]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.c
Remove unnecessary VEC function overloads.
[thirdparty/gcc.git] / gcc / alias.c
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
62e5bf5d 2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
757e8ba2 3 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
9ae8ffe7
JL
4 Contributed by John Carr (jfc@mit.edu).
5
1322177d 6This file is part of GCC.
9ae8ffe7 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
9ae8ffe7 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
9ae8ffe7
JL
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
21
22#include "config.h"
670ee920 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
9ae8ffe7 26#include "rtl.h"
7790df19 27#include "tree.h"
6baf1cc8 28#include "tm_p.h"
49ad7cfa 29#include "function.h"
78528714
JQ
30#include "alias.h"
31#include "emit-rtl.h"
9ae8ffe7
JL
32#include "regs.h"
33#include "hard-reg-set.h"
e004f2f7 34#include "basic-block.h"
9ae8ffe7 35#include "flags.h"
718f9c0f 36#include "diagnostic-core.h"
eab5c70a 37#include "cselib.h"
3932261a 38#include "splay-tree.h"
ac606739 39#include "ggc.h"
d23c55c2 40#include "langhooks.h"
0d446150 41#include "timevar.h"
7ee2468b 42#include "dumpfile.h"
ab780373 43#include "target.h"
b255a036 44#include "cgraph.h"
6fb5fa3c 45#include "df.h"
55b34b5f
RG
46#include "tree-ssa-alias.h"
47#include "pointer-set.h"
48#include "tree-flow.h"
ea900239
DB
49
50/* The aliasing API provided here solves related but different problems:
51
c22cacf3 52 Say there exists (in c)
ea900239
DB
53
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
58
59 struct Y y2, *py;
60 struct Z z2, *pz;
61
62
63 py = &px1.y1;
64 px2 = &x1;
65
66 Consider the four questions:
67
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
73
74 The answer to these questions can be yes, yes, yes, and maybe.
75
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
073a8998 78 a store through a pointer to an X can overwrite any field that is
ea900239
DB
79 contained (recursively) in an X (unless we know that px1 != px2).
80
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
88
89 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 90 instances do not escape across the compilation boundary.
ea900239
DB
91
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
99*/
3932261a
MM
100
101/* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
3932261a 105
01d28c3f 106 struct S { int i; double d; };
3932261a
MM
107
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
c22cacf3
MS
112 struct S
113 / \
3932261a 114 / \
c22cacf3
MS
115 |/_ _\|
116 int double
3932261a 117
ac3d9668
RK
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
121
3bdf5ad1
RK
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
95bd1dd7 124 past immediate descendants, however, since we propagate all
3bdf5ad1 125 grandchildren up one level.
3932261a
MM
126
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
130
7e5487a2 131struct GTY(()) alias_set_entry_d {
3932261a 132 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 133 alias_set_type alias_set;
3932261a 134
4c067742
RG
135 /* Nonzero if would have a child of zero: this effectively makes this
136 alias set the same as alias set zero. */
137 int has_zero_child;
138
3932261a 139 /* The children of the alias set. These are not just the immediate
95bd1dd7 140 children, but, in fact, all descendants. So, if we have:
3932261a 141
ca7fd9cd 142 struct T { struct S s; float f; }
3932261a
MM
143
144 continuing our example above, the children here will be all of
145 `int', `double', `float', and `struct S'. */
b604074c 146 splay_tree GTY((param1_is (int), param2_is (int))) children;
b604074c 147};
7e5487a2 148typedef struct alias_set_entry_d *alias_set_entry;
9ae8ffe7 149
ed7a4b4b 150static int rtx_equal_for_memref_p (const_rtx, const_rtx);
4682ae04 151static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
7bc980e1 152static void record_set (rtx, const_rtx, void *);
4682ae04
AJ
153static int base_alias_check (rtx, rtx, enum machine_mode,
154 enum machine_mode);
155static rtx find_base_value (rtx);
4f588890 156static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
4682ae04 157static int insert_subset_children (splay_tree_node, void*);
4862826d 158static alias_set_entry get_alias_set_entry (alias_set_type);
175a7536 159static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
4682ae04 160static tree decl_for_component_ref (tree);
4f588890 161static int write_dependence_p (const_rtx, const_rtx, int);
4682ae04 162
aa317c97 163static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7
JL
164
165/* Set up all info needed to perform alias analysis on memory references. */
166
d4b60170 167/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
168#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
169
ea64ef27 170/* Cap the number of passes we make over the insns propagating alias
131db6b8
SB
171 information through set chains.
172 ??? 10 is a completely arbitrary choice. This should be based on the
173 maximum loop depth in the CFG, but we do not have this information
174 available (even if current_loops _is_ available). */
ea64ef27 175#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 176
9ae8ffe7
JL
177/* reg_base_value[N] gives an address to which register N is related.
178 If all sets after the first add or subtract to the current value
179 or otherwise modify it so it does not point to a different top level
180 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
181 of the first set.
182
183 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
9fc37b2b 184 expressions represent three types of base:
b3b5ad95 185
9fc37b2b
RS
186 1. incoming arguments. There is just one ADDRESS to represent all
187 arguments, since we do not know at this level whether accesses
188 based on different arguments can alias. The ADDRESS has id 0.
b3b5ad95 189
9fc37b2b
RS
190 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
191 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
192 Each of these rtxes has a separate ADDRESS associated with it,
193 each with a negative id.
194
195 GCC is (and is required to be) precise in which register it
196 chooses to access a particular region of stack. We can therefore
197 assume that accesses based on one of these rtxes do not alias
198 accesses based on another of these rtxes.
199
200 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
201 Each such piece of memory has a separate ADDRESS associated
202 with it, each with an id greater than 0.
203
204 Accesses based on one ADDRESS do not alias accesses based on other
205 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
206 alias globals either; the ADDRESSes have Pmode to indicate this.
207 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
208 indicate this. */
2a2c8203 209
08c79682 210static GTY(()) VEC(rtx,gc) *reg_base_value;
ac606739 211static rtx *new_reg_base_value;
c582d54a 212
9fc37b2b
RS
213/* The single VOIDmode ADDRESS that represents all argument bases.
214 It has id 0. */
215static GTY(()) rtx arg_base_value;
216
217/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
218static int unique_id;
219
c582d54a
JH
220/* We preserve the copy of old array around to avoid amount of garbage
221 produced. About 8% of garbage produced were attributed to this
222 array. */
08c79682 223static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
d4b60170 224
9e412ca3
RS
225/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
226 registers. */
227#define UNIQUE_BASE_VALUE_SP -1
228#define UNIQUE_BASE_VALUE_ARGP -2
229#define UNIQUE_BASE_VALUE_FP -3
230#define UNIQUE_BASE_VALUE_HFP -4
231
7bf84454
RS
232#define static_reg_base_value \
233 (this_target_rtl->x_static_reg_base_value)
bf1660a6 234
08c79682
KH
235#define REG_BASE_VALUE(X) \
236 (REGNO (X) < VEC_length (rtx, reg_base_value) \
237 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
9ae8ffe7 238
c13e8210 239/* Vector indexed by N giving the initial (unchanging) value known for
9ff3c7ca 240 pseudo-register N. This vector is initialized in init_alias_analysis,
bb1acb3e 241 and does not change until end_alias_analysis is called. */
9ff3c7ca 242static GTY(()) VEC(rtx,gc) *reg_known_value;
9ae8ffe7
JL
243
244/* Vector recording for each reg_known_value whether it is due to a
245 REG_EQUIV note. Future passes (viz., reload) may replace the
246 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
247 dependences that would be introduced if that happens.
248
249 The REG_EQUIV notes created in assign_parms may mention the arg
250 pointer, and there are explicit insns in the RTL that modify the
251 arg pointer. Thus we must ensure that such insns don't get
252 scheduled across each other because that would invalidate the
253 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
254 wrong, but solving the problem in the scheduler will likely give
255 better code, so we do it here. */
9ff3c7ca 256static sbitmap reg_known_equiv_p;
9ae8ffe7 257
2a2c8203
JC
258/* True when scanning insns from the start of the rtl to the
259 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 260static bool copying_arguments;
9ae8ffe7 261
1a5640b4
KH
262DEF_VEC_P(alias_set_entry);
263DEF_VEC_ALLOC_P(alias_set_entry,gc);
264
3932261a 265/* The splay-tree used to store the various alias set entries. */
1a5640b4 266static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
ac3d9668 267\f
55b34b5f
RG
268/* Build a decomposed reference object for querying the alias-oracle
269 from the MEM rtx and store it in *REF.
270 Returns false if MEM is not suitable for the alias-oracle. */
271
272static bool
273ao_ref_from_mem (ao_ref *ref, const_rtx mem)
274{
275 tree expr = MEM_EXPR (mem);
276 tree base;
277
278 if (!expr)
279 return false;
280
281 ao_ref_init (ref, expr);
282
283 /* Get the base of the reference and see if we have to reject or
284 adjust it. */
285 base = ao_ref_base (ref);
286 if (base == NULL_TREE)
287 return false;
288
366f945f
RG
289 /* The tree oracle doesn't like to have these. */
290 if (TREE_CODE (base) == FUNCTION_DECL
291 || TREE_CODE (base) == LABEL_DECL)
292 return false;
293
55b34b5f
RG
294 /* If this is a pointer dereference of a non-SSA_NAME punt.
295 ??? We could replace it with a pointer to anything. */
70f34814
RG
296 if ((INDIRECT_REF_P (base)
297 || TREE_CODE (base) == MEM_REF)
55b34b5f
RG
298 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
299 return false;
d15adbeb
RG
300 if (TREE_CODE (base) == TARGET_MEM_REF
301 && TMR_BASE (base)
302 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
303 return false;
55b34b5f
RG
304
305 /* If this is a reference based on a partitioned decl replace the
306 base with an INDIRECT_REF of the pointer representative we
307 created during stack slot partitioning. */
308 if (TREE_CODE (base) == VAR_DECL
309 && ! TREE_STATIC (base)
310 && cfun->gimple_df->decls_to_pointers != NULL)
311 {
312 void *namep;
313 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
314 if (namep)
70f34814 315 ref->base = build_simple_mem_ref (*(tree *)namep);
55b34b5f 316 }
d15adbeb 317 else if (TREE_CODE (base) == TARGET_MEM_REF
4d948885
RG
318 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
319 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
320 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
d15adbeb
RG
321 && cfun->gimple_df->decls_to_pointers != NULL)
322 {
323 void *namep;
324 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
4d948885 325 TREE_OPERAND (TMR_BASE (base), 0));
d15adbeb
RG
326 if (namep)
327 ref->base = build_simple_mem_ref (*(tree *)namep);
328 }
55b34b5f
RG
329
330 ref->ref_alias_set = MEM_ALIAS_SET (mem);
331
f68396a1
RG
332 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
333 is conservative, so trust it. */
527210c4 334 if (!MEM_OFFSET_KNOWN_P (mem)
f5541398 335 || !MEM_SIZE_KNOWN_P (mem))
f68396a1 336 return true;
366f945f 337
b0e96404
RG
338 /* If the base decl is a parameter we can have negative MEM_OFFSET in
339 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
340 here. */
527210c4
RS
341 if (MEM_OFFSET (mem) < 0
342 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
b0e96404
RG
343 return true;
344
f68396a1
RG
345 /* Otherwise continue and refine size and offset we got from analyzing
346 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
347
527210c4 348 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
f5541398 349 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
b0e96404
RG
350
351 /* The MEM may extend into adjacent fields, so adjust max_size if
352 necessary. */
353 if (ref->max_size != -1
354 && ref->size > ref->max_size)
355 ref->max_size = ref->size;
356
357 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
358 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
359 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
360 && (ref->offset < 0
361 || (DECL_P (ref->base)
362 && (!host_integerp (DECL_SIZE (ref->base), 1)
363 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
364 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
365 return false;
55b34b5f
RG
366
367 return true;
368}
369
370/* Query the alias-oracle on whether the two memory rtx X and MEM may
371 alias. If TBAA_P is set also apply TBAA. Returns true if the
372 two rtxen may alias, false otherwise. */
373
374static bool
375rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
376{
377 ao_ref ref1, ref2;
378
379 if (!ao_ref_from_mem (&ref1, x)
380 || !ao_ref_from_mem (&ref2, mem))
381 return true;
382
55e3bc4c
RG
383 return refs_may_alias_p_1 (&ref1, &ref2,
384 tbaa_p
385 && MEM_ALIAS_SET (x) != 0
386 && MEM_ALIAS_SET (mem) != 0);
55b34b5f
RG
387}
388
3932261a
MM
389/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
390 such an entry, or NULL otherwise. */
391
9ddb66ca 392static inline alias_set_entry
4862826d 393get_alias_set_entry (alias_set_type alias_set)
3932261a 394{
1a5640b4 395 return VEC_index (alias_set_entry, alias_sets, alias_set);
3932261a
MM
396}
397
ac3d9668
RK
398/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
399 the two MEMs cannot alias each other. */
3932261a 400
9ddb66ca 401static inline int
4f588890 402mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 403{
3932261a
MM
404/* Perform a basic sanity check. Namely, that there are no alias sets
405 if we're not using strict aliasing. This helps to catch bugs
406 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
407 where a MEM is allocated in some way other than by the use of
408 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
409 use alias sets to indicate that spilled registers cannot alias each
410 other, we might need to remove this check. */
298e6adc
NS
411 gcc_assert (flag_strict_aliasing
412 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
3932261a 413
1da68f56
RK
414 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
415}
3932261a 416
1da68f56
RK
417/* Insert the NODE into the splay tree given by DATA. Used by
418 record_alias_subset via splay_tree_foreach. */
419
420static int
4682ae04 421insert_subset_children (splay_tree_node node, void *data)
1da68f56
RK
422{
423 splay_tree_insert ((splay_tree) data, node->key, node->value);
424
425 return 0;
426}
427
c58936b6
DB
428/* Return true if the first alias set is a subset of the second. */
429
430bool
4862826d 431alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6
DB
432{
433 alias_set_entry ase;
434
435 /* Everything is a subset of the "aliases everything" set. */
436 if (set2 == 0)
437 return true;
438
439 /* Otherwise, check if set1 is a subset of set2. */
440 ase = get_alias_set_entry (set2);
441 if (ase != 0
038a39d1 442 && (ase->has_zero_child
a7a512be
RG
443 || splay_tree_lookup (ase->children,
444 (splay_tree_key) set1)))
c58936b6
DB
445 return true;
446 return false;
447}
448
1da68f56
RK
449/* Return 1 if the two specified alias sets may conflict. */
450
451int
4862826d 452alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56
RK
453{
454 alias_set_entry ase;
455
836f7794
EB
456 /* The easy case. */
457 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 458 return 1;
3932261a 459
3bdf5ad1 460 /* See if the first alias set is a subset of the second. */
1da68f56 461 ase = get_alias_set_entry (set1);
2bf105ab
RK
462 if (ase != 0
463 && (ase->has_zero_child
464 || splay_tree_lookup (ase->children,
1da68f56
RK
465 (splay_tree_key) set2)))
466 return 1;
3932261a
MM
467
468 /* Now do the same, but with the alias sets reversed. */
1da68f56 469 ase = get_alias_set_entry (set2);
2bf105ab
RK
470 if (ase != 0
471 && (ase->has_zero_child
472 || splay_tree_lookup (ase->children,
1da68f56
RK
473 (splay_tree_key) set1)))
474 return 1;
3932261a 475
1da68f56 476 /* The two alias sets are distinct and neither one is the
836f7794 477 child of the other. Therefore, they cannot conflict. */
1da68f56 478 return 0;
3932261a 479}
5399d643 480
836f7794 481/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
482
483int
4862826d 484alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643
JW
485{
486 if (set1 == 0 || set2 == 0 || set1 == set2)
487 return 1;
488
489 return 0;
490}
491
1da68f56
RK
492/* Return 1 if any MEM object of type T1 will always conflict (using the
493 dependency routines in this file) with any MEM object of type T2.
