]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
* expr.c (emit_group_load_1): Don't die on const_int orig_src.
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
d9221e01 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
1afdf91c 3 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
9ae8ffe7
JL
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
9ae8ffe7 27#include "rtl.h"
7790df19 28#include "tree.h"
6baf1cc8 29#include "tm_p.h"
49ad7cfa 30#include "function.h"
78528714
JQ
31#include "alias.h"
32#include "emit-rtl.h"
9ae8ffe7
JL
33#include "regs.h"
34#include "hard-reg-set.h"
e004f2f7 35#include "basic-block.h"
9ae8ffe7 36#include "flags.h"
264fac34 37#include "output.h"
2e107e9e 38#include "toplev.h"
eab5c70a 39#include "cselib.h"
3932261a 40#include "splay-tree.h"
ac606739 41#include "ggc.h"
d23c55c2 42#include "langhooks.h"
0d446150 43#include "timevar.h"
ab780373 44#include "target.h"
b255a036 45#include "cgraph.h"
9ddb66ca 46#include "varray.h"
3932261a
MM
47
48/* The alias sets assigned to MEMs assist the back-end in determining
49 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
50 different alias sets cannot alias each other, with one important
51 exception. Consider something like:
3932261a 52
01d28c3f 53 struct S { int i; double d; };
3932261a
MM
54
55 a store to an `S' can alias something of either type `int' or type
56 `double'. (However, a store to an `int' cannot alias a `double'
57 and vice versa.) We indicate this via a tree structure that looks
58 like:
59 struct S
60 / \
61 / \
62 |/_ _\|
63 int double
64
ac3d9668
RK
65 (The arrows are directed and point downwards.)
66 In this situation we say the alias set for `struct S' is the
67 `superset' and that those for `int' and `double' are `subsets'.
68
3bdf5ad1
RK
69 To see whether two alias sets can point to the same memory, we must
70 see if either alias set is a subset of the other. We need not trace
95bd1dd7 71 past immediate descendants, however, since we propagate all
3bdf5ad1 72 grandchildren up one level.
3932261a
MM
73
74 Alias set zero is implicitly a superset of all other alias sets.
75 However, this is no actual entry for alias set zero. It is an
76 error to attempt to explicitly construct a subset of zero. */
77
b604074c 78struct alias_set_entry GTY(())
d4b60170 79{
3932261a 80 /* The alias set number, as stored in MEM_ALIAS_SET. */
3bdf5ad1 81 HOST_WIDE_INT alias_set;
3932261a
MM
82
83 /* The children of the alias set. These are not just the immediate
95bd1dd7 84 children, but, in fact, all descendants. So, if we have:
3932261a 85
ca7fd9cd 86 struct T { struct S s; float f; }
3932261a
MM
87
88 continuing our example above, the children here will be all of
89 `int', `double', `float', and `struct S'. */
b604074c 90 splay_tree GTY((param1_is (int), param2_is (int))) children;
2bf105ab
RK
91
92 /* Nonzero if would have a child of zero: this effectively makes this
93 alias set the same as alias set zero. */
94 int has_zero_child;
b604074c
GK
95};
96typedef struct alias_set_entry *alias_set_entry;
9ae8ffe7 97
4682ae04
AJ
98static int rtx_equal_for_memref_p (rtx, rtx);
99static rtx find_symbolic_term (rtx);
4682ae04
AJ
100static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
101static void record_set (rtx, rtx, void *);
102static int base_alias_check (rtx, rtx, enum machine_mode,
103 enum machine_mode);
104static rtx find_base_value (rtx);
105static int mems_in_disjoint_alias_sets_p (rtx, rtx);
106static int insert_subset_children (splay_tree_node, void*);
107static tree find_base_decl (tree);
108static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
109static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
110 int (*) (rtx, int));
111static int aliases_everything_p (rtx);
112static bool nonoverlapping_component_refs_p (tree, tree);
113static tree decl_for_component_ref (tree);
114static rtx adjust_offset_for_component_ref (tree, rtx);
115static int nonoverlapping_memrefs_p (rtx, rtx);
389fdba0 116static int write_dependence_p (rtx, rtx, int);
4682ae04
AJ
117
118static int nonlocal_mentioned_p_1 (rtx *, void *);
119static int nonlocal_mentioned_p (rtx);
120static int nonlocal_referenced_p_1 (rtx *, void *);
121static int nonlocal_referenced_p (rtx);
122static int nonlocal_set_p_1 (rtx *, void *);
123static int nonlocal_set_p (rtx);
124static void memory_modified_1 (rtx, rtx, void *);
04e2b4d3 125static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
9ae8ffe7
JL
126
127/* Set up all info needed to perform alias analysis on memory references. */
128
d4b60170 129/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
130#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
131
41472af8 132/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
264fac34
MM
133 different alias sets. We ignore alias sets in functions making use
134 of variable arguments because the va_arg macros on some systems are
135 not legal ANSI C. */
136#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
3932261a 137 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
41472af8 138
ea64ef27 139/* Cap the number of passes we make over the insns propagating alias
ac3d9668 140 information through set chains. 10 is a completely arbitrary choice. */
ea64ef27 141#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 142
9ae8ffe7
JL
143/* reg_base_value[N] gives an address to which register N is related.
144 If all sets after the first add or subtract to the current value
145 or otherwise modify it so it does not point to a different top level
146 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
147 of the first set.
148
149 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
150 expressions represent certain special values: function arguments and
ca7fd9cd 151 the stack, frame, and argument pointers.
b3b5ad95
JL
152
153 The contents of an ADDRESS is not normally used, the mode of the
154 ADDRESS determines whether the ADDRESS is a function argument or some
155 other special value. Pointer equality, not rtx_equal_p, determines whether
156 two ADDRESS expressions refer to the same base address.
157
158 The only use of the contents of an ADDRESS is for determining if the
159 current function performs nonlocal memory memory references for the
160 purposes of marking the function as a constant function. */
2a2c8203 161
c582d54a 162static GTY(()) varray_type reg_base_value;
ac606739 163static rtx *new_reg_base_value;
c582d54a
JH
164
165/* We preserve the copy of old array around to avoid amount of garbage
166 produced. About 8% of garbage produced were attributed to this
167 array. */
1431042e 168static GTY((deletable)) varray_type old_reg_base_value;
d4b60170 169
bf1660a6
JL
170/* Static hunks of RTL used by the aliasing code; these are initialized
171 once per function to avoid unnecessary RTL allocations. */
172static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
173
9ae8ffe7 174#define REG_BASE_VALUE(X) \
c582d54a
JH
175 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
176 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
9ae8ffe7 177
de12be17
JC
178/* Vector of known invariant relationships between registers. Set in
179 loop unrolling. Indexed by register number, if nonzero the value
180 is an expression describing this register in terms of another.
181
182 The length of this array is REG_BASE_VALUE_SIZE.
183
184 Because this array contains only pseudo registers it has no effect
185 after reload. */
bb1acb3e 186static GTY((length("alias_invariant_size"))) rtx *alias_invariant;
133f7a77 187static GTY(()) unsigned int alias_invariant_size;
de12be17 188
c13e8210 189/* Vector indexed by N giving the initial (unchanging) value known for
bb1acb3e
RH
190 pseudo-register N. This array is initialized in init_alias_analysis,
191 and does not change until end_alias_analysis is called. */
192static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
9ae8ffe7
JL
193
194/* Indicates number of valid entries in reg_known_value. */
bb1acb3e 195static GTY(()) unsigned int reg_known_value_size;
9ae8ffe7
JL
196
197/* Vector recording for each reg_known_value whether it is due to a
198 REG_EQUIV note. Future passes (viz., reload) may replace the
199 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
200 dependences that would be introduced if that happens.
201
202 The REG_EQUIV notes created in assign_parms may mention the arg
203 pointer, and there are explicit insns in the RTL that modify the
204 arg pointer. Thus we must ensure that such insns don't get
205 scheduled across each other because that would invalidate the
206 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
207 wrong, but solving the problem in the scheduler will likely give
208 better code, so we do it here. */
bb1acb3e 209static bool *reg_known_equiv_p;
9ae8ffe7 210
2a2c8203
JC
211/* True when scanning insns from the start of the rtl to the
212 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 213static bool copying_arguments;
9ae8ffe7 214
3932261a 215/* The splay-tree used to store the various alias set entries. */
b604074c 216static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
ac3d9668 217\f
3932261a
MM
218/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
219 such an entry, or NULL otherwise. */
220
9ddb66ca 221static inline alias_set_entry
4682ae04 222get_alias_set_entry (HOST_WIDE_INT alias_set)
3932261a 223{
9ddb66ca 224 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
3932261a
MM
225}
226
ac3d9668
RK
227/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
228 the two MEMs cannot alias each other. */
3932261a 229
9ddb66ca 230static inline int
4682ae04 231mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
3932261a 232{
3932261a
MM
233/* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
298e6adc
NS
240 gcc_assert (flag_strict_aliasing
241 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
3932261a 242
1da68f56
RK
243 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
244}
3932261a 245
1da68f56
RK
246/* Insert the NODE into the splay tree given by DATA. Used by
247 record_alias_subset via splay_tree_foreach. */
248
249static int
4682ae04 250insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
251{
252 splay_tree_insert ((splay_tree) data, node->key, node->value);
253
254 return 0;
255}
256
257/* Return 1 if the two specified alias sets may conflict. */
258
259int
4682ae04 260alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
1da68f56
RK
261{
262 alias_set_entry ase;
263
264 /* If have no alias set information for one of the operands, we have
265 to assume it can alias anything. */
266 if (set1 == 0 || set2 == 0
267 /* If the two alias sets are the same, they may alias. */
268 || set1 == set2)
269 return 1;
3932261a 270
3bdf5ad1 271 /* See if the first alias set is a subset of the second. */
1da68f56 272 ase = get_alias_set_entry (set1);
2bf105ab
RK
273 if (ase != 0
274 && (ase->has_zero_child
275 || splay_tree_lookup (ase->children,
1da68f56
RK
276 (splay_tree_key) set2)))
277 return 1;
3932261a
MM
278
279 /* Now do the same, but with the alias sets reversed. */
1da68f56 280 ase = get_alias_set_entry (set2);
2bf105ab
RK
281 if (ase != 0
282 && (ase->has_zero_child
283 || splay_tree_lookup (ase->children,
1da68f56
RK
284 (splay_tree_key) set1)))
285 return 1;
3932261a 286
1da68f56 287 /* The two alias sets are distinct and neither one is the
3932261a 288 child of the other. Therefore, they cannot alias. */
1da68f56 289 return 0;
3932261a 290}
5399d643
JW
291
292/* Return 1 if the two specified alias sets might conflict, or if any subtype
293 of these alias sets might conflict. */
294
295int
296alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
297{
298 if (set1 == 0 || set2 == 0 || set1 == set2)
299 return 1;
300
301 return 0;
302}
303
3bdf5ad1 304\f
1da68f56
RK
305/* Return 1 if any MEM object of type T1 will always conflict (using the
306 dependency routines in this file) with any MEM object of type T2.
307 This is used when allocating temporary storage. If T1 and/or T2 are
308 NULL_TREE, it means we know nothing about the storage. */
309
310int
4682ae04 311objects_must_conflict_p (tree t1, tree t2)
1da68f56 312{
82d610ec
RK
313 HOST_WIDE_INT set1, set2;
314
e8ea2809
RK
315 /* If neither has a type specified, we don't know if they'll conflict
316 because we may be using them to store objects of various types, for
317 example the argument and local variables areas of inlined functions. */
981a4c34 318 if (t1 == 0 && t2 == 0)
e8ea2809
RK
319 return 0;
320
1da68f56
RK
321 /* If they are the same type, they must conflict. */
322 if (t1 == t2
323 /* Likewise if both are volatile. */
324 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
325 return 1;
326
82d610ec
RK
327 set1 = t1 ? get_alias_set (t1) : 0;
328 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 329
82d610ec
RK
330 /* Otherwise they conflict if they have no alias set or the same. We
331 can't simply use alias_sets_conflict_p here, because we must make
332 sure that every subtype of t1 will conflict with every subtype of
333 t2 for which a pair of subobjects of these respective subtypes
334 overlaps on the stack. */
335 return set1 == 0 || set2 == 0 || set1 == set2;
1da68f56
RK
336}
337\f
3bdf5ad1
RK
338/* T is an expression with pointer type. Find the DECL on which this
339 expression is based. (For example, in `a[i]' this would be `a'.)
