]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/alias.cc
Don't build readline/libreadline.a, when --with-system-readline is supplied
[thirdparty/gcc.git] / gcc / alias.cc
CommitLineData
9ae8ffe7 1/* Alias analysis for GNU C
7adcbafe 2 Copyright (C) 1997-2022 Free Software Foundation, Inc.
9ae8ffe7
JL
3 Contributed by John Carr (jfc@mit.edu).
4
1322177d 5This file is part of GCC.
9ae8ffe7 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
9ae8ffe7 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
9ae8ffe7
JL
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
9ae8ffe7
JL
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5
AM
25#include "target.h"
26#include "rtl.h"
c7131fb2
AM
27#include "tree.h"
28#include "gimple.h"
c7131fb2 29#include "df.h"
4d0cdd0c 30#include "memmodel.h"
957060b5
AM
31#include "tm_p.h"
32#include "gimple-ssa.h"
957060b5 33#include "emit-rtl.h"
40e23961 34#include "alias.h"
40e23961 35#include "fold-const.h"
d8a2d370 36#include "varasm.h"
eab5c70a 37#include "cselib.h"
d23c55c2 38#include "langhooks.h"
60393bbc 39#include "cfganal.h"
403837b4 40#include "rtl-iter.h"
54363f8a 41#include "cgraph.h"
e4b44fd7 42#include "ipa-utils.h"
ea900239
DB
43
44/* The aliasing API provided here solves related but different problems:
45
c22cacf3 46 Say there exists (in c)
ea900239
DB
47
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
52
53 struct Y y2, *py;
54 struct Z z2, *pz;
55
56
308a3fe2 57 py = &x1.y1;
ea900239
DB
58 px2 = &x1;
59
60 Consider the four questions:
61
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
ea900239
DB
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
66
67 The answer to these questions can be yes, yes, yes, and maybe.
68
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
073a8998 71 a store through a pointer to an X can overwrite any field that is
ea900239
DB
72 contained (recursively) in an X (unless we know that px1 != px2).
73
308a3fe2
DS
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
ea900239
DB
81
82 The pass ipa-type-escape does this analysis for the types whose
c22cacf3 83 instances do not escape across the compilation boundary.
ea900239
DB
84
85 Historically in GCC, these two problems were combined and a single
308a3fe2 86 data structure that was used to represent the solution to these
ea900239 87 problems. We now have two similar but different data structures,
308a3fe2
DS
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
ea900239 92*/
3932261a
MM
93
94/* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
ac3d9668
RK
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
3932261a 98
01d28c3f 99 struct S { int i; double d; };
3932261a
MM
100
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
c22cacf3
MS
105 struct S
106 / \
3932261a 107 / \
c22cacf3
MS
108 |/_ _\|
109 int double
3932261a 110
ac3d9668
RK
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
114
3bdf5ad1
RK
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
95bd1dd7 117 past immediate descendants, however, since we propagate all
3bdf5ad1 118 grandchildren up one level.
3932261a
MM
119
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
123
e0702244 124struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
de144fb2 125
02ced957 126struct GTY(()) alias_set_entry {
3932261a 127 /* The alias set number, as stored in MEM_ALIAS_SET. */
4862826d 128 alias_set_type alias_set;
3932261a 129
6e042ef4
JH
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
34e82342
RB
140
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
143
144 struct T { struct S s; float f; }
145
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
b604074c 149};
9ae8ffe7 150
ed7a4b4b 151static int rtx_equal_for_memref_p (const_rtx, const_rtx);
7bc980e1 152static void record_set (rtx, const_rtx, void *);
ef4bddc2
RS
153static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
4682ae04 155static rtx find_base_value (rtx);
4f588890 156static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
02ced957 157static alias_set_entry *get_alias_set_entry (alias_set_type);
4682ae04 158static tree decl_for_component_ref (tree);
bd280792 159static int write_dependence_p (const_rtx,
ef4bddc2 160 const_rtx, machine_mode, rtx,
bd280792 161 bool, bool, bool);
6a2a3862
RS
162static int compare_base_symbol_refs (const_rtx, const_rtx,
163 HOST_WIDE_INT * = NULL);
4682ae04 164
aa317c97 165static void memory_modified_1 (rtx, const_rtx, void *);
9ae8ffe7 166
3ecf9d13
JH
167/* Query statistics for the different low-level disambiguators.
168 A high-level query may trigger multiple of them. */
169
170static struct {
171 unsigned long long num_alias_zero;
172 unsigned long long num_same_alias_set;
173 unsigned long long num_same_objects;
174 unsigned long long num_volatile;
175 unsigned long long num_dag;
6e042ef4 176 unsigned long long num_universal;
3ecf9d13
JH
177 unsigned long long num_disambiguated;
178} alias_stats;
179
180
9ae8ffe7
JL
181/* Set up all info needed to perform alias analysis on memory references. */
182
d4b60170 183/* Returns the size in bytes of the mode of X. */
9ae8ffe7
JL
184#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
185
ea64ef27 186/* Cap the number of passes we make over the insns propagating alias
131db6b8
SB
187 information through set chains.
188 ??? 10 is a completely arbitrary choice. This should be based on the
189 maximum loop depth in the CFG, but we do not have this information
190 available (even if current_loops _is_ available). */
ea64ef27 191#define MAX_ALIAS_LOOP_PASSES 10
ca7fd9cd 192
9ae8ffe7
JL
193/* reg_base_value[N] gives an address to which register N is related.
194 If all sets after the first add or subtract to the current value
195 or otherwise modify it so it does not point to a different top level
196 object, reg_base_value[N] is equal to the address part of the source
2a2c8203
JC
197 of the first set.
198
199 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
9fc37b2b 200 expressions represent three types of base:
b3b5ad95 201
9fc37b2b
RS
202 1. incoming arguments. There is just one ADDRESS to represent all
203 arguments, since we do not know at this level whether accesses
204 based on different arguments can alias. The ADDRESS has id 0.
b3b5ad95 205
9fc37b2b
RS
206 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
207 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
208 Each of these rtxes has a separate ADDRESS associated with it,
209 each with a negative id.
210
211 GCC is (and is required to be) precise in which register it
212 chooses to access a particular region of stack. We can therefore
213 assume that accesses based on one of these rtxes do not alias
214 accesses based on another of these rtxes.
215
216 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
217 Each such piece of memory has a separate ADDRESS associated
218 with it, each with an id greater than 0.
219
220 Accesses based on one ADDRESS do not alias accesses based on other
221 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
222 alias globals either; the ADDRESSes have Pmode to indicate this.
223 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
224 indicate this. */
2a2c8203 225
9771b263 226static GTY(()) vec<rtx, va_gc> *reg_base_value;
ac606739 227static rtx *new_reg_base_value;
c582d54a 228
9fc37b2b
RS
229/* The single VOIDmode ADDRESS that represents all argument bases.
230 It has id 0. */
231static GTY(()) rtx arg_base_value;
232
233/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
234static int unique_id;
235
c582d54a
JH
236/* We preserve the copy of old array around to avoid amount of garbage
237 produced. About 8% of garbage produced were attributed to this
238 array. */
9771b263 239static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
d4b60170 240
9e412ca3
RS
241/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
242 registers. */
243#define UNIQUE_BASE_VALUE_SP -1
244#define UNIQUE_BASE_VALUE_ARGP -2
245#define UNIQUE_BASE_VALUE_FP -3
246#define UNIQUE_BASE_VALUE_HFP -4
247
7bf84454
RS
248#define static_reg_base_value \
249 (this_target_rtl->x_static_reg_base_value)
bf1660a6 250
9771b263
DN
251#define REG_BASE_VALUE(X) \
252 (REGNO (X) < vec_safe_length (reg_base_value) \
253 ? (*reg_base_value)[REGNO (X)] : 0)
9ae8ffe7 254
c13e8210 255/* Vector indexed by N giving the initial (unchanging) value known for
9ff3c7ca 256 pseudo-register N. This vector is initialized in init_alias_analysis,
bb1acb3e 257 and does not change until end_alias_analysis is called. */
9771b263 258static GTY(()) vec<rtx, va_gc> *reg_known_value;
9ae8ffe7
JL
259
260/* Vector recording for each reg_known_value whether it is due to a
261 REG_EQUIV note. Future passes (viz., reload) may replace the
262 pseudo with the equivalent expression and so we account for the
ac3d9668
RK
263 dependences that would be introduced if that happens.
264
265 The REG_EQUIV notes created in assign_parms may mention the arg
266 pointer, and there are explicit insns in the RTL that modify the
267 arg pointer. Thus we must ensure that such insns don't get
268 scheduled across each other because that would invalidate the
269 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
270 wrong, but solving the problem in the scheduler will likely give
271 better code, so we do it here. */
9ff3c7ca 272static sbitmap reg_known_equiv_p;
9ae8ffe7 273
2a2c8203
JC
274/* True when scanning insns from the start of the rtl to the
275 NOTE_INSN_FUNCTION_BEG note. */
83bbd9b6 276static bool copying_arguments;
9ae8ffe7 277
1a5640b4 278
3932261a 279/* The splay-tree used to store the various alias set entries. */
02ced957 280static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
ac3d9668 281\f
55b34b5f
RG
282/* Build a decomposed reference object for querying the alias-oracle
283 from the MEM rtx and store it in *REF.
284 Returns false if MEM is not suitable for the alias-oracle. */
285
286static bool
287ao_ref_from_mem (ao_ref *ref, const_rtx mem)
288{
289 tree expr = MEM_EXPR (mem);
290 tree base;
291
292 if (!expr)
293 return false;
294
295 ao_ref_init (ref, expr);
296
297 /* Get the base of the reference and see if we have to reject or
298 adjust it. */
299 base = ao_ref_base (ref);
300 if (base == NULL_TREE)
301 return false;
302
ef7a9fb8
RB
303 /* The tree oracle doesn't like bases that are neither decls
304 nor indirect references of SSA names. */
305 if (!(DECL_P (base)
306 || (TREE_CODE (base) == MEM_REF
307 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
308 || (TREE_CODE (base) == TARGET_MEM_REF
309 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
d15adbeb 310 return false;
55b34b5f 311
55b34b5f
RG
312 ref->ref_alias_set = MEM_ALIAS_SET (mem);
313
f68396a1
RG
314 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
315 is conservative, so trust it. */
527210c4 316 if (!MEM_OFFSET_KNOWN_P (mem)
f5541398 317 || !MEM_SIZE_KNOWN_P (mem))
f68396a1 318 return true;
366f945f 319
e8024441
RB
320 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
321 drop ref->ref. */
d05d7551 322 if (maybe_lt (MEM_OFFSET (mem), 0)
b9c25734
RS
323 || (ref->max_size_known_p ()
324 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
325 ref->max_size)))
e8024441 326 ref->ref = NULL_TREE;
b0e96404 327
e8024441
RB
328 /* Refine size and offset we got from analyzing MEM_EXPR by using
329 MEM_SIZE and MEM_OFFSET. */
f68396a1 330
527210c4 331 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
f5541398 332 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
b0e96404
RG
333
334 /* The MEM may extend into adjacent fields, so adjust max_size if
335 necessary. */
b9c25734
RS
336 if (ref->max_size_known_p ())
337 ref->max_size = upper_bound (ref->max_size, ref->size);
b0e96404 338
b9c25734 339 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
b0e96404
RG
340 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
341 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
b9c25734 342 && (maybe_lt (ref->offset, 0)
b0e96404 343 || (DECL_P (ref->base)
807e902e 344 && (DECL_SIZE (ref->base) == NULL_TREE
b9c25734
RS
345 || !poly_int_tree_p (DECL_SIZE (ref->base))
346 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
347 ref->offset + ref->size)))))
b0e96404 348 return false;
55b34b5f
RG
349
350 return true;
351}
352
353/* Query the alias-oracle on whether the two memory rtx X and MEM may
354 alias. If TBAA_P is set also apply TBAA. Returns true if the
355 two rtxen may alias, false otherwise. */
356
357static bool
358rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
359{
360 ao_ref ref1, ref2;
361
362 if (!ao_ref_from_mem (&ref1, x)
363 || !ao_ref_from_mem (&ref2, mem))
364 return true;
365
55e3bc4c
RG
366 return refs_may_alias_p_1 (&ref1, &ref2,
367 tbaa_p
368 && MEM_ALIAS_SET (x) != 0
369 && MEM_ALIAS_SET (mem) != 0);
55b34b5f
RG
370}
371
3d6fd7ce
RB
372/* Return true if the ref EARLIER behaves the same as LATER with respect
373 to TBAA for every memory reference that might follow LATER. */
374
375bool
376refs_same_for_tbaa_p (tree earlier, tree later)
377{
378 ao_ref earlier_ref, later_ref;
379 ao_ref_init (&earlier_ref, earlier);
380 ao_ref_init (&later_ref, later);
381 alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
382 alias_set_type later_set = ao_ref_alias_set (&later_ref);
383 if (!(earlier_set == later_set
384 || alias_set_subset_of (later_set, earlier_set)))
385 return false;
386 alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
387 alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
388 return (earlier_base_set == later_base_set
389 || alias_set_subset_of (later_base_set, earlier_base_set));
390}
391
64ce76d9
RE
392/* Similar to refs_same_for_tbaa_p() but for use on MEM rtxs. */
393bool
394mems_same_for_tbaa_p (rtx earlier, rtx later)
395{
396 gcc_assert (MEM_P (earlier));
397 gcc_assert (MEM_P (later));
398
399 return ((MEM_ALIAS_SET (earlier) == MEM_ALIAS_SET (later)
400 || alias_set_subset_of (MEM_ALIAS_SET (later),
401 MEM_ALIAS_SET (earlier)))
402 && (!MEM_EXPR (earlier)
403 || refs_same_for_tbaa_p (MEM_EXPR (earlier), MEM_EXPR (later))));
404}
405
3932261a
MM
406/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
407 such an entry, or NULL otherwise. */
408
02ced957 409static inline alias_set_entry *
4862826d 410get_alias_set_entry (alias_set_type alias_set)
3932261a 411{
9771b263 412 return (*alias_sets)[alias_set];
3932261a
MM
413}
414
ac3d9668
RK
415/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
416 the two MEMs cannot alias each other. */
3932261a 417
9ddb66ca 418static inline int
4f588890 419mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
3932261a 420{
598f8eca
RB
421 return (flag_strict_aliasing
422 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
423 MEM_ALIAS_SET (mem2)));
1da68f56 424}
3932261a 425
c58936b6
DB
426/* Return true if the first alias set is a subset of the second. */
427
428bool
4862826d 429alias_set_subset_of (alias_set_type set1, alias_set_type set2)
c58936b6 430{
02ced957 431 alias_set_entry *ase2;
c58936b6 432
bd04cddf
JH
433 /* Disable TBAA oracle with !flag_strict_aliasing. */
434 if (!flag_strict_aliasing)
435 return true;
436
c58936b6
DB
437 /* Everything is a subset of the "aliases everything" set. */
438 if (set2 == 0)
439 return true;
440
6e042ef4
JH
441 /* Check if set1 is a subset of set2. */
442 ase2 = get_alias_set_entry (set2);
443 if (ase2 != 0
444 && (ase2->has_zero_child
445 || (ase2->children && ase2->children->get (set1))))
c58936b6 446 return true;
6e042ef4
JH
447
448 /* As a special case we consider alias set of "void *" to be both subset
449 and superset of every alias set of a pointer. This extra symmetry does
450 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
451 to return true on the following testcase:
452
453 void *ptr;
454 char **ptr2=(char **)&ptr;
455 *ptr2 = ...
456
457 Additionally if a set contains universal pointer, we consider every pointer
458 to be a subset of it, but we do not represent this explicitely - doing so
459 would require us to update transitive closure each time we introduce new
460 pointer type. This makes aliasing_component_refs_p to return true
461 on the following testcase:
462
463 struct a {void *ptr;}
464 char **ptr = (char **)&a.ptr;
465 ptr = ...
466
467 This makes void * truly universal pointer type. See pointer handling in
468 get_alias_set for more details. */
469 if (ase2 && ase2->has_pointer)
470 {
02ced957 471 alias_set_entry *ase1 = get_alias_set_entry (set1);
6e042ef4
JH
472
473 if (ase1 && ase1->is_pointer)
474 {
475 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
476 /* If one is ptr_type_node and other is pointer, then we consider
477 them subset of each other. */
478 if (set1 == voidptr_set || set2 == voidptr_set)
479 return true;
480 /* If SET2 contains universal pointer's alias set, then we consdier
481 every (non-universal) pointer. */
482 if (ase2->children && set1 != voidptr_set
483 && ase2->children->get (voidptr_set))
484 return true;
485 }
486 }
c58936b6
DB
487 return false;
488}
489
1da68f56
RK
490/* Return 1 if the two specified alias sets may conflict. */
491
492int
4862826d 493alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
1da68f56 494{
02ced957
TS
495 alias_set_entry *ase1;
496 alias_set_entry *ase2;
1da68f56 497
836f7794
EB
498 /* The easy case. */
499 if (alias_sets_must_conflict_p (set1, set2))
1da68f56 500 return 1;
3932261a 501
3bdf5ad1 502 /* See if the first alias set is a subset of the second. */
6e042ef4
JH
503 ase1 = get_alias_set_entry (set1);
504 if (ase1 != 0
505 && ase1->children && ase1->children->get (set2))
3ecf9d13
JH
506 {
507 ++alias_stats.num_dag;
508 return 1;
509 }
3932261a
MM
510
511 /* Now do the same, but with the alias sets reversed. */
6e042ef4
JH
512 ase2 = get_alias_set_entry (set2);
513 if (ase2 != 0
514 && ase2->children && ase2->children->get (set1))
3ecf9d13
JH
515 {
516 ++alias_stats.num_dag;
517 return 1;
518 }
6e042ef4
JH
519
520 /* We want void * to be compatible with any other pointer without
521 really dropping it to alias set 0. Doing so would make it
522 compatible with all non-pointer types too.