494 This is used when allocating temporary storage. If T1 and/or T2 are
495 NULL_TREE, it means we know nothing about the storage. */
496
497int
4682ae04 498objects_must_conflict_p (tree t1, tree t2)
1da68f56 499{
4862826d 500 alias_set_type set1, set2;
82d610ec 501
e8ea2809
RK
502 /* If neither has a type specified, we don't know if they'll conflict
503 because we may be using them to store objects of various types, for
504 example the argument and local variables areas of inlined functions. */
981a4c34 505 if (t1 == 0 && t2 == 0)
e8ea2809
RK
506 return 0;
507
1da68f56
RK
508 /* If they are the same type, they must conflict. */
509 if (t1 == t2
510 /* Likewise if both are volatile. */
511 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
512 return 1;
513
82d610ec
RK
514 set1 = t1 ? get_alias_set (t1) : 0;
515 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 516
836f7794
EB
517 /* We can't use alias_sets_conflict_p because we must make sure
518 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
519 t2 for which a pair of subobjects of these respective subtypes
520 overlaps on the stack. */
836f7794 521 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
522}
523\f
2039d7aa
RH
524/* Return true if all nested component references handled by
525 get_inner_reference in T are such that we should use the alias set
526 provided by the object at the heart of T.
527
528 This is true for non-addressable components (which don't have their
529 own alias set), as well as components of objects in alias set zero.
530 This later point is a special case wherein we wish to override the
531 alias set used by the component, but we don't have per-FIELD_DECL
532 assignable alias sets. */
533
534bool
22ea9ec0 535component_uses_parent_alias_set (const_tree t)
6e24b709 536{
afe84921
RH
537 while (1)
538 {
2039d7aa 539 /* If we're at the end, it vacuously uses its own alias set. */
afe84921 540 if (!handled_component_p (t))
2039d7aa 541 return false;
afe84921
RH
542
543 switch (TREE_CODE (t))
544 {
545 case COMPONENT_REF:
546 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
2039d7aa 547 return true;
afe84921
RH
548 break;
549
550 case ARRAY_REF:
551 case ARRAY_RANGE_REF:
552 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
2039d7aa 553 return true;
afe84921
RH
554 break;
555
556 case REALPART_EXPR:
557 case IMAGPART_EXPR:
558 break;
559
560 default:
561 /* Bitfields and casts are never addressable. */
2039d7aa 562 return true;
afe84921
RH
563 }
564
565 t = TREE_OPERAND (t, 0);
2039d7aa
RH
566 if (get_alias_set (TREE_TYPE (t)) == 0)
567 return true;
afe84921 568 }
6e24b709
RK
569}
570
5006671f
RG
571/* Return the alias set for the memory pointed to by T, which may be
572 either a type or an expression. Return -1 if there is nothing
573 special about dereferencing T. */
574
575static alias_set_type
576get_deref_alias_set_1 (tree t)
577{
578 /* If we're not doing any alias analysis, just assume everything
579 aliases everything else. */
580 if (!flag_strict_aliasing)
581 return 0;
582
5b21f0f3 583 /* All we care about is the type. */
5006671f 584 if (! TYPE_P (t))
5b21f0f3 585 t = TREE_TYPE (t);
5006671f
RG
586
587 /* If we have an INDIRECT_REF via a void pointer, we don't
588 know anything about what that might alias. Likewise if the
589 pointer is marked that way. */
590 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
591 || TYPE_REF_CAN_ALIAS_ALL (t))
592 return 0;
593
594 return -1;
595}
596
597/* Return the alias set for the memory pointed to by T, which may be
598 either a type or an expression. */
599
600alias_set_type
601get_deref_alias_set (tree t)
602{
603 alias_set_type set = get_deref_alias_set_1 (t);
604
605 /* Fall back to the alias-set of the pointed-to type. */
606 if (set == -1)
607 {
608 if (! TYPE_P (t))
609 t = TREE_TYPE (t);
610 set = get_alias_set (TREE_TYPE (t));
611 }
612
613 return set;
614}
615
3bdf5ad1
RK
616/* Return the alias set for T, which may be either a type or an
617 expression. Call language-specific routine for help, if needed. */
618
4862826d 619alias_set_type
4682ae04 620get_alias_set (tree t)
3bdf5ad1 621{
4862826d 622 alias_set_type set;
3bdf5ad1
RK
623
624 /* If we're not doing any alias analysis, just assume everything
625 aliases everything else. Also return 0 if this or its type is
626 an error. */
627 if (! flag_strict_aliasing || t == error_mark_node
628 || (! TYPE_P (t)
629 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
630 return 0;
631
632 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
633 language-specific routine may make mutually-recursive calls to each other
634 to figure out what to do. At each juncture, we see if this is a tree
635 that the language may need to handle specially. First handle things that
738cc472 636 aren't types. */
f824e5c3 637 if (! TYPE_P (t))
3bdf5ad1 638 {
ebcc3d93 639 tree inner;
738cc472 640
70f34814
RG
641 /* Give the language a chance to do something with this tree
642 before we look at it. */
8ac61af7 643 STRIP_NOPS (t);
ae2bcd98 644 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
645 if (set != -1)
646 return set;
647
70f34814 648 /* Get the base object of the reference. */
ebcc3d93 649 inner = t;
6fce44af 650 while (handled_component_p (inner))
738cc472 651 {
70f34814
RG
652 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
653 the type of any component references that wrap it to
654 determine the alias-set. */
655 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
656 t = TREE_OPERAND (inner, 0);
6fce44af 657 inner = TREE_OPERAND (inner, 0);
738cc472
RK
658 }
659
70f34814
RG
660 /* Handle pointer dereferences here, they can override the
661 alias-set. */
1b096a0a 662 if (INDIRECT_REF_P (inner))
738cc472 663 {
5006671f
RG
664 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
665 if (set != -1)
666 return set;
738cc472 667 }
4b228e61
RG
668 else if (TREE_CODE (inner) == TARGET_MEM_REF)
669 return get_deref_alias_set (TMR_OFFSET (inner));
70f34814
RG
670 else if (TREE_CODE (inner) == MEM_REF)
671 {
672 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
673 if (set != -1)
674 return set;
675 }
676
677 /* If the innermost reference is a MEM_REF that has a
678 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
679 using the memory access type for determining the alias-set. */
680 if (TREE_CODE (inner) == MEM_REF
7be7d292
EB
681 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
682 != TYPE_MAIN_VARIANT
683 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
70f34814 684 return get_deref_alias_set (TREE_OPERAND (inner, 1));
738cc472
RK
685
686 /* Otherwise, pick up the outermost object that we could have a pointer
6fce44af 687 to, processing conversions as above. */
2039d7aa 688 while (component_uses_parent_alias_set (t))
f47e9b4e 689 {
6fce44af 690 t = TREE_OPERAND (t, 0);
8ac61af7
RK
691 STRIP_NOPS (t);
692 }
f824e5c3 693
738cc472
RK
694 /* If we've already determined the alias set for a decl, just return
695 it. This is necessary for C++ anonymous unions, whose component
696 variables don't look like union members (boo!). */
5755cd38 697 if (TREE_CODE (t) == VAR_DECL
3c0cb5de 698 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
699 return MEM_ALIAS_SET (DECL_RTL (t));
700
f824e5c3
RK
701 /* Now all we care about is the type. */
702 t = TREE_TYPE (t);
3bdf5ad1
RK
703 }
704
3bdf5ad1 705 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 706 variant. */
3bdf5ad1 707 t = TYPE_MAIN_VARIANT (t);
daad0278
RG
708
709 /* Always use the canonical type as well. If this is a type that
710 requires structural comparisons to identify compatible types
711 use alias set zero. */
712 if (TYPE_STRUCTURAL_EQUALITY_P (t))
cb9c2485
JM
713 {
714 /* Allow the language to specify another alias set for this
715 type. */
716 set = lang_hooks.get_alias_set (t);
717 if (set != -1)
718 return set;
719 return 0;
720 }
7be7d292 721
daad0278 722 t = TYPE_CANONICAL (t);
7be7d292 723
96d91dcf
RG
724 /* The canonical type should not require structural equality checks. */
725 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
daad0278
RG
726
727 /* If this is a type with a known alias set, return it. */
738cc472 728 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
729 return TYPE_ALIAS_SET (t);
730
36784d0e
RG
731 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
732 if (!COMPLETE_TYPE_P (t))
733 {
734 /* For arrays with unknown size the conservative answer is the
735 alias set of the element type. */
736 if (TREE_CODE (t) == ARRAY_TYPE)
737 return get_alias_set (TREE_TYPE (t));
738
739 /* But return zero as a conservative answer for incomplete types. */
740 return 0;
741 }
742
3bdf5ad1 743 /* See if the language has special handling for this type. */
ae2bcd98 744 set = lang_hooks.get_alias_set (t);
8ac61af7 745 if (set != -1)
738cc472 746 return set;
2bf105ab 747
3bdf5ad1
RK
748 /* There are no objects of FUNCTION_TYPE, so there's no point in
749 using up an alias set for them. (There are, of course, pointers
750 and references to functions, but that's different.) */
7be7d292 751 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 752 set = 0;
74d86f4f
RH
753
754 /* Unless the language specifies otherwise, let vector types alias
755 their components. This avoids some nasty type punning issues in
756 normal usage. And indeed lets vectors be treated more like an
757 array slice. */
758 else if (TREE_CODE (t) == VECTOR_TYPE)
759 set = get_alias_set (TREE_TYPE (t));
760
4653cae5
RG
761 /* Unless the language specifies otherwise, treat array types the
762 same as their components. This avoids the asymmetry we get
763 through recording the components. Consider accessing a
764 character(kind=1) through a reference to a character(kind=1)[1:1].
765 Or consider if we want to assign integer(kind=4)[0:D.1387] and
766 integer(kind=4)[4] the same alias set or not.
767 Just be pragmatic here and make sure the array and its element
768 type get the same alias set assigned. */
7be7d292 769 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
4653cae5
RG
770 set = get_alias_set (TREE_TYPE (t));
771
0ceb0201
RG
772 /* From the former common C and C++ langhook implementation:
773
774 Unfortunately, there is no canonical form of a pointer type.
775 In particular, if we have `typedef int I', then `int *', and
776 `I *' are different types. So, we have to pick a canonical
777 representative. We do this below.