340 If there is no such DECL, or a unique decl cannot be determined,
f5143c46 341 NULL_TREE is returned. */
3bdf5ad1
RK
342
343static tree
4682ae04 344find_base_decl (tree t)
3bdf5ad1 345{
6615c446 346 tree d0, d1;
3bdf5ad1
RK
347
348 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
349 return 0;
350
351 /* If this is a declaration, return it. */
6615c446 352 if (DECL_P (t))
3bdf5ad1
RK
353 return t;
354
355 /* Handle general expressions. It would be nice to deal with
356 COMPONENT_REFs here. If we could tell that `a' and `b' were the
357 same, then `a->f' and `b->f' are also the same. */
358 switch (TREE_CODE_CLASS (TREE_CODE (t)))
359 {
6615c446 360 case tcc_unary:
3bdf5ad1
RK
361 return find_base_decl (TREE_OPERAND (t, 0));
362
6615c446 363 case tcc_binary:
3bdf5ad1
RK
364 /* Return 0 if found in neither or both are the same. */
365 d0 = find_base_decl (TREE_OPERAND (t, 0));
366 d1 = find_base_decl (TREE_OPERAND (t, 1));
367 if (d0 == d1)
368 return d0;
369 else if (d0 == 0)
370 return d1;
371 else if (d1 == 0)
372 return d0;
373 else
374 return 0;
375
3bdf5ad1
RK
376 default:
377 return 0;
378 }
379}
380
6e24b709
RK
381/* Return 1 if all the nested component references handled by
382 get_inner_reference in T are such that we can address the object in T. */
383
10b76d73 384int
4682ae04 385can_address_p (tree t)
6e24b709
RK
386{
387 /* If we're at the end, it is vacuously addressable. */
388 if (! handled_component_p (t))
389 return 1;
390
391 /* Bitfields are never addressable. */
392 else if (TREE_CODE (t) == BIT_FIELD_REF)
393 return 0;
394
8ac61af7
RK
395 /* Fields are addressable unless they are marked as nonaddressable or
396 the containing type has alias set 0. */
6e24b709
RK
397 else if (TREE_CODE (t) == COMPONENT_REF
398 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
8ac61af7 399 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
400 && can_address_p (TREE_OPERAND (t, 0)))
401 return 1;
402
8ac61af7 403 /* Likewise for arrays. */
b4e3fabb 404 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
6e24b709 405 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
8ac61af7 406 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
6e24b709
RK
407 && can_address_p (TREE_OPERAND (t, 0)))
408 return 1;
409
410 return 0;
411}
412
3bdf5ad1
RK
413/* Return the alias set for T, which may be either a type or an
414 expression. Call language-specific routine for help, if needed. */
415
416HOST_WIDE_INT
4682ae04 417get_alias_set (tree t)
3bdf5ad1
RK
418{
419 HOST_WIDE_INT set;
3bdf5ad1
RK
420
421 /* If we're not doing any alias analysis, just assume everything
422 aliases everything else. Also return 0 if this or its type is
423 an error. */
424 if (! flag_strict_aliasing || t == error_mark_node
425 || (! TYPE_P (t)
426 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
427 return 0;
428
429 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
430 language-specific routine may make mutually-recursive calls to each other
431 to figure out what to do. At each juncture, we see if this is a tree
432 that the language may need to handle specially. First handle things that
738cc472 433 aren't types. */
f824e5c3 434 if (! TYPE_P (t))
3bdf5ad1 435 {
738cc472 436 tree inner = t;
738cc472 437
8ac61af7
RK
438 /* Remove any nops, then give the language a chance to do
439 something with this tree before we look at it. */
440 STRIP_NOPS (t);
ae2bcd98 441 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
442 if (set != -1)
443 return set;
444
738cc472 445 /* First see if the actual object referenced is an INDIRECT_REF from a
6fce44af
RK
446 restrict-qualified pointer or a "void *". */
447 while (handled_component_p (inner))
738cc472 448 {
6fce44af 449 inner = TREE_OPERAND (inner, 0);
8ac61af7 450 STRIP_NOPS (inner);
738cc472
RK
451 }
452
453 /* Check for accesses through restrict-qualified pointers. */
1b096a0a 454 if (INDIRECT_REF_P (inner))
738cc472
RK
455 {
456 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
457
458 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
459 {
e5837c07 460 /* If we haven't computed the actual alias set, do it now. */
738cc472
RK
461 if (DECL_POINTER_ALIAS_SET (decl) == -2)
462 {
4f430fb9
MM
463 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
464
738cc472
RK
465 /* No two restricted pointers can point at the same thing.
466 However, a restricted pointer can point at the same thing
467 as an unrestricted pointer, if that unrestricted pointer
468 is based on the restricted pointer. So, we make the
469 alias set for the restricted pointer a subset of the
470 alias set for the type pointed to by the type of the
471 decl. */
472 HOST_WIDE_INT pointed_to_alias_set
4f430fb9 473 = get_alias_set (pointed_to_type);
738cc472
RK
474
475 if (pointed_to_alias_set == 0)
476 /* It's not legal to make a subset of alias set zero. */
e7844ffb 477 DECL_POINTER_ALIAS_SET (decl) = 0;
4f430fb9
MM
478 else if (AGGREGATE_TYPE_P (pointed_to_type))
479 /* For an aggregate, we must treat the restricted
480 pointer the same as an ordinary pointer. If we
481 were to make the type pointed to by the
482 restricted pointer a subset of the pointed-to
483 type, then we would believe that other subsets
484 of the pointed-to type (such as fields of that
485 type) do not conflict with the type pointed to
471854f8 486 by the restricted pointer. */
4f430fb9
MM
487 DECL_POINTER_ALIAS_SET (decl)
488 = pointed_to_alias_set;
738cc472
RK
489 else
490 {
491 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
ca7fd9cd
KH
492 record_alias_subset (pointed_to_alias_set,
493 DECL_POINTER_ALIAS_SET (decl));
738cc472
RK
494 }
495 }
496
497 /* We use the alias set indicated in the declaration. */
498 return DECL_POINTER_ALIAS_SET (decl);
499 }
500
501 /* If we have an INDIRECT_REF via a void pointer, we don't
22421b79
RK
502 know anything about what that might alias. Likewise if the
503 pointer is marked that way. */
504 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
505 || (TYPE_REF_CAN_ALIAS_ALL
506 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
738cc472
RK
507 return 0;
508 }
509
510 /* Otherwise, pick up the outermost object that we could have a pointer
6fce44af
RK
511 to, processing conversions as above. */
512 while (handled_component_p (t) && ! can_address_p (t))
f47e9b4e 513 {
6fce44af 514 t = TREE_OPERAND (t, 0);
8ac61af7
RK
515 STRIP_NOPS (t);
516 }
f824e5c3 517
738cc472
RK
518 /* If we've already determined the alias set for a decl, just return
519 it. This is necessary for C++ anonymous unions, whose component
520 variables don't look like union members (boo!). */
5755cd38 521 if (TREE_CODE (t) == VAR_DECL
3c0cb5de 522 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
523 return MEM_ALIAS_SET (DECL_RTL (t));
524
f824e5c3
RK
525 /* Now all we care about is the type. */
526 t = TREE_TYPE (t);
3bdf5ad1
RK
527 }
528
3bdf5ad1
RK
529 /* Variant qualifiers don't affect the alias set, so get the main
530 variant. If this is a type with a known alias set, return it. */
531 t = TYPE_MAIN_VARIANT (t);
738cc472 532 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
533 return TYPE_ALIAS_SET (t);
534
535 /* See if the language has special handling for this type. */
ae2bcd98 536 set = lang_hooks.get_alias_set (t);
8ac61af7 537 if (set != -1)
738cc472 538 return set;
2bf105ab 539
3bdf5ad1
RK
540 /* There are no objects of FUNCTION_TYPE, so there's no point in
541 using up an alias set for them. (There are, of course, pointers
542 and references to functions, but that's different.) */
543 else if (TREE_CODE (t) == FUNCTION_TYPE)
544 set = 0;
74d86f4f
RH
545
546 /* Unless the language specifies otherwise, let vector types alias
547 their components. This avoids some nasty type punning issues in
548 normal usage. And indeed lets vectors be treated more like an
549 array slice. */
550 else if (TREE_CODE (t) == VECTOR_TYPE)
551 set = get_alias_set (TREE_TYPE (t));
552
3bdf5ad1
RK
553 else
554 /* Otherwise make a new alias set for this type. */
555 set = new_alias_set ();
556
557 TYPE_ALIAS_SET (t) = set;
2bf105ab
RK
558
559 /* If this is an aggregate type, we must record any component aliasing
560 information. */
1d79fd2c 561 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
562 record_component_aliases (t);
563
3bdf5ad1
RK
564 return set;
565}
566
567/* Return a brand-new alias set. */
568
f103e34d
GK
569static GTY(()) HOST_WIDE_INT last_alias_set;
570
3bdf5ad1 571HOST_WIDE_INT
4682ae04 572new_alias_set (void)
3bdf5ad1 573{
3bdf5ad1 574 if (flag_strict_aliasing)
9ddb66ca 575 {
3416f5c2
JH
576 if (!alias_sets)
577 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
578 else
579 VARRAY_GROW (alias_sets, last_alias_set + 2);
9ddb66ca
JH
580 return ++last_alias_set;
581 }
3bdf5ad1
RK
582 else
583 return 0;
584}
3932261a 585
01d28c3f
JM
586/* Indicate that things in SUBSET can alias things in SUPERSET, but that
587 not everything that aliases SUPERSET also aliases SUBSET. For example,
588 in C, a store to an `int' can alias a load of a structure containing an
589 `int', and vice versa. But it can't alias a load of a 'double' member
590 of the same structure. Here, the structure would be the SUPERSET and
591 `int' the SUBSET. This relationship is also described in the comment at
592 the beginning of this file.
593
594 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
595
596 It is illegal for SUPERSET to be zero; everything is implicitly a
597 subset of alias set zero. */
598
04e2b4d3 599static void
4682ae04 600record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
3932261a
MM
601{
602 alias_set_entry superset_entry;
603 alias_set_entry subset_entry;
604
f47e9b4e
RK
605 /* It is possible in complex type situations for both sets to be the same,
606 in which case we can ignore this operation. */
607 if (superset == subset)
608 return;
609
298e6adc 610 gcc_assert (superset);
3932261a
MM
611
612 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 613 if (superset_entry == 0)
3932261a
MM
614 {
615 /* Create an entry for the SUPERSET, so that we have a place to
616 attach the SUBSET. */
b604074c 617 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
3932261a 618 superset_entry->alias_set = superset;
ca7fd9cd 619 superset_entry->children
b604074c 620 = splay_tree_new_ggc (splay_tree_compare_ints);
570eb5c8 621 superset_entry->has_zero_child = 0;
9ddb66ca 622 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
3932261a
MM
623 }
624
2bf105ab
RK
625 if (subset == 0)
626 superset_entry->has_zero_child = 1;
627 else
628 {
629 subset_entry = get_alias_set_entry (subset);
630 /* If there is an entry for the subset, enter all of its children
631 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 632 if (subset_entry)
2bf105ab
RK
633 {
634 if (subset_entry->has_zero_child)
635 superset_entry->has_zero_child = 1;
d4b60170 636
2bf105ab
RK
637 splay_tree_foreach (subset_entry->children, insert_subset_children,
638 superset_entry->children);
639 }
3932261a 640
2bf105ab 641 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 642 splay_tree_insert (superset_entry->children,
2bf105ab
RK
643 (splay_tree_key) subset, 0);
644 }
3932261a
MM
645}
646
a0c33338
RK
647/* Record that component types of TYPE, if any, are part of that type for
648 aliasing purposes. For record types, we only record component types
649 for fields that are marked addressable. For array types, we always
650 record the component types, so the front end should not call this
651 function if the individual component aren't addressable. */
652
653void
4682ae04 654record_component_aliases (tree type)
a0c33338 655{
3bdf5ad1 656 HOST_WIDE_INT superset = get_alias_set (type);
a0c33338
RK
657 tree field;
658
659 if (superset == 0)
660 return;
661
662 switch (TREE_CODE (type))
663 {
664 case ARRAY_TYPE:
2bf105ab
RK
665 if (! TYPE_NONALIASED_COMPONENT (type))
666 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
a0c33338
RK
667 break;
668
669 case RECORD_TYPE:
670 case UNION_TYPE:
671 case QUAL_UNION_TYPE:
6614fd40 672 /* Recursively record aliases for the base classes, if there are any. */
fa743e8c 673 if (TYPE_BINFO (type))
ca7fd9cd
KH
674 {
675 int i;
fa743e8c
NS
676 tree binfo, base_binfo;
677
678 for (binfo = TYPE_BINFO (type), i = 0;
679 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
680 record_alias_subset (superset,
681 get_alias_set (BINFO_TYPE (base_binfo)));
ca7fd9cd 682 }
a0c33338 683 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
b16a49a1 684 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
2bf105ab 685 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
686 break;
687
1d79fd2c
JW
688 case COMPLEX_TYPE:
689 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
690 break;
691
a0c33338
RK
692 default:
693 break;
694 }
695}
696
3bdf5ad1
RK
697/* Allocate an alias set for use in storing and reading from the varargs
698 spill area. */
699
f103e34d
GK
700static GTY(()) HOST_WIDE_INT varargs_set = -1;
701
3bdf5ad1 702HOST_WIDE_INT
4682ae04 703get_varargs_alias_set (void)
3bdf5ad1 704{
cd3ce9b4
JM
705#if 1
706 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
707 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
708 consistently use the varargs alias set for loads from the varargs
709 area. So don't use it anywhere. */
710 return 0;
711#else
f103e34d
GK
712 if (varargs_set == -1)
713 varargs_set = new_alias_set ();
3bdf5ad1 714
f103e34d 715 return varargs_set;
cd3ce9b4 716#endif
3bdf5ad1
RK
717}
718
719/* Likewise, but used for the fixed portions of the frame, e.g., register
720 save areas. */
721
f103e34d
GK
722static GTY(()) HOST_WIDE_INT frame_set = -1;
723
3bdf5ad1 724HOST_WIDE_INT
4682ae04 725get_frame_alias_set (void)
3bdf5ad1 726{
f103e34d
GK
727 if (frame_set == -1)
728 frame_set = new_alias_set ();
3bdf5ad1 729
f103e34d 730 return frame_set;
3bdf5ad1
RK
731}
732
2a2c8203
JC
733/* Inside SRC, the source of a SET, find a base address. */
734
9ae8ffe7 735static rtx
4682ae04 736find_base_value (rtx src)
9ae8ffe7 737{
713f41f9 738 unsigned int regno;
0aacc8ed 739
9ae8ffe7
JL
740 switch (GET_CODE (src))
741 {
742 case SYMBOL_REF:
743 case LABEL_REF:
744 return src;
745
746 case REG:
fb6754f0 747 regno = REGNO (src);
d4b60170 748 /* At the start of a function, argument registers have known base
2a2c8203
JC
749 values which may be lost later. Returning an ADDRESS
750 expression here allows optimization based on argument values
751 even when the argument registers are used for other purposes. */
713f41f9
BS
752 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
753 return new_reg_base_value[regno];
73774bc7 754
eaf407a5 755 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
756 for non-fixed hard regs since it can result in a circular
757 dependency chain for registers which have values at function entry.
