_type
701get_deref_alias_set (tree t)
702{
f40333af
RB
703 /* If we're not doing any alias analysis, just assume everything
704 aliases everything else. */
705 if (!flag_strict_aliasing)
706 return 0;
707
5006671f
RG
708 alias_set_type set = get_deref_alias_set_1 (t);
709
710 /* Fall back to the alias-set of the pointed-to type. */
711 if (set == -1)
712 {
713 if (! TYPE_P (t))
714 t = TREE_TYPE (t);
715 set = get_alias_set (TREE_TYPE (t));
716 }
717
718 return set;
719}
720
f40333af
RB
721/* Return the pointer-type relevant for TBAA purposes from the
722 memory reference tree *T or NULL_TREE in which case *T is
723 adjusted to point to the outermost component reference that
724 can be used for assigning an alias set. */
725
726static tree
727reference_alias_ptr_type_1 (tree *t)
728{
729 tree inner;
730
731 /* Get the base object of the reference. */
732 inner = *t;
733 while (handled_component_p (inner))
734 {
735 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
736 the type of any component references that wrap it to
737 determine the alias-set. */
738 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
739 *t = TREE_OPERAND (inner, 0);
740 inner = TREE_OPERAND (inner, 0);
741 }
742
743 /* Handle pointer dereferences here, they can override the
744 alias-set. */
745 if (INDIRECT_REF_P (inner)
746 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
747 return TREE_TYPE (TREE_OPERAND (inner, 0));
748 else if (TREE_CODE (inner) == TARGET_MEM_REF)
749 return TREE_TYPE (TMR_OFFSET (inner));
750 else if (TREE_CODE (inner) == MEM_REF
751 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
752 return TREE_TYPE (TREE_OPERAND (inner, 1));
753
754 /* If the innermost reference is a MEM_REF that has a
755 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
756 using the memory access type for determining the alias-set. */
757 if (TREE_CODE (inner) == MEM_REF
758 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
759 != TYPE_MAIN_VARIANT
760 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
761 return TREE_TYPE (TREE_OPERAND (inner, 1));
762
b4ada065
RB
763 /* Otherwise, pick up the outermost object that we could have
764 a pointer to. */
765 tree tem = component_uses_parent_alias_set_from (*t);
766 if (tem)
767 *t = tem;
f40333af
RB
768
769 return NULL_TREE;
770}
771
772/* Return the pointer-type relevant for TBAA purposes from the
773 gimple memory reference tree T. This is the type to be used for
774 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
775 and guarantees that get_alias_set will return the same alias
776 set for T and the replacement. */
777
778tree
779reference_alias_ptr_type (tree t)
780{
ebc1b29e
RB
781 /* If the frontend assigns this alias-set zero, preserve that. */
782 if (lang_hooks.get_alias_set (t) == 0)
783 return ptr_type_node;
784
f40333af
RB
785 tree ptype = reference_alias_ptr_type_1 (&t);
786 /* If there is a given pointer type for aliasing purposes, return it. */
787 if (ptype != NULL_TREE)
788 return ptype;
789
790 /* Otherwise build one from the outermost component reference we
791 may use. */
792 if (TREE_CODE (t) == MEM_REF
793 || TREE_CODE (t) == TARGET_MEM_REF)
794 return TREE_TYPE (TREE_OPERAND (t, 1));
795 else
796 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
797}
798
799/* Return whether the pointer-types T1 and T2 used to determine
800 two alias sets of two references will yield the same answer
801 from get_deref_alias_set. */
802
803bool
804alias_ptr_types_compatible_p (tree t1, tree t2)
805{
806 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
807 return true;
808
809 if (ref_all_alias_ptr_type_p (t1)
810 || ref_all_alias_ptr_type_p (t2))
811 return false;
812
813 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
814 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
815}
816
6e042ef4
JH
817/* Create emptry alias set entry. */
818
02ced957 819alias_set_entry *
6e042ef4
JH
820init_alias_set_entry (alias_set_type set)
821{
02ced957 822 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
6e042ef4
JH
823 ase->alias_set = set;
824 ase->children = NULL;
825 ase->has_zero_child = false;
826 ase->is_pointer = false;
827 ase->has_pointer = false;
828 gcc_checking_assert (!get_alias_set_entry (set));
829 (*alias_sets)[set] = ase;
830 return ase;
831}
832
3bdf5ad1
RK
833/* Return the alias set for T, which may be either a type or an
834 expression. Call language-specific routine for help, if needed. */
835
4862826d 836alias_set_type
4682ae04 837get_alias_set (tree t)
3bdf5ad1 838{
4862826d 839 alias_set_type set;
3bdf5ad1 840
bd04cddf
JH
841 /* We can not give up with -fno-strict-aliasing because we need to build
842 proper type representation for possible functions which are build with
e8444ca6 843 -fstrict-aliasing. */
bd04cddf
JH
844
845 /* return 0 if this or its type is an error. */
846 if (t == error_mark_node
3bdf5ad1
RK
847 || (! TYPE_P (t)
848 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
849 return 0;
850
851 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
852 language-specific routine may make mutually-recursive calls to each other
853 to figure out what to do. At each juncture, we see if this is a tree
854 that the language may need to handle specially. First handle things that
738cc472 855 aren't types. */
f824e5c3 856 if (! TYPE_P (t))
3bdf5ad1 857 {
70f34814
RG
858 /* Give the language a chance to do something with this tree
859 before we look at it. */
8ac61af7 860 STRIP_NOPS (t);
ae2bcd98 861 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
862 if (set != -1)
863 return set;
864
f40333af
RB
865 /* Get the alias pointer-type to use or the outermost object
866 that we could have a pointer to. */
867 tree ptype = reference_alias_ptr_type_1 (&t);
868 if (ptype != NULL)
869 return get_deref_alias_set (ptype);
f824e5c3 870
738cc472
RK
871 /* If we've already determined the alias set for a decl, just return
872 it. This is necessary for C++ anonymous unions, whose component
873 variables don't look like union members (boo!). */
8813a647 874 if (VAR_P (t)
3c0cb5de 875 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
876 return MEM_ALIAS_SET (DECL_RTL (t));
877
f824e5c3
RK
878 /* Now all we care about is the type. */
879 t = TREE_TYPE (t);
3bdf5ad1
RK
880 }
881
3bdf5ad1 882 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 883 variant. */
3bdf5ad1 884 t = TYPE_MAIN_VARIANT (t);
daad0278
RG
885
886 /* Always use the canonical type as well. If this is a type that
887 requires structural comparisons to identify compatible types
888 use alias set zero. */
889 if (TYPE_STRUCTURAL_EQUALITY_P (t))
cb9c2485
JM
890 {
891 /* Allow the language to specify another alias set for this
892 type. */
893 set = lang_hooks.get_alias_set (t);
894 if (set != -1)
895 return set;
aea50b45
JH
896 /* Handle structure type equality for pointer types, arrays and vectors.
897 This is easy to do, because the code bellow ignore canonical types on
898 these anyway. This is important for LTO, where TYPE_CANONICAL for
899 pointers can not be meaningfuly computed by the frotnend. */
900 if (canonical_type_used_p (t))
f85d2487
JH
901 {
902 /* In LTO we set canonical types for all types where it makes
903 sense to do so. Double check we did not miss some type. */
904 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
905 return 0;
906 }
907 }
908 else
909 {
910 t = TYPE_CANONICAL (t);
911 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
cb9c2485 912 }
daad0278
RG
913
914 /* If this is a type with a known alias set, return it. */
ba6a6a1d 915 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
738cc472 916 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
917 return TYPE_ALIAS_SET (t);
918
36784d0e
RG
919 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
920 if (!COMPLETE_TYPE_P (t))
921 {
922 /* For arrays with unknown size the conservative answer is the
923 alias set of the element type. */
924 if (TREE_CODE (t) == ARRAY_TYPE)
925 return get_alias_set (TREE_TYPE (t));
926
927 /* But return zero as a conservative answer for incomplete types. */
928 return 0;
929 }
930
3bdf5ad1 931 /* See if the language has special handling for this type. */
ae2bcd98 932 set = lang_hooks.get_alias_set (t);
8ac61af7 933 if (set != -1)
738cc472 934 return set;
2bf105ab 935
3bdf5ad1
RK
936 /* There are no objects of FUNCTION_TYPE, so there's no point in
937 using up an alias set for them. (There are, of course, pointers
938 and references to functions, but that's different.) */
7be7d292 939 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 940 set = 0;
74d86f4f
RH
941
942 /* Unless the language specifies otherwise, let vector types alias
943 their components. This avoids some nasty type punning issues in
944 normal usage. And indeed lets vectors be treated more like an
945 array slice. */
946 else if (TREE_CODE (t) == VECTOR_TYPE)
947 set = get_alias_set (TREE_TYPE (t));
948
4653cae5
RG
949 /* Unless the language specifies otherwise, treat array types the
950 same as their components. This avoids the asymmetry we get
951 through recording the components. Consider accessing a
952 character(kind=1) through a reference to a character(kind=1)[1:1].
953 Or consider if we want to assign integer(kind=4)[0:D.1387] and
954 integer(kind=4)[4] the same alias set or not.
955 Just be pragmatic here and make sure the array and its element
956 type get the same alias set assigned. */
aea50b45
JH
957 else if (TREE_CODE (t) == ARRAY_TYPE
958 && (!TYPE_NONALIASED_COMPONENT (t)
959 || TYPE_STRUCTURAL_EQUALITY_P (t)))
4653cae5
RG
960 set = get_alias_set (TREE_TYPE (t));
961
0ceb0201
RG
962 /* From the former common C and C++ langhook implementation:
963
964 Unfortunately, there is no canonical form of a pointer type.
965 In particular, if we have `typedef int I', then `int *', and
966 `I *' are different types. So, we have to pick a canonical
967 representative. We do this below.
968
969 Technically, this approach is actually more conservative that
970 it needs to be. In particular, `const int *' and `int *'
971 should be in different alias sets, according to the C and C++
972 standard, since their types are not the same, and so,
973 technically, an `int **' and `const int **' cannot point at
974 the same thing.
975
976 But, the standard is wrong. In particular, this code is
977 legal C++:
978
979 int *ip;
980 int **ipp = &ip;
981 const int* const* cipp = ipp;
982 And, it doesn't make sense for that to be legal unless you
983 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
984 the pointed-to types. This issue has been reported to the
985 C++ committee.
986
6e042ef4
JH
987 For this reason go to canonical type of the unqalified pointer type.
988 Until GCC 6 this code set all pointers sets to have alias set of
989 ptr_type_node but that is a bad idea, because it prevents disabiguations
990 in between pointers. For Firefox this accounts about 20% of all
991 disambiguations in the program. */
f85d2487 992 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
6e042ef4
JH
993 {
994 tree p;
995 auto_vec <bool, 8> reference;
996
997 /* Unnest all pointers and references.
f85d2487
JH
998 We also want to make pointer to array/vector equivalent to pointer to
999 its element (see the reasoning above). Skip all those types, too. */
6e042ef4 1000 for (p = t; POINTER_TYPE_P (p)
aea50b45
JH
1001 || (TREE_CODE (p) == ARRAY_TYPE
1002 && (!TYPE_NONALIASED_COMPONENT (p)
1003 || !COMPLETE_TYPE_P (p)
1004 || TYPE_STRUCTURAL_EQUALITY_P (p)))
f85d2487 1005 || TREE_CODE (p) == VECTOR_TYPE;
6e042ef4
JH
1006 p = TREE_TYPE (p))
1007 {
54363f8a
JH
1008 /* Ada supports recusive pointers. Instead of doing recrusion check
1009 just give up once the preallocated space of 8 elements is up.
1010 In this case just punt to void * alias set. */
1011 if (reference.length () == 8)
1012 {
1013 p = ptr_type_node;
1014 break;
1015 }
6e042ef4 1016 if (TREE_CODE (p) == REFERENCE_TYPE)
f85d2487
JH
1017 /* In LTO we want languages that use references to be compatible
1018 with languages that use pointers. */
1019 reference.safe_push (true && !in_lto_p);
6e042ef4
JH
1020 if (TREE_CODE (p) == POINTER_TYPE)
1021 reference.safe_push (false);
1022 }
1023 p = TYPE_MAIN_VARIANT (p);
1024
1025 /* Make void * compatible with char * and also void **.
