]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.cc
aarch64: Avoid using mismatched ZERO ZA sizes
[thirdparty/gcc.git] / gcc / alias.cc
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
a945c346 2 Copyright (C) 1997-2024 Free Software Foundation, Inc.
9ae8ffe7
JL
3 Contributed by John Carr (jfc@mit.edu).
4
1322177d 5This file is part of GCC.
9ae8ffe7 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
9ae8ffe7 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
9ae8ffe7
JL
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5
AM
25#include "target.h"
26#include "rtl.h"
c7131fb2
AM
27#include "tree.h"
28#include "gimple.h"
c7131fb2 29#include "df.h"
4d0cdd0c 30#include "memmodel.h"
957060b5
AM
31#include "tm_p.h"
32#include "gimple-ssa.h"
957060b5 33#include "emit-rtl.h"
40e23961 34#include "alias.h"
40e23961 35#include "fold-const.h"
d8a2d370 36#include "varasm.h"
eab5c70a 37#include "cselib.h"
d23c55c2 38#include "langhooks.h"
60393bbc 39#include "cfganal.h"
403837b4 40#include "rtl-iter.h"
54363f8a 41#include "cgraph.h"
e4b44fd7 42#include "ipa-utils.h"
ea900239
DB
43
44/* The aliasing API provided here solves related but different problems:
45
c22cacf3 46 Say there exists (in c)
ea900239
DB
47
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
52
53 struct Y y2, *py;
54 struct Z z2, *pz;
55
56
308a3fe2 57 py = &x1.y1;
ea900239
DB
58 px2 = &x1;
59
60 Consider the four questions:
61
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
ea900239
DB
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
66
67 The answer to these questions can be yes, yes, yes, and maybe.
68
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
073a8998 71 a store through a pointer to an X can overwrite any field that is
ea900239
DB
72 contained (recursively) in an X (unless we know that px1 != px2).
73
308a3fe2
DS
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
ea900239
DB
81
82 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 83 instances do not escape across the compilation boundary.
ea900239
DB
84
85 Historically in GCC, these two problems were combined and a single
308a3fe2 86 data structure that was used to represent the solution to these
ea900239 87 problems. We now have two similar but different data structures,
308a3fe2
DS
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
ea900239 92*/
3932261a
MM
93
94/* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
3932261a 98
01d28c3f 99 struct S { int i; double d; };
3932261a
MM
100
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
c22cacf3
MS
105 struct S
106 / \
3932261a 107 / \
c22cacf3
MS
108 |/_ _\|
109 int double
3932261a 110
ac3d9668
RK
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
114
3bdf5ad1
RK
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
95bd1dd7 117 past immediate descendants, however, since we propagate all
3bdf5ad1 118 grandchildren up one level.
3932261a
MM
119
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
123
e0702244 124struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
de144fb2 125
02ced957 126struct GTY(()) alias_set_entry {
3932261a 127 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 128 alias_set_type alias_set;
3932261a 129
6e042ef4
JH
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
34e82342
RB
140
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
143
144 struct T { struct S s; float f; }
145
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
b604074c 149};
9ae8ffe7 150
6a2a3862
RS
151static int compare_base_symbol_refs (const_rtx, const_rtx,
152 HOST_WIDE_INT * = NULL);
4682ae04 153
3ecf9d13
JH
154/* Query statistics for the different low-level disambiguators.
155 A high-level query may trigger multiple of them. */
156
157static struct {
158 unsigned long long num_alias_zero;
159 unsigned long long num_same_alias_set;
160 unsigned long long num_same_objects;
161 unsigned long long num_volatile;
162 unsigned long long num_dag;
6e042ef4 163 unsigned long long num_universal;
3ecf9d13
JH
164 unsigned long long num_disambiguated;
165} alias_stats;
166
167
9ae8ffe7
JL
168/* Set up all info needed to perform alias analysis on memory references. */
169
d4b60170 170/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
171#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
172
ea64ef27 173/* Cap the number of passes we make over the insns propagating alias
131db6b8
SB
174 information through set chains.
175 ??? 10 is a completely arbitrary choice. This should be based on the
176 maximum loop depth in the CFG, but we do not have this information
177 available (even if current_loops _is_ available). */
ea64ef27 178#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 179
9ae8ffe7
JL
180/* reg_base_value[N] gives an address to which register N is related.
181 If all sets after the first add or subtract to the current value
182 or otherwise modify it so it does not point to a different top level
183 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
184 of the first set.
185
186 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
9fc37b2b 187 expressions represent three types of base:
b3b5ad95 188
9fc37b2b
RS
189 1. incoming arguments. There is just one ADDRESS to represent all
190 arguments, since we do not know at this level whether accesses
191 based on different arguments can alias. The ADDRESS has id 0.
b3b5ad95 192
9fc37b2b
RS
193 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
194 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
195 Each of these rtxes has a separate ADDRESS associated with it,
196 each with a negative id.
197
198 GCC is (and is required to be) precise in which register it
199 chooses to access a particular region of stack. We can therefore
200 assume that accesses based on one of these rtxes do not alias
201 accesses based on another of these rtxes.
202
203 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
204 Each such piece of memory has a separate ADDRESS associated
205 with it, each with an id greater than 0.
206
207 Accesses based on one ADDRESS do not alias accesses based on other
208 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
209 alias globals either; the ADDRESSes have Pmode to indicate this.
210 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
211 indicate this. */
2a2c8203 212
9771b263 213static GTY(()) vec<rtx, va_gc> *reg_base_value;
ac606739 214static rtx *new_reg_base_value;
c582d54a 215
9fc37b2b
RS
216/* The single VOIDmode ADDRESS that represents all argument bases.
217 It has id 0. */
218static GTY(()) rtx arg_base_value;
219
220/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
221static int unique_id;
222
c582d54a
JH
223/* We preserve the copy of old array around to avoid amount of garbage
224 produced. About 8% of garbage produced were attributed to this
225 array. */
9771b263 226static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
d4b60170 227
9e412ca3
RS
228/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
229 registers. */
230#define UNIQUE_BASE_VALUE_SP -1
231#define UNIQUE_BASE_VALUE_ARGP -2
232#define UNIQUE_BASE_VALUE_FP -3
233#define UNIQUE_BASE_VALUE_HFP -4
234
7bf84454
RS
235#define static_reg_base_value \
236 (this_target_rtl->x_static_reg_base_value)
bf1660a6 237
9771b263
DN
238#define REG_BASE_VALUE(X) \
239 (REGNO (X) < vec_safe_length (reg_base_value) \
240 ? (*reg_base_value)[REGNO (X)] : 0)
9ae8ffe7 241
c13e8210 242/* Vector indexed by N giving the initial (unchanging) value known for
9ff3c7ca 243 pseudo-register N. This vector is initialized in init_alias_analysis,
bb1acb3e 244 and does not change until end_alias_analysis is called. */
9771b263 245static GTY(()) vec<rtx, va_gc> *reg_known_value;
9ae8ffe7
JL
246
247/* Vector recording for each reg_known_value whether it is due to a
248 REG_EQUIV note. Future passes (viz., reload) may replace the
249 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
250 dependences that would be introduced if that happens.
251
252 The REG_EQUIV notes created in assign_parms may mention the arg
253 pointer, and there are explicit insns in the RTL that modify the
254 arg pointer. Thus we must ensure that such insns don't get
255 scheduled across each other because that would invalidate the
256 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
257 wrong, but solving the problem in the scheduler will likely give
258 better code, so we do it here. */
9ff3c7ca 259static sbitmap reg_known_equiv_p;
9ae8ffe7 260
2a2c8203
JC
261/* True when scanning insns from the start of the rtl to the
262 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 263static bool copying_arguments;
9ae8ffe7 264
1a5640b4 265
3932261a 266/* The splay-tree used to store the various alias set entries. */
02ced957 267static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
ac3d9668 268\f
55b34b5f
RG
269/* Build a decomposed reference object for querying the alias-oracle
270 from the MEM rtx and store it in *REF.
271 Returns false if MEM is not suitable for the alias-oracle. */
272
273static bool
274ao_ref_from_mem (ao_ref *ref, const_rtx mem)
275{
276 tree expr = MEM_EXPR (mem);
277 tree base;
278
279 if (!expr)
280 return false;
281
282 ao_ref_init (ref, expr);
283
284 /* Get the base of the reference and see if we have to reject or
285 adjust it. */
286 base = ao_ref_base (ref);
287 if (base == NULL_TREE)
288 return false;
289
ef7a9fb8
RB
290 /* The tree oracle doesn't like bases that are neither decls
291 nor indirect references of SSA names. */
292 if (!(DECL_P (base)
293 || (TREE_CODE (base) == MEM_REF
294 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
295 || (TREE_CODE (base) == TARGET_MEM_REF
296 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
d15adbeb 297 return false;
55b34b5f 298
55b34b5f
RG
299 ref->ref_alias_set = MEM_ALIAS_SET (mem);
300
f68396a1
RG
301 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
302 is conservative, so trust it. */
527210c4 303 if (!MEM_OFFSET_KNOWN_P (mem)
f5541398 304 || !MEM_SIZE_KNOWN_P (mem))
f68396a1 305 return true;
366f945f 306
e8024441
RB
307 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
308 drop ref->ref. */
d05d7551 309 if (maybe_lt (MEM_OFFSET (mem), 0)
b9c25734
RS
310 || (ref->max_size_known_p ()
311 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
312 ref->max_size)))
e8024441 313 ref->ref = NULL_TREE;
b0e96404 314
e8024441
RB
315 /* Refine size and offset we got from analyzing MEM_EXPR by using
316 MEM_SIZE and MEM_OFFSET. */
f68396a1 317
527210c4 318 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
f5541398 319 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
b0e96404
RG
320
321 /* The MEM may extend into adjacent fields, so adjust max_size if
322 necessary. */
b9c25734
RS
323 if (ref->max_size_known_p ())
324 ref->max_size = upper_bound (ref->max_size, ref->size);
b0e96404 325
b9c25734 326 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
b0e96404
RG
327 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
328 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
b9c25734 329 && (maybe_lt (ref->offset, 0)
b0e96404 330 || (DECL_P (ref->base)
807e902e 331 && (DECL_SIZE (ref->base) == NULL_TREE
b9c25734
RS
332 || !poly_int_tree_p (DECL_SIZE (ref->base))
333 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
334 ref->offset + ref->size)))))
b0e96404 335 return false;
55b34b5f
RG
336
337 return true;
338}
339
340/* Query the alias-oracle on whether the two memory rtx X and MEM may
341 alias. If TBAA_P is set also apply TBAA. Returns true if the
342 two rtxen may alias, false otherwise. */
343
344static bool
345rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
346{
347 ao_ref ref1, ref2;
348
349 if (!ao_ref_from_mem (&ref1, x)
350 || !ao_ref_from_mem (&ref2, mem))
351 return true;
352
55e3bc4c
RG
353 return refs_may_alias_p_1 (&ref1, &ref2,
354 tbaa_p
355 && MEM_ALIAS_SET (x) != 0
356 && MEM_ALIAS_SET (mem) != 0);
55b34b5f
RG
357}
358
3d6fd7ce
RB
359/* Return true if the ref EARLIER behaves the same as LATER with respect
360 to TBAA for every memory reference that might follow LATER. */
361
362bool
363refs_same_for_tbaa_p (tree earlier, tree later)
364{
365 ao_ref earlier_ref, later_ref;
366 ao_ref_init (&earlier_ref, earlier);
367 ao_ref_init (&later_ref, later);
368 alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
369 alias_set_type later_set = ao_ref_alias_set (&later_ref);
370 if (!(earlier_set == later_set
371 || alias_set_subset_of (later_set, earlier_set)))
372 return false;
373 alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
374 alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
375 return (earlier_base_set == later_base_set
376 || alias_set_subset_of (later_base_set, earlier_base_set));
377}
378
64ce76d9
RE
379/* Similar to refs_same_for_tbaa_p() but for use on MEM rtxs. */
380bool
381mems_same_for_tbaa_p (rtx earlier, rtx later)
382{
383 gcc_assert (MEM_P (earlier));
384 gcc_assert (MEM_P (later));
385
386 return ((MEM_ALIAS_SET (earlier) == MEM_ALIAS_SET (later)
387 || alias_set_subset_of (MEM_ALIAS_SET (later),
388 MEM_ALIAS_SET (earlier)))
389 && (!MEM_EXPR (earlier)
390 || refs_same_for_tbaa_p (MEM_EXPR (earlier), MEM_EXPR (later))));
391}
392
3932261a
MM
393/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
394 such an entry, or NULL otherwise. */
395
02ced957 396static inline alias_set_entry *
4862826d 397get_alias_set_entry (alias_set_type alias_set)
3932261a 398{
9771b263 399 return (*alias_sets)[alias_set];
3932261a
MM
400}
401
4d519f1b 402/* Returns true if the alias sets for MEM1 and MEM2 are such that
ac3d9668 403 the two MEMs cannot alias each other. */
3932261a 404
4d519f1b 405static inline bool
4f588890 406mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 407{
598f8eca
RB
408 return (flag_strict_aliasing
409 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
410 MEM_ALIAS_SET (mem2)));
1da68f56 411}
3932261a 412
c58936b6
DB
413/* Return true if the first alias set is a subset of the second. */
414
415bool
4862826d 416alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6 417{
02ced957 418 alias_set_entry *ase2;
c58936b6 419
bd04cddf
JH
420 /* Disable TBAA oracle with !flag_strict_aliasing. */
421 if (!flag_strict_aliasing)
422 return true;
423
c58936b6
DB
424 /* Everything is a subset of the "aliases everything" set. */
425 if (set2 == 0)
426 return true;
427
6e042ef4
JH
428 /* Check if set1 is a subset of set2. */
429 ase2 = get_alias_set_entry (set2);
430 if (ase2 != 0
431 && (ase2->has_zero_child
432 || (ase2->children && ase2->children->get (set1))))
c58936b6 433 return true;
6e042ef4
JH
434
435 /* As a special case we consider alias set of "void *" to be both subset
436 and superset of every alias set of a pointer. This extra symmetry does
437 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
438 to return true on the following testcase:
439
440 void *ptr;
441 char **ptr2=(char **)&ptr;
442 *ptr2 = ...
443
444 Additionally if a set contains universal pointer, we consider every pointer
445 to be a subset of it, but we do not represent this explicitely - doing so
446 would require us to update transitive closure each time we introduce new
447 pointer type. This makes aliasing_component_refs_p to return true
448 on the following testcase:
449
450 struct a {void *ptr;}
451 char **ptr = (char **)&a.ptr;
452 ptr = ...
453
454 This makes void * truly universal pointer type. See pointer handling in
455 get_alias_set for more details. */
456 if (ase2 && ase2->has_pointer)
457 {
02ced957 458 alias_set_entry *ase1 = get_alias_set_entry (set1);
6e042ef4
JH
459
460 if (ase1 && ase1->is_pointer)
461 {
462 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
463 /* If one is ptr_type_node and other is pointer, then we consider
464 them subset of each other. */
465 if (set1 == voidptr_set || set2 == voidptr_set)
466 return true;
467 /* If SET2 contains universal pointer's alias set, then we consdier
468 every (non-universal) pointer. */
469 if (ase2->children && set1 != voidptr_set
470 && ase2->children->get (voidptr_set))
471 return true;
472 }
473 }
c58936b6
DB
474 return false;
475}
476
4d519f1b 477/* Return true if the two specified alias sets may conflict. */
1da68f56 478
4d519f1b 479bool
4862826d 480alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56 481{
02ced957
TS
482 alias_set_entry *ase1;
483 alias_set_entry *ase2;
1da68f56 484
836f7794
EB
485 /* The easy case. */
486 if (alias_sets_must_conflict_p (set1, set2))
4d519f1b 487 return true;
3932261a 488
3bdf5ad1 489 /* See if the first alias set is a subset of the second. */
6e042ef4
JH
490 ase1 = get_alias_set_entry (set1);
491 if (ase1 != 0
492 && ase1->children && ase1->children->get (set2))
3ecf9d13
JH
493 {
494 ++alias_stats.num_dag;
4d519f1b 495 return true;
3ecf9d13 496 }
3932261a
MM
497
498 /* Now do the same, but with the alias sets reversed. */
6e042ef4
JH
499 ase2 = get_alias_set_entry (set2);
500 if (ase2 != 0
501 && ase2->children && ase2->children->get (set1))
3ecf9d13
JH
502 {
503 ++alias_stats.num_dag;
4d519f1b 504 return true;
3ecf9d13 505 }
6e042ef4
JH
506
507 /* We want void * to be compatible with any other pointer without
508 really dropping it to alias set 0. Doing so would make it
509 compatible with all non-pointer types too.