523
524 This is not strictly necessary by the C/C++ language
525 standards, but avoids common type punning mistakes. In
526 addition to that, we need the existence of such universal
527 pointer to implement Fortran's C_PTR type (which is defined as
528 type compatible with all C pointers). */
529 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
530 {
531 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
532
533 /* If one of the sets corresponds to universal pointer,
534 we consider it to conflict with anything that is
535 or contains pointer. */
536 if (set1 == voidptr_set || set2 == voidptr_set)
537 {
538 ++alias_stats.num_universal;
539 return true;
540 }
541 /* If one of sets is (non-universal) pointer and the other
542 contains universal pointer, we also get conflict. */
543 if (ase1->is_pointer && set2 != voidptr_set
544 && ase2->children && ase2->children->get (voidptr_set))
545 {
546 ++alias_stats.num_universal;
547 return true;
548 }
549 if (ase2->is_pointer && set1 != voidptr_set
550 && ase1->children && ase1->children->get (voidptr_set))
551 {
552 ++alias_stats.num_universal;
553 return true;
554 }
555 }
556
3ecf9d13 557 ++alias_stats.num_disambiguated;
3932261a 558
1da68f56 559 /* The two alias sets are distinct and neither one is the
836f7794 560 child of the other. Therefore, they cannot conflict. */
1da68f56 561 return 0;
3932261a 562}
5399d643 563
836f7794 564/* Return 1 if the two specified alias sets will always conflict. */
5399d643
JW
565
566int
4862826d 567alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
5399d643 568{
bd04cddf
JH
569 /* Disable TBAA oracle with !flag_strict_aliasing. */
570 if (!flag_strict_aliasing)
571 return 1;
3ecf9d13
JH
572 if (set1 == 0 || set2 == 0)
573 {
574 ++alias_stats.num_alias_zero;
575 return 1;
576 }
577 if (set1 == set2)
578 {
579 ++alias_stats.num_same_alias_set;
580 return 1;
581 }
5399d643
JW
582
583 return 0;
584}
585
1da68f56
RK
586/* Return 1 if any MEM object of type T1 will always conflict (using the
587 dependency routines in this file) with any MEM object of type T2.
588 This is used when allocating temporary storage. If T1 and/or T2 are
589 NULL_TREE, it means we know nothing about the storage. */
590
591int
4682ae04 592objects_must_conflict_p (tree t1, tree t2)
1da68f56 593{
4862826d 594 alias_set_type set1, set2;
82d610ec 595
e8ea2809
RK
596 /* If neither has a type specified, we don't know if they'll conflict
597 because we may be using them to store objects of various types, for
598 example the argument and local variables areas of inlined functions. */
981a4c34 599 if (t1 == 0 && t2 == 0)
e8ea2809
RK
600 return 0;
601
1da68f56 602 /* If they are the same type, they must conflict. */
3ecf9d13
JH
603 if (t1 == t2)
604 {
605 ++alias_stats.num_same_objects;
606 return 1;
607 }
608 /* Likewise if both are volatile. */
609 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
610 {
611 ++alias_stats.num_volatile;
612 return 1;
613 }
1da68f56 614
82d610ec
RK
615 set1 = t1 ? get_alias_set (t1) : 0;
616 set2 = t2 ? get_alias_set (t2) : 0;
1da68f56 617
836f7794
EB
618 /* We can't use alias_sets_conflict_p because we must make sure
619 that every subtype of t1 will conflict with every subtype of
82d610ec
RK
620 t2 for which a pair of subobjects of these respective subtypes
621 overlaps on the stack. */
836f7794 622 return alias_sets_must_conflict_p (set1, set2);
1da68f56
RK
623}
624\f
9640ff5a
JH
625/* Return true if T is an end of the access path which can be used
626 by type based alias oracle. */
627
628bool
629ends_tbaa_access_path_p (const_tree t)
630{
631 switch (TREE_CODE (t))
632 {
633 case COMPONENT_REF:
634 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
635 return true;
636 /* Permit type-punning when accessing a union, provided the access
637 is directly through the union. For example, this code does not
638 permit taking the address of a union member and then storing
639 through it. Even the type-punning allowed here is a GCC
640 extension, albeit a common and useful one; the C standard says
641 that such accesses have implementation-defined behavior. */
642 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
643 return true;
644 break;
645
646 case ARRAY_REF:
647 case ARRAY_RANGE_REF:
648 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
649 return true;
650 break;
651
652 case REALPART_EXPR:
653 case IMAGPART_EXPR:
654 break;
655
656 case BIT_FIELD_REF:
657 case VIEW_CONVERT_EXPR:
658 /* Bitfields and casts are never addressable. */
659 return true;
660 break;
661
662 default:
663 gcc_unreachable ();
664 }
665 return false;
666}
667
b4ada065
RB
668/* Return the outermost parent of component present in the chain of
669 component references handled by get_inner_reference in T with the
670 following property:
dc3221e1 671 - the component is non-addressable
b4ada065
RB
672 or NULL_TREE if no such parent exists. In the former cases, the alias
673 set of this parent is the alias set that must be used for T itself. */
674
675tree
676component_uses_parent_alias_set_from (const_tree t)
6e24b709 677{
b4ada065 678 const_tree found = NULL_TREE;
afe84921 679
b4ada065
RB
680 while (handled_component_p (t))
681 {
9640ff5a
JH
682 if (ends_tbaa_access_path_p (t))
683 found = t;
afe84921
RH
684
685 t = TREE_OPERAND (t, 0);
686 }
b4ada065
RB
687
688 if (found)
689 return TREE_OPERAND (found, 0);
690
691 return NULL_TREE;
6e24b709
RK
692}
693
f40333af
RB
694
695/* Return whether the pointer-type T effective for aliasing may
696 access everything and thus the reference has to be assigned
697 alias-set zero. */
698
699static bool
700ref_all_alias_ptr_type_p (const_tree t)
701{
702 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
703 || TYPE_REF_CAN_ALIAS_ALL (t));
704}
705
5006671f
RG
706/* Return the alias set for the memory pointed to by T, which may be
707 either a type or an expression. Return -1 if there is nothing
708 special about dereferencing T. */
709
710static alias_set_type
711get_deref_alias_set_1 (tree t)
712{
5b21f0f3 713 /* All we care about is the type. */
5006671f 714 if (! TYPE_P (t))
5b21f0f3 715 t = TREE_TYPE (t);
5006671f
RG
716
717 /* If we have an INDIRECT_REF via a void pointer, we don't
718 know anything about what that might alias. Likewise if the
719 pointer is marked that way. */
f40333af 720 if (ref_all_alias_ptr_type_p (t))
5006671f
RG
721 return 0;
722
723 return -1;
724}
725
726/* Return the alias set for the memory pointed to by T, which may be
727 either a type or an expression. */
728
729alias_set_type
730get_deref_alias_set (tree t)
731{
f40333af
RB
732 /* If we're not doing any alias analysis, just assume everything
733 aliases everything else. */
734 if (!flag_strict_aliasing)
735 return 0;
736
5006671f
RG
737 alias_set_type set = get_deref_alias_set_1 (t);
738
739 /* Fall back to the alias-set of the pointed-to type. */
740 if (set == -1)
741 {
742 if (! TYPE_P (t))
743 t = TREE_TYPE (t);
744 set = get_alias_set (TREE_TYPE (t));
745 }
746
747 return set;
748}
749
f40333af
RB
750/* Return the pointer-type relevant for TBAA purposes from the
751 memory reference tree *T or NULL_TREE in which case *T is
752 adjusted to point to the outermost component reference that
753 can be used for assigning an alias set. */
754
d119f34c 755tree
f40333af
RB
756reference_alias_ptr_type_1 (tree *t)
757{
758 tree inner;
759
760 /* Get the base object of the reference. */
761 inner = *t;
762 while (handled_component_p (inner))
763 {
764 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
765 the type of any component references that wrap it to
766 determine the alias-set. */
767 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
768 *t = TREE_OPERAND (inner, 0);
769 inner = TREE_OPERAND (inner, 0);
770 }
771
772 /* Handle pointer dereferences here, they can override the
773 alias-set. */
774 if (INDIRECT_REF_P (inner)
775 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
776 return TREE_TYPE (TREE_OPERAND (inner, 0));
777 else if (TREE_CODE (inner) == TARGET_MEM_REF)
778 return TREE_TYPE (TMR_OFFSET (inner));
779 else if (TREE_CODE (inner) == MEM_REF
780 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
781 return TREE_TYPE (TREE_OPERAND (inner, 1));
782
783 /* If the innermost reference is a MEM_REF that has a
784 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
785 using the memory access type for determining the alias-set. */
786 if (TREE_CODE (inner) == MEM_REF
787 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
788 != TYPE_MAIN_VARIANT
789 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
790 return TREE_TYPE (TREE_OPERAND (inner, 1));
791
b4ada065
RB
792 /* Otherwise, pick up the outermost object that we could have
793 a pointer to. */
794 tree tem = component_uses_parent_alias_set_from (*t);
795 if (tem)
796 *t = tem;
f40333af
RB
797
798 return NULL_TREE;
799}
800
801/* Return the pointer-type relevant for TBAA purposes from the
802 gimple memory reference tree T. This is the type to be used for
803 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
804 and guarantees that get_alias_set will return the same alias
805 set for T and the replacement. */
806
807tree
808reference_alias_ptr_type (tree t)
809{
ebc1b29e
RB
810 /* If the frontend assigns this alias-set zero, preserve that. */
811 if (lang_hooks.get_alias_set (t) == 0)
812 return ptr_type_node;
813
f40333af
RB
814 tree ptype = reference_alias_ptr_type_1 (&t);
815 /* If there is a given pointer type for aliasing purposes, return it. */
816 if (ptype != NULL_TREE)
817 return ptype;
818
819 /* Otherwise build one from the outermost component reference we
820 may use. */
821 if (TREE_CODE (t) == MEM_REF
822 || TREE_CODE (t) == TARGET_MEM_REF)
823 return TREE_TYPE (TREE_OPERAND (t, 1));
824 else
825 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
826}
827
828/* Return whether the pointer-types T1 and T2 used to determine
829 two alias sets of two references will yield the same answer
830 from get_deref_alias_set. */
831
832bool
833alias_ptr_types_compatible_p (tree t1, tree t2)
834{
835 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
836 return true;
837
838 if (ref_all_alias_ptr_type_p (t1)
839 || ref_all_alias_ptr_type_p (t2))
840 return false;
841
33e8e0ee
ML
842 /* This function originally abstracts from simply comparing
843 get_deref_alias_set so that we are sure this still computes
844 the same result after LTO type merging is applied.
845 When in LTO type merging is done we can actually do this compare.
846 */
847 if (in_lto_p)
848 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
849 else
850 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
851 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
f40333af
RB
852}
853
6e042ef4
JH
854/* Create emptry alias set entry. */
855
02ced957 856alias_set_entry *
6e042ef4
JH
857init_alias_set_entry (alias_set_type set)
858{
02ced957 859 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
6e042ef4
JH
860 ase->alias_set = set;
861 ase->children = NULL;
862 ase->has_zero_child = false;
863 ase->is_pointer = false;
864 ase->has_pointer = false;
865 gcc_checking_assert (!get_alias_set_entry (set));
866 (*alias_sets)[set] = ase;
867 return ase;
868}
869
3bdf5ad1
RK
870/* Return the alias set for T, which may be either a type or an
871 expression. Call language-specific routine for help, if needed. */
872
4862826d 873alias_set_type
4682ae04 874get_alias_set (tree t)
3bdf5ad1 875{
4862826d 876 alias_set_type set;
3bdf5ad1 877
67914693 878 /* We cannot give up with -fno-strict-aliasing because we need to build
63f56527 879 proper type representations for possible functions which are built with
e8444ca6 880 -fstrict-aliasing. */
bd04cddf
JH
881
882 /* return 0 if this or its type is an error. */
883 if (t == error_mark_node
3bdf5ad1
RK
884 || (! TYPE_P (t)
885 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
886 return 0;
887
888 /* We can be passed either an expression or a type. This and the
f47e9b4e
RK
889 language-specific routine may make mutually-recursive calls to each other
890 to figure out what to do. At each juncture, we see if this is a tree
891 that the language may need to handle specially. First handle things that
738cc472 892 aren't types. */
f824e5c3 893 if (! TYPE_P (t))
3bdf5ad1 894 {
70f34814
RG
895 /* Give the language a chance to do something with this tree
896 before we look at it. */
8ac61af7 897 STRIP_NOPS (t);
ae2bcd98 898 set = lang_hooks.get_alias_set (t);
8ac61af7
RK
899 if (set != -1)
900 return set;
901
f40333af
RB
902 /* Get the alias pointer-type to use or the outermost object
903 that we could have a pointer to. */
904 tree ptype = reference_alias_ptr_type_1 (&t);
905 if (ptype != NULL)
906 return get_deref_alias_set (ptype);
f824e5c3 907
738cc472
RK
908 /* If we've already determined the alias set for a decl, just return
909 it. This is necessary for C++ anonymous unions, whose component
910 variables don't look like union members (boo!). */
8813a647 911 if (VAR_P (t)
3c0cb5de 912 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
5755cd38
JM
913 return MEM_ALIAS_SET (DECL_RTL (t));
914
f824e5c3
RK
915 /* Now all we care about is the type. */
916 t = TREE_TYPE (t);
3bdf5ad1
RK
917 }
918
3bdf5ad1 919 /* Variant qualifiers don't affect the alias set, so get the main
daad0278 920 variant. */
3bdf5ad1 921 t = TYPE_MAIN_VARIANT (t);
daad0278 922
350792ff
RB
923 if (AGGREGATE_TYPE_P (t)
924 && TYPE_TYPELESS_STORAGE (t))
925 return 0;
926
daad0278
RG
927 /* Always use the canonical type as well. If this is a type that
928 requires structural comparisons to identify compatible types
929 use alias set zero. */
930 if (TYPE_STRUCTURAL_EQUALITY_P (t))
cb9c2485
JM
931 {
932 /* Allow the language to specify another alias set for this
933 type. */
934 set = lang_hooks.get_alias_set (t);
935 if (set != -1)
936 return set;
aea50b45 937 /* Handle structure type equality for pointer types, arrays and vectors.
63f56527 938 This is easy to do, because the code below ignores canonical types on
aea50b45 939 these anyway. This is important for LTO, where TYPE_CANONICAL for
63f56527 940 pointers cannot be meaningfully computed by the frontend. */
aea50b45 941 if (canonical_type_used_p (t))
f85d2487
JH
942 {
943 /* In LTO we set canonical types for all types where it makes
944 sense to do so. Double check we did not miss some type. */
945 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
946 return 0;
947 }
948 }
949 else
950 {
951 t = TYPE_CANONICAL (t);
952 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
cb9c2485 953 }
daad0278
RG
954
955 /* If this is a type with a known alias set, return it. */
ba6a6a1d 956 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
738cc472 957 if (TYPE_ALIAS_SET_KNOWN_P (t))
3bdf5ad1
RK
958 return TYPE_ALIAS_SET (t);
959
36784d0e
RG
960 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
961 if (!COMPLETE_TYPE_P (t))
962 {
963 /* For arrays with unknown size the conservative answer is the
964 alias set of the element type. */
965 if (TREE_CODE (t) == ARRAY_TYPE)
966 return get_alias_set (TREE_TYPE (t));
967
968 /* But return zero as a conservative answer for incomplete types. */
969 return 0;
970 }
971
3bdf5ad1 972 /* See if the language has special handling for this type. */
ae2bcd98 973 set = lang_hooks.get_alias_set (t);
8ac61af7 974 if (set != -1)
738cc472 975 return set;
2bf105ab 976
3bdf5ad1
RK
977 /* There are no objects of FUNCTION_TYPE, so there's no point in
978 using up an alias set for them. (There are, of course, pointers
979 and references to functions, but that's different.) */
7be7d292 980 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
3bdf5ad1 981 set = 0;
74d86f4f
RH
982
983 /* Unless the language specifies otherwise, let vector types alias
984 their components. This avoids some nasty type punning issues in
985 normal usage. And indeed lets vectors be treated more like an
986 array slice. */
987 else if (TREE_CODE (t) == VECTOR_TYPE)
988 set = get_alias_set (TREE_TYPE (t));
989
4653cae5
RG
990 /* Unless the language specifies otherwise, treat array types the
991 same as their components. This avoids the asymmetry we get
992 through recording the components. Consider accessing a
993 character(kind=1) through a reference to a character(kind=1)[1:1].