1026 Programs are commonly violating TBAA by this.
1027
1028 We also make void * to conflict with every pointer
1029 (see record_component_aliases) and thus it is safe it to use it for
1030 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1031 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1032 set = get_alias_set (ptr_type_node);
1033 else
1034 {
f85d2487 1035 /* Rebuild pointer type starting from canonical types using
6e042ef4
JH
1036 unqualified pointers and references only. This way all such
1037 pointers will have the same alias set and will conflict with
1038 each other.
1039
1040 Most of time we already have pointers or references of a given type.
1041 If not we build new one just to be sure that if someone later
1042 (probably only middle-end can, as we should assign all alias
1043 classes only after finishing translation unit) builds the pointer
1044 type, the canonical type will match. */
1045 p = TYPE_CANONICAL (p);
1046 while (!reference.is_empty ())
1047 {
1048 if (reference.pop ())
1049 p = build_reference_type (p);
1050 else
1051 p = build_pointer_type (p);
f85d2487
JH
1052 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1053 /* build_pointer_type should always return the canonical type.
1054 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1055 them. Be sure that frontends do not glob canonical types of
1056 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1057 in all other cases. */
1058 gcc_checking_assert (!TYPE_CANONICAL (p)
1059 || p == TYPE_CANONICAL (p));
6e042ef4 1060 }
6e042ef4
JH
1061
1062 /* Assign the alias set to both p and t.
1063 We can not call get_alias_set (p) here as that would trigger
1064 infinite recursion when p == t. In other cases it would just
1065 trigger unnecesary legwork of rebuilding the pointer again. */
ba6a6a1d 1066 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
6e042ef4
JH
1067 if (TYPE_ALIAS_SET_KNOWN_P (p))
1068 set = TYPE_ALIAS_SET (p);
1069 else
1070 {
1071 set = new_alias_set ();
1072 TYPE_ALIAS_SET (p) = set;
1073 }
1074 }
1075 }
f85d2487
JH
1076 /* Alias set of ptr_type_node is special and serve as universal pointer which
1077 is TBAA compatible with every other pointer type. Be sure we have the
1078 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1079 of pointer types NULL. */
1080 else if (t == ptr_type_node)
1081 set = new_alias_set ();
0ceb0201 1082
7be7d292 1083 /* Otherwise make a new alias set for this type. */
3bdf5ad1 1084 else
96d91dcf
RG
1085 {
1086 /* Each canonical type gets its own alias set, so canonical types
1087 shouldn't form a tree. It doesn't really matter for types
1088 we handle specially above, so only check it where it possibly
1089 would result in a bogus alias set. */
1090 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1091
1092 set = new_alias_set ();
1093 }
3bdf5ad1
RK
1094
1095 TYPE_ALIAS_SET (t) = set;
2bf105ab 1096
7be7d292
EB
1097 /* If this is an aggregate type or a complex type, we must record any
1098 component aliasing information. */
1d79fd2c 1099 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
1100 record_component_aliases (t);
1101
6e042ef4
JH
1102 /* We treat pointer types specially in alias_set_subset_of. */
1103 if (POINTER_TYPE_P (t) && set)
1104 {
02ced957 1105 alias_set_entry *ase = get_alias_set_entry (set);
6e042ef4
JH
1106 if (!ase)
1107 ase = init_alias_set_entry (set);
1108 ase->is_pointer = true;
1109 ase->has_pointer = true;
1110 }
1111
3bdf5ad1
RK
1112 return set;
1113}
1114
1115/* Return a brand-new alias set. */
1116
4862826d 1117alias_set_type
4682ae04 1118new_alias_set (void)
3bdf5ad1 1119{
bd04cddf
JH
1120 if (alias_sets == 0)
1121 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1122 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1123 return alias_sets->length () - 1;
3bdf5ad1 1124}
3932261a 1125
01d28c3f
JM
1126/* Indicate that things in SUBSET can alias things in SUPERSET, but that
1127 not everything that aliases SUPERSET also aliases SUBSET. For example,
1128 in C, a store to an `int' can alias a load of a structure containing an
1129 `int', and vice versa. But it can't alias a load of a 'double' member
1130 of the same structure. Here, the structure would be the SUPERSET and
1131 `int' the SUBSET. This relationship is also described in the comment at
1132 the beginning of this file.
1133
1134 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
1135
1136 It is illegal for SUPERSET to be zero; everything is implicitly a
1137 subset of alias set zero. */
1138
794511d2 1139void
4862826d 1140record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a 1141{
02ced957
TS
1142 alias_set_entry *superset_entry;
1143 alias_set_entry *subset_entry;
3932261a 1144
f47e9b4e
RK
1145 /* It is possible in complex type situations for both sets to be the same,
1146 in which case we can ignore this operation. */
1147 if (superset == subset)
1148 return;
1149
298e6adc 1150 gcc_assert (superset);
3932261a
MM
1151
1152 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 1153 if (superset_entry == 0)
3932261a
MM
1154 {
1155 /* Create an entry for the SUPERSET, so that we have a place to
1156 attach the SUBSET. */
6e042ef4 1157 superset_entry = init_alias_set_entry (superset);
3932261a
MM
1158 }
1159
2bf105ab
RK
1160 if (subset == 0)
1161 superset_entry->has_zero_child = 1;
1162 else
1163 {
1164 subset_entry = get_alias_set_entry (subset);
6e042ef4
JH
1165 if (!superset_entry->children)
1166 superset_entry->children
fb5c464a 1167 = hash_map<alias_set_hash, int>::create_ggc (64);
2bf105ab
RK
1168 /* If there is an entry for the subset, enter all of its children
1169 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 1170 if (subset_entry)
2bf105ab
RK
1171 {
1172 if (subset_entry->has_zero_child)
6e042ef4
JH
1173 superset_entry->has_zero_child = true;
1174 if (subset_entry->has_pointer)
1175 superset_entry->has_pointer = true;
d4b60170 1176
6e042ef4
JH
1177 if (subset_entry->children)
1178 {
fb5c464a 1179 hash_map<alias_set_hash, int>::iterator iter
6e042ef4
JH
1180 = subset_entry->children->begin ();
1181 for (; iter != subset_entry->children->end (); ++iter)
1182 superset_entry->children->put ((*iter).first, (*iter).second);
1183 }
2bf105ab 1184 }
3932261a 1185
2bf105ab 1186 /* Enter the SUBSET itself as a child of the SUPERSET. */
de144fb2 1187 superset_entry->children->put (subset, 0);
2bf105ab 1188 }
3932261a
MM
1189}
1190
a0c33338
RK
1191/* Record that component types of TYPE, if any, are part of that type for
1192 aliasing purposes. For record types, we only record component types
b5487346
EB
1193 for fields that are not marked non-addressable. For array types, we
1194 only record the component type if it is not marked non-aliased. */
a0c33338
RK
1195
1196void
4682ae04 1197record_component_aliases (tree type)
a0c33338 1198{
4862826d 1199 alias_set_type superset = get_alias_set (type);
a0c33338
RK
1200 tree field;
1201
1202 if (superset == 0)
1203 return;
1204
1205 switch (TREE_CODE (type))
1206 {
a0c33338
RK
1207 case RECORD_TYPE:
1208 case UNION_TYPE:
1209 case QUAL_UNION_TYPE:
910ad8de 1210 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
b5487346 1211 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
f85d2487
JH
1212 {
1213 /* LTO type merging does not make any difference between
1214 component pointer types. We may have
1215
1216 struct foo {int *a;};
1217
1218 as TYPE_CANONICAL of
1219
1220 struct bar {float *a;};
1221
1222 Because accesses to int * and float * do not alias, we would get
1223 false negative when accessing the same memory location by
1224 float ** and bar *. We thus record the canonical type as:
1225
1226 struct {void *a;};
1227
1228 void * is special cased and works as a universal pointer type.
1229 Accesses to it conflicts with accesses to any other pointer
1230 type. */
1231 tree t = TREE_TYPE (field);
1232 if (in_lto_p)
1233 {
1234 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1235 element type and that type has to be normalized to void *,
1236 too, in the case it is a pointer. */
aea50b45
JH
1237 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1238 {
1239 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1240 t = TREE_TYPE (t);
1241 }
f85d2487
JH
1242 if (POINTER_TYPE_P (t))
1243 t = ptr_type_node;
aea50b45
JH
1244 else if (flag_checking)
1245 gcc_checking_assert (get_alias_set (t)
1246 == get_alias_set (TREE_TYPE (field)));
f85d2487 1247 }
aea50b45 1248
f85d2487
JH
1249 record_alias_subset (superset, get_alias_set (t));
1250 }
a0c33338
RK
1251 break;
1252
1d79fd2c
JW
1253 case COMPLEX_TYPE:
1254 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1255 break;
1256
4653cae5
RG
1257 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1258 element type. */
1259
a0c33338
RK
1260 default:
1261 break;
1262 }
1263}
1264
3bdf5ad1
RK
1265/* Allocate an alias set for use in storing and reading from the varargs
1266 spill area. */
1267
4862826d 1268static GTY(()) alias_set_type varargs_set = -1;
f103e34d 1269
4862826d 1270alias_set_type
4682ae04 1271get_varargs_alias_set (void)
3bdf5ad1 1272{
cd3ce9b4
JM
1273#if 1
1274 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1275 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1276 consistently use the varargs alias set for loads from the varargs
1277 area. So don't use it anywhere. */
1278 return 0;
1279#else
f103e34d
GK
1280 if (varargs_set == -1)
1281 varargs_set = new_alias_set ();
3bdf5ad1 1282
f103e34d 1283 return varargs_set;
cd3ce9b4 1284#endif
3bdf5ad1
RK
1285}
1286
1287/* Likewise, but used for the fixed portions of the frame, e.g., register
1288 save areas. */
1289
4862826d 1290static GTY(()) alias_set_type frame_set = -1;
f103e34d 1291
4862826d 1292alias_set_type
4682ae04 1293get_frame_alias_set (void)
3bdf5ad1 1294{
f103e34d
GK
1295 if (frame_set == -1)
1296 frame_set = new_alias_set ();
3bdf5ad1 1297
f103e34d 1298 return frame_set;
3bdf5ad1
RK
1299}
1300
9fc37b2b
RS
1301/* Create a new, unique base with id ID. */
1302
1303static rtx
1304unique_base_value (HOST_WIDE_INT id)
1305{
1306 return gen_rtx_ADDRESS (Pmode, id);
1307}
1308
1309/* Return true if accesses based on any other base value cannot alias
1310 those based on X. */
1311
1312static bool
1313unique_base_value_p (rtx x)
1314{
1315 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1316}
1317
1318/* Return true if X is known to be a base value. */
1319
1320static bool
1321known_base_value_p (rtx x)
1322{
1323 switch (GET_CODE (x))
1324 {
1325 case LABEL_REF:
1326 case SYMBOL_REF:
1327 return true;
1328
1329 case ADDRESS:
1330 /* Arguments may or may not be bases; we don't know for sure. */
1331 return GET_MODE (x) != VOIDmode;
1332
1333 default:
1334 return false;
1335 }
1336}
1337
2a2c8203
JC
1338/* Inside SRC, the source of a SET, find a base address. */
1339
9ae8ffe7 1340static rtx
4682ae04 1341find_base_value (rtx src)
9ae8ffe7 1342{
713f41f9 1343 unsigned int regno;
0aacc8ed 1344
53451050
RS
1345#if defined (FIND_BASE_TERM)
1346 /* Try machine-dependent ways to find the base term. */
1347 src = FIND_BASE_TERM (src);
1348#endif
1349
9ae8ffe7
JL
1350 switch (GET_CODE (src))
1351 {
1352 case SYMBOL_REF:
1353 case LABEL_REF:
1354 return src;
1355
1356 case REG:
fb6754f0 1357 regno = REGNO (src);
d4b60170 1358 /* At the start of a function, argument registers have known base
2a2c8203
JC
1359 values which may be lost later. Returning an ADDRESS
1360 expression here allows optimization based on argument values
1361 even when the argument registers are used for other purposes. */
713f41f9
BS
1362 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1363 return new_reg_base_value[regno];
73774bc7 1364
eaf407a5 1365 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
1366 for non-fixed hard regs since it can result in a circular
1367 dependency chain for registers which have values at function entry.