510
511 This is not strictly necessary by the C/C++ language
512 standards, but avoids common type punning mistakes. In
513 addition to that, we need the existence of such universal
514 pointer to implement Fortran's C_PTR type (which is defined as
515 type compatible with all C pointers). */
516 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
517 {
518 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
519
520 /* If one of the sets corresponds to universal pointer,
521 we consider it to conflict with anything that is
522 or contains pointer. */
523 if (set1 == voidptr_set || set2 == voidptr_set)
524 {
525 ++alias_stats.num_universal;
526 return true;
527 }
528 /* If one of sets is (non-universal) pointer and the other
529 contains universal pointer, we also get conflict. */
530 if (ase1->is_pointer && set2 != voidptr_set
531 && ase2->children && ase2->children->get (voidptr_set))
532 {
533 ++alias_stats.num_universal;
534 return true;
535 }
536 if (ase2->is_pointer && set1 != voidptr_set
537 && ase1->children && ase1->children->get (voidptr_set))
538 {
539 ++alias_stats.num_universal;
540 return true;
541 }
542 }
543
3ecf9d13 544 ++alias_stats.num_disambiguated;
3932261a 545
1da68f56 546 /* The two alias sets are distinct and neither one is the
836f7794 547 child of the other. Therefore, they cannot conflict. */
4d519f1b 548 return false;
3932261a 549}
5399d643 550
4d519f1b 551/* Return true if the two specified alias sets will always conflict. */
5399d643 552
4d519f1b 553bool
4862826d 554alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643 555{
bd04cddf
JH
556 /* Disable TBAA oracle with !flag_strict_aliasing. */
557 if (!flag_strict_aliasing)
4d519f1b 558 return true;
3ecf9d13
JH
559 if (set1 == 0 || set2 == 0)
560 {
561 ++alias_stats.num_alias_zero;
4d519f1b 562 return true;
3ecf9d13
JH
563 }
564 if (set1 == set2)
565 {
566 ++alias_stats.num_same_alias_set;
4d519f1b 567 return true;
3ecf9d13 568 }
5399d643 569
4d519f1b 570 return false;
5399d643
JW
571}
572
4d519f1b 573/* Return true if any MEM object of type T1 will always conflict (using the
1da68f56
RK
574 dependency routines in this file) with any MEM object of type T2.
575 This is used when allocating temporary storage. If T1 and/or T2 are
576 NULL_TREE, it means we know nothing about the storage. */
577
4d519f1b 578bool
4682ae04 579objects_must_conflict_p (tree t1, tree t2)
1da68f56 580{
4862826d 581 alias_set_type set1, set2;
82d610ec 582
e8ea2809
RK
583 /* If neither has a type specified, we don't know if they'll conflict
584 because we may be using them to store objects of various types, for
585 example the argument and local variables areas of inlined functions. */
981a4c34 586 if (t1 == 0 && t2 == 0)
4d519f1b 587 return false;
e8ea2809 588
1da68f56 589 /* If they are the same type, they must conflict. */
3ecf9d13
JH
590 if (t1 == t2)
591 {
592 ++alias_stats.num_same_objects;
4d519f1b 593 return true;
3ecf9d13
JH
594 }
595 /* Likewise if both are volatile. */
596 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
597 {
598 ++alias_stats.num_volatile;
4d519f1b 599 return true;
3ecf9d13 600 }
1da68f56 601
82d610ec
RK
602 set1 = t1 ? get_alias_set (t1) : 0;
603 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 604
836f7794
EB
605 /* We can't use alias_sets_conflict_p because we must make sure
606 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
607 t2 for which a pair of subobjects of these respective subtypes
608 overlaps on the stack. */
836f7794 609 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
610}
611\f
9640ff5a
JH
612/* Return true if T is an end of the access path which can be used
613 by type based alias oracle. */
614
615bool
616ends_tbaa_access_path_p (const_tree t)
617{
618 switch (TREE_CODE (t))
619 {
620 case COMPONENT_REF:
621 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
622 return true;
623 /* Permit type-punning when accessing a union, provided the access
624 is directly through the union. For example, this code does not
625 permit taking the address of a union member and then storing
626 through it. Even the type-punning allowed here is a GCC
627 extension, albeit a common and useful one; the C standard says
628 that such accesses have implementation-defined behavior. */
629 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
630 return true;
631 break;
632
633 case ARRAY_REF:
634 case ARRAY_RANGE_REF:
635 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
636 return true;
637 break;
638
639 case REALPART_EXPR:
640 case IMAGPART_EXPR:
641 break;
642
643 case BIT_FIELD_REF:
644 case VIEW_CONVERT_EXPR:
645 /* Bitfields and casts are never addressable. */
646 return true;
647 break;
648
649 default:
650 gcc_unreachable ();
651 }
652 return false;
653}
654
b4ada065
RB
655/* Return the outermost parent of component present in the chain of
656 component references handled by get_inner_reference in T with the
657 following property:
dc3221e1 658 - the component is non-addressable
b4ada065
RB
659 or NULL_TREE if no such parent exists. In the former cases, the alias
660 set of this parent is the alias set that must be used for T itself. */
661
662tree
663component_uses_parent_alias_set_from (const_tree t)
6e24b709 664{
b4ada065 665 const_tree found = NULL_TREE;
afe84921 666
b4ada065
RB
667 while (handled_component_p (t))
668 {
9640ff5a
JH
669 if (ends_tbaa_access_path_p (t))
670 found = t;
afe84921
RH
671
672 t = TREE_OPERAND (t, 0);
673 }
b4ada065
RB
674
675 if (found)
676 return TREE_OPERAND (found, 0);
677
678 return NULL_TREE;
6e24b709
RK
679}
680
f40333af
RB
681
682/* Return whether the pointer-type T effective for aliasing may
683 access everything and thus the reference has to be assigned
684 alias-set zero. */
685
686static bool
687ref_all_alias_ptr_type_p (const_tree t)
688{
ca2007a9 689 return (VOID_TYPE_P (TREE_TYPE (t))
f40333af
RB
690 || TYPE_REF_CAN_ALIAS_ALL (t));
691}
692
5006671f
RG
693/* Return the alias set for the memory pointed to by T, which may be
694 either a type or an expression. Return -1 if there is nothing
695 special about dereferencing T. */
696
697static alias_set_type
698get_deref_alias_set_1 (tree t)
699{
5b21f0f3 700 /* All we care about is the type. */
5006671f 701 if (! TYPE_P (t))
5b21f0f3 702 t = TREE_TYPE (t);
5006671f
RG
703
704 /* If we have an INDIRECT_REF via a void pointer, we don't
705 know anything about what that might alias. Likewise if the
706 pointer is marked that way. */
f40333af 707 if (ref_all_alias_ptr_type_p (t))
5006671f
RG
708 return 0;
709
710 return -1;
711}
712
713/* Return the alias set for the memory pointed to by T, which may be
714 either a type or an expression. */
715
716alias_set_type
717get_deref_alias_set (tree t)
718{
f40333af
RB
719 /* If we're not doing any alias analysis, just assume everything
720 aliases everything else. */
721 if (!flag_strict_aliasing)
722 return 0;
723
5006671f
RG
724 alias_set_type set = get_deref_alias_set_1 (t);
725
726 /* Fall back to the alias-set of the pointed-to type. */
727 if (set == -1)
728 {
729 if (! TYPE_P (t))
730 t = TREE_TYPE (t);
731 set = get_alias_set (TREE_TYPE (t));
732 }
733
734 return set;
735}
736
f40333af
RB
737/* Return the pointer-type relevant for TBAA purposes from the
738 memory reference tree *T or NULL_TREE in which case *T is
739 adjusted to point to the outermost component reference that
740 can be used for assigning an alias set. */
741
d119f34c 742tree
f40333af
RB
743reference_alias_ptr_type_1 (tree *t)
744{
745 tree inner;
746
747 /* Get the base object of the reference. */
748 inner = *t;
749 while (handled_component_p (inner))
750 {
751 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
752 the type of any component references that wrap it to
753 determine the alias-set. */
754 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
755 *t = TREE_OPERAND (inner, 0);
756 inner = TREE_OPERAND (inner, 0);
757 }
758
759 /* Handle pointer dereferences here, they can override the
760 alias-set. */
761 if (INDIRECT_REF_P (inner)
762 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
763 return TREE_TYPE (TREE_OPERAND (inner, 0));
764 else if (TREE_CODE (inner) == TARGET_MEM_REF)
765 return TREE_TYPE (TMR_OFFSET (inner));
766 else if (TREE_CODE (inner) == MEM_REF
767 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
768 return TREE_TYPE (TREE_OPERAND (inner, 1));
769
770 /* If the innermost reference is a MEM_REF that has a
771 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
772 using the memory access type for determining the alias-set. */
773 if (TREE_CODE (inner) == MEM_REF
774 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
775 != TYPE_MAIN_VARIANT
776 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
11b8cf16
RB
777 {
778 tree alias_ptrtype = TREE_TYPE (TREE_OPERAND (inner, 1));
779 /* Unless we have the (aggregate) effective type of the access
780 somewhere on the access path. If we have for example
781 (&a->elts[i])->l.len exposed by abstraction we'd see
782 MEM <A> [(B *)a].elts[i].l.len and we can use the alias set
783 of 'len' when typeof (MEM <A> [(B *)a].elts[i]) == B for
784 example. See PR111715. */
785 tree inner = *t;
786 while (handled_component_p (inner)
787 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
788 != TYPE_MAIN_VARIANT (TREE_TYPE (alias_ptrtype))))
789 inner = TREE_OPERAND (inner, 0);
790 if (TREE_CODE (inner) == MEM_REF)
791 return alias_ptrtype;
792 }
f40333af 793
b4ada065
RB
794 /* Otherwise, pick up the outermost object that we could have
795 a pointer to. */
796 tree tem = component_uses_parent_alias_set_from (*t);
797 if (tem)
798 *t = tem;
f40333af
RB
799
800 return NULL_TREE;
801}
802
803/* Return the pointer-type relevant for TBAA purposes from the
804 gimple memory reference tree T. This is the type to be used for
805 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
806 and guarantees that get_alias_set will return the same alias
807 set for T and the replacement. */
808
809tree
810reference_alias_ptr_type (tree t)
811{
ebc1b29e
RB
812 /* If the frontend assigns this alias-set zero, preserve that. */
813 if (lang_hooks.get_alias_set (t) == 0)
814 return ptr_type_node;
815
f40333af
RB
816 tree ptype = reference_alias_ptr_type_1 (&t);
817 /* If there is a given pointer type for aliasing purposes, return it. */
818 if (ptype != NULL_TREE)
819 return ptype;
820
821 /* Otherwise build one from the outermost component reference we
822 may use. */
823 if (TREE_CODE (t) == MEM_REF
824 || TREE_CODE (t) == TARGET_MEM_REF)
825 return TREE_TYPE (TREE_OPERAND (t, 1));
826 else
827 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
828}
829
830/* Return whether the pointer-types T1 and T2 used to determine
831 two alias sets of two references will yield the same answer
832 from get_deref_alias_set. */
833
834bool
835alias_ptr_types_compatible_p (tree t1, tree t2)
836{
837 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
838 return true;
839
840 if (ref_all_alias_ptr_type_p (t1)
841 || ref_all_alias_ptr_type_p (t2))
842 return false;
843
33e8e0ee
ML
844 /* This function originally abstracts from simply comparing
845 get_deref_alias_set so that we are sure this still computes
846 the same result after LTO type merging is applied.
847 When in LTO type merging is done we can actually do this compare.
848 */
849 if (in_lto_p)
850 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
851 else
852 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
853 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
f40333af
RB
854}
855
6e042ef4
JH
856/* Create emptry alias set entry. */
857
02ced957 858alias_set_entry *
6e042ef4
JH
859init_alias_set_entry (alias_set_type set)
860{
02ced957 861 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
6e042ef4
JH
862 ase->alias_set = set;
863 ase->children = NULL;
864 ase->has_zero_child = false;
865 ase->is_pointer = false;
866 ase->has_pointer = false;
867 gcc_checking_assert (!get_alias_set_entry (set));
868 (*alias_sets)[set] = ase;
869 return ase;
870}
871
3bdf5ad1
RK
872/* Return the alias set for T, which may be either a type or an
873 expression. Call language-specific routine for help, if needed. */
874
4862826d 875alias_set_type
4682ae04 876get_alias_set (tree t)
3bdf5ad1 877{
4862826d 878 alias_set_type set;
3bdf5ad1 879
67914693 880 /* We cannot give up with -fno-strict-aliasing because we need to build
63f56527 881 proper type representations for possible functions which are built with
e8444ca6 882 -fstrict-aliasing. */
bd04cddf
JH
883
884 /* return 0 if this or its type is an error. */
885 if (t == error_mark_node
3bdf5ad1
RK
886 || (! TYPE_P (t)
887 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
888 return 0;
889
890 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
891 language-specific routine may make mutually-recursive calls to each other
892 to figure out what to do. At each juncture, we see if this is a tree
893 that the language may need to handle specially. First handle things that
738cc472 894 aren't types. */
f824e5c3 895 if (! TYPE_P (t))
3bdf5ad1 896 {
70f34814
RG
897 /* Give the language a chance to do something with this tree
898 before we look at it. */
8ac61af7 899 STRIP_NOPS (t);
ae2bcd98 900 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
901 if (set != -1)
902 return set;
903
f40333af
RB
904 /* Get the alias pointer-type to use or the outermost object
905 that we could have a pointer to. */
906 tree ptype = reference_alias_ptr_type_1 (&t);
907 if (ptype != NULL)
908 return get_deref_alias_set (ptype);
f824e5c3 909
738cc472
RK
910 /* If we've already determined the alias set for a decl, just return
911 it. This is necessary for C++ anonymous unions, whose component
912 variables don't look like union members (boo!). */
8813a647 913 if (VAR_P (t)
3c0cb5de 914 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
915 return MEM_ALIAS_SET (DECL_RTL (t));
916
f824e5c3
RK
917 /* Now all we care about is the type. */
918 t = TREE_TYPE (t);
3bdf5ad1
RK
919 }
920
3bdf5ad1 921 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 922 variant. */
3bdf5ad1 923 t = TYPE_MAIN_VARIANT (t);
daad0278 924
350792ff
RB
925 if (AGGREGATE_TYPE_P (t)
926 && TYPE_TYPELESS_STORAGE (t))
927 return 0;
928
daad0278
RG
929 /* Always use the canonical type as well. If this is a type that
930 requires structural comparisons to identify compatible types
931 use alias set zero. */
932 if (TYPE_STRUCTURAL_EQUALITY_P (t))
cb9c2485
JM
933 {
934 /* Allow the language to specify another alias set for this
935 type. */
936 set = lang_hooks.get_alias_set (t);
937 if (set != -1)
938 return set;
aea50b45 939 /* Handle structure type equality for pointer types, arrays and vectors.