994 Or consider if we want to assign integer(kind=4)[0:D.1387] and
995 integer(kind=4)[4] the same alias set or not.
996 Just be pragmatic here and make sure the array and its element
997 type get the same alias set assigned. */
aea50b45
JH
998 else if (TREE_CODE (t) == ARRAY_TYPE
999 && (!TYPE_NONALIASED_COMPONENT (t)
1000 || TYPE_STRUCTURAL_EQUALITY_P (t)))
4653cae5
RG
1001 set = get_alias_set (TREE_TYPE (t));
1002
0ceb0201
RG
1003 /* From the former common C and C++ langhook implementation:
1004
1005 Unfortunately, there is no canonical form of a pointer type.
1006 In particular, if we have `typedef int I', then `int *', and
1007 `I *' are different types. So, we have to pick a canonical
1008 representative. We do this below.
1009
1010 Technically, this approach is actually more conservative that
1011 it needs to be. In particular, `const int *' and `int *'
1012 should be in different alias sets, according to the C and C++
1013 standard, since their types are not the same, and so,
1014 technically, an `int **' and `const int **' cannot point at
1015 the same thing.
1016
1017 But, the standard is wrong. In particular, this code is
1018 legal C++:
1019
1020 int *ip;
1021 int **ipp = &ip;
1022 const int* const* cipp = ipp;
1023 And, it doesn't make sense for that to be legal unless you
1024 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
1025 the pointed-to types. This issue has been reported to the
1026 C++ committee.
1027
6e042ef4
JH
1028 For this reason go to canonical type of the unqalified pointer type.
1029 Until GCC 6 this code set all pointers sets to have alias set of
1030 ptr_type_node but that is a bad idea, because it prevents disabiguations
1031 in between pointers. For Firefox this accounts about 20% of all
1032 disambiguations in the program. */
f85d2487 1033 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
6e042ef4
JH
1034 {
1035 tree p;
1036 auto_vec <bool, 8> reference;
1037
1038 /* Unnest all pointers and references.
f85d2487
JH
1039 We also want to make pointer to array/vector equivalent to pointer to
1040 its element (see the reasoning above). Skip all those types, too. */
6e042ef4 1041 for (p = t; POINTER_TYPE_P (p)
aea50b45
JH
1042 || (TREE_CODE (p) == ARRAY_TYPE
1043 && (!TYPE_NONALIASED_COMPONENT (p)
1044 || !COMPLETE_TYPE_P (p)
1045 || TYPE_STRUCTURAL_EQUALITY_P (p)))
f85d2487 1046 || TREE_CODE (p) == VECTOR_TYPE;
6e042ef4
JH
1047 p = TREE_TYPE (p))
1048 {
63f56527
SL
1049 /* Ada supports recursive pointers. Instead of doing recursion
1050 check, just give up once the preallocated space of 8 elements
1051 is up. In this case just punt to void * alias set. */
54363f8a
JH
1052 if (reference.length () == 8)
1053 {
1054 p = ptr_type_node;
1055 break;
1056 }
6e042ef4 1057 if (TREE_CODE (p) == REFERENCE_TYPE)
f85d2487
JH
1058 /* In LTO we want languages that use references to be compatible
1059 with languages that use pointers. */
1060 reference.safe_push (true && !in_lto_p);
6e042ef4
JH
1061 if (TREE_CODE (p) == POINTER_TYPE)
1062 reference.safe_push (false);
1063 }
1064 p = TYPE_MAIN_VARIANT (p);
1065
63f56527 1066 /* In LTO for C++ programs we can turn incomplete types to complete
e4b44fd7
JH
1067 using ODR name lookup. */
1068 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1069 {
1070 p = prevailing_odr_type (p);
1071 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1072 }
1073
6e042ef4
JH
1074 /* Make void * compatible with char * and also void **.
1075 Programs are commonly violating TBAA by this.
1076
1077 We also make void * to conflict with every pointer
1078 (see record_component_aliases) and thus it is safe it to use it for
1079 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1080 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1081 set = get_alias_set (ptr_type_node);
1082 else
1083 {
f85d2487 1084 /* Rebuild pointer type starting from canonical types using
6e042ef4
JH
1085 unqualified pointers and references only. This way all such
1086 pointers will have the same alias set and will conflict with
1087 each other.
1088
1089 Most of time we already have pointers or references of a given type.
1090 If not we build new one just to be sure that if someone later
1091 (probably only middle-end can, as we should assign all alias
1092 classes only after finishing translation unit) builds the pointer
1093 type, the canonical type will match. */
1094 p = TYPE_CANONICAL (p);
1095 while (!reference.is_empty ())
1096 {
1097 if (reference.pop ())
1098 p = build_reference_type (p);
1099 else
1100 p = build_pointer_type (p);
f85d2487
JH
1101 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1102 /* build_pointer_type should always return the canonical type.
1103 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1104 them. Be sure that frontends do not glob canonical types of
1105 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1106 in all other cases. */
1107 gcc_checking_assert (!TYPE_CANONICAL (p)
1108 || p == TYPE_CANONICAL (p));
6e042ef4 1109 }
6e042ef4
JH
1110
1111 /* Assign the alias set to both p and t.
67914693 1112 We cannot call get_alias_set (p) here as that would trigger
6e042ef4
JH
1113 infinite recursion when p == t. In other cases it would just
1114 trigger unnecesary legwork of rebuilding the pointer again. */
ba6a6a1d 1115 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
6e042ef4
JH
1116 if (TYPE_ALIAS_SET_KNOWN_P (p))
1117 set = TYPE_ALIAS_SET (p);
1118 else
1119 {
1120 set = new_alias_set ();
1121 TYPE_ALIAS_SET (p) = set;
1122 }
1123 }
1124 }
f85d2487
JH
1125 /* Alias set of ptr_type_node is special and serve as universal pointer which
1126 is TBAA compatible with every other pointer type. Be sure we have the
1127 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1128 of pointer types NULL. */
1129 else if (t == ptr_type_node)
1130 set = new_alias_set ();
0ceb0201 1131
7be7d292 1132 /* Otherwise make a new alias set for this type. */
3bdf5ad1 1133 else
96d91dcf
RG
1134 {
1135 /* Each canonical type gets its own alias set, so canonical types
1136 shouldn't form a tree. It doesn't really matter for types
1137 we handle specially above, so only check it where it possibly
1138 would result in a bogus alias set. */
1139 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1140
1141 set = new_alias_set ();
1142 }
3bdf5ad1
RK
1143
1144 TYPE_ALIAS_SET (t) = set;
2bf105ab 1145
7be7d292
EB
1146 /* If this is an aggregate type or a complex type, we must record any
1147 component aliasing information. */
1d79fd2c 1148 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
2bf105ab
RK
1149 record_component_aliases (t);
1150
6e042ef4
JH
1151 /* We treat pointer types specially in alias_set_subset_of. */
1152 if (POINTER_TYPE_P (t) && set)
1153 {
02ced957 1154 alias_set_entry *ase = get_alias_set_entry (set);
6e042ef4
JH
1155 if (!ase)
1156 ase = init_alias_set_entry (set);
1157 ase->is_pointer = true;
1158 ase->has_pointer = true;
1159 }
1160
3bdf5ad1
RK
1161 return set;
1162}
1163
1164/* Return a brand-new alias set. */
1165
4862826d 1166alias_set_type
4682ae04 1167new_alias_set (void)
3bdf5ad1 1168{
bd04cddf
JH
1169 if (alias_sets == 0)
1170 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1171 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1172 return alias_sets->length () - 1;
3bdf5ad1 1173}
3932261a 1174
01d28c3f
JM
1175/* Indicate that things in SUBSET can alias things in SUPERSET, but that
1176 not everything that aliases SUPERSET also aliases SUBSET. For example,
1177 in C, a store to an `int' can alias a load of a structure containing an
1178 `int', and vice versa. But it can't alias a load of a 'double' member
1179 of the same structure. Here, the structure would be the SUPERSET and
1180 `int' the SUBSET. This relationship is also described in the comment at
1181 the beginning of this file.
1182
1183 This function should be called only once per SUPERSET/SUBSET pair.
3932261a
MM
1184
1185 It is illegal for SUPERSET to be zero; everything is implicitly a
1186 subset of alias set zero. */
1187
794511d2 1188void
4862826d 1189record_alias_subset (alias_set_type superset, alias_set_type subset)
3932261a 1190{
02ced957
TS
1191 alias_set_entry *superset_entry;
1192 alias_set_entry *subset_entry;
3932261a 1193
f47e9b4e
RK
1194 /* It is possible in complex type situations for both sets to be the same,
1195 in which case we can ignore this operation. */
1196 if (superset == subset)
1197 return;
1198
298e6adc 1199 gcc_assert (superset);
3932261a
MM
1200
1201 superset_entry = get_alias_set_entry (superset);
ca7fd9cd 1202 if (superset_entry == 0)
3932261a
MM
1203 {
1204 /* Create an entry for the SUPERSET, so that we have a place to
1205 attach the SUBSET. */
6e042ef4 1206 superset_entry = init_alias_set_entry (superset);
3932261a
MM
1207 }
1208
2bf105ab
RK
1209 if (subset == 0)
1210 superset_entry->has_zero_child = 1;
1211 else
1212 {
6e042ef4
JH
1213 if (!superset_entry->children)
1214 superset_entry->children
fb5c464a 1215 = hash_map<alias_set_hash, int>::create_ggc (64);
6c577667
RB
1216
1217 /* Enter the SUBSET itself as a child of the SUPERSET. If it was
1218 already there we're done. */
1219 if (superset_entry->children->put (subset, 0))
1220 return;
1221
1222 subset_entry = get_alias_set_entry (subset);
2bf105ab
RK
1223 /* If there is an entry for the subset, enter all of its children
1224 (if they are not already present) as children of the SUPERSET. */
ca7fd9cd 1225 if (subset_entry)
2bf105ab
RK
1226 {
1227 if (subset_entry->has_zero_child)
6e042ef4
JH
1228 superset_entry->has_zero_child = true;
1229 if (subset_entry->has_pointer)
1230 superset_entry->has_pointer = true;
d4b60170 1231
6e042ef4
JH
1232 if (subset_entry->children)
1233 {
fb5c464a 1234 hash_map<alias_set_hash, int>::iterator iter
6e042ef4
JH
1235 = subset_entry->children->begin ();
1236 for (; iter != subset_entry->children->end (); ++iter)
1237 superset_entry->children->put ((*iter).first, (*iter).second);
1238 }
2bf105ab 1239 }
2bf105ab 1240 }
3932261a
MM
1241}
1242
6b8df3e4 1243/* Record that component types of TYPE, if any, are part of SUPERSET for
a0c33338 1244 aliasing purposes. For record types, we only record component types
b5487346
EB
1245 for fields that are not marked non-addressable. For array types, we
1246 only record the component type if it is not marked non-aliased. */
a0c33338
RK
1247
1248void
6b8df3e4 1249record_component_aliases (tree type, alias_set_type superset)
a0c33338 1250{
a0c33338
RK
1251 tree field;
1252
1253 if (superset == 0)
1254 return;
1255
1256 switch (TREE_CODE (type))
1257 {
a0c33338
RK
1258 case RECORD_TYPE:
1259 case UNION_TYPE:
1260 case QUAL_UNION_TYPE:
17b99c98
JH
1261 {
1262 /* LTO non-ODR type merging does not make any difference between
1263 component pointer types. We may have
1264
1265 struct foo {int *a;};
1266
1267 as TYPE_CANONICAL of
1268
1269 struct bar {float *a;};
1270
1271 Because accesses to int * and float * do not alias, we would get
1272 false negative when accessing the same memory location by
1273 float ** and bar *. We thus record the canonical type as:
1274
1275 struct {void *a;};
1276
1277 void * is special cased and works as a universal pointer type.
1278 Accesses to it conflicts with accesses to any other pointer
1279 type. */
1280 bool void_pointers = in_lto_p
1281 && (!odr_type_p (type)
1282 || !odr_based_tbaa_p (type));
1283 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1284 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1285 {
1286 tree t = TREE_TYPE (field);
1287 if (void_pointers)
1288 {
1289 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1290 element type and that type has to be normalized to void *,
1291 too, in the case it is a pointer. */
1292 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1293 {
1294 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1295 t = TREE_TYPE (t);
1296 }
1297 if (POINTER_TYPE_P (t))
1298 t = ptr_type_node;
1299 else if (flag_checking)
1300 gcc_checking_assert (get_alias_set (t)
1301 == get_alias_set (TREE_TYPE (field)));
1302 }
1303
6b8df3e4
RB
1304 alias_set_type set = get_alias_set (t);
1305 record_alias_subset (superset, set);
1306 /* If the field has alias-set zero make sure to still record
1307 any componets of it. This makes sure that for
1308 struct A {
1309 struct B {
1310 int i;
1311 char c[4];
1312 } b;
1313 };
1314 in C++ even though 'B' has alias-set zero because
1315 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1316 'int' as subset. */
1317 if (set == 0)
1318 record_component_aliases (t, superset);
17b99c98
JH
1319 }
1320 }
a0c33338
RK
1321 break;
1322
1d79fd2c
JW
1323 case COMPLEX_TYPE:
1324 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1325 break;
1326
4653cae5
RG
1327 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1328 element type. */
1329
a0c33338
RK
1330 default:
1331 break;
1332 }
1333}
1334
6b8df3e4
RB
1335/* Record that component types of TYPE, if any, are part of that type for
1336 aliasing purposes. For record types, we only record component types
1337 for fields that are not marked non-addressable. For array types, we
1338 only record the component type if it is not marked non-aliased. */
1339
1340void
1341record_component_aliases (tree type)
1342{
1343 alias_set_type superset = get_alias_set (type);
1344 record_component_aliases (type, superset);
1345}
1346
1347
3bdf5ad1
RK
1348/* Allocate an alias set for use in storing and reading from the varargs
1349 spill area. */
1350
4862826d 1351static GTY(()) alias_set_type varargs_set = -1;
f103e34d 1352
4862826d 1353alias_set_type
4682ae04 1354get_varargs_alias_set (void)
3bdf5ad1 1355{
cd3ce9b4
JM
1356#if 1
1357 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1358 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1359 consistently use the varargs alias set for loads from the varargs
1360 area. So don't use it anywhere. */
1361 return 0;
1362#else
f103e34d
GK
1363 if (varargs_set == -1)
1364 varargs_set = new_alias_set ();
3bdf5ad1 1365
f103e34d 1366 return varargs_set;
cd3ce9b4 1367#endif
3bdf5ad1
RK
1368}
1369
1370/* Likewise, but used for the fixed portions of the frame, e.g., register
1371 save areas. */
1372
4862826d 1373static GTY(()) alias_set_type frame_set = -1;
f103e34d 1374
4862826d 1375alias_set_type
4682ae04 1376get_frame_alias_set (void)
3bdf5ad1 1377{
f103e34d
GK
1378 if (frame_set == -1)
1379 frame_set = new_alias_set ();
3bdf5ad1 1380
f103e34d 1381 return frame_set;
3bdf5ad1
RK
1382}
1383
9fc37b2b
RS
1384/* Create a new, unique base with id ID. */
1385
1386static rtx
1387unique_base_value (HOST_WIDE_INT id)
1388{
1389 return gen_rtx_ADDRESS (Pmode, id);
1390}
1391
1392/* Return true if accesses based on any other base value cannot alias
1393 those based on X. */
1394
1395static bool
1396unique_base_value_p (rtx x)
1397{
1398 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1399}
1400
1401/* Return true if X is known to be a base value. */
1402
1403static bool
1404known_base_value_p (rtx x)
1405{
1406 switch (GET_CODE (x))
1407 {
1408 case LABEL_REF:
1409 case SYMBOL_REF:
1410 return true;
1411
1412 case ADDRESS:
1413 /* Arguments may or may not be bases; we don't know for sure. */
1414 return GET_MODE (x) != VOIDmode;
1415
1416 default:
1417 return false;
1418 }
1419}
1420
2a2c8203
JC
1421/* Inside SRC, the source of a SET, find a base address. */
1422
9ae8ffe7 1423static rtx
4682ae04 1424find_base_value (rtx src)
9ae8ffe7 1425{
713f41f9 1426 unsigned int regno;
6645d841 1427 scalar_int_mode int_mode;
0aacc8ed 1428
53451050
RS
1429#if defined (FIND_BASE_TERM)
1430 /* Try machine-dependent ways to find the base term. */
1431 src = FIND_BASE_TERM (src);
1432#endif
1433
9ae8ffe7
JL
1434 switch (GET_CODE (src))
1435 {
1436 case SYMBOL_REF:
1437 case LABEL_REF:
1438 return src;
1439
1440 case REG:
fb6754f0 1441 regno = REGNO (src);
d4b60170 1442 /* At the start of a function, argument registers have known base
2a2c8203
JC
1443 values which may be lost later. Returning an ADDRESS
1444 expression here allows optimization based on argument values
1445 even when the argument registers are used for other purposes. */
713f41f9
BS
1446 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1447 return new_reg_base_value[regno];
73774bc7 1448
eaf407a5 1449 /* If a pseudo has a known base value, return it. Do not do this
9b462c42
RH
1450 for non-fixed hard regs since it can result in a circular
1451 dependency chain for registers which have values at function entry.