778
779 Technically, this approach is actually more conservative that
780 it needs to be. In particular, `const int *' and `int *'
781 should be in different alias sets, according to the C and C++
782 standard, since their types are not the same, and so,
783 technically, an `int **' and `const int **' cannot point at
784 the same thing.
785
786 But, the standard is wrong. In particular, this code is
787 legal C++:
788
789 int *ip;
790 int **ipp = &ip;
791 const int* const* cipp = ipp;
792 And, it doesn't make sense for that to be legal unless you
793 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
794 the pointed-to types. This issue has been reported to the
795 C++ committee.
796
797 In addition to the above canonicalization issue, with LTO
798 we should also canonicalize `T (*)[]' to `T *' avoiding
799 alias issues with pointer-to element types and pointer-to
800 array types.
801
802 Likewise we need to deal with the situation of incomplete
803 pointed-to types and make `*(struct X **)&a' and
804 `*(struct X {} **)&a' alias. Otherwise we will have to
805 guarantee that all pointer-to incomplete type variants
806 will be replaced by pointer-to complete type variants if
807 they are available.
808
809 With LTO the convenient situation of using `void *' to
810 access and store any pointer type will also become
811 more apparent (and `void *' is just another pointer-to
812 incomplete type). Assigning alias-set zero to `void *'
813 and all pointer-to incomplete types is a not appealing
814 solution. Assigning an effective alias-set zero only
815 affecting pointers might be - by recording proper subset
816 relationships of all pointer alias-sets.
817
818 Pointer-to function types are another grey area which
819 needs caution. Globbing them all into one alias-set
820 or the above effective zero set would work.
821
822 For now just assign the same alias-set to all pointers.
823 That's simple and avoids all the above problems. */
824 else if (POINTER_TYPE_P (t)
825 && t != ptr_type_node)
96d91dcf 826 set = get_alias_set (ptr_type_node);
0ceb0201 827
7be7d292 828 /* Otherwise make a new alias set for this type. */
3bdf5ad1 829 else
96d91dcf
RG
830 {
831 /* Each canonical type gets its own alias set, so canonical types
832 shouldn't form a tree. It doesn't really matter for types
833 we handle specially above, so only check it where it possibly
834 would result in a bogus alias set. */
835 gcc_checking_assert (TYPE_CANONICAL (t) == t);
836
837 set = new_alias_set ();
838 }
3bdf5ad1
RK
839
840 TYPE_ALIAS_SET (t) = set;
2bf105ab 841
7be7d292
EB
842 /* If this is an aggregate type or a complex type, we must record any
843 component aliasing information. */
1d79fd2c 844 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
845 record_component_aliases (t);
846
3bdf5ad1
RK
847 return set;
848}
849
850/* Return a brand-new alias set. */
851
4862826d 852alias_set_type
4682ae04 853new_alias_set (void)
3bdf5ad1 854{
3bdf5ad1 855 if (flag_strict_aliasing)
9ddb66ca 856 {
1a5640b4 857 if (alias_sets == 0)
f32682ca
DN
858 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
859 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
1a5640b4 860 return VEC_length (alias_set_entry, alias_sets) - 1;
9ddb66ca 861 }
3bdf5ad1
RK
862 else
863 return 0;
864}
3932261a 865
01d28c3f
JM
866/* Indicate that things in SUBSET can alias things in SUPERSET, but that
867 not everything that aliases SUPERSET also aliases SUBSET. For example,
868 in C, a store to an `int' can alias a load of a structure containing an
869 `int', and vice versa. But it can't alias a load of a 'double' member
870 of the same structure. Here, the structure would be the SUPERSET and
871 `int' the SUBSET. This relationship is also described in the comment at
872 the beginning of this file.
873
874 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
875
876 It is illegal for SUPERSET to be zero; everything is implicitly a
877 subset of alias set zero. */
878
794511d2 879void
4862826d 880record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a
MM
881{
882 alias_set_entry superset_entry;
883 alias_set_entry subset_entry;
884
f47e9b4e
RK
885 /* It is possible in complex type situations for both sets to be the same,
886 in which case we can ignore this operation. */
887 if (superset == subset)
888 return;
889
298e6adc 890 gcc_assert (superset);
3932261a
MM
891
892 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 893 if (superset_entry == 0)
3932261a
MM
894 {
895 /* Create an entry for the SUPERSET, so that we have a place to
896 attach the SUBSET. */
a9429e29 897 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
3932261a 898 superset_entry->alias_set = superset;
ca7fd9cd 899 superset_entry->children
a9429e29
LB
900 = splay_tree_new_ggc (splay_tree_compare_ints,
901 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
902 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
570eb5c8 903 superset_entry->has_zero_child = 0;
1a5640b4 904 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
3932261a
MM
905 }
906
2bf105ab
RK
907 if (subset == 0)
908 superset_entry->has_zero_child = 1;
909 else
910 {
911 subset_entry = get_alias_set_entry (subset);
912 /* If there is an entry for the subset, enter all of its children
913 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 914 if (subset_entry)
2bf105ab
RK
915 {
916 if (subset_entry->has_zero_child)
917 superset_entry->has_zero_child = 1;
d4b60170 918
2bf105ab
RK
919 splay_tree_foreach (subset_entry->children, insert_subset_children,
920 superset_entry->children);
921 }
3932261a 922
2bf105ab 923 /* Enter the SUBSET itself as a child of the SUPERSET. */
ca7fd9cd 924 splay_tree_insert (superset_entry->children,
2bf105ab
RK
925 (splay_tree_key) subset, 0);
926 }
3932261a
MM
927}
928
a0c33338
RK
929/* Record that component types of TYPE, if any, are part of that type for
930 aliasing purposes. For record types, we only record component types
b5487346
EB
931 for fields that are not marked non-addressable. For array types, we
932 only record the component type if it is not marked non-aliased. */
a0c33338
RK
933
934void
4682ae04 935record_component_aliases (tree type)
a0c33338 936{
4862826d 937 alias_set_type superset = get_alias_set (type);
a0c33338
RK
938 tree field;
939
940 if (superset == 0)
941 return;
942
943 switch (TREE_CODE (type))
944 {
a0c33338
RK
945 case RECORD_TYPE:
946 case UNION_TYPE:
947 case QUAL_UNION_TYPE:
6614fd40 948 /* Recursively record aliases for the base classes, if there are any. */
fa743e8c 949 if (TYPE_BINFO (type))
ca7fd9cd
KH
950 {
951 int i;
fa743e8c 952 tree binfo, base_binfo;
c22cacf3 953
fa743e8c
NS
954 for (binfo = TYPE_BINFO (type), i = 0;
955 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
956 record_alias_subset (superset,
957 get_alias_set (BINFO_TYPE (base_binfo)));
ca7fd9cd 958 }
910ad8de 959 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
b5487346 960 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
2bf105ab 961 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
a0c33338
RK
962 break;
963
1d79fd2c
JW
964 case COMPLEX_TYPE:
965 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
966 break;
967
4653cae5
RG
968 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
969 element type. */
970
a0c33338
RK
971 default:
972 break;
973 }
974}
975
3bdf5ad1
RK
976/* Allocate an alias set for use in storing and reading from the varargs
977 spill area. */
978
4862826d 979static GTY(()) alias_set_type varargs_set = -1;
f103e34d 980
4862826d 981alias_set_type
4682ae04 982get_varargs_alias_set (void)
3bdf5ad1 983{
cd3ce9b4
JM
984#if 1
985 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
986 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
987 consistently use the varargs alias set for loads from the varargs
988 area. So don't use it anywhere. */
989 return 0;
990#else
f103e34d
GK
991 if (varargs_set == -1)
992 varargs_set = new_alias_set ();
3bdf5ad1 993
f103e34d 994 return varargs_set;
cd3ce9b4 995#endif
3bdf5ad1
RK
996}
997
998/* Likewise, but used for the fixed portions of the frame, e.g., register
999 save areas. */
1000
4862826d 1001static GTY(()) alias_set_type frame_set = -1;
f103e34d 1002
4862826d 1003alias_set_type
4682ae04 1004get_frame_alias_set (void)
3bdf5ad1 1005{
f103e34d
GK
1006 if (frame_set == -1)
1007 frame_set = new_alias_set ();
3bdf5ad1 1008
f103e34d 1009 return frame_set;
3bdf5ad1
RK
1010}
1011
9fc37b2b
RS
1012/* Create a new, unique base with id ID. */
1013
1014static rtx
1015unique_base_value (HOST_WIDE_INT id)
1016{
1017 return gen_rtx_ADDRESS (Pmode, id);
1018}
1019
1020/* Return true if accesses based on any other base value cannot alias
1021 those based on X. */
1022
1023static bool
1024unique_base_value_p (rtx x)
1025{
1026 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1027}
1028
1029/* Return true if X is known to be a base value. */
1030
1031static bool
1032known_base_value_p (rtx x)
1033{
1034 switch (GET_CODE (x))
1035 {
1036 case LABEL_REF:
1037 case SYMBOL_REF:
1038 return true;
1039
1040 case ADDRESS:
1041 /* Arguments may or may not be bases; we don't know for sure. */
1042 return GET_MODE (x) != VOIDmode;
1043
1044 default:
1045 return false;
1046 }
1047}
1048
2a2c8203
JC
1049/* Inside SRC, the source of a SET, find a base address. */
1050
9ae8ffe7 1051static rtx
4682ae04 1052find_base_value (rtx src)
9ae8ffe7 1053{
713f41f9 1054 unsigned int regno;
0aacc8ed 1055
53451050
RS
1056#if defined (FIND_BASE_TERM)
1057 /* Try machine-dependent ways to find the base term. */
1058 src = FIND_BASE_TERM (src);
1059#endif
1060
9ae8ffe7
JL
1061 switch (GET_CODE (src))
1062 {
1063 case SYMBOL_REF:
1064 case LABEL_REF:
1065 return src;
1066
1067 case REG:
fb6754f0 1068 regno = REGNO (src);
d4b60170 1069 /* At the start of a function, argument registers have known base
2a2c8203
JC
1070 values which may be lost later. Returning an ADDRESS
1071 expression here allows optimization based on argument values
1072 even when the argument registers are used for other purposes. */
713f41f9
BS
1073 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1074 return new_reg_base_value[regno];
73774bc7 1075
eaf407a5 1076 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
1077 for non-fixed hard regs since it can result in a circular
1078 dependency chain for registers which have values at function entry.
eaf407a5
JL
1079
1080 The test above is not sufficient because the scheduler may move
1081 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 1082 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
08c79682 1083 && regno < VEC_length (rtx, reg_base_value))
83bbd9b6
RH
1084 {
1085 /* If we're inside init_alias_analysis, use new_reg_base_value
1086 to reduce the number of relaxation iterations. */
1afdf91c 1087 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 1088 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
1089 return new_reg_base_value[regno];
1090
08c79682
KH
1091 if (VEC_index (rtx, reg_base_value, regno))
1092 return VEC_index (rtx, reg_base_value, regno);
83bbd9b6 1093 }
73774bc7 1094
e3f049a8 1095 return 0;
9ae8ffe7
JL
1096
1097 case MEM:
1098 /* Check for an argument passed in memory. Only record in the
1099 copying-arguments block; it is too hard to track changes
1100 otherwise. */
1101 if (copying_arguments
1102 && (XEXP (src, 0) == arg_pointer_rtx
1103 || (GET_CODE (XEXP (src, 0)) == PLUS
1104 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
9fc37b2b 1105 return arg_base_value;
9ae8ffe7
JL
1106 return 0;
1107
1108 case CONST:
1109 src = XEXP (src, 0);
1110 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1111 break;
d4b60170 1112
ec5c56db 1113 /* ... fall through ... */
2a2c8203 1114
9ae8ffe7
JL
1115 case PLUS:
1116 case MINUS:
2a2c8203 1117 {
ec907dd8
JL
1118 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1119
0134bf2d
DE
1120 /* If either operand is a REG that is a known pointer, then it
1121 is the base. */
1122 if (REG_P (src_0) && REG_POINTER (src_0))
1123 return find_base_value (src_0);
1124 if (REG_P (src_1) && REG_POINTER (src_1))
1125 return find_base_value (src_1);
1126
ec907dd8
JL
1127 /* If either operand is a REG, then see if we already have
1128 a known value for it. */
0134bf2d 1129 if (REG_P (src_0))
ec907dd8
JL
1130 {
1131 temp = find_base_value (src_0);
d4b60170 1132 if (temp != 0)
ec907dd8
JL
1133 src_0 = temp;
1134 }
1135
0134bf2d 1136 if (REG_P (src_1))
ec907dd8
JL
1137 {
1138 temp = find_base_value (src_1);
d4b60170 1139 if (temp!= 0)
ec907dd8
JL
1140 src_1 = temp;
1141 }
2a2c8203 1142
0134bf2d
DE
1143 /* If either base is named object or a special address
1144 (like an argument or stack reference), then use it for the
1145 base term. */
9fc37b2b 1146 if (src_0 != 0 && known_base_value_p (src_0))
0134bf2d
DE
1147 return src_0;
1148
9fc37b2b 1149 if (src_1 != 0 && known_base_value_p (src_1))
0134bf2d
DE
1150 return src_1;
1151
d4b60170 1152 /* Guess which operand is the base address:
ec907dd8
JL
1153 If either operand is a symbol, then it is the base. If
1154 either operand is a CONST_INT, then the other is the base. */
481683e1 1155 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1156 return find_base_value (src_0);
481683e1 1157 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1158 return find_base_value (src_1);
1159
9ae8ffe7 1160 return 0;
2a2c8203
JC
1161 }
1162
1163 case LO_SUM:
1164 /* The standard form is (lo_sum reg sym) so look only at the
1165 second operand. */
1166 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1167
1168 case AND:
1169 /* If the second operand is constant set the base
ec5c56db 1170 address to the first operand. */
481683e1 1171 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
2a2c8203 1172 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1173 return 0;
1174
61f0131c 1175 case TRUNCATE:
5932a4d4 1176 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1177 handle this only if the target does not support different pointer or
1178 address modes depending on the address space. */
1179 if (!target_default_pointer_address_modes_p ())
1180 break;
61f0131c
R
1181 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1182 break;
1183 /* Fall through. */
9ae8ffe7 1184 case HIGH:
d288e53d
DE
1185 case PRE_INC:
1186 case PRE_DEC:
1187 case POST_INC:
1188 case POST_DEC:
1189 case PRE_MODIFY:
1190 case POST_MODIFY:
2a2c8203 1191 return find_base_value (XEXP (src, 0));
1d300e19 1192
0aacc8ed
RK
1193 case ZERO_EXTEND:
1194 case SIGN_EXTEND: /* used for NT/Alpha pointers */
5932a4d4 1195 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1196 handle this only if the target does not support different pointer or
1197 address modes depending on the address space. */
1198 if (!target_default_pointer_address_modes_p ())
1199 break;
1200
0aacc8ed
RK
1201 {
1202 rtx temp = find_base_value (XEXP (src, 0));
1203
5ae6cd0d 1204 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1205 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1206
1207 return temp;
1208 }
1209
1d300e19
KG
1210 default:
1211 break;
9ae8ffe7
JL
1212 }
1213
1214 return 0;
1215}
1216
9fc37b2b
RS
1217/* Called from init_alias_analysis indirectly through note_stores,
1218 or directly if DEST is a register with a REG_NOALIAS note attached.