63f56527 940 This is easy to do, because the code below ignores canonical types on
aea50b45 941 these anyway. This is important for LTO, where TYPE_CANONICAL for
63f56527 942 pointers cannot be meaningfully computed by the frontend. */
aea50b45 943 if (canonical_type_used_p (t))
f85d2487
JH
944 {
945 /* In LTO we set canonical types for all types where it makes
946 sense to do so. Double check we did not miss some type. */
947 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
948 return 0;
949 }
950 }
951 else
952 {
953 t = TYPE_CANONICAL (t);
954 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
cb9c2485 955 }
daad0278
RG
956
957 /* If this is a type with a known alias set, return it. */
ba6a6a1d 958 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
738cc472 959 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
960 return TYPE_ALIAS_SET (t);
961
36784d0e
RG
962 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
963 if (!COMPLETE_TYPE_P (t))
964 {
965 /* For arrays with unknown size the conservative answer is the
966 alias set of the element type. */
967 if (TREE_CODE (t) == ARRAY_TYPE)
968 return get_alias_set (TREE_TYPE (t));
969
970 /* But return zero as a conservative answer for incomplete types. */
971 return 0;
972 }
973
3bdf5ad1 974 /* See if the language has special handling for this type. */
ae2bcd98 975 set = lang_hooks.get_alias_set (t);
8ac61af7 976 if (set != -1)
738cc472 977 return set;
2bf105ab 978
3bdf5ad1
RK
979 /* There are no objects of FUNCTION_TYPE, so there's no point in
980 using up an alias set for them. (There are, of course, pointers
981 and references to functions, but that's different.) */
7be7d292 982 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 983 set = 0;
74d86f4f
RH
984
985 /* Unless the language specifies otherwise, let vector types alias
986 their components. This avoids some nasty type punning issues in
987 normal usage. And indeed lets vectors be treated more like an
988 array slice. */
989 else if (TREE_CODE (t) == VECTOR_TYPE)
990 set = get_alias_set (TREE_TYPE (t));
991
4653cae5
RG
992 /* Unless the language specifies otherwise, treat array types the
993 same as their components. This avoids the asymmetry we get
994 through recording the components. Consider accessing a
995 character(kind=1) through a reference to a character(kind=1)[1:1].
996 Or consider if we want to assign integer(kind=4)[0:D.1387] and
997 integer(kind=4)[4] the same alias set or not.
998 Just be pragmatic here and make sure the array and its element
999 type get the same alias set assigned. */
aea50b45
JH
1000 else if (TREE_CODE (t) == ARRAY_TYPE
1001 && (!TYPE_NONALIASED_COMPONENT (t)
1002 || TYPE_STRUCTURAL_EQUALITY_P (t)))
4653cae5
RG
1003 set = get_alias_set (TREE_TYPE (t));
1004
0ceb0201
RG
1005 /* From the former common C and C++ langhook implementation:
1006
1007 Unfortunately, there is no canonical form of a pointer type.
1008 In particular, if we have `typedef int I', then `int *', and
1009 `I *' are different types. So, we have to pick a canonical
1010 representative. We do this below.
1011
1012 Technically, this approach is actually more conservative that
1013 it needs to be. In particular, `const int *' and `int *'
1014 should be in different alias sets, according to the C and C++
1015 standard, since their types are not the same, and so,
1016 technically, an `int **' and `const int **' cannot point at
1017 the same thing.
1018
1019 But, the standard is wrong. In particular, this code is
1020 legal C++:
1021
1022 int *ip;
1023 int **ipp = &ip;
1024 const int* const* cipp = ipp;
1025 And, it doesn't make sense for that to be legal unless you
1026 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
1027 the pointed-to types. This issue has been reported to the
1028 C++ committee.
1029
6e042ef4
JH
1030 For this reason go to canonical type of the unqalified pointer type.
1031 Until GCC 6 this code set all pointers sets to have alias set of
1032 ptr_type_node but that is a bad idea, because it prevents disabiguations
1033 in between pointers. For Firefox this accounts about 20% of all
1034 disambiguations in the program. */
f85d2487 1035 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
6e042ef4
JH
1036 {
1037 tree p;
1038 auto_vec <bool, 8> reference;
1039
1040 /* Unnest all pointers and references.
f85d2487
JH
1041 We also want to make pointer to array/vector equivalent to pointer to
1042 its element (see the reasoning above). Skip all those types, too. */
6e042ef4 1043 for (p = t; POINTER_TYPE_P (p)
aea50b45
JH
1044 || (TREE_CODE (p) == ARRAY_TYPE
1045 && (!TYPE_NONALIASED_COMPONENT (p)
1046 || !COMPLETE_TYPE_P (p)
1047 || TYPE_STRUCTURAL_EQUALITY_P (p)))
f85d2487 1048 || TREE_CODE (p) == VECTOR_TYPE;
6e042ef4
JH
1049 p = TREE_TYPE (p))
1050 {
63f56527
SL
1051 /* Ada supports recursive pointers. Instead of doing recursion
1052 check, just give up once the preallocated space of 8 elements
1053 is up. In this case just punt to void * alias set. */
54363f8a
JH
1054 if (reference.length () == 8)
1055 {
1056 p = ptr_type_node;
1057 break;
1058 }
6e042ef4 1059 if (TREE_CODE (p) == REFERENCE_TYPE)
f85d2487
JH
1060 /* In LTO we want languages that use references to be compatible
1061 with languages that use pointers. */
1062 reference.safe_push (true && !in_lto_p);
6e042ef4
JH
1063 if (TREE_CODE (p) == POINTER_TYPE)
1064 reference.safe_push (false);
1065 }
1066 p = TYPE_MAIN_VARIANT (p);
1067
63f56527 1068 /* In LTO for C++ programs we can turn incomplete types to complete
e4b44fd7
JH
1069 using ODR name lookup. */
1070 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1071 {
1072 p = prevailing_odr_type (p);
1073 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1074 }
1075
6e042ef4
JH
1076 /* Make void * compatible with char * and also void **.
1077 Programs are commonly violating TBAA by this.
1078
1079 We also make void * to conflict with every pointer
1080 (see record_component_aliases) and thus it is safe it to use it for
1081 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1082 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1083 set = get_alias_set (ptr_type_node);
1084 else
1085 {
f85d2487 1086 /* Rebuild pointer type starting from canonical types using
6e042ef4
JH
1087 unqualified pointers and references only. This way all such
1088 pointers will have the same alias set and will conflict with
1089 each other.
1090
1091 Most of time we already have pointers or references of a given type.
1092 If not we build new one just to be sure that if someone later
1093 (probably only middle-end can, as we should assign all alias
1094 classes only after finishing translation unit) builds the pointer
1095 type, the canonical type will match. */
1096 p = TYPE_CANONICAL (p);
1097 while (!reference.is_empty ())
1098 {
1099 if (reference.pop ())
1100 p = build_reference_type (p);
1101 else
1102 p = build_pointer_type (p);
f85d2487
JH
1103 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1104 /* build_pointer_type should always return the canonical type.
1105 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1106 them. Be sure that frontends do not glob canonical types of
1107 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1108 in all other cases. */
1109 gcc_checking_assert (!TYPE_CANONICAL (p)
1110 || p == TYPE_CANONICAL (p));
6e042ef4 1111 }
6e042ef4
JH
1112
1113 /* Assign the alias set to both p and t.
67914693 1114 We cannot call get_alias_set (p) here as that would trigger
6e042ef4
JH
1115 infinite recursion when p == t. In other cases it would just
1116 trigger unnecesary legwork of rebuilding the pointer again. */
ba6a6a1d 1117 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
6e042ef4
JH
1118 if (TYPE_ALIAS_SET_KNOWN_P (p))
1119 set = TYPE_ALIAS_SET (p);
1120 else
1121 {
1122 set = new_alias_set ();
1123 TYPE_ALIAS_SET (p) = set;
1124 }
1125 }
1126 }
f85d2487
JH
1127 /* Alias set of ptr_type_node is special and serve as universal pointer which
1128 is TBAA compatible with every other pointer type. Be sure we have the
1129 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1130 of pointer types NULL. */
1131 else if (t == ptr_type_node)
1132 set = new_alias_set ();
0ceb0201 1133
7be7d292 1134 /* Otherwise make a new alias set for this type. */
3bdf5ad1 1135 else
96d91dcf
RG
1136 {
1137 /* Each canonical type gets its own alias set, so canonical types
1138 shouldn't form a tree. It doesn't really matter for types
1139 we handle specially above, so only check it where it possibly
1140 would result in a bogus alias set. */
1141 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1142
1143 set = new_alias_set ();
1144 }
3bdf5ad1
RK
1145
1146 TYPE_ALIAS_SET (t) = set;
2bf105ab 1147
7be7d292
EB
1148 /* If this is an aggregate type or a complex type, we must record any
1149 component aliasing information. */
1d79fd2c 1150 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
1151 record_component_aliases (t);
1152
6e042ef4
JH
1153 /* We treat pointer types specially in alias_set_subset_of. */
1154 if (POINTER_TYPE_P (t) && set)
1155 {
02ced957 1156 alias_set_entry *ase = get_alias_set_entry (set);
6e042ef4
JH
1157 if (!ase)
1158 ase = init_alias_set_entry (set);
1159 ase->is_pointer = true;
1160 ase->has_pointer = true;
1161 }
1162
3bdf5ad1
RK
1163 return set;
1164}
1165
1166/* Return a brand-new alias set. */
1167
4862826d 1168alias_set_type
4682ae04 1169new_alias_set (void)
3bdf5ad1 1170{
bd04cddf
JH
1171 if (alias_sets == 0)
1172 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1173 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1174 return alias_sets->length () - 1;
3bdf5ad1 1175}
3932261a 1176
01d28c3f
JM
1177/* Indicate that things in SUBSET can alias things in SUPERSET, but that
1178 not everything that aliases SUPERSET also aliases SUBSET. For example,
1179 in C, a store to an `int' can alias a load of a structure containing an
1180 `int', and vice versa. But it can't alias a load of a 'double' member
1181 of the same structure. Here, the structure would be the SUPERSET and
1182 `int' the SUBSET. This relationship is also described in the comment at
1183 the beginning of this file.
1184
1185 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
1186
1187 It is illegal for SUPERSET to be zero; everything is implicitly a
1188 subset of alias set zero. */
1189
794511d2 1190void
4862826d 1191record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a 1192{
02ced957
TS
1193 alias_set_entry *superset_entry;
1194 alias_set_entry *subset_entry;
3932261a 1195
f47e9b4e
RK
1196 /* It is possible in complex type situations for both sets to be the same,
1197 in which case we can ignore this operation. */
1198 if (superset == subset)
1199 return;
1200
298e6adc 1201 gcc_assert (superset);
3932261a
MM
1202
1203 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 1204 if (superset_entry == 0)
3932261a
MM
1205 {
1206 /* Create an entry for the SUPERSET, so that we have a place to
1207 attach the SUBSET. */
6e042ef4 1208 superset_entry = init_alias_set_entry (superset);
3932261a
MM
1209 }
1210
2bf105ab
RK
1211 if (subset == 0)
1212 superset_entry->has_zero_child = 1;
1213 else
1214 {
6e042ef4
JH
1215 if (!superset_entry->children)
1216 superset_entry->children
fb5c464a 1217 = hash_map<alias_set_hash, int>::create_ggc (64);
6c577667
RB
1218
1219 /* Enter the SUBSET itself as a child of the SUPERSET. If it was
1220 already there we're done. */
1221 if (superset_entry->children->put (subset, 0))
1222 return;
1223
1224 subset_entry = get_alias_set_entry (subset);
2bf105ab
RK
1225 /* If there is an entry for the subset, enter all of its children
1226 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 1227 if (subset_entry)
2bf105ab
RK
1228 {
1229 if (subset_entry->has_zero_child)
6e042ef4
JH
1230 superset_entry->has_zero_child = true;
1231 if (subset_entry->has_pointer)
1232 superset_entry->has_pointer = true;
d4b60170 1233
6e042ef4
JH
1234 if (subset_entry->children)
1235 {
fb5c464a 1236 hash_map<alias_set_hash, int>::iterator iter
6e042ef4
JH
1237 = subset_entry->children->begin ();
1238 for (; iter != subset_entry->children->end (); ++iter)
1239 superset_entry->children->put ((*iter).first, (*iter).second);
1240 }
2bf105ab 1241 }
2bf105ab 1242 }
3932261a
MM
1243}
1244
6b8df3e4 1245/* Record that component types of TYPE, if any, are part of SUPERSET for
a0c33338 1246 aliasing purposes. For record types, we only record component types
b5487346
EB
1247 for fields that are not marked non-addressable. For array types, we
1248 only record the component type if it is not marked non-aliased. */
a0c33338
RK
1249
1250void
6b8df3e4 1251record_component_aliases (tree type, alias_set_type superset)
a0c33338 1252{
a0c33338
RK
1253 tree field;
1254
1255 if (superset == 0)
1256 return;
1257
1258 switch (TREE_CODE (type))
1259 {
a0c33338
RK
1260 case RECORD_TYPE:
1261 case UNION_TYPE:
1262 case QUAL_UNION_TYPE:
17b99c98
JH
1263 {
1264 /* LTO non-ODR type merging does not make any difference between
1265 component pointer types. We may have
1266
1267 struct foo {int *a;};
1268
1269 as TYPE_CANONICAL of
1270
1271 struct bar {float *a;};
1272
1273 Because accesses to int * and float * do not alias, we would get
1274 false negative when accessing the same memory location by
1275 float ** and bar *. We thus record the canonical type as:
1276
1277 struct {void *a;};
1278
1279 void * is special cased and works as a universal pointer type.
1280 Accesses to it conflicts with accesses to any other pointer
1281 type. */
1282 bool void_pointers = in_lto_p
1283 && (!odr_type_p (type)
1284 || !odr_based_tbaa_p (type));
1285 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1286 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1287 {
1288 tree t = TREE_TYPE (field);
1289 if (void_pointers)
1290 {
1291 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1292 element type and that type has to be normalized to void *,
1293 too, in the case it is a pointer. */
1294 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1295 {
1296 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1297 t = TREE_TYPE (t);
1298 }
1299 if (POINTER_TYPE_P (t))
1300 t = ptr_type_node;
1301 else if (flag_checking)
1302 gcc_checking_assert (get_alias_set (t)
1303 == get_alias_set (TREE_TYPE (field)));
1304 }
1305
6b8df3e4
RB
1306 alias_set_type set = get_alias_set (t);
1307 record_alias_subset (superset, set);
1308 /* If the field has alias-set zero make sure to still record
1309 any componets of it. This makes sure that for
1310 struct A {
1311 struct B {
1312 int i;
1313 char c[4];
1314 } b;
1315 };
1316 in C++ even though 'B' has alias-set zero because
1317 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1318 'int' as subset. */
1319 if (set == 0)
1320 record_component_aliases (t, superset);
17b99c98
JH
1321 }
1322 }
a0c33338
RK
1323 break;
1324
1d79fd2c
JW
1325 case COMPLEX_TYPE:
1326 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1327 break;
1328
4653cae5
RG
1329 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1330 element type. */
1331
a0c33338
RK
1332 default:
1333 break;
1334 }
1335}
1336
6b8df3e4
RB
1337/* Record that component types of TYPE, if any, are part of that type for
1338 aliasing purposes. For record types, we only record component types
1339 for fields that are not marked non-addressable. For array types, we
1340 only record the component type if it is not marked non-aliased. */
1341
1342void
1343record_component_aliases (tree type)
1344{
1345 alias_set_type superset = get_alias_set (type);
1346 record_component_aliases (type, superset);
1347}
1348
1349
3bdf5ad1
RK
1350/* Allocate an alias set for use in storing and reading from the varargs
1351 spill area. */
1352
4862826d 1353static GTY(()) alias_set_type varargs_set = -1;
f103e34d 1354
4862826d 1355alias_set_type
4682ae04 1356get_varargs_alias_set (void)
3bdf5ad1 1357{
cd3ce9b4
JM
1358#if 1
1359 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1360 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1361 consistently use the varargs alias set for loads from the varargs
1362 area. So don't use it anywhere. */
1363 return 0;
1364#else
f103e34d
GK
1365 if (varargs_set == -1)
1366 varargs_set = new_alias_set ();
3bdf5ad1 1367
f103e34d 1368 return varargs_set;
cd3ce9b4 1369#endif
3bdf5ad1
RK
1370}
1371
1372/* Likewise, but used for the fixed portions of the frame, e.g., register
1373 save areas. */
1374
4862826d 1375static GTY(()) alias_set_type frame_set = -1;
f103e34d 1376
4862826d 1377alias_set_type
4682ae04 1378get_frame_alias_set (void)
3bdf5ad1 1379{
f103e34d
GK
1380 if (frame_set == -1)
1381 frame_set = new_alias_set ();
3bdf5ad1 1382
f103e34d 1383 return frame_set;
3bdf5ad1
RK
1384}
1385
9fc37b2b
RS
1386/* Create a new, unique base with id ID. */
1387
1388static rtx
1389unique_base_value (HOST_WIDE_INT id)
1390{
1391 return gen_rtx_ADDRESS (Pmode, id);
1392}
1393
1394/* Return true if accesses based on any other base value cannot alias
1395 those based on X. */
1396
1397static bool
1398unique_base_value_p (rtx x)
1399{
1400 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1401}
1402
2a2c8203
JC
1403/* Inside SRC, the source of a SET, find a base address. */
1404
9ae8ffe7 1405static rtx
4682ae04 1406find_base_value (rtx src)
9ae8ffe7 1407{
713f41f9 1408 unsigned int regno;
6645d841 1409 scalar_int_mode int_mode;
0aacc8ed 1410
53451050
RS
1411#if defined (FIND_BASE_TERM)
1412 /* Try machine-dependent ways to find the base term. */
1413 src = FIND_BASE_TERM (src);
1414#endif
1415
9ae8ffe7
JL
1416 switch (GET_CODE (src))
1417 {
1418 case SYMBOL_REF:
1419 case LABEL_REF:
1420 return src;
1421
1422 case REG:
fb6754f0 1423 regno = REGNO (src);
d4b60170 1424 /* At the start of a function, argument registers have known base
2a2c8203
JC
1425 values which may be lost later. Returning an ADDRESS
1426 expression here allows optimization based on argument values
1427 even when the argument registers are used for other purposes. */
713f41f9
BS
1428 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1429 return new_reg_base_value[regno];
73774bc7 1430
eaf407a5 1431 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
1432 for non-fixed hard regs since it can result in a circular
1433 dependency chain for registers which have values at function entry.