eaf407a5
JL
758
759 The test above is not sufficient because the scheduler may move
760 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 761 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
c582d54a 762 && regno < VARRAY_SIZE (reg_base_value))
83bbd9b6
RH
763 {
764 /* If we're inside init_alias_analysis, use new_reg_base_value
765 to reduce the number of relaxation iterations. */
1afdf91c
RH
766 if (new_reg_base_value && new_reg_base_value[regno]
767 && REG_N_SETS (regno) == 1)
83bbd9b6
RH
768 return new_reg_base_value[regno];
769
c582d54a
JH
770 if (VARRAY_RTX (reg_base_value, regno))
771 return VARRAY_RTX (reg_base_value, regno);
83bbd9b6 772 }
73774bc7 773
e3f049a8 774 return 0;
9ae8ffe7
JL
775
776 case MEM:
777 /* Check for an argument passed in memory. Only record in the
778 copying-arguments block; it is too hard to track changes
779 otherwise. */
780 if (copying_arguments
781 && (XEXP (src, 0) == arg_pointer_rtx
782 || (GET_CODE (XEXP (src, 0)) == PLUS
783 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
38a448ca 784 return gen_rtx_ADDRESS (VOIDmode, src);
9ae8ffe7
JL
785 return 0;
786
787 case CONST:
788 src = XEXP (src, 0);
789 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
790 break;
d4b60170 791
ec5c56db 792 /* ... fall through ... */
2a2c8203 793
9ae8ffe7
JL
794 case PLUS:
795 case MINUS:
2a2c8203 796 {
ec907dd8
JL
797 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
798
0134bf2d
DE
799 /* If either operand is a REG that is a known pointer, then it
800 is the base. */
801 if (REG_P (src_0) && REG_POINTER (src_0))
802 return find_base_value (src_0);
803 if (REG_P (src_1) && REG_POINTER (src_1))
804 return find_base_value (src_1);
805
ec907dd8
JL
806 /* If either operand is a REG, then see if we already have
807 a known value for it. */
0134bf2d 808 if (REG_P (src_0))
ec907dd8
JL
809 {
810 temp = find_base_value (src_0);
d4b60170 811 if (temp != 0)
ec907dd8
JL
812 src_0 = temp;
813 }
814
0134bf2d 815 if (REG_P (src_1))
ec907dd8
JL
816 {
817 temp = find_base_value (src_1);
d4b60170 818 if (temp!= 0)
ec907dd8
JL
819 src_1 = temp;
820 }
2a2c8203 821
0134bf2d
DE
822 /* If either base is named object or a special address
823 (like an argument or stack reference), then use it for the
824 base term. */
825 if (src_0 != 0
826 && (GET_CODE (src_0) == SYMBOL_REF
827 || GET_CODE (src_0) == LABEL_REF
828 || (GET_CODE (src_0) == ADDRESS
829 && GET_MODE (src_0) != VOIDmode)))
830 return src_0;
831
832 if (src_1 != 0
833 && (GET_CODE (src_1) == SYMBOL_REF
834 || GET_CODE (src_1) == LABEL_REF
835 || (GET_CODE (src_1) == ADDRESS
836 && GET_MODE (src_1) != VOIDmode)))
837 return src_1;
838
d4b60170 839 /* Guess which operand is the base address:
ec907dd8
JL
840 If either operand is a symbol, then it is the base. If
841 either operand is a CONST_INT, then the other is the base. */
d4b60170 842 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
2a2c8203 843 return find_base_value (src_0);
d4b60170 844 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
ec907dd8
JL
845 return find_base_value (src_1);
846
9ae8ffe7 847 return 0;
2a2c8203
JC
848 }
849
850 case LO_SUM:
851 /* The standard form is (lo_sum reg sym) so look only at the
852 second operand. */
853 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
854
855 case AND:
856 /* If the second operand is constant set the base
ec5c56db 857 address to the first operand. */
2a2c8203
JC
858 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
859 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
860 return 0;
861
61f0131c
R
862 case TRUNCATE:
863 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
864 break;
865 /* Fall through. */
9ae8ffe7 866 case HIGH:
d288e53d
DE
867 case PRE_INC:
868 case PRE_DEC:
869 case POST_INC:
870 case POST_DEC:
871 case PRE_MODIFY:
872 case POST_MODIFY:
2a2c8203 873 return find_base_value (XEXP (src, 0));
1d300e19 874
0aacc8ed
RK
875 case ZERO_EXTEND:
876 case SIGN_EXTEND: /* used for NT/Alpha pointers */
877 {
878 rtx temp = find_base_value (XEXP (src, 0));
879
5ae6cd0d 880 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 881 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
882
883 return temp;
884 }
885
1d300e19
KG
886 default:
887 break;
9ae8ffe7
JL
888 }
889
890 return 0;
891}
892
893/* Called from init_alias_analysis indirectly through note_stores. */
894
d4b60170 895/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7
JL
896 register N has been set in this function. */
897static char *reg_seen;
898
13309a5f
JC
899/* Addresses which are known not to alias anything else are identified
900 by a unique integer. */
ec907dd8
JL
901static int unique_id;
902
2a2c8203 903static void
4682ae04 904record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 905{
b3694847 906 unsigned regno;
9ae8ffe7 907 rtx src;
c28b4e40 908 int n;
9ae8ffe7 909
f8cfc6aa 910 if (!REG_P (dest))
9ae8ffe7
JL
911 return;
912
fb6754f0 913 regno = REGNO (dest);
9ae8ffe7 914
298e6adc 915 gcc_assert (regno < VARRAY_SIZE (reg_base_value));
ac606739 916
c28b4e40
JW
917 /* If this spans multiple hard registers, then we must indicate that every
918 register has an unusable value. */
919 if (regno < FIRST_PSEUDO_REGISTER)
66fd46b6 920 n = hard_regno_nregs[regno][GET_MODE (dest)];
c28b4e40
JW
921 else
922 n = 1;
923 if (n != 1)
924 {
925 while (--n >= 0)
926 {
927 reg_seen[regno + n] = 1;
928 new_reg_base_value[regno + n] = 0;
929 }
930 return;
931 }
932
9ae8ffe7
JL
933 if (set)
934 {
935 /* A CLOBBER wipes out any old value but does not prevent a previously
936 unset register from acquiring a base address (i.e. reg_seen is not
937 set). */
938 if (GET_CODE (set) == CLOBBER)
939 {
ec907dd8 940 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
941 return;
942 }
943 src = SET_SRC (set);
944 }
945 else
946 {
9ae8ffe7
JL
947 if (reg_seen[regno])
948 {
ec907dd8 949 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
950 return;
951 }
952 reg_seen[regno] = 1;
38a448ca
RH
953 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
954 GEN_INT (unique_id++));
9ae8ffe7
JL
955 return;
956 }
957
5da6f168
RS
958 /* If this is not the first set of REGNO, see whether the new value
959 is related to the old one. There are two cases of interest:
960
961 (1) The register might be assigned an entirely new value
962 that has the same base term as the original set.
963
964 (2) The set might be a simple self-modification that
965 cannot change REGNO's base value.
966
967 If neither case holds, reject the original base value as invalid.
968 Note that the following situation is not detected:
969
970 extern int x, y; int *p = &x; p += (&y-&x);
971
9ae8ffe7
JL
972 ANSI C does not allow computing the difference of addresses
973 of distinct top level objects. */
5da6f168
RS
974 if (new_reg_base_value[regno] != 0
975 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
976 switch (GET_CODE (src))
977 {
2a2c8203 978 case LO_SUM:
9ae8ffe7
JL
979 case MINUS:
980 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 981 new_reg_base_value[regno] = 0;
9ae8ffe7 982 break;
61f0131c
R
983 case PLUS:
984 /* If the value we add in the PLUS is also a valid base value,
985 this might be the actual base value, and the original value
986 an index. */
987 {
988 rtx other = NULL_RTX;
989
990 if (XEXP (src, 0) == dest)
991 other = XEXP (src, 1);
992 else if (XEXP (src, 1) == dest)
993 other = XEXP (src, 0);
994
995 if (! other || find_base_value (other))
996 new_reg_base_value[regno] = 0;
997 break;
998 }
9ae8ffe7
JL
999 case AND:
1000 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
ec907dd8 1001 new_reg_base_value[regno] = 0;
9ae8ffe7 1002 break;
9ae8ffe7 1003 default:
ec907dd8 1004 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1005 break;
1006 }
1007 /* If this is the first set of a register, record the value. */
1008 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
ec907dd8
JL
1009 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1010 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7
JL
1011
1012 reg_seen[regno] = 1;
1013}
1014
ac3d9668
RK
1015/* Called from loop optimization when a new pseudo-register is
1016 created. It indicates that REGNO is being set to VAL. f INVARIANT
1017 is true then this value also describes an invariant relationship
1018 which can be used to deduce that two registers with unknown values
1019 are different. */
d4b60170 1020
9ae8ffe7 1021void
4682ae04 1022record_base_value (unsigned int regno, rtx val, int invariant)
9ae8ffe7 1023{
c582d54a 1024 if (invariant && alias_invariant && regno < alias_invariant_size)
de12be17
JC
1025 alias_invariant[regno] = val;
1026
c582d54a
JH
1027 if (regno >= VARRAY_SIZE (reg_base_value))
1028 VARRAY_GROW (reg_base_value, max_reg_num ());
1029
f8cfc6aa 1030 if (REG_P (val))
9ae8ffe7 1031 {
c582d54a
JH
1032 VARRAY_RTX (reg_base_value, regno)
1033 = REG_BASE_VALUE (val);
9ae8ffe7
JL
1034 return;
1035 }
c582d54a
JH
1036 VARRAY_RTX (reg_base_value, regno)
1037 = find_base_value (val);
9ae8ffe7
JL
1038}
1039
43fe47ca
JW
1040/* Clear alias info for a register. This is used if an RTL transformation
1041 changes the value of a register. This is used in flow by AUTO_INC_DEC
1042 optimizations. We don't need to clear reg_base_value, since flow only
1043 changes the offset. */
1044
1045void
4682ae04 1046clear_reg_alias_info (rtx reg)
43fe47ca 1047{
4e1a4144
JW
1048 unsigned int regno = REGNO (reg);
1049
bb1acb3e
RH
1050 if (regno >= FIRST_PSEUDO_REGISTER)
1051 {
1052 regno -= FIRST_PSEUDO_REGISTER;
1053 if (regno < reg_known_value_size)
1054 {
1055 reg_known_value[regno] = reg;
1056 reg_known_equiv_p[regno] = false;
1057 }
1058 }
1059}
1060
1061/* If a value is known for REGNO, return it. */
1062
1063rtx
1064get_reg_known_value (unsigned int regno)
1065{
1066 if (regno >= FIRST_PSEUDO_REGISTER)
1067 {
1068 regno -= FIRST_PSEUDO_REGISTER;
1069 if (regno < reg_known_value_size)
1070 return reg_known_value[regno];
1071 }
1072 return NULL;
43fe47ca
JW
1073}
1074
bb1acb3e
RH
1075/* Set it. */
1076
1077static void
1078set_reg_known_value (unsigned int regno, rtx val)
1079{
1080 if (regno >= FIRST_PSEUDO_REGISTER)
1081 {
1082 regno -= FIRST_PSEUDO_REGISTER;
1083 if (regno < reg_known_value_size)
1084 reg_known_value[regno] = val;
1085 }
1086}
1087
1088/* Similarly for reg_known_equiv_p. */
1089
1090bool
1091get_reg_known_equiv_p (unsigned int regno)
1092{
1093 if (regno >= FIRST_PSEUDO_REGISTER)
1094 {
1095 regno -= FIRST_PSEUDO_REGISTER;
1096 if (regno < reg_known_value_size)
1097 return reg_known_equiv_p[regno];
1098 }
1099 return false;
1100}
1101
1102static void
1103set_reg_known_equiv_p (unsigned int regno, bool val)
1104{
1105 if (regno >= FIRST_PSEUDO_REGISTER)
1106 {
1107 regno -= FIRST_PSEUDO_REGISTER;
1108 if (regno < reg_known_value_size)
1109 reg_known_equiv_p[regno] = val;
1110 }
1111}
1112
1113
db048faf
MM
1114/* Returns a canonical version of X, from the point of view alias
1115 analysis. (For example, if X is a MEM whose address is a register,
1116 and the register has a known value (say a SYMBOL_REF), then a MEM
1117 whose address is the SYMBOL_REF is returned.) */
1118
1119rtx
4682ae04 1120canon_rtx (rtx x)
9ae8ffe7
JL
1121{
1122 /* Recursively look for equivalences. */
f8cfc6aa 1123 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1124 {