eaf407a5
JL
1452
1453 The test above is not sufficient because the scheduler may move
1454 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
9b462c42 1455 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
9771b263 1456 && regno < vec_safe_length (reg_base_value))
83bbd9b6
RH
1457 {
1458 /* If we're inside init_alias_analysis, use new_reg_base_value
1459 to reduce the number of relaxation iterations. */
1afdf91c 1460 if (new_reg_base_value && new_reg_base_value[regno]
6fb5fa3c 1461 && DF_REG_DEF_COUNT (regno) == 1)
83bbd9b6
RH
1462 return new_reg_base_value[regno];
1463
9771b263
DN
1464 if ((*reg_base_value)[regno])
1465 return (*reg_base_value)[regno];
83bbd9b6 1466 }
73774bc7 1467
e3f049a8 1468 return 0;
9ae8ffe7
JL
1469
1470 case MEM:
1471 /* Check for an argument passed in memory. Only record in the
1472 copying-arguments block; it is too hard to track changes
1473 otherwise. */
1474 if (copying_arguments
1475 && (XEXP (src, 0) == arg_pointer_rtx
1476 || (GET_CODE (XEXP (src, 0)) == PLUS
1477 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
9fc37b2b 1478 return arg_base_value;
9ae8ffe7
JL
1479 return 0;
1480
1481 case CONST:
1482 src = XEXP (src, 0);
1483 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1484 break;
d4b60170 1485
191816a3 1486 /* fall through */
2a2c8203 1487
9ae8ffe7
JL
1488 case PLUS:
1489 case MINUS:
2a2c8203 1490 {
ec907dd8
JL
1491 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1492
0134bf2d
DE
1493 /* If either operand is a REG that is a known pointer, then it
1494 is the base. */
1495 if (REG_P (src_0) && REG_POINTER (src_0))
1496 return find_base_value (src_0);
1497 if (REG_P (src_1) && REG_POINTER (src_1))
1498 return find_base_value (src_1);
1499
ec907dd8
JL
1500 /* If either operand is a REG, then see if we already have
1501 a known value for it. */
0134bf2d 1502 if (REG_P (src_0))
ec907dd8
JL
1503 {
1504 temp = find_base_value (src_0);
d4b60170 1505 if (temp != 0)
ec907dd8
JL
1506 src_0 = temp;
1507 }
1508
0134bf2d 1509 if (REG_P (src_1))
ec907dd8
JL
1510 {
1511 temp = find_base_value (src_1);
d4b60170 1512 if (temp!= 0)
ec907dd8
JL
1513 src_1 = temp;
1514 }
2a2c8203 1515
0134bf2d
DE
1516 /* If either base is named object or a special address
1517 (like an argument or stack reference), then use it for the
1518 base term. */
9fc37b2b 1519 if (src_0 != 0 && known_base_value_p (src_0))
0134bf2d
DE
1520 return src_0;
1521
9fc37b2b 1522 if (src_1 != 0 && known_base_value_p (src_1))
0134bf2d
DE
1523 return src_1;
1524
d4b60170 1525 /* Guess which operand is the base address:
ec907dd8
JL
1526 If either operand is a symbol, then it is the base. If
1527 either operand is a CONST_INT, then the other is the base. */
481683e1 1528 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
2a2c8203 1529 return find_base_value (src_0);
481683e1 1530 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
ec907dd8
JL
1531 return find_base_value (src_1);
1532
9ae8ffe7 1533 return 0;
2a2c8203
JC
1534 }
1535
1536 case LO_SUM:
1537 /* The standard form is (lo_sum reg sym) so look only at the
1538 second operand. */
1539 return find_base_value (XEXP (src, 1));
9ae8ffe7
JL
1540
1541 case AND:
ef50b972
RB
1542 /* Look through aligning ANDs. And AND with zero or one with
1543 the LSB set isn't one (see for example PR92462). */
1544 if (CONST_INT_P (XEXP (src, 1))
1545 && INTVAL (XEXP (src, 1)) != 0
1546 && (INTVAL (XEXP (src, 1)) & 1) == 0)
2a2c8203 1547 return find_base_value (XEXP (src, 0));
9ae8ffe7
JL
1548 return 0;
1549
61f0131c 1550 case TRUNCATE:
5932a4d4 1551 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1552 handle this only if the target does not support different pointer or
1553 address modes depending on the address space. */
1554 if (!target_default_pointer_address_modes_p ())
1555 break;
6645d841
RS
1556 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1557 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
61f0131c
R
1558 break;
1559 /* Fall through. */
9ae8ffe7 1560 case HIGH:
d288e53d
DE
1561 case PRE_INC:
1562 case PRE_DEC:
1563 case POST_INC:
1564 case POST_DEC:
1565 case PRE_MODIFY:
1566 case POST_MODIFY:
2a2c8203 1567 return find_base_value (XEXP (src, 0));
1d300e19 1568
0aacc8ed
RK
1569 case ZERO_EXTEND:
1570 case SIGN_EXTEND: /* used for NT/Alpha pointers */
5932a4d4 1571 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1572 handle this only if the target does not support different pointer or
1573 address modes depending on the address space. */
1574 if (!target_default_pointer_address_modes_p ())
1575 break;
1576
0aacc8ed
RK
1577 {
1578 rtx temp = find_base_value (XEXP (src, 0));
1579
5ae6cd0d 1580 if (temp != 0 && CONSTANT_P (temp))
0aacc8ed 1581 temp = convert_memory_address (Pmode, temp);
0aacc8ed
RK
1582
1583 return temp;
1584 }
1585
1d300e19
KG
1586 default:
1587 break;
9ae8ffe7
JL
1588 }
1589
1590 return 0;
1591}
1592
9fc37b2b
RS
1593/* Called from init_alias_analysis indirectly through note_stores,
1594 or directly if DEST is a register with a REG_NOALIAS note attached.
1595 SET is null in the latter case. */
9ae8ffe7 1596
d4b60170 1597/* While scanning insns to find base values, reg_seen[N] is nonzero if
9ae8ffe7 1598 register N has been set in this function. */
d630245f 1599static sbitmap reg_seen;
9ae8ffe7 1600
2a2c8203 1601static void
7bc980e1 1602record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
9ae8ffe7 1603{
b3694847 1604 unsigned regno;
9ae8ffe7 1605 rtx src;
c28b4e40 1606 int n;
9ae8ffe7 1607
f8cfc6aa 1608 if (!REG_P (dest))
9ae8ffe7
JL
1609 return;
1610
fb6754f0 1611 regno = REGNO (dest);
9ae8ffe7 1612
9771b263 1613 gcc_checking_assert (regno < reg_base_value->length ());
ac606739 1614
dc8afb70 1615 n = REG_NREGS (dest);
c28b4e40
JW
1616 if (n != 1)
1617 {
1618 while (--n >= 0)
1619 {
d7c028c0 1620 bitmap_set_bit (reg_seen, regno + n);
c28b4e40
JW
1621 new_reg_base_value[regno + n] = 0;
1622 }
1623 return;
1624 }
1625
9ae8ffe7
JL
1626 if (set)
1627 {
1628 /* A CLOBBER wipes out any old value but does not prevent a previously
1629 unset register from acquiring a base address (i.e. reg_seen is not
1630 set). */
1631 if (GET_CODE (set) == CLOBBER)
1632 {
ec907dd8 1633 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1634 return;
1635 }
8df47bdf 1636
9ae8ffe7
JL
1637 src = SET_SRC (set);
1638 }
1639 else
1640 {
9fc37b2b 1641 /* There's a REG_NOALIAS note against DEST. */
d7c028c0 1642 if (bitmap_bit_p (reg_seen, regno))
9ae8ffe7 1643 {
ec907dd8 1644 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1645 return;
1646 }
d7c028c0 1647 bitmap_set_bit (reg_seen, regno);
9fc37b2b 1648 new_reg_base_value[regno] = unique_base_value (unique_id++);
9ae8ffe7
JL
1649 return;
1650 }
1651
5da6f168
RS
1652 /* If this is not the first set of REGNO, see whether the new value
1653 is related to the old one. There are two cases of interest:
1654
1655 (1) The register might be assigned an entirely new value
1656 that has the same base term as the original set.
1657
1658 (2) The set might be a simple self-modification that
1659 cannot change REGNO's base value.
1660
1661 If neither case holds, reject the original base value as invalid.
1662 Note that the following situation is not detected:
1663
c22cacf3 1664 extern int x, y; int *p = &x; p += (&y-&x);
5da6f168 1665
9ae8ffe7
JL
1666 ANSI C does not allow computing the difference of addresses
1667 of distinct top level objects. */
5da6f168
RS
1668 if (new_reg_base_value[regno] != 0
1669 && find_base_value (src) != new_reg_base_value[regno])
9ae8ffe7
JL
1670 switch (GET_CODE (src))
1671 {
2a2c8203 1672 case LO_SUM:
9ae8ffe7
JL
1673 case MINUS:
1674 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
ec907dd8 1675 new_reg_base_value[regno] = 0;
9ae8ffe7 1676 break;
61f0131c
R
1677 case PLUS:
1678 /* If the value we add in the PLUS is also a valid base value,
1679 this might be the actual base value, and the original value
1680 an index. */
1681 {
1682 rtx other = NULL_RTX;
1683
1684 if (XEXP (src, 0) == dest)
1685 other = XEXP (src, 1);
1686 else if (XEXP (src, 1) == dest)
1687 other = XEXP (src, 0);
1688
1689 if (! other || find_base_value (other))
1690 new_reg_base_value[regno] = 0;
1691 break;
1692 }
9ae8ffe7 1693 case AND:
481683e1 1694 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
ec907dd8 1695 new_reg_base_value[regno] = 0;
9ae8ffe7 1696 break;
9ae8ffe7 1697 default:
ec907dd8 1698 new_reg_base_value[regno] = 0;
9ae8ffe7
JL
1699 break;
1700 }
1701 /* If this is the first set of a register, record the value. */
1702 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
d7c028c0 1703 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
ec907dd8 1704 new_reg_base_value[regno] = find_base_value (src);
9ae8ffe7 1705
d7c028c0 1706 bitmap_set_bit (reg_seen, regno);
9ae8ffe7
JL
1707}
1708
8fd0a474
AM
1709/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1710 using hard registers with non-null REG_BASE_VALUE for renaming. */
1711rtx
1712get_reg_base_value (unsigned int regno)
1713{
9771b263 1714 return (*reg_base_value)[regno];
8fd0a474
AM
1715}
1716
bb1acb3e
RH
1717/* If a value is known for REGNO, return it. */
1718
c22cacf3 1719rtx
bb1acb3e
RH
1720get_reg_known_value (unsigned int regno)
1721{
1722 if (regno >= FIRST_PSEUDO_REGISTER)
1723 {
1724 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1725 if (regno < vec_safe_length (reg_known_value))
1726 return (*reg_known_value)[regno];
bb1acb3e
RH
1727 }
1728 return NULL;
43fe47ca
JW
1729}
1730
bb1acb3e
RH
1731/* Set it. */
1732
1733static void
1734set_reg_known_value (unsigned int regno, rtx val)
1735{
1736 if (regno >= FIRST_PSEUDO_REGISTER)
1737 {
1738 regno -= FIRST_PSEUDO_REGISTER;
9771b263
DN
1739 if (regno < vec_safe_length (reg_known_value))
1740 (*reg_known_value)[regno] = val;
bb1acb3e
RH
1741 }
1742}
1743
1744/* Similarly for reg_known_equiv_p. */
1745
1746bool
1747get_reg_known_equiv_p (unsigned int regno)
1748{
1749 if (regno >= FIRST_PSEUDO_REGISTER)
1750 {
1751 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1752 if (regno < vec_safe_length (reg_known_value))
d7c028c0 1753 return bitmap_bit_p (reg_known_equiv_p, regno);
bb1acb3e
RH
1754 }
1755 return false;
1756}
1757
1758static void
1759set_reg_known_equiv_p (unsigned int regno, bool val)
1760{
1761 if (regno >= FIRST_PSEUDO_REGISTER)
1762 {
1763 regno -= FIRST_PSEUDO_REGISTER;
9771b263 1764 if (regno < vec_safe_length (reg_known_value))
9ff3c7ca
SB
1765 {
1766 if (val)
d7c028c0 1767 bitmap_set_bit (reg_known_equiv_p, regno);
9ff3c7ca 1768 else
d7c028c0 1769 bitmap_clear_bit (reg_known_equiv_p, regno);
9ff3c7ca 1770 }
bb1acb3e
RH
1771 }
1772}
1773
1774
db048faf
MM
1775/* Returns a canonical version of X, from the point of view alias
1776 analysis. (For example, if X is a MEM whose address is a register,
1777 and the register has a known value (say a SYMBOL_REF), then a MEM
1778 whose address is the SYMBOL_REF is returned.) */
1779
1780rtx
4682ae04 1781canon_rtx (rtx x)
9ae8ffe7
JL
1782{
1783 /* Recursively look for equivalences. */
f8cfc6aa 1784 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
bb1acb3e
RH
1785 {
1786 rtx t = get_reg_known_value (REGNO (x));
1787 if (t == x)
1788 return x;
1789 if (t)
1790 return canon_rtx (t);
1791 }
1792
1793 if (GET_CODE (x) == PLUS)
9ae8ffe7
JL
1794 {
1795 rtx x0 = canon_rtx (XEXP (x, 0));
1796 rtx x1 = canon_rtx (XEXP (x, 1));
1797
1798 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
231314e3 1799 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
9ae8ffe7 1800 }
d4b60170 1801
9ae8ffe7
JL
1802 /* This gives us much better alias analysis when called from
1803 the loop optimizer. Note we want to leave the original
1804 MEM alone, but need to return the canonicalized MEM with
1805 all the flags with their original values. */
3c0cb5de 1806 else if (MEM_P (x))
f1ec5147 1807 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
d4b60170 1808
9ae8ffe7
JL
1809 return x;
1810}
1811
1812/* Return 1 if X and Y are identical-looking rtx's.
45183e03 1813 Expect that X and Y has been already canonicalized.
9ae8ffe7
JL
1814
1815 We use the data in reg_known_value above to see if two registers with
1816 different numbers are, in fact, equivalent. */
1817
1818static int
ed7a4b4b 1819rtx_equal_for_memref_p (const_rtx x, const_rtx y)
9ae8ffe7 1820{
b3694847
SS
1821 int i;
1822 int j;
1823 enum rtx_code code;
1824 const char *fmt;
9ae8ffe7
JL
1825
1826 if (x == 0 && y == 0)
1827 return 1;
1828 if (x == 0 || y == 0)
1829 return 0;
d4b60170 1830
9ae8ffe7
JL
1831 if (x == y)
1832 return 1;
1833
1834 code = GET_CODE (x);
1835 /* Rtx's of different codes cannot be equal. */
1836 if (code != GET_CODE (y))
1837 return 0;
1838
1839 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1840 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1841
1842 if (GET_MODE (x) != GET_MODE (y))
1843 return 0;
1844
db048faf
MM
1845 /* Some RTL can be compared without a recursive examination. */
1846 switch (code)
1847 {
1848 case REG:
1849 return REGNO (x) == REGNO (y);
1850
1851 case LABEL_REF:
04a121a7 1852 return label_ref_label (x) == label_ref_label (y);
ca7fd9cd 1853
db048faf 1854 case SYMBOL_REF:
6a2a3862
RS
1855 {
1856 HOST_WIDE_INT distance = 0;
1857 return (compare_base_symbol_refs (x, y, &distance) == 1
1858 && distance == 0);
1859 }
db048faf 1860
af6236c1
AO
1861 case ENTRY_VALUE:
1862 /* This is magic, don't go through canonicalization et al. */
1863 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1864
40e02b4a 1865 case VALUE:
d8116890 1866 CASE_CONST_UNIQUE:
807e902e 1867 /* Pointer equality guarantees equality for these nodes. */
db048faf
MM
1868 return 0;
1869
db048faf
MM
1870 default:
1871 break;
1872 }
9ae8ffe7 1873
45183e03
JH
1874 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1875 if (code == PLUS)
9ae8ffe7
JL
1876 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1877 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1878 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1879 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
45183e03
JH
1880 /* For commutative operations, the RTX match if the operand match in any
1881 order. Also handle the simple binary and unary cases without a loop. */
ec8e098d 1882 if (COMMUTATIVE_P (x))
45183e03
JH
1883 {
1884 rtx xop0 = canon_rtx (XEXP (x, 0));
1885 rtx yop0 = canon_rtx (XEXP (y, 0));
1886 rtx yop1 = canon_rtx (XEXP (y, 1));
1887
1888 return ((rtx_equal_for_memref_p (xop0, yop0)
1889 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1890 || (rtx_equal_for_memref_p (xop0, yop1)
1891 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1892 }
ec8e098d 1893 else if (NON_COMMUTATIVE_P (x))
45183e03
JH
1894 {
1895 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1896 canon_rtx (XEXP (y, 0)))
45183e03
JH
1897 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1898 canon_rtx (XEXP (y, 1))));
1899 }
ec8e098d 1900 else if (UNARY_P (x))
45183e03 1901 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
4682ae04 1902 canon_rtx (XEXP (y, 0)));
9ae8ffe7
JL
1903
1904 /* Compare the elements. If any pair of corresponding elements
de12be17
JC
1905 fail to match, return 0 for the whole things.