eaf407a5
JL
1434
1435 The test above is not sufficient because the scheduler may move
1436 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 1437 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
9771b263 1438 && regno < vec_safe_length (reg_base_value))
83bbd9b6
RH
1439 {
1440 /* If we're inside init_alias_analysis, use new_reg_base_value
1441 to reduce the number of relaxation iterations. */
1afdf91c 1442 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 1443 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
1444 return new_reg_base_value[regno];
1445
9771b263
DN
1446 if ((*reg_base_value)[regno])
1447 return (*reg_base_value)[regno];
83bbd9b6 1448 }
73774bc7 1449
e3f049a8 1450 return 0;
9ae8ffe7
JL
1451
1452 case MEM:
1453 /* Check for an argument passed in memory. Only record in the
1454 copying-arguments block; it is too hard to track changes
1455 otherwise. */
1456 if (copying_arguments
1457 && (XEXP (src, 0) == arg_pointer_rtx
1458 || (GET_CODE (XEXP (src, 0)) == PLUS
1459 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
9fc37b2b 1460 return arg_base_value;
9ae8ffe7
JL
1461 return 0;
1462
1463 case CONST:
1464 src = XEXP (src, 0);
1465 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1466 break;
d4b60170 1467
191816a3 1468 /* fall through */
2a2c8203 1469
9ae8ffe7
JL
1470 case PLUS:
1471 case MINUS:
2a2c8203 1472 {
23ebb09e 1473 rtx src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
0134bf2d 1474
23ebb09e
RB
1475 /* If either operand is a CONST_INT, then the other is the base. */
1476 if (CONST_INT_P (src_1))
2a2c8203 1477 return find_base_value (src_0);
23ebb09e 1478 else if (CONST_INT_P (src_0))
ec907dd8
JL
1479 return find_base_value (src_1);
1480
9ae8ffe7 1481 return 0;
2a2c8203
JC
1482 }
1483
1484 case LO_SUM:
1485 /* The standard form is (lo_sum reg sym) so look only at the
1486 second operand. */
1487 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1488
1489 case AND:
ef50b972
RB
1490 /* Look through aligning ANDs. And AND with zero or one with
1491 the LSB set isn't one (see for example PR92462). */
1492 if (CONST_INT_P (XEXP (src, 1))
1493 && INTVAL (XEXP (src, 1)) != 0
1494 && (INTVAL (XEXP (src, 1)) & 1) == 0)
2a2c8203 1495 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1496 return 0;
1497
61f0131c 1498 case TRUNCATE:
5932a4d4 1499 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1500 handle this only if the target does not support different pointer or
1501 address modes depending on the address space. */
1502 if (!target_default_pointer_address_modes_p ())
1503 break;
6645d841
RS
1504 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1505 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
61f0131c
R
1506 break;
1507 /* Fall through. */
9ae8ffe7 1508 case HIGH:
d288e53d
DE
1509 case PRE_INC:
1510 case PRE_DEC:
1511 case POST_INC:
1512 case POST_DEC:
1513 case PRE_MODIFY:
1514 case POST_MODIFY:
2a2c8203 1515 return find_base_value (XEXP (src, 0));
1d300e19 1516
0aacc8ed
RK
1517 case ZERO_EXTEND:
1518 case SIGN_EXTEND: /* used for NT/Alpha pointers */
5932a4d4 1519 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1520 handle this only if the target does not support different pointer or
1521 address modes depending on the address space. */
1522 if (!target_default_pointer_address_modes_p ())
1523 break;
1524
0aacc8ed
RK
1525 {
1526 rtx temp = find_base_value (XEXP (src, 0));
1527
5ae6cd0d 1528 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1529 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1530
1531 return temp;
1532 }
1533
1d300e19
KG
1534 default:
1535 break;
9ae8ffe7
JL
1536 }
1537
1538 return 0;
1539}
1540
9fc37b2b
RS
1541/* Called from init_alias_analysis indirectly through note_stores,
1542 or directly if DEST is a register with a REG_NOALIAS note attached.
1543 SET is null in the latter case. */
9ae8ffe7 1544
d4b60170 1545/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7 1546 register N has been set in this function. */
d630245f 1547static sbitmap reg_seen;
9ae8ffe7 1548
2a2c8203 1549static void
7bc980e1 1550record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1551{
b3694847 1552 unsigned regno;
9ae8ffe7 1553 rtx src;
c28b4e40 1554 int n;
9ae8ffe7 1555
f8cfc6aa 1556 if (!REG_P (dest))
9ae8ffe7
JL
1557 return;
1558
fb6754f0 1559 regno = REGNO (dest);
9ae8ffe7 1560
9771b263 1561 gcc_checking_assert (regno < reg_base_value->length ());
ac606739 1562
dc8afb70 1563 n = REG_NREGS (dest);
c28b4e40
JW
1564 if (n != 1)
1565 {
1566 while (--n >= 0)
1567 {
d7c028c0 1568 bitmap_set_bit (reg_seen, regno + n);
c28b4e40
JW
1569 new_reg_base_value[regno + n] = 0;
1570 }
1571 return;
1572 }
1573
9ae8ffe7
JL
1574 if (set)
1575 {
1576 /* A CLOBBER wipes out any old value but does not prevent a previously
1577 unset register from acquiring a base address (i.e. reg_seen is not
1578 set). */
1579 if (GET_CODE (set) == CLOBBER)
1580 {
ec907dd8 1581 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1582 return;
1583 }
8df47bdf 1584
9ae8ffe7
JL
1585 src = SET_SRC (set);
1586 }
1587 else
1588 {
9fc37b2b 1589 /* There's a REG_NOALIAS note against DEST. */
d7c028c0 1590 if (bitmap_bit_p (reg_seen, regno))
9ae8ffe7 1591 {
ec907dd8 1592 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1593 return;
1594 }
d7c028c0 1595 bitmap_set_bit (reg_seen, regno);
9fc37b2b 1596 new_reg_base_value[regno] = unique_base_value (unique_id++);
9ae8ffe7
JL
1597 return;
1598 }
1599
5da6f168
RS
1600 /* If this is not the first set of REGNO, see whether the new value
1601 is related to the old one. There are two cases of interest:
1602
1603 (1) The register might be assigned an entirely new value
1604 that has the same base term as the original set.
1605
1606 (2) The set might be a simple self-modification that
1607 cannot change REGNO's base value.
1608
1609 If neither case holds, reject the original base value as invalid.
1610 Note that the following situation is not detected:
1611
c22cacf3 1612 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1613
9ae8ffe7
JL
1614 ANSI C does not allow computing the difference of addresses
1615 of distinct top level objects. */
5da6f168
RS
1616 if (new_reg_base_value[regno] != 0
1617 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1618 switch (GET_CODE (src))
1619 {
2a2c8203 1620 case LO_SUM:
9ae8ffe7
JL
1621 case MINUS:
1622 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1623 new_reg_base_value[regno] = 0;
9ae8ffe7 1624 break;
61f0131c
R
1625 case PLUS:
1626 /* If the value we add in the PLUS is also a valid base value,
1627 this might be the actual base value, and the original value
1628 an index. */
1629 {
1630 rtx other = NULL_RTX;
1631
1632 if (XEXP (src, 0) == dest)
1633 other = XEXP (src, 1);
1634 else if (XEXP (src, 1) == dest)
1635 other = XEXP (src, 0);
1636
1637 if (! other || find_base_value (other))
1638 new_reg_base_value[regno] = 0;
1639 break;
1640 }
9ae8ffe7 1641 case AND:
481683e1 1642 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1643 new_reg_base_value[regno] = 0;
9ae8ffe7 1644 break;
9ae8ffe7 1645 default:
ec907dd8 1646 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1647 break;
1648 }
1649 /* If this is the first set of a register, record the value. */
1650 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
d7c028c0 1651 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
ec907dd8 1652 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7 1653
d7c028c0 1654 bitmap_set_bit (reg_seen, regno);
9ae8ffe7
JL
1655}
1656
8fd0a474
AM
1657/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1658 using hard registers with non-null REG_BASE_VALUE for renaming. */
1659rtx
1660get_reg_base_value (unsigned int regno)
1661{
9771b263 1662 return (*reg_base_value)[regno];
8fd0a474
AM
1663}
1664
bb1acb3e
RH
1665/* If a value is known for REGNO, return it. */
1666
c22cacf3 1667rtx
bb1acb3e
RH
1668get_reg_known_value (unsigned int regno)
1669{
1670 if (regno >= FIRST_PSEUDO_REGISTER)
1671 {
1672 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1673 if (regno < vec_safe_length (reg_known_value))
1674 return (*reg_known_value)[regno];
bb1acb3e
RH
1675 }
1676 return NULL;
43fe47ca
JW
1677}
1678
bb1acb3e
RH
1679/* Set it. */
1680
1681static void
1682set_reg_known_value (unsigned int regno, rtx val)
1683{
1684 if (regno >= FIRST_PSEUDO_REGISTER)
1685 {
1686 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1687 if (regno < vec_safe_length (reg_known_value))
1688 (*reg_known_value)[regno] = val;
bb1acb3e
RH
1689 }
1690}
1691
1692/* Similarly for reg_known_equiv_p. */
1693
1694bool
1695get_reg_known_equiv_p (unsigned int regno)
1696{
1697 if (regno >= FIRST_PSEUDO_REGISTER)
1698 {
1699 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1700 if (regno < vec_safe_length (reg_known_value))
d7c028c0 1701 return bitmap_bit_p (reg_known_equiv_p, regno);
bb1acb3e
RH
1702 }
1703 return false;
1704}
1705
1706static void
1707set_reg_known_equiv_p (unsigned int regno, bool val)
1708{
1709 if (regno >= FIRST_PSEUDO_REGISTER)
1710 {
1711 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1712 if (regno < vec_safe_length (reg_known_value))
9ff3c7ca
SB
1713 {
1714 if (val)
d7c028c0 1715 bitmap_set_bit (reg_known_equiv_p, regno);
9ff3c7ca 1716 else
d7c028c0 1717 bitmap_clear_bit (reg_known_equiv_p, regno);
9ff3c7ca 1718 }
bb1acb3e
RH
1719 }
1720}
1721
1722
db048faf
MM
1723/* Returns a canonical version of X, from the point of view alias
1724 analysis. (For example, if X is a MEM whose address is a register,
1725 and the register has a known value (say a SYMBOL_REF), then a MEM
1726 whose address is the SYMBOL_REF is returned.) */
1727
1728rtx
4682ae04 1729canon_rtx (rtx x)
9ae8ffe7
JL
1730{
1731 /* Recursively look for equivalences. */
f8cfc6aa 1732 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1733 {
1734 rtx t = get_reg_known_value (REGNO (x));
1735 if (t == x)
1736 return x;
1737 if (t)
1738 return canon_rtx (t);
1739 }
1740
1741 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1742 {
1743 rtx x0 = canon_rtx (XEXP (x, 0));
1744 rtx x1 = canon_rtx (XEXP (x, 1));
1745
1746 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
231314e3 1747 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
9ae8ffe7 1748 }
d4b60170 1749
9ae8ffe7
JL
1750 /* This gives us much better alias analysis when called from
1751 the loop optimizer. Note we want to leave the original
1752 MEM alone, but need to return the canonicalized MEM with
1753 all the flags with their original values. */
3c0cb5de 1754 else if (MEM_P (x))
f1ec5147 1755 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1756
9ae8ffe7
JL
1757 return x;
1758}
1759
4d519f1b 1760/* Return true if X and Y are identical-looking rtx's.
45183e03 1761 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1762
1763 We use the data in reg_known_value above to see if two registers with
1764 different numbers are, in fact, equivalent. */
1765
4d519f1b 1766static bool
ed7a4b4b 1767rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1768{
b3694847
SS
1769 int i;
1770 int j;
1771 enum rtx_code code;
1772 const char *fmt;
9ae8ffe7
JL
1773
1774 if (x == 0 && y == 0)
4d519f1b 1775 return true;
9ae8ffe7 1776 if (x == 0 || y == 0)
4d519f1b 1777 return false;
d4b60170 1778
9ae8ffe7 1779 if (x == y)
4d519f1b 1780 return true;
9ae8ffe7
JL
1781
1782 code = GET_CODE (x);
1783 /* Rtx's of different codes cannot be equal. */
1784 if (code != GET_CODE (y))
4d519f1b 1785 return false;
9ae8ffe7
JL
1786
1787 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1788 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1789
1790 if (GET_MODE (x) != GET_MODE (y))
4d519f1b 1791 return false;
9ae8ffe7 1792
db048faf
MM
1793 /* Some RTL can be compared without a recursive examination. */
1794 switch (code)
1795 {
1796 case REG:
1797 return REGNO (x) == REGNO (y);
1798
1799 case LABEL_REF:
04a121a7 1800 return label_ref_label (x) == label_ref_label (y);
ca7fd9cd 1801
db048faf 1802 case SYMBOL_REF:
6a2a3862
RS
1803 {
1804 HOST_WIDE_INT distance = 0;
1805 return (compare_base_symbol_refs (x, y, &distance) == 1
1806 && distance == 0);
1807 }
db048faf 1808
af6236c1
AO
1809 case ENTRY_VALUE:
1810 /* This is magic, don't go through canonicalization et al. */
1811 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1812
40e02b4a 1813 case VALUE:
d8116890 1814 CASE_CONST_UNIQUE:
807e902e 1815 /* Pointer equality guarantees equality for these nodes. */
4d519f1b 1816 return false;
db048faf 1817
db048faf
MM
1818 default:
1819 break;
1820 }
9ae8ffe7 1821
45183e03
JH
1822 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1823 if (code == PLUS)
9ae8ffe7
JL
1824 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1825 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1826 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1827 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1828 /* For commutative operations, the RTX match if the operand match in any
1829 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1830 if (COMMUTATIVE_P (x))
45183e03
JH
1831 {
1832 rtx xop0 = canon_rtx (XEXP (x, 0));
1833 rtx yop0 = canon_rtx (XEXP (y, 0));
1834 rtx yop1 = canon_rtx (XEXP (y, 1));
1835
1836 return ((rtx_equal_for_memref_p (xop0, yop0)
1837 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1838 || (rtx_equal_for_memref_p (xop0, yop1)
1839 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1840 }
ec8e098d 1841 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1842 {
1843 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1844 canon_rtx (XEXP (y, 0)))
45183e03
JH
1845 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1846 canon_rtx (XEXP (y, 1))));
1847 }
ec8e098d 1848 else if (UNARY_P (x))
45183e03 1849 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1850 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1851
1852 /* Compare the elements. If any pair of corresponding elements
4d519f1b 1853 fail to match, return false for the whole things.