1125 rtx t = get_reg_known_value (REGNO (x));
1126 if (t == x)
1127 return x;
1128 if (t)
1129 return canon_rtx (t);
1130 }
1131
1132 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1133 {
1134 rtx x0 = canon_rtx (XEXP (x, 0));
1135 rtx x1 = canon_rtx (XEXP (x, 1));
1136
1137 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1138 {
9ae8ffe7 1139 if (GET_CODE (x0) == CONST_INT)
ed8908e7 1140 return plus_constant (x1, INTVAL (x0));
9ae8ffe7 1141 else if (GET_CODE (x1) == CONST_INT)
ed8908e7 1142 return plus_constant (x0, INTVAL (x1));
38a448ca 1143 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1144 }
1145 }
d4b60170 1146
9ae8ffe7
JL
1147 /* This gives us much better alias analysis when called from
1148 the loop optimizer. Note we want to leave the original
1149 MEM alone, but need to return the canonicalized MEM with
1150 all the flags with their original values. */
3c0cb5de 1151 else if (MEM_P (x))
f1ec5147 1152 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1153
9ae8ffe7
JL
1154 return x;
1155}
1156
1157/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1158 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1159
1160 We use the data in reg_known_value above to see if two registers with
1161 different numbers are, in fact, equivalent. */
1162
1163static int
4682ae04 1164rtx_equal_for_memref_p (rtx x, rtx y)
9ae8ffe7 1165{
b3694847
SS
1166 int i;
1167 int j;
1168 enum rtx_code code;
1169 const char *fmt;
9ae8ffe7
JL
1170
1171 if (x == 0 && y == 0)
1172 return 1;
1173 if (x == 0 || y == 0)
1174 return 0;
d4b60170 1175
9ae8ffe7
JL
1176 if (x == y)
1177 return 1;
1178
1179 code = GET_CODE (x);
1180 /* Rtx's of different codes cannot be equal. */
1181 if (code != GET_CODE (y))
1182 return 0;
1183
1184 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1185 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1186
1187 if (GET_MODE (x) != GET_MODE (y))
1188 return 0;
1189
db048faf
MM
1190 /* Some RTL can be compared without a recursive examination. */
1191 switch (code)
1192 {
1193 case REG:
1194 return REGNO (x) == REGNO (y);
1195
1196 case LABEL_REF:
1197 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1198
db048faf
MM
1199 case SYMBOL_REF:
1200 return XSTR (x, 0) == XSTR (y, 0);
1201
40e02b4a 1202 case VALUE:
db048faf
MM
1203 case CONST_INT:
1204 case CONST_DOUBLE:
1205 /* There's no need to compare the contents of CONST_DOUBLEs or
1206 CONST_INTs because pointer equality is a good enough
1207 comparison for these nodes. */
1208 return 0;
1209
db048faf
MM
1210 default:
1211 break;
1212 }
9ae8ffe7 1213
45183e03
JH
1214 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1215 if (code == PLUS)
9ae8ffe7
JL
1216 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1217 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1218 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1219 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1220 /* For commutative operations, the RTX match if the operand match in any
1221 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1222 if (COMMUTATIVE_P (x))
45183e03
JH
1223 {
1224 rtx xop0 = canon_rtx (XEXP (x, 0));
1225 rtx yop0 = canon_rtx (XEXP (y, 0));
1226 rtx yop1 = canon_rtx (XEXP (y, 1));
1227
1228 return ((rtx_equal_for_memref_p (xop0, yop0)
1229 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1230 || (rtx_equal_for_memref_p (xop0, yop1)
1231 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1232 }
ec8e098d 1233 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1234 {
1235 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1236 canon_rtx (XEXP (y, 0)))
45183e03
JH
1237 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1238 canon_rtx (XEXP (y, 1))));
1239 }
ec8e098d 1240 else if (UNARY_P (x))
45183e03 1241 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1242 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1243
1244 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1245 fail to match, return 0 for the whole things.
1246
1247 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1248
1249 fmt = GET_RTX_FORMAT (code);
1250 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1251 {
1252 switch (fmt[i])
1253 {
9ae8ffe7
JL
1254 case 'i':
1255 if (XINT (x, i) != XINT (y, i))
1256 return 0;
1257 break;
1258
9ae8ffe7
JL
1259 case 'E':
1260 /* Two vectors must have the same length. */
1261 if (XVECLEN (x, i) != XVECLEN (y, i))
1262 return 0;
1263
1264 /* And the corresponding elements must match. */
1265 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1266 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1267 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1268 return 0;
1269 break;
1270
1271 case 'e':
45183e03
JH
1272 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1273 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1274 return 0;
1275 break;
1276
3237ac18
AH
1277 /* This can happen for asm operands. */
1278 case 's':
1279 if (strcmp (XSTR (x, i), XSTR (y, i)))
1280 return 0;
1281 break;
1282
aee21ba9
JL
1283 /* This can happen for an asm which clobbers memory. */
1284 case '0':
1285 break;
1286
9ae8ffe7
JL
1287 /* It is believed that rtx's at this level will never
1288 contain anything but integers and other rtx's,
1289 except for within LABEL_REFs and SYMBOL_REFs. */
1290 default:
298e6adc 1291 gcc_unreachable ();
9ae8ffe7
JL
1292 }
1293 }
1294 return 1;
1295}
1296
1297/* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1298 X and return it, or return 0 if none found. */
1299
1300static rtx
4682ae04 1301find_symbolic_term (rtx x)
9ae8ffe7 1302{
b3694847
SS
1303 int i;
1304 enum rtx_code code;
1305 const char *fmt;
9ae8ffe7
JL
1306
1307 code = GET_CODE (x);
1308 if (code == SYMBOL_REF || code == LABEL_REF)
1309 return x;
ec8e098d 1310 if (OBJECT_P (x))
9ae8ffe7
JL
1311 return 0;
1312
1313 fmt = GET_RTX_FORMAT (code);
1314 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1315 {
1316 rtx t;
1317
1318 if (fmt[i] == 'e')
1319 {
1320 t = find_symbolic_term (XEXP (x, i));
1321 if (t != 0)
1322 return t;
1323 }
1324 else if (fmt[i] == 'E')
1325 break;
1326 }
1327 return 0;
1328}
1329
94f24ddc 1330rtx
4682ae04 1331find_base_term (rtx x)
9ae8ffe7 1332{
eab5c70a
BS
1333 cselib_val *val;
1334 struct elt_loc_list *l;
1335
b949ea8b
JW
1336#if defined (FIND_BASE_TERM)
1337 /* Try machine-dependent ways to find the base term. */
1338 x = FIND_BASE_TERM (x);
1339#endif
1340
9ae8ffe7
JL
1341 switch (GET_CODE (x))
1342 {
1343 case REG:
1344 return REG_BASE_VALUE (x);
1345
d288e53d
DE
1346 case TRUNCATE:
1347 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1348 return 0;
d288e53d 1349 /* Fall through. */
9ae8ffe7 1350 case HIGH:
6d849a2a
JL
1351 case PRE_INC:
1352 case PRE_DEC:
1353 case POST_INC:
1354 case POST_DEC:
d288e53d
DE
1355 case PRE_MODIFY:
1356 case POST_MODIFY:
6d849a2a
JL
1357 return find_base_term (XEXP (x, 0));
1358
1abade85
RK
1359 case ZERO_EXTEND:
1360 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1361 {
1362 rtx temp = find_base_term (XEXP (x, 0));
1363
5ae6cd0d 1364 if (temp != 0 && CONSTANT_P (temp))
1abade85 1365 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1366
1367 return temp;
1368 }
1369
eab5c70a
BS
1370 case VALUE:
1371 val = CSELIB_VAL_PTR (x);
40e02b4a
JH
1372 if (!val)
1373 return 0;
eab5c70a
BS
1374 for (l = val->locs; l; l = l->next)
1375 if ((x = find_base_term (l->loc)) != 0)
1376 return x;
1377 return 0;
1378
9ae8ffe7
JL
1379 case CONST:
1380 x = XEXP (x, 0);
1381 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1382 return 0;
938d968e 1383 /* Fall through. */
9ae8ffe7
JL
1384 case LO_SUM:
1385 case PLUS:
1386 case MINUS:
1387 {
3c567fae
JL
1388 rtx tmp1 = XEXP (x, 0);
1389 rtx tmp2 = XEXP (x, 1);
1390
f5143c46 1391 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1392 the two operands represents the real base address. Otherwise this
1393 routine may return the index register instead of the base register.
1394
1395 That may cause us to believe no aliasing was possible, when in
1396 fact aliasing is possible.
1397
1398 We use a few simple tests to guess the base register. Additional
1399 tests can certainly be added. For example, if one of the operands
1400 is a shift or multiply, then it must be the index register and the
1401 other operand is the base register. */
ca7fd9cd 1402
b949ea8b
JW
1403 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1404 return find_base_term (tmp2);
1405
3c567fae
JL
1406 /* If either operand is known to be a pointer, then use it
1407 to determine the base term. */
3502dc9c 1408 if (REG_P (tmp1) && REG_POINTER (tmp1))
3c567fae
JL
1409 return find_base_term (tmp1);
1410
3502dc9c 1411 if (REG_P (tmp2) && REG_POINTER (tmp2))
3c567fae
JL
1412 return find_base_term (tmp2);
1413
1414 /* Neither operand was known to be a pointer. Go ahead and find the
1415 base term for both operands. */
1416 tmp1 = find_base_term (tmp1);
1417 tmp2 = find_base_term (tmp2);
1418
1419 /* If either base term is named object or a special address
1420 (like an argument or stack reference), then use it for the
1421 base term. */
d4b60170 1422 if (tmp1 != 0
3c567fae
JL
1423 && (GET_CODE (tmp1) == SYMBOL_REF
1424 || GET_CODE (tmp1) == LABEL_REF
1425 || (GET_CODE (tmp1) == ADDRESS
1426 && GET_MODE (tmp1) != VOIDmode)))
1427 return tmp1;
1428
d4b60170 1429 if (tmp2 != 0
3c567fae
JL
1430 && (GET_CODE (tmp2) == SYMBOL_REF
1431 || GET_CODE (tmp2) == LABEL_REF
1432 || (GET_CODE (tmp2) == ADDRESS
1433 && GET_MODE (tmp2) != VOIDmode)))
1434 return tmp2;
1435
1436 /* We could not determine which of the two operands was the
1437 base register and which was the index. So we can determine
1438 nothing from the base alias check. */
1439 return 0;
9ae8ffe7
JL
1440 }
1441
1442 case AND:
d288e53d
DE
1443 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1444 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1445 return 0;
1446
1447 case SYMBOL_REF:
1448 case LABEL_REF:
1449 return x;
1450
1451 default:
1452 return 0;
1453 }
1454}
1455
1456/* Return 0 if the addresses X and Y are known to point to different
1457 objects, 1 if they might be pointers to the same object. */
1458
1459static int
4682ae04
AJ
1460base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1461 enum machine_mode y_mode)
9ae8ffe7
JL
1462{
1463 rtx x_base = find_base_term (x);
1464 rtx y_base = find_base_term (y);
1465
1c72c7f6
JC
1466 /* If the address itself has no known base see if a known equivalent
1467 value has one. If either address still has no known base, nothing
1468 is known about aliasing. */
1469 if (x_base == 0)
1470 {
1471 rtx x_c;
d4b60170 1472
1c72c7f6
JC
1473 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1474 return 1;
d4b60170 1475
1c72c7f6
JC
1476 x_base = find_base_term (x_c);
1477 if (x_base == 0)
1478 return 1;
1479 }
9ae8ffe7 1480
1c72c7f6
JC
1481 if (y_base == 0)
1482 {
1483 rtx y_c;
1484 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1485 return 1;
d4b60170 1486
1c72c7f6
JC
1487 y_base = find_base_term (y_c);
1488 if (y_base == 0)
1489 return 1;
1490 }
1491
1492 /* If the base addresses are equal nothing is known about aliasing. */
1493 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1494 return 1;
1495
ca7fd9cd 1496 /* The base addresses of the read and write are different expressions.
