]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/auto-inc-dec.c
Wrap option names in gcc internal messages with %< and %>.
[thirdparty/gcc.git] / gcc / auto-inc-dec.c
CommitLineData
3072d30e 1/* Discovery of auto-inc and auto-dec instructions.
fbd26352 2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3072d30e 3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
48e1416a 4
3072d30e 5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
3072d30e 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
3072d30e 20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
9ef16211 24#include "backend.h"
7c29e30e 25#include "target.h"
3072d30e 26#include "rtl.h"
7c29e30e 27#include "tree.h"
28#include "predict.h"
9ef16211 29#include "df.h"
94ea8568 30#include "insn-config.h"
ad7b10a2 31#include "memmodel.h"
7c29e30e 32#include "emit-rtl.h"
33#include "recog.h"
7c29e30e 34#include "cfgrtl.h"
3072d30e 35#include "expr.h"
3072d30e 36#include "tree-pass.h"
3072d30e 37#include "dbgcnt.h"
397881d3 38#include "print-rtl.h"
f21023fe 39#include "valtrack.h"
3072d30e 40
41/* This pass was originally removed from flow.c. However there is
42 almost nothing that remains of that code.
43
44 There are (4) basic forms that are matched:
45
ca4bb7ac 46 (1) FORM_PRE_ADD
3072d30e 47 a <- b + c
48 ...
49 *a
50
51 becomes
52
53 a <- b
54 ...
55 *(a += c) pre
ca4bb7ac 56
f21023fe 57 or, alternately,
58
59 a <- b + c
60 ...
61 *b
62
63 becomes
64
65 a <- b
66 ...
67 *(a += c) post
68
69 This uses a post-add, but it's handled as FORM_PRE_ADD because
70 the "increment" insn appears before the memory access.
71
ca4bb7ac 72
73 (2) FORM_PRE_INC
3072d30e 74 a += c
75 ...
76 *a
77
78 becomes
79
f21023fe 80 ...
3072d30e 81 *(a += c) pre
ca4bb7ac 82
83
84 (3) FORM_POST_ADD
3072d30e 85 *a
86 ...
87 b <- a + c
88
48e1416a 89 (For this case to be true, b must not be assigned or used between
ca4bb7ac 90 the *a and the assignment to b. B must also be a Pmode reg.)
3072d30e 91
92 becomes
93
94 b <- a
3072d30e 95 *(b += c) post
f21023fe 96 ...
ca4bb7ac 97
98
99 (4) FORM_POST_INC
3072d30e 100 *a
101 ...
102 a <- a + c
103
104 becomes
105
106 *(a += c) post
f21023fe 107 ...
108
3072d30e 109
110 There are three types of values of c.
111
112 1) c is a constant equal to the width of the value being accessed by
113 the pointer. This is useful for machines that have
114 HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
115 HAVE_POST_DECREMENT defined.
116
bef304b8 117 2) c is a constant not equal to the width of the value being accessed
3072d30e 118 by the pointer. This is useful for machines that have
119 HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
120
48e1416a 121 3) c is a register. This is useful for machines that have
122 HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
123
3072d30e 124 The is one special case: if a already had an offset equal to it +-
125 its width and that offset is equal to -c when the increment was
126 before the ref or +c if the increment was after the ref, then if we
ca4bb7ac 127 can do the combination but switch the pre/post bit. */
3072d30e 128
3072d30e 129
130enum form
131{
132 FORM_PRE_ADD,
133 FORM_PRE_INC,
134 FORM_POST_ADD,
135 FORM_POST_INC,
136 FORM_last
137};
138
139/* The states of the second operands of mem refs and inc insns. If no
140 second operand of the mem_ref was found, it is assumed to just be
141 ZERO. SIZE is the size of the mode accessed in the memref. The
142 ANY is used for constants that are not +-size or 0. REG is used if
143 the forms are reg1 + reg2. */
144
48e1416a 145enum inc_state
3072d30e 146{
147 INC_ZERO, /* == 0 */
148 INC_NEG_SIZE, /* == +size */
149 INC_POS_SIZE, /* == -size */
150 INC_NEG_ANY, /* == some -constant */
151 INC_POS_ANY, /* == some +constant */
152 INC_REG, /* == some register */
153 INC_last
154};
155
156/* The eight forms that pre/post inc/dec can take. */
157enum gen_form
158{
159 NOTHING,
160 SIMPLE_PRE_INC, /* ++size */
161 SIMPLE_POST_INC, /* size++ */
162 SIMPLE_PRE_DEC, /* --size */
163 SIMPLE_POST_DEC, /* size-- */
164 DISP_PRE, /* ++con */
165 DISP_POST, /* con++ */
166 REG_PRE, /* ++reg */
167 REG_POST /* reg++ */
168};
169
170/* Tmp mem rtx for use in cost modeling. */
171static rtx mem_tmp;
172
173static enum inc_state
7f4685e5 174set_inc_state (HOST_WIDE_INT val, poly_int64 size)
3072d30e 175{
176 if (val == 0)
177 return INC_ZERO;
178 if (val < 0)
7f4685e5 179 return known_eq (val, -size) ? INC_NEG_SIZE : INC_NEG_ANY;
3072d30e 180 else
7f4685e5 181 return known_eq (val, size) ? INC_POS_SIZE : INC_POS_ANY;
3072d30e 182}
183
184/* The DECISION_TABLE that describes what form, if any, the increment
185 or decrement will take. It is a three dimensional table. The first
186 index is the type of constant or register found as the second
187 operand of the inc insn. The second index is the type of constant
188 or register found as the second operand of the memory reference (if
189 no second operand exists, 0 is used). The third index is the form
190 and location (relative to the mem reference) of inc insn. */
191
192static bool initialized = false;
193static enum gen_form decision_table[INC_last][INC_last][FORM_last];
194
195static void
196init_decision_table (void)
197{
198 enum gen_form value;
199
200 if (HAVE_PRE_INCREMENT || HAVE_PRE_MODIFY_DISP)
201 {
202 /* Prefer the simple form if both are available. */
203 value = (HAVE_PRE_INCREMENT) ? SIMPLE_PRE_INC : DISP_PRE;
204
205 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
206 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_INC] = value;
207
208 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_ADD] = value;
209 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_INC] = value;
210 }
211
212 if (HAVE_POST_INCREMENT || HAVE_POST_MODIFY_DISP)
213 {
214 /* Prefer the simple form if both are available. */
215 value = (HAVE_POST_INCREMENT) ? SIMPLE_POST_INC : DISP_POST;
216
217 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_ADD] = value;
218 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_INC] = value;
219
220 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_ADD] = value;
221 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_INC] = value;
222 }
223
224 if (HAVE_PRE_DECREMENT || HAVE_PRE_MODIFY_DISP)
225 {
226 /* Prefer the simple form if both are available. */
227 value = (HAVE_PRE_DECREMENT) ? SIMPLE_PRE_DEC : DISP_PRE;
228
229 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
230 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_INC] = value;
231
232 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_ADD] = value;
233 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_INC] = value;
234 }
235
236 if (HAVE_POST_DECREMENT || HAVE_POST_MODIFY_DISP)
237 {
238 /* Prefer the simple form if both are available. */
239 value = (HAVE_POST_DECREMENT) ? SIMPLE_POST_DEC : DISP_POST;
240
241 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_ADD] = value;
242 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_INC] = value;
243
244 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_ADD] = value;
245 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_INC] = value;
246 }
247
248 if (HAVE_PRE_MODIFY_DISP)
249 {
250 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
251 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
252
253 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_ADD] = DISP_PRE;
254 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_INC] = DISP_PRE;
255
256 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
257 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
258
259 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_ADD] = DISP_PRE;
260 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_INC] = DISP_PRE;
261 }
262
263 if (HAVE_POST_MODIFY_DISP)
264 {
265 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
266 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
267
268 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_ADD] = DISP_POST;
269 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_INC] = DISP_POST;
270
271 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
272 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
273
274 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_ADD] = DISP_POST;
275 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_INC] = DISP_POST;
276 }
277
278 /* This is much simpler than the other cases because we do not look
279 for the reg1-reg2 case. Note that we do not have a INC_POS_REG
280 and INC_NEG_REG states. Most of the use of such states would be
281 on a target that had an R1 - R2 update address form.