de12be17
JC
1854
1855 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1856
1857 fmt = GET_RTX_FORMAT (code);
1858 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1859 {
1860 switch (fmt[i])
1861 {
9ae8ffe7
JL
1862 case 'i':
1863 if (XINT (x, i) != XINT (y, i))
4d519f1b 1864 return false;
9ae8ffe7
JL
1865 break;
1866
91914e56
RS
1867 case 'p':
1868 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
4d519f1b 1869 return false;
91914e56
RS
1870 break;
1871
9ae8ffe7
JL
1872 case 'E':
1873 /* Two vectors must have the same length. */
1874 if (XVECLEN (x, i) != XVECLEN (y, i))
4d519f1b 1875 return false;
9ae8ffe7
JL
1876
1877 /* And the corresponding elements must match. */
1878 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1879 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1880 canon_rtx (XVECEXP (y, i, j))) == 0)
4d519f1b 1881 return false;
9ae8ffe7
JL
1882 break;
1883
1884 case 'e':
45183e03
JH
1885 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1886 canon_rtx (XEXP (y, i))) == 0)
4d519f1b 1887 return false;
9ae8ffe7
JL
1888 break;
1889
3237ac18
AH
1890 /* This can happen for asm operands. */
1891 case 's':
1892 if (strcmp (XSTR (x, i), XSTR (y, i)))
4d519f1b 1893 return false;
3237ac18
AH
1894 break;
1895
aee21ba9
JL
1896 /* This can happen for an asm which clobbers memory. */
1897 case '0':
1898 break;
1899
9ae8ffe7
JL
1900 /* It is believed that rtx's at this level will never
1901 contain anything but integers and other rtx's,
1902 except for within LABEL_REFs and SYMBOL_REFs. */
1903 default:
298e6adc 1904 gcc_unreachable ();
9ae8ffe7
JL
1905 }
1906 }
4d519f1b 1907 return true;
9ae8ffe7
JL
1908}
1909
9e412ca3 1910static rtx
6ca83833
RB
1911find_base_term (rtx x, vec<std::pair<cselib_val *,
1912 struct elt_loc_list *> > &visited_vals)
9ae8ffe7 1913{
eab5c70a 1914 cselib_val *val;
6f2ffb4b
AO
1915 struct elt_loc_list *l, *f;
1916 rtx ret;
6645d841 1917 scalar_int_mode int_mode;
eab5c70a 1918
b949ea8b
JW
1919#if defined (FIND_BASE_TERM)
1920 /* Try machine-dependent ways to find the base term. */
1921 x = FIND_BASE_TERM (x);
1922#endif
1923
9ae8ffe7
JL
1924 switch (GET_CODE (x))
1925 {
1926 case REG:
1927 return REG_BASE_VALUE (x);
1928
d288e53d 1929 case TRUNCATE:
5932a4d4 1930 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1931 handle this only if the target does not support different pointer or
1932 address modes depending on the address space. */
1933 if (!target_default_pointer_address_modes_p ())
1934 return 0;
6645d841
RS
1935 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1936 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
ca7fd9cd 1937 return 0;
d288e53d 1938 /* Fall through. */
9ae8ffe7 1939 case HIGH:
6d849a2a
JL
1940 case PRE_INC:
1941 case PRE_DEC:
1942 case POST_INC:
1943 case POST_DEC:
d288e53d
DE
1944 case PRE_MODIFY:
1945 case POST_MODIFY:
6ca83833 1946 return find_base_term (XEXP (x, 0), visited_vals);
6d849a2a 1947
1abade85
RK
1948 case ZERO_EXTEND:
1949 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
5932a4d4 1950 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1951 handle this only if the target does not support different pointer or
1952 address modes depending on the address space. */
1953 if (!target_default_pointer_address_modes_p ())
1954 return 0;
1955
1abade85 1956 {
6ca83833 1957 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1abade85 1958
5ae6cd0d 1959 if (temp != 0 && CONSTANT_P (temp))
1abade85 1960 temp = convert_memory_address (Pmode, temp);
1abade85
RK
1961
1962 return temp;
1963 }
1964
eab5c70a
BS
1965 case VALUE:
1966 val = CSELIB_VAL_PTR (x);
6f2ffb4b
AO
1967 ret = NULL_RTX;
1968
40e02b4a 1969 if (!val)
6f2ffb4b
AO
1970 return ret;
1971
0fe03ac3
JJ
1972 if (cselib_sp_based_value_p (val))
1973 return static_reg_base_value[STACK_POINTER_REGNUM];
1974
2e94d3ee
JJ
1975 if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
1976 return ret;
1977
6f2ffb4b 1978 f = val->locs;
6ca83833
RB
1979 /* Reset val->locs to avoid infinite recursion. */
1980 if (f)
1981 visited_vals.safe_push (std::make_pair (val, f));
6f2ffb4b
AO
1982 val->locs = NULL;
1983
1984 for (l = f; l; l = l->next)
1985 if (GET_CODE (l->loc) == VALUE
1986 && CSELIB_VAL_PTR (l->loc)->locs
1987 && !CSELIB_VAL_PTR (l->loc)->locs->next
1988 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1989 continue;
6ca83833 1990 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
6f2ffb4b
AO
1991 break;
1992
6f2ffb4b 1993 return ret;
eab5c70a 1994
023f059b
JJ
1995 case LO_SUM:
1996 /* The standard form is (lo_sum reg sym) so look only at the
1997 second operand. */
6ca83833 1998 return find_base_term (XEXP (x, 1), visited_vals);
023f059b 1999
9ae8ffe7
JL
2000 case CONST:
2001 x = XEXP (x, 0);
2002 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2003 return 0;
938d968e 2004 /* Fall through. */
9ae8ffe7
JL
2005 case PLUS:
2006 case MINUS:
2007 {
3c567fae
JL
2008 rtx tmp1 = XEXP (x, 0);
2009 rtx tmp2 = XEXP (x, 1);
2010
f5143c46 2011 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
2012 the two operands represents the real base address. Otherwise this
2013 routine may return the index register instead of the base register.
2014
2015 That may cause us to believe no aliasing was possible, when in
2016 fact aliasing is possible.
2017
2018 We use a few simple tests to guess the base register. Additional
2019 tests can certainly be added. For example, if one of the operands
2020 is a shift or multiply, then it must be the index register and the
2021 other operand is the base register. */
ca7fd9cd 2022
b949ea8b 2023 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
6ca83833 2024 return find_base_term (tmp2, visited_vals);
b949ea8b 2025
a98d5130 2026 if (CONST_INT_P (tmp1))
a7c75343 2027 std::swap (tmp1, tmp2);
3c567fae 2028
a98d5130
RB
2029 /* We can only handle binary operators when one of the operands
2030 never leads to a base value. */
2031 if (CONST_INT_P (tmp2))
2032 return find_base_term (tmp1, visited_vals);
3c567fae
JL
2033
2034 /* We could not determine which of the two operands was the
2035 base register and which was the index. So we can determine
2036 nothing from the base alias check. */
2037 return 0;
9ae8ffe7
JL
2038 }
2039
2040 case AND:
ef50b972
RB
2041 /* Look through aligning ANDs. And AND with zero or one with
2042 the LSB set isn't one (see for example PR92462). */
2043 if (CONST_INT_P (XEXP (x, 1))
2044 && INTVAL (XEXP (x, 1)) != 0
2045 && (INTVAL (XEXP (x, 1)) & 1) == 0)
6ca83833 2046 return find_base_term (XEXP (x, 0), visited_vals);
9ae8ffe7
JL
2047 return 0;
2048
2049 case SYMBOL_REF:
2050 case LABEL_REF:
2051 return x;
2052
2053 default:
2054 return 0;
2055 }
2056}
2057
6ca83833
RB
2058/* Wrapper around the worker above which removes locs from visited VALUEs
2059 to avoid visiting them multiple times. We unwind that changes here. */
2060
2061static rtx
2062find_base_term (rtx x)
2063{
2064 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2065 rtx res = find_base_term (x, visited_vals);
2066 for (unsigned i = 0; i < visited_vals.length (); ++i)
2067 visited_vals[i].first->locs = visited_vals[i].second;
2068 return res;
2069}
2070
9e412ca3
RS
2071/* Return true if accesses to address X may alias accesses based
2072 on the stack pointer. */
2073
2074bool
2075may_be_sp_based_p (rtx x)
2076{
2077 rtx base = find_base_term (x);
2078 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2079}
2080
54363f8a 2081/* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
67914693 2082 if they refer to different objects and -1 if we cannot decide. */
54363f8a
JH
2083
2084int
2085compare_base_decls (tree base1, tree base2)
2086{
2087 int ret;
2088 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2089 if (base1 == base2)
2090 return 1;
2091
bed3fd46 2092 /* If we have two register decls with register specification we
816c4ba2 2093 cannot decide unless their assembler names are the same. */
371f0b99
RB
2094 if (VAR_P (base1)
2095 && VAR_P (base2)
2096 && DECL_HARD_REGISTER (base1)
2097 && DECL_HARD_REGISTER (base2)
bed3fd46
RB
2098 && DECL_ASSEMBLER_NAME_SET_P (base1)
2099 && DECL_ASSEMBLER_NAME_SET_P (base2))
2100 {
816c4ba2 2101 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
bed3fd46
RB
2102 return 1;
2103 return -1;
2104 }
2105
54363f8a
JH
2106 /* Declarations of non-automatic variables may have aliases. All other
2107 decls are unique. */
7ec4f343
NS
2108 if (!decl_in_symtab_p (base1)
2109 || !decl_in_symtab_p (base2))
54363f8a 2110 return 0;
7ec4f343 2111
929710d9
NS
2112 /* Don't cause symbols to be inserted by the act of checking. */
2113 symtab_node *node1 = symtab_node::get (base1);
2114 if (!node1)
2115 return 0;
2116 symtab_node *node2 = symtab_node::get (base2);
2117 if (!node2)
2118 return 0;
2119
2120 ret = node1->equal_address_to (node2, true);
54363f8a
JH
2121 return ret;
2122}
2123
6a2a3862
RS
2124/* Compare SYMBOL_REFs X_BASE and Y_BASE.
2125
2126 - Return 1 if Y_BASE - X_BASE is constant, adding that constant
2127 to *DISTANCE if DISTANCE is nonnull.
2128
2129 - Return 0 if no accesses based on X_BASE can alias Y_BASE.
2130
2131 - Return -1 if one of the two results applies, but we can't tell
2132 which at compile time. Update DISTANCE in the same way as
2133 for a return value of 1, for the case in which that holds. */
73e48cb3
JH
2134
2135static int
6a2a3862
RS
2136compare_base_symbol_refs (const_rtx x_base, const_rtx y_base,
2137 HOST_WIDE_INT *distance)
73e48cb3
JH
2138{
2139 tree x_decl = SYMBOL_REF_DECL (x_base);
2140 tree y_decl = SYMBOL_REF_DECL (y_base);
2141 bool binds_def = true;
d34cdec5 2142 bool swap = false;
73e48cb3
JH
2143
2144 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2145 return 1;
2146 if (x_decl && y_decl)
2147 return compare_base_decls (x_decl, y_decl);
2148 if (x_decl || y_decl)
2149 {
2150 if (!x_decl)
2151 {
d34cdec5 2152 swap = true;
73e48cb3
JH
2153 std::swap (x_decl, y_decl);
2154 std::swap (x_base, y_base);
2155 }
6a2a3862
RS
2156 /* We handle specially only section anchors. Other symbols are
2157 either equal (via aliasing) or refer to different objects. */
73e48cb3
JH
2158 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2159 return -1;
2160 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2161 to ignore CONST_DECLs because they are readonly. */
8813a647 2162 if (!VAR_P (x_decl)
73e48cb3
JH
2163 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2164 return 0;
2165
2166 symtab_node *x_node = symtab_node::get_create (x_decl)
2167 ->ultimate_alias_target ();
67914693 2168 /* External variable cannot be in section anchor. */
73e48cb3
JH
2169 if (!x_node->definition)
2170 return 0;
2171 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2172 /* If not in anchor, we can disambiguate. */
2173 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2174 return 0;
2175
2176 /* We have an alias of anchored variable. If it can be interposed;
2177 we must assume it may or may not alias its anchor. */
2178 binds_def = decl_binds_to_current_def_p (x_decl);
2179 }
2180 /* If we have variable in section anchor, we can compare by offset. */
2181 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2182 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2183 {
2184 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2185 return 0;
6a2a3862 2186 if (distance)
d34cdec5
AV
2187 *distance += (swap ? -1 : 1) * (SYMBOL_REF_BLOCK_OFFSET (y_base)
2188 - SYMBOL_REF_BLOCK_OFFSET (x_base));
6a2a3862 2189 return binds_def ? 1 : -1;
73e48cb3 2190 }
6a2a3862
RS
2191 /* Either the symbols are equal (via aliasing) or they refer to
2192 different objects. */
73e48cb3
JH
2193 return -1;
2194}
2195
4d519f1b
UB
2196/* Return false if the addresses X and Y are known to point to different
2197 objects, true if they might be pointers to the same object. */
9ae8ffe7 2198
4d519f1b 2199static bool
31b0a960 2200base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
ef4bddc2 2201 machine_mode x_mode, machine_mode y_mode)
9ae8ffe7 2202{
1c72c7f6
JC
2203 /* If the address itself has no known base see if a known equivalent
2204 value has one. If either address still has no known base, nothing
2205 is known about aliasing. */
2206 if (x_base == 0)
2207 {
2208 rtx x_c;
d4b60170 2209
1c72c7f6 2210 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
4d519f1b 2211 return true;
d4b60170 2212
1c72c7f6
JC
2213 x_base = find_base_term (x_c);
2214 if (x_base == 0)
4d519f1b 2215 return true;
1c72c7f6 2216 }
9ae8ffe7 2217
1c72c7f6
JC
2218 if (y_base == 0)
2219 {
2220 rtx y_c;
2221 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
4d519f1b 2222 return true;
d4b60170 2223
1c72c7f6
JC
2224 y_base = find_base_term (y_c);
2225 if (y_base == 0)
4d519f1b 2226 return true;
1c72c7f6
JC
2227 }
2228
2229 /* If the base addresses are equal nothing is known about aliasing. */
2230 if (rtx_equal_p (x_base, y_base))
4d519f1b 2231 return true;
9ae8ffe7 2232
435da628
UB
2233 /* The base addresses are different expressions. If they are not accessed
2234 via AND, there is no conflict. We can bring knowledge of object
2235 alignment into play here. For example, on alpha, "char a, b;" can
5764ee3c 2236 alias one another, though "char a; long b;" cannot. AND addresses may
435da628
UB
2237 implicitly alias surrounding objects; i.e. unaligned access in DImode
2238 via AND address can alias all surrounding object types except those
2239 with aligment 8 or higher. */
2240 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
4d519f1b 2241 return true;
435da628 2242 if (GET_CODE (x) == AND
481683e1 2243 && (!CONST_INT_P (XEXP (x, 1))
435da628 2244 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
4d519f1b 2245 return true;
435da628 2246 if (GET_CODE (y) == AND
481683e1 2247 && (!CONST_INT_P (XEXP (y, 1))
435da628 2248 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
4d519f1b 2249 return true;
435da628 2250
73e48cb3 2251 /* Differing symbols not accessed via AND never alias. */
3a28db46 2252 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
73e48cb3 2253 return compare_base_symbol_refs (x_base, y_base) != 0;
3a28db46 2254
9ae8ffe7 2255 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
4d519f1b 2256 return false;
9ae8ffe7 2257
9fc37b2b 2258 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
4d519f1b 2259 return false;
9ae8ffe7 2260
4d519f1b 2261 return true;
9ae8ffe7
JL
2262}
2263
a5628378 2264/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
c779924e 2265 (or equal to) that of V. */
a5628378
AO
2266
2267static bool
403837b4 2268refs_newer_value_p (const_rtx expr, rtx v)
a5628378
AO
2269{
2270 int minuid = CSELIB_VAL_PTR (v)->uid;
403837b4
RS
2271 subrtx_iterator::array_type array;
2272 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
c779924e 2273 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
403837b4
RS
2274 return true;
2275 return false;
a5628378
AO
2276}
2277
eab5c70a 2278/* Convert the address X into something we can use. This is done by returning
569efc34
JJ
2279 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2280 we call cselib to get a more useful rtx. */
3bdf5ad1 2281
a13d4ebf 2282rtx
4682ae04 2283get_addr (rtx x)
eab5c70a
BS
2284{
2285 cselib_val *v;
2286 struct elt_loc_list *l;
2287
2288 if (GET_CODE (x) != VALUE)
569efc34
JJ
2289 {
2290 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2291 && GET_CODE (XEXP (x, 0)) == VALUE
2292 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2293 {
2294 rtx op0 = get_addr (XEXP (x, 0));
2295 if (op0 != XEXP (x, 0))
2296 {
5284e559 2297 poly_int64 c;
569efc34 2298 if (GET_CODE (x) == PLUS
5284e559
RS
2299 && poly_int_rtx_p (XEXP (x, 1), &c))
2300 return plus_constant (GET_MODE (x), op0, c);
569efc34
JJ
2301 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2302 op0, XEXP (x, 1));
2303 }
2304 }
2305 return x;
2306 }
eab5c70a 2307 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
2308 if (v)
2309 {
0f68ba3e
AO
2310 bool have_equivs = cselib_have_permanent_equivalences ();
2311 if (have_equivs)
2312 v = canonical_cselib_val (v);
40e02b4a
JH
2313 for (l = v->locs; l; l = l->next)
2314 if (CONSTANT_P (l->loc))
2315 return l->loc;
2316 for (l = v->locs; l; l = l->next)
0f68ba3e
AO
2317 if (!REG_P (l->loc) && !MEM_P (l->loc)
2318 /* Avoid infinite recursion when potentially dealing with
2319 var-tracking artificial equivalences, by skipping the
2320 equivalences themselves, and not choosing expressions
2321 that refer to newer VALUEs. */
2322 && (!have_equivs
2323 || (GET_CODE (l->loc) != VALUE
2324 && !refs_newer_value_p (l->loc, x))))
a5628378 2325 return l->loc;
0f68ba3e
AO
2326 if (have_equivs)
2327 {
2328 for (l = v->locs; l; l = l->next)
2329 if (REG_P (l->loc)
2330 || (GET_CODE (l->loc) != VALUE
2331 && !refs_newer_value_p (l->loc, x)))
2332 return l->loc;
2333 /* Return the canonical value. */
2334 return v->val_rtx;
2335 }
2336 if (v->locs)
2337 return v->locs->loc;
40e02b4a 2338 }
eab5c70a
BS
2339 return x;
2340}
2341
39cec1ac
MH
2342/* Return the address of the (N_REFS + 1)th memory reference to ADDR
2343 where SIZE is the size in bytes of the memory reference. If ADDR
2344 is not modified by the memory reference then ADDR is returned. */
2345
04e2b4d3 2346static rtx
9f61be58 2347addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
39cec1ac 2348{
9f61be58 2349 poly_int64 offset = 0;
ca7fd9cd 2350
39cec1ac
MH
2351 switch (GET_CODE (addr))
2352 {
2353 case PRE_INC:
2354 offset = (n_refs + 1) * size;
2355 break;
2356 case PRE_DEC:
2357 offset = -(n_refs + 1) * size;
2358 break;
2359 case POST_INC:
2360 offset = n_refs * size;
2361 break;
2362 case POST_DEC:
2363 offset = -n_refs * size;
2364 break;
2365
2366 default:
2367 return addr;
2368 }
ca7fd9cd 2369
9f61be58 2370 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
45183e03 2371 addr = canon_rtx (addr);
39cec1ac
MH
2372
2373 return addr;
2374}
2375
3aa03517
AO
2376/* Return TRUE if an object X sized at XSIZE bytes and another object
2377 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2378 any of the sizes is zero, assume an overlap, otherwise use the
2379 absolute value of the sizes as the actual sizes. */
2380
2381static inline bool
d05d7551 2382offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
3aa03517 2383{
d05d7551
RS
2384 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2385 return true;
2386
2387 if (maybe_ge (c, 0))
2388 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2389 else
2390 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
3aa03517
AO
2391}
2392
f47e08d9
RG
2393/* Return one if X and Y (memory addresses) reference the
2394 same location in memory or if the references overlap.