56ee9281
RH
1497 If they are both symbols and they are not accessed via AND, there is
1498 no conflict. We can bring knowledge of object alignment into play
1499 here. For example, on alpha, "char a, b;" can alias one another,
1500 though "char a; long b;" cannot. */
9ae8ffe7 1501 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
c02f035f 1502 {
56ee9281
RH
1503 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1504 return 1;
1505 if (GET_CODE (x) == AND
1506 && (GET_CODE (XEXP (x, 1)) != CONST_INT
8fa2140d 1507 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
56ee9281
RH
1508 return 1;
1509 if (GET_CODE (y) == AND
1510 && (GET_CODE (XEXP (y, 1)) != CONST_INT
8fa2140d 1511 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
56ee9281 1512 return 1;
b2972551
JL
1513 /* Differing symbols never alias. */
1514 return 0;
c02f035f 1515 }
9ae8ffe7
JL
1516
1517 /* If one address is a stack reference there can be no alias:
1518 stack references using different base registers do not alias,
1519 a stack reference can not alias a parameter, and a stack reference
1520 can not alias a global. */
1521 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1522 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1523 return 0;
1524
1525 if (! flag_argument_noalias)
1526 return 1;
1527
1528 if (flag_argument_noalias > 1)
1529 return 0;
1530
ec5c56db 1531 /* Weak noalias assertion (arguments are distinct, but may match globals). */
9ae8ffe7
JL
1532 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1533}
1534
eab5c70a
BS
1535/* Convert the address X into something we can use. This is done by returning
1536 it unchanged unless it is a value; in the latter case we call cselib to get
1537 a more useful rtx. */
3bdf5ad1 1538
a13d4ebf 1539rtx
4682ae04 1540get_addr (rtx x)
eab5c70a
BS
1541{
1542 cselib_val *v;
1543 struct elt_loc_list *l;
1544
1545 if (GET_CODE (x) != VALUE)
1546 return x;
1547 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
1548 if (v)
1549 {
1550 for (l = v->locs; l; l = l->next)
1551 if (CONSTANT_P (l->loc))
1552 return l->loc;
1553 for (l = v->locs; l; l = l->next)
3c0cb5de 1554 if (!REG_P (l->loc) && !MEM_P (l->loc))
40e02b4a
JH
1555 return l->loc;
1556 if (v->locs)
1557 return v->locs->loc;
1558 }
eab5c70a
BS
1559 return x;
1560}
1561
39cec1ac
MH
1562/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1563 where SIZE is the size in bytes of the memory reference. If ADDR
1564 is not modified by the memory reference then ADDR is returned. */
1565
04e2b4d3 1566static rtx
4682ae04 1567addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1568{
1569 int offset = 0;
ca7fd9cd 1570
39cec1ac
MH
1571 switch (GET_CODE (addr))
1572 {
1573 case PRE_INC:
1574 offset = (n_refs + 1) * size;
1575 break;
1576 case PRE_DEC:
1577 offset = -(n_refs + 1) * size;
1578 break;
1579 case POST_INC:
1580 offset = n_refs * size;
1581 break;
1582 case POST_DEC:
1583 offset = -n_refs * size;
1584 break;
1585
1586 default:
1587 return addr;
1588 }
ca7fd9cd 1589
39cec1ac 1590 if (offset)
45183e03
JH
1591 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1592 GEN_INT (offset));
39cec1ac
MH
1593 else
1594 addr = XEXP (addr, 0);
45183e03 1595 addr = canon_rtx (addr);
39cec1ac
MH
1596
1597 return addr;
1598}
1599
9ae8ffe7
JL
1600/* Return nonzero if X and Y (memory addresses) could reference the
1601 same location in memory. C is an offset accumulator. When
1602 C is nonzero, we are testing aliases between X and Y + C.
1603 XSIZE is the size in bytes of the X reference,
1604 similarly YSIZE is the size in bytes for Y.
45183e03 1605 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1606
1607 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1608 referenced (the reference was BLKmode), so make the most pessimistic
1609 assumptions.
1610
c02f035f
RH
1611 If XSIZE or YSIZE is negative, we may access memory outside the object
1612 being referenced as a side effect. This can happen when using AND to
1613 align memory references, as is done on the Alpha.
1614
9ae8ffe7 1615 Nice to notice that varying addresses cannot conflict with fp if no
0211b6ab 1616 local variables had their addresses taken, but that's too hard now. */
9ae8ffe7 1617
9ae8ffe7 1618static int
4682ae04 1619memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1620{
eab5c70a
BS
1621 if (GET_CODE (x) == VALUE)
1622 x = get_addr (x);
1623 if (GET_CODE (y) == VALUE)
1624 y = get_addr (y);
9ae8ffe7
JL
1625 if (GET_CODE (x) == HIGH)
1626 x = XEXP (x, 0);
1627 else if (GET_CODE (x) == LO_SUM)
1628 x = XEXP (x, 1);
1629 else
45183e03 1630 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
1631 if (GET_CODE (y) == HIGH)
1632 y = XEXP (y, 0);
1633 else if (GET_CODE (y) == LO_SUM)
1634 y = XEXP (y, 1);
1635 else
45183e03 1636 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
1637
1638 if (rtx_equal_for_memref_p (x, y))
1639 {
c02f035f 1640 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
1641 return 1;
1642 if (c >= 0 && xsize > c)
1643 return 1;
1644 if (c < 0 && ysize+c > 0)
1645 return 1;
1646 return 0;
1647 }
1648
6e73e666
JC
1649 /* This code used to check for conflicts involving stack references and
1650 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
1651
1652 if (GET_CODE (x) == PLUS)
1653 {
1654 /* The fact that X is canonicalized means that this
1655 PLUS rtx is canonicalized. */
1656 rtx x0 = XEXP (x, 0);
1657 rtx x1 = XEXP (x, 1);
1658
1659 if (GET_CODE (y) == PLUS)
1660 {
1661 /* The fact that Y is canonicalized means that this
1662 PLUS rtx is canonicalized. */
1663 rtx y0 = XEXP (y, 0);
1664 rtx y1 = XEXP (y, 1);
1665
1666 if (rtx_equal_for_memref_p (x1, y1))
1667 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1668 if (rtx_equal_for_memref_p (x0, y0))
1669 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1670 if (GET_CODE (x1) == CONST_INT)
63be02db
JM
1671 {
1672 if (GET_CODE (y1) == CONST_INT)
1673 return memrefs_conflict_p (xsize, x0, ysize, y0,
1674 c - INTVAL (x1) + INTVAL (y1));
1675 else
1676 return memrefs_conflict_p (xsize, x0, ysize, y,
1677 c - INTVAL (x1));
1678 }
9ae8ffe7
JL
1679 else if (GET_CODE (y1) == CONST_INT)
1680 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1681
6e73e666 1682 return 1;
9ae8ffe7
JL
1683 }
1684 else if (GET_CODE (x1) == CONST_INT)
1685 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1686 }
1687 else if (GET_CODE (y) == PLUS)
1688 {
1689 /* The fact that Y is canonicalized means that this
1690 PLUS rtx is canonicalized. */
1691 rtx y0 = XEXP (y, 0);
1692 rtx y1 = XEXP (y, 1);
1693
1694 if (GET_CODE (y1) == CONST_INT)
1695 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1696 else
1697 return 1;
1698 }
1699
1700 if (GET_CODE (x) == GET_CODE (y))
1701 switch (GET_CODE (x))
1702 {
1703 case MULT:
1704 {
1705 /* Handle cases where we expect the second operands to be the
1706 same, and check only whether the first operand would conflict
1707 or not. */
1708 rtx x0, y0;
1709 rtx x1 = canon_rtx (XEXP (x, 1));
1710 rtx y1 = canon_rtx (XEXP (y, 1));
1711 if (! rtx_equal_for_memref_p (x1, y1))
1712 return 1;
1713 x0 = canon_rtx (XEXP (x, 0));
1714 y0 = canon_rtx (XEXP (y, 0));
1715 if (rtx_equal_for_memref_p (x0, y0))
1716 return (xsize == 0 || ysize == 0
1717 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1718
1719 /* Can't properly adjust our sizes. */
1720 if (GET_CODE (x1) != CONST_INT)
1721 return 1;
1722 xsize /= INTVAL (x1);
1723 ysize /= INTVAL (x1);
1724 c /= INTVAL (x1);
1725 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1726 }
1d300e19 1727
de12be17
JC
1728 case REG:
1729 /* Are these registers known not to be equal? */
1730 if (alias_invariant)
1731 {
e51712db 1732 unsigned int r_x = REGNO (x), r_y = REGNO (y);
de12be17
JC
1733 rtx i_x, i_y; /* invariant relationships of X and Y */
1734
c582d54a
JH
1735 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1736 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
de12be17
JC
1737
1738 if (i_x == 0 && i_y == 0)
1739 break;
1740
1741 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1742 ysize, i_y ? i_y : y, c))
1743 return 0;
1744 }
1745 break;
1746
1d300e19
KG
1747 default:
1748 break;
9ae8ffe7
JL
1749 }
1750
1751 /* Treat an access through an AND (e.g. a subword access on an Alpha)
ca7fd9cd 1752 as an access with indeterminate size. Assume that references
56ee9281
RH
1753 besides AND are aligned, so if the size of the other reference is
1754 at least as large as the alignment, assume no other overlap. */
9ae8ffe7 1755 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
56ee9281 1756 {
02e3377d 1757 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
56ee9281 1758 xsize = -1;
45183e03 1759 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
56ee9281 1760 }
9ae8ffe7 1761 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
c02f035f 1762 {
56ee9281 1763 /* ??? If we are indexing far enough into the array/structure, we
ca7fd9cd 1764 may yet be able to determine that we can not overlap. But we
c02f035f 1765 also need to that we are far enough from the end not to overlap
56ee9281 1766 a following reference, so we do nothing with that for now. */
02e3377d 1767 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
56ee9281 1768 ysize = -1;
45183e03 1769 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
c02f035f 1770 }
9ae8ffe7
JL
1771
1772 if (CONSTANT_P (x))
1773 {
1774 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1775 {
1776 c += (INTVAL (y) - INTVAL (x));
c02f035f 1777 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
1778 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1779 }
1780
1781 if (GET_CODE (x) == CONST)
1782 {
1783 if (GET_CODE (y) == CONST)
1784 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1785 ysize, canon_rtx (XEXP (y, 0)), c);
1786 else
1787 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1788 ysize, y, c);
1789 }
1790 if (GET_CODE (y) == CONST)
1791 return memrefs_conflict_p (xsize, x, ysize,
1792 canon_rtx (XEXP (y, 0)), c);
1793
1794 if (CONSTANT_P (y))
b949ea8b 1795 return (xsize <= 0 || ysize <= 0
c02f035f 1796 || (rtx_equal_for_memref_p (x, y)
b949ea8b 1797 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7
JL
1798
1799 return 1;
1800 }
1801 return 1;
1802}
1803
1804/* Functions to compute memory dependencies.
1805
1806 Since we process the insns in execution order, we can build tables
1807 to keep track of what registers are fixed (and not aliased), what registers
1808 are varying in known ways, and what registers are varying in unknown
1809 ways.
1810
1811 If both memory references are volatile, then there must always be a
1812 dependence between the two references, since their order can not be
1813 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 1814 though.
9ae8ffe7 1815
dc1618bc
RK
1816 A MEM_IN_STRUCT reference at a non-AND varying address can never
1817 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1818 also must allow AND addresses, because they may generate accesses
1819 outside the object being referenced. This is used to generate
1820 aligned addresses from unaligned addresses, for instance, the alpha
1821 storeqi_unaligned pattern. */
9ae8ffe7
JL
1822
1823/* Read dependence: X is read after read in MEM takes place. There can
1824 only be a dependence here if both reads are volatile. */
1825
1826int
4682ae04 1827read_dependence (rtx mem, rtx x)
9ae8ffe7
JL
1828{
1829 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1830}
1831
c6df88cb
MM
1832/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1833 MEM2 is a reference to a structure at a varying address, or returns
1834 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1835 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1836 to decide whether or not an address may vary; it should return
eab5c70a
BS
1837 nonzero whenever variation is possible.