282
283 There is the remote possibility that you could also catch a = a +
284 b; *(a - b) as a postdecrement of (a + b). However, it is
285 unclear if *(a - b) would ever be generated on a machine that did
286 not have that kind of addressing mode. The IA-64 and RS6000 will
287 not do this, and I cannot speak for any other. If any
288 architecture does have an a-b update for, these cases should be
289 added. */
290 if (HAVE_PRE_MODIFY_REG)
291 {
292 decision_table[INC_REG][INC_ZERO][FORM_PRE_ADD] = REG_PRE;
293 decision_table[INC_REG][INC_ZERO][FORM_PRE_INC] = REG_PRE;
294
295 decision_table[INC_REG][INC_REG][FORM_POST_ADD] = REG_PRE;
296 decision_table[INC_REG][INC_REG][FORM_POST_INC] = REG_PRE;
297 }
298
299 if (HAVE_POST_MODIFY_REG)
300 {
301 decision_table[INC_REG][INC_ZERO][FORM_POST_ADD] = REG_POST;
302 decision_table[INC_REG][INC_ZERO][FORM_POST_INC] = REG_POST;
303 }
304
305 initialized = true;
306}
307
308/* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
309 "reg_res = reg0+c". */
310
48e1416a 311static struct inc_insn
3072d30e 312{
4db65708 313 rtx_insn *insn; /* The insn being parsed. */
3072d30e 314 rtx pat; /* The pattern of the insn. */
315 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
316 enum form form;
317 rtx reg_res;
318 rtx reg0;
319 rtx reg1;
320 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
321 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
322} inc_insn;
323
324
325/* Dump the parsed inc insn to FILE. */
326
48e1416a 327static void
3072d30e 328dump_inc_insn (FILE *file)
329{
48e1416a 330 const char *f = ((inc_insn.form == FORM_PRE_ADD)
3072d30e 331 || (inc_insn.form == FORM_PRE_INC)) ? "pre" : "post";
332
333 dump_insn_slim (file, inc_insn.insn);
334
335 switch (inc_insn.form)
336 {
337 case FORM_PRE_ADD:
338 case FORM_POST_ADD:
339 if (inc_insn.reg1_is_const)
48e1416a 340 fprintf (file, "found %s add(%d) r[%d]=r[%d]+%d\n",
341 f, INSN_UID (inc_insn.insn),
342 REGNO (inc_insn.reg_res),
3072d30e 343 REGNO (inc_insn.reg0), (int) inc_insn.reg1_val);
344 else
48e1416a 345 fprintf (file, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
346 f, INSN_UID (inc_insn.insn),
347 REGNO (inc_insn.reg_res),
3072d30e 348 REGNO (inc_insn.reg0), REGNO (inc_insn.reg1));
349 break;
48e1416a 350
3072d30e 351 case FORM_PRE_INC:
352 case FORM_POST_INC:
353 if (inc_insn.reg1_is_const)
48e1416a 354 fprintf (file, "found %s inc(%d) r[%d]+=%d\n",
355 f, INSN_UID (inc_insn.insn),
3072d30e 356 REGNO (inc_insn.reg_res), (int) inc_insn.reg1_val);
357 else
48e1416a 358 fprintf (file, "found %s inc(%d) r[%d]+=r[%d]\n",
359 f, INSN_UID (inc_insn.insn),
3072d30e 360 REGNO (inc_insn.reg_res), REGNO (inc_insn.reg1));
361 break;
362
363 default:
364 break;
365 }
366}
367
368
369/* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
370
371static struct mem_insn
372{
4db65708 373 rtx_insn *insn; /* The insn being parsed. */
3072d30e 374 rtx pat; /* The pattern of the insn. */
375 rtx *mem_loc; /* The address of the field that holds the mem */
376 /* that is to be replaced. */
377 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
378 rtx reg0;
379 rtx reg1; /* This is either a reg or a const depending on
380 reg1_is_const. */
381 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
382 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
383} mem_insn;
384
385
386/* Dump the parsed mem insn to FILE. */
387
48e1416a 388static void
3072d30e 389dump_mem_insn (FILE *file)
390{
391 dump_insn_slim (file, mem_insn.insn);
392
393 if (mem_insn.reg1_is_const)
48e1416a 394 fprintf (file, "found mem(%d) *(r[%d]+%d)\n",
395 INSN_UID (mem_insn.insn),
3072d30e 396 REGNO (mem_insn.reg0), (int) mem_insn.reg1_val);
397 else
48e1416a 398 fprintf (file, "found mem(%d) *(r[%d]+r[%d])\n",
399 INSN_UID (mem_insn.insn),
3072d30e 400 REGNO (mem_insn.reg0), REGNO (mem_insn.reg1));
401}
402
403
404/* The following three arrays contain pointers to instructions. They
405 are indexed by REGNO. At any point in the basic block where we are
406 looking these three arrays contain, respectively, the next insn
407 that uses REGNO, the next inc or add insn that uses REGNO and the
408 next insn that sets REGNO.
409
410 The arrays are not cleared when we move from block to block so
411 whenever an insn is retrieved from these arrays, it's block number
412 must be compared with the current block.
413*/
414
f21023fe 415static rtx_insn **reg_next_debug_use = NULL;
4db65708 416static rtx_insn **reg_next_use = NULL;
417static rtx_insn **reg_next_inc_use = NULL;
418static rtx_insn **reg_next_def = NULL;
3072d30e 419
420
421/* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
422 not really care about moving any other notes from the inc or add
423 insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
bef304b8 424 does not appear that there are any other kinds of relevant notes. */
3072d30e 425
48e1416a 426static void
4db65708 427move_dead_notes (rtx_insn *to_insn, rtx_insn *from_insn, rtx pattern)
3072d30e 428{
48e1416a 429 rtx note;
3072d30e 430 rtx next_note;
431 rtx prev_note = NULL;
432
433 for (note = REG_NOTES (from_insn); note; note = next_note)
434 {
435 next_note = XEXP (note, 1);
48e1416a 436
3072d30e 437 if ((REG_NOTE_KIND (note) == REG_DEAD)
438 && pattern == XEXP (note, 0))
439 {
440 XEXP (note, 1) = REG_NOTES (to_insn);
441 REG_NOTES (to_insn) = note;
442 if (prev_note)
443 XEXP (prev_note, 1) = next_note;
444 else
445 REG_NOTES (from_insn) = next_note;
446 }
447 else prev_note = note;
448 }
449}
450
3072d30e 451/* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
452 increment of INC_REG. To have reached this point, the change is a
453 legitimate one from a dataflow point of view. The only questions
454 are is this a valid change to the instruction and is this a
455 profitable change to the instruction. */
456
457static bool
458attempt_change (rtx new_addr, rtx inc_reg)
459{
460 /* There are four cases: For the two cases that involve an add
461 instruction, we are going to have to delete the add and insert a
462 mov. We are going to assume that the mov is free. This is
463 fairly early in the backend and there are a lot of opportunities
464 for removing that move later. In particular, there is the case
465 where the move may be dead, this is what dead code elimination
466 passes are for. The two cases where we have an inc insn will be
467 handled mov free. */
468
90bd219d 469 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
4db65708 470 rtx_insn *mov_insn = NULL;
3072d30e 471 int regno;
472 rtx mem = *mem_insn.mem_loc;
3754d046 473 machine_mode mode = GET_MODE (mem);
3072d30e 474 rtx new_mem;
475 int old_cost = 0;
476 int new_cost = 0;
f529eb25 477 bool speed = optimize_bb_for_speed_p (bb);
3072d30e 478
479 PUT_MODE (mem_tmp, mode);
480 XEXP (mem_tmp, 0) = new_addr;
481
5ae4887d 482 old_cost = (set_src_cost (mem, mode, speed)
b72d459f 483 + set_rtx_cost (PATTERN (inc_insn.insn), speed));
48924509 484
5ae4887d 485 new_cost = set_src_cost (mem_tmp, mode, speed);
b9c74b4d 486
48924509 487 /* In the FORM_PRE_ADD and FORM_POST_ADD cases we emit an extra move