2395 Return zero if they do not overlap, else return
2396 minus one in which case they still might reference the same location.
2397
2398 C is an offset accumulator. When
9ae8ffe7
JL
2399 C is nonzero, we are testing aliases between X and Y + C.
2400 XSIZE is the size in bytes of the X reference,
2401 similarly YSIZE is the size in bytes for Y.
45183e03 2402 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
2403
2404 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2405 referenced (the reference was BLKmode), so make the most pessimistic
2406 assumptions.
2407
c02f035f
RH
2408 If XSIZE or YSIZE is negative, we may access memory outside the object
2409 being referenced as a side effect. This can happen when using AND to
2410 align memory references, as is done on the Alpha.
2411
9ae8ffe7 2412 Nice to notice that varying addresses cannot conflict with fp if no
f47e08d9
RG
2413 local variables had their addresses taken, but that's too hard now.
2414
2415 ??? Contrary to the tree alias oracle this does not return
2416 one for X + non-constant and Y + non-constant when X and Y are equal.
2417 If that is fixed the TBAA hack for union type-punning can be removed. */
9ae8ffe7 2418
9ae8ffe7 2419static int
9f61be58
RS
2420memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2421 poly_int64 c)
9ae8ffe7 2422{
eab5c70a 2423 if (GET_CODE (x) == VALUE)
5312b066
JJ
2424 {
2425 if (REG_P (y))
2426 {
24f8d71e
JJ
2427 struct elt_loc_list *l = NULL;
2428 if (CSELIB_VAL_PTR (x))
a5628378
AO
2429 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2430 l; l = l->next)
24f8d71e
JJ
2431 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2432 break;
5312b066
JJ
2433 if (l)
2434 x = y;
2435 else
2436 x = get_addr (x);
2437 }
2438 /* Don't call get_addr if y is the same VALUE. */
2439 else if (x != y)
2440 x = get_addr (x);
2441 }
eab5c70a 2442 if (GET_CODE (y) == VALUE)
5312b066
JJ
2443 {
2444 if (REG_P (x))
2445 {
24f8d71e
JJ
2446 struct elt_loc_list *l = NULL;
2447 if (CSELIB_VAL_PTR (y))
a5628378
AO
2448 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2449 l; l = l->next)
24f8d71e
JJ
2450 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2451 break;
5312b066
JJ
2452 if (l)
2453 y = x;
2454 else
2455 y = get_addr (y);
2456 }
2457 /* Don't call get_addr if x is the same VALUE. */
2458 else if (y != x)
2459 y = get_addr (y);
2460 }
9ae8ffe7
JL
2461 if (GET_CODE (x) == HIGH)
2462 x = XEXP (x, 0);
2463 else if (GET_CODE (x) == LO_SUM)
2464 x = XEXP (x, 1);
2465 else
9f61be58 2466 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
9ae8ffe7
JL
2467 if (GET_CODE (y) == HIGH)
2468 y = XEXP (y, 0);
2469 else if (GET_CODE (y) == LO_SUM)
2470 y = XEXP (y, 1);
2471 else
9f61be58 2472 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
9ae8ffe7 2473
54363f8a
JH
2474 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2475 {
6a2a3862
RS
2476 HOST_WIDE_INT distance = 0;
2477 int cmp = compare_base_symbol_refs (x, y, &distance);
54363f8a
JH
2478
2479 /* If both decls are the same, decide by offsets. */
2480 if (cmp == 1)
6a2a3862 2481 return offset_overlap_p (c + distance, xsize, ysize);
3a28db46
UB
2482 /* Assume a potential overlap for symbolic addresses that went
2483 through alignment adjustments (i.e., that have negative
2484 sizes), because we can't know how far they are from each
2485 other. */
9f61be58 2486 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
3a28db46 2487 return -1;
54363f8a
JH
2488 /* If decls are different or we know by offsets that there is no overlap,
2489 we win. */
6a2a3862 2490 if (!cmp || !offset_overlap_p (c + distance, xsize, ysize))
54363f8a
JH
2491 return 0;
2492 /* Decls may or may not be different and offsets overlap....*/
2493 return -1;
2494 }
2495 else if (rtx_equal_for_memref_p (x, y))
9ae8ffe7 2496 {
3aa03517 2497 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2498 }
2499
6e73e666
JC
2500 /* This code used to check for conflicts involving stack references and
2501 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
2502
2503 if (GET_CODE (x) == PLUS)
2504 {
2505 /* The fact that X is canonicalized means that this
2506 PLUS rtx is canonicalized. */
2507 rtx x0 = XEXP (x, 0);
2508 rtx x1 = XEXP (x, 1);
2509
2d88904a
AO
2510 /* However, VALUEs might end up in different positions even in
2511 canonical PLUSes. Comparing their addresses is enough. */
2512 if (x0 == y)
2513 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2514 else if (x1 == y)
2515 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2516
9f61be58 2517 poly_int64 cx1, cy1;
9ae8ffe7
JL
2518 if (GET_CODE (y) == PLUS)
2519 {
2520 /* The fact that Y is canonicalized means that this
2521 PLUS rtx is canonicalized. */
2522 rtx y0 = XEXP (y, 0);
2523 rtx y1 = XEXP (y, 1);
2524
2d88904a
AO
2525 if (x0 == y1)
2526 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2527 if (x1 == y0)
2528 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2529
9ae8ffe7
JL
2530 if (rtx_equal_for_memref_p (x1, y1))
2531 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2532 if (rtx_equal_for_memref_p (x0, y0))
2533 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
9f61be58 2534 if (poly_int_rtx_p (x1, &cx1))
63be02db 2535 {
9f61be58 2536 if (poly_int_rtx_p (y1, &cy1))
63be02db 2537 return memrefs_conflict_p (xsize, x0, ysize, y0,
9f61be58 2538 c - cx1 + cy1);
63be02db 2539 else
9f61be58 2540 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
63be02db 2541 }
9f61be58
RS
2542 else if (poly_int_rtx_p (y1, &cy1))
2543 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
9ae8ffe7 2544
f47e08d9 2545 return -1;
9ae8ffe7 2546 }
9f61be58
RS
2547 else if (poly_int_rtx_p (x1, &cx1))
2548 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
9ae8ffe7
JL
2549 }
2550 else if (GET_CODE (y) == PLUS)
2551 {
2552 /* The fact that Y is canonicalized means that this
2553 PLUS rtx is canonicalized. */
2554 rtx y0 = XEXP (y, 0);
2555 rtx y1 = XEXP (y, 1);
2556
2d88904a
AO
2557 if (x == y0)
2558 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2559 if (x == y1)
2560 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2561
9f61be58
RS
2562 poly_int64 cy1;
2563 if (poly_int_rtx_p (y1, &cy1))
2564 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
9ae8ffe7 2565 else
f47e08d9 2566 return -1;
9ae8ffe7
JL
2567 }
2568
2569 if (GET_CODE (x) == GET_CODE (y))
2570 switch (GET_CODE (x))
2571 {
2572 case MULT:
2573 {
2574 /* Handle cases where we expect the second operands to be the
2575 same, and check only whether the first operand would conflict
2576 or not. */
2577 rtx x0, y0;
2578 rtx x1 = canon_rtx (XEXP (x, 1));
2579 rtx y1 = canon_rtx (XEXP (y, 1));
2580 if (! rtx_equal_for_memref_p (x1, y1))
f47e08d9 2581 return -1;
9ae8ffe7
JL
2582 x0 = canon_rtx (XEXP (x, 0));
2583 y0 = canon_rtx (XEXP (y, 0));
2584 if (rtx_equal_for_memref_p (x0, y0))
3aa03517 2585 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2586
2587 /* Can't properly adjust our sizes. */
5284e559
RS
2588 poly_int64 c1;
2589 if (!poly_int_rtx_p (x1, &c1)
2590 || !can_div_trunc_p (xsize, c1, &xsize)
2591 || !can_div_trunc_p (ysize, c1, &ysize)
2592 || !can_div_trunc_p (c, c1, &c))
f47e08d9 2593 return -1;
9ae8ffe7
JL
2594 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2595 }
1d300e19
KG
2596
2597 default:
2598 break;
9ae8ffe7
JL
2599 }
2600
a9bf4fe2
AO
2601 /* Deal with alignment ANDs by adjusting offset and size so as to
2602 cover the maximum range, without taking any previously known
5147bf6a
AO
2603 alignment into account. Make a size negative after such an
2604 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2605 assume a potential overlap, because they may end up in contiguous
2606 memory locations and the stricter-alignment access may span over
2607 part of both. */
481683e1 2608 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 2609 {
a9bf4fe2
AO
2610 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2611 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2612 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2613 {
9f61be58 2614 if (maybe_gt (xsize, 0))
5147bf6a 2615 xsize = -xsize;
9f61be58 2616 if (maybe_ne (xsize, 0))
3aa03517 2617 xsize += sc + 1;
fe8fb1c4 2618 c -= sc + 1;
a9bf4fe2
AO
2619 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2620 ysize, y, c);
2621 }
56ee9281 2622 }
481683e1 2623 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 2624 {
a9bf4fe2
AO
2625 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2626 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2627 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2628 {
9f61be58 2629 if (maybe_gt (ysize, 0))
5147bf6a 2630 ysize = -ysize;
9f61be58 2631 if (maybe_ne (ysize, 0))
3aa03517 2632 ysize += sc + 1;
fe8fb1c4 2633 c += sc + 1;
a9bf4fe2
AO
2634 return memrefs_conflict_p (xsize, x,
2635 ysize, canon_rtx (XEXP (y, 0)), c);
2636 }
c02f035f 2637 }
9ae8ffe7
JL
2638
2639 if (CONSTANT_P (x))
2640 {
9f61be58
RS
2641 poly_int64 cx, cy;
2642 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
9ae8ffe7 2643 {
9f61be58 2644 c += cy - cx;
3aa03517 2645 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2646 }
2647
2648 if (GET_CODE (x) == CONST)
2649 {
2650 if (GET_CODE (y) == CONST)
2651 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2652 ysize, canon_rtx (XEXP (y, 0)), c);
2653 else
2654 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2655 ysize, y, c);
2656 }
2657 if (GET_CODE (y) == CONST)
2658 return memrefs_conflict_p (xsize, x, ysize,
2659 canon_rtx (XEXP (y, 0)), c);
2660
3aa03517
AO
2661 /* Assume a potential overlap for symbolic addresses that went
2662 through alignment adjustments (i.e., that have negative
2663 sizes), because we can't know how far they are from each
2664 other. */
9ae8ffe7 2665 if (CONSTANT_P (y))
9f61be58
RS
2666 return (maybe_lt (xsize, 0)
2667 || maybe_lt (ysize, 0)
2668 || offset_overlap_p (c, xsize, ysize));
9ae8ffe7 2669
f47e08d9 2670 return -1;
9ae8ffe7 2671 }
f47e08d9
RG
2672
2673 return -1;
9ae8ffe7
JL
2674}
2675
2676/* Functions to compute memory dependencies.
2677
2678 Since we process the insns in execution order, we can build tables
2679 to keep track of what registers are fixed (and not aliased), what registers
2680 are varying in known ways, and what registers are varying in unknown
2681 ways.
2682
2683 If both memory references are volatile, then there must always be a
67914693 2684 dependence between the two references, since their order cannot be
9ae8ffe7 2685 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 2686 though.