1838 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
ca7fd9cd 1839
2c72b78f 1840static rtx
4682ae04
AJ
1841fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1842 rtx mem2_addr,
1843 int (*varies_p) (rtx, int))
ca7fd9cd 1844{
3e0abe15
GK
1845 if (! flag_strict_aliasing)
1846 return NULL_RTX;
1847
ca7fd9cd 1848 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
e38fe8e0 1849 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
c6df88cb
MM
1850 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1851 varying address. */
1852 return mem1;
1853
ca7fd9cd 1854 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
e38fe8e0 1855 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
c6df88cb
MM
1856 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1857 varying address. */
1858 return mem2;
1859
1860 return NULL_RTX;
1861}
1862
1863/* Returns nonzero if something about the mode or address format MEM1
1864 indicates that it might well alias *anything*. */
1865
2c72b78f 1866static int
4682ae04 1867aliases_everything_p (rtx mem)
c6df88cb 1868{
c6df88cb
MM
1869 if (GET_CODE (XEXP (mem, 0)) == AND)
1870 /* If the address is an AND, its very hard to know at what it is
1871 actually pointing. */
1872 return 1;
ca7fd9cd 1873
c6df88cb
MM
1874 return 0;
1875}
1876
998d7deb
RH
1877/* Return true if we can determine that the fields referenced cannot
1878 overlap for any pair of objects. */
1879
1880static bool
4682ae04 1881nonoverlapping_component_refs_p (tree x, tree y)
998d7deb
RH
1882{
1883 tree fieldx, fieldy, typex, typey, orig_y;
1884
1885 do
1886 {
1887 /* The comparison has to be done at a common type, since we don't
d6a7951f 1888 know how the inheritance hierarchy works. */
998d7deb
RH
1889 orig_y = y;
1890 do
1891 {
1892 fieldx = TREE_OPERAND (x, 1);
1893 typex = DECL_FIELD_CONTEXT (fieldx);
1894
1895 y = orig_y;
1896 do
1897 {
1898 fieldy = TREE_OPERAND (y, 1);
1899 typey = DECL_FIELD_CONTEXT (fieldy);
1900
1901 if (typex == typey)
1902 goto found;
1903
1904 y = TREE_OPERAND (y, 0);
1905 }
1906 while (y && TREE_CODE (y) == COMPONENT_REF);
1907
1908 x = TREE_OPERAND (x, 0);
1909 }
1910 while (x && TREE_CODE (x) == COMPONENT_REF);
1911
1912 /* Never found a common type. */
1913 return false;
1914
1915 found:
1916 /* If we're left with accessing different fields of a structure,
1917 then no overlap. */
1918 if (TREE_CODE (typex) == RECORD_TYPE
1919 && fieldx != fieldy)
1920 return true;
1921
1922 /* The comparison on the current field failed. If we're accessing
1923 a very nested structure, look at the next outer level. */
1924 x = TREE_OPERAND (x, 0);
1925 y = TREE_OPERAND (y, 0);
1926 }
1927 while (x && y
1928 && TREE_CODE (x) == COMPONENT_REF
1929 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 1930
998d7deb
RH
1931 return false;
1932}
1933
1934/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1935
1936static tree
4682ae04 1937decl_for_component_ref (tree x)
998d7deb
RH
1938{
1939 do
1940 {
1941 x = TREE_OPERAND (x, 0);
1942 }
1943 while (x && TREE_CODE (x) == COMPONENT_REF);
1944
1945 return x && DECL_P (x) ? x : NULL_TREE;
1946}
1947
1948/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1949 offset of the field reference. */
1950
1951static rtx
4682ae04 1952adjust_offset_for_component_ref (tree x, rtx offset)
998d7deb
RH
1953{
1954 HOST_WIDE_INT ioffset;
1955
1956 if (! offset)
1957 return NULL_RTX;
1958
1959 ioffset = INTVAL (offset);
ca7fd9cd 1960 do
998d7deb 1961 {
44de5aeb 1962 tree offset = component_ref_field_offset (x);
998d7deb
RH
1963 tree field = TREE_OPERAND (x, 1);
1964
44de5aeb 1965 if (! host_integerp (offset, 1))
998d7deb 1966 return NULL_RTX;
44de5aeb 1967 ioffset += (tree_low_cst (offset, 1)
998d7deb
RH
1968 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1969 / BITS_PER_UNIT));
1970
1971 x = TREE_OPERAND (x, 0);
1972 }
1973 while (x && TREE_CODE (x) == COMPONENT_REF);
1974
1975 return GEN_INT (ioffset);
1976}
1977
95bd1dd7 1978/* Return nonzero if we can determine the exprs corresponding to memrefs
a4311dfe
RK
1979 X and Y and they do not overlap. */
1980
1981static int
4682ae04 1982nonoverlapping_memrefs_p (rtx x, rtx y)
a4311dfe 1983{
998d7deb 1984 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
1985 rtx rtlx, rtly;
1986 rtx basex, basey;
998d7deb 1987 rtx moffsetx, moffsety;
a4311dfe
RK
1988 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1989
998d7deb
RH
1990 /* Unless both have exprs, we can't tell anything. */
1991 if (exprx == 0 || expry == 0)
1992 return 0;
1993
1994 /* If both are field references, we may be able to determine something. */
1995 if (TREE_CODE (exprx) == COMPONENT_REF
1996 && TREE_CODE (expry) == COMPONENT_REF
1997 && nonoverlapping_component_refs_p (exprx, expry))
1998 return 1;
1999
2000 /* If the field reference test failed, look at the DECLs involved. */
2001 moffsetx = MEM_OFFSET (x);
2002 if (TREE_CODE (exprx) == COMPONENT_REF)
2003 {
2004 tree t = decl_for_component_ref (exprx);
2005 if (! t)
2006 return 0;
2007 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2008 exprx = t;
2009 }
1b096a0a 2010 else if (INDIRECT_REF_P (exprx))
c67a1cf6
RH
2011 {
2012 exprx = TREE_OPERAND (exprx, 0);
2013 if (flag_argument_noalias < 2
2014 || TREE_CODE (exprx) != PARM_DECL)
2015 return 0;
2016 }
2017
998d7deb
RH
2018 moffsety = MEM_OFFSET (y);
2019 if (TREE_CODE (expry) == COMPONENT_REF)
2020 {
2021 tree t = decl_for_component_ref (expry);
2022 if (! t)
2023 return 0;
2024 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2025 expry = t;
2026 }
1b096a0a 2027 else if (INDIRECT_REF_P (expry))
c67a1cf6
RH
2028 {
2029 expry = TREE_OPERAND (expry, 0);
2030 if (flag_argument_noalias < 2
2031 || TREE_CODE (expry) != PARM_DECL)
2032 return 0;
2033 }
998d7deb
RH
2034
2035 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2036 return 0;
2037
998d7deb
RH
2038 rtlx = DECL_RTL (exprx);
2039 rtly = DECL_RTL (expry);
a4311dfe 2040
1edcd60b
RK
2041 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2042 can't overlap unless they are the same because we never reuse that part
2043 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2044 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2045 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2046 return 1;
2047
2048 /* Get the base and offsets of both decls. If either is a register, we
2049 know both are and are the same, so use that as the base. The only
2050 we can avoid overlap is if we can deduce that they are nonoverlapping
2051 pieces of that decl, which is very rare. */
3c0cb5de 2052 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
a4311dfe
RK
2053 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2054 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2055
3c0cb5de 2056 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
a4311dfe
RK
2057 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2058 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2059
d746694a 2060 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2061 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2062 stack frame. Otherwise a different base means we can't tell if they
2063 overlap or not. */
2064 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2065 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2066 || (CONSTANT_P (basex) && REG_P (basey)
2067 && REGNO_PTR_FRAME_P (REGNO (basey)))
2068 || (CONSTANT_P (basey) && REG_P (basex)
2069 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2070
3c0cb5de 2071 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
a4311dfe
RK
2072 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2073 : -1);
3c0cb5de 2074 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
a4311dfe
RK
2075 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2076 -1);
2077
0af5bc3e
RK
2078 /* If we have an offset for either memref, it can update the values computed
2079 above. */
998d7deb
RH
2080 if (moffsetx)
2081 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2082 if (moffsety)
2083 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
a4311dfe 2084
0af5bc3e 2085 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2086 We can't do this if the offset isn't known because we must view this
0af5bc3e 2087 memref as being anywhere inside the DECL's MEM. */
998d7deb 2088 if (MEM_SIZE (x) && moffsetx)
a4311dfe 2089 sizex = INTVAL (MEM_SIZE (x));
998d7deb 2090 if (MEM_SIZE (y) && moffsety)
a4311dfe
RK
2091 sizey = INTVAL (MEM_SIZE (y));
2092
2093 /* Put the values of the memref with the lower offset in X's values. */
2094 if (offsetx > offsety)
2095 {
2096 tem = offsetx, offsetx = offsety, offsety = tem;
2097 tem = sizex, sizex = sizey, sizey = tem;
2098 }
2099
2100 /* If we don't know the size of the lower-offset value, we can't tell
2101 if they conflict. Otherwise, we do the test. */
a6f7c915 2102 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2103}
2104
9ae8ffe7
JL
2105/* True dependence: X is read after store in MEM takes place. */
2106
2107int
4682ae04
AJ
2108true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2109 int (*varies) (rtx, int))
9ae8ffe7 2110{
b3694847 2111 rtx x_addr, mem_addr;
49982682 2112 rtx base;
9ae8ffe7
JL
2113
2114 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2115 return 1;
2116
c4484b8f
RH
2117 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2118 This is used in epilogue deallocation functions. */
2119 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2120 return 1;
2121 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2122 return 1;
2123
41472af8
MM
2124 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2125 return 0;
2126
389fdba0
RH
2127 /* Read-only memory is by definition never modified, and therefore can't
2128 conflict with anything. We don't expect to find read-only set on MEM,
2129 but stupid user tricks can produce them, so don't abort. */
2130 if (MEM_READONLY_P (x))
9ae8ffe7
JL
2131 return 0;
2132
a4311dfe
RK
2133 if (nonoverlapping_memrefs_p (mem, x))
2134 return 0;
2135
56ee9281
RH
2136 if (mem_mode == VOIDmode)
2137 mem_mode = GET_MODE (mem);
2138
eab5c70a
BS
2139 x_addr = get_addr (XEXP (x, 0));
2140 mem_addr = get_addr (XEXP (mem, 0));
2141
55efb413
JW
2142 base = find_base_term (x_addr);
2143 if (base && (GET_CODE (base) == LABEL_REF
2144 || (GET_CODE (base) == SYMBOL_REF
2145 && CONSTANT_POOL_ADDRESS_P (base))))
2146 return 0;
2147
eab5c70a 2148 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2149 return 0;
2150
eab5c70a
BS
2151 x_addr = canon_rtx (x_addr);
2152 mem_addr = canon_rtx (mem_addr);
6e73e666 2153
0211b6ab
JW
2154 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2155 SIZE_FOR_MODE (x), x_addr, 0))
2156 return 0;
2157
c6df88cb 2158 if (aliases_everything_p (x))
0211b6ab
JW
2159 return 1;
2160
f5143c46 2161 /* We cannot use aliases_everything_p to test MEM, since we must look
c6df88cb
MM
2162 at MEM_MODE, rather than GET_MODE (MEM). */
2163 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
a13d4ebf
AM
2164 return 1;
2165
2166 /* In true_dependence we also allow BLKmode to alias anything. Why
2167 don't we do this in anti_dependence and output_dependence? */
2168 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2169 return 1;
2170
2171 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2172 varies);
2173}
2174
2175/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2176 Variant of true_dependence which assumes MEM has already been
2177 canonicalized (hence we no longer do that here).