eaf407a5
JL
1368
1369 The test above is not sufficient because the scheduler may move
1370 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 1371 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
9771b263 1372 && regno < vec_safe_length (reg_base_value))
83bbd9b6
RH
1373 {
1374 /* If we're inside init_alias_analysis, use new_reg_base_value
1375 to reduce the number of relaxation iterations. */
1afdf91c 1376 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 1377 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
1378 return new_reg_base_value[regno];
1379
9771b263
DN
1380 if ((*reg_base_value)[regno])
1381 return (*reg_base_value)[regno];
83bbd9b6 1382 }
73774bc7 1383
e3f049a8 1384 return 0;
9ae8ffe7
JL
1385
1386 case MEM:
1387 /* Check for an argument passed in memory. Only record in the
1388 copying-arguments block; it is too hard to track changes
1389 otherwise. */
1390 if (copying_arguments
1391 && (XEXP (src, 0) == arg_pointer_rtx
1392 || (GET_CODE (XEXP (src, 0)) == PLUS
1393 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
9fc37b2b 1394 return arg_base_value;
9ae8ffe7
JL
1395 return 0;
1396
1397 case CONST:
1398 src = XEXP (src, 0);
1399 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1400 break;
d4b60170 1401
191816a3 1402 /* fall through */
2a2c8203 1403
9ae8ffe7
JL
1404 case PLUS:
1405 case MINUS:
2a2c8203 1406 {
ec907dd8
JL
1407 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1408
0134bf2d
DE
1409 /* If either operand is a REG that is a known pointer, then it
1410 is the base. */
1411 if (REG_P (src_0) && REG_POINTER (src_0))
1412 return find_base_value (src_0);
1413 if (REG_P (src_1) && REG_POINTER (src_1))
1414 return find_base_value (src_1);
1415
ec907dd8
JL
1416 /* If either operand is a REG, then see if we already have
1417 a known value for it. */
0134bf2d 1418 if (REG_P (src_0))
ec907dd8
JL
1419 {
1420 temp = find_base_value (src_0);
d4b60170 1421 if (temp != 0)
ec907dd8
JL
1422 src_0 = temp;
1423 }
1424
0134bf2d 1425 if (REG_P (src_1))
ec907dd8
JL
1426 {
1427 temp = find_base_value (src_1);
d4b60170 1428 if (temp!= 0)
ec907dd8
JL
1429 src_1 = temp;
1430 }
2a2c8203 1431
0134bf2d
DE
1432 /* If either base is named object or a special address
1433 (like an argument or stack reference), then use it for the
1434 base term. */
9fc37b2b 1435 if (src_0 != 0 && known_base_value_p (src_0))
0134bf2d
DE
1436 return src_0;
1437
9fc37b2b 1438 if (src_1 != 0 && known_base_value_p (src_1))
0134bf2d
DE
1439 return src_1;
1440
d4b60170 1441 /* Guess which operand is the base address:
ec907dd8
JL
1442 If either operand is a symbol, then it is the base. If
1443 either operand is a CONST_INT, then the other is the base. */
481683e1 1444 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1445 return find_base_value (src_0);
481683e1 1446 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1447 return find_base_value (src_1);
1448
9ae8ffe7 1449 return 0;
2a2c8203
JC
1450 }
1451
1452 case LO_SUM:
1453 /* The standard form is (lo_sum reg sym) so look only at the
1454 second operand. */
1455 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1456
1457 case AND:
1458 /* If the second operand is constant set the base
ec5c56db 1459 address to the first operand. */
481683e1 1460 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
2a2c8203 1461 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1462 return 0;
1463
61f0131c 1464 case TRUNCATE:
5932a4d4 1465 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1466 handle this only if the target does not support different pointer or
1467 address modes depending on the address space. */
1468 if (!target_default_pointer_address_modes_p ())
1469 break;
61f0131c
R
1470 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1471 break;
1472 /* Fall through. */
9ae8ffe7 1473 case HIGH:
d288e53d
DE
1474 case PRE_INC:
1475 case PRE_DEC:
1476 case POST_INC:
1477 case POST_DEC:
1478 case PRE_MODIFY:
1479 case POST_MODIFY:
2a2c8203 1480 return find_base_value (XEXP (src, 0));
1d300e19 1481
0aacc8ed
RK
1482 case ZERO_EXTEND:
1483 case SIGN_EXTEND: /* used for NT/Alpha pointers */
5932a4d4 1484 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1485 handle this only if the target does not support different pointer or
1486 address modes depending on the address space. */
1487 if (!target_default_pointer_address_modes_p ())
1488 break;
1489
0aacc8ed
RK
1490 {
1491 rtx temp = find_base_value (XEXP (src, 0));
1492
5ae6cd0d 1493 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1494 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1495
1496 return temp;
1497 }
1498
1d300e19
KG
1499 default:
1500 break;
9ae8ffe7
JL
1501 }
1502
1503 return 0;
1504}
1505
9fc37b2b
RS
1506/* Called from init_alias_analysis indirectly through note_stores,
1507 or directly if DEST is a register with a REG_NOALIAS note attached.
1508 SET is null in the latter case. */
9ae8ffe7 1509
d4b60170 1510/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7 1511 register N has been set in this function. */
d630245f 1512static sbitmap reg_seen;
9ae8ffe7 1513
2a2c8203 1514static void
7bc980e1 1515record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1516{
b3694847 1517 unsigned regno;
9ae8ffe7 1518 rtx src;
c28b4e40 1519 int n;
9ae8ffe7 1520
f8cfc6aa 1521 if (!REG_P (dest))
9ae8ffe7
JL
1522 return;
1523
fb6754f0 1524 regno = REGNO (dest);
9ae8ffe7 1525
9771b263 1526 gcc_checking_assert (regno < reg_base_value->length ());
ac606739 1527
dc8afb70 1528 n = REG_NREGS (dest);
c28b4e40
JW
1529 if (n != 1)
1530 {
1531 while (--n >= 0)
1532 {
d7c028c0 1533 bitmap_set_bit (reg_seen, regno + n);
c28b4e40
JW
1534 new_reg_base_value[regno + n] = 0;
1535 }
1536 return;
1537 }
1538
9ae8ffe7
JL
1539 if (set)
1540 {
1541 /* A CLOBBER wipes out any old value but does not prevent a previously
1542 unset register from acquiring a base address (i.e. reg_seen is not
1543 set). */
1544 if (GET_CODE (set) == CLOBBER)
1545 {
ec907dd8 1546 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1547 return;
1548 }
1549 src = SET_SRC (set);
1550 }
1551 else
1552 {
9fc37b2b 1553 /* There's a REG_NOALIAS note against DEST. */
d7c028c0 1554 if (bitmap_bit_p (reg_seen, regno))
9ae8ffe7 1555 {
ec907dd8 1556 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1557 return;
1558 }
d7c028c0 1559 bitmap_set_bit (reg_seen, regno);
9fc37b2b 1560 new_reg_base_value[regno] = unique_base_value (unique_id++);
9ae8ffe7
JL
1561 return;
1562 }
1563
5da6f168
RS
1564 /* If this is not the first set of REGNO, see whether the new value
1565 is related to the old one. There are two cases of interest:
1566
1567 (1) The register might be assigned an entirely new value
1568 that has the same base term as the original set.
1569
1570 (2) The set might be a simple self-modification that
1571 cannot change REGNO's base value.
1572
1573 If neither case holds, reject the original base value as invalid.
1574 Note that the following situation is not detected:
1575
c22cacf3 1576 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1577
9ae8ffe7
JL
1578 ANSI C does not allow computing the difference of addresses
1579 of distinct top level objects. */
5da6f168
RS
1580 if (new_reg_base_value[regno] != 0
1581 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1582 switch (GET_CODE (src))
1583 {
2a2c8203 1584 case LO_SUM:
9ae8ffe7
JL
1585 case MINUS:
1586 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1587 new_reg_base_value[regno] = 0;
9ae8ffe7 1588 break;
61f0131c
R
1589 case PLUS:
1590 /* If the value we add in the PLUS is also a valid base value,
1591 this might be the actual base value, and the original value
1592 an index. */
1593 {
1594 rtx other = NULL_RTX;
1595
1596 if (XEXP (src, 0) == dest)
1597 other = XEXP (src, 1);
1598 else if (XEXP (src, 1) == dest)
1599 other = XEXP (src, 0);
1600
1601 if (! other || find_base_value (other))
1602 new_reg_base_value[regno] = 0;
1603 break;
1604 }
9ae8ffe7 1605 case AND:
481683e1 1606 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1607 new_reg_base_value[regno] = 0;
9ae8ffe7 1608 break;
9ae8ffe7 1609 default:
ec907dd8 1610 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1611 break;
1612 }
1613 /* If this is the first set of a register, record the value. */
1614 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
d7c028c0 1615 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
ec907dd8 1616 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7 1617
d7c028c0 1618 bitmap_set_bit (reg_seen, regno);
9ae8ffe7
JL
1619}
1620
8fd0a474
AM
1621/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1622 using hard registers with non-null REG_BASE_VALUE for renaming. */
1623rtx
1624get_reg_base_value (unsigned int regno)
1625{
9771b263 1626 return (*reg_base_value)[regno];
8fd0a474
AM
1627}
1628
bb1acb3e
RH
1629/* If a value is known for REGNO, return it. */
1630
c22cacf3 1631rtx
bb1acb3e
RH
1632get_reg_known_value (unsigned int regno)
1633{
1634 if (regno >= FIRST_PSEUDO_REGISTER)
1635 {
1636 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1637 if (regno < vec_safe_length (reg_known_value))
1638 return (*reg_known_value)[regno];
bb1acb3e
RH
1639 }
1640 return NULL;
43fe47ca
JW
1641}
1642
bb1acb3e
RH
1643/* Set it. */
1644
1645static void
1646set_reg_known_value (unsigned int regno, rtx val)
1647{
1648 if (regno >= FIRST_PSEUDO_REGISTER)
1649 {
1650 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1651 if (regno < vec_safe_length (reg_known_value))
1652 (*reg_known_value)[regno] = val;
bb1acb3e
RH
1653 }
1654}
1655
1656/* Similarly for reg_known_equiv_p. */
1657
1658bool
1659get_reg_known_equiv_p (unsigned int regno)
1660{
1661 if (regno >= FIRST_PSEUDO_REGISTER)
1662 {
1663 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1664 if (regno < vec_safe_length (reg_known_value))
d7c028c0 1665 return bitmap_bit_p (reg_known_equiv_p, regno);
bb1acb3e
RH
1666 }
1667 return false;
1668}
1669
1670static void
1671set_reg_known_equiv_p (unsigned int regno, bool val)
1672{
1673 if (regno >= FIRST_PSEUDO_REGISTER)
1674 {
1675 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1676 if (regno < vec_safe_length (reg_known_value))
9ff3c7ca
SB
1677 {
1678 if (val)
d7c028c0 1679 bitmap_set_bit (reg_known_equiv_p, regno);
9ff3c7ca 1680 else
d7c028c0 1681 bitmap_clear_bit (reg_known_equiv_p, regno);
9ff3c7ca 1682 }
bb1acb3e
RH
1683 }
1684}
1685
1686
db048faf
MM
1687/* Returns a canonical version of X, from the point of view alias
1688 analysis. (For example, if X is a MEM whose address is a register,
1689 and the register has a known value (say a SYMBOL_REF), then a MEM
1690 whose address is the SYMBOL_REF is returned.) */
1691
1692rtx
4682ae04 1693canon_rtx (rtx x)
9ae8ffe7
JL
1694{
1695 /* Recursively look for equivalences. */
f8cfc6aa 1696 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1697 {
1698 rtx t = get_reg_known_value (REGNO (x));
1699 if (t == x)
1700 return x;
1701 if (t)
1702 return canon_rtx (t);
1703 }
1704
1705 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1706 {
1707 rtx x0 = canon_rtx (XEXP (x, 0));
1708 rtx x1 = canon_rtx (XEXP (x, 1));
1709
1710 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
231314e3 1711 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
9ae8ffe7 1712 }
d4b60170 1713
9ae8ffe7
JL
1714 /* This gives us much better alias analysis when called from
1715 the loop optimizer. Note we want to leave the original
1716 MEM alone, but need to return the canonicalized MEM with
1717 all the flags with their original values. */
3c0cb5de 1718 else if (MEM_P (x))
f1ec5147 1719 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1720
9ae8ffe7
JL
1721 return x;
1722}
1723
1724/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1725 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1726
1727 We use the data in reg_known_value above to see if two registers with
1728 different numbers are, in fact, equivalent. */
1729
1730static int
ed7a4b4b 1731rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1732{
b3694847
SS
1733 int i;
1734 int j;
1735 enum rtx_code code;
1736 const char *fmt;
9ae8ffe7
JL
1737
1738 if (x == 0 && y == 0)
1739 return 1;
1740 if (x == 0 || y == 0)
1741 return 0;
d4b60170 1742
9ae8ffe7
JL
1743 if (x == y)
1744 return 1;
1745
1746 code = GET_CODE (x);
1747 /* Rtx's of different codes cannot be equal. */
1748 if (code != GET_CODE (y))
1749 return 0;
1750
1751 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1752 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1753
1754 if (GET_MODE (x) != GET_MODE (y))
1755 return 0;
1756
db048faf
MM
1757 /* Some RTL can be compared without a recursive examination. */
1758 switch (code)
1759 {
1760 case REG:
1761 return REGNO (x) == REGNO (y);
1762
1763 case LABEL_REF:
04a121a7 1764 return label_ref_label (x) == label_ref_label (y);
ca7fd9cd 1765
db048faf 1766 case SYMBOL_REF:
73e48cb3 1767 return compare_base_symbol_refs (x, y) == 1;
db048faf 1768
af6236c1
AO
1769 case ENTRY_VALUE:
1770 /* This is magic, don't go through canonicalization et al. */
1771 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1772
40e02b4a 1773 case VALUE:
d8116890 1774 CASE_CONST_UNIQUE:
807e902e 1775 /* Pointer equality guarantees equality for these nodes. */
db048faf
MM
1776 return 0;
1777
db048faf
MM
1778 default:
1779 break;
1780 }
9ae8ffe7 1781
45183e03
JH
1782 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1783 if (code == PLUS)
9ae8ffe7
JL
1784 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1785 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1786 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1787 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1788 /* For commutative operations, the RTX match if the operand match in any
1789 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1790 if (COMMUTATIVE_P (x))
45183e03
JH
1791 {
1792 rtx xop0 = canon_rtx (XEXP (x, 0));
1793 rtx yop0 = canon_rtx (XEXP (y, 0));
1794 rtx yop1 = canon_rtx (XEXP (y, 1));
1795
1796 return ((rtx_equal_for_memref_p (xop0, yop0)
1797 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1798 || (rtx_equal_for_memref_p (xop0, yop1)
1799 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1800 }
ec8e098d 1801 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1802 {
1803 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1804 canon_rtx (XEXP (y, 0)))
45183e03
JH
1805 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1806 canon_rtx (XEXP (y, 1))));
1807 }
ec8e098d 1808 else if (UNARY_P (x))
45183e03 1809 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1810 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1811
1812 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1813 fail to match, return 0 for the whole things.