488 whose cost we should account for. */
489 if (inc_insn.form == FORM_PRE_ADD
490 || inc_insn.form == FORM_POST_ADD)
491 {
492 start_sequence ();
493 emit_move_insn (inc_insn.reg_res, inc_insn.reg0);
494 mov_insn = get_insns ();
495 end_sequence ();
496 new_cost += seq_cost (mov_insn, speed);
497 }
498
3072d30e 499 /* The first item of business is to see if this is profitable. */
500 if (old_cost < new_cost)
501 {
502 if (dump_file)
503 fprintf (dump_file, "cost failure old=%d new=%d\n", old_cost, new_cost);
504 return false;
505 }
506
9d75589a 507 /* Jump through a lot of hoops to keep the attributes up to date. We
3072d30e 508 do not want to call one of the change address variants that take
509 an offset even though we know the offset in many cases. These
510 assume you are changing where the address is pointing by the
511 offset. */
512 new_mem = replace_equiv_address_nv (mem, new_addr);
513 if (! validate_change (mem_insn.insn, mem_insn.mem_loc, new_mem, 0))
514 {
515 if (dump_file)
48e1416a 516 fprintf (dump_file, "validation failure\n");
3072d30e 517 return false;
518 }
519
520 /* From here to the end of the function we are committed to the
521 change, i.e. nothing fails. Generate any necessary movs, move
522 any regnotes, and fix up the reg_next_{use,inc_use,def}. */
523 switch (inc_insn.form)
524 {
525 case FORM_PRE_ADD:
a6879b1d 526 /* Replace the addition with a move. Do it at the location of
527 the addition since the operand of the addition may change
528 before the memory reference. */
48924509 529 gcc_assert (mov_insn);
530 emit_insn_before (mov_insn, inc_insn.insn);
d4ce94c1 531 regno = REGNO (inc_insn.reg0);
f21023fe 532 /* ??? Could REGNO possibly be used in MEM_INSN other than in
533 the MEM address, and still die there, so that move_dead_notes
534 would incorrectly move the note? */
d4ce94c1 535 if (reg_next_use[regno] == mem_insn.insn)
536 move_dead_notes (mov_insn, mem_insn.insn, inc_insn.reg0);
537 else
538 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
3072d30e 539
540 regno = REGNO (inc_insn.reg_res);
f21023fe 541 if (reg_next_debug_use && reg_next_debug_use[regno]
542 && BLOCK_FOR_INSN (reg_next_debug_use[regno]) == bb)
543 {
544 rtx adjres = gen_rtx_PLUS (GET_MODE (inc_insn.reg_res),
545 inc_insn.reg_res, inc_insn.reg1);
546 if (dump_file)
547 fprintf (dump_file, "adjusting debug insns\n");
548 propagate_for_debug (PREV_INSN (reg_next_debug_use[regno]),
549 mem_insn.insn,
550 inc_insn.reg_res, adjres, bb);
551 reg_next_debug_use[regno] = NULL;
552 }
3072d30e 553 reg_next_def[regno] = mov_insn;
554 reg_next_use[regno] = NULL;
f21023fe 555
3072d30e 556 regno = REGNO (inc_insn.reg0);
f21023fe 557 if (reg_next_debug_use && reg_next_debug_use[regno]
558 && BLOCK_FOR_INSN (reg_next_debug_use[regno]) == bb
559 && find_reg_note (mov_insn, REG_DEAD, inc_insn.reg0))
560 {
561 if (dump_file)
562 fprintf (dump_file, "remapping debug insns\n");
563 propagate_for_debug (PREV_INSN (reg_next_debug_use[regno]),
564 mem_insn.insn,
565 inc_insn.reg0, inc_insn.reg_res, bb);
566 reg_next_debug_use[regno] = NULL;
567 }
3072d30e 568 reg_next_use[regno] = mov_insn;
569 df_recompute_luids (bb);
570 break;
571
572 case FORM_POST_INC:
573 regno = REGNO (inc_insn.reg_res);
f21023fe 574 if (reg_next_debug_use && reg_next_debug_use[regno]
575 && BLOCK_FOR_INSN (reg_next_debug_use[regno]) == bb)
576 {
577 rtx adjres = gen_rtx_MINUS (GET_MODE (inc_insn.reg_res),
578 inc_insn.reg_res, inc_insn.reg1);
579 if (dump_file)
580 fprintf (dump_file, "adjusting debug insns\n");
581 propagate_for_debug (PREV_INSN (reg_next_debug_use[regno]),
582 inc_insn.insn,
583 inc_insn.reg_res, adjres, bb);
584 reg_next_debug_use[regno] = NULL;
585 }
3072d30e 586 if (reg_next_use[regno] == reg_next_inc_use[regno])
587 reg_next_inc_use[regno] = NULL;
588
589 /* Fallthru. */
590 case FORM_PRE_INC:
591 regno = REGNO (inc_insn.reg_res);
f21023fe 592 /* Despite the fall-through, we won't run this twice: we'll have
593 already cleared reg_next_debug_use[regno] before falling
594 through. */
595 if (reg_next_debug_use && reg_next_debug_use[regno]
596 && BLOCK_FOR_INSN (reg_next_debug_use[regno]) == bb)
597 {
598 rtx adjres = gen_rtx_PLUS (GET_MODE (inc_insn.reg_res),
599 inc_insn.reg_res, inc_insn.reg1);
600 if (dump_file)
601 fprintf (dump_file, "adjusting debug insns\n");
602 propagate_for_debug (PREV_INSN (reg_next_debug_use[regno]),
603 mem_insn.insn,
604 inc_insn.reg_res, adjres, bb);
605 if (DF_INSN_LUID (mem_insn.insn)
606 < DF_INSN_LUID (reg_next_debug_use[regno]))
607 reg_next_debug_use[regno] = NULL;
608 }
3072d30e 609 reg_next_def[regno] = mem_insn.insn;
610 reg_next_use[regno] = NULL;
611
612 break;
613
614 case FORM_POST_ADD:
48924509 615 gcc_assert (mov_insn);
616 emit_insn_before (mov_insn, mem_insn.insn);
3072d30e 617 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
618
619 /* Do not move anything to the mov insn because the instruction
620 pointer for the main iteration has not yet hit that. It is
621 still pointing to the mem insn. */
622 regno = REGNO (inc_insn.reg_res);
f21023fe 623 /* The pseudo is now set earlier, so it must have been dead in
624 that range, and dead registers cannot be referenced in debug
625 insns. */
626 gcc_assert (!(reg_next_debug_use && reg_next_debug_use[regno]
627 && BLOCK_FOR_INSN (reg_next_debug_use[regno]) == bb));
3072d30e 628 reg_next_def[regno] = mem_insn.insn;
629 reg_next_use[regno] = NULL;
630
631 regno = REGNO (inc_insn.reg0);
f21023fe 632 if (reg_next_debug_use && reg_next_debug_use[regno]
633 && BLOCK_FOR_INSN (reg_next_debug_use[regno]) == bb
634 && find_reg_note (mov_insn, REG_DEAD, inc_insn.reg0))
635 {
636 if (dump_file)
637 fprintf (dump_file, "remapping debug insns\n");
638 propagate_for_debug (PREV_INSN (reg_next_debug_use[regno]),
639 inc_insn.insn,
640 inc_insn.reg0, inc_insn.reg_res, bb);
641 reg_next_debug_use[regno] = NULL;
642 }
3072d30e 643 reg_next_use[regno] = mem_insn.insn;
644 if ((reg_next_use[regno] == reg_next_inc_use[regno])
645 || (reg_next_inc_use[regno] == inc_insn.insn))
646 reg_next_inc_use[regno] = NULL;
647 df_recompute_luids (bb);
648 break;
649
650 case FORM_last:
651 default:
652 gcc_unreachable ();
653 }
654
655 if (!inc_insn.reg1_is_const)
656 {
657 regno = REGNO (inc_insn.reg1);
658 reg_next_use[regno] = mem_insn.insn;
659 if ((reg_next_use[regno] == reg_next_inc_use[regno])
660 || (reg_next_inc_use[regno] == inc_insn.insn))
661 reg_next_inc_use[regno] = NULL;
662 }
663
664 delete_insn (inc_insn.insn);
665
666 if (dump_file && mov_insn)
667 {
668 fprintf (dump_file, "inserting mov ");
669 dump_insn_slim (dump_file, mov_insn);
670 }
671
672 /* Record that this insn has an implicit side effect. */
a1ddb869 673 add_reg_note (mem_insn.insn, REG_INC, inc_reg);
3072d30e 674
675 if (dump_file)
676 {
677 fprintf (dump_file, "****success ");
678 dump_insn_slim (dump_file, mem_insn.insn);
679 }
680
681 return true;
682}
683
684
685/* Try to combine the instruction in INC_INSN with the instruction in
686 MEM_INSN. First the form is determined using the DECISION_TABLE
f0b5f617 687 and the results of parsing the INC_INSN and the MEM_INSN.