1219 SET is null in the latter case. */
9ae8ffe7 1220
d4b60170 1221/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7 1222 register N has been set in this function. */
d630245f 1223static sbitmap reg_seen;
9ae8ffe7 1224
2a2c8203 1225static void
7bc980e1 1226record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1227{
b3694847 1228 unsigned regno;
9ae8ffe7 1229 rtx src;
c28b4e40 1230 int n;
9ae8ffe7 1231
f8cfc6aa 1232 if (!REG_P (dest))
9ae8ffe7
JL
1233 return;
1234
fb6754f0 1235 regno = REGNO (dest);
9ae8ffe7 1236
7a40b8b1 1237 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
ac606739 1238
c28b4e40
JW
1239 /* If this spans multiple hard registers, then we must indicate that every
1240 register has an unusable value. */
1241 if (regno < FIRST_PSEUDO_REGISTER)
66fd46b6 1242 n = hard_regno_nregs[regno][GET_MODE (dest)];
c28b4e40
JW
1243 else
1244 n = 1;
1245 if (n != 1)
1246 {
1247 while (--n >= 0)
1248 {
d630245f 1249 SET_BIT (reg_seen, regno + n);
c28b4e40
JW
1250 new_reg_base_value[regno + n] = 0;
1251 }
1252 return;
1253 }
1254
9ae8ffe7
JL
1255 if (set)
1256 {
1257 /* A CLOBBER wipes out any old value but does not prevent a previously
1258 unset register from acquiring a base address (i.e. reg_seen is not
1259 set). */
1260 if (GET_CODE (set) == CLOBBER)
1261 {
ec907dd8 1262 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1263 return;
1264 }
1265 src = SET_SRC (set);
1266 }
1267 else
1268 {
9fc37b2b 1269 /* There's a REG_NOALIAS note against DEST. */
d630245f 1270 if (TEST_BIT (reg_seen, regno))
9ae8ffe7 1271 {
ec907dd8 1272 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1273 return;
1274 }
d630245f 1275 SET_BIT (reg_seen, regno);
9fc37b2b 1276 new_reg_base_value[regno] = unique_base_value (unique_id++);
9ae8ffe7
JL
1277 return;
1278 }
1279
5da6f168
RS
1280 /* If this is not the first set of REGNO, see whether the new value
1281 is related to the old one. There are two cases of interest:
1282
1283 (1) The register might be assigned an entirely new value
1284 that has the same base term as the original set.
1285
1286 (2) The set might be a simple self-modification that
1287 cannot change REGNO's base value.
1288
1289 If neither case holds, reject the original base value as invalid.
1290 Note that the following situation is not detected:
1291
c22cacf3 1292 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1293
9ae8ffe7
JL
1294 ANSI C does not allow computing the difference of addresses
1295 of distinct top level objects. */
5da6f168
RS
1296 if (new_reg_base_value[regno] != 0
1297 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1298 switch (GET_CODE (src))
1299 {
2a2c8203 1300 case LO_SUM:
9ae8ffe7
JL
1301 case MINUS:
1302 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1303 new_reg_base_value[regno] = 0;
9ae8ffe7 1304 break;
61f0131c
R
1305 case PLUS:
1306 /* If the value we add in the PLUS is also a valid base value,
1307 this might be the actual base value, and the original value
1308 an index. */
1309 {
1310 rtx other = NULL_RTX;
1311
1312 if (XEXP (src, 0) == dest)
1313 other = XEXP (src, 1);
1314 else if (XEXP (src, 1) == dest)
1315 other = XEXP (src, 0);
1316
1317 if (! other || find_base_value (other))
1318 new_reg_base_value[regno] = 0;
1319 break;
1320 }
9ae8ffe7 1321 case AND:
481683e1 1322 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1323 new_reg_base_value[regno] = 0;
9ae8ffe7 1324 break;
9ae8ffe7 1325 default:
ec907dd8 1326 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1327 break;
1328 }
1329 /* If this is the first set of a register, record the value. */
1330 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
d630245f 1331 && ! TEST_BIT (reg_seen, regno) && new_reg_base_value[regno] == 0)
ec907dd8 1332 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7 1333
d630245f 1334 SET_BIT (reg_seen, regno);
9ae8ffe7
JL
1335}
1336
8fd0a474
AM
1337/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1338 using hard registers with non-null REG_BASE_VALUE for renaming. */
1339rtx
1340get_reg_base_value (unsigned int regno)
1341{
1342 return VEC_index (rtx, reg_base_value, regno);
1343}
1344
bb1acb3e
RH
1345/* If a value is known for REGNO, return it. */
1346
c22cacf3 1347rtx
bb1acb3e
RH
1348get_reg_known_value (unsigned int regno)
1349{
1350 if (regno >= FIRST_PSEUDO_REGISTER)
1351 {
1352 regno -= FIRST_PSEUDO_REGISTER;
9ff3c7ca
SB
1353 if (regno < VEC_length (rtx, reg_known_value))
1354 return VEC_index (rtx, reg_known_value, regno);
bb1acb3e
RH
1355 }
1356 return NULL;
43fe47ca
JW
1357}
1358
bb1acb3e
RH
1359/* Set it. */
1360
1361static void
1362set_reg_known_value (unsigned int regno, rtx val)
1363{
1364 if (regno >= FIRST_PSEUDO_REGISTER)
1365 {
1366 regno -= FIRST_PSEUDO_REGISTER;
9ff3c7ca
SB
1367 if (regno < VEC_length (rtx, reg_known_value))
1368 VEC_replace (rtx, reg_known_value, regno, val);
bb1acb3e
RH
1369 }
1370}
1371
1372/* Similarly for reg_known_equiv_p. */
1373
1374bool
1375get_reg_known_equiv_p (unsigned int regno)
1376{
1377 if (regno >= FIRST_PSEUDO_REGISTER)
1378 {
1379 regno -= FIRST_PSEUDO_REGISTER;
9ff3c7ca
SB
1380 if (regno < VEC_length (rtx, reg_known_value))
1381 return TEST_BIT (reg_known_equiv_p, regno);
bb1acb3e
RH
1382 }
1383 return false;
1384}
1385
1386static void
1387set_reg_known_equiv_p (unsigned int regno, bool val)
1388{
1389 if (regno >= FIRST_PSEUDO_REGISTER)
1390 {
1391 regno -= FIRST_PSEUDO_REGISTER;
9ff3c7ca
SB
1392 if (regno < VEC_length (rtx, reg_known_value))
1393 {
1394 if (val)
1395 SET_BIT (reg_known_equiv_p, regno);
1396 else
1397 RESET_BIT (reg_known_equiv_p, regno);
1398 }
bb1acb3e
RH
1399 }
1400}
1401
1402
db048faf
MM
1403/* Returns a canonical version of X, from the point of view alias
1404 analysis. (For example, if X is a MEM whose address is a register,
1405 and the register has a known value (say a SYMBOL_REF), then a MEM
1406 whose address is the SYMBOL_REF is returned.) */
1407
1408rtx
4682ae04 1409canon_rtx (rtx x)
9ae8ffe7
JL
1410{
1411 /* Recursively look for equivalences. */
f8cfc6aa 1412 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1413 {
1414 rtx t = get_reg_known_value (REGNO (x));
1415 if (t == x)
1416 return x;
1417 if (t)
1418 return canon_rtx (t);
1419 }
1420
1421 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1422 {
1423 rtx x0 = canon_rtx (XEXP (x, 0));
1424 rtx x1 = canon_rtx (XEXP (x, 1));
1425
1426 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1427 {
481683e1 1428 if (CONST_INT_P (x0))
0a81f074 1429 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
481683e1 1430 else if (CONST_INT_P (x1))
0a81f074 1431 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
38a448ca 1432 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
9ae8ffe7
JL
1433 }
1434 }
d4b60170 1435
9ae8ffe7
JL
1436 /* This gives us much better alias analysis when called from
1437 the loop optimizer. Note we want to leave the original
1438 MEM alone, but need to return the canonicalized MEM with
1439 all the flags with their original values. */
3c0cb5de 1440 else if (MEM_P (x))
f1ec5147 1441 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1442
9ae8ffe7
JL
1443 return x;
1444}
1445
1446/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1447 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1448
1449 We use the data in reg_known_value above to see if two registers with
1450 different numbers are, in fact, equivalent. */
1451
1452static int
ed7a4b4b 1453rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1454{
b3694847
SS
1455 int i;
1456 int j;
1457 enum rtx_code code;
1458 const char *fmt;
9ae8ffe7
JL
1459
1460 if (x == 0 && y == 0)
1461 return 1;
1462 if (x == 0 || y == 0)
1463 return 0;
d4b60170 1464
9ae8ffe7
JL
1465 if (x == y)
1466 return 1;
1467
1468 code = GET_CODE (x);
1469 /* Rtx's of different codes cannot be equal. */
1470 if (code != GET_CODE (y))
1471 return 0;
1472
1473 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1474 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1475
1476 if (GET_MODE (x) != GET_MODE (y))
1477 return 0;
1478
db048faf
MM
1479 /* Some RTL can be compared without a recursive examination. */
1480 switch (code)
1481 {
1482 case REG:
1483 return REGNO (x) == REGNO (y);
1484
1485 case LABEL_REF:
1486 return XEXP (x, 0) == XEXP (y, 0);
ca7fd9cd 1487
db048faf
MM
1488 case SYMBOL_REF:
1489 return XSTR (x, 0) == XSTR (y, 0);
1490
40e02b4a 1491 case VALUE:
d8116890 1492 CASE_CONST_UNIQUE:
db048faf
MM
1493 /* There's no need to compare the contents of CONST_DOUBLEs or
1494 CONST_INTs because pointer equality is a good enough
1495 comparison for these nodes. */
1496 return 0;
1497
db048faf
MM
1498 default:
1499 break;
1500 }
9ae8ffe7 1501
45183e03
JH
1502 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1503 if (code == PLUS)
9ae8ffe7
JL
1504 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1505 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1506 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1507 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1508 /* For commutative operations, the RTX match if the operand match in any
1509 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1510 if (COMMUTATIVE_P (x))
45183e03
JH
1511 {
1512 rtx xop0 = canon_rtx (XEXP (x, 0));
1513 rtx yop0 = canon_rtx (XEXP (y, 0));
1514 rtx yop1 = canon_rtx (XEXP (y, 1));
1515
1516 return ((rtx_equal_for_memref_p (xop0, yop0)
1517 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1518 || (rtx_equal_for_memref_p (xop0, yop1)
1519 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1520 }
ec8e098d 1521 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1522 {
1523 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1524 canon_rtx (XEXP (y, 0)))
45183e03
JH
1525 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1526 canon_rtx (XEXP (y, 1))));
1527 }
ec8e098d 1528 else if (UNARY_P (x))
45183e03 1529 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1530 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1531
1532 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1533 fail to match, return 0 for the whole things.