1906
1907 Limit cases to types which actually appear in addresses. */
9ae8ffe7
JL
1908
1909 fmt = GET_RTX_FORMAT (code);
1910 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1911 {
1912 switch (fmt[i])
1913 {
9ae8ffe7
JL
1914 case 'i':
1915 if (XINT (x, i) != XINT (y, i))
1916 return 0;
1917 break;
1918
91914e56
RS
1919 case 'p':
1920 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1921 return 0;
1922 break;
1923
9ae8ffe7
JL
1924 case 'E':
1925 /* Two vectors must have the same length. */
1926 if (XVECLEN (x, i) != XVECLEN (y, i))
1927 return 0;
1928
1929 /* And the corresponding elements must match. */
1930 for (j = 0; j < XVECLEN (x, i); j++)
45183e03
JH
1931 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1932 canon_rtx (XVECEXP (y, i, j))) == 0)
9ae8ffe7
JL
1933 return 0;
1934 break;
1935
1936 case 'e':
45183e03
JH
1937 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1938 canon_rtx (XEXP (y, i))) == 0)
9ae8ffe7
JL
1939 return 0;
1940 break;
1941
3237ac18
AH
1942 /* This can happen for asm operands. */
1943 case 's':
1944 if (strcmp (XSTR (x, i), XSTR (y, i)))
1945 return 0;
1946 break;
1947
aee21ba9
JL
1948 /* This can happen for an asm which clobbers memory. */
1949 case '0':
1950 break;
1951
9ae8ffe7
JL
1952 /* It is believed that rtx's at this level will never
1953 contain anything but integers and other rtx's,
1954 except for within LABEL_REFs and SYMBOL_REFs. */
1955 default:
298e6adc 1956 gcc_unreachable ();
9ae8ffe7
JL
1957 }
1958 }
1959 return 1;
1960}
1961
9e412ca3 1962static rtx
6ca83833
RB
1963find_base_term (rtx x, vec<std::pair<cselib_val *,
1964 struct elt_loc_list *> > &visited_vals)
9ae8ffe7 1965{
eab5c70a 1966 cselib_val *val;
6f2ffb4b
AO
1967 struct elt_loc_list *l, *f;
1968 rtx ret;
6645d841 1969 scalar_int_mode int_mode;
eab5c70a 1970
b949ea8b
JW
1971#if defined (FIND_BASE_TERM)
1972 /* Try machine-dependent ways to find the base term. */
1973 x = FIND_BASE_TERM (x);
1974#endif
1975
9ae8ffe7
JL
1976 switch (GET_CODE (x))
1977 {
1978 case REG:
1979 return REG_BASE_VALUE (x);
1980
d288e53d 1981 case TRUNCATE:
5932a4d4 1982 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
1983 handle this only if the target does not support different pointer or
1984 address modes depending on the address space. */
1985 if (!target_default_pointer_address_modes_p ())
1986 return 0;
6645d841
RS
1987 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1988 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
ca7fd9cd 1989 return 0;
d288e53d 1990 /* Fall through. */
9ae8ffe7 1991 case HIGH:
6d849a2a
JL
1992 case PRE_INC:
1993 case PRE_DEC:
1994 case POST_INC:
1995 case POST_DEC:
d288e53d
DE
1996 case PRE_MODIFY:
1997 case POST_MODIFY:
6ca83833 1998 return find_base_term (XEXP (x, 0), visited_vals);
6d849a2a 1999
1abade85
RK
2000 case ZERO_EXTEND:
2001 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
5932a4d4 2002 /* As we do not know which address space the pointer is referring to, we can
d4ebfa65
BE
2003 handle this only if the target does not support different pointer or
2004 address modes depending on the address space. */
2005 if (!target_default_pointer_address_modes_p ())
2006 return 0;
2007
1abade85 2008 {
6ca83833 2009 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1abade85 2010
5ae6cd0d 2011 if (temp != 0 && CONSTANT_P (temp))
1abade85 2012 temp = convert_memory_address (Pmode, temp);
1abade85
RK
2013
2014 return temp;
2015 }
2016
eab5c70a
BS
2017 case VALUE:
2018 val = CSELIB_VAL_PTR (x);
6f2ffb4b
AO
2019 ret = NULL_RTX;
2020
40e02b4a 2021 if (!val)
6f2ffb4b
AO
2022 return ret;
2023
0fe03ac3
JJ
2024 if (cselib_sp_based_value_p (val))
2025 return static_reg_base_value[STACK_POINTER_REGNUM];
2026
2e94d3ee
JJ
2027 if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
2028 return ret;
2029
6f2ffb4b 2030 f = val->locs;
6ca83833
RB
2031 /* Reset val->locs to avoid infinite recursion. */
2032 if (f)
2033 visited_vals.safe_push (std::make_pair (val, f));
6f2ffb4b
AO
2034 val->locs = NULL;
2035
2036 for (l = f; l; l = l->next)
2037 if (GET_CODE (l->loc) == VALUE
2038 && CSELIB_VAL_PTR (l->loc)->locs
2039 && !CSELIB_VAL_PTR (l->loc)->locs->next
2040 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
2041 continue;
6ca83833 2042 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
6f2ffb4b
AO
2043 break;
2044
6f2ffb4b 2045 return ret;
eab5c70a 2046
023f059b
JJ
2047 case LO_SUM:
2048 /* The standard form is (lo_sum reg sym) so look only at the
2049 second operand. */
6ca83833 2050 return find_base_term (XEXP (x, 1), visited_vals);
023f059b 2051
9ae8ffe7
JL
2052 case CONST:
2053 x = XEXP (x, 0);
2054 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2055 return 0;
938d968e 2056 /* Fall through. */
9ae8ffe7
JL
2057 case PLUS:
2058 case MINUS:
2059 {
3c567fae
JL
2060 rtx tmp1 = XEXP (x, 0);
2061 rtx tmp2 = XEXP (x, 1);
2062
f5143c46 2063 /* This is a little bit tricky since we have to determine which of
3c567fae
JL
2064 the two operands represents the real base address. Otherwise this
2065 routine may return the index register instead of the base register.
2066
2067 That may cause us to believe no aliasing was possible, when in
2068 fact aliasing is possible.
2069
2070 We use a few simple tests to guess the base register. Additional
2071 tests can certainly be added. For example, if one of the operands
2072 is a shift or multiply, then it must be the index register and the
2073 other operand is the base register. */
ca7fd9cd 2074
b949ea8b 2075 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
6ca83833 2076 return find_base_term (tmp2, visited_vals);
b949ea8b 2077
31b0a960 2078 /* If either operand is known to be a pointer, then prefer it
3c567fae 2079 to determine the base term. */
3502dc9c 2080 if (REG_P (tmp1) && REG_POINTER (tmp1))
31b0a960
RB
2081 ;
2082 else if (REG_P (tmp2) && REG_POINTER (tmp2))
a7c75343
JJ
2083 std::swap (tmp1, tmp2);
2084 /* If second argument is constant which has base term, prefer it
2085 over variable tmp1. See PR64025. */
2086 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2087 std::swap (tmp1, tmp2);
3c567fae 2088
31b0a960
RB
2089 /* Go ahead and find the base term for both operands. If either base
2090 term is from a pointer or is a named object or a special address
3c567fae
JL
2091 (like an argument or stack reference), then use it for the
2092 base term. */
6ca83833 2093 rtx base = find_base_term (tmp1, visited_vals);
481be1c4 2094 if (base != NULL_RTX
31b0a960 2095 && ((REG_P (tmp1) && REG_POINTER (tmp1))
481be1c4
RB
2096 || known_base_value_p (base)))
2097 return base;
6ca83833 2098 base = find_base_term (tmp2, visited_vals);
481be1c4 2099 if (base != NULL_RTX
31b0a960 2100 && ((REG_P (tmp2) && REG_POINTER (tmp2))
481be1c4
RB
2101 || known_base_value_p (base)))
2102 return base;
3c567fae
JL
2103
2104 /* We could not determine which of the two operands was the
2105 base register and which was the index. So we can determine
2106 nothing from the base alias check. */
2107 return 0;
9ae8ffe7
JL
2108 }
2109
2110 case AND:
ef50b972
RB
2111 /* Look through aligning ANDs. And AND with zero or one with
2112 the LSB set isn't one (see for example PR92462). */
2113 if (CONST_INT_P (XEXP (x, 1))
2114 && INTVAL (XEXP (x, 1)) != 0
2115 && (INTVAL (XEXP (x, 1)) & 1) == 0)
6ca83833 2116 return find_base_term (XEXP (x, 0), visited_vals);
9ae8ffe7
JL
2117 return 0;
2118
2119 case SYMBOL_REF:
2120 case LABEL_REF:
2121 return x;
2122
2123 default:
2124 return 0;
2125 }
2126}
2127
6ca83833
RB
2128/* Wrapper around the worker above which removes locs from visited VALUEs
2129 to avoid visiting them multiple times. We unwind that changes here. */
2130
2131static rtx
2132find_base_term (rtx x)
2133{
2134 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2135 rtx res = find_base_term (x, visited_vals);
2136 for (unsigned i = 0; i < visited_vals.length (); ++i)
2137 visited_vals[i].first->locs = visited_vals[i].second;
2138 return res;
2139}
2140
9e412ca3
RS
2141/* Return true if accesses to address X may alias accesses based
2142 on the stack pointer. */
2143
2144bool
2145may_be_sp_based_p (rtx x)
2146{
2147 rtx base = find_base_term (x);
2148 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2149}
2150
54363f8a 2151/* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
67914693 2152 if they refer to different objects and -1 if we cannot decide. */
54363f8a
JH
2153
2154int
2155compare_base_decls (tree base1, tree base2)
2156{
2157 int ret;
2158 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2159 if (base1 == base2)
2160 return 1;
2161
bed3fd46 2162 /* If we have two register decls with register specification we
816c4ba2 2163 cannot decide unless their assembler names are the same. */
371f0b99
RB
2164 if (VAR_P (base1)
2165 && VAR_P (base2)
2166 && DECL_HARD_REGISTER (base1)
2167 && DECL_HARD_REGISTER (base2)
bed3fd46
RB
2168 && DECL_ASSEMBLER_NAME_SET_P (base1)
2169 && DECL_ASSEMBLER_NAME_SET_P (base2))
2170 {
816c4ba2 2171 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
bed3fd46
RB
2172 return 1;
2173 return -1;
2174 }
2175
54363f8a
JH
2176 /* Declarations of non-automatic variables may have aliases. All other
2177 decls are unique. */
7ec4f343
NS
2178 if (!decl_in_symtab_p (base1)
2179 || !decl_in_symtab_p (base2))
54363f8a 2180 return 0;
7ec4f343 2181
929710d9
NS
2182 /* Don't cause symbols to be inserted by the act of checking. */
2183 symtab_node *node1 = symtab_node::get (base1);
2184 if (!node1)
2185 return 0;
2186 symtab_node *node2 = symtab_node::get (base2);
2187 if (!node2)
2188 return 0;
2189
2190 ret = node1->equal_address_to (node2, true);
54363f8a
JH
2191 return ret;
2192}
2193
6a2a3862
RS
2194/* Compare SYMBOL_REFs X_BASE and Y_BASE.
2195
2196 - Return 1 if Y_BASE - X_BASE is constant, adding that constant
2197 to *DISTANCE if DISTANCE is nonnull.
2198
2199 - Return 0 if no accesses based on X_BASE can alias Y_BASE.