3072d30e 688 Assuming the form is ok, a prototype new address is built which is
689 passed to ATTEMPT_CHANGE for final processing. */
690
48e1416a 691static bool
3072d30e 692try_merge (void)
693{
694 enum gen_form gen_form;
695 rtx mem = *mem_insn.mem_loc;
696 rtx inc_reg = inc_insn.form == FORM_POST_ADD ?
697 inc_insn.reg_res : mem_insn.reg0;
698
699 /* The width of the mem being accessed. */
52acb7ae 700 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
4db65708 701 rtx_insn *last_insn = NULL;
3754d046 702 machine_mode reg_mode = GET_MODE (inc_reg);
3072d30e 703
704 switch (inc_insn.form)
705 {
706 case FORM_PRE_ADD:
707 case FORM_PRE_INC:
708 last_insn = mem_insn.insn;
709 break;
710 case FORM_POST_INC:
711 case FORM_POST_ADD:
712 last_insn = inc_insn.insn;
713 break;
714 case FORM_last:
715 default:
716 gcc_unreachable ();
717 }
718
719 /* Cannot handle auto inc of the stack. */
720 if (inc_reg == stack_pointer_rtx)
721 {
722 if (dump_file)
723 fprintf (dump_file, "cannot inc stack %d failure\n", REGNO (inc_reg));
724 return false;
725 }
726
727 /* Look to see if the inc register is dead after the memory
a6879b1d 728 reference. If it is, do not do the combination. */
3072d30e 729 if (find_regno_note (last_insn, REG_DEAD, REGNO (inc_reg)))
730 {
731 if (dump_file)
732 fprintf (dump_file, "dead failure %d\n", REGNO (inc_reg));
733 return false;
734 }
735
48e1416a 736 mem_insn.reg1_state = (mem_insn.reg1_is_const)
3072d30e 737 ? set_inc_state (mem_insn.reg1_val, size) : INC_REG;
738 inc_insn.reg1_state = (inc_insn.reg1_is_const)
739 ? set_inc_state (inc_insn.reg1_val, size) : INC_REG;
740
741 /* Now get the form that we are generating. */
48e1416a 742 gen_form = decision_table
3072d30e 743 [inc_insn.reg1_state][mem_insn.reg1_state][inc_insn.form];
744
745 if (dbg_cnt (auto_inc_dec) == false)
746 return false;
747
748 switch (gen_form)
749 {
750 default:
751 case NOTHING:
752 return false;
753
754 case SIMPLE_PRE_INC: /* ++size */
755 if (dump_file)
756 fprintf (dump_file, "trying SIMPLE_PRE_INC\n");
98155838 757 return attempt_change (gen_rtx_PRE_INC (reg_mode, inc_reg), inc_reg);
48e1416a 758
3072d30e 759 case SIMPLE_POST_INC: /* size++ */
760 if (dump_file)
761 fprintf (dump_file, "trying SIMPLE_POST_INC\n");
98155838 762 return attempt_change (gen_rtx_POST_INC (reg_mode, inc_reg), inc_reg);
48e1416a 763
3072d30e 764 case SIMPLE_PRE_DEC: /* --size */
765 if (dump_file)
766 fprintf (dump_file, "trying SIMPLE_PRE_DEC\n");
98155838 767 return attempt_change (gen_rtx_PRE_DEC (reg_mode, inc_reg), inc_reg);
48e1416a 768
3072d30e 769 case SIMPLE_POST_DEC: /* size-- */
770 if (dump_file)
771 fprintf (dump_file, "trying SIMPLE_POST_DEC\n");
98155838 772 return attempt_change (gen_rtx_POST_DEC (reg_mode, inc_reg), inc_reg);
48e1416a 773
3072d30e 774 case DISP_PRE: /* ++con */
775 if (dump_file)
776 fprintf (dump_file, "trying DISP_PRE\n");
98155838 777 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
3072d30e 778 inc_reg,
98155838 779 gen_rtx_PLUS (reg_mode,
3072d30e 780 inc_reg,
781 inc_insn.reg1)),
782 inc_reg);
48e1416a 783
3072d30e 784 case DISP_POST: /* con++ */
785 if (dump_file)
786 fprintf (dump_file, "trying POST_DISP\n");
98155838 787 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
3072d30e 788 inc_reg,
98155838 789 gen_rtx_PLUS (reg_mode,
3072d30e 790 inc_reg,
791 inc_insn.reg1)),
792 inc_reg);
48e1416a 793
3072d30e 794 case REG_PRE: /* ++reg */
795 if (dump_file)
796 fprintf (dump_file, "trying PRE_REG\n");
98155838 797 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
3072d30e 798 inc_reg,
98155838 799 gen_rtx_PLUS (reg_mode,
3072d30e 800 inc_reg,
801 inc_insn.reg1)),
802 inc_reg);
48e1416a 803
3072d30e 804 case REG_POST: /* reg++ */
805 if (dump_file)
806 fprintf (dump_file, "trying POST_REG\n");
98155838 807 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
3072d30e 808 inc_reg,
98155838 809 gen_rtx_PLUS (reg_mode,
3072d30e 810 inc_reg,
811 inc_insn.reg1)),
812 inc_reg);
3072d30e 813 }
814}
815
816/* Return the next insn that uses (if reg_next_use is passed in
817 NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
818 REGNO in BB. */
819
4db65708 820static rtx_insn *
821get_next_ref (int regno, basic_block bb, rtx_insn **next_array)
3072d30e 822{
4db65708 823 rtx_insn *insn = next_array[regno];
3072d30e 824
825 /* Lazy about cleaning out the next_arrays. */
90bd219d 826 if (insn && BLOCK_FOR_INSN (insn) != bb)
3072d30e 827 {
828 next_array[regno] = NULL;
829 insn = NULL;
830 }
831
832 return insn;
833}
834
835
3072d30e 836/* Return true if INSN is of a form "a = b op c" where a and b are
837 regs. op is + if c is a reg and +|- if c is a const. Fill in
48e1416a 838 INC_INSN with what is found.