1814
1815 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1816
1817 fmt = GET_RTX_FORMAT (code);
1818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1819 {
1820 switch (fmt[i])
1821 {
9ae8ffe7
JL
1822 case 'i':
1823 if (XINT (x, i) != XINT (y, i))
1824 return 0;
1825 break;
1826
9ae8ffe7
JL
1827 case 'E':
1828 /* Two vectors must have the same length. */
1829 if (XVECLEN (x, i) != XVECLEN (y, i))
1830 return 0;
1831
1832 /* And the corresponding elements must match. */
1833 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1834 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1835 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1836 return 0;
1837 break;
1838
1839 case 'e':
45183e03
JH
1840 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1841 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1842 return 0;
1843 break;
1844
3237ac18
AH
1845 /* This can happen for asm operands. */
1846 case 's':
1847 if (strcmp (XSTR (x, i), XSTR (y, i)))
1848 return 0;
1849 break;
1850
aee21ba9
JL
1851 /* This can happen for an asm which clobbers memory. */
1852 case '0':
1853 break;
1854
9ae8ffe7
JL
1855 /* It is believed that rtx's at this level will never
1856 contain anything but integers and other rtx's,
1857 except for within LABEL_REFs and SYMBOL_REFs. */
1858 default:
298e6adc 1859 gcc_unreachable ();
9ae8ffe7
JL
1860 }
1861 }
1862 return 1;
1863}
1864
9e412ca3 1865static rtx
4682ae04 1866find_base_term (rtx x)
9ae8ffe7 1867{
eab5c70a 1868 cselib_val *val;
6f2ffb4b
AO
1869 struct elt_loc_list *l, *f;
1870 rtx ret;
eab5c70a 1871
b949ea8b
JW
1872#if defined (FIND_BASE_TERM)
1873 /* Try machine-dependent ways to find the base term. */
1874 x = FIND_BASE_TERM (x);
1875#endif
1876
9ae8ffe7
JL
1877 switch (GET_CODE (x))
1878 {
1879 case REG:
1880 return REG_BASE_VALUE (x);
1881
d288e53d 1882 case TRUNCATE:
5932a4d4 1883 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1884 handle this only if the target does not support different pointer or
1885 address modes depending on the address space. */
1886 if (!target_default_pointer_address_modes_p ())
1887 return 0;
d288e53d 1888 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1889 return 0;
d288e53d 1890 /* Fall through. */
9ae8ffe7 1891 case HIGH:
6d849a2a
JL
1892 case PRE_INC:
1893 case PRE_DEC:
1894 case POST_INC:
1895 case POST_DEC:
d288e53d
DE
1896 case PRE_MODIFY:
1897 case POST_MODIFY:
6d849a2a
JL
1898 return find_base_term (XEXP (x, 0));
1899
1abade85
RK
1900 case ZERO_EXTEND:
1901 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
5932a4d4 1902 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1903 handle this only if the target does not support different pointer or
1904 address modes depending on the address space. */
1905 if (!target_default_pointer_address_modes_p ())
1906 return 0;
1907
1abade85
RK
1908 {
1909 rtx temp = find_base_term (XEXP (x, 0));
1910
5ae6cd0d 1911 if (temp != 0 && CONSTANT_P (temp))
1abade85 1912 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1913
1914 return temp;
1915 }
1916
eab5c70a
BS
1917 case VALUE:
1918 val = CSELIB_VAL_PTR (x);
6f2ffb4b
AO
1919 ret = NULL_RTX;
1920
40e02b4a 1921 if (!val)
6f2ffb4b
AO
1922 return ret;
1923
0fe03ac3
JJ
1924 if (cselib_sp_based_value_p (val))
1925 return static_reg_base_value[STACK_POINTER_REGNUM];
1926
6f2ffb4b
AO
1927 f = val->locs;
1928 /* Temporarily reset val->locs to avoid infinite recursion. */
1929 val->locs = NULL;
1930
1931 for (l = f; l; l = l->next)
1932 if (GET_CODE (l->loc) == VALUE
1933 && CSELIB_VAL_PTR (l->loc)->locs
1934 && !CSELIB_VAL_PTR (l->loc)->locs->next
1935 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1936 continue;
1937 else if ((ret = find_base_term (l->loc)) != 0)
1938 break;
1939
1940 val->locs = f;
1941 return ret;
eab5c70a 1942
023f059b
JJ
1943 case LO_SUM:
1944 /* The standard form is (lo_sum reg sym) so look only at the
1945 second operand. */
1946 return find_base_term (XEXP (x, 1));
1947
9ae8ffe7
JL
1948 case CONST:
1949 x = XEXP (x, 0);
1950 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1951 return 0;
938d968e 1952 /* Fall through. */
9ae8ffe7
JL
1953 case PLUS:
1954 case MINUS:
1955 {
3c567fae
JL
1956 rtx tmp1 = XEXP (x, 0);
1957 rtx tmp2 = XEXP (x, 1);
1958
f5143c46 1959 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1960 the two operands represents the real base address. Otherwise this
1961 routine may return the index register instead of the base register.
1962
1963 That may cause us to believe no aliasing was possible, when in
1964 fact aliasing is possible.
1965
1966 We use a few simple tests to guess the base register. Additional
1967 tests can certainly be added. For example, if one of the operands
1968 is a shift or multiply, then it must be the index register and the
1969 other operand is the base register. */
ca7fd9cd 1970
b949ea8b
JW
1971 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1972 return find_base_term (tmp2);
1973
31b0a960 1974 /* If either operand is known to be a pointer, then prefer it
3c567fae 1975 to determine the base term. */
3502dc9c 1976 if (REG_P (tmp1) && REG_POINTER (tmp1))
31b0a960
RB
1977 ;
1978 else if (REG_P (tmp2) && REG_POINTER (tmp2))
a7c75343
JJ
1979 std::swap (tmp1, tmp2);
1980 /* If second argument is constant which has base term, prefer it
1981 over variable tmp1. See PR64025. */
1982 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1983 std::swap (tmp1, tmp2);
3c567fae 1984
31b0a960
RB
1985 /* Go ahead and find the base term for both operands. If either base
1986 term is from a pointer or is a named object or a special address
3c567fae
JL
1987 (like an argument or stack reference), then use it for the
1988 base term. */
481be1c4
RB
1989 rtx base = find_base_term (tmp1);
1990 if (base != NULL_RTX
31b0a960 1991 && ((REG_P (tmp1) && REG_POINTER (tmp1))
481be1c4
RB
1992 || known_base_value_p (base)))
1993 return base;
1994 base = find_base_term (tmp2);
1995 if (base != NULL_RTX
31b0a960 1996 && ((REG_P (tmp2) && REG_POINTER (tmp2))
481be1c4
RB
1997 || known_base_value_p (base)))
1998 return base;
3c567fae
JL
1999
2000 /* We could not determine which of the two operands was the
2001 base register and which was the index. So we can determine
2002 nothing from the base alias check. */
2003 return 0;
9ae8ffe7
JL
2004 }
2005
2006 case AND:
481683e1 2007 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
d288e53d 2008 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
2009 return 0;
2010
2011 case SYMBOL_REF:
2012 case LABEL_REF:
2013 return x;
2014
2015 default:
2016 return 0;
2017 }
2018}
2019
9e412ca3
RS
2020/* Return true if accesses to address X may alias accesses based
2021 on the stack pointer. */
2022
2023bool
2024may_be_sp_based_p (rtx x)
2025{
2026 rtx base = find_base_term (x);
2027 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2028}
2029
54363f8a
JH
2030/* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2031 if they refer to different objects and -1 if we can not decide. */
2032
2033int
2034compare_base_decls (tree base1, tree base2)
2035{
2036 int ret;
2037 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2038 if (base1 == base2)
2039 return 1;
2040
54363f8a
JH
2041 /* Declarations of non-automatic variables may have aliases. All other
2042 decls are unique. */
7ec4f343
NS
2043 if (!decl_in_symtab_p (base1)
2044 || !decl_in_symtab_p (base2))
54363f8a 2045 return 0;
7ec4f343 2046
929710d9
NS
2047 /* Don't cause symbols to be inserted by the act of checking. */
2048 symtab_node *node1 = symtab_node::get (base1);
2049 if (!node1)
2050 return 0;
2051 symtab_node *node2 = symtab_node::get (base2);
2052 if (!node2)
2053 return 0;
2054
2055 ret = node1->equal_address_to (node2, true);
54363f8a
JH
2056 return ret;
2057}
2058
73e48cb3
JH
2059/* Same as compare_base_decls but for SYMBOL_REF. */
2060
2061static int
2062compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2063{
2064 tree x_decl = SYMBOL_REF_DECL (x_base);
2065 tree y_decl = SYMBOL_REF_DECL (y_base);
2066 bool binds_def = true;
2067
2068 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2069 return 1;
2070 if (x_decl && y_decl)
2071 return compare_base_decls (x_decl, y_decl);
2072 if (x_decl || y_decl)
2073 {
2074 if (!x_decl)
2075 {
2076 std::swap (x_decl, y_decl);
2077 std::swap (x_base, y_base);
2078 }
2079 /* We handle specially only section anchors and assume that other
2080 labels may overlap with user variables in an arbitrary way. */
2081 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2082 return -1;
2083 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2084 to ignore CONST_DECLs because they are readonly. */
8813a647 2085 if (!VAR_P (x_decl)
73e48cb3
JH
2086 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2087 return 0;
2088
2089 symtab_node *x_node = symtab_node::get_create (x_decl)
2090 ->ultimate_alias_target ();
2091 /* External variable can not be in section anchor. */
2092 if (!x_node->definition)
2093 return 0;
2094 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2095 /* If not in anchor, we can disambiguate. */
2096 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2097 return 0;
2098
2099 /* We have an alias of anchored variable. If it can be interposed;
2100 we must assume it may or may not alias its anchor. */
2101 binds_def = decl_binds_to_current_def_p (x_decl);
2102 }
2103 /* If we have variable in section anchor, we can compare by offset. */
2104 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2105 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2106 {
2107 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2108 return 0;
2109 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2110 return binds_def ? 1 : -1;
2111 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2112 return -1;
2113 return 0;
2114 }
2115 /* In general we assume that memory locations pointed to by different labels
2116 may overlap in undefined ways. */
2117 return -1;
2118}
2119
9ae8ffe7
JL
2120/* Return 0 if the addresses X and Y are known to point to different
2121 objects, 1 if they might be pointers to the same object. */
2122
2123static int
31b0a960 2124base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
ef4bddc2 2125 machine_mode x_mode, machine_mode y_mode)
9ae8ffe7 2126{
1c72c7f6
JC
2127 /* If the address itself has no known base see if a known equivalent
2128 value has one. If either address still has no known base, nothing
2129 is known about aliasing. */
2130 if (x_base == 0)
2131 {
2132 rtx x_c;
d4b60170 2133
1c72c7f6
JC
2134 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2135 return 1;
d4b60170 2136
1c72c7f6
JC
2137 x_base = find_base_term (x_c);