1534
1535 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1536
1537 fmt = GET_RTX_FORMAT (code);
1538 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1539 {
1540 switch (fmt[i])
1541 {
9ae8ffe7
JL
1542 case 'i':
1543 if (XINT (x, i) != XINT (y, i))
1544 return 0;
1545 break;
1546
9ae8ffe7
JL
1547 case 'E':
1548 /* Two vectors must have the same length. */
1549 if (XVECLEN (x, i) != XVECLEN (y, i))
1550 return 0;
1551
1552 /* And the corresponding elements must match. */
1553 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1554 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1555 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1556 return 0;
1557 break;
1558
1559 case 'e':
45183e03
JH
1560 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1561 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1562 return 0;
1563 break;
1564
3237ac18
AH
1565 /* This can happen for asm operands. */
1566 case 's':
1567 if (strcmp (XSTR (x, i), XSTR (y, i)))
1568 return 0;
1569 break;
1570
aee21ba9
JL
1571 /* This can happen for an asm which clobbers memory. */
1572 case '0':
1573 break;
1574
9ae8ffe7
JL
1575 /* It is believed that rtx's at this level will never
1576 contain anything but integers and other rtx's,
1577 except for within LABEL_REFs and SYMBOL_REFs. */
1578 default:
298e6adc 1579 gcc_unreachable ();
9ae8ffe7
JL
1580 }
1581 }
1582 return 1;
1583}
1584
9e412ca3 1585static rtx
4682ae04 1586find_base_term (rtx x)
9ae8ffe7 1587{
eab5c70a 1588 cselib_val *val;
6f2ffb4b
AO
1589 struct elt_loc_list *l, *f;
1590 rtx ret;
eab5c70a 1591
b949ea8b
JW
1592#if defined (FIND_BASE_TERM)
1593 /* Try machine-dependent ways to find the base term. */
1594 x = FIND_BASE_TERM (x);
1595#endif
1596
9ae8ffe7
JL
1597 switch (GET_CODE (x))
1598 {
1599 case REG:
1600 return REG_BASE_VALUE (x);
1601
d288e53d 1602 case TRUNCATE:
5932a4d4 1603 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1604 handle this only if the target does not support different pointer or
1605 address modes depending on the address space. */
1606 if (!target_default_pointer_address_modes_p ())
1607 return 0;
d288e53d 1608 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
ca7fd9cd 1609 return 0;
d288e53d 1610 /* Fall through. */
9ae8ffe7 1611 case HIGH:
6d849a2a
JL
1612 case PRE_INC:
1613 case PRE_DEC:
1614 case POST_INC:
1615 case POST_DEC:
d288e53d
DE
1616 case PRE_MODIFY:
1617 case POST_MODIFY:
6d849a2a
JL
1618 return find_base_term (XEXP (x, 0));
1619
1abade85
RK
1620 case ZERO_EXTEND:
1621 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
5932a4d4 1622 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1623 handle this only if the target does not support different pointer or
1624 address modes depending on the address space. */
1625 if (!target_default_pointer_address_modes_p ())
1626 return 0;
1627
1abade85
RK
1628 {
1629 rtx temp = find_base_term (XEXP (x, 0));
1630
5ae6cd0d 1631 if (temp != 0 && CONSTANT_P (temp))
1abade85 1632 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1633
1634 return temp;
1635 }
1636
eab5c70a
BS
1637 case VALUE:
1638 val = CSELIB_VAL_PTR (x);
6f2ffb4b
AO
1639 ret = NULL_RTX;
1640
40e02b4a 1641 if (!val)
6f2ffb4b
AO
1642 return ret;
1643
1644 f = val->locs;
1645 /* Temporarily reset val->locs to avoid infinite recursion. */
1646 val->locs = NULL;
1647
1648 for (l = f; l; l = l->next)
1649 if (GET_CODE (l->loc) == VALUE
1650 && CSELIB_VAL_PTR (l->loc)->locs
1651 && !CSELIB_VAL_PTR (l->loc)->locs->next
1652 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1653 continue;
1654 else if ((ret = find_base_term (l->loc)) != 0)
1655 break;
1656
1657 val->locs = f;
1658 return ret;
eab5c70a 1659
023f059b
JJ
1660 case LO_SUM:
1661 /* The standard form is (lo_sum reg sym) so look only at the
1662 second operand. */
1663 return find_base_term (XEXP (x, 1));
1664
9ae8ffe7
JL
1665 case CONST:
1666 x = XEXP (x, 0);
1667 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1668 return 0;
938d968e 1669 /* Fall through. */
9ae8ffe7
JL
1670 case PLUS:
1671 case MINUS:
1672 {
3c567fae
JL
1673 rtx tmp1 = XEXP (x, 0);
1674 rtx tmp2 = XEXP (x, 1);
1675
f5143c46 1676 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
1677 the two operands represents the real base address. Otherwise this
1678 routine may return the index register instead of the base register.
1679
1680 That may cause us to believe no aliasing was possible, when in
1681 fact aliasing is possible.
1682
1683 We use a few simple tests to guess the base register. Additional
1684 tests can certainly be added. For example, if one of the operands
1685 is a shift or multiply, then it must be the index register and the
1686 other operand is the base register. */
ca7fd9cd 1687
b949ea8b
JW
1688 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1689 return find_base_term (tmp2);
1690
3c567fae
JL
1691 /* If either operand is known to be a pointer, then use it
1692 to determine the base term. */
3502dc9c 1693 if (REG_P (tmp1) && REG_POINTER (tmp1))
7eba2d1f
LM
1694 {
1695 rtx base = find_base_term (tmp1);
1696 if (base)
1697 return base;
1698 }
3c567fae 1699
3502dc9c 1700 if (REG_P (tmp2) && REG_POINTER (tmp2))
7eba2d1f
LM
1701 {
1702 rtx base = find_base_term (tmp2);
1703 if (base)
1704 return base;
1705 }
3c567fae
JL
1706
1707 /* Neither operand was known to be a pointer. Go ahead and find the
1708 base term for both operands. */
1709 tmp1 = find_base_term (tmp1);
1710 tmp2 = find_base_term (tmp2);
1711
1712 /* If either base term is named object or a special address
1713 (like an argument or stack reference), then use it for the
1714 base term. */
9fc37b2b 1715 if (tmp1 != 0 && known_base_value_p (tmp1))
3c567fae
JL
1716 return tmp1;
1717
9fc37b2b 1718 if (tmp2 != 0 && known_base_value_p (tmp2))
3c567fae
JL
1719 return tmp2;
1720
1721 /* We could not determine which of the two operands was the
1722 base register and which was the index. So we can determine
1723 nothing from the base alias check. */
1724 return 0;
9ae8ffe7
JL
1725 }
1726
1727 case AND:
481683e1 1728 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
d288e53d 1729 return find_base_term (XEXP (x, 0));
9ae8ffe7
JL
1730 return 0;
1731
1732 case SYMBOL_REF:
1733 case LABEL_REF:
1734 return x;
1735
1736 default:
1737 return 0;
1738 }
1739}
1740
9e412ca3
RS
1741/* Return true if accesses to address X may alias accesses based
1742 on the stack pointer. */
1743
1744bool
1745may_be_sp_based_p (rtx x)
1746{
1747 rtx base = find_base_term (x);
1748 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1749}
1750
9ae8ffe7
JL
1751/* Return 0 if the addresses X and Y are known to point to different
1752 objects, 1 if they might be pointers to the same object. */
1753
1754static int
4682ae04
AJ
1755base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1756 enum machine_mode y_mode)
9ae8ffe7
JL
1757{
1758 rtx x_base = find_base_term (x);
1759 rtx y_base = find_base_term (y);
1760
1c72c7f6
JC
1761 /* If the address itself has no known base see if a known equivalent
1762 value has one. If either address still has no known base, nothing
1763 is known about aliasing. */
1764 if (x_base == 0)
1765 {
1766 rtx x_c;
d4b60170 1767
1c72c7f6
JC
1768 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1769 return 1;
d4b60170 1770
1c72c7f6
JC
1771 x_base = find_base_term (x_c);
1772 if (x_base == 0)
1773 return 1;
1774 }
9ae8ffe7 1775
1c72c7f6
JC
1776 if (y_base == 0)
1777 {
1778 rtx y_c;
1779 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1780 return 1;
d4b60170 1781
1c72c7f6
JC
1782 y_base = find_base_term (y_c);
1783 if (y_base == 0)
1784 return 1;
1785 }
1786
1787 /* If the base addresses are equal nothing is known about aliasing. */
1788 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
1789 return 1;
1790
435da628
UB
1791 /* The base addresses are different expressions. If they are not accessed
1792 via AND, there is no conflict. We can bring knowledge of object
1793 alignment into play here. For example, on alpha, "char a, b;" can
1794 alias one another, though "char a; long b;" cannot. AND addesses may
1795 implicitly alias surrounding objects; i.e. unaligned access in DImode
1796 via AND address can alias all surrounding object types except those
1797 with aligment 8 or higher. */
1798 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1799 return 1;
1800 if (GET_CODE (x) == AND
481683e1 1801 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
1802 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1803 return 1;
1804 if (GET_CODE (y) == AND
481683e1 1805 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
1806 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1807 return 1;
1808
1809 /* Differing symbols not accessed via AND never alias. */
9ae8ffe7 1810 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 1811 return 0;
9ae8ffe7 1812
9fc37b2b 1813 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
9ae8ffe7
JL
1814 return 0;
1815
0d3c82d6 1816 return 1;
9ae8ffe7
JL
1817}
1818
a5628378
AO
1819/* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1820 whose UID is greater than the int uid that D points to. */
1821
1822static int
1823refs_newer_value_cb (rtx *x, void *d)
1824{
1825 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1826 return 1;
1827
1828 return 0;
1829}
1830
1831/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1832 that of V. */
1833
1834static bool
1835refs_newer_value_p (rtx expr, rtx v)
1836{
1837 int minuid = CSELIB_VAL_PTR (v)->uid;
1838
1839 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1840}
1841
eab5c70a
BS
1842/* Convert the address X into something we can use. This is done by returning
1843 it unchanged unless it is a value; in the latter case we call cselib to get
1844 a more useful rtx. */
3bdf5ad1 1845
a13d4ebf 1846rtx
4682ae04 1847get_addr (rtx x)
eab5c70a
BS
1848{
1849 cselib_val *v;
1850 struct elt_loc_list *l;
1851
1852 if (GET_CODE (x) != VALUE)
1853 return x;
1854 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
1855 if (v)
1856 {
0f68ba3e
AO
1857 bool have_equivs = cselib_have_permanent_equivalences ();
1858 if (have_equivs)
1859 v = canonical_cselib_val (v);
40e02b4a
JH
1860 for (l = v->locs; l; l = l->next)
1861 if (CONSTANT_P (l->loc))
1862 return l->loc;
1863 for (l = v->locs; l; l = l->next)
0f68ba3e
AO
1864 if (!REG_P (l->loc) && !MEM_P (l->loc)
1865 /* Avoid infinite recursion when potentially dealing with
1866 var-tracking artificial equivalences, by skipping the
1867 equivalences themselves, and not choosing expressions
1868 that refer to newer VALUEs. */
1869 && (!have_equivs
1870 || (GET_CODE (l->loc) != VALUE
1871 && !refs_newer_value_p (l->loc, x))))
a5628378 1872 return l->loc;
0f68ba3e
AO
1873 if (have_equivs)
1874 {
1875 for (l = v->locs; l; l = l->next)
1876 if (REG_P (l->loc)
1877 || (GET_CODE (l->loc) != VALUE
1878 && !refs_newer_value_p (l->loc, x)))
1879 return l->loc;
1880 /* Return the canonical value. */
1881 return v->val_rtx;
1882 }
1883 if (v->locs)
1884 return v->locs->loc;
40e02b4a 1885 }
eab5c70a
BS
1886 return x;
1887}
1888
39cec1ac
MH
1889/* Return the address of the (N_REFS + 1)th memory reference to ADDR
1890 where SIZE is the size in bytes of the memory reference. If ADDR
1891 is not modified by the memory reference then ADDR is returned. */
1892
04e2b4d3 1893static rtx
4682ae04 1894addr_side_effect_eval (rtx addr, int size, int n_refs)
39cec1ac
MH
1895{
1896 int offset = 0;
ca7fd9cd 1897
39cec1ac
MH
1898 switch (GET_CODE (addr))
1899 {
1900 case PRE_INC:
1901 offset = (n_refs + 1) * size;
1902 break;
1903 case PRE_DEC:
1904 offset = -(n_refs + 1) * size;
1905 break;
1906 case POST_INC:
1907 offset = n_refs * size;
1908 break;
1909 case POST_DEC:
1910 offset = -n_refs * size;
1911 break;
1912
1913 default:
1914 return addr;
1915 }
ca7fd9cd 1916
39cec1ac 1917 if (offset)
45183e03 1918 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
c22cacf3 1919 GEN_INT (offset));
39cec1ac
MH
1920 else
1921 addr = XEXP (addr, 0);
45183e03 1922 addr = canon_rtx (addr);
39cec1ac
MH
1923
1924 return addr;
1925}
1926
f47e08d9
RG
1927/* Return one if X and Y (memory addresses) reference the
1928 same location in memory or if the references overlap.