9ae8ffe7 2687
53d9622b
RS
2688 We also must allow AND addresses, because they may generate accesses
2689 outside the object being referenced. This is used to generate aligned
2690 addresses from unaligned addresses, for instance, the alpha
dc1618bc 2691 storeqi_unaligned pattern. */
9ae8ffe7
JL
2692
2693/* Read dependence: X is read after read in MEM takes place. There can
96672a3e
RH
2694 only be a dependence here if both reads are volatile, or if either is
2695 an explicit barrier. */
9ae8ffe7 2696
4d519f1b 2697bool
4f588890 2698read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2699{
96672a3e
RH
2700 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2701 return true;
2702 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2703 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2704 return true;
2705 return false;
9ae8ffe7
JL
2706}
2707
998d7deb
RH
2708/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2709
2710static tree
4682ae04 2711decl_for_component_ref (tree x)
998d7deb
RH
2712{
2713 do
2714 {
2715 x = TREE_OPERAND (x, 0);
2716 }
2717 while (x && TREE_CODE (x) == COMPONENT_REF);
2718
2719 return x && DECL_P (x) ? x : NULL_TREE;
2720}
2721
527210c4
RS
2722/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2723 for the offset of the field reference. *KNOWN_P says whether the
2724 offset is known. */
998d7deb 2725
527210c4
RS
2726static void
2727adjust_offset_for_component_ref (tree x, bool *known_p,
d05d7551 2728 poly_int64 *offset)
998d7deb 2729{
527210c4
RS
2730 if (!*known_p)
2731 return;
ca7fd9cd 2732 do
998d7deb 2733 {
527210c4 2734 tree xoffset = component_ref_field_offset (x);
998d7deb 2735 tree field = TREE_OPERAND (x, 1);
6e246559 2736 if (!poly_int_tree_p (xoffset))
807e902e
KZ
2737 {
2738 *known_p = false;
2739 return;
2740 }
998d7deb 2741
6e246559
RS
2742 poly_offset_int woffset
2743 = (wi::to_poly_offset (xoffset)
8de73453 2744 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
6e246559
RS
2745 >> LOG2_BITS_PER_UNIT)
2746 + *offset);
2747 if (!woffset.to_shwi (offset))
527210c4
RS
2748 {
2749 *known_p = false;
2750 return;
2751 }
998d7deb
RH
2752
2753 x = TREE_OPERAND (x, 0);
2754 }
2755 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb
RH
2756}
2757
4d519f1b 2758/* Return true if we can determine the exprs corresponding to memrefs
c6ea834c
BM
2759 X and Y and they do not overlap.
2760 If LOOP_VARIANT is set, skip offset-based disambiguation */
a4311dfe 2761
4d519f1b 2762bool
c6ea834c 2763nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
a4311dfe 2764{
998d7deb 2765 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2766 rtx rtlx, rtly;
2767 rtx basex, basey;
527210c4 2768 bool moffsetx_known_p, moffsety_known_p;
d05d7551
RS
2769 poly_int64 moffsetx = 0, moffsety = 0;
2770 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
a4311dfe 2771
998d7deb
RH
2772 /* Unless both have exprs, we can't tell anything. */
2773 if (exprx == 0 || expry == 0)
4d519f1b 2774 return false;
2b22e382
RG
2775
2776 /* For spill-slot accesses make sure we have valid offsets. */
2777 if ((exprx == get_spill_slot_decl (false)
527210c4 2778 && ! MEM_OFFSET_KNOWN_P (x))
2b22e382 2779 || (expry == get_spill_slot_decl (false)
527210c4 2780 && ! MEM_OFFSET_KNOWN_P (y)))
4d519f1b 2781 return false;
c22cacf3 2782
998d7deb 2783 /* If the field reference test failed, look at the DECLs involved. */
527210c4
RS
2784 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2785 if (moffsetx_known_p)
2786 moffsetx = MEM_OFFSET (x);
998d7deb
RH
2787 if (TREE_CODE (exprx) == COMPONENT_REF)
2788 {
2e0c984c
RG
2789 tree t = decl_for_component_ref (exprx);
2790 if (! t)
4d519f1b 2791 return false;
527210c4 2792 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2e0c984c 2793 exprx = t;
998d7deb 2794 }
c67a1cf6 2795
527210c4
RS
2796 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2797 if (moffsety_known_p)
2798 moffsety = MEM_OFFSET (y);
998d7deb
RH
2799 if (TREE_CODE (expry) == COMPONENT_REF)
2800 {
2e0c984c
RG
2801 tree t = decl_for_component_ref (expry);
2802 if (! t)
4d519f1b 2803 return false;
527210c4 2804 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2e0c984c 2805 expry = t;
998d7deb
RH
2806 }
2807
2808 if (! DECL_P (exprx) || ! DECL_P (expry))
4d519f1b 2809 return false;
a4311dfe 2810
1f9ceff1
AO
2811 /* If we refer to different gimple registers, or one gimple register
2812 and one non-gimple-register, we know they can't overlap. First,
2813 gimple registers don't have their addresses taken. Now, there
2814 could be more than one stack slot for (different versions of) the
2815 same gimple register, but we can presumably tell they don't
2816 overlap based on offsets from stack base addresses elsewhere.
2817 It's important that we don't proceed to DECL_RTL, because gimple
2818 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2819 able to do anything about them since no SSA information will have
2820 remained to guide it. */
2821 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2d88904a
AO
2822 return exprx != expry
2823 || (moffsetx_known_p && moffsety_known_p
2824 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2825 && !offset_overlap_p (moffsety - moffsetx,
2826 MEM_SIZE (x), MEM_SIZE (y)));
1f9ceff1 2827
1307c758
RG
2828 /* With invalid code we can end up storing into the constant pool.
2829 Bail out to avoid ICEing when creating RTL for this.
2830 See gfortran.dg/lto/20091028-2_0.f90. */
2831 if (TREE_CODE (exprx) == CONST_DECL
2832 || TREE_CODE (expry) == CONST_DECL)
4d519f1b 2833 return true;
1307c758 2834
dca16798
JJ
2835 /* If one decl is known to be a function or label in a function and
2836 the other is some kind of data, they can't overlap. */
2837 if ((TREE_CODE (exprx) == FUNCTION_DECL
2838 || TREE_CODE (exprx) == LABEL_DECL)
2839 != (TREE_CODE (expry) == FUNCTION_DECL
2840 || TREE_CODE (expry) == LABEL_DECL))
4d519f1b 2841 return true;
dca16798 2842
5f4cebba
JJ
2843 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2844 living in multiple places), we can't tell anything. Exception
2845 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2846 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2847 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
4d519f1b 2848 return false;
5f4cebba 2849
998d7deb
RH
2850 rtlx = DECL_RTL (exprx);
2851 rtly = DECL_RTL (expry);
a4311dfe 2852
1edcd60b
RK
2853 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2854 can't overlap unless they are the same because we never reuse that part
2855 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2856 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2857 && ! rtx_equal_p (rtlx, rtly))
4d519f1b 2858 return true;
a4311dfe 2859
5932a4d4 2860 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2861 potentially overlap), we cannot easily tell from the addresses
2862 whether the references overlap. */
2863 if (MEM_P (rtlx) && MEM_P (rtly)
2864 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
4d519f1b 2865 return false;
09e881c9 2866
a4311dfe
RK
2867 /* Get the base and offsets of both decls. If either is a register, we
2868 know both are and are the same, so use that as the base. The only
2869 we can avoid overlap is if we can deduce that they are nonoverlapping
2870 pieces of that decl, which is very rare. */
3c0cb5de 2871 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
d05d7551 2872 basex = strip_offset_and_add (basex, &offsetx);
a4311dfe 2873
3c0cb5de 2874 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
d05d7551 2875 basey = strip_offset_and_add (basey, &offsety);
a4311dfe 2876
d746694a 2877 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2878 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2879 stack frame. Otherwise a different base means we can't tell if they
2880 overlap or not. */
54363f8a 2881 if (compare_base_decls (exprx, expry) == 0)
ca7fd9cd
KH
2882 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2883 || (CONSTANT_P (basex) && REG_P (basey)
2884 && REGNO_PTR_FRAME_P (REGNO (basey)))
2885 || (CONSTANT_P (basey) && REG_P (basex)
2886 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2887
c6ea834c
BM
2888 /* Offset based disambiguation not appropriate for loop invariant */
2889 if (loop_invariant)
4d519f1b 2890 return false;
c6ea834c 2891
54363f8a
JH
2892 /* Offset based disambiguation is OK even if we do not know that the
2893 declarations are necessarily different
2894 (i.e. compare_base_decls (exprx, expry) == -1) */
2895
d05d7551 2896 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
f5541398 2897 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
a4311dfe 2898 : -1);
d05d7551 2899 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
f5541398
RS
2900 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2901 : -1);
a4311dfe 2902
0af5bc3e
RK
2903 /* If we have an offset for either memref, it can update the values computed
2904 above. */
527210c4
RS
2905 if (moffsetx_known_p)
2906 offsetx += moffsetx, sizex -= moffsetx;
2907 if (moffsety_known_p)
2908 offsety += moffsety, sizey -= moffsety;
a4311dfe 2909
0af5bc3e 2910 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2911 We can't do this if the offset isn't known because we must view this
0af5bc3e 2912 memref as being anywhere inside the DECL's MEM. */
527210c4 2913 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
f5541398 2914 sizex = MEM_SIZE (x);
527210c4 2915 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
f5541398 2916 sizey = MEM_SIZE (y);
a4311dfe 2917
d05d7551 2918 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
a4311dfe
RK
2919}
2920
9362286d
SB
2921/* Helper for true_dependence and canon_true_dependence.
2922 Checks for true dependence: X is read after store in MEM takes place.
9ae8ffe7 2923
9362286d
SB
2924 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2925 NULL_RTX, and the canonical addresses of MEM and X are both computed
2926 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2927
2928 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2929
4d519f1b 2930 Returns true if there is a true dependence, false otherwise. */
9362286d 2931
4d519f1b 2932static bool
ef4bddc2 2933true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 2934 const_rtx x, rtx x_addr, bool mem_canonicalized)
9ae8ffe7 2935{
0777fc02 2936 rtx true_mem_addr;
49982682 2937 rtx base;
f47e08d9 2938 int ret;
9ae8ffe7 2939
9362286d
SB
2940 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2941 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2942
9ae8ffe7 2943 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
4d519f1b 2944 return true;
9ae8ffe7 2945
c4484b8f 2946 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 2947 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f 2948 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
4d519f1b 2949 return true;
c4484b8f 2950 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
4d519f1b 2951 return true;
9cd9e512
RH
2952 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2953 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
4d519f1b 2954 return true;
c4484b8f 2955
0777fc02
UB
2956 if (! x_addr)
2957 x_addr = XEXP (x, 0);
2958 x_addr = get_addr (x_addr);
2959
9362286d
SB
2960 if (! mem_addr)
2961 {
2962 mem_addr = XEXP (mem, 0);
2963 if (mem_mode == VOIDmode)
2964 mem_mode = GET_MODE (mem);
2965 }
0777fc02 2966 true_mem_addr = get_addr (mem_addr);
eab5c70a 2967
878f5596
UB
2968 /* Read-only memory is by definition never modified, and therefore can't
2969 conflict with anything. However, don't assume anything when AND
2970 addresses are involved and leave to the code below to determine
2971 dependence. We don't expect to find read-only set on MEM, but
2972 stupid user tricks can produce them, so don't die. */
2973 if (MEM_READONLY_P (x)
2974 && GET_CODE (x_addr) != AND
0777fc02 2975 && GET_CODE (true_mem_addr) != AND)
4d519f1b 2976 return false;
878f5596
UB
2977
2978 /* If we have MEMs referring to different address spaces (which can
2979 potentially overlap), we cannot easily tell from the addresses
2980 whether the references overlap. */
2981 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
4d519f1b 2982 return true;
878f5596 2983
55efb413
JW
2984 base = find_base_term (x_addr);
2985 if (base && (GET_CODE (base) == LABEL_REF
2986 || (GET_CODE (base) == SYMBOL_REF
2987 && CONSTANT_POOL_ADDRESS_P (base))))
4d519f1b 2988 return false;
55efb413 2989
0777fc02
UB
2990 rtx mem_base = find_base_term (true_mem_addr);
2991 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
31b0a960 2992 GET_MODE (x), mem_mode))
4d519f1b 2993 return false;
1c72c7f6 2994
eab5c70a 2995 x_addr = canon_rtx (x_addr);
9362286d 2996 if (!mem_canonicalized)
0777fc02 2997 mem_addr = canon_rtx (true_mem_addr);
6e73e666 2998
f47e08d9
RG
2999 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3000 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
4d519f1b 3001 return !!ret;
f47e08d9 3002
a95b3cc7 3003 if (mems_in_disjoint_alias_sets_p (x, mem))
4d519f1b 3004 return false;
f47e08d9 3005
c6ea834c 3006 if (nonoverlapping_memrefs_p (mem, x, false))
4d519f1b 3007 return false;
175a7536 3008
55b34b5f 3009 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
3010}
3011
9362286d
SB
3012/* True dependence: X is read after store in MEM takes place. */
3013
4d519f1b 3014bool
ef4bddc2 3015true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
9362286d
SB
3016{
3017 return true_dependence_1 (mem, mem_mode, NULL_RTX,
53d9622b 3018 x, NULL_RTX, /*mem_canonicalized=*/false);
9362286d
SB
3019}
3020
a13d4ebf 3021/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
3022 Variant of true_dependence which assumes MEM has already been
3023 canonicalized (hence we no longer do that here).
9362286d
SB
3024 The mem_addr argument has been added, since true_dependence_1 computed
3025 this value prior to canonicalizing. */
a13d4ebf 3026
4d519f1b 3027bool
ef4bddc2 3028canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 3029 const_rtx x, rtx x_addr)
a13d4ebf 3030{
9362286d 3031 return true_dependence_1 (mem, mem_mode, mem_addr,
53d9622b 3032 x, x_addr, /*mem_canonicalized=*/true);
9ae8ffe7
JL
3033}
3034
4d519f1b 3035/* Returns true if a write to X might alias a previous read from
393f9fed 3036 (or, if WRITEP is true, a write to) MEM.
bd280792
JR
3037 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3038 and X_MODE the mode for that access.
3039 If MEM_CANONICALIZED is true, MEM is canonicalized. */
9ae8ffe7 3040
4d519f1b 3041static bool
bd280792 3042write_dependence_p (const_rtx mem,
ef4bddc2 3043 const_rtx x, machine_mode x_mode, rtx x_addr,
bd280792 3044 bool mem_canonicalized, bool x_canonicalized, bool writep)
9ae8ffe7 3045{
bd280792 3046 rtx mem_addr;
0777fc02 3047 rtx true_mem_addr, true_x_addr;
49982682 3048 rtx base;
f47e08d9 3049 int ret;
6e73e666 3050
bd280792 3051 gcc_checking_assert (x_canonicalized
6f5799be
JJ
3052 ? (x_addr != NULL_RTX
3053 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
bd280792 3054 : (x_addr == NULL_RTX && x_mode == VOIDmode));
393f9fed 3055
9ae8ffe7 3056 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
4d519f1b 3057 return true;
9ae8ffe7 3058
c4484b8f
RH
3059 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3060 This is used in epilogue deallocation functions. */
3061 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
4d519f1b 3062 return true;
c4484b8f 3063 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
4d519f1b 3064 return true;
9cd9e512
RH
3065 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3066 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
4d519f1b 3067 return true;
c4484b8f 3068
bd280792 3069 if (!x_addr)
0777fc02
UB
3070 x_addr = XEXP (x, 0);
3071 true_x_addr = get_addr (x_addr);
3072
3073 mem_addr = XEXP (mem, 0);
3074 true_mem_addr = get_addr (mem_addr);
55efb413 3075
878f5596
UB
3076 /* A read from read-only memory can't conflict with read-write memory.