2138 if (x_base == 0)
2139 return 1;
2140 }
9ae8ffe7 2141
1c72c7f6
JC
2142 if (y_base == 0)
2143 {
2144 rtx y_c;
2145 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2146 return 1;
d4b60170 2147
1c72c7f6
JC
2148 y_base = find_base_term (y_c);
2149 if (y_base == 0)
2150 return 1;
2151 }
2152
2153 /* If the base addresses are equal nothing is known about aliasing. */
2154 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
2155 return 1;
2156
435da628
UB
2157 /* The base addresses are different expressions. If they are not accessed
2158 via AND, there is no conflict. We can bring knowledge of object
2159 alignment into play here. For example, on alpha, "char a, b;" can
2160 alias one another, though "char a; long b;" cannot. AND addesses may
2161 implicitly alias surrounding objects; i.e. unaligned access in DImode
2162 via AND address can alias all surrounding object types except those
2163 with aligment 8 or higher. */
2164 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2165 return 1;
2166 if (GET_CODE (x) == AND
481683e1 2167 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
2168 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2169 return 1;
2170 if (GET_CODE (y) == AND
481683e1 2171 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
2172 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2173 return 1;
2174
73e48cb3 2175 /* Differing symbols not accessed via AND never alias. */
3a28db46 2176 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
73e48cb3 2177 return compare_base_symbol_refs (x_base, y_base) != 0;
3a28db46 2178
9ae8ffe7 2179 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 2180 return 0;
9ae8ffe7 2181
9fc37b2b 2182 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
9ae8ffe7
JL
2183 return 0;
2184
0d3c82d6 2185 return 1;
9ae8ffe7
JL
2186}
2187
a5628378 2188/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
c779924e 2189 (or equal to) that of V. */
a5628378
AO
2190
2191static bool
403837b4 2192refs_newer_value_p (const_rtx expr, rtx v)
a5628378
AO
2193{
2194 int minuid = CSELIB_VAL_PTR (v)->uid;
403837b4
RS
2195 subrtx_iterator::array_type array;
2196 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
c779924e 2197 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
403837b4
RS
2198 return true;
2199 return false;
a5628378
AO
2200}
2201
eab5c70a 2202/* Convert the address X into something we can use. This is done by returning
569efc34
JJ
2203 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2204 we call cselib to get a more useful rtx. */
3bdf5ad1 2205
a13d4ebf 2206rtx
4682ae04 2207get_addr (rtx x)
eab5c70a
BS
2208{
2209 cselib_val *v;
2210 struct elt_loc_list *l;
2211
2212 if (GET_CODE (x) != VALUE)
569efc34
JJ
2213 {
2214 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2215 && GET_CODE (XEXP (x, 0)) == VALUE
2216 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2217 {
2218 rtx op0 = get_addr (XEXP (x, 0));
2219 if (op0 != XEXP (x, 0))
2220 {
2221 if (GET_CODE (x) == PLUS
2222 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2223 return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2224 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2225 op0, XEXP (x, 1));
2226 }
2227 }
2228 return x;
2229 }
eab5c70a 2230 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
2231 if (v)
2232 {
0f68ba3e
AO
2233 bool have_equivs = cselib_have_permanent_equivalences ();
2234 if (have_equivs)
2235 v = canonical_cselib_val (v);
40e02b4a
JH
2236 for (l = v->locs; l; l = l->next)
2237 if (CONSTANT_P (l->loc))
2238 return l->loc;
2239 for (l = v->locs; l; l = l->next)
0f68ba3e
AO
2240 if (!REG_P (l->loc) && !MEM_P (l->loc)
2241 /* Avoid infinite recursion when potentially dealing with
2242 var-tracking artificial equivalences, by skipping the
2243 equivalences themselves, and not choosing expressions
2244 that refer to newer VALUEs. */
2245 && (!have_equivs
2246 || (GET_CODE (l->loc) != VALUE
2247 && !refs_newer_value_p (l->loc, x))))
a5628378 2248 return l->loc;
0f68ba3e
AO
2249 if (have_equivs)
2250 {
2251 for (l = v->locs; l; l = l->next)
2252 if (REG_P (l->loc)
2253 || (GET_CODE (l->loc) != VALUE
2254 && !refs_newer_value_p (l->loc, x)))
2255 return l->loc;
2256 /* Return the canonical value. */
2257 return v->val_rtx;
2258 }
2259 if (v->locs)
2260 return v->locs->loc;
40e02b4a 2261 }
eab5c70a
BS
2262 return x;
2263}
2264
39cec1ac
MH
2265/* Return the address of the (N_REFS + 1)th memory reference to ADDR
2266 where SIZE is the size in bytes of the memory reference. If ADDR
2267 is not modified by the memory reference then ADDR is returned. */
2268
04e2b4d3 2269static rtx
4682ae04 2270addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
2271{
2272 int offset = 0;
ca7fd9cd 2273
39cec1ac
MH
2274 switch (GET_CODE (addr))
2275 {
2276 case PRE_INC:
2277 offset = (n_refs + 1) * size;
2278 break;
2279 case PRE_DEC:
2280 offset = -(n_refs + 1) * size;
2281 break;
2282 case POST_INC:
2283 offset = n_refs * size;
2284 break;
2285 case POST_DEC:
2286 offset = -n_refs * size;
2287 break;
2288
2289 default:
2290 return addr;
2291 }
ca7fd9cd 2292
39cec1ac 2293 if (offset)
45183e03 2294 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
4789c0ce 2295 gen_int_mode (offset, GET_MODE (addr)));
39cec1ac
MH
2296 else
2297 addr = XEXP (addr, 0);
45183e03 2298 addr = canon_rtx (addr);
39cec1ac
MH
2299
2300 return addr;
2301}
2302
3aa03517
AO
2303/* Return TRUE if an object X sized at XSIZE bytes and another object
2304 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2305 any of the sizes is zero, assume an overlap, otherwise use the
2306 absolute value of the sizes as the actual sizes. */
2307
2308static inline bool
2309offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2310{
2311 return (xsize == 0 || ysize == 0
2312 || (c >= 0
2313 ? (abs (xsize) > c)
2314 : (abs (ysize) > -c)));
2315}
2316
f47e08d9
RG
2317/* Return one if X and Y (memory addresses) reference the
2318 same location in memory or if the references overlap.
2319 Return zero if they do not overlap, else return
2320 minus one in which case they still might reference the same location.
2321
2322 C is an offset accumulator. When
9ae8ffe7
JL
2323 C is nonzero, we are testing aliases between X and Y + C.
2324 XSIZE is the size in bytes of the X reference,
2325 similarly YSIZE is the size in bytes for Y.
45183e03 2326 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
2327
2328 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2329 referenced (the reference was BLKmode), so make the most pessimistic
2330 assumptions.
2331
c02f035f
RH
2332 If XSIZE or YSIZE is negative, we may access memory outside the object
2333 being referenced as a side effect. This can happen when using AND to
2334 align memory references, as is done on the Alpha.
2335
9ae8ffe7 2336 Nice to notice that varying addresses cannot conflict with fp if no
f47e08d9
RG
2337 local variables had their addresses taken, but that's too hard now.
2338
2339 ??? Contrary to the tree alias oracle this does not return
2340 one for X + non-constant and Y + non-constant when X and Y are equal.
2341 If that is fixed the TBAA hack for union type-punning can be removed. */
9ae8ffe7 2342
9ae8ffe7 2343static int
4682ae04 2344memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 2345{
eab5c70a 2346 if (GET_CODE (x) == VALUE)
5312b066
JJ
2347 {
2348 if (REG_P (y))
2349 {
24f8d71e
JJ
2350 struct elt_loc_list *l = NULL;
2351 if (CSELIB_VAL_PTR (x))
a5628378
AO
2352 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2353 l; l = l->next)
24f8d71e
JJ
2354 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2355 break;
5312b066
JJ
2356 if (l)
2357 x = y;
2358 else
2359 x = get_addr (x);
2360 }
2361 /* Don't call get_addr if y is the same VALUE. */
2362 else if (x != y)
2363 x = get_addr (x);
2364 }
eab5c70a 2365 if (GET_CODE (y) == VALUE)
5312b066
JJ
2366 {
2367 if (REG_P (x))
2368 {
24f8d71e
JJ
2369 struct elt_loc_list *l = NULL;
2370 if (CSELIB_VAL_PTR (y))
a5628378
AO
2371 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2372 l; l = l->next)
24f8d71e
JJ
2373 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2374 break;
5312b066
JJ
2375 if (l)
2376 y = x;
2377 else
2378 y = get_addr (y);
2379 }
2380 /* Don't call get_addr if x is the same VALUE. */
2381 else if (y != x)
2382 y = get_addr (y);
2383 }
9ae8ffe7
JL
2384 if (GET_CODE (x) == HIGH)
2385 x = XEXP (x, 0);
2386 else if (GET_CODE (x) == LO_SUM)
2387 x = XEXP (x, 1);
2388 else
3aa03517 2389 x = addr_side_effect_eval (x, abs (xsize), 0);
9ae8ffe7
JL
2390 if (GET_CODE (y) == HIGH)
2391 y = XEXP (y, 0);
2392 else if (GET_CODE (y) == LO_SUM)
2393 y = XEXP (y, 1);
2394 else
3aa03517 2395 y = addr_side_effect_eval (y, abs (ysize), 0);
9ae8ffe7 2396
54363f8a
JH
2397 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2398 {
73e48cb3 2399 int cmp = compare_base_symbol_refs (x,y);
54363f8a
JH
2400
2401 /* If both decls are the same, decide by offsets. */
2402 if (cmp == 1)
2403 return offset_overlap_p (c, xsize, ysize);
3a28db46
UB
2404 /* Assume a potential overlap for symbolic addresses that went
2405 through alignment adjustments (i.e., that have negative
2406 sizes), because we can't know how far they are from each
2407 other. */
2408 if (xsize < 0 || ysize < 0)
2409 return -1;
54363f8a
JH
2410 /* If decls are different or we know by offsets that there is no overlap,
2411 we win. */
2412 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2413 return 0;
2414 /* Decls may or may not be different and offsets overlap....*/
2415 return -1;
2416 }
2417 else if (rtx_equal_for_memref_p (x, y))
9ae8ffe7 2418 {
3aa03517 2419 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2420 }
2421
6e73e666
JC
2422 /* This code used to check for conflicts involving stack references and
2423 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
2424
2425 if (GET_CODE (x) == PLUS)
2426 {
2427 /* The fact that X is canonicalized means that this
2428 PLUS rtx is canonicalized. */
2429 rtx x0 = XEXP (x, 0);
2430 rtx x1 = XEXP (x, 1);
2431
2d88904a
AO
2432 /* However, VALUEs might end up in different positions even in
2433 canonical PLUSes. Comparing their addresses is enough. */
2434 if (x0 == y)
2435 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2436 else if (x1 == y)
2437 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2438
9ae8ffe7
JL
2439 if (GET_CODE (y) == PLUS)
2440 {
2441 /* The fact that Y is canonicalized means that this
2442 PLUS rtx is canonicalized. */
2443 rtx y0 = XEXP (y, 0);
2444 rtx y1 = XEXP (y, 1);
2445
2d88904a
AO
2446 if (x0 == y1)
2447 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2448 if (x1 == y0)