1929 Return zero if they do not overlap, else return
1930 minus one in which case they still might reference the same location.
1931
1932 C is an offset accumulator. When
9ae8ffe7
JL
1933 C is nonzero, we are testing aliases between X and Y + C.
1934 XSIZE is the size in bytes of the X reference,
1935 similarly YSIZE is the size in bytes for Y.
45183e03 1936 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
1937
1938 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1939 referenced (the reference was BLKmode), so make the most pessimistic
1940 assumptions.
1941
c02f035f
RH
1942 If XSIZE or YSIZE is negative, we may access memory outside the object
1943 being referenced as a side effect. This can happen when using AND to
1944 align memory references, as is done on the Alpha.
1945
9ae8ffe7 1946 Nice to notice that varying addresses cannot conflict with fp if no
f47e08d9
RG
1947 local variables had their addresses taken, but that's too hard now.
1948
1949 ??? Contrary to the tree alias oracle this does not return
1950 one for X + non-constant and Y + non-constant when X and Y are equal.
1951 If that is fixed the TBAA hack for union type-punning can be removed. */
9ae8ffe7 1952
9ae8ffe7 1953static int
4682ae04 1954memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
9ae8ffe7 1955{
eab5c70a 1956 if (GET_CODE (x) == VALUE)
5312b066
JJ
1957 {
1958 if (REG_P (y))
1959 {
24f8d71e
JJ
1960 struct elt_loc_list *l = NULL;
1961 if (CSELIB_VAL_PTR (x))
a5628378
AO
1962 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
1963 l; l = l->next)
24f8d71e
JJ
1964 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1965 break;
5312b066
JJ
1966 if (l)
1967 x = y;
1968 else
1969 x = get_addr (x);
1970 }
1971 /* Don't call get_addr if y is the same VALUE. */
1972 else if (x != y)
1973 x = get_addr (x);
1974 }
eab5c70a 1975 if (GET_CODE (y) == VALUE)
5312b066
JJ
1976 {
1977 if (REG_P (x))
1978 {
24f8d71e
JJ
1979 struct elt_loc_list *l = NULL;
1980 if (CSELIB_VAL_PTR (y))
a5628378
AO
1981 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
1982 l; l = l->next)
24f8d71e
JJ
1983 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1984 break;
5312b066
JJ
1985 if (l)
1986 y = x;
1987 else
1988 y = get_addr (y);
1989 }
1990 /* Don't call get_addr if x is the same VALUE. */
1991 else if (y != x)
1992 y = get_addr (y);
1993 }
9ae8ffe7
JL
1994 if (GET_CODE (x) == HIGH)
1995 x = XEXP (x, 0);
1996 else if (GET_CODE (x) == LO_SUM)
1997 x = XEXP (x, 1);
1998 else
45183e03 1999 x = addr_side_effect_eval (x, xsize, 0);
9ae8ffe7
JL
2000 if (GET_CODE (y) == HIGH)
2001 y = XEXP (y, 0);
2002 else if (GET_CODE (y) == LO_SUM)
2003 y = XEXP (y, 1);
2004 else
45183e03 2005 y = addr_side_effect_eval (y, ysize, 0);
9ae8ffe7
JL
2006
2007 if (rtx_equal_for_memref_p (x, y))
2008 {
c02f035f 2009 if (xsize <= 0 || ysize <= 0)
9ae8ffe7
JL
2010 return 1;
2011 if (c >= 0 && xsize > c)
2012 return 1;
2013 if (c < 0 && ysize+c > 0)
2014 return 1;
2015 return 0;
2016 }
2017
6e73e666
JC
2018 /* This code used to check for conflicts involving stack references and
2019 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
2020
2021 if (GET_CODE (x) == PLUS)
2022 {
2023 /* The fact that X is canonicalized means that this
2024 PLUS rtx is canonicalized. */
2025 rtx x0 = XEXP (x, 0);
2026 rtx x1 = XEXP (x, 1);
2027
2028 if (GET_CODE (y) == PLUS)
2029 {
2030 /* The fact that Y is canonicalized means that this
2031 PLUS rtx is canonicalized. */
2032 rtx y0 = XEXP (y, 0);
2033 rtx y1 = XEXP (y, 1);
2034
2035 if (rtx_equal_for_memref_p (x1, y1))
2036 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2037 if (rtx_equal_for_memref_p (x0, y0))
2038 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
481683e1 2039 if (CONST_INT_P (x1))
63be02db 2040 {
481683e1 2041 if (CONST_INT_P (y1))
63be02db
JM
2042 return memrefs_conflict_p (xsize, x0, ysize, y0,
2043 c - INTVAL (x1) + INTVAL (y1));
2044 else
2045 return memrefs_conflict_p (xsize, x0, ysize, y,
2046 c - INTVAL (x1));
2047 }
481683e1 2048 else if (CONST_INT_P (y1))
9ae8ffe7
JL
2049 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2050
f47e08d9 2051 return -1;
9ae8ffe7 2052 }
481683e1 2053 else if (CONST_INT_P (x1))
9ae8ffe7
JL
2054 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2055 }
2056 else if (GET_CODE (y) == PLUS)
2057 {
2058 /* The fact that Y is canonicalized means that this
2059 PLUS rtx is canonicalized. */
2060 rtx y0 = XEXP (y, 0);
2061 rtx y1 = XEXP (y, 1);
2062
481683e1 2063 if (CONST_INT_P (y1))
9ae8ffe7
JL
2064 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2065 else
f47e08d9 2066 return -1;
9ae8ffe7
JL
2067 }
2068
2069 if (GET_CODE (x) == GET_CODE (y))
2070 switch (GET_CODE (x))
2071 {
2072 case MULT:
2073 {
2074 /* Handle cases where we expect the second operands to be the
2075 same, and check only whether the first operand would conflict
2076 or not. */
2077 rtx x0, y0;
2078 rtx x1 = canon_rtx (XEXP (x, 1));
2079 rtx y1 = canon_rtx (XEXP (y, 1));
2080 if (! rtx_equal_for_memref_p (x1, y1))
f47e08d9 2081 return -1;
9ae8ffe7
JL
2082 x0 = canon_rtx (XEXP (x, 0));
2083 y0 = canon_rtx (XEXP (y, 0));
2084 if (rtx_equal_for_memref_p (x0, y0))
2085 return (xsize == 0 || ysize == 0
2086 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2087
2088 /* Can't properly adjust our sizes. */
481683e1 2089 if (!CONST_INT_P (x1))
f47e08d9 2090 return -1;
9ae8ffe7
JL
2091 xsize /= INTVAL (x1);
2092 ysize /= INTVAL (x1);
2093 c /= INTVAL (x1);
2094 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2095 }
1d300e19
KG
2096
2097 default:
2098 break;
9ae8ffe7
JL
2099 }
2100
a9bf4fe2
AO
2101 /* Deal with alignment ANDs by adjusting offset and size so as to
2102 cover the maximum range, without taking any previously known
2103 alignment into account. */
481683e1 2104 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 2105 {
a9bf4fe2
AO
2106 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2107 unsigned HOST_WIDE_INT uc = sc;
2108 if (xsize > 0 && sc < 0 && -uc == (uc & -uc))
2109 {
2110 xsize -= sc + 1;
fe8fb1c4 2111 c -= sc + 1;
a9bf4fe2
AO
2112 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2113 ysize, y, c);
2114 }
56ee9281 2115 }
481683e1 2116 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 2117 {
a9bf4fe2
AO
2118 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2119 unsigned HOST_WIDE_INT uc = sc;
2120 if (ysize > 0 && sc < 0 && -uc == (uc & -uc))
2121 {
2122 ysize -= sc + 1;
fe8fb1c4 2123 c += sc + 1;
a9bf4fe2
AO
2124 return memrefs_conflict_p (xsize, x,
2125 ysize, canon_rtx (XEXP (y, 0)), c);
2126 }
c02f035f 2127 }
9ae8ffe7
JL
2128
2129 if (CONSTANT_P (x))
2130 {
481683e1 2131 if (CONST_INT_P (x) && CONST_INT_P (y))
9ae8ffe7
JL
2132 {
2133 c += (INTVAL (y) - INTVAL (x));
c02f035f 2134 return (xsize <= 0 || ysize <= 0
9ae8ffe7
JL
2135 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2136 }
2137
2138 if (GET_CODE (x) == CONST)
2139 {
2140 if (GET_CODE (y) == CONST)
2141 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2142 ysize, canon_rtx (XEXP (y, 0)), c);
2143 else
2144 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2145 ysize, y, c);
2146 }
2147 if (GET_CODE (y) == CONST)
2148 return memrefs_conflict_p (xsize, x, ysize,
2149 canon_rtx (XEXP (y, 0)), c);
2150
2151 if (CONSTANT_P (y))
b949ea8b 2152 return (xsize <= 0 || ysize <= 0
c02f035f 2153 || (rtx_equal_for_memref_p (x, y)
b949ea8b 2154 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
9ae8ffe7 2155
f47e08d9 2156 return -1;
9ae8ffe7 2157 }
f47e08d9
RG
2158
2159 return -1;
9ae8ffe7
JL
2160}
2161
2162/* Functions to compute memory dependencies.
2163
2164 Since we process the insns in execution order, we can build tables
2165 to keep track of what registers are fixed (and not aliased), what registers
2166 are varying in known ways, and what registers are varying in unknown
2167 ways.
2168
2169 If both memory references are volatile, then there must always be a
2170 dependence between the two references, since their order can not be
2171 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 2172 though.
9ae8ffe7 2173
53d9622b
RS
2174 We also must allow AND addresses, because they may generate accesses
2175 outside the object being referenced. This is used to generate aligned
2176 addresses from unaligned addresses, for instance, the alpha
dc1618bc 2177 storeqi_unaligned pattern. */
9ae8ffe7
JL
2178
2179/* Read dependence: X is read after read in MEM takes place. There can
96672a3e
RH
2180 only be a dependence here if both reads are volatile, or if either is
2181 an explicit barrier. */
9ae8ffe7
JL
2182
2183int
4f588890 2184read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2185{
96672a3e
RH
2186 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2187 return true;
2188 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2189 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2190 return true;
2191 return false;
9ae8ffe7
JL
2192}
2193
998d7deb
RH
2194/* Return true if we can determine that the fields referenced cannot
2195 overlap for any pair of objects. */
2196
2197static bool
175a7536 2198nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
998d7deb 2199{
175a7536 2200 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
4f588890 2201 const_tree fieldx, fieldy, typex, typey, orig_y;
998d7deb 2202
175a7536
MM
2203 if (!flag_strict_aliasing
2204 || !x || !y
2205 || TREE_CODE (x) != COMPONENT_REF
2206 || TREE_CODE (y) != COMPONENT_REF)
4c7af939
AB
2207 return false;
2208
998d7deb
RH
2209 do
2210 {
2211 /* The comparison has to be done at a common type, since we don't
d6a7951f 2212 know how the inheritance hierarchy works. */
998d7deb
RH
2213 orig_y = y;
2214 do
2215 {
2216 fieldx = TREE_OPERAND (x, 1);
c05a0766 2217 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
998d7deb
RH
2218
2219 y = orig_y;
2220 do
2221 {
2222 fieldy = TREE_OPERAND (y, 1);
c05a0766 2223 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
998d7deb
RH
2224
2225 if (typex == typey)
2226 goto found;
2227
2228 y = TREE_OPERAND (y, 0);
2229 }
2230 while (y && TREE_CODE (y) == COMPONENT_REF);
2231
2232 x = TREE_OPERAND (x, 0);
2233 }
2234 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb 2235 /* Never found a common type. */
c05a0766 2236 return false;
998d7deb
RH
2237
2238 found:
2239 /* If we're left with accessing different fields of a structure,
2240 then no overlap. */
2241 if (TREE_CODE (typex) == RECORD_TYPE
2242 && fieldx != fieldy)
2243 return true;
2244
2245 /* The comparison on the current field failed. If we're accessing
2246 a very nested structure, look at the next outer level. */
2247 x = TREE_OPERAND (x, 0);
2248 y = TREE_OPERAND (y, 0);
2249 }
2250 while (x && y
2251 && TREE_CODE (x) == COMPONENT_REF
2252 && TREE_CODE (y) == COMPONENT_REF);
ca7fd9cd 2253
998d7deb
RH
2254 return false;
2255}
2256
2257/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2258
2259static tree
4682ae04 2260decl_for_component_ref (tree x)
998d7deb
RH
2261{
2262 do
2263 {
2264 x = TREE_OPERAND (x, 0);
2265 }
2266 while (x && TREE_CODE (x) == COMPONENT_REF);
2267
2268 return x && DECL_P (x) ? x : NULL_TREE;
2269}
2270
527210c4
RS
2271/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2272 for the offset of the field reference. *KNOWN_P says whether the
2273 offset is known. */
998d7deb 2274
527210c4
RS
2275static void
2276adjust_offset_for_component_ref (tree x, bool *known_p,
2277 HOST_WIDE_INT *offset)
998d7deb 2278{
527210c4
RS
2279 if (!*known_p)
2280 return;
ca7fd9cd 2281 do
998d7deb 2282 {
527210c4 2283 tree xoffset = component_ref_field_offset (x);
998d7deb
RH
2284 tree field = TREE_OPERAND (x, 1);
2285
527210c4
RS
2286 if (! host_integerp (xoffset, 1))
2287 {
2288 *known_p = false;
2289 return;
2290 }
2291 *offset += (tree_low_cst (xoffset, 1)
998d7deb
RH
2292 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2293 / BITS_PER_UNIT));
2294
2295 x = TREE_OPERAND (x, 0);
2296 }
2297 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb
RH
2298}
2299
95bd1dd7 2300/* Return nonzero if we can determine the exprs corresponding to memrefs