2200
2201 - Return -1 if one of the two results applies, but we can't tell
2202 which at compile time. Update DISTANCE in the same way as
2203 for a return value of 1, for the case in which that holds. */
73e48cb3
JH
2204
2205static int
6a2a3862
RS
2206compare_base_symbol_refs (const_rtx x_base, const_rtx y_base,
2207 HOST_WIDE_INT *distance)
73e48cb3
JH
2208{
2209 tree x_decl = SYMBOL_REF_DECL (x_base);
2210 tree y_decl = SYMBOL_REF_DECL (y_base);
2211 bool binds_def = true;
d34cdec5 2212 bool swap = false;
73e48cb3
JH
2213
2214 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2215 return 1;
2216 if (x_decl && y_decl)
2217 return compare_base_decls (x_decl, y_decl);
2218 if (x_decl || y_decl)
2219 {
2220 if (!x_decl)
2221 {
d34cdec5 2222 swap = true;
73e48cb3
JH
2223 std::swap (x_decl, y_decl);
2224 std::swap (x_base, y_base);
2225 }
6a2a3862
RS
2226 /* We handle specially only section anchors. Other symbols are
2227 either equal (via aliasing) or refer to different objects. */
73e48cb3
JH
2228 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2229 return -1;
2230 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2231 to ignore CONST_DECLs because they are readonly. */
8813a647 2232 if (!VAR_P (x_decl)
73e48cb3
JH
2233 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2234 return 0;
2235
2236 symtab_node *x_node = symtab_node::get_create (x_decl)
2237 ->ultimate_alias_target ();
67914693 2238 /* External variable cannot be in section anchor. */
73e48cb3
JH
2239 if (!x_node->definition)
2240 return 0;
2241 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2242 /* If not in anchor, we can disambiguate. */
2243 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2244 return 0;
2245
2246 /* We have an alias of anchored variable. If it can be interposed;
2247 we must assume it may or may not alias its anchor. */
2248 binds_def = decl_binds_to_current_def_p (x_decl);
2249 }
2250 /* If we have variable in section anchor, we can compare by offset. */
2251 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2252 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2253 {
2254 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2255 return 0;
6a2a3862 2256 if (distance)
d34cdec5
AV
2257 *distance += (swap ? -1 : 1) * (SYMBOL_REF_BLOCK_OFFSET (y_base)
2258 - SYMBOL_REF_BLOCK_OFFSET (x_base));
6a2a3862 2259 return binds_def ? 1 : -1;
73e48cb3 2260 }
6a2a3862
RS
2261 /* Either the symbols are equal (via aliasing) or they refer to
2262 different objects. */
73e48cb3
JH
2263 return -1;
2264}
2265
9ae8ffe7
JL
2266/* Return 0 if the addresses X and Y are known to point to different
2267 objects, 1 if they might be pointers to the same object. */
2268
2269static int
31b0a960 2270base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
ef4bddc2 2271 machine_mode x_mode, machine_mode y_mode)
9ae8ffe7 2272{
1c72c7f6
JC
2273 /* If the address itself has no known base see if a known equivalent
2274 value has one. If either address still has no known base, nothing
2275 is known about aliasing. */
2276 if (x_base == 0)
2277 {
2278 rtx x_c;
d4b60170 2279
1c72c7f6
JC
2280 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2281 return 1;
d4b60170 2282
1c72c7f6
JC
2283 x_base = find_base_term (x_c);
2284 if (x_base == 0)
2285 return 1;
2286 }
9ae8ffe7 2287
1c72c7f6
JC
2288 if (y_base == 0)
2289 {
2290 rtx y_c;
2291 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2292 return 1;
d4b60170 2293
1c72c7f6
JC
2294 y_base = find_base_term (y_c);
2295 if (y_base == 0)
2296 return 1;
2297 }
2298
2299 /* If the base addresses are equal nothing is known about aliasing. */
2300 if (rtx_equal_p (x_base, y_base))
9ae8ffe7
JL
2301 return 1;
2302
435da628
UB
2303 /* The base addresses are different expressions. If they are not accessed
2304 via AND, there is no conflict. We can bring knowledge of object
2305 alignment into play here. For example, on alpha, "char a, b;" can
5764ee3c 2306 alias one another, though "char a; long b;" cannot. AND addresses may
435da628
UB
2307 implicitly alias surrounding objects; i.e. unaligned access in DImode
2308 via AND address can alias all surrounding object types except those
2309 with aligment 8 or higher. */
2310 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2311 return 1;
2312 if (GET_CODE (x) == AND
481683e1 2313 && (!CONST_INT_P (XEXP (x, 1))
435da628
UB
2314 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2315 return 1;
2316 if (GET_CODE (y) == AND
481683e1 2317 && (!CONST_INT_P (XEXP (y, 1))
435da628
UB
2318 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2319 return 1;
2320
73e48cb3 2321 /* Differing symbols not accessed via AND never alias. */
3a28db46 2322 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
73e48cb3 2323 return compare_base_symbol_refs (x_base, y_base) != 0;
3a28db46 2324
9ae8ffe7 2325 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
435da628 2326 return 0;
9ae8ffe7 2327
9fc37b2b 2328 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
9ae8ffe7
JL
2329 return 0;
2330
0d3c82d6 2331 return 1;
9ae8ffe7
JL
2332}
2333
a5628378 2334/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
c779924e 2335 (or equal to) that of V. */
a5628378
AO
2336
2337static bool
403837b4 2338refs_newer_value_p (const_rtx expr, rtx v)
a5628378
AO
2339{
2340 int minuid = CSELIB_VAL_PTR (v)->uid;
403837b4
RS
2341 subrtx_iterator::array_type array;
2342 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
c779924e 2343 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
403837b4
RS
2344 return true;
2345 return false;
a5628378
AO
2346}
2347
eab5c70a 2348/* Convert the address X into something we can use. This is done by returning
569efc34
JJ
2349 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2350 we call cselib to get a more useful rtx. */
3bdf5ad1 2351
a13d4ebf 2352rtx
4682ae04 2353get_addr (rtx x)
eab5c70a
BS
2354{
2355 cselib_val *v;
2356 struct elt_loc_list *l;
2357
2358 if (GET_CODE (x) != VALUE)
569efc34
JJ
2359 {
2360 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2361 && GET_CODE (XEXP (x, 0)) == VALUE
2362 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2363 {
2364 rtx op0 = get_addr (XEXP (x, 0));
2365 if (op0 != XEXP (x, 0))
2366 {
5284e559 2367 poly_int64 c;
569efc34 2368 if (GET_CODE (x) == PLUS
5284e559
RS
2369 && poly_int_rtx_p (XEXP (x, 1), &c))
2370 return plus_constant (GET_MODE (x), op0, c);
569efc34
JJ
2371 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2372 op0, XEXP (x, 1));
2373 }
2374 }
2375 return x;
2376 }
eab5c70a 2377 v = CSELIB_VAL_PTR (x);
40e02b4a
JH
2378 if (v)
2379 {
0f68ba3e
AO
2380 bool have_equivs = cselib_have_permanent_equivalences ();
2381 if (have_equivs)
2382 v = canonical_cselib_val (v);
40e02b4a
JH
2383 for (l = v->locs; l; l = l->next)
2384 if (CONSTANT_P (l->loc))
2385 return l->loc;
2386 for (l = v->locs; l; l = l->next)
0f68ba3e
AO
2387 if (!REG_P (l->loc) && !MEM_P (l->loc)
2388 /* Avoid infinite recursion when potentially dealing with
2389 var-tracking artificial equivalences, by skipping the
2390 equivalences themselves, and not choosing expressions
2391 that refer to newer VALUEs. */
2392 && (!have_equivs
2393 || (GET_CODE (l->loc) != VALUE
2394 && !refs_newer_value_p (l->loc, x))))
a5628378 2395 return l->loc;
0f68ba3e
AO
2396 if (have_equivs)
2397 {
2398 for (l = v->locs; l; l = l->next)
2399 if (REG_P (l->loc)
2400 || (GET_CODE (l->loc) != VALUE
2401 && !refs_newer_value_p (l->loc, x)))
2402 return l->loc;
2403 /* Return the canonical value. */
2404 return v->val_rtx;
2405 }
2406 if (v->locs)
2407 return v->locs->loc;
40e02b4a 2408 }
eab5c70a
BS
2409 return x;
2410}
2411
39cec1ac
MH
2412/* Return the address of the (N_REFS + 1)th memory reference to ADDR
2413 where SIZE is the size in bytes of the memory reference. If ADDR
2414 is not modified by the memory reference then ADDR is returned. */
2415
04e2b4d3 2416static rtx
9f61be58 2417addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
39cec1ac 2418{
9f61be58 2419 poly_int64 offset = 0;
ca7fd9cd 2420
39cec1ac
MH
2421 switch (GET_CODE (addr))
2422 {
2423 case PRE_INC:
2424 offset = (n_refs + 1) * size;
2425 break;
2426 case PRE_DEC:
2427 offset = -(n_refs + 1) * size;
2428 break;
2429 case POST_INC:
2430 offset = n_refs * size;
2431 break;
2432 case POST_DEC:
2433 offset = -n_refs * size;
2434 break;
2435
2436 default:
2437 return addr;
2438 }
ca7fd9cd 2439
9f61be58 2440 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
45183e03 2441 addr = canon_rtx (addr);
39cec1ac
MH
2442
2443 return addr;
2444}
2445
3aa03517
AO
2446/* Return TRUE if an object X sized at XSIZE bytes and another object
2447 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2448 any of the sizes is zero, assume an overlap, otherwise use the
2449 absolute value of the sizes as the actual sizes. */
2450
2451static inline bool
d05d7551 2452offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
3aa03517 2453{
d05d7551
RS
2454 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2455 return true;
2456
2457 if (maybe_ge (c, 0))
2458 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2459 else
2460 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
3aa03517
AO
2461}
2462
f47e08d9
RG
2463/* Return one if X and Y (memory addresses) reference the
2464 same location in memory or if the references overlap.
2465 Return zero if they do not overlap, else return
2466 minus one in which case they still might reference the same location.
2467
2468 C is an offset accumulator. When
9ae8ffe7
JL
2469 C is nonzero, we are testing aliases between X and Y + C.
2470 XSIZE is the size in bytes of the X reference,
2471 similarly YSIZE is the size in bytes for Y.
45183e03 2472 Expect that canon_rtx has been already called for X and Y.
9ae8ffe7
JL
2473
2474 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2475 referenced (the reference was BLKmode), so make the most pessimistic
2476 assumptions.
2477
c02f035f
RH
2478 If XSIZE or YSIZE is negative, we may access memory outside the object
2479 being referenced as a side effect. This can happen when using AND to
2480 align memory references, as is done on the Alpha.
2481
9ae8ffe7 2482 Nice to notice that varying addresses cannot conflict with fp if no
f47e08d9
RG
2483 local variables had their addresses taken, but that's too hard now.
2484
2485 ??? Contrary to the tree alias oracle this does not return
2486 one for X + non-constant and Y + non-constant when X and Y are equal.
2487 If that is fixed the TBAA hack for union type-punning can be removed. */
9ae8ffe7 2488
9ae8ffe7 2489static int
9f61be58
RS
2490memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2491 poly_int64 c)
9ae8ffe7 2492{
eab5c70a 2493 if (GET_CODE (x) == VALUE)
5312b066
JJ
2494 {
2495 if (REG_P (y))
2496 {
24f8d71e
JJ
2497 struct elt_loc_list *l = NULL;
2498 if (CSELIB_VAL_PTR (x))
a5628378
AO
2499 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2500 l; l = l->next)
24f8d71e
JJ
2501 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2502 break;
5312b066
JJ
2503 if (l)
2504 x = y;
2505 else
2506 x = get_addr (x);
2507 }
2508 /* Don't call get_addr if y is the same VALUE. */
2509 else if (x != y)
2510 x = get_addr (x);
2511 }
eab5c70a 2512 if (GET_CODE (y) == VALUE)
5312b066
JJ
2513 {
2514 if (REG_P (x))
2515 {
24f8d71e
JJ
2516 struct elt_loc_list *l = NULL;
2517 if (CSELIB_VAL_PTR (y))
a5628378
AO
2518 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2519 l; l = l->next)
24f8d71e
JJ
2520 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2521 break;
5312b066
JJ
2522 if (l)
2523 y = x;
2524 else
2525 y = get_addr (y);
2526 }
2527 /* Don't call get_addr if x is the same VALUE. */
2528 else if (y != x)
2529 y = get_addr (y);
2530 }
9ae8ffe7
JL
2531 if (GET_CODE (x) == HIGH)
2532 x = XEXP (x, 0);
2533 else if (GET_CODE (x) == LO_SUM)
2534 x = XEXP (x, 1);
2535 else
9f61be58 2536 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
9ae8ffe7
JL
2537 if (GET_CODE (y) == HIGH)
2538 y = XEXP (y, 0);
2539 else if (GET_CODE (y) == LO_SUM)
2540 y = XEXP (y, 1);
2541 else
9f61be58 2542 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
9ae8ffe7 2543
54363f8a
JH
2544 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2545 {
6a2a3862
RS
2546 HOST_WIDE_INT distance = 0;
2547 int cmp = compare_base_symbol_refs (x, y, &distance);
54363f8a
JH
2548
2549 /* If both decls are the same, decide by offsets. */
2550 if (cmp == 1)
6a2a3862 2551 return offset_overlap_p (c + distance, xsize, ysize);
3a28db46
UB
2552 /* Assume a potential overlap for symbolic addresses that went
2553 through alignment adjustments (i.e., that have negative
2554 sizes), because we can't know how far they are from each
2555 other. */
9f61be58 2556 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
3a28db46 2557 return -1;
54363f8a
JH
2558 /* If decls are different or we know by offsets that there is no overlap,
2559 we win. */
6a2a3862 2560 if (!cmp || !offset_overlap_p (c + distance, xsize, ysize))
54363f8a
JH
2561 return 0;
2562 /* Decls may or may not be different and offsets overlap....*/
2563 return -1;
2564 }
2565 else if (rtx_equal_for_memref_p (x, y))
9ae8ffe7 2566 {
3aa03517 2567 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2568 }
2569
6e73e666
JC
2570 /* This code used to check for conflicts involving stack references and
2571 globals but the base address alias code now handles these cases. */
9ae8ffe7
JL
2572
2573 if (GET_CODE (x) == PLUS)
2574 {
2575 /* The fact that X is canonicalized means that this
2576 PLUS rtx is canonicalized. */
2577 rtx x0 = XEXP (x, 0);
2578 rtx x1 = XEXP (x, 1);
2579
2d88904a
AO
2580 /* However, VALUEs might end up in different positions even in
2581 canonical PLUSes. Comparing their addresses is enough. */
2582 if (x0 == y)
2583 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2584 else if (x1 == y)
2585 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2586
9f61be58 2587 poly_int64 cx1, cy1;
9ae8ffe7
JL
2588 if (GET_CODE (y) == PLUS)
2589 {
2590 /* The fact that Y is canonicalized means that this
2591 PLUS rtx is canonicalized. */
2592 rtx y0 = XEXP (y, 0);
2593 rtx y1 = XEXP (y, 1);
2594
2d88904a
AO
2595 if (x0 == y1)
2596 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2597 if (x1 == y0)
2598 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2599
9ae8ffe7
JL
2600 if (rtx_equal_for_memref_p (x1, y1))
2601 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2602 if (rtx_equal_for_memref_p (x0, y0))
2603 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
9f61be58 2604 if (poly_int_rtx_p (x1, &cx1))
63be02db 2605 {
9f61be58 2606 if (poly_int_rtx_p (y1, &cy1))
63be02db 2607 return memrefs_conflict_p (xsize, x0, ysize, y0,
9f61be58 2608 c - cx1 + cy1);
63be02db 2609 else
9f61be58 2610 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
63be02db 2611 }
9f61be58
RS
2612 else if (poly_int_rtx_p (y1, &cy1))
2613 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
9ae8ffe7 2614
f47e08d9 2615 return -1;
9ae8ffe7 2616 }
9f61be58
RS
2617 else if (poly_int_rtx_p (x1, &cx1))
2618 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
9ae8ffe7
JL
2619 }
2620 else if (GET_CODE (y) == PLUS)
2621 {
2622 /* The fact that Y is canonicalized means that this
2623 PLUS rtx is canonicalized. */
2624 rtx y0 = XEXP (y, 0);
2625 rtx y1 = XEXP (y, 1);
2626
2d88904a
AO
2627 if (x == y0)
2628 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2629 if (x == y1)
2630 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2631
9f61be58
RS
2632 poly_int64 cy1;
2633 if (poly_int_rtx_p (y1, &cy1))
2634 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
9ae8ffe7 2635 else
f47e08d9 2636 return -1;
9ae8ffe7
JL
2637 }
2638
2639 if (GET_CODE (x) == GET_CODE (y))
2640 switch (GET_CODE (x))
2641 {
2642 case MULT:
2643 {
2644 /* Handle cases where we expect the second operands to be the
2645 same, and check only whether the first operand would conflict
2646 or not. */
2647 rtx x0, y0;
2648 rtx x1 = canon_rtx (XEXP (x, 1));
2649 rtx y1 = canon_rtx (XEXP (y, 1));
2650 if (! rtx_equal_for_memref_p (x1, y1))
f47e08d9 2651 return -1;
9ae8ffe7
JL
2652 x0 = canon_rtx (XEXP (x, 0));
2653 y0 = canon_rtx (XEXP (y, 0));
2654 if (rtx_equal_for_memref_p (x0, y0))
3aa03517 2655 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2656
2657 /* Can't properly adjust our sizes. */
5284e559
RS
2658 poly_int64 c1;
2659 if (!poly_int_rtx_p (x1, &c1)
2660 || !can_div_trunc_p (xsize, c1, &xsize)
2661 || !can_div_trunc_p (ysize, c1, &ysize)
2662 || !can_div_trunc_p (c, c1, &c))
f47e08d9 2663 return -1;
9ae8ffe7
JL
2664 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2665 }
1d300e19
KG
2666
2667 default:
2668 break;
9ae8ffe7
JL
2669 }
2670
a9bf4fe2
AO
2671 /* Deal with alignment ANDs by adjusting offset and size so as to
2672 cover the maximum range, without taking any previously known
5147bf6a
AO
2673 alignment into account. Make a size negative after such an
2674 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2675 assume a potential overlap, because they may end up in contiguous
2676 memory locations and the stricter-alignment access may span over
2677 part of both. */
481683e1 2678 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
56ee9281 2679 {
a9bf4fe2
AO
2680 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2681 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2682 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2683 {
9f61be58 2684 if (maybe_gt (xsize, 0))
5147bf6a 2685 xsize = -xsize;
9f61be58 2686 if (maybe_ne (xsize, 0))
3aa03517 2687 xsize += sc + 1;
fe8fb1c4 2688 c -= sc + 1;
a9bf4fe2
AO
2689 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2690 ysize, y, c);
2691 }
56ee9281 2692 }
481683e1 2693 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
c02f035f 2694 {
a9bf4fe2
AO
2695 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2696 unsigned HOST_WIDE_INT uc = sc;
146ec50f 2697 if (sc < 0 && pow2_or_zerop (-uc))
a9bf4fe2 2698 {
9f61be58 2699 if (maybe_gt (ysize, 0))
5147bf6a 2700 ysize = -ysize;
9f61be58 2701 if (maybe_ne (ysize, 0))
3aa03517 2702 ysize += sc + 1;
fe8fb1c4 2703 c += sc + 1;
a9bf4fe2
AO
2704 return memrefs_conflict_p (xsize, x,
2705 ysize, canon_rtx (XEXP (y, 0)), c);
2706 }
c02f035f 2707 }
9ae8ffe7
JL
2708
2709 if (CONSTANT_P (x))
2710 {
9f61be58
RS
2711 poly_int64 cx, cy;
2712 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
9ae8ffe7 2713 {
9f61be58 2714 c += cy - cx;
3aa03517 2715 return offset_overlap_p (c, xsize, ysize);
9ae8ffe7
JL
2716 }
2717
2718 if (GET_CODE (x) == CONST)
2719 {
2720 if (GET_CODE (y) == CONST)
2721 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2722 ysize, canon_rtx (XEXP (y, 0)), c);
2723 else
2724 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2725 ysize, y, c);
2726 }
2727 if (GET_CODE (y) == CONST)
2728 return memrefs_conflict_p (xsize, x, ysize,
2729 canon_rtx (XEXP (y, 0)), c);
2730
3aa03517
AO
2731 /* Assume a potential overlap for symbolic addresses that went
2732 through alignment adjustments (i.e., that have negative
2733 sizes), because we can't know how far they are from each
2734 other. */
9ae8ffe7 2735 if (CONSTANT_P (y))
9f61be58
RS
2736 return (maybe_lt (xsize, 0)
2737 || maybe_lt (ysize, 0)
2738 || offset_overlap_p (c, xsize, ysize));
9ae8ffe7 2739
f47e08d9 2740 return -1;
9ae8ffe7 2741 }
f47e08d9
RG
2742
2743 return -1;
9ae8ffe7
JL
2744}
2745
2746/* Functions to compute memory dependencies.
2747
2748 Since we process the insns in execution order, we can build tables
2749 to keep track of what registers are fixed (and not aliased), what registers
2750 are varying in known ways, and what registers are varying in unknown
2751 ways.
2752
2753 If both memory references are volatile, then there must always be a
67914693 2754 dependence between the two references, since their order cannot be
9ae8ffe7 2755 changed. A volatile and non-volatile reference can be interchanged
ca7fd9cd 2756 though.