2449 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2450
9ae8ffe7
JL
2451 if (rtx_equal_for_memref_p (x1, y1))
2452 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2453 if (rtx_equal_for_memref_p (x0, y0))
2454 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
481683e1 2455 if (CONST_INT_P (x1))
63be02db 2456 {
481683e1 2457 if (CONST_INT_P (y1))
63be02db
JM
2458 return memrefs_conflict_p (xsize, x0, ysize, y0,
2459 c - INTVAL (x1) + INTVAL (y1));
2460 else
2461 return memrefs_conflict_p (xsize, x0, ysize, y,
2462 c - INTVAL (x1));
2463 }
481683e1 2464 else if (CONST_INT_P (y1))
9ae8ffe7
JL
2465 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2466
f47e08d9 2467 return -1;
9ae8ffe7 2468 }
481683e1 2469 else if (CONST_INT_P (x1))
9ae8ffe7
JL
2470 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2471 }
2472 else if (GET_CODE (y) == PLUS)
2473 {
2474 /* The fact that Y is canonicalized means that this
2475 PLUS rtx is canonicalized. */
2476 rtx y0 = XEXP (y, 0);
2477 rtx y1 = XEXP (y, 1);
2478
2d88904a
AO
2479 if (x == y0)
2480 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2481 if (x == y1)
2482 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2483
481683e1 2484 if (CONST_INT_P (y1))
9ae8ffe7
JL
2485 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2486 else
f47e08d9 2487 return -1;
9ae8ffe7
JL
2488 }
2489
2490 if (GET_CODE (x) == GET_CODE (y))
2491 switch (GET_CODE (x))
2492 {
2493 case MULT:
2494 {
2495 /* Handle cases where we expect the second operands to be the
2496 same, and check only whether the first operand would conflict
2497 or not. */
2498 rtx x0, y0;
2499 rtx x1 = canon_rtx (XEXP (x, 1));
2500 rtx y1 = canon_rtx (XEXP (y, 1));
2501 if (! rtx_equal_for_memref_p (x1, y1))
f47e08d9 2502 return -1;
9ae8ffe7
JL
2503 x0 = canon_rtx (XEXP (x, 0));
2504 y0 = canon_rtx (XEXP (y, 0));
2505 if (rtx_equal_for_memref_p (x0, y0))
3aa03517 2506 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2507
2508 /* Can't properly adjust our sizes. */
481683e1 2509 if (!CONST_INT_P (x1))
f47e08d9 2510 return -1;
9ae8ffe7
JL
2511 xsize /= INTVAL (x1);
2512 ysize /= INTVAL (x1);
2513 c /= INTVAL (x1);
2514 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2515 }
1d300e19
KG
2516
2517 default:
2518 break;
9ae8ffe7
JL
2519 }
2520
a9bf4fe2
AO
2521 /* Deal with alignment ANDs by adjusting offset and size so as to
2522 cover the maximum range, without taking any previously known
5147bf6a
AO
2523 alignment into account. Make a size negative after such an
2524 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2525 assume a potential overlap, because they may end up in contiguous
2526 memory locations and the stricter-alignment access may span over
2527 part of both. */
481683e1 2528 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 2529 {
a9bf4fe2
AO
2530 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2531 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2532 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2533 {
5147bf6a
AO
2534 if (xsize > 0)
2535 xsize = -xsize;
3aa03517
AO
2536 if (xsize)
2537 xsize += sc + 1;
fe8fb1c4 2538 c -= sc + 1;
a9bf4fe2
AO
2539 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2540 ysize, y, c);
2541 }
56ee9281 2542 }
481683e1 2543 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 2544 {
a9bf4fe2
AO
2545 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2546 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2547 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2548 {
5147bf6a
AO
2549 if (ysize > 0)
2550 ysize = -ysize;
3aa03517
AO
2551 if (ysize)
2552 ysize += sc + 1;
fe8fb1c4 2553 c += sc + 1;
a9bf4fe2
AO
2554 return memrefs_conflict_p (xsize, x,
2555 ysize, canon_rtx (XEXP (y, 0)), c);
2556 }
c02f035f 2557 }
9ae8ffe7
JL
2558
2559 if (CONSTANT_P (x))
2560 {
481683e1 2561 if (CONST_INT_P (x) && CONST_INT_P (y))
9ae8ffe7
JL
2562 {
2563 c += (INTVAL (y) - INTVAL (x));
3aa03517 2564 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2565 }
2566
2567 if (GET_CODE (x) == CONST)
2568 {
2569 if (GET_CODE (y) == CONST)
2570 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2571 ysize, canon_rtx (XEXP (y, 0)), c);
2572 else
2573 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2574 ysize, y, c);
2575 }
2576 if (GET_CODE (y) == CONST)
2577 return memrefs_conflict_p (xsize, x, ysize,
2578 canon_rtx (XEXP (y, 0)), c);
2579
3aa03517
AO
2580 /* Assume a potential overlap for symbolic addresses that went
2581 through alignment adjustments (i.e., that have negative
2582 sizes), because we can't know how far they are from each
2583 other. */
9ae8ffe7 2584 if (CONSTANT_P (y))
3aa03517 2585 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
9ae8ffe7 2586
f47e08d9 2587 return -1;
9ae8ffe7 2588 }
f47e08d9
RG
2589
2590 return -1;
9ae8ffe7
JL
2591}
2592
2593/* Functions to compute memory dependencies.
2594
2595 Since we process the insns in execution order, we can build tables
2596 to keep track of what registers are fixed (and not aliased), what registers
2597 are varying in known ways, and what registers are varying in unknown
2598 ways.
2599
2600 If both memory references are volatile, then there must always be a
2601 dependence between the two references, since their order can not be
2602 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 2603 though.
9ae8ffe7 2604
53d9622b
RS
2605 We also must allow AND addresses, because they may generate accesses
2606 outside the object being referenced. This is used to generate aligned
2607 addresses from unaligned addresses, for instance, the alpha
dc1618bc 2608 storeqi_unaligned pattern. */
9ae8ffe7
JL
2609
2610/* Read dependence: X is read after read in MEM takes place. There can
96672a3e
RH
2611 only be a dependence here if both reads are volatile, or if either is
2612 an explicit barrier. */
9ae8ffe7
JL
2613
2614int
4f588890 2615read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2616{
96672a3e
RH
2617 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2618 return true;
2619 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2620 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2621 return true;
2622 return false;
9ae8ffe7
JL
2623}
2624
998d7deb
RH
2625/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2626
2627static tree
4682ae04 2628decl_for_component_ref (tree x)
998d7deb
RH
2629{
2630 do
2631 {
2632 x = TREE_OPERAND (x, 0);
2633 }
2634 while (x && TREE_CODE (x) == COMPONENT_REF);
2635
2636 return x && DECL_P (x) ? x : NULL_TREE;
2637}
2638
527210c4
RS
2639/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2640 for the offset of the field reference. *KNOWN_P says whether the
2641 offset is known. */
998d7deb 2642
527210c4
RS
2643static void
2644adjust_offset_for_component_ref (tree x, bool *known_p,
2645 HOST_WIDE_INT *offset)
998d7deb 2646{
527210c4
RS
2647 if (!*known_p)
2648 return;
ca7fd9cd 2649 do
998d7deb 2650 {
527210c4 2651 tree xoffset = component_ref_field_offset (x);
998d7deb 2652 tree field = TREE_OPERAND (x, 1);
807e902e
KZ
2653 if (TREE_CODE (xoffset) != INTEGER_CST)
2654 {
2655 *known_p = false;
2656 return;
2657 }
998d7deb 2658
807e902e
KZ
2659 offset_int woffset
2660 = (wi::to_offset (xoffset)
8de73453
RS
2661 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2662 >> LOG2_BITS_PER_UNIT));
807e902e 2663 if (!wi::fits_uhwi_p (woffset))
527210c4
RS
2664 {
2665 *known_p = false;
2666 return;
2667 }
807e902e 2668 *offset += woffset.to_uhwi ();
998d7deb
RH
2669
2670 x = TREE_OPERAND (x, 0);
2671 }
2672 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb
RH
2673}
2674
95bd1dd7 2675/* Return nonzero if we can determine the exprs corresponding to memrefs
c6ea834c
BM
2676 X and Y and they do not overlap.
2677 If LOOP_VARIANT is set, skip offset-based disambiguation */
a4311dfe 2678
2e4e39f6 2679int
c6ea834c 2680nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
a4311dfe 2681{
998d7deb 2682 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2683 rtx rtlx, rtly;
2684 rtx basex, basey;
527210c4
RS
2685 bool moffsetx_known_p, moffsety_known_p;
2686 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
4e1952ab 2687 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
a4311dfe 2688
998d7deb
RH
2689 /* Unless both have exprs, we can't tell anything. */
2690 if (exprx == 0 || expry == 0)
2691 return 0;
2b22e382
RG
2692
2693 /* For spill-slot accesses make sure we have valid offsets. */
2694 if ((exprx == get_spill_slot_decl (false)
527210c4 2695 && ! MEM_OFFSET_KNOWN_P (x))
2b22e382 2696 || (expry == get_spill_slot_decl (false)
527210c4 2697 && ! MEM_OFFSET_KNOWN_P (y)))
2b22e382 2698 return 0;
c22cacf3 2699
998d7deb 2700 /* If the field reference test failed, look at the DECLs involved. */
527210c4
RS
2701 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2702 if (moffsetx_known_p)
2703 moffsetx = MEM_OFFSET (x);
998d7deb
RH
2704 if (TREE_CODE (exprx) == COMPONENT_REF)
2705 {
2e0c984c
RG
2706 tree t = decl_for_component_ref (exprx);
2707 if (! t)
2708 return 0;
527210c4 2709 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2e0c984c 2710 exprx = t;
998d7deb 2711 }
c67a1cf6 2712
527210c4
RS
2713 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2714 if (moffsety_known_p)
2715 moffsety = MEM_OFFSET (y);
998d7deb
RH
2716 if (TREE_CODE (expry) == COMPONENT_REF)
2717 {
2e0c984c
RG
2718 tree t = decl_for_component_ref (expry);
2719 if (! t)
2720 return 0;
527210c4 2721 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2e0c984c 2722 expry = t;
998d7deb
RH
2723 }
2724
2725 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2726 return 0;
2727
1f9ceff1
AO
2728 /* If we refer to different gimple registers, or one gimple register
2729 and one non-gimple-register, we know they can't overlap. First,
2730 gimple registers don't have their addresses taken. Now, there
2731 could be more than one stack slot for (different versions of) the
2732 same gimple register, but we can presumably tell they don't
2733 overlap based on offsets from stack base addresses elsewhere.
2734 It's important that we don't proceed to DECL_RTL, because gimple
2735 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2736 able to do anything about them since no SSA information will have
2737 remained to guide it. */
2738 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2d88904a
AO
2739 return exprx != expry
2740 || (moffsetx_known_p && moffsety_known_p
2741 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2742 && !offset_overlap_p (moffsety - moffsetx,
2743 MEM_SIZE (x), MEM_SIZE (y)));
1f9ceff1 2744
1307c758
RG
2745 /* With invalid code we can end up storing into the constant pool.