c6ea834c
BM
2301 X and Y and they do not overlap.
2302 If LOOP_VARIANT is set, skip offset-based disambiguation */
a4311dfe 2303
2e4e39f6 2304int
c6ea834c 2305nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
a4311dfe 2306{
998d7deb 2307 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2308 rtx rtlx, rtly;
2309 rtx basex, basey;
527210c4
RS
2310 bool moffsetx_known_p, moffsety_known_p;
2311 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
a4311dfe
RK
2312 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2313
998d7deb
RH
2314 /* Unless both have exprs, we can't tell anything. */
2315 if (exprx == 0 || expry == 0)
2316 return 0;
2b22e382
RG
2317
2318 /* For spill-slot accesses make sure we have valid offsets. */
2319 if ((exprx == get_spill_slot_decl (false)
527210c4 2320 && ! MEM_OFFSET_KNOWN_P (x))
2b22e382 2321 || (expry == get_spill_slot_decl (false)
527210c4 2322 && ! MEM_OFFSET_KNOWN_P (y)))
2b22e382 2323 return 0;
c22cacf3 2324
998d7deb 2325 /* If the field reference test failed, look at the DECLs involved. */
527210c4
RS
2326 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2327 if (moffsetx_known_p)
2328 moffsetx = MEM_OFFSET (x);
998d7deb
RH
2329 if (TREE_CODE (exprx) == COMPONENT_REF)
2330 {
2e0c984c
RG
2331 tree t = decl_for_component_ref (exprx);
2332 if (! t)
2333 return 0;
527210c4 2334 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2e0c984c 2335 exprx = t;
998d7deb 2336 }
c67a1cf6 2337
527210c4
RS
2338 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2339 if (moffsety_known_p)
2340 moffsety = MEM_OFFSET (y);
998d7deb
RH
2341 if (TREE_CODE (expry) == COMPONENT_REF)
2342 {
2e0c984c
RG
2343 tree t = decl_for_component_ref (expry);
2344 if (! t)
2345 return 0;
527210c4 2346 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2e0c984c 2347 expry = t;
998d7deb
RH
2348 }
2349
2350 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2351 return 0;
2352
1307c758
RG
2353 /* With invalid code we can end up storing into the constant pool.
2354 Bail out to avoid ICEing when creating RTL for this.
2355 See gfortran.dg/lto/20091028-2_0.f90. */
2356 if (TREE_CODE (exprx) == CONST_DECL
2357 || TREE_CODE (expry) == CONST_DECL)
2358 return 1;
2359
998d7deb
RH
2360 rtlx = DECL_RTL (exprx);
2361 rtly = DECL_RTL (expry);
a4311dfe 2362
1edcd60b
RK
2363 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2364 can't overlap unless they are the same because we never reuse that part
2365 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2366 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2367 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2368 return 1;
2369
5932a4d4 2370 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2371 potentially overlap), we cannot easily tell from the addresses
2372 whether the references overlap. */
2373 if (MEM_P (rtlx) && MEM_P (rtly)
2374 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2375 return 0;
2376
a4311dfe
RK
2377 /* Get the base and offsets of both decls. If either is a register, we
2378 know both are and are the same, so use that as the base. The only
2379 we can avoid overlap is if we can deduce that they are nonoverlapping
2380 pieces of that decl, which is very rare. */
3c0cb5de 2381 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
481683e1 2382 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
a4311dfe
RK
2383 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2384
3c0cb5de 2385 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
481683e1 2386 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
a4311dfe
RK
2387 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2388
d746694a 2389 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2390 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2391 stack frame. Otherwise a different base means we can't tell if they
2392 overlap or not. */
2393 if (! rtx_equal_p (basex, basey))
ca7fd9cd
KH
2394 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2395 || (CONSTANT_P (basex) && REG_P (basey)
2396 && REGNO_PTR_FRAME_P (REGNO (basey)))
2397 || (CONSTANT_P (basey) && REG_P (basex)
2398 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2399
c6ea834c
BM
2400 /* Offset based disambiguation not appropriate for loop invariant */
2401 if (loop_invariant)
2402 return 0;
2403
3c0cb5de 2404 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
f5541398 2405 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
a4311dfe 2406 : -1);
3c0cb5de 2407 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
f5541398
RS
2408 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2409 : -1);
a4311dfe 2410
0af5bc3e
RK
2411 /* If we have an offset for either memref, it can update the values computed
2412 above. */
527210c4
RS
2413 if (moffsetx_known_p)
2414 offsetx += moffsetx, sizex -= moffsetx;
2415 if (moffsety_known_p)
2416 offsety += moffsety, sizey -= moffsety;
a4311dfe 2417
0af5bc3e 2418 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2419 We can't do this if the offset isn't known because we must view this
0af5bc3e 2420 memref as being anywhere inside the DECL's MEM. */
527210c4 2421 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
f5541398 2422 sizex = MEM_SIZE (x);
527210c4 2423 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
f5541398 2424 sizey = MEM_SIZE (y);
a4311dfe
RK
2425
2426 /* Put the values of the memref with the lower offset in X's values. */
2427 if (offsetx > offsety)
2428 {
2429 tem = offsetx, offsetx = offsety, offsety = tem;
2430 tem = sizex, sizex = sizey, sizey = tem;
2431 }
2432
2433 /* If we don't know the size of the lower-offset value, we can't tell
2434 if they conflict. Otherwise, we do the test. */
a6f7c915 2435 return sizex >= 0 && offsety >= offsetx + sizex;
a4311dfe
RK
2436}
2437
9362286d
SB
2438/* Helper for true_dependence and canon_true_dependence.
2439 Checks for true dependence: X is read after store in MEM takes place.
9ae8ffe7 2440
9362286d
SB
2441 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2442 NULL_RTX, and the canonical addresses of MEM and X are both computed
2443 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2444
2445 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2446
2447 Returns 1 if there is a true dependence, 0 otherwise. */
2448
2449static int
2450true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
53d9622b 2451 const_rtx x, rtx x_addr, bool mem_canonicalized)
9ae8ffe7 2452{
49982682 2453 rtx base;
f47e08d9 2454 int ret;
9ae8ffe7 2455
9362286d
SB
2456 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2457 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2458
9ae8ffe7
JL
2459 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2460 return 1;
2461
c4484b8f 2462 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2463 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
2464 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2465 return 1;
2466 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2467 return 1;
9cd9e512
RH
2468 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2469 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2470 return 1;
c4484b8f 2471
389fdba0
RH
2472 /* Read-only memory is by definition never modified, and therefore can't
2473 conflict with anything. We don't expect to find read-only set on MEM,
41806d92 2474 but stupid user tricks can produce them, so don't die. */
389fdba0 2475 if (MEM_READONLY_P (x))
9ae8ffe7
JL
2476 return 0;
2477
5932a4d4 2478 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2479 potentially overlap), we cannot easily tell from the addresses
2480 whether the references overlap. */
2481 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2482 return 1;
2483
9362286d
SB
2484 if (! mem_addr)
2485 {
2486 mem_addr = XEXP (mem, 0);
2487 if (mem_mode == VOIDmode)
2488 mem_mode = GET_MODE (mem);
2489 }
2490
2491 if (! x_addr)
2147c71c 2492 {
a522de15
SB
2493 x_addr = XEXP (x, 0);
2494 if (!((GET_CODE (x_addr) == VALUE
2495 && GET_CODE (mem_addr) != VALUE
2496 && reg_mentioned_p (x_addr, mem_addr))
2497 || (GET_CODE (x_addr) != VALUE
2498 && GET_CODE (mem_addr) == VALUE
2499 && reg_mentioned_p (mem_addr, x_addr))))
2500 {
2501 x_addr = get_addr (x_addr);
2502 if (! mem_canonicalized)
2503 mem_addr = get_addr (mem_addr);
2504 }
2147c71c 2505 }
eab5c70a 2506
55efb413
JW
2507 base = find_base_term (x_addr);
2508 if (base && (GET_CODE (base) == LABEL_REF
2509 || (GET_CODE (base) == SYMBOL_REF
2510 && CONSTANT_POOL_ADDRESS_P (base))))
2511 return 0;
2512
eab5c70a 2513 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1c72c7f6
JC
2514 return 0;
2515
eab5c70a 2516 x_addr = canon_rtx (x_addr);
9362286d
SB
2517 if (!mem_canonicalized)
2518 mem_addr = canon_rtx (mem_addr);
6e73e666 2519
f47e08d9
RG
2520 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2521 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2522 return ret;
2523
a95b3cc7 2524 if (mems_in_disjoint_alias_sets_p (x, mem))
f47e08d9
RG
2525 return 0;
2526
c6ea834c 2527 if (nonoverlapping_memrefs_p (mem, x, false))
0211b6ab 2528 return 0;
175a7536
MM
2529
2530 if (nonoverlapping_component_refs_p (mem, x))
2531 return 0;
0211b6ab 2532
55b34b5f 2533 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
2534}
2535
9362286d
SB
2536/* True dependence: X is read after store in MEM takes place. */
2537
2538int
53d9622b 2539true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
9362286d
SB
2540{
2541 return true_dependence_1 (mem, mem_mode, NULL_RTX,
53d9622b 2542 x, NULL_RTX, /*mem_canonicalized=*/false);
9362286d
SB
2543}
2544
a13d4ebf 2545/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
2546 Variant of true_dependence which assumes MEM has already been
2547 canonicalized (hence we no longer do that here).