9ae8ffe7 2757
53d9622b
RS
2758 We also must allow AND addresses, because they may generate accesses
2759 outside the object being referenced. This is used to generate aligned
2760 addresses from unaligned addresses, for instance, the alpha
dc1618bc 2761 storeqi_unaligned pattern. */
9ae8ffe7
JL
2762
2763/* Read dependence: X is read after read in MEM takes place. There can
96672a3e
RH
2764 only be a dependence here if both reads are volatile, or if either is
2765 an explicit barrier. */
9ae8ffe7
JL
2766
2767int
4f588890 2768read_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 2769{
96672a3e
RH
2770 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2771 return true;
2772 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2773 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2774 return true;
2775 return false;
9ae8ffe7
JL
2776}
2777
998d7deb
RH
2778/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2779
2780static tree
4682ae04 2781decl_for_component_ref (tree x)
998d7deb
RH
2782{
2783 do
2784 {
2785 x = TREE_OPERAND (x, 0);
2786 }
2787 while (x && TREE_CODE (x) == COMPONENT_REF);
2788
2789 return x && DECL_P (x) ? x : NULL_TREE;
2790}
2791
527210c4
RS
2792/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2793 for the offset of the field reference. *KNOWN_P says whether the
2794 offset is known. */
998d7deb 2795
527210c4
RS
2796static void
2797adjust_offset_for_component_ref (tree x, bool *known_p,
d05d7551 2798 poly_int64 *offset)
998d7deb 2799{
527210c4
RS
2800 if (!*known_p)
2801 return;
ca7fd9cd 2802 do
998d7deb 2803 {
527210c4 2804 tree xoffset = component_ref_field_offset (x);
998d7deb 2805 tree field = TREE_OPERAND (x, 1);
6e246559 2806 if (!poly_int_tree_p (xoffset))
807e902e
KZ
2807 {
2808 *known_p = false;
2809 return;
2810 }
998d7deb 2811
6e246559
RS
2812 poly_offset_int woffset
2813 = (wi::to_poly_offset (xoffset)
8de73453 2814 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
6e246559
RS
2815 >> LOG2_BITS_PER_UNIT)
2816 + *offset);
2817 if (!woffset.to_shwi (offset))
527210c4
RS
2818 {
2819 *known_p = false;
2820 return;
2821 }
998d7deb
RH
2822
2823 x = TREE_OPERAND (x, 0);
2824 }
2825 while (x && TREE_CODE (x) == COMPONENT_REF);
998d7deb
RH
2826}
2827
95bd1dd7 2828/* Return nonzero if we can determine the exprs corresponding to memrefs
c6ea834c
BM
2829 X and Y and they do not overlap.
2830 If LOOP_VARIANT is set, skip offset-based disambiguation */
a4311dfe 2831
2e4e39f6 2832int
c6ea834c 2833nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
a4311dfe 2834{
998d7deb 2835 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
a4311dfe
RK
2836 rtx rtlx, rtly;
2837 rtx basex, basey;
527210c4 2838 bool moffsetx_known_p, moffsety_known_p;
d05d7551
RS
2839 poly_int64 moffsetx = 0, moffsety = 0;
2840 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
a4311dfe 2841
998d7deb
RH
2842 /* Unless both have exprs, we can't tell anything. */
2843 if (exprx == 0 || expry == 0)
2844 return 0;
2b22e382
RG
2845
2846 /* For spill-slot accesses make sure we have valid offsets. */
2847 if ((exprx == get_spill_slot_decl (false)
527210c4 2848 && ! MEM_OFFSET_KNOWN_P (x))
2b22e382 2849 || (expry == get_spill_slot_decl (false)
527210c4 2850 && ! MEM_OFFSET_KNOWN_P (y)))
2b22e382 2851 return 0;
c22cacf3 2852
998d7deb 2853 /* If the field reference test failed, look at the DECLs involved. */
527210c4
RS
2854 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2855 if (moffsetx_known_p)
2856 moffsetx = MEM_OFFSET (x);
998d7deb
RH
2857 if (TREE_CODE (exprx) == COMPONENT_REF)
2858 {
2e0c984c
RG
2859 tree t = decl_for_component_ref (exprx);
2860 if (! t)
2861 return 0;
527210c4 2862 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2e0c984c 2863 exprx = t;
998d7deb 2864 }
c67a1cf6 2865
527210c4
RS
2866 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2867 if (moffsety_known_p)
2868 moffsety = MEM_OFFSET (y);
998d7deb
RH
2869 if (TREE_CODE (expry) == COMPONENT_REF)
2870 {
2e0c984c
RG
2871 tree t = decl_for_component_ref (expry);
2872 if (! t)
2873 return 0;
527210c4 2874 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2e0c984c 2875 expry = t;
998d7deb
RH
2876 }
2877
2878 if (! DECL_P (exprx) || ! DECL_P (expry))
a4311dfe
RK
2879 return 0;
2880
1f9ceff1
AO
2881 /* If we refer to different gimple registers, or one gimple register
2882 and one non-gimple-register, we know they can't overlap. First,
2883 gimple registers don't have their addresses taken. Now, there
2884 could be more than one stack slot for (different versions of) the
2885 same gimple register, but we can presumably tell they don't
2886 overlap based on offsets from stack base addresses elsewhere.
2887 It's important that we don't proceed to DECL_RTL, because gimple
2888 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2889 able to do anything about them since no SSA information will have
2890 remained to guide it. */
2891 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2d88904a
AO
2892 return exprx != expry
2893 || (moffsetx_known_p && moffsety_known_p
2894 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2895 && !offset_overlap_p (moffsety - moffsetx,
2896 MEM_SIZE (x), MEM_SIZE (y)));
1f9ceff1 2897
1307c758
RG
2898 /* With invalid code we can end up storing into the constant pool.
2899 Bail out to avoid ICEing when creating RTL for this.
2900 See gfortran.dg/lto/20091028-2_0.f90. */
2901 if (TREE_CODE (exprx) == CONST_DECL
2902 || TREE_CODE (expry) == CONST_DECL)
2903 return 1;
2904
dca16798
JJ
2905 /* If one decl is known to be a function or label in a function and
2906 the other is some kind of data, they can't overlap. */
2907 if ((TREE_CODE (exprx) == FUNCTION_DECL
2908 || TREE_CODE (exprx) == LABEL_DECL)
2909 != (TREE_CODE (expry) == FUNCTION_DECL
2910 || TREE_CODE (expry) == LABEL_DECL))
2911 return 1;
2912
5f4cebba
JJ
2913 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2914 living in multiple places), we can't tell anything. Exception
2915 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2916 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2917 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2918 return 0;
2919
998d7deb
RH
2920 rtlx = DECL_RTL (exprx);
2921 rtly = DECL_RTL (expry);
a4311dfe 2922
1edcd60b
RK
2923 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2924 can't overlap unless they are the same because we never reuse that part
2925 of the stack frame used for locals for spilled pseudos. */
3c0cb5de 2926 if ((!MEM_P (rtlx) || !MEM_P (rtly))
1edcd60b 2927 && ! rtx_equal_p (rtlx, rtly))
a4311dfe
RK
2928 return 1;
2929
5932a4d4 2930 /* If we have MEMs referring to different address spaces (which can
09e881c9
BE
2931 potentially overlap), we cannot easily tell from the addresses
2932 whether the references overlap. */
2933 if (MEM_P (rtlx) && MEM_P (rtly)
2934 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2935 return 0;
2936
a4311dfe
RK
2937 /* Get the base and offsets of both decls. If either is a register, we
2938 know both are and are the same, so use that as the base. The only
2939 we can avoid overlap is if we can deduce that they are nonoverlapping
2940 pieces of that decl, which is very rare. */
3c0cb5de 2941 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
d05d7551 2942 basex = strip_offset_and_add (basex, &offsetx);
a4311dfe 2943
3c0cb5de 2944 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
d05d7551 2945 basey = strip_offset_and_add (basey, &offsety);
a4311dfe 2946
d746694a 2947 /* If the bases are different, we know they do not overlap if both
ca7fd9cd 2948 are constants or if one is a constant and the other a pointer into the
d746694a
RK
2949 stack frame. Otherwise a different base means we can't tell if they
2950 overlap or not. */
54363f8a 2951 if (compare_base_decls (exprx, expry) == 0)
ca7fd9cd
KH
2952 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2953 || (CONSTANT_P (basex) && REG_P (basey)
2954 && REGNO_PTR_FRAME_P (REGNO (basey)))
2955 || (CONSTANT_P (basey) && REG_P (basex)
2956 && REGNO_PTR_FRAME_P (REGNO (basex))));
a4311dfe 2957
c6ea834c
BM
2958 /* Offset based disambiguation not appropriate for loop invariant */
2959 if (loop_invariant)
dca16798 2960 return 0;
c6ea834c 2961
54363f8a
JH
2962 /* Offset based disambiguation is OK even if we do not know that the
2963 declarations are necessarily different
2964 (i.e. compare_base_decls (exprx, expry) == -1) */
2965
d05d7551 2966 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
f5541398 2967 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
a4311dfe 2968 : -1);
d05d7551 2969 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
f5541398
RS
2970 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2971 : -1);
a4311dfe 2972
0af5bc3e
RK
2973 /* If we have an offset for either memref, it can update the values computed
2974 above. */
527210c4
RS
2975 if (moffsetx_known_p)
2976 offsetx += moffsetx, sizex -= moffsetx;
2977 if (moffsety_known_p)
2978 offsety += moffsety, sizey -= moffsety;
a4311dfe 2979
0af5bc3e 2980 /* If a memref has both a size and an offset, we can use the smaller size.
efc981bb 2981 We can't do this if the offset isn't known because we must view this
0af5bc3e 2982 memref as being anywhere inside the DECL's MEM. */
527210c4 2983 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
f5541398 2984 sizex = MEM_SIZE (x);
527210c4 2985 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
f5541398 2986 sizey = MEM_SIZE (y);
a4311dfe 2987
d05d7551 2988 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
a4311dfe
RK
2989}
2990
9362286d
SB
2991/* Helper for true_dependence and canon_true_dependence.
2992 Checks for true dependence: X is read after store in MEM takes place.
9ae8ffe7 2993
9362286d
SB
2994 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2995 NULL_RTX, and the canonical addresses of MEM and X are both computed
2996 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2997
2998 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2999
3000 Returns 1 if there is a true dependence, 0 otherwise. */
3001
3002static int
ef4bddc2 3003true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 3004 const_rtx x, rtx x_addr, bool mem_canonicalized)
9ae8ffe7 3005{
0777fc02 3006 rtx true_mem_addr;
49982682 3007 rtx base;
f47e08d9 3008 int ret;
9ae8ffe7 3009
9362286d
SB
3010 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
3011 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
3012
9ae8ffe7
JL
3013 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3014 return 1;
3015
c4484b8f 3016 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
ac3768f6 3017 This is used in epilogue deallocation functions, and in cselib. */
c4484b8f
RH
3018 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3019 return 1;
3020 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3021 return 1;
9cd9e512
RH
3022 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3023 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3024 return 1;
c4484b8f 3025
0777fc02
UB
3026 if (! x_addr)
3027 x_addr = XEXP (x, 0);
3028 x_addr = get_addr (x_addr);
3029
9362286d
SB
3030 if (! mem_addr)
3031 {
3032 mem_addr = XEXP (mem, 0);
3033 if (mem_mode == VOIDmode)
3034 mem_mode = GET_MODE (mem);
3035 }
0777fc02 3036 true_mem_addr = get_addr (mem_addr);
eab5c70a 3037
878f5596
UB
3038 /* Read-only memory is by definition never modified, and therefore can't
3039 conflict with anything. However, don't assume anything when AND
3040 addresses are involved and leave to the code below to determine
3041 dependence. We don't expect to find read-only set on MEM, but
3042 stupid user tricks can produce them, so don't die. */
3043 if (MEM_READONLY_P (x)
3044 && GET_CODE (x_addr) != AND
0777fc02 3045 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
3046 return 0;
3047
3048 /* If we have MEMs referring to different address spaces (which can
3049 potentially overlap), we cannot easily tell from the addresses
3050 whether the references overlap. */
3051 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3052 return 1;
3053
55efb413
JW
3054 base = find_base_term (x_addr);
3055 if (base && (GET_CODE (base) == LABEL_REF
3056 || (GET_CODE (base) == SYMBOL_REF
3057 && CONSTANT_POOL_ADDRESS_P (base))))
3058 return 0;
3059
0777fc02
UB
3060 rtx mem_base = find_base_term (true_mem_addr);
3061 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
31b0a960 3062 GET_MODE (x), mem_mode))
1c72c7f6
JC
3063 return 0;
3064
eab5c70a 3065 x_addr = canon_rtx (x_addr);
9362286d 3066 if (!mem_canonicalized)
0777fc02 3067 mem_addr = canon_rtx (true_mem_addr);
6e73e666 3068
f47e08d9
RG
3069 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3070 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
3071 return ret;
3072
a95b3cc7 3073 if (mems_in_disjoint_alias_sets_p (x, mem))
f47e08d9
RG
3074 return 0;
3075
c6ea834c 3076 if (nonoverlapping_memrefs_p (mem, x, false))
0211b6ab 3077 return 0;
175a7536 3078
55b34b5f 3079 return rtx_refs_may_alias_p (x, mem, true);
a13d4ebf
AM
3080}
3081
9362286d
SB
3082/* True dependence: X is read after store in MEM takes place. */
3083
3084int
ef4bddc2 3085true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
9362286d
SB
3086{
3087 return true_dependence_1 (mem, mem_mode, NULL_RTX,
53d9622b 3088 x, NULL_RTX, /*mem_canonicalized=*/false);
9362286d
SB
3089}
3090
a13d4ebf 3091/* Canonical true dependence: X is read after store in MEM takes place.
ca7fd9cd
KH
3092 Variant of true_dependence which assumes MEM has already been
3093 canonicalized (hence we no longer do that here).
9362286d
SB
3094 The mem_addr argument has been added, since true_dependence_1 computed
3095 this value prior to canonicalizing. */
a13d4ebf
AM
3096
3097int
ef4bddc2 3098canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
53d9622b 3099 const_rtx x, rtx x_addr)
a13d4ebf 3100{
9362286d 3101 return true_dependence_1 (mem, mem_mode, mem_addr,
53d9622b 3102 x, x_addr, /*mem_canonicalized=*/true);
9ae8ffe7
JL
3103}
3104
da7d8304 3105/* Returns nonzero if a write to X might alias a previous read from
393f9fed 3106 (or, if WRITEP is true, a write to) MEM.
bd280792
JR
3107 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3108 and X_MODE the mode for that access.
3109 If MEM_CANONICALIZED is true, MEM is canonicalized. */
9ae8ffe7 3110
2c72b78f 3111static int
bd280792 3112write_dependence_p (const_rtx mem,
ef4bddc2 3113 const_rtx x, machine_mode x_mode, rtx x_addr,
bd280792 3114 bool mem_canonicalized, bool x_canonicalized, bool writep)
9ae8ffe7 3115{
bd280792 3116 rtx mem_addr;
0777fc02 3117 rtx true_mem_addr, true_x_addr;
49982682 3118 rtx base;
f47e08d9 3119 int ret;
6e73e666 3120
bd280792 3121 gcc_checking_assert (x_canonicalized
6f5799be
JJ
3122 ? (x_addr != NULL_RTX
3123 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
bd280792 3124 : (x_addr == NULL_RTX && x_mode == VOIDmode));
393f9fed 3125
9ae8ffe7
JL
3126 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3127 return 1;
3128
c4484b8f
RH
3129 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3130 This is used in epilogue deallocation functions. */
3131 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3132 return 1;
3133 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3134 return 1;
9cd9e512
RH
3135 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3136 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3137 return 1;
c4484b8f 3138
bd280792 3139 if (!x_addr)
0777fc02
UB
3140 x_addr = XEXP (x, 0);
3141 true_x_addr = get_addr (x_addr);
3142
3143 mem_addr = XEXP (mem, 0);
3144 true_mem_addr = get_addr (mem_addr);
55efb413 3145
878f5596
UB
3146 /* A read from read-only memory can't conflict with read-write memory.