2178 The mem_addr argument has been added, since true_dependence computed
a13d4ebf
AM
2179 this value prior to canonicalizing. */
2180
2181int
4682ae04
AJ
2182canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2183 rtx x, int (*varies) (rtx, int))
a13d4ebf 2184{
b3694847 2185 rtx x_addr;
a13d4ebf
AM
2186
2187 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2188 return 1;
2189
0fe854a7
RH
2190 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2191 This is used in epilogue deallocation functions. */
2192 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2193 return 1;
2194 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2195 return 1;
2196
a13d4ebf
AM
2197 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2198 return 0;
2199
389fdba0
RH
2200 /* Read-only memory is by definition never modified, and therefore can't
2201 conflict with anything. We don't expect to find read-only set on MEM,
2202 but stupid user tricks can produce them, so don't abort. */
2203 if (MEM_READONLY_P (x))
a13d4ebf
AM
2204 return 0;
2205
a4311dfe
RK
2206 if (nonoverlapping_memrefs_p (x, mem))
2207 return 0;
2208
a13d4ebf
AM
2209 x_addr = get_addr (XEXP (x, 0));
2210
2211 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2212 return 0;
2213
2214 x_addr = canon_rtx (x_addr);
2215 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2216 SIZE_FOR_MODE (x), x_addr, 0))
2217 return 0;
2218
2219 if (aliases_everything_p (x))
2220 return 1;
2221
f5143c46 2222 /* We cannot use aliases_everything_p to test MEM, since we must look
a13d4ebf
AM
2223 at MEM_MODE, rather than GET_MODE (MEM). */
2224 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
c6df88cb 2225 return 1;
0211b6ab 2226
c6df88cb
MM
2227 /* In true_dependence we also allow BLKmode to alias anything. Why
2228 don't we do this in anti_dependence and output_dependence? */
2229 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2230 return 1;
0211b6ab 2231
eab5c70a
BS
2232 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2233 varies);
9ae8ffe7
JL
2234}
2235
da7d8304 2236/* Returns nonzero if a write to X might alias a previous read from
389fdba0 2237 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2238
2c72b78f 2239static int
389fdba0 2240write_dependence_p (rtx mem, rtx x, int writep)
9ae8ffe7 2241{
6e73e666 2242 rtx x_addr, mem_addr;
c6df88cb 2243 rtx fixed_scalar;
49982682 2244 rtx base;
6e73e666 2245
9ae8ffe7
JL
2246 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2247 return 1;
2248
c4484b8f
RH
2249 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2250 This is used in epilogue deallocation functions. */
2251 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2252 return 1;
2253 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2254 return 1;
2255
eab5c70a
BS
2256 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2257 return 0;
2258
389fdba0
RH
2259 /* A read from read-only memory can't conflict with read-write memory. */
2260 if (!writep && MEM_READONLY_P (mem))
2261 return 0;
55efb413 2262
a4311dfe
RK
2263 if (nonoverlapping_memrefs_p (x, mem))
2264 return 0;
2265
55efb413
JW
2266 x_addr = get_addr (XEXP (x, 0));
2267 mem_addr = get_addr (XEXP (mem, 0));
2268
49982682
JW
2269 if (! writep)
2270 {
55efb413 2271 base = find_base_term (mem_addr);
49982682
JW
2272 if (base && (GET_CODE (base) == LABEL_REF
2273 || (GET_CODE (base) == SYMBOL_REF
2274 && CONSTANT_POOL_ADDRESS_P (base))))
2275 return 0;
2276 }
2277
eab5c70a
BS
2278 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2279 GET_MODE (mem)))
41472af8
MM
2280 return 0;
2281
eab5c70a
BS
2282 x_addr = canon_rtx (x_addr);
2283 mem_addr = canon_rtx (mem_addr);
6e73e666 2284
c6df88cb
MM
2285 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2286 SIZE_FOR_MODE (x), x_addr, 0))
2287 return 0;
2288
ca7fd9cd 2289 fixed_scalar
eab5c70a
BS
2290 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2291 rtx_addr_varies_p);
2292
c6df88cb
MM
2293 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2294 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2295}
2296
2297/* Anti dependence: X is written after read in MEM takes place. */
2298
2299int
4682ae04 2300anti_dependence (rtx mem, rtx x)
c6df88cb 2301{
389fdba0 2302 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2303}
2304
2305/* Output dependence: X is written after store in MEM takes place. */
2306
2307int
4682ae04 2308output_dependence (rtx mem, rtx x)
9ae8ffe7 2309{
389fdba0 2310 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2311}
c14b9960
JW
2312\f
2313/* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2314 something which is not local to the function and is not constant. */
7790df19
JW
2315
2316static int
4682ae04 2317nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
7790df19 2318{
c14b9960 2319 rtx x = *loc;
7790df19 2320 rtx base;
7790df19
JW
2321 int regno;
2322
c14b9960
JW
2323 if (! x)
2324 return 0;
7790df19 2325
c14b9960 2326 switch (GET_CODE (x))
7790df19
JW
2327 {
2328 case SUBREG:
f8cfc6aa 2329 if (REG_P (SUBREG_REG (x)))
7790df19
JW
2330 {
2331 /* Global registers are not local. */
2332 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
ddef6bc7 2333 && global_regs[subreg_regno (x)])
7790df19
JW
2334 return 1;
2335 return 0;
2336 }
2337 break;
2338
2339 case REG:
2340 regno = REGNO (x);
2341 /* Global registers are not local. */
2342 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2343 return 1;
2344 return 0;
2345
2346 case SCRATCH:
2347 case PC:
2348 case CC0:
2349 case CONST_INT:
2350 case CONST_DOUBLE:
69ef87e2 2351 case CONST_VECTOR:
7790df19
JW
2352 case CONST:
2353 case LABEL_REF:
2354 return 0;
2355
2356 case SYMBOL_REF:
2357 /* Constants in the function's constants pool are constant. */
2358 if (CONSTANT_POOL_ADDRESS_P (x))
2359 return 0;
2360 return 1;
2361
2362 case CALL:
bf6d9fd7 2363 /* Non-constant calls and recursion are not local. */
7790df19
JW
2364 return 1;
2365
2366 case MEM:
2367 /* Be overly conservative and consider any volatile memory
2368 reference as not local. */
2369 if (MEM_VOLATILE_P (x))
2370 return 1;
2371 base = find_base_term (XEXP (x, 0));
2372 if (base)
2373 {
b3b5ad95
JL
2374 /* A Pmode ADDRESS could be a reference via the structure value
2375 address or static chain. Such memory references are nonlocal.
2376
2377 Thus, we have to examine the contents of the ADDRESS to find
2378 out if this is a local reference or not. */
2379 if (GET_CODE (base) == ADDRESS
2380 && GET_MODE (base) == Pmode
2381 && (XEXP (base, 0) == stack_pointer_rtx
2382 || XEXP (base, 0) == arg_pointer_rtx
2383#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2384 || XEXP (base, 0) == hard_frame_pointer_rtx
2385#endif
2386 || XEXP (base, 0) == frame_pointer_rtx))
7790df19
JW
2387 return 0;
2388 /* Constants in the function's constant pool are constant. */
2389 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2390 return 0;
2391 }
2392 return 1;
2393
bf6d9fd7 2394 case UNSPEC_VOLATILE:
7790df19 2395 case ASM_INPUT:
7790df19
JW
2396 return 1;
2397
bf6d9fd7
JW
2398 case ASM_OPERANDS:
2399 if (MEM_VOLATILE_P (x))
2400 return 1;
2401
5d3cc252 2402 /* Fall through. */
bf6d9fd7 2403
7790df19
JW
2404 default:
2405 break;
2406 }
2407
c14b9960
JW
2408 return 0;
2409}
2410
da7d8304 2411/* Returns nonzero if X might mention something which is not
c14b9960 2412 local to the function and is not constant. */
7790df19 2413
c14b9960 2414static int
4682ae04 2415nonlocal_mentioned_p (rtx x)
c14b9960 2416{
c14b9960
JW
2417 if (INSN_P (x))
2418 {
4b4bf941 2419 if (CALL_P (x))
c14b9960
JW
2420 {
2421 if (! CONST_OR_PURE_CALL_P (x))
2422 return 1;
2423 x = CALL_INSN_FUNCTION_USAGE (x);
2424 if (x == 0)
2425 return 0;
ca7fd9cd 2426 }
c14b9960 2427 else
ca7fd9cd 2428 x = PATTERN (x);
c14b9960
JW
2429 }
2430
2431 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2432}
2433
2434/* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2435 something which is not local to the function and is not constant. */
2436
2437static int
4682ae04 2438nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2439{
2440 rtx x = *loc;
2441
2442 if (! x)
2443 return 0;
2444
2445 switch (GET_CODE (x))
2446 {
2447 case MEM:
2448 case REG:
2449 case SYMBOL_REF:
2450 case SUBREG:
2451 return nonlocal_mentioned_p (x);
2452
2453 case CALL:
2454 /* Non-constant calls and recursion are not local. */
2455 return 1;
2456
2457 case SET:
2458 if (nonlocal_mentioned_p (SET_SRC (x)))
2459 return 1;
2460
3c0cb5de 2461 if (MEM_P (SET_DEST (x)))
c14b9960
JW
2462 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2463
2464 /* If the destination is anything other than a CC0, PC,
2465 MEM, REG, or a SUBREG of a REG that occupies all of
2466 the REG, then X references nonlocal memory if it is
2467 mentioned in the destination. */
2468 if (GET_CODE (SET_DEST (x)) != CC0
2469 && GET_CODE (SET_DEST (x)) != PC
f8cfc6aa 2470 && !REG_P (SET_DEST (x))
c14b9960 2471 && ! (GET_CODE (SET_DEST (x)) == SUBREG
f8cfc6aa 2472 && REG_P (SUBREG_REG (SET_DEST (x)))
c14b9960
JW
2473 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2474 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2475 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2476 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2477 return nonlocal_mentioned_p (SET_DEST (x));
2478 return 0;
2479
2480 case CLOBBER:
3c0cb5de 2481 if (MEM_P (XEXP (x, 0)))
c14b9960
JW
2482 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2483 return 0;
2484
2485 case USE:
2486 return nonlocal_mentioned_p (XEXP (x, 0));
2487
2488 case ASM_INPUT:
2489 case UNSPEC_VOLATILE:
2490 return 1;
2491
2492 case ASM_OPERANDS:
2493 if (MEM_VOLATILE_P (x))
2494 return 1;
2495
5d3cc252 2496 /* Fall through. */
c14b9960
JW
2497
2498 default:
2499 break;
2500 }
2501
2502 return 0;
2503}
2504
da7d8304 2505/* Returns nonzero if X might reference something which is not
c14b9960
JW
2506 local to the function and is not constant. */
2507
2508static int
4682ae04 2509nonlocal_referenced_p (rtx x)
c14b9960 2510{
c14b9960
JW
2511 if (INSN_P (x))
2512 {
4b4bf941 2513 if (CALL_P (x))
c14b9960
JW
2514 {
2515 if (! CONST_OR_PURE_CALL_P (x))
2516 return 1;
2517 x = CALL_INSN_FUNCTION_USAGE (x);
2518 if (x == 0)
2519 return 0;
ca7fd9cd 2520 }
c14b9960 2521 else
ca7fd9cd 2522 x = PATTERN (x);
c14b9960
JW
2523 }
2524
2525 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2526}
2527
2528/* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2529 something which is not local to the function and is not constant. */
2530
2531static int
4682ae04 2532nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
c14b9960
JW
2533{
2534 rtx x = *loc;
2535
2536 if (! x)
2537 return 0;
2538
2539 switch (GET_CODE (x))
2540 {
2541 case CALL:
2542 /* Non-constant calls and recursion are not local. */
2543 return 1;
2544
2545 case PRE_INC:
2546 case PRE_DEC:
2547 case POST_INC:
2548 case POST_DEC:
2549 case PRE_MODIFY:
2550 case POST_MODIFY:
2551 return nonlocal_mentioned_p (XEXP (x, 0));
2552
2553 case SET:
2554 if (nonlocal_mentioned_p (SET_DEST (x)))
2555 return 1;
2556 return nonlocal_set_p (SET_SRC (x));
2557
2558 case CLOBBER:
2559 return nonlocal_mentioned_p (XEXP (x, 0));
2560
2561 case USE:
2562 return 0;
2563
2564 case ASM_INPUT:
2565 case UNSPEC_VOLATILE:
2566 return 1;
2567
2568 case ASM_OPERANDS:
2569 if (MEM_VOLATILE_P (x))
2570 return 1;
2571
5d3cc252 2572 /* Fall through. */
c14b9960
JW
2573
2574 default:
2575 break;
2576 }
7790df19
JW
2577
2578 return 0;
2579}
2580
da7d8304 2581/* Returns nonzero if X might set something which is not
c14b9960
JW
2582 local to the function and is not constant. */
2583
2584static int
4682ae04 2585nonlocal_set_p (rtx x)
c14b9960 2586{
c14b9960
JW
2587 if (INSN_P (x))
2588 {
4b4bf941 2589 if (CALL_P (x))
c14b9960
JW
2590 {
2591 if (! CONST_OR_PURE_CALL_P (x))
2592 return 1;
2593 x = CALL_INSN_FUNCTION_USAGE (x);
2594 if (x == 0)
2595 return 0;
ca7fd9cd 2596 }
c14b9960 2597 else
ca7fd9cd 2598 x = PATTERN (x);
c14b9960
JW
2599 }
2600
2601 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2602}
2603
c57ddcf1 2604/* Mark the function if it is pure or constant. */
7790df19
JW
2605
2606void
4682ae04 2607mark_constant_function (void)
7790df19
JW
2608{
2609 rtx insn;
c14b9960 2610 int nonlocal_memory_referenced;
7790df19 2611
ab780373 2612 if (TREE_READONLY (current_function_decl)
bf6d9fd7 2613 || DECL_IS_PURE (current_function_decl)
7790df19 2614 || TREE_THIS_VOLATILE (current_function_decl)
ab780373 2615 || current_function_has_nonlocal_goto