2746 Bail out to avoid ICEing when creating RTL for this.
2747 See gfortran.dg/lto/20091028-2_0.f90. */
2748 if (TREE_CODE (exprx) == CONST_DECL
2749 || TREE_CODE (expry) == CONST_DECL)
2750 return 1;
2751
dca16798
JJ
2752 /* If one decl is known to be a function or label in a function and
2753 the other is some kind of data, they can't overlap. */
2754 if ((TREE_CODE (exprx) == FUNCTION_DECL
2755 || TREE_CODE (exprx) == LABEL_DECL)
2756 != (TREE_CODE (expry) == FUNCTION_DECL
2757 || TREE_CODE (expry) == LABEL_DECL))
2758 return 1;
2759
5f4cebba
JJ
2760 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2761 living in multiple places), we can't tell anything. Exception
2762 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2763 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2764 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2765 return 0;
2766
998d7deb
RH
2767 rtlx = DECL_RTL (exprx);
2768 rtly = DECL_RTL (expry);
a4311dfe 2769
1edcd60b
RK
2770 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2771 can't overlap unless they are the same because we never reuse that part
2772 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2773 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2774 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2775 return 1;
2776
5932a4d4 2777 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2778 potentially overlap), we cannot easily tell from the addresses
2779 whether the references overlap. */
2780 if (MEM_P (rtlx) && MEM_P (rtly)
2781 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2782 return 0;
2783
a4311dfe
RK
2784 /* Get the base and offsets of both decls. If either is a register, we
2785 know both are and are the same, so use that as the base. The only
2786 we can avoid overlap is if we can deduce that they are nonoverlapping
2787 pieces of that decl, which is very rare. */
3c0cb5de 2788 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
481683e1 2789 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
a4311dfe
RK
2790 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2791
3c0cb5de 2792 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
481683e1 2793 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
a4311dfe
RK
2794 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2795
d746694a 2796 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2797 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2798 stack frame. Otherwise a different base means we can't tell if they
2799 overlap or not. */
54363f8a 2800 if (compare_base_decls (exprx, expry) == 0)
ca7fd9cd
KH
2801 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2802 || (CONSTANT_P (basex) && REG_P (basey)
2803 && REGNO_PTR_FRAME_P (REGNO (basey)))
2804 || (CONSTANT_P (basey) && REG_P (basex)
2805 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2806
c6ea834c
BM
2807 /* Offset based disambiguation not appropriate for loop invariant */
2808 if (loop_invariant)
dca16798 2809 return 0;
c6ea834c 2810
54363f8a
JH
2811 /* Offset based disambiguation is OK even if we do not know that the
2812 declarations are necessarily different
2813 (i.e. compare_base_decls (exprx, expry) == -1) */
2814
3c0cb5de 2815 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
f5541398 2816 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
a4311dfe 2817 : -1);
3c0cb5de 2818 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
f5541398
RS
2819 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2820 : -1);
a4311dfe 2821
0af5bc3e
RK
2822 /* If we have an offset for either memref, it can update the values computed
2823 above. */
527210c4
RS
2824 if (moffsetx_known_p)
2825 offsetx += moffsetx, sizex -= moffsetx;
2826 if (moffsety_known_p)
2827 offsety += moffsety, sizey -= moffsety;
a4311dfe 2828
0af5bc3e 2829 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2830 We can't do this if the offset isn't known because we must view this
0af5bc3e 2831 memref as being anywhere inside the DECL's MEM. */
527210c4 2832 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
f5541398 2833 sizex = MEM_SIZE (x);
527210c4 2834 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
f5541398 2835 sizey = MEM_SIZE (y);
a4311dfe
RK
2836
2837 /* Put the values of the memref with the lower offset in X's values. */
2838 if (offsetx > offsety)
2839 {
4e1952ab
KT
2840 std::swap (offsetx, offsety);
2841 std::swap (sizex, sizey);
a4311dfe
RK
2842 }
2843
2844 /* If we don't know the size of the lower-offset value, we can't tell
2845 if they conflict. Otherwise, we do the test. */
a6f7c915 2846 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2847}
2848
9362286d
SB
2849/* Helper for true_dependence and canon_true_dependence.
2850 Checks for true dependence: X is read after store in MEM takes place.
9ae8ffe7 2851
9362286d
SB
2852 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2853 NULL_RTX, and the canonical addresses of MEM and X are both computed
2854 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2855
2856 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2857
2858 Returns 1 if there is a true dependence, 0 otherwise. */
2859
2860static int
ef4bddc2 2861true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 2862 const_rtx x, rtx x_addr, bool mem_canonicalized)
9ae8ffe7 2863{
0777fc02 2864 rtx true_mem_addr;
49982682 2865 rtx base;
f47e08d9 2866 int ret;
9ae8ffe7 2867
9362286d
SB
2868 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2869 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2870
9ae8ffe7
JL
2871 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2872 return 1;
2873
c4484b8f 2874 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2875 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2876 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2877 return 1;
2878 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2879 return 1;
9cd9e512
RH
2880 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2881 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2882 return 1;
c4484b8f 2883
0777fc02
UB
2884 if (! x_addr)
2885 x_addr = XEXP (x, 0);
2886 x_addr = get_addr (x_addr);
2887
9362286d
SB
2888 if (! mem_addr)
2889 {
2890 mem_addr = XEXP (mem, 0);
2891 if (mem_mode == VOIDmode)
2892 mem_mode = GET_MODE (mem);
2893 }
0777fc02 2894 true_mem_addr = get_addr (mem_addr);
eab5c70a 2895
878f5596
UB
2896 /* Read-only memory is by definition never modified, and therefore can't
2897 conflict with anything. However, don't assume anything when AND
2898 addresses are involved and leave to the code below to determine
2899 dependence. We don't expect to find read-only set on MEM, but
2900 stupid user tricks can produce them, so don't die. */
2901 if (MEM_READONLY_P (x)
2902 && GET_CODE (x_addr) != AND
0777fc02 2903 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
2904 return 0;
2905
2906 /* If we have MEMs referring to different address spaces (which can
2907 potentially overlap), we cannot easily tell from the addresses
2908 whether the references overlap. */
2909 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2910 return 1;
2911
55efb413
JW
2912 base = find_base_term (x_addr);
2913 if (base && (GET_CODE (base) == LABEL_REF
2914 || (GET_CODE (base) == SYMBOL_REF
2915 && CONSTANT_POOL_ADDRESS_P (base))))
2916 return 0;
2917
0777fc02
UB
2918 rtx mem_base = find_base_term (true_mem_addr);
2919 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
31b0a960 2920 GET_MODE (x), mem_mode))
1c72c7f6
JC
2921 return 0;
2922
eab5c70a 2923 x_addr = canon_rtx (x_addr);
9362286d 2924 if (!mem_canonicalized)
0777fc02 2925 mem_addr = canon_rtx (true_mem_addr);
6e73e666 2926
f47e08d9
RG
2927 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2928 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2929 return ret;
2930
a95b3cc7 2931 if (mems_in_disjoint_alias_sets_p (x, mem))
f47e08d9
RG
2932 return 0;
2933
c6ea834c 2934 if (nonoverlapping_memrefs_p (mem, x, false))
0211b6ab 2935 return 0;
175a7536 2936
55b34b5f 2937 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
2938}
2939
9362286d
SB
2940/* True dependence: X is read after store in MEM takes place. */
2941
2942int
ef4bddc2 2943true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
9362286d
SB
2944{
2945 return true_dependence_1 (mem, mem_mode, NULL_RTX,
53d9622b 2946 x, NULL_RTX, /*mem_canonicalized=*/false);
9362286d
SB
2947}
2948
a13d4ebf 2949/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2950 Variant of true_dependence which assumes MEM has already been
2951 canonicalized (hence we no longer do that here).
9362286d
SB
2952 The mem_addr argument has been added, since true_dependence_1 computed
2953 this value prior to canonicalizing. */
a13d4ebf
AM
2954
2955int
ef4bddc2 2956canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 2957 const_rtx x, rtx x_addr)
a13d4ebf 2958{
9362286d 2959 return true_dependence_1 (mem, mem_mode, mem_addr,
53d9622b 2960 x, x_addr, /*mem_canonicalized=*/true);
9ae8ffe7
JL
2961}
2962
da7d8304 2963/* Returns nonzero if a write to X might alias a previous read from
393f9fed 2964 (or, if WRITEP is true, a write to) MEM.
bd280792
JR
2965 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2966 and X_MODE the mode for that access.
2967 If MEM_CANONICALIZED is true, MEM is canonicalized. */
9ae8ffe7 2968
2c72b78f 2969static int
bd280792 2970write_dependence_p (const_rtx mem,
ef4bddc2 2971 const_rtx x, machine_mode x_mode, rtx x_addr,
bd280792 2972 bool mem_canonicalized, bool x_canonicalized, bool writep)
9ae8ffe7 2973{
bd280792 2974 rtx mem_addr;
0777fc02 2975 rtx true_mem_addr, true_x_addr;
49982682 2976 rtx base;
f47e08d9 2977 int ret;
6e73e666 2978
bd280792
JR
2979 gcc_checking_assert (x_canonicalized
2980 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2981 : (x_addr == NULL_RTX && x_mode == VOIDmode));
393f9fed 2982
9ae8ffe7
JL
2983 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2984 return 1;
2985
c4484b8f
RH
2986 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2987 This is used in epilogue deallocation functions. */
2988 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2989 return 1;
2990 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2991 return 1;
9cd9e512
RH
2992 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2993 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2994 return 1;
c4484b8f 2995
bd280792 2996 if (!x_addr)
0777fc02
UB
2997 x_addr = XEXP (x, 0);
2998 true_x_addr = get_addr (x_addr);
2999
3000 mem_addr = XEXP (mem, 0);
3001 true_mem_addr = get_addr (mem_addr);
55efb413 3002
878f5596
UB
3003 /* A read from read-only memory can't conflict with read-write memory.
3004 Don't assume anything when AND addresses are involved and leave to
3005 the code below to determine dependence. */
3006 if (!writep
3007 && MEM_READONLY_P (mem)
0777fc02
UB
3008 && GET_CODE (true_x_addr) != AND
3009 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
3010 return 0;
3011
3012 /* If we have MEMs referring to different address spaces (which can
3013 potentially overlap), we cannot easily tell from the addresses
3014 whether the references overlap. */
3015 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3016 return 1;
3017
0777fc02 3018 base = find_base_term (true_mem_addr);
31b0a960
RB
3019 if (! writep
3020 && base
3021 && (GET_CODE (base) == LABEL_REF
3022 || (GET_CODE (base) == SYMBOL_REF
3023 && CONSTANT_POOL_ADDRESS_P (base))))
3024 return 0;
49982682 3025
0777fc02
UB
3026 rtx x_base = find_base_term (true_x_addr);
3027 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3028 GET_MODE (x), GET_MODE (mem)))
41472af8
MM
3029 return 0;
3030
bd280792 3031 if (!x_canonicalized)
393f9fed 3032 {
0777fc02 3033 x_addr = canon_rtx (true_x_addr);
bd280792 3034 x_mode = GET_MODE (x);
393f9fed 3035 }
bd280792 3036 if (!mem_canonicalized)
0777fc02 3037 mem_addr = canon_rtx (true_mem_addr);
6e73e666 3038
bd280792
JR
3039 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3040 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
f47e08d9
RG
3041 return ret;
3042
c6ea834c 3043 if (nonoverlapping_memrefs_p (x, mem, false))
c6df88cb
MM
3044 return 0;
3045
55b34b5f 3046 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
3047}
3048
3049/* Anti dependence: X is written after read in MEM takes place. */
3050
3051int
4f588890 3052anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 3053{
bd280792
JR
3054 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3055 /*mem_canonicalized=*/false,
3056 /*x_canonicalized*/false, /*writep=*/false);
393f9fed
JR
3057}
3058
bd280792
JR
3059/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3060 Also, consider X in X_MODE (which might be from an enclosing
3061 STRICT_LOW_PART / ZERO_EXTRACT).
3062 If MEM_CANONICALIZED is true, MEM is canonicalized. */
393f9fed
JR
3063
3064int
bd280792 3065canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
ef4bddc2 3066 const_rtx x, machine_mode x_mode, rtx x_addr)
393f9fed 3067{
bd280792
JR
3068 return write_dependence_p (mem, x, x_mode, x_addr,
3069 mem_canonicalized, /*x_canonicalized=*/true,
3070 /*writep=*/false);
9ae8ffe7
JL
3071}
3072
3073/* Output dependence: X is written after store in MEM takes place. */
3074
3075int
4f588890 3076output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 3077{
bd280792
JR
3078 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3079 /*mem_canonicalized=*/false,
3080 /*x_canonicalized*/false, /*writep=*/true);
9ae8ffe7 3081}
43b9f499
RB
3082
3083/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3084 Also, consider X in X_MODE (which might be from an enclosing