3147 Don't assume anything when AND addresses are involved and leave to
3148 the code below to determine dependence. */
3149 if (!writep
3150 && MEM_READONLY_P (mem)
0777fc02
UB
3151 && GET_CODE (true_x_addr) != AND
3152 && GET_CODE (true_mem_addr) != AND)
878f5596
UB
3153 return 0;
3154
3155 /* If we have MEMs referring to different address spaces (which can
3156 potentially overlap), we cannot easily tell from the addresses
3157 whether the references overlap. */
3158 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3159 return 1;
3160
0777fc02 3161 base = find_base_term (true_mem_addr);
31b0a960
RB
3162 if (! writep
3163 && base
3164 && (GET_CODE (base) == LABEL_REF
3165 || (GET_CODE (base) == SYMBOL_REF
3166 && CONSTANT_POOL_ADDRESS_P (base))))
3167 return 0;
49982682 3168
0777fc02
UB
3169 rtx x_base = find_base_term (true_x_addr);
3170 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3171 GET_MODE (x), GET_MODE (mem)))
41472af8
MM
3172 return 0;
3173
bd280792 3174 if (!x_canonicalized)
393f9fed 3175 {
0777fc02 3176 x_addr = canon_rtx (true_x_addr);
bd280792 3177 x_mode = GET_MODE (x);
393f9fed 3178 }
bd280792 3179 if (!mem_canonicalized)
0777fc02 3180 mem_addr = canon_rtx (true_mem_addr);
6e73e666 3181
bd280792
JR
3182 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3183 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
f47e08d9
RG
3184 return ret;
3185
c6ea834c 3186 if (nonoverlapping_memrefs_p (x, mem, false))
c6df88cb
MM
3187 return 0;
3188
55b34b5f 3189 return rtx_refs_may_alias_p (x, mem, false);
c6df88cb
MM
3190}
3191
3192/* Anti dependence: X is written after read in MEM takes place. */
3193
3194int
4f588890 3195anti_dependence (const_rtx mem, const_rtx x)
c6df88cb 3196{
bd280792
JR
3197 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3198 /*mem_canonicalized=*/false,
3199 /*x_canonicalized*/false, /*writep=*/false);
393f9fed
JR
3200}
3201
bd280792
JR
3202/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3203 Also, consider X in X_MODE (which might be from an enclosing
3204 STRICT_LOW_PART / ZERO_EXTRACT).
3205 If MEM_CANONICALIZED is true, MEM is canonicalized. */
393f9fed
JR
3206
3207int
bd280792 3208canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
ef4bddc2 3209 const_rtx x, machine_mode x_mode, rtx x_addr)
393f9fed 3210{
bd280792
JR
3211 return write_dependence_p (mem, x, x_mode, x_addr,
3212 mem_canonicalized, /*x_canonicalized=*/true,
3213 /*writep=*/false);
9ae8ffe7
JL
3214}
3215
3216/* Output dependence: X is written after store in MEM takes place. */
3217
3218int
4f588890 3219output_dependence (const_rtx mem, const_rtx x)
9ae8ffe7 3220{
bd280792
JR
3221 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3222 /*mem_canonicalized=*/false,
3223 /*x_canonicalized*/false, /*writep=*/true);
9ae8ffe7 3224}
43b9f499
RB
3225
3226/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3227 Also, consider X in X_MODE (which might be from an enclosing
3228 STRICT_LOW_PART / ZERO_EXTRACT).
3229 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3230
3231int
3232canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3233 const_rtx x, machine_mode x_mode, rtx x_addr)
3234{
3235 return write_dependence_p (mem, x, x_mode, x_addr,
3236 mem_canonicalized, /*x_canonicalized=*/true,
3237 /*writep=*/true);
3238}
c14b9960 3239\f
6e73e666 3240
c6ea834c
BM
3241
3242/* Check whether X may be aliased with MEM. Don't do offset-based
3243 memory disambiguation & TBAA. */
3244int
3245may_alias_p (const_rtx mem, const_rtx x)
3246{
3247 rtx x_addr, mem_addr;
c6ea834c
BM
3248
3249 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3250 return 1;
3251
a95b3cc7
RG
3252 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3253 This is used in epilogue deallocation functions. */
3254 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3255 return 1;
3256 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
c6ea834c 3257 return 1;
c6ea834c
BM
3258 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3259 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3260 return 1;
3261
c6ea834c 3262 x_addr = XEXP (x, 0);
0777fc02
UB
3263 x_addr = get_addr (x_addr);
3264
c6ea834c 3265 mem_addr = XEXP (mem, 0);
0777fc02 3266 mem_addr = get_addr (mem_addr);
c6ea834c 3267
878f5596
UB
3268 /* Read-only memory is by definition never modified, and therefore can't
3269 conflict with anything. However, don't assume anything when AND
3270 addresses are involved and leave to the code below to determine
3271 dependence. We don't expect to find read-only set on MEM, but
3272 stupid user tricks can produce them, so don't die. */
3273 if (MEM_READONLY_P (x)
3274 && GET_CODE (x_addr) != AND
3275 && GET_CODE (mem_addr) != AND)
3276 return 0;
3277
3278 /* If we have MEMs referring to different address spaces (which can
3279 potentially overlap), we cannot easily tell from the addresses
3280 whether the references overlap. */
3281 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3282 return 1;
3283
31b0a960
RB
3284 rtx x_base = find_base_term (x_addr);
3285 rtx mem_base = find_base_term (mem_addr);
3286 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3287 GET_MODE (x), GET_MODE (mem_addr)))
c6ea834c
BM
3288 return 0;
3289
c6ea834c
BM
3290 if (nonoverlapping_memrefs_p (mem, x, true))
3291 return 0;
3292
c6ea834c
BM
3293 /* TBAA not valid for loop_invarint */
3294 return rtx_refs_may_alias_p (x, mem, false);
3295}
3296
6e73e666 3297void
b5deb7b6 3298init_alias_target (void)
6e73e666 3299{
b3694847 3300 int i;
6e73e666 3301
9fc37b2b
RS
3302 if (!arg_base_value)
3303 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3304
b5deb7b6
SL
3305 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3306
6e73e666
JC
3307 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3308 /* Check whether this register can hold an incoming pointer
3309 argument. FUNCTION_ARG_REGNO_P tests outgoing register
ec5c56db 3310 numbers, so translate if necessary due to register windows. */
6e73e666 3311 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
f939c3e6 3312 && targetm.hard_regno_mode_ok (i, Pmode))
9fc37b2b
RS
3313 static_reg_base_value[i] = arg_base_value;
3314
e6eacdc9
RS
3315 /* RTL code is required to be consistent about whether it uses the
3316 stack pointer, the frame pointer or the argument pointer to
3317 access a given area of the frame. We can therefore use the
3318 base address to distinguish between the different areas. */
757e8ba2
JJ
3319 static_reg_base_value[STACK_POINTER_REGNUM]
3320 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3321 static_reg_base_value[ARG_POINTER_REGNUM]
3322 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3323 static_reg_base_value[FRAME_POINTER_REGNUM]
3324 = unique_base_value (UNIQUE_BASE_VALUE_FP);
e6eacdc9
RS
3325
3326 /* The above rules extend post-reload, with eliminations applying
3327 consistently to each of the three pointers. Cope with cases in
3328 which the frame pointer is eliminated to the hard frame pointer
3329 rather than the stack pointer. */
c3e08036
TS
3330 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3331 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3332 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
bf1660a6
JL
3333}
3334
7b52eede
JH
3335/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3336 to be memory reference. */
3337static bool memory_modified;
3338static void
aa317c97 3339memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7b52eede 3340{
3c0cb5de 3341 if (MEM_P (x))
7b52eede 3342 {
9678086d 3343 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
7b52eede
JH
3344 memory_modified = true;
3345 }
3346}
3347
3348
3349/* Return true when INSN possibly modify memory contents of MEM
454ff5cb 3350 (i.e. address can be modified). */
7b52eede 3351bool
9678086d 3352memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
7b52eede
JH
3353{
3354 if (!INSN_P (insn))
3355 return false;
bc36c711
JJ
3356 /* Conservatively assume all non-readonly MEMs might be modified in
3357 calls. */
3358 if (CALL_P (insn))
3359 return true;
7b52eede 3360 memory_modified = false;
e8448ba5
RS
3361 note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3362 CONST_CAST_RTX(mem));
7b52eede
JH
3363 return memory_modified;
3364}
3365
c13e8210
MM
3366/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3367 array. */
3368
9ae8ffe7 3369void
4682ae04 3370init_alias_analysis (void)
9ae8ffe7 3371{
c582d54a 3372 unsigned int maxreg = max_reg_num ();
ea64ef27 3373 int changed, pass;
b3694847
SS
3374 int i;
3375 unsigned int ui;
d36a28b8
DM
3376 rtx_insn *insn;
3377 rtx val;
131db6b8
SB
3378 int rpo_cnt;
3379 int *rpo;
9ae8ffe7 3380
0d446150
JH
3381 timevar_push (TV_ALIAS_ANALYSIS);
3382
cb3874dc
ML
3383 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER,
3384 true);
9ff3c7ca 3385 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
dd3d1ec0 3386 bitmap_clear (reg_known_equiv_p);
9ae8ffe7 3387
08c79682 3388 /* If we have memory allocated from the previous run, use it. */
c582d54a 3389 if (old_reg_base_value)
08c79682
KH
3390 reg_base_value = old_reg_base_value;
3391
3392 if (reg_base_value)
9771b263 3393 reg_base_value->truncate (0);
08c79682 3394
cb3874dc 3395 vec_safe_grow_cleared (reg_base_value, maxreg, true);
ac606739 3396
5ed6ace5 3397 new_reg_base_value = XNEWVEC (rtx, maxreg);
d630245f 3398 reg_seen = sbitmap_alloc (maxreg);
ec907dd8
JL
3399
3400 /* The basic idea is that each pass through this loop will use the
3401 "constant" information from the previous pass to propagate alias
3402 information through another level of assignments.
3403
131db6b8
SB
3404 The propagation is done on the CFG in reverse post-order, to propagate
3405 things forward as far as possible in each iteration.
3406
ec907dd8
JL
3407 This could get expensive if the assignment chains are long. Maybe
3408 we should throttle the number of iterations, possibly based on
6e73e666 3409 the optimization level or flag_expensive_optimizations.
ec907dd8
JL
3410
3411 We could propagate more information in the first pass by making use
6fb5fa3c 3412 of DF_REG_DEF_COUNT to determine immediately that the alias information
ea64ef27
JL
3413 for a pseudo is "constant".
3414
3415 A program with an uninitialized variable can cause an infinite loop
3416 here. Instead of doing a full dataflow analysis to detect such problems
3417 we just cap the number of iterations for the loop.
3418
3419 The state of the arrays for the set chain in question does not matter
3420 since the program has undefined behavior. */
6e73e666 3421
0cae8d31 3422 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
131db6b8
SB
3423 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3424
ea64ef27 3425 pass = 0;
6e73e666 3426 do
ec907dd8
JL
3427 {
3428 /* Assume nothing will change this iteration of the loop. */
3429 changed = 0;
3430
ec907dd8 3431 /* We want to assign the same IDs each iteration of this loop, so
9fc37b2b
RS
3432 start counting from one each iteration of the loop. */
3433 unique_id = 1;
ec907dd8 3434
f5143c46 3435 /* We're at the start of the function each iteration through the
ec907dd8 3436 loop, so we're copying arguments. */
83bbd9b6 3437 copying_arguments = true;
9ae8ffe7 3438
6e73e666 3439 /* Wipe the potential alias information clean for this pass. */
c582d54a 3440 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
8072f69c 3441
6e73e666 3442 /* Wipe the reg_seen array clean. */
f61e445a 3443 bitmap_clear (reg_seen);
9ae8ffe7 3444
356610cb
EB
3445 /* Initialize the alias information for this pass. */
3446 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e6eacdc9
RS
3447 if (static_reg_base_value[i]
3448 /* Don't treat the hard frame pointer as special if we
3449 eliminated the frame pointer to the stack pointer instead. */
3450 && !(i == HARD_FRAME_POINTER_REGNUM
3451 && reload_completed
3452 && !frame_pointer_needed
3453 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3454 STACK_POINTER_REGNUM)))
356610cb
EB
3455 {
3456 new_reg_base_value[i] = static_reg_base_value[i];
3457 bitmap_set_bit (reg_seen, i);
3458 }
6e73e666 3459
ec907dd8 3460 /* Walk the insns adding values to the new_reg_base_value array. */
131db6b8 3461 for (i = 0; i < rpo_cnt; i++)
9ae8ffe7 3462 {
06e28de2 3463 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
131db6b8 3464 FOR_BB_INSNS (bb, insn)
ec907dd8 3465 {
131db6b8
SB
3466 if (NONDEBUG_INSN_P (insn))
3467 {
3468 rtx note, set;
efc9bd41 3469
131db6b8
SB
3470 /* If this insn has a noalias note, process it, Otherwise,
3471 scan for sets. A simple set will have no side effects
3472 which could change the base value of any other register. */
6e73e666 3473
131db6b8
SB
3474 if (GET_CODE (PATTERN (insn)) == SET
3475 && REG_NOTES (insn) != 0
3476 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3477 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3478 else
e8448ba5 3479 note_stores (insn, record_set, NULL);
6e73e666 3480
131db6b8 3481 set = single_set (insn);
6e73e666 3482
131db6b8
SB
3483 if (set != 0
3484 && REG_P (SET_DEST (set))
3485 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
713f41f9 3486 {
131db6b8
SB
3487 unsigned int regno = REGNO (SET_DEST (set));
3488 rtx src = SET_SRC (set);
3489 rtx t;
3490
3491 note = find_reg_equal_equiv_note (insn);
3492 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3493 && DF_REG_DEF_COUNT (regno) != 1)
3494 note = NULL_RTX;
3495
5284e559 3496 poly_int64 offset;
131db6b8
SB
3497 if (note != NULL_RTX
3498 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3499 && ! rtx_varies_p (XEXP (note, 0), 1)
3500 && ! reg_overlap_mentioned_p (SET_DEST (set),
3501 XEXP (note, 0)))
3502 {
3503 set_reg_known_value (regno, XEXP (note, 0));
3504 set_reg_known_equiv_p (regno,
3505 REG_NOTE_KIND (note) == REG_EQUIV);
3506 }
3507 else if (DF_REG_DEF_COUNT (regno) == 1
3508 && GET_CODE (src) == PLUS
3509 && REG_P (XEXP (src, 0))
3510 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
5284e559 3511 && poly_int_rtx_p (XEXP (src, 1), &offset))
131db6b8 3512 {
5284e559 3513 t = plus_constant (GET_MODE (src), t, offset);
131db6b8
SB
3514 set_reg_known_value (regno, t);
3515 set_reg_known_equiv_p (regno, false);
3516 }
3517 else if (DF_REG_DEF_COUNT (regno) == 1
3518 && ! rtx_varies_p (src, 1))
3519 {
3520 set_reg_known_value (regno, src);
3521 set_reg_known_equiv_p (regno, false);
3522 }
713f41f9 3523 }
6e73e666 3524 }
131db6b8
SB
3525 else if (NOTE_P (insn)
3526 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3527 copying_arguments = false;
ec907dd8 3528 }
6e73e666 3529 }
ec907dd8 3530
6e73e666 3531 /* Now propagate values from new_reg_base_value to reg_base_value. */
62e5bf5d 3532 gcc_assert (maxreg == (unsigned int) max_reg_num ());
c22cacf3 3533
c582d54a 3534 for (ui = 0; ui < maxreg; ui++)
6e73e666 3535 {
e51712db 3536 if (new_reg_base_value[ui]
9771b263
DN
3537 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3538 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
ec907dd8 3539 {
9771b263 3540 (*reg_base_value)[ui] = new_reg_base_value[ui];
6e73e666 3541 changed = 1;
ec907dd8 3542 }
9ae8ffe7 3543 }
9ae8ffe7 3544 }
6e73e666 3545 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
131db6b8 3546 XDELETEVEC (rpo);
9ae8ffe7
JL
3547
3548 /* Fill in the remaining entries. */
9771b263 3549 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
9ff3c7ca
SB
3550 {
3551 int regno = i + FIRST_PSEUDO_REGISTER;
3552 if (! val)
3553 set_reg_known_value (regno, regno_reg_rtx[regno]);
3554 }
9ae8ffe7 3555
e05e2395
MM
3556 /* Clean up. */
3557 free (new_reg_base_value);
ec907dd8 3558 new_reg_base_value = 0;
d630245f 3559 sbitmap_free (reg_seen);
9ae8ffe7 3560 reg_seen = 0;
0d446150 3561 timevar_pop (TV_ALIAS_ANALYSIS);
9ae8ffe7
JL
3562}
3563
61630b27
JJ
3564/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3565 Special API for var-tracking pass purposes. */
3566
3567void
3568vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3569{
9771b263 3570 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
61630b27
JJ
3571}
3572
9ae8ffe7 3573void
4682ae04 3574end_alias_analysis (void)
9ae8ffe7 3575{
c582d54a 3576 old_reg_base_value = reg_base_value;
9771b263 3577 vec_free (reg_known_value);
9ff3c7ca 3578 sbitmap_free (reg_known_equiv_p);
9ae8ffe7 3579}
e2500fed 3580
3ecf9d13
JH
3581void
3582dump_alias_stats_in_alias_c (FILE *s)
3583{
3584 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3585 " %llu are in alias set 0\n"
3586 " %llu queries asked about the same object\n"
3587 " %llu queries asked about the same alias set\n"
3588 " %llu access volatile\n"
6e042ef4
JH
3589 " %llu are dependent in the DAG\n"
3590 " %llu are aritificially in conflict with void *\n",
3ecf9d13
JH
3591 alias_stats.num_disambiguated,
3592 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3593 + alias_stats.num_same_objects + alias_stats.num_volatile
6e042ef4
JH
3594 + alias_stats.num_dag + alias_stats.num_disambiguated
3595 + alias_stats.num_universal,
3ecf9d13 3596 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
6e042ef4
JH
3597 alias_stats.num_same_objects, alias_stats.num_volatile,
3598 alias_stats.num_dag, alias_stats.num_universal);
3ecf9d13 3599}
e2500fed 3600#include "gt-alias.h"