839
3072d30e 840 This function is called in two contexts, if BEFORE_MEM is true,
841 this is called for each insn in the basic block. If BEFORE_MEM is
842 false, it is called for the instruction in the block that uses the
843 index register for some memory reference that is currently being
844 processed. */
845
846static bool
4db65708 847parse_add_or_inc (rtx_insn *insn, bool before_mem)
3072d30e 848{
849 rtx pat = single_set (insn);
850 if (!pat)
851 return false;
852
853 /* Result must be single reg. */
854 if (!REG_P (SET_DEST (pat)))
855 return false;
856
857 if ((GET_CODE (SET_SRC (pat)) != PLUS)
858 && (GET_CODE (SET_SRC (pat)) != MINUS))
859 return false;
860
861 if (!REG_P (XEXP (SET_SRC (pat), 0)))
862 return false;
863
864 inc_insn.insn = insn;
865 inc_insn.pat = pat;
866 inc_insn.reg_res = SET_DEST (pat);
867 inc_insn.reg0 = XEXP (SET_SRC (pat), 0);
5c31bc69 868
869 /* Block any auto increment of the frame pointer since it expands into
870 an addition and cannot be removed by copy propagation. */
871 if (inc_insn.reg0 == frame_pointer_rtx)
872 return false;
873
3072d30e 874 if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg0))
875 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
48e1416a 876 else
3072d30e 877 inc_insn.form = before_mem ? FORM_PRE_ADD : FORM_POST_ADD;
878
971ba038 879 if (CONST_INT_P (XEXP (SET_SRC (pat), 1)))
3072d30e 880 {
881 /* Process a = b + c where c is a const. */
882 inc_insn.reg1_is_const = true;
883 if (GET_CODE (SET_SRC (pat)) == PLUS)
884 {
885 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
886 inc_insn.reg1_val = INTVAL (inc_insn.reg1);
887 }
888 else
889 {
890 inc_insn.reg1_val = -INTVAL (XEXP (SET_SRC (pat), 1));
891 inc_insn.reg1 = GEN_INT (inc_insn.reg1_val);
892 }
893 return true;
894 }
895 else if ((HAVE_PRE_MODIFY_REG || HAVE_POST_MODIFY_REG)
896 && (REG_P (XEXP (SET_SRC (pat), 1)))
897 && GET_CODE (SET_SRC (pat)) == PLUS)
898 {
899 /* Process a = b + c where c is a reg. */
900 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
901 inc_insn.reg1_is_const = false;
48e1416a 902
903 if (inc_insn.form == FORM_PRE_INC
3072d30e 904 || inc_insn.form == FORM_POST_INC)
905 return true;
906 else if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg1))
907 {
908 /* Reverse the two operands and turn *_ADD into *_INC since
909 a = c + a. */
a4f59596 910 std::swap (inc_insn.reg0, inc_insn.reg1);
3072d30e 911 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
912 return true;
913 }
48e1416a 914 else
3072d30e 915 return true;
916 }
917
918 return false;
919}
920
921
922/* A recursive function that checks all of the mem uses in
923 ADDRESS_OF_X to see if any single one of them is compatible with
d4ce94c1 924 what has been found in inc_insn. To avoid accidental matches, we
925 will only find MEMs with FINDREG, be it inc_insn.reg_res, be it
926 inc_insn.reg0.
3072d30e 927
48e1416a 928 -1 is returned for success. 0 is returned if nothing was found and
3072d30e 929 1 is returned for failure. */
930
931static int
d4ce94c1 932find_address (rtx *address_of_x, rtx findreg)
3072d30e 933{
934 rtx x = *address_of_x;
935 enum rtx_code code = GET_CODE (x);
936 const char *const fmt = GET_RTX_FORMAT (code);
937 int i;
938 int value = 0;
939 int tem;
940
d4ce94c1 941 if (code == MEM && findreg == inc_insn.reg_res
942 && rtx_equal_p (XEXP (x, 0), inc_insn.reg_res))
3072d30e 943 {
d4ce94c1 944 /* Match with *reg_res. */
3072d30e 945 mem_insn.mem_loc = address_of_x;
946 mem_insn.reg0 = inc_insn.reg_res;
947 mem_insn.reg1_is_const = true;
948 mem_insn.reg1_val = 0;
949 mem_insn.reg1 = GEN_INT (0);
950 return -1;
951 }
d4ce94c1 952 if (code == MEM && inc_insn.reg1_is_const && inc_insn.reg0
953 && findreg == inc_insn.reg0
954 && rtx_equal_p (XEXP (x, 0), inc_insn.reg0))
955 {
956 /* Match with *reg0, assumed to be equivalent to
957 *(reg_res - reg1_val); callers must check whether this is the case. */
958 mem_insn.mem_loc = address_of_x;
959 mem_insn.reg0 = inc_insn.reg_res;
960 mem_insn.reg1_is_const = true;
961 mem_insn.reg1_val = -inc_insn.reg1_val;
962 mem_insn.reg1 = GEN_INT (mem_insn.reg1_val);
963 return -1;
964 }
965 if (code == MEM && findreg == inc_insn.reg_res
966 && GET_CODE (XEXP (x, 0)) == PLUS
3072d30e 967 && rtx_equal_p (XEXP (XEXP (x, 0), 0), inc_insn.reg_res))
968 {
969 rtx b = XEXP (XEXP (x, 0), 1);
970 mem_insn.mem_loc = address_of_x;
971 mem_insn.reg0 = inc_insn.reg_res;
972 mem_insn.reg1 = b;
973 mem_insn.reg1_is_const = inc_insn.reg1_is_const;
971ba038 974 if (CONST_INT_P (b))
3072d30e 975 {
976 /* Match with *(reg0 + reg1) where reg1 is a const. */
977 HOST_WIDE_INT val = INTVAL (b);
48e1416a 978 if (inc_insn.reg1_is_const
3072d30e 979 && (inc_insn.reg1_val == val || inc_insn.reg1_val == -val))
980 {
981 mem_insn.reg1_val = val;
982 return -1;
983 }
984 }
48e1416a 985 else if (!inc_insn.reg1_is_const
986 && rtx_equal_p (inc_insn.reg1, b))
3072d30e 987 /* Match with *(reg0 + reg1). */
988 return -1;
989 }
990
991 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
992 {
993 /* If REG occurs inside a MEM used in a bit-field reference,
994 that is unacceptable. */
d4ce94c1 995 if (find_address (&XEXP (x, 0), findreg))
3072d30e 996 return 1;
997 }
998
999 if (x == inc_insn.reg_res)
1000 return 1;
1001
1002 /* Time for some deep diving. */
1003 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1004 {
1005 if (fmt[i] == 'e')
1006 {
d4ce94c1 1007 tem = find_address (&XEXP (x, i), findreg);
3072d30e 1008 /* If this is the first use, let it go so the rest of the
1009 insn can be checked. */
1010 if (value == 0)
1011 value = tem;
1012 else if (tem != 0)
1013 /* More than one match was found. */
1014 return 1;
1015 }
1016 else if (fmt[i] == 'E')
1017 {
1018 int j;
1019 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1020 {
d4ce94c1 1021 tem = find_address (&XVECEXP (x, i, j), findreg);
3072d30e 1022 /* If this is the first use, let it go so the rest of
1023 the insn can be checked. */
1024 if (value == 0)
1025 value = tem;
1026 else if (tem != 0)
1027 /* More than one match was found. */
1028 return 1;
1029 }
1030 }
1031 }
1032 return value;
1033}
1034
1035/* Once a suitable mem reference has been found and the MEM_INSN
1036 structure has been filled in, FIND_INC is called to see if there is
1037 a suitable add or inc insn that follows the mem reference and
1038 determine if it is suitable to merge.