3085 STRICT_LOW_PART / ZERO_EXTRACT).
3086 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3087
3088int
3089canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3090 const_rtx x, machine_mode x_mode, rtx x_addr)
3091{
3092 return write_dependence_p (mem, x, x_mode, x_addr,
3093 mem_canonicalized, /*x_canonicalized=*/true,
3094 /*writep=*/true);
3095}
c14b9960 3096\f
6e73e666 3097
c6ea834c
BM
3098
3099/* Check whether X may be aliased with MEM. Don't do offset-based
3100 memory disambiguation & TBAA. */
3101int
3102may_alias_p (const_rtx mem, const_rtx x)
3103{
3104 rtx x_addr, mem_addr;
c6ea834c
BM
3105
3106 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3107 return 1;
3108
a95b3cc7
RG
3109 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3110 This is used in epilogue deallocation functions. */
3111 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3112 return 1;
3113 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
c6ea834c 3114 return 1;
c6ea834c
BM
3115 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3116 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3117 return 1;
3118
c6ea834c 3119 x_addr = XEXP (x, 0);
0777fc02
UB
3120 x_addr = get_addr (x_addr);
3121
c6ea834c 3122 mem_addr = XEXP (mem, 0);
0777fc02 3123 mem_addr = get_addr (mem_addr);
c6ea834c 3124
878f5596
UB
3125 /* Read-only memory is by definition never modified, and therefore can't
3126 conflict with anything. However, don't assume anything when AND
3127 addresses are involved and leave to the code below to determine
3128 dependence. We don't expect to find read-only set on MEM, but
3129 stupid user tricks can produce them, so don't die. */
3130 if (MEM_READONLY_P (x)
3131 && GET_CODE (x_addr) != AND
3132 && GET_CODE (mem_addr) != AND)
3133 return 0;
3134
3135 /* If we have MEMs referring to different address spaces (which can
3136 potentially overlap), we cannot easily tell from the addresses
3137 whether the references overlap. */
3138 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3139 return 1;
3140
31b0a960
RB
3141 rtx x_base = find_base_term (x_addr);
3142 rtx mem_base = find_base_term (mem_addr);
3143 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3144 GET_MODE (x), GET_MODE (mem_addr)))
c6ea834c
BM
3145 return 0;
3146
c6ea834c
BM
3147 if (nonoverlapping_memrefs_p (mem, x, true))
3148 return 0;
3149
c6ea834c
BM
3150 /* TBAA not valid for loop_invarint */
3151 return rtx_refs_may_alias_p (x, mem, false);
3152}
3153
6e73e666 3154void
b5deb7b6 3155init_alias_target (void)
6e73e666 3156{
b3694847 3157 int i;
6e73e666 3158
9fc37b2b
RS
3159 if (!arg_base_value)
3160 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3161
b5deb7b6
SL
3162 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3163
6e73e666
JC
3164 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3165 /* Check whether this register can hold an incoming pointer
3166 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 3167 numbers, so translate if necessary due to register windows. */
6e73e666
JC
3168 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3169 && HARD_REGNO_MODE_OK (i, Pmode))
9fc37b2b
RS
3170 static_reg_base_value[i] = arg_base_value;
3171
757e8ba2
JJ
3172 static_reg_base_value[STACK_POINTER_REGNUM]
3173 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3174 static_reg_base_value[ARG_POINTER_REGNUM]
3175 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3176 static_reg_base_value[FRAME_POINTER_REGNUM]
3177 = unique_base_value (UNIQUE_BASE_VALUE_FP);
c3e08036
TS
3178 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3179 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3180 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
bf1660a6
JL
3181}
3182
7b52eede
JH
3183/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3184 to be memory reference. */
3185static bool memory_modified;
3186static void
aa317c97 3187memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 3188{
3c0cb5de 3189 if (MEM_P (x))
7b52eede 3190 {
9678086d 3191 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
3192 memory_modified = true;
3193 }
3194}
3195
3196
3197/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 3198 (i.e. address can be modified). */
7b52eede 3199bool
9678086d 3200memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
3201{
3202 if (!INSN_P (insn))
3203 return false;
3204 memory_modified = false;
aa317c97 3205 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
3206 return memory_modified;
3207}
3208
a7b159a4
AH
3209/* Return TRUE if the destination of a set is rtx identical to
3210 ITEM. */
3211static inline bool
3212set_dest_equal_p (const_rtx set, const_rtx item)
3213{
3214 rtx dest = SET_DEST (set);
3215 return rtx_equal_p (dest, item);
3216}
3217
c13e8210
MM
3218/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3219 array. */
3220
9ae8ffe7 3221void
4682ae04 3222init_alias_analysis (void)
9ae8ffe7 3223{
c582d54a 3224 unsigned int maxreg = max_reg_num ();
ea64ef27 3225 int changed, pass;
b3694847
SS
3226 int i;
3227 unsigned int ui;
d36a28b8
DM
3228 rtx_insn *insn;
3229 rtx val;
131db6b8
SB
3230 int rpo_cnt;
3231 int *rpo;
9ae8ffe7 3232
0d446150
JH
3233 timevar_push (TV_ALIAS_ANALYSIS);
3234
92390dd1 3235 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
9ff3c7ca 3236 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
dd3d1ec0 3237 bitmap_clear (reg_known_equiv_p);
9ae8ffe7 3238
08c79682 3239 /* If we have memory allocated from the previous run, use it. */
c582d54a 3240 if (old_reg_base_value)
08c79682
KH
3241 reg_base_value = old_reg_base_value;
3242
3243 if (reg_base_value)
9771b263 3244 reg_base_value->truncate (0);
08c79682 3245
9771b263 3246 vec_safe_grow_cleared (reg_base_value, maxreg);
ac606739 3247
5ed6ace5 3248 new_reg_base_value = XNEWVEC (rtx, maxreg);
d630245f 3249 reg_seen = sbitmap_alloc (maxreg);
ec907dd8
JL
3250
3251 /* The basic idea is that each pass through this loop will use the
3252 "constant" information from the previous pass to propagate alias
3253 information through another level of assignments.
3254
131db6b8
SB
3255 The propagation is done on the CFG in reverse post-order, to propagate
3256 things forward as far as possible in each iteration.
3257
ec907dd8
JL
3258 This could get expensive if the assignment chains are long. Maybe
3259 we should throttle the number of iterations, possibly based on
6e73e666 3260 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
3261
3262 We could propagate more information in the first pass by making use
6fb5fa3c 3263 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
3264 for a pseudo is "constant".
3265
3266 A program with an uninitialized variable can cause an infinite loop
3267 here. Instead of doing a full dataflow analysis to detect such problems
3268 we just cap the number of iterations for the loop.
3269
3270 The state of the arrays for the set chain in question does not matter
3271 since the program has undefined behavior. */
6e73e666 3272
0cae8d31 3273 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
131db6b8
SB
3274 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3275
e86a9946
RS
3276 /* The prologue/epilogue insns are not threaded onto the
3277 insn chain until after reload has completed. Thus,
3278 there is no sense wasting time checking if INSN is in
3279 the prologue/epilogue until after reload has completed. */
3280 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3281 || targetm.have_epilogue ())
3282 && reload_completed);
3283
ea64ef27 3284 pass = 0;
6e73e666 3285 do
ec907dd8
JL
3286 {
3287 /* Assume nothing will change this iteration of the loop. */
3288 changed = 0;
3289
ec907dd8 3290 /* We want to assign the same IDs each iteration of this loop, so
9fc37b2b
RS
3291 start counting from one each iteration of the loop. */
3292 unique_id = 1;
ec907dd8 3293
f5143c46 3294 /* We're at the start of the function each iteration through the
ec907dd8 3295 loop, so we're copying arguments. */
83bbd9b6 3296 copying_arguments = true;
9ae8ffe7 3297
6e73e666 3298 /* Wipe the potential alias information clean for this pass. */
c582d54a 3299 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 3300
6e73e666 3301 /* Wipe the reg_seen array clean. */
f61e445a 3302 bitmap_clear (reg_seen);
9ae8ffe7 3303
356610cb
EB
3304 /* Initialize the alias information for this pass. */
3305 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3306 if (static_reg_base_value[i])
3307 {
3308 new_reg_base_value[i] = static_reg_base_value[i];
3309 bitmap_set_bit (reg_seen, i);
3310 }
6e73e666 3311
ec907dd8 3312 /* Walk the insns adding values to the new_reg_base_value array. */
131db6b8 3313 for (i = 0; i < rpo_cnt; i++)
9ae8ffe7 3314 {
06e28de2 3315 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
131db6b8 3316 FOR_BB_INSNS (bb, insn)
ec907dd8 3317 {
131db6b8
SB
3318 if (NONDEBUG_INSN_P (insn))
3319 {
3320 rtx note, set;
efc9bd41 3321
e86a9946 3322 if (could_be_prologue_epilogue
131db6b8
SB
3323 && prologue_epilogue_contains (insn))
3324 continue;
efc9bd41 3325
131db6b8
SB
3326 /* If this insn has a noalias note, process it, Otherwise,
3327 scan for sets. A simple set will have no side effects
3328 which could change the base value of any other register. */
6e73e666 3329
131db6b8
SB
3330 if (GET_CODE (PATTERN (insn)) == SET
3331 && REG_NOTES (insn) != 0
3332 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3333 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3334 else
3335 note_stores (PATTERN (insn), record_set, NULL);
6e73e666 3336
131db6b8 3337 set = single_set (insn);
6e73e666 3338
131db6b8
SB
3339 if (set != 0
3340 && REG_P (SET_DEST (set))
3341 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
713f41f9 3342 {
131db6b8
SB
3343 unsigned int regno = REGNO (SET_DEST (set));
3344 rtx src = SET_SRC (set);
3345 rtx t;
3346
3347 note = find_reg_equal_equiv_note (insn);
3348 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3349 && DF_REG_DEF_COUNT (regno) != 1)
3350 note = NULL_RTX;
3351
3352 if (note != NULL_RTX
3353 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3354 && ! rtx_varies_p (XEXP (note, 0), 1)
3355 && ! reg_overlap_mentioned_p (SET_DEST (set),
3356 XEXP (note, 0)))
3357 {
3358 set_reg_known_value (regno, XEXP (note, 0));
3359 set_reg_known_equiv_p (regno,
3360 REG_NOTE_KIND (note) == REG_EQUIV);
3361 }
3362 else if (DF_REG_DEF_COUNT (regno) == 1
3363 && GET_CODE (src) == PLUS
3364 && REG_P (XEXP (src, 0))
3365 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3366 && CONST_INT_P (XEXP (src, 1)))
3367 {
3368 t = plus_constant (GET_MODE (src), t,
3369 INTVAL (XEXP (src, 1)));
3370 set_reg_known_value (regno, t);
3371 set_reg_known_equiv_p (regno, false);
3372 }
3373 else if (DF_REG_DEF_COUNT (regno) == 1
3374 && ! rtx_varies_p (src, 1))
3375 {
3376 set_reg_known_value (regno, src);
3377 set_reg_known_equiv_p (regno, false);
3378 }
713f41f9 3379 }
6e73e666 3380 }
131db6b8
SB
3381 else if (NOTE_P (insn)
3382 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3383 copying_arguments = false;
ec907dd8 3384 }
6e73e666 3385 }
ec907dd8 3386
6e73e666 3387 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 3388 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 3389
c582d54a 3390 for (ui = 0; ui < maxreg; ui++)
6e73e666 3391 {
e51712db 3392 if (new_reg_base_value[ui]
9771b263
DN
3393 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3394 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
ec907dd8 3395 {
9771b263 3396 (*reg_base_value)[ui] = new_reg_base_value[ui];
6e73e666 3397 changed = 1;
ec907dd8 3398 }
9ae8ffe7 3399 }
9ae8ffe7 3400 }
6e73e666 3401 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
131db6b8 3402 XDELETEVEC (rpo);
9ae8ffe7
JL
3403
3404 /* Fill in the remaining entries. */
9771b263 3405 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
9ff3c7ca
SB
3406 {
3407 int regno = i + FIRST_PSEUDO_REGISTER;
3408 if (! val)
3409 set_reg_known_value (regno, regno_reg_rtx[regno]);
3410 }
9ae8ffe7 3411
e05e2395
MM
3412 /* Clean up. */
3413 free (new_reg_base_value);
ec907dd8 3414 new_reg_base_value = 0;
d630245f 3415 sbitmap_free (reg_seen);
9ae8ffe7 3416 reg_seen = 0;
0d446150 3417 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
3418}
3419
61630b27
JJ
3420/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3421 Special API for var-tracking pass purposes. */
3422
3423void
3424vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3425{
9771b263 3426 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
61630b27
JJ
3427}
3428
9ae8ffe7 3429void
4682ae04 3430end_alias_analysis (void)
9ae8ffe7 3431{
c582d54a 3432 old_reg_base_value = reg_base_value;
9771b263 3433 vec_free (reg_known_value);
9ff3c7ca 3434 sbitmap_free (reg_known_equiv_p);
9ae8ffe7 3435}
e2500fed 3436
3ecf9d13
JH
3437void
3438dump_alias_stats_in_alias_c (FILE *s)
3439{
3440 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3441 " %llu are in alias set 0\n"
3442 " %llu queries asked about the same object\n"
3443 " %llu queries asked about the same alias set\n"
3444 " %llu access volatile\n"
6e042ef4
JH
3445 " %llu are dependent in the DAG\n"
3446 " %llu are aritificially in conflict with void *\n",
3ecf9d13
JH
3447 alias_stats.num_disambiguated,
3448 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3449 + alias_stats.num_same_objects + alias_stats.num_volatile
6e042ef4
JH
3450 + alias_stats.num_dag + alias_stats.num_disambiguated
3451 + alias_stats.num_universal,
3ecf9d13 3452 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
6e042ef4
JH
3453 alias_stats.num_same_objects, alias_stats.num_volatile,
3454 alias_stats.num_dag, alias_stats.num_universal);
3ecf9d13 3455}
e2500fed 3456#include "gt-alias.h"