3077 Don't assume anything when AND addresses are involved and leave to
3078 the code below to determine dependence. */
3079 if (!writep
3080 && MEM_READONLY_P (mem)
0777fc02
UB
3081 && GET_CODE (true_x_addr) != AND
3082 && GET_CODE (true_mem_addr) != AND)
4d519f1b 3083 return false;
878f5596
UB
3084
3085 /* If we have MEMs referring to different address spaces (which can
3086 potentially overlap), we cannot easily tell from the addresses
3087 whether the references overlap. */
3088 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
4d519f1b 3089 return true;
878f5596 3090
0777fc02 3091 base = find_base_term (true_mem_addr);
31b0a960
RB
3092 if (! writep
3093 && base
3094 && (GET_CODE (base) == LABEL_REF
3095 || (GET_CODE (base) == SYMBOL_REF
3096 && CONSTANT_POOL_ADDRESS_P (base))))
4d519f1b 3097 return false;
49982682 3098
0777fc02
UB
3099 rtx x_base = find_base_term (true_x_addr);
3100 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3101 GET_MODE (x), GET_MODE (mem)))
4d519f1b 3102 return false;
41472af8 3103
bd280792 3104 if (!x_canonicalized)
393f9fed 3105 {
0777fc02 3106 x_addr = canon_rtx (true_x_addr);
bd280792 3107 x_mode = GET_MODE (x);
393f9fed 3108 }
bd280792 3109 if (!mem_canonicalized)
0777fc02 3110 mem_addr = canon_rtx (true_mem_addr);
6e73e666 3111
bd280792
JR
3112 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3113 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
4d519f1b 3114 return !!ret;
f47e08d9 3115
c6ea834c 3116 if (nonoverlapping_memrefs_p (x, mem, false))
4d519f1b 3117 return false;
c6df88cb 3118
55b34b5f 3119 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
3120}
3121
3122/* Anti dependence: X is written after read in MEM takes place. */
3123
4d519f1b 3124bool
4f588890 3125anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 3126{
bd280792
JR
3127 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3128 /*mem_canonicalized=*/false,
3129 /*x_canonicalized*/false, /*writep=*/false);
393f9fed
JR
3130}
3131
bd280792
JR
3132/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3133 Also, consider X in X_MODE (which might be from an enclosing
3134 STRICT_LOW_PART / ZERO_EXTRACT).
3135 If MEM_CANONICALIZED is true, MEM is canonicalized. */
393f9fed 3136
4d519f1b 3137bool
bd280792 3138canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
ef4bddc2 3139 const_rtx x, machine_mode x_mode, rtx x_addr)
393f9fed 3140{
bd280792
JR
3141 return write_dependence_p (mem, x, x_mode, x_addr,
3142 mem_canonicalized, /*x_canonicalized=*/true,
3143 /*writep=*/false);
9ae8ffe7
JL
3144}
3145
3146/* Output dependence: X is written after store in MEM takes place. */
3147
4d519f1b 3148bool
4f588890 3149output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 3150{
bd280792
JR
3151 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3152 /*mem_canonicalized=*/false,
3153 /*x_canonicalized*/false, /*writep=*/true);
9ae8ffe7 3154}
43b9f499
RB
3155
3156/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3157 Also, consider X in X_MODE (which might be from an enclosing
3158 STRICT_LOW_PART / ZERO_EXTRACT).
3159 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3160
4d519f1b 3161bool
43b9f499
RB
3162canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3163 const_rtx x, machine_mode x_mode, rtx x_addr)
3164{
3165 return write_dependence_p (mem, x, x_mode, x_addr,
3166 mem_canonicalized, /*x_canonicalized=*/true,
3167 /*writep=*/true);
3168}
c14b9960 3169\f
6e73e666 3170
c6ea834c
BM
3171
3172/* Check whether X may be aliased with MEM. Don't do offset-based
3173 memory disambiguation & TBAA. */
4d519f1b 3174bool
c6ea834c
BM
3175may_alias_p (const_rtx mem, const_rtx x)
3176{
3177 rtx x_addr, mem_addr;
c6ea834c
BM
3178
3179 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
4d519f1b 3180 return true;
c6ea834c 3181
a95b3cc7
RG
3182 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3183 This is used in epilogue deallocation functions. */
3184 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
4d519f1b 3185 return true;
a95b3cc7 3186 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
4d519f1b 3187 return true;
c6ea834c
BM
3188 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3189 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
4d519f1b 3190 return true;
c6ea834c 3191
c6ea834c 3192 x_addr = XEXP (x, 0);
0777fc02
UB
3193 x_addr = get_addr (x_addr);
3194
c6ea834c 3195 mem_addr = XEXP (mem, 0);
0777fc02 3196 mem_addr = get_addr (mem_addr);
c6ea834c 3197
878f5596
UB
3198 /* Read-only memory is by definition never modified, and therefore can't
3199 conflict with anything. However, don't assume anything when AND
3200 addresses are involved and leave to the code below to determine
3201 dependence. We don't expect to find read-only set on MEM, but
3202 stupid user tricks can produce them, so don't die. */
3203 if (MEM_READONLY_P (x)
3204 && GET_CODE (x_addr) != AND
3205 && GET_CODE (mem_addr) != AND)
4d519f1b 3206 return false;
878f5596
UB
3207
3208 /* If we have MEMs referring to different address spaces (which can
3209 potentially overlap), we cannot easily tell from the addresses
3210 whether the references overlap. */
3211 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
4d519f1b 3212 return true;
878f5596 3213
31b0a960
RB
3214 rtx x_base = find_base_term (x_addr);
3215 rtx mem_base = find_base_term (mem_addr);
3216 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3217 GET_MODE (x), GET_MODE (mem_addr)))
4d519f1b 3218 return false;
c6ea834c 3219
c6ea834c 3220 if (nonoverlapping_memrefs_p (mem, x, true))
4d519f1b 3221 return false;
c6ea834c 3222
c6ea834c
BM
3223 /* TBAA not valid for loop_invarint */
3224 return rtx_refs_may_alias_p (x, mem, false);
3225}
3226
6e73e666 3227void
b5deb7b6 3228init_alias_target (void)
6e73e666 3229{
b3694847 3230 int i;
6e73e666 3231
9fc37b2b
RS
3232 if (!arg_base_value)
3233 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3234
b5deb7b6
SL
3235 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3236
6e73e666
JC
3237 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3238 /* Check whether this register can hold an incoming pointer
3239 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 3240 numbers, so translate if necessary due to register windows. */
6e73e666 3241 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
f939c3e6 3242 && targetm.hard_regno_mode_ok (i, Pmode))
9fc37b2b
RS
3243 static_reg_base_value[i] = arg_base_value;
3244
e6eacdc9
RS
3245 /* RTL code is required to be consistent about whether it uses the
3246 stack pointer, the frame pointer or the argument pointer to
3247 access a given area of the frame. We can therefore use the
3248 base address to distinguish between the different areas. */
757e8ba2
JJ
3249 static_reg_base_value[STACK_POINTER_REGNUM]
3250 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3251 static_reg_base_value[ARG_POINTER_REGNUM]
3252 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3253 static_reg_base_value[FRAME_POINTER_REGNUM]
3254 = unique_base_value (UNIQUE_BASE_VALUE_FP);
e6eacdc9
RS
3255
3256 /* The above rules extend post-reload, with eliminations applying
3257 consistently to each of the three pointers. Cope with cases in
3258 which the frame pointer is eliminated to the hard frame pointer
3259 rather than the stack pointer. */
c3e08036
TS
3260 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3261 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3262 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
bf1660a6
JL
3263}
3264
7b52eede
JH
3265/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3266 to be memory reference. */
3267static bool memory_modified;
3268static void
aa317c97 3269memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 3270{
3c0cb5de 3271 if (MEM_P (x))
7b52eede 3272 {
9678086d 3273 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
3274 memory_modified = true;
3275 }
3276}
3277
3278
3279/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 3280 (i.e. address can be modified). */
7b52eede 3281bool
9678086d 3282memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
3283{
3284 if (!INSN_P (insn))
3285 return false;
bc36c711
JJ
3286 /* Conservatively assume all non-readonly MEMs might be modified in
3287 calls. */
3288 if (CALL_P (insn))
3289 return true;
7b52eede 3290 memory_modified = false;
e8448ba5
RS
3291 note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3292 CONST_CAST_RTX(mem));
7b52eede
JH
3293 return memory_modified;
3294}
3295
c13e8210
MM
3296/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3297 array. */
3298
9ae8ffe7 3299void
4682ae04 3300init_alias_analysis (void)
9ae8ffe7 3301{
96ba0c36
EB
3302 const bool frame_pointer_eliminated
3303 = reload_completed
3304 && !frame_pointer_needed
3305 && targetm.can_eliminate (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM);
c582d54a 3306 unsigned int maxreg = max_reg_num ();
4d519f1b
UB
3307 bool changed;
3308 int pass, i;
b3694847 3309 unsigned int ui;
d36a28b8
DM
3310 rtx_insn *insn;
3311 rtx val;
131db6b8
SB
3312 int rpo_cnt;
3313 int *rpo;
9ae8ffe7 3314
0d446150
JH
3315 timevar_push (TV_ALIAS_ANALYSIS);
3316
cb3874dc
ML
3317 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER,
3318 true);
9ff3c7ca 3319 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
dd3d1ec0 3320 bitmap_clear (reg_known_equiv_p);
9ae8ffe7 3321
08c79682 3322 /* If we have memory allocated from the previous run, use it. */
c582d54a 3323 if (old_reg_base_value)
08c79682
KH
3324 reg_base_value = old_reg_base_value;
3325
3326 if (reg_base_value)
9771b263 3327 reg_base_value->truncate (0);
08c79682 3328
cb3874dc 3329 vec_safe_grow_cleared (reg_base_value, maxreg, true);
ac606739 3330
5ed6ace5 3331 new_reg_base_value = XNEWVEC (rtx, maxreg);
d630245f 3332 reg_seen = sbitmap_alloc (maxreg);
ec907dd8
JL
3333
3334 /* The basic idea is that each pass through this loop will use the
3335 "constant" information from the previous pass to propagate alias
3336 information through another level of assignments.
3337
131db6b8
SB
3338 The propagation is done on the CFG in reverse post-order, to propagate
3339 things forward as far as possible in each iteration.
3340
ec907dd8
JL
3341 This could get expensive if the assignment chains are long. Maybe
3342 we should throttle the number of iterations, possibly based on
6e73e666 3343 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
3344
3345 We could propagate more information in the first pass by making use
6fb5fa3c 3346 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
3347 for a pseudo is "constant".
3348
3349 A program with an uninitialized variable can cause an infinite loop
3350 here. Instead of doing a full dataflow analysis to detect such problems
3351 we just cap the number of iterations for the loop.
3352
3353 The state of the arrays for the set chain in question does not matter
3354 since the program has undefined behavior. */
6e73e666 3355
0cae8d31 3356 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
131db6b8
SB
3357 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3358
ea64ef27 3359 pass = 0;
6e73e666 3360 do
ec907dd8
JL
3361 {
3362 /* Assume nothing will change this iteration of the loop. */
4d519f1b 3363 changed = false;
ec907dd8 3364
ec907dd8 3365 /* We want to assign the same IDs each iteration of this loop, so
9fc37b2b
RS
3366 start counting from one each iteration of the loop. */
3367 unique_id = 1;
ec907dd8 3368
f5143c46 3369 /* We're at the start of the function each iteration through the
ec907dd8 3370 loop, so we're copying arguments. */
83bbd9b6 3371 copying_arguments = true;
9ae8ffe7 3372
6e73e666 3373 /* Wipe the potential alias information clean for this pass. */
c582d54a 3374 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 3375
6e73e666 3376 /* Wipe the reg_seen array clean. */
f61e445a 3377 bitmap_clear (reg_seen);
9ae8ffe7 3378
356610cb
EB
3379 /* Initialize the alias information for this pass. */
3380 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e6eacdc9
RS
3381 if (static_reg_base_value[i]
3382 /* Don't treat the hard frame pointer as special if we
96ba0c36
EB
3383 eliminated the frame pointer to the stack pointer. */
3384 && !(i == HARD_FRAME_POINTER_REGNUM && frame_pointer_eliminated))
356610cb
EB
3385 {
3386 new_reg_base_value[i] = static_reg_base_value[i];
3387 bitmap_set_bit (reg_seen, i);
3388 }
6e73e666 3389
ec907dd8 3390 /* Walk the insns adding values to the new_reg_base_value array. */
131db6b8 3391 for (i = 0; i < rpo_cnt; i++)
9ae8ffe7 3392 {
06e28de2 3393 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
131db6b8 3394 FOR_BB_INSNS (bb, insn)
ec907dd8 3395 {
131db6b8
SB
3396 if (NONDEBUG_INSN_P (insn))
3397 {
3398 rtx note, set;
efc9bd41 3399
96ba0c36
EB
3400 /* Treat the hard frame pointer as special unless we
3401 eliminated the frame pointer to the stack pointer. */
3402 if (!frame_pointer_eliminated
3403 && modified_in_p (hard_frame_pointer_rtx, insn))
3404 continue;
3405
131db6b8
SB
3406 /* If this insn has a noalias note, process it, Otherwise,
3407 scan for sets. A simple set will have no side effects
3408 which could change the base value of any other register. */
131db6b8
SB
3409 if (GET_CODE (PATTERN (insn)) == SET
3410 && REG_NOTES (insn) != 0
3411 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3412 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3413 else
e8448ba5 3414 note_stores (insn, record_set, NULL);
6e73e666 3415
131db6b8 3416 set = single_set (insn);
6e73e666 3417
131db6b8
SB
3418 if (set != 0
3419 && REG_P (SET_DEST (set))
3420 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
713f41f9 3421 {
131db6b8
SB
3422 unsigned int regno = REGNO (SET_DEST (set));
3423 rtx src = SET_SRC (set);
3424 rtx t;
3425
3426 note = find_reg_equal_equiv_note (insn);
3427 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3428 && DF_REG_DEF_COUNT (regno) != 1)
3429 note = NULL_RTX;
3430
5284e559 3431 poly_int64 offset;
131db6b8
SB
3432 if (note != NULL_RTX
3433 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3434 && ! rtx_varies_p (XEXP (note, 0), 1)
3435 && ! reg_overlap_mentioned_p (SET_DEST (set),
3436 XEXP (note, 0)))
3437 {
3438 set_reg_known_value (regno, XEXP (note, 0));
3439 set_reg_known_equiv_p (regno,
3440 REG_NOTE_KIND (note) == REG_EQUIV);
3441 }
3442 else if (DF_REG_DEF_COUNT (regno) == 1
3443 && GET_CODE (src) == PLUS
3444 && REG_P (XEXP (src, 0))
3445 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
5284e559 3446 && poly_int_rtx_p (XEXP (src, 1), &offset))
131db6b8 3447 {
5284e559 3448 t = plus_constant (GET_MODE (src), t, offset);
131db6b8
SB
3449 set_reg_known_value (regno, t);
3450 set_reg_known_equiv_p (regno, false);
3451 }
3452 else if (DF_REG_DEF_COUNT (regno) == 1
3453 && ! rtx_varies_p (src, 1))
3454 {
3455 set_reg_known_value (regno, src);
3456 set_reg_known_equiv_p (regno, false);
3457 }
713f41f9 3458 }
6e73e666 3459 }
131db6b8
SB
3460 else if (NOTE_P (insn)
3461 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3462 copying_arguments = false;
ec907dd8 3463 }
6e73e666 3464 }
ec907dd8 3465
6e73e666 3466 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 3467 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 3468
c582d54a 3469 for (ui = 0; ui < maxreg; ui++)
6e73e666 3470 {
e51712db 3471 if (new_reg_base_value[ui]
9771b263
DN
3472 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3473 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
ec907dd8 3474 {
9771b263 3475 (*reg_base_value)[ui] = new_reg_base_value[ui];
4d519f1b 3476 changed = true;
ec907dd8 3477 }
9ae8ffe7 3478 }
9ae8ffe7 3479 }
6e73e666 3480 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
131db6b8 3481 XDELETEVEC (rpo);
9ae8ffe7
JL
3482
3483 /* Fill in the remaining entries. */
9771b263 3484 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
9ff3c7ca
SB
3485 {
3486 int regno = i + FIRST_PSEUDO_REGISTER;
3487 if (! val)
3488 set_reg_known_value (regno, regno_reg_rtx[regno]);
3489 }
9ae8ffe7 3490
e05e2395
MM
3491 /* Clean up. */
3492 free (new_reg_base_value);
ec907dd8 3493 new_reg_base_value = 0;
d630245f 3494 sbitmap_free (reg_seen);
9ae8ffe7 3495 reg_seen = 0;
0d446150 3496 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
3497}
3498
61630b27
JJ
3499/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3500 Special API for var-tracking pass purposes. */
3501
3502void
3503vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3504{
9771b263 3505 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
61630b27
JJ
3506}
3507
9ae8ffe7 3508void
4682ae04 3509end_alias_analysis (void)
9ae8ffe7 3510{
c582d54a 3511 old_reg_base_value = reg_base_value;
9771b263 3512 vec_free (reg_known_value);
9ff3c7ca 3513 sbitmap_free (reg_known_equiv_p);
9ae8ffe7 3514}
e2500fed 3515
3ecf9d13
JH
3516void
3517dump_alias_stats_in_alias_c (FILE *s)
3518{
3519 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3520 " %llu are in alias set 0\n"
3521 " %llu queries asked about the same object\n"
3522 " %llu queries asked about the same alias set\n"
3523 " %llu access volatile\n"
6e042ef4
JH
3524 " %llu are dependent in the DAG\n"
3525 " %llu are aritificially in conflict with void *\n",
3ecf9d13
JH
3526 alias_stats.num_disambiguated,
3527 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3528 + alias_stats.num_same_objects + alias_stats.num_volatile
6e042ef4
JH
3529 + alias_stats.num_dag + alias_stats.num_disambiguated
3530 + alias_stats.num_universal,
3ecf9d13 3531 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
6e042ef4
JH
3532 alias_stats.num_same_objects, alias_stats.num_volatile,
3533 alias_stats.num_dag, alias_stats.num_universal);
3ecf9d13 3534}
e2500fed 3535#include "gt-alias.h"