1039
1040 In the case where the MEM_INSN has two registers in the reference,
1041 this function may be called recursively. The first time looking
1042 for an add of the first register, and if that fails, looking for an
1043 add of the second register. The FIRST_TRY parameter is used to
1044 only allow the parameters to be reversed once. */
1045
48e1416a 1046static bool
3072d30e 1047find_inc (bool first_try)
1048{
4db65708 1049 rtx_insn *insn;
90bd219d 1050 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
4db65708 1051 rtx_insn *other_insn;
be10bb5a 1052 df_ref def;
3072d30e 1053
1054 /* Make sure this reg appears only once in this insn. */
1055 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg0, 1) != 1)
1056 {
1057 if (dump_file)
48e1416a 1058 fprintf (dump_file, "mem count failure\n");
3072d30e 1059 return false;
1060 }
1061
1062 if (dump_file)
1063 dump_mem_insn (dump_file);
1064
1065 /* Find the next use that is an inc. */
48e1416a 1066 insn = get_next_ref (REGNO (mem_insn.reg0),
90bd219d 1067 BLOCK_FOR_INSN (mem_insn.insn),
3072d30e 1068 reg_next_inc_use);
1069 if (!insn)
1070 return false;
1071
1072 /* Even though we know the next use is an add or inc because it came
1073 from the reg_next_inc_use, we must still reparse. */
1074 if (!parse_add_or_inc (insn, false))
1075 {
1076 /* Next use was not an add. Look for one extra case. It could be
1077 that we have:
48e1416a 1078
3072d30e 1079 *(a + b)
1080 ...= a;
1081 ...= b + a
48e1416a 1082
3072d30e 1083 if we reverse the operands in the mem ref we would
1084 find this. Only try it once though. */
1085 if (first_try && !mem_insn.reg1_is_const)
1086 {
a4f59596 1087 std::swap (mem_insn.reg0, mem_insn.reg1);
3072d30e 1088 return find_inc (false);
1089 }
1090 else
1091 return false;
1092 }
1093
48e1416a 1094 /* Need to assure that none of the operands of the inc instruction are
3072d30e 1095 assigned to by the mem insn. */
be10bb5a 1096 FOR_EACH_INSN_DEF (def, mem_insn.insn)
3072d30e 1097 {
3072d30e 1098 unsigned int regno = DF_REF_REGNO (def);
48e1416a 1099 if ((regno == REGNO (inc_insn.reg0))
3072d30e 1100 || (regno == REGNO (inc_insn.reg_res)))
1101 {
1102 if (dump_file)
1103 fprintf (dump_file, "inc conflicts with store failure.\n");
1104 return false;
1105 }
1106 if (!inc_insn.reg1_is_const && (regno == REGNO (inc_insn.reg1)))
1107 {
1108 if (dump_file)
1109 fprintf (dump_file, "inc conflicts with store failure.\n");
1110 return false;
1111 }
1112 }
1113
1114 if (dump_file)
1115 dump_inc_insn (dump_file);
1116
1117 if (inc_insn.form == FORM_POST_ADD)
1118 {
1119 /* Make sure that there is no insn that assigns to inc_insn.res
1120 between the mem_insn and the inc_insn. */
4db65708 1121 rtx_insn *other_insn = get_next_ref (REGNO (inc_insn.reg_res),
1122 BLOCK_FOR_INSN (mem_insn.insn),
1123 reg_next_def);
3072d30e 1124 if (other_insn != inc_insn.insn)
1125 {
1126 if (dump_file)
48e1416a 1127 fprintf (dump_file,
3072d30e 1128 "result of add is assigned to between mem and inc insns.\n");
1129 return false;
1130 }
1131
48e1416a 1132 other_insn = get_next_ref (REGNO (inc_insn.reg_res),
90bd219d 1133 BLOCK_FOR_INSN (mem_insn.insn),
3072d30e 1134 reg_next_use);
48e1416a 1135 if (other_insn
3072d30e 1136 && (other_insn != inc_insn.insn)
1137 && (DF_INSN_LUID (inc_insn.insn) > DF_INSN_LUID (other_insn)))
1138 {
1139 if (dump_file)
48e1416a 1140 fprintf (dump_file,
3072d30e 1141 "result of add is used between mem and inc insns.\n");
1142 return false;
1143 }
1144
1145 /* For the post_add to work, the result_reg of the inc must not be
1146 used in the mem insn since this will become the new index
1147 register. */
6416852c 1148 if (reg_overlap_mentioned_p (inc_insn.reg_res, PATTERN (mem_insn.insn)))
3072d30e 1149 {
1150 if (dump_file)
1151 fprintf (dump_file, "base reg replacement failure.\n");
1152 return false;
1153 }
1154 }
1155
1156 if (mem_insn.reg1_is_const)
1157 {
1158 if (mem_insn.reg1_val == 0)
1159 {
1160 if (!inc_insn.reg1_is_const)
1161 {
1162 /* The mem looks like *r0 and the rhs of the add has two
1163 registers. */
1164 int luid = DF_INSN_LUID (inc_insn.insn);
1165 if (inc_insn.form == FORM_POST_ADD)
1166 {
48e1416a 1167 /* The trick is that we are not going to increment r0,
3072d30e 1168 we are going to increment the result of the add insn.
1169 For this trick to be correct, the result reg of
1170 the inc must be a valid addressing reg. */
98155838 1171 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1172 if (GET_MODE (inc_insn.reg_res)
1173 != targetm.addr_space.address_mode (as))
3072d30e 1174 {
1175 if (dump_file)
1176 fprintf (dump_file, "base reg mode failure.\n");
1177 return false;
1178 }
1179
1180 /* We also need to make sure that the next use of
1181 inc result is after the inc. */
48e1416a 1182 other_insn
3072d30e 1183 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1184 if (other_insn && luid > DF_INSN_LUID (other_insn))
1185 return false;
1186
1187 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
a4f59596 1188 std::swap (inc_insn.reg0, inc_insn.reg1);
3072d30e 1189 }
1190
48e1416a 1191 other_insn
3072d30e 1192 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1193 if (other_insn && luid > DF_INSN_LUID (other_insn))
1194 return false;
1195 }
1196 }
1197 /* Both the inc/add and the mem have a constant. Need to check
1198 that the constants are ok. */
1199 else if ((mem_insn.reg1_val != inc_insn.reg1_val)
1200 && (mem_insn.reg1_val != -inc_insn.reg1_val))
1201 return false;
1202 }
1203 else
1204 {
1205 /* The mem insn is of the form *(a + b) where a and b are both
1206 regs. It may be that in order to match the add or inc we
1207 need to treat it as if it was *(b + a). It may also be that
1208 the add is of the form a + c where c does not match b and
1209 then we just abandon this. */
48e1416a 1210
3072d30e 1211 int luid = DF_INSN_LUID (inc_insn.insn);
4db65708 1212 rtx_insn *other_insn;
48e1416a 1213
3072d30e 1214 /* Make sure this reg appears only once in this insn. */
1215 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg1, 1) != 1)
1216 return false;
48e1416a 1217
3072d30e 1218 if (inc_insn.form == FORM_POST_ADD)
1219 {
1220 /* For this trick to be correct, the result reg of the inc
1221 must be a valid addressing reg. */
98155838 1222 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1223 if (GET_MODE (inc_insn.reg_res)
1224 != targetm.addr_space.address_mode (as))
3072d30e 1225 {
1226 if (dump_file)
1227 fprintf (dump_file, "base reg mode failure.\n");
1228 return false;
1229 }
1230
1231 if (rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1232 {
1233 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1234 {
1235 /* See comment above on find_inc (false) call. */
1236 if (first_try)
1237 {
a4f59596 1238 std::swap (mem_insn.reg0, mem_insn.reg1);
3072d30e 1239 return find_inc (false);
1240 }
1241 else
1242 return false;
1243 }
1244
bef304b8 1245 /* Need to check that there are no assignments to b
3072d30e 1246 before the add insn. */
48e1416a 1247 other_insn
3072d30e 1248 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1249 if (other_insn && luid > DF_INSN_LUID (other_insn))
1250 return false;
1251 /* All ok for the next step. */
1252 }
1253 else
1254 {
1255 /* We know that mem_insn.reg0 must equal inc_insn.reg1
1256 or else we would not have found the inc insn. */
a4f59596 1257 std::swap (mem_insn.reg0, mem_insn.reg1);
3072d30e 1258 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1259 {
1260 /* See comment above on find_inc (false) call. */
1261 if (first_try)
1262 return find_inc (false);
1263 else
1264 return false;
1265 }
1266 /* To have gotten here know that.
1267 *(b + a)
48e1416a 1268
3072d30e 1269 ... = (b + a)
48e1416a 1270
3072d30e 1271 We also know that the lhs of the inc is not b or a. We
1272 need to make sure that there are no assignments to b
48e1416a 1273 between the mem ref and the inc. */
1274
1275 other_insn
3072d30e 1276 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_def);
1277 if (other_insn && luid > DF_INSN_LUID (other_insn))
1278 return false;
1279 }
1280
1281 /* Need to check that the next use of the add result is later than
1282 add insn since this will be the reg incremented. */
48e1416a 1283 other_insn
3072d30e 1284 = get_next_ref (REGNO (inc_insn.reg_res), bb, reg_next_use);
1285 if (other_insn && luid > DF_INSN_LUID (other_insn))
1286 return false;
1287 }
1288 else /* FORM_POST_INC. There is less to check here because we
48e1416a 1289 know that operands must line up. */
3072d30e 1290 {
1291 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1292 /* See comment above on find_inc (false) call. */
1293 {
1294 if (first_try)
1295 {
a4f59596 1296 std::swap (mem_insn.reg0, mem_insn.reg1);
3072d30e 1297 return find_inc (false);
1298 }
48e1416a 1299 else
3072d30e 1300 return false;
1301 }
48e1416a 1302
3072d30e 1303 /* To have gotten here know that.