5fd9b178 2616 || !targetm.binds_local_p (current_function_decl))
7790df19
JW
2617 return;
2618
e004f2f7 2619 /* A loop might not return which counts as a side effect. */
0ecf09f9 2620 if (mark_dfs_back_edges ())
e004f2f7
JW
2621 return;
2622
c14b9960 2623 nonlocal_memory_referenced = 0;
bf6d9fd7
JW
2624
2625 init_alias_analysis ();
2626
c14b9960 2627 /* Determine if this is a constant or pure function. */
7790df19
JW
2628
2629 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
c14b9960
JW
2630 {
2631 if (! INSN_P (insn))
2632 continue;
bf6d9fd7 2633
c14b9960
JW
2634 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2635 || volatile_refs_p (PATTERN (insn)))
ca7fd9cd 2636 break;
7790df19 2637
c14b9960
JW
2638 if (! nonlocal_memory_referenced)
2639 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2640 }
ca7fd9cd 2641
c14b9960 2642 end_alias_analysis ();
ca7fd9cd 2643
7790df19 2644 /* Mark the function. */
ca7fd9cd 2645
c14b9960
JW
2646 if (insn)
2647 ;
2648 else if (nonlocal_memory_referenced)
c57ddcf1
RS
2649 {
2650 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2651 DECL_IS_PURE (current_function_decl) = 1;
2652 }
c14b9960 2653 else
c57ddcf1
RS
2654 {
2655 cgraph_rtl_info (current_function_decl)->const_function = 1;
2656 TREE_READONLY (current_function_decl) = 1;
2657 }
7790df19 2658}
c14b9960 2659\f
6e73e666 2660
6e73e666 2661void
4682ae04 2662init_alias_once (void)
6e73e666 2663{
b3694847 2664 int i;
6e73e666 2665
6e73e666
JC
2666 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2667 /* Check whether this register can hold an incoming pointer
2668 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2669 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2670 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2671 && HARD_REGNO_MODE_OK (i, Pmode))
bf1660a6
JL
2672 static_reg_base_value[i]
2673 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2674
bf1660a6
JL
2675 static_reg_base_value[STACK_POINTER_REGNUM]
2676 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2677 static_reg_base_value[ARG_POINTER_REGNUM]
2678 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2679 static_reg_base_value[FRAME_POINTER_REGNUM]
2680 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2681#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2682 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2683 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2684#endif
2685}
2686
7b52eede
JH
2687/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2688 to be memory reference. */
2689static bool memory_modified;
2690static void
4682ae04 2691memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 2692{
3c0cb5de 2693 if (MEM_P (x))
7b52eede
JH
2694 {
2695 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2696 memory_modified = true;
2697 }
2698}
2699
2700
2701/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 2702 (i.e. address can be modified). */
7b52eede 2703bool
4682ae04 2704memory_modified_in_insn_p (rtx mem, rtx insn)
7b52eede
JH
2705{
2706 if (!INSN_P (insn))
2707 return false;
2708 memory_modified = false;
2709 note_stores (PATTERN (insn), memory_modified_1, mem);
2710 return memory_modified;
2711}
2712
c13e8210
MM
2713/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2714 array. */
2715
9ae8ffe7 2716void
4682ae04 2717init_alias_analysis (void)
9ae8ffe7 2718{
c582d54a 2719 unsigned int maxreg = max_reg_num ();
ea64ef27 2720 int changed, pass;
b3694847
SS
2721 int i;
2722 unsigned int ui;
2723 rtx insn;
9ae8ffe7 2724
0d446150
JH
2725 timevar_push (TV_ALIAS_ANALYSIS);
2726
bb1acb3e
RH
2727 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2728 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2729 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
9ae8ffe7 2730
6e73e666
JC
2731 /* Overallocate reg_base_value to allow some growth during loop
2732 optimization. Loop unrolling can create a large number of
2733 registers. */
c582d54a
JH
2734 if (old_reg_base_value)
2735 {
2736 reg_base_value = old_reg_base_value;
2737 /* If varray gets large zeroing cost may get important. */
2738 if (VARRAY_SIZE (reg_base_value) > 256
2739 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2740 VARRAY_GROW (reg_base_value, maxreg);
2741 VARRAY_CLEAR (reg_base_value);
2742 if (VARRAY_SIZE (reg_base_value) < maxreg)
2743 VARRAY_GROW (reg_base_value, maxreg);
2744 }
2745 else
2746 {
2747 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2748 }
ac606739 2749
c582d54a
JH
2750 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2751 reg_seen = xmalloc (maxreg);
ec907dd8
JL
2752
2753 /* The basic idea is that each pass through this loop will use the
2754 "constant" information from the previous pass to propagate alias
2755 information through another level of assignments.
2756
2757 This could get expensive if the assignment chains are long. Maybe
2758 we should throttle the number of iterations, possibly based on
6e73e666 2759 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2760
2761 We could propagate more information in the first pass by making use
2762 of REG_N_SETS to determine immediately that the alias information
ea64ef27
JL
2763 for a pseudo is "constant".
2764
2765 A program with an uninitialized variable can cause an infinite loop
2766 here. Instead of doing a full dataflow analysis to detect such problems
2767 we just cap the number of iterations for the loop.
2768
2769 The state of the arrays for the set chain in question does not matter
2770 since the program has undefined behavior. */
6e73e666 2771
ea64ef27 2772 pass = 0;
6e73e666 2773 do
ec907dd8
JL
2774 {
2775 /* Assume nothing will change this iteration of the loop. */
2776 changed = 0;
2777
ec907dd8
JL
2778 /* We want to assign the same IDs each iteration of this loop, so
2779 start counting from zero each iteration of the loop. */
2780 unique_id = 0;
2781
f5143c46 2782 /* We're at the start of the function each iteration through the
ec907dd8 2783 loop, so we're copying arguments. */
83bbd9b6 2784 copying_arguments = true;
9ae8ffe7 2785
6e73e666 2786 /* Wipe the potential alias information clean for this pass. */
c582d54a 2787 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 2788
6e73e666 2789 /* Wipe the reg_seen array clean. */
c582d54a 2790 memset (reg_seen, 0, maxreg);
9ae8ffe7 2791
6e73e666
JC
2792 /* Mark all hard registers which may contain an address.
2793 The stack, frame and argument pointers may contain an address.
2794 An argument register which can hold a Pmode value may contain
2795 an address even if it is not in BASE_REGS.
8072f69c 2796
6e73e666
JC
2797 The address expression is VOIDmode for an argument and
2798 Pmode for other registers. */
2799
7f243674
JL
2800 memcpy (new_reg_base_value, static_reg_base_value,
2801 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2802
ec907dd8
JL
2803 /* Walk the insns adding values to the new_reg_base_value array. */
2804 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9ae8ffe7 2805 {
2c3c49de 2806 if (INSN_P (insn))
ec907dd8 2807 {
6e73e666 2808 rtx note, set;
efc9bd41
RK
2809
2810#if defined (HAVE_prologue) || defined (HAVE_epilogue)
f5143c46 2811 /* The prologue/epilogue insns are not threaded onto the
657959ca
JL
2812 insn chain until after reload has completed. Thus,
2813 there is no sense wasting time checking if INSN is in
2814 the prologue/epilogue until after reload has completed. */
2815 if (reload_completed
2816 && prologue_epilogue_contains (insn))
efc9bd41
RK
2817 continue;
2818#endif
2819
ec907dd8
JL
2820 /* If this insn has a noalias note, process it, Otherwise,
2821 scan for sets. A simple set will have no side effects
ec5c56db 2822 which could change the base value of any other register. */
6e73e666 2823
ec907dd8 2824 if (GET_CODE (PATTERN (insn)) == SET
efc9bd41
RK
2825 && REG_NOTES (insn) != 0
2826 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
84832317 2827 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
ec907dd8 2828 else
84832317 2829 note_stores (PATTERN (insn), record_set, NULL);
6e73e666
JC
2830
2831 set = single_set (insn);
2832
2833 if (set != 0
f8cfc6aa 2834 && REG_P (SET_DEST (set))
fb6754f0 2835 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
6e73e666 2836 {
fb6754f0 2837 unsigned int regno = REGNO (SET_DEST (set));
713f41f9 2838 rtx src = SET_SRC (set);
bb1acb3e 2839 rtx t;
713f41f9
BS
2840
2841 if (REG_NOTES (insn) != 0
2842 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2843 && REG_N_SETS (regno) == 1)
2844 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2845 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
bb2cf916 2846 && ! rtx_varies_p (XEXP (note, 0), 1)
bb1acb3e
RH
2847 && ! reg_overlap_mentioned_p (SET_DEST (set),
2848 XEXP (note, 0)))
713f41f9 2849 {
bb1acb3e
RH
2850 set_reg_known_value (regno, XEXP (note, 0));
2851 set_reg_known_equiv_p (regno,
2852 REG_NOTE_KIND (note) == REG_EQUIV);
713f41f9
BS
2853 }
2854 else if (REG_N_SETS (regno) == 1
2855 && GET_CODE (src) == PLUS
f8cfc6aa 2856 && REG_P (XEXP (src, 0))
bb1acb3e 2857 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
713f41f9
BS
2858 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2859 {
bb1acb3e
RH
2860 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2861 set_reg_known_value (regno, t);
2862 set_reg_known_equiv_p (regno, 0);
713f41f9
BS
2863 }
2864 else if (REG_N_SETS (regno) == 1
2865 && ! rtx_varies_p (src, 1))
2866 {
bb1acb3e
RH
2867 set_reg_known_value (regno, src);
2868 set_reg_known_equiv_p (regno, 0);
713f41f9 2869 }
6e73e666 2870 }
ec907dd8 2871 }
4b4bf941 2872 else if (NOTE_P (insn)
ec907dd8 2873 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
83bbd9b6 2874 copying_arguments = false;
6e73e666 2875 }
ec907dd8 2876
6e73e666 2877 /* Now propagate values from new_reg_base_value to reg_base_value. */
298e6adc
NS
2878 gcc_assert (maxreg == (unsigned int) max_reg_num());
2879
c582d54a 2880 for (ui = 0; ui < maxreg; ui++)
6e73e666 2881 {
e51712db 2882 if (new_reg_base_value[ui]
c582d54a
JH
2883 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2884 && ! rtx_equal_p (new_reg_base_value[ui],
2885 VARRAY_RTX (reg_base_value, ui)))
ec907dd8 2886 {
c582d54a 2887 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
6e73e666 2888 changed = 1;
ec907dd8 2889 }
9ae8ffe7 2890 }
9ae8ffe7 2891 }
6e73e666 2892 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7
JL
2893
2894 /* Fill in the remaining entries. */
bb1acb3e 2895 for (i = 0; i < (int)reg_known_value_size; i++)
9ae8ffe7 2896 if (reg_known_value[i] == 0)
bb1acb3e 2897 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
9ae8ffe7 2898
9ae8ffe7
JL
2899 /* Simplify the reg_base_value array so that no register refers to
2900 another register, except to special registers indirectly through
2901 ADDRESS expressions.
2902
2903 In theory this loop can take as long as O(registers^2), but unless
2904 there are very long dependency chains it will run in close to linear
ea64ef27
JL
2905 time.
2906
2907 This loop may not be needed any longer now that the main loop does
2908 a better job at propagating alias information. */
2909 pass = 0;
9ae8ffe7
JL
2910 do
2911 {
2912 changed = 0;
ea64ef27 2913 pass++;
c582d54a 2914 for (ui = 0; ui < maxreg; ui++)
9ae8ffe7 2915 {
c582d54a 2916 rtx base = VARRAY_RTX (reg_base_value, ui);
f8cfc6aa 2917 if (base && REG_P (base))
9ae8ffe7 2918 {
fb6754f0 2919 unsigned int base_regno = REGNO (base);
e51712db 2920 if (base_regno == ui) /* register set from itself */
c582d54a 2921 VARRAY_RTX (reg_base_value, ui) = 0;
9ae8ffe7 2922 else
c582d54a
JH
2923 VARRAY_RTX (reg_base_value, ui)
2924 = VARRAY_RTX (reg_base_value, base_regno);
9ae8ffe7
JL
2925 changed = 1;
2926 }
2927 }
2928 }
ea64ef27 2929 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
9ae8ffe7 2930
e05e2395
MM
2931 /* Clean up. */
2932 free (new_reg_base_value);
ec907dd8 2933 new_reg_base_value = 0;
e05e2395 2934 free (reg_seen);
9ae8ffe7 2935 reg_seen = 0;
0d446150 2936 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2937}
2938
2939void
4682ae04 2940end_alias_analysis (void)
9ae8ffe7 2941{
c582d54a 2942 old_reg_base_value = reg_base_value;
bb1acb3e 2943 ggc_free (reg_known_value);
9ae8ffe7 2944 reg_known_value = 0;
ac606739 2945 reg_known_value_size = 0;
bb1acb3e 2946 free (reg_known_equiv_p);
e05e2395 2947 reg_known_equiv_p = 0;
de12be17
JC
2948 if (alias_invariant)
2949 {
f411a73a 2950 ggc_free (alias_invariant);
de12be17 2951 alias_invariant = 0;
c582d54a 2952 alias_invariant_size = 0;
de12be17 2953 }
9ae8ffe7 2954}
e2500fed
GK
2955
2956#include "gt-alias.h"