9362286d
SB
2548 The mem_addr argument has been added, since true_dependence_1 computed
2549 this value prior to canonicalizing. */
a13d4ebf
AM
2550
2551int
4f588890 2552canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
53d9622b 2553 const_rtx x, rtx x_addr)
a13d4ebf 2554{
9362286d 2555 return true_dependence_1 (mem, mem_mode, mem_addr,
53d9622b 2556 x, x_addr, /*mem_canonicalized=*/true);
9ae8ffe7
JL
2557}
2558
da7d8304 2559/* Returns nonzero if a write to X might alias a previous read from
389fdba0 2560 (or, if WRITEP is nonzero, a write to) MEM. */
9ae8ffe7 2561
2c72b78f 2562static int
4f588890 2563write_dependence_p (const_rtx mem, const_rtx x, int writep)
9ae8ffe7 2564{
6e73e666 2565 rtx x_addr, mem_addr;
49982682 2566 rtx base;
f47e08d9 2567 int ret;
6e73e666 2568
9ae8ffe7
JL
2569 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2570 return 1;
2571
c4484b8f
RH
2572 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2573 This is used in epilogue deallocation functions. */
2574 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2575 return 1;
2576 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2577 return 1;
9cd9e512
RH
2578 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2579 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2580 return 1;
c4484b8f 2581
389fdba0
RH
2582 /* A read from read-only memory can't conflict with read-write memory. */
2583 if (!writep && MEM_READONLY_P (mem))
2584 return 0;
55efb413 2585
5932a4d4 2586 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2587 potentially overlap), we cannot easily tell from the addresses
2588 whether the references overlap. */
2589 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2590 return 1;
2591
2147c71c
L
2592 x_addr = XEXP (x, 0);
2593 mem_addr = XEXP (mem, 0);
2594 if (!((GET_CODE (x_addr) == VALUE
2595 && GET_CODE (mem_addr) != VALUE
2596 && reg_mentioned_p (x_addr, mem_addr))
2597 || (GET_CODE (x_addr) != VALUE
2598 && GET_CODE (mem_addr) == VALUE
2599 && reg_mentioned_p (mem_addr, x_addr))))
2600 {
2601 x_addr = get_addr (x_addr);
2602 mem_addr = get_addr (mem_addr);
2603 }
55efb413 2604
49982682
JW
2605 if (! writep)
2606 {
55efb413 2607 base = find_base_term (mem_addr);
49982682
JW
2608 if (base && (GET_CODE (base) == LABEL_REF
2609 || (GET_CODE (base) == SYMBOL_REF
2610 && CONSTANT_POOL_ADDRESS_P (base))))
2611 return 0;
2612 }
2613
eab5c70a
BS
2614 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2615 GET_MODE (mem)))
41472af8
MM
2616 return 0;
2617
eab5c70a
BS
2618 x_addr = canon_rtx (x_addr);
2619 mem_addr = canon_rtx (mem_addr);
6e73e666 2620
f47e08d9
RG
2621 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2622 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2623 return ret;
2624
c6ea834c 2625 if (nonoverlapping_memrefs_p (x, mem, false))
c6df88cb
MM
2626 return 0;
2627
55b34b5f 2628 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
2629}
2630
2631/* Anti dependence: X is written after read in MEM takes place. */
2632
2633int
4f588890 2634anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 2635{
389fdba0 2636 return write_dependence_p (mem, x, /*writep=*/0);
9ae8ffe7
JL
2637}
2638
2639/* Output dependence: X is written after store in MEM takes place. */
2640
2641int
4f588890 2642output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2643{
389fdba0 2644 return write_dependence_p (mem, x, /*writep=*/1);
9ae8ffe7 2645}
c14b9960 2646\f
6e73e666 2647
c6ea834c
BM
2648
2649/* Check whether X may be aliased with MEM. Don't do offset-based
2650 memory disambiguation & TBAA. */
2651int
2652may_alias_p (const_rtx mem, const_rtx x)
2653{
2654 rtx x_addr, mem_addr;
c6ea834c
BM
2655
2656 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2657 return 1;
2658
a95b3cc7
RG
2659 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2660 This is used in epilogue deallocation functions. */
2661 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2662 return 1;
2663 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
c6ea834c 2664 return 1;
c6ea834c
BM
2665 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2666 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2667 return 1;
2668
2669 /* Read-only memory is by definition never modified, and therefore can't
2670 conflict with anything. We don't expect to find read-only set on MEM,
2671 but stupid user tricks can produce them, so don't die. */
2672 if (MEM_READONLY_P (x))
2673 return 0;
2674
5932a4d4 2675 /* If we have MEMs referring to different address spaces (which can
c6ea834c
BM
2676 potentially overlap), we cannot easily tell from the addresses
2677 whether the references overlap. */
2678 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2679 return 1;
2680
2681 x_addr = XEXP (x, 0);
2682 mem_addr = XEXP (mem, 0);
2683 if (!((GET_CODE (x_addr) == VALUE
2684 && GET_CODE (mem_addr) != VALUE
2685 && reg_mentioned_p (x_addr, mem_addr))
2686 || (GET_CODE (x_addr) != VALUE
2687 && GET_CODE (mem_addr) == VALUE
2688 && reg_mentioned_p (mem_addr, x_addr))))
2689 {
2690 x_addr = get_addr (x_addr);
2691 mem_addr = get_addr (mem_addr);
2692 }
2693
2694 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2695 return 0;
2696
2697 x_addr = canon_rtx (x_addr);
2698 mem_addr = canon_rtx (mem_addr);
2699
2700 if (nonoverlapping_memrefs_p (mem, x, true))
2701 return 0;
2702
c6ea834c
BM
2703 /* TBAA not valid for loop_invarint */
2704 return rtx_refs_may_alias_p (x, mem, false);
2705}
2706
6e73e666 2707void
b5deb7b6 2708init_alias_target (void)
6e73e666 2709{
b3694847 2710 int i;
6e73e666 2711
9fc37b2b
RS
2712 if (!arg_base_value)
2713 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2714
b5deb7b6
SL
2715 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2716
6e73e666
JC
2717 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2718 /* Check whether this register can hold an incoming pointer
2719 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 2720 numbers, so translate if necessary due to register windows. */
6e73e666
JC
2721 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2722 && HARD_REGNO_MODE_OK (i, Pmode))
9fc37b2b
RS
2723 static_reg_base_value[i] = arg_base_value;
2724
757e8ba2
JJ
2725 static_reg_base_value[STACK_POINTER_REGNUM]
2726 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2727 static_reg_base_value[ARG_POINTER_REGNUM]
2728 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2729 static_reg_base_value[FRAME_POINTER_REGNUM]
2730 = unique_base_value (UNIQUE_BASE_VALUE_FP);
e3339d0f 2731#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
757e8ba2
JJ
2732 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2733 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
bf1660a6
JL
2734#endif
2735}
2736
7b52eede
JH
2737/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2738 to be memory reference. */
2739static bool memory_modified;
2740static void
aa317c97 2741memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 2742{
3c0cb5de 2743 if (MEM_P (x))
7b52eede 2744 {
9678086d 2745 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
2746 memory_modified = true;
2747 }
2748}
2749
2750
2751/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 2752 (i.e. address can be modified). */
7b52eede 2753bool
9678086d 2754memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
2755{
2756 if (!INSN_P (insn))
2757 return false;
2758 memory_modified = false;
aa317c97 2759 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
7b52eede
JH
2760 return memory_modified;
2761}
2762
c13e8210
MM
2763/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2764 array. */
2765
9ae8ffe7 2766void
4682ae04 2767init_alias_analysis (void)
9ae8ffe7 2768{
c582d54a 2769 unsigned int maxreg = max_reg_num ();
ea64ef27 2770 int changed, pass;
b3694847
SS
2771 int i;
2772 unsigned int ui;
9ff3c7ca 2773 rtx insn, val;
131db6b8
SB
2774 int rpo_cnt;
2775 int *rpo;
9ae8ffe7 2776
0d446150
JH
2777 timevar_push (TV_ALIAS_ANALYSIS);
2778
9ff3c7ca
SB
2779 reg_known_value = VEC_alloc (rtx, gc, maxreg - FIRST_PSEUDO_REGISTER);
2780 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
9ae8ffe7 2781
08c79682 2782 /* If we have memory allocated from the previous run, use it. */
c582d54a 2783 if (old_reg_base_value)
08c79682
KH
2784 reg_base_value = old_reg_base_value;
2785
2786 if (reg_base_value)
2787 VEC_truncate (rtx, reg_base_value, 0);
2788
a590ac65 2789 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
ac606739 2790
5ed6ace5 2791 new_reg_base_value = XNEWVEC (rtx, maxreg);
d630245f 2792 reg_seen = sbitmap_alloc (maxreg);
ec907dd8
JL
2793
2794 /* The basic idea is that each pass through this loop will use the
2795 "constant" information from the previous pass to propagate alias
2796 information through another level of assignments.
2797
131db6b8
SB
2798 The propagation is done on the CFG in reverse post-order, to propagate
2799 things forward as far as possible in each iteration.
2800
ec907dd8
JL
2801 This could get expensive if the assignment chains are long. Maybe
2802 we should throttle the number of iterations, possibly based on
6e73e666 2803 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
2804
2805 We could propagate more information in the first pass by making use
6fb5fa3c 2806 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
2807 for a pseudo is "constant".
2808
2809 A program with an uninitialized variable can cause an infinite loop
2810 here. Instead of doing a full dataflow analysis to detect such problems
2811 we just cap the number of iterations for the loop.
2812
2813 The state of the arrays for the set chain in question does not matter
2814 since the program has undefined behavior. */
6e73e666 2815
131db6b8
SB
2816 rpo = XNEWVEC (int, n_basic_blocks);
2817 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2818
ea64ef27 2819 pass = 0;
6e73e666 2820 do
ec907dd8
JL
2821 {
2822 /* Assume nothing will change this iteration of the loop. */
2823 changed = 0;
2824
ec907dd8 2825 /* We want to assign the same IDs each iteration of this loop, so
9fc37b2b
RS
2826 start counting from one each iteration of the loop. */
2827 unique_id = 1;
ec907dd8 2828
f5143c46 2829 /* We're at the start of the function each iteration through the
ec907dd8 2830 loop, so we're copying arguments. */
83bbd9b6 2831 copying_arguments = true;
9ae8ffe7 2832
6e73e666 2833 /* Wipe the potential alias information clean for this pass. */
c582d54a 2834 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 2835
6e73e666 2836 /* Wipe the reg_seen array clean. */
d630245f 2837 sbitmap_zero (reg_seen);
9ae8ffe7 2838
6e73e666
JC
2839 /* Mark all hard registers which may contain an address.
2840 The stack, frame and argument pointers may contain an address.
2841 An argument register which can hold a Pmode value may contain
2842 an address even if it is not in BASE_REGS.
8072f69c 2843
6e73e666
JC
2844 The address expression is VOIDmode for an argument and
2845 Pmode for other registers. */
2846
7f243674
JL
2847 memcpy (new_reg_base_value, static_reg_base_value,
2848 FIRST_PSEUDO_REGISTER * sizeof (rtx));
6e73e666 2849
ec907dd8 2850 /* Walk the insns adding values to the new_reg_base_value array. */
131db6b8 2851 for (i = 0; i < rpo_cnt; i++)
9ae8ffe7 2852 {
131db6b8
SB
2853 basic_block bb = BASIC_BLOCK (rpo[i]);
2854 FOR_BB_INSNS (bb, insn)
ec907dd8 2855 {
131db6b8
SB
2856 if (NONDEBUG_INSN_P (insn))
2857 {
2858 rtx note, set;
efc9bd41
RK
2859
2860#if defined (HAVE_prologue) || defined (HAVE_epilogue)
131db6b8
SB
2861 /* The prologue/epilogue insns are not threaded onto the
2862 insn chain until after reload has completed. Thus,
2863 there is no sense wasting time checking if INSN is in
2864 the prologue/epilogue until after reload has completed. */
2865 if (reload_completed
2866 && prologue_epilogue_contains (insn))
2867 continue;
efc9bd41
RK
2868#endif
2869
131db6b8
SB
2870 /* If this insn has a noalias note, process it, Otherwise,
2871 scan for sets. A simple set will have no side effects
2872 which could change the base value of any other register. */
6e73e666 2873
131db6b8
SB
2874 if (GET_CODE (PATTERN (insn)) == SET
2875 && REG_NOTES (insn) != 0
2876 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2877 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2878 else
2879 note_stores (PATTERN (insn), record_set, NULL);
6e73e666 2880
131db6b8 2881 set = single_set (insn);
6e73e666 2882
131db6b8
SB
2883 if (set != 0
2884 && REG_P (SET_DEST (set))
2885 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
713f41f9 2886 {
131db6b8
SB
2887 unsigned int regno = REGNO (SET_DEST (set));
2888 rtx src = SET_SRC (set);
2889 rtx t;
2890
2891 note = find_reg_equal_equiv_note (insn);
2892 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2893 && DF_REG_DEF_COUNT (regno) != 1)
2894 note = NULL_RTX;
2895
2896 if (note != NULL_RTX
2897 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2898 && ! rtx_varies_p (XEXP (note, 0), 1)
2899 && ! reg_overlap_mentioned_p (SET_DEST (set),
2900 XEXP (note, 0)))
2901 {
2902 set_reg_known_value (regno, XEXP (note, 0));
2903 set_reg_known_equiv_p (regno,
2904 REG_NOTE_KIND (note) == REG_EQUIV);
2905 }
2906 else if (DF_REG_DEF_COUNT (regno) == 1
2907 && GET_CODE (src) == PLUS
2908 && REG_P (XEXP (src, 0))
2909 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2910 && CONST_INT_P (XEXP (src, 1)))
2911 {
2912 t = plus_constant (GET_MODE (src), t,
2913 INTVAL (XEXP (src, 1)));
2914 set_reg_known_value (regno, t);
2915 set_reg_known_equiv_p (regno, false);
2916 }
2917 else if (DF_REG_DEF_COUNT (regno) == 1
2918 && ! rtx_varies_p (src, 1))
2919 {
2920 set_reg_known_value (regno, src);
2921 set_reg_known_equiv_p (regno, false);
2922 }
713f41f9 2923 }
6e73e666 2924 }
131db6b8
SB
2925 else if (NOTE_P (insn)
2926 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2927 copying_arguments = false;
ec907dd8 2928 }
6e73e666 2929 }
ec907dd8 2930
6e73e666 2931 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 2932 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 2933
c582d54a 2934 for (ui = 0; ui < maxreg; ui++)
6e73e666 2935 {
e51712db 2936 if (new_reg_base_value[ui]
08c79682 2937 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
c582d54a 2938 && ! rtx_equal_p (new_reg_base_value[ui],
08c79682 2939 VEC_index (rtx, reg_base_value, ui)))
ec907dd8 2940 {
08c79682 2941 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
6e73e666 2942 changed = 1;
ec907dd8 2943 }
9ae8ffe7 2944 }
9ae8ffe7 2945 }
6e73e666 2946 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
131db6b8 2947 XDELETEVEC (rpo);
9ae8ffe7
JL
2948
2949 /* Fill in the remaining entries. */
9ff3c7ca
SB
2950 FOR_EACH_VEC_ELT (rtx, reg_known_value, i, val)
2951 {
2952 int regno = i + FIRST_PSEUDO_REGISTER;
2953 if (! val)
2954 set_reg_known_value (regno, regno_reg_rtx[regno]);
2955 }
9ae8ffe7 2956
e05e2395
MM
2957 /* Clean up. */
2958 free (new_reg_base_value);
ec907dd8 2959 new_reg_base_value = 0;
d630245f 2960 sbitmap_free (reg_seen);
9ae8ffe7 2961 reg_seen = 0;
0d446150 2962 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
2963}
2964
61630b27
JJ
2965/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2966 Special API for var-tracking pass purposes. */
2967
2968void
2969vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2970{
2971 VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
2972}
2973
9ae8ffe7 2974void
4682ae04 2975end_alias_analysis (void)
9ae8ffe7 2976{
c582d54a 2977 old_reg_base_value = reg_base_value;
9ff3c7ca
SB
2978 VEC_free (rtx, gc, reg_known_value);
2979 sbitmap_free (reg_known_equiv_p);
9ae8ffe7 2980}
e2500fed
GK
2981
2982#include "gt-alias.h"