1304 *(a + b)
48e1416a 1305
3072d30e 1306 ... = (a + b)
48e1416a 1307
3072d30e 1308 We also know that the lhs of the inc is not b. We need to make
1309 sure that there are no assignments to b between the mem ref and
1310 the inc. */
48e1416a 1311 other_insn
3072d30e 1312 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1313 if (other_insn && luid > DF_INSN_LUID (other_insn))
1314 return false;
1315 }
1316 }
1317
1318 if (inc_insn.form == FORM_POST_INC)
1319 {
48e1416a 1320 other_insn
3072d30e 1321 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_use);
1322 /* When we found inc_insn, we were looking for the
1323 next add or inc, not the next insn that used the
1324 reg. Because we are going to increment the reg
1325 in this form, we need to make sure that there
6dfdc153 1326 were no intervening uses of reg. */
3072d30e 1327 if (inc_insn.insn != other_insn)
1328 return false;
1329 }
1330
1331 return try_merge ();
1332}
1333
1334
1335/* A recursive function that walks ADDRESS_OF_X to find all of the mem
1336 uses in pat that could be used as an auto inc or dec. It then
1337 calls FIND_INC for each one. */
1338
1339static bool
1340find_mem (rtx *address_of_x)
1341{
1342 rtx x = *address_of_x;
1343 enum rtx_code code = GET_CODE (x);
1344 const char *const fmt = GET_RTX_FORMAT (code);
1345 int i;
1346
1347 if (code == MEM && REG_P (XEXP (x, 0)))
1348 {
1349 /* Match with *reg0. */
1350 mem_insn.mem_loc = address_of_x;
1351 mem_insn.reg0 = XEXP (x, 0);
1352 mem_insn.reg1_is_const = true;
1353 mem_insn.reg1_val = 0;
1354 mem_insn.reg1 = GEN_INT (0);
1355 if (find_inc (true))
1356 return true;
1357 }
1358 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
1359 && REG_P (XEXP (XEXP (x, 0), 0)))
1360 {
1361 rtx reg1 = XEXP (XEXP (x, 0), 1);
1362 mem_insn.mem_loc = address_of_x;
1363 mem_insn.reg0 = XEXP (XEXP (x, 0), 0);
1364 mem_insn.reg1 = reg1;
971ba038 1365 if (CONST_INT_P (reg1))
3072d30e 1366 {
1367 mem_insn.reg1_is_const = true;
1368 /* Match with *(reg0 + c) where c is a const. */
1369 mem_insn.reg1_val = INTVAL (reg1);
1370 if (find_inc (true))
1371 return true;
1372 }
1373 else if (REG_P (reg1))
1374 {
1375 /* Match with *(reg0 + reg1). */
1376 mem_insn.reg1_is_const = false;
1377 if (find_inc (true))
1378 return true;
1379 }
1380 }
1381
1382 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
1383 {
1384 /* If REG occurs inside a MEM used in a bit-field reference,
1385 that is unacceptable. */
1386 return false;
1387 }
1388
1389 /* Time for some deep diving. */
1390 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1391 {
1392 if (fmt[i] == 'e')
1393 {
1394 if (find_mem (&XEXP (x, i)))
1395 return true;
1396 }
1397 else if (fmt[i] == 'E')
1398 {
1399 int j;
1400 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1401 if (find_mem (&XVECEXP (x, i, j)))
1402 return true;
1403 }
1404 }
1405 return false;
1406}
1407
1408
1409/* Try to combine all incs and decs by constant values with memory
1410 references in BB. */
1411
1412static void
1413merge_in_block (int max_reg, basic_block bb)
1414{
4db65708 1415 rtx_insn *insn;
1416 rtx_insn *curr;
3072d30e 1417 int success_in_block = 0;
1418
1419 if (dump_file)
1420 fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);
1421
1422 FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
1423 {
3072d30e 1424 bool insn_is_add_or_inc = true;
1425
9845d120 1426 if (!NONDEBUG_INSN_P (insn))
f21023fe 1427 {
1428 if (DEBUG_BIND_INSN_P (insn))
1429 {
1430 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1431 df_ref use;
1432
1433 if (dump_file)
1434 dump_insn_slim (dump_file, insn);
1435
1436 FOR_EACH_INSN_INFO_USE (use, insn_info)
1437 reg_next_debug_use[DF_REF_REGNO (use)] = insn;
1438 }
1439 continue;
1440 }
3072d30e 1441
1442 /* This continue is deliberate. We do not want the uses of the
48e1416a 1443 jump put into reg_next_use because it is not considered safe to
3072d30e 1444 combine a preincrement with a jump. */
1445 if (JUMP_P (insn))
1446 continue;
1447
1448 if (dump_file)
1449 dump_insn_slim (dump_file, insn);
1450
1451 /* Does this instruction increment or decrement a register? */
1452 if (parse_add_or_inc (insn, true))
1453 {
1454 int regno = REGNO (inc_insn.reg_res);
1455 /* Cannot handle case where there are three separate regs
1456 before a mem ref. Too many moves would be needed to be
1457 profitable. */
1458 if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
1459 {
1460 mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
1461 if (mem_insn.insn)
1462 {
1463 bool ok = true;
1464 if (!inc_insn.reg1_is_const)
1465 {
1466 /* We are only here if we are going to try a
1467 HAVE_*_MODIFY_REG type transformation. c is a
1468 reg and we must sure that the path from the
1469 inc_insn to the mem_insn.insn is both def and use
1470 clear of c because the inc insn is going to move
1471 into the mem_insn.insn. */
1472 int luid = DF_INSN_LUID (mem_insn.insn);
4db65708 1473 rtx_insn *other_insn
3072d30e 1474 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
48e1416a 1475
3072d30e 1476 if (other_insn && luid > DF_INSN_LUID (other_insn))
1477 ok = false;
48e1416a 1478
1479 other_insn
3072d30e 1480 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
48e1416a 1481
3072d30e 1482 if (other_insn && luid > DF_INSN_LUID (other_insn))
1483 ok = false;
1484 }
48e1416a 1485
3072d30e 1486 if (dump_file)
1487 dump_inc_insn (dump_file);
48e1416a 1488
d4ce94c1 1489 if (ok && find_address (&PATTERN (mem_insn.insn),
1490 inc_insn.reg_res) == -1)
1491 {
1492 if (dump_file)
1493 dump_mem_insn (dump_file);
1494 if (try_merge ())
1495 {
1496 success_in_block++;
1497 insn_is_add_or_inc = false;
1498 }
1499 }
1500 }
1501
1502 if (insn_is_add_or_inc
1503 /* find_address will only recognize an address
1504 with a reg0 that's not reg_res when
1505 reg1_is_const, so cut it off early if we
1506 already know it won't match. */
1507 && inc_insn.reg1_is_const
1508 && inc_insn.reg0
1509 && inc_insn.reg0 != inc_insn.reg_res)
1510 {
1511 /* If we identified an inc_insn that uses two
1512 different pseudos, it's of the form
1513
1514 (set reg_res (plus reg0 reg1))
1515
1516 where reg1 is a constant (*).
1517
f21023fe 1518 The next use of reg_res was not identified by
d4ce94c1 1519 find_address as a mem_insn that we could turn
1520 into auto-inc, so see if we find a suitable
1521 MEM in the next use of reg0, as long as it's
1522 before any subsequent use of reg_res:
1523
1524 ... (mem (... reg0 ...)) ...
1525
1526 ... reg_res ...
1527
1528 In this case, we can turn the plus into a
1529 copy, and the reg0 in the MEM address into a
1530 post_inc of reg_res:
1531
1532 (set reg_res reg0)
1533
1534 ... (mem (... (post_add reg_res reg1) ...)) ...
1535
1536 reg_res will then have the correct value at
1537 subsequent uses, and reg0 will remain
1538 unchanged.
1539
1540 (*) We could support non-const reg1, but then
1541 we'd have to check that reg1 remains
1542 unchanged all the way to the modified MEM,
1543 and we'd have to extend find_address to
1544 represent a non-const negated reg1. */
1545 regno = REGNO (inc_insn.reg0);
1546 rtx_insn *reg0_use = get_next_ref (regno, bb,
1547 reg_next_use);
1548
1549 /* Give up if the next use of reg0 is after the next
1550 use of reg_res (same insn is ok; we might have
1551 found a MEM with reg_res before, and that failed,
1552 but now we try reg0, which might work), or defs
1553 of reg_res (same insn is not ok, we'd introduce
1554 another def in the same insn) or reg0. */
1555 if (reg0_use)
1556 {
1557 int luid = DF_INSN_LUID (reg0_use);
1558
1559 /* It might seem pointless to introduce an
1560 auto-inc if there's no subsequent use of
1561 reg_res (i.e., mem_insn.insn == NULL), but
1562 the next use might be in the next iteration
1563 of a loop, and it won't hurt if we make the
1564 change even if it's not needed. */
1565 if (mem_insn.insn
1566 && luid > DF_INSN_LUID (mem_insn.insn))
1567 reg0_use = NULL;
1568
1569 rtx_insn *other_insn
1570 = get_next_ref (REGNO (inc_insn.reg_res), bb,
1571 reg_next_def);
1572
1573 if (other_insn && luid >= DF_INSN_LUID (other_insn))
1574 reg0_use = NULL;
1575
1576 other_insn
1577 = get_next_ref (REGNO (inc_insn.reg0), bb,
1578 reg_next_def);
1579
1580 if (other_insn && luid > DF_INSN_LUID (other_insn))
1581 reg0_use = NULL;
1582 }
1583
1584 mem_insn.insn = reg0_use;
1585
1586 if (mem_insn.insn
1587 && find_address (&PATTERN (mem_insn.insn),
1588 inc_insn.reg0) == -1)
3072d30e 1589 {
1590 if (dump_file)
1591 dump_mem_insn (dump_file);
1592 if (try_merge ())
1593 {
1594 success_in_block++;
1595 insn_is_add_or_inc = false;
1596 }
1597 }
1598 }
1599 }
1600 }
1601 else
1602 {
1603 insn_is_add_or_inc = false;
1604 mem_insn.insn = insn;
1605 if (find_mem (&PATTERN (insn)))
1606 success_in_block++;
1607 }
48e1416a 1608
3072d30e 1609 /* If the inc insn was merged with a mem, the inc insn is gone
1610 and there is noting to update. */
e8403abd 1611 if (df_insn_info *insn_info = DF_INSN_INFO_GET (insn))
3072d30e 1612 {
be10bb5a 1613 df_ref def, use;
1614
3072d30e 1615 /* Need to update next use. */
be10bb5a 1616 FOR_EACH_INSN_INFO_DEF (def, insn_info)
3072d30e 1617 {
f21023fe 1618 if (reg_next_debug_use)
1619 reg_next_debug_use[DF_REF_REGNO (def)] = NULL;
3072d30e 1620 reg_next_use[DF_REF_REGNO (def)] = NULL;
1621 reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
1622 reg_next_def[DF_REF_REGNO (def)] = insn;
1623 }
48e1416a 1624
be10bb5a 1625 FOR_EACH_INSN_INFO_USE (use, insn_info)
3072d30e 1626 {
f21023fe 1627 if (reg_next_debug_use)
1628 /* This may seem surprising, but we know we may only
1629 modify the value of a REG between an insn and the
1630 next nondebug use thereof. Any debug uses after
1631 the next nondebug use can be left alone, the REG
1632 will hold the expected value there. */
1633 reg_next_debug_use[DF_REF_REGNO (use)] = NULL;
3072d30e 1634 reg_next_use[DF_REF_REGNO (use)] = insn;
1635 if (insn_is_add_or_inc)
1636 reg_next_inc_use[DF_REF_REGNO (use)] = insn;
1637 else
1638 reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
48e1416a 1639 }
3072d30e 1640 }
1641 else if (dump_file)
e8403abd 1642 fprintf (dump_file, "skipping update of deleted insn %d\n",
1643 INSN_UID (insn));
3072d30e 1644 }
1645
1646 /* If we were successful, try again. There may have been several
1647 opportunities that were interleaved. This is rare but
1648 gcc.c-torture/compile/pr17273.c actually exhibits this. */
1649 if (success_in_block)
1650 {
1651 /* In this case, we must clear these vectors since the trick of
1652 testing if the stale insn in the block will not work. */
f21023fe 1653 if (reg_next_debug_use)
1654 memset (reg_next_debug_use, 0, max_reg * sizeof (rtx));
9af5ce0c 1655 memset (reg_next_use, 0, max_reg * sizeof (rtx));
1656 memset (reg_next_inc_use, 0, max_reg * sizeof (rtx));
1657 memset (reg_next_def, 0, max_reg * sizeof (rtx));
3072d30e 1658 df_recompute_luids (bb);
1659 merge_in_block (max_reg, bb);
1660 }
1661}
1662
3072d30e 1663/* Discover auto-inc auto-dec instructions. */
1664
cbe8bda8 1665namespace {
1666
1667const pass_data pass_data_inc_dec =
3072d30e 1668{
cbe8bda8 1669 RTL_PASS, /* type */
1670 "auto_inc_dec", /* name */
1671 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 1672 TV_AUTO_INC_DEC, /* tv_id */
1673 0, /* properties_required */
1674 0, /* properties_provided */
1675 0, /* properties_destroyed */
1676 0, /* todo_flags_start */
1677 TODO_df_finish, /* todo_flags_finish */
3072d30e 1678};
cbe8bda8 1679
1680class pass_inc_dec : public rtl_opt_pass
1681{
1682public:
9af5ce0c 1683 pass_inc_dec (gcc::context *ctxt)
1684 : rtl_opt_pass (pass_data_inc_dec, ctxt)
cbe8bda8 1685 {}
1686
1687 /* opt_pass methods: */
31315c24 1688 virtual bool gate (function *)
1689 {
32aa77d9 1690 if (!AUTO_INC_DEC)
1691 return false;
1692
31315c24 1693 return (optimize > 0 && flag_auto_inc_dec);
31315c24 1694 }
1695
1696
65b0537f 1697 unsigned int execute (function *);
cbe8bda8 1698
1699}; // class pass_inc_dec
1700
65b0537f 1701unsigned int
1702pass_inc_dec::execute (function *fun ATTRIBUTE_UNUSED)
1703{
32aa77d9 1704 if (!AUTO_INC_DEC)
1705 return 0;
1706
65b0537f 1707 basic_block bb;
1708 int max_reg = max_reg_num ();
1709
1710 if (!initialized)
1711 init_decision_table ();
1712
1713 mem_tmp = gen_rtx_MEM (Pmode, NULL_RTX);
1714
1715 df_note_add_problem ();
1716 df_analyze ();
1717
f21023fe 1718 if (MAY_HAVE_DEBUG_BIND_INSNS)
1719 reg_next_debug_use = XCNEWVEC (rtx_insn *, max_reg);
1720 else
1721 /* An earlier function may have had debug binds. */
1722 reg_next_debug_use = NULL;
4db65708 1723 reg_next_use = XCNEWVEC (rtx_insn *, max_reg);
1724 reg_next_inc_use = XCNEWVEC (rtx_insn *, max_reg);
1725 reg_next_def = XCNEWVEC (rtx_insn *, max_reg);
65b0537f 1726 FOR_EACH_BB_FN (bb, fun)
1727 merge_in_block (max_reg, bb);
1728
f21023fe 1729 free (reg_next_debug_use);
65b0537f 1730 free (reg_next_use);
1731 free (reg_next_inc_use);
1732 free (reg_next_def);
1733
1734 mem_tmp = NULL;
32aa77d9 1735
65b0537f 1736 return 0;
1737}
1738
cbe8bda8 1739} // anon namespace
1740
1741rtl_opt_pass *
1742make_pass_inc_dec (gcc::context *ctxt)
1743{
1744 return new pass_inc_dec (ctxt);
1745}