]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/auto-inc-dec.c
dumping cleanup phase 1 -- Removing TODO_dump_func
[thirdparty/gcc.git] / gcc / auto-inc-dec.c
CommitLineData
6fb5fa3c 1/* Discovery of auto-inc and auto-dec instructions.
c75c517d 2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6fb5fa3c 3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
b8698a0f 4
6fb5fa3c
DB
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
6fb5fa3c
DB
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
6fb5fa3c
DB
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "tree.h"
26#include "rtl.h"
27#include "tm_p.h"
28#include "hard-reg-set.h"
29#include "basic-block.h"
30#include "insn-config.h"
31#include "regs.h"
32#include "flags.h"
33#include "output.h"
34#include "function.h"
35#include "except.h"
718f9c0f 36#include "diagnostic-core.h"
6fb5fa3c
DB
37#include "recog.h"
38#include "expr.h"
39#include "timevar.h"
40#include "tree-pass.h"
41#include "df.h"
42#include "dbgcnt.h"
d4ebfa65 43#include "target.h"
6fb5fa3c
DB
44
45/* This pass was originally removed from flow.c. However there is
46 almost nothing that remains of that code.
47
48 There are (4) basic forms that are matched:
49
1154c4fa 50 (1) FORM_PRE_ADD
6fb5fa3c
DB
51 a <- b + c
52 ...
53 *a
54
55 becomes
56
57 a <- b
58 ...
59 *(a += c) pre
1154c4fa
SB
60
61
62 (2) FORM_PRE_INC
6fb5fa3c
DB
63 a += c
64 ...
65 *a
66
67 becomes
68
69 *(a += c) pre
1154c4fa
SB
70
71
72 (3) FORM_POST_ADD
6fb5fa3c
DB
73 *a
74 ...
75 b <- a + c
76
b8698a0f 77 (For this case to be true, b must not be assigned or used between
1154c4fa 78 the *a and the assignment to b. B must also be a Pmode reg.)
6fb5fa3c
DB
79
80 becomes
81
82 b <- a
83 ...
84 *(b += c) post
1154c4fa
SB
85
86
87 (4) FORM_POST_INC
6fb5fa3c
DB
88 *a
89 ...
90 a <- a + c
91
92 becomes
93
94 *(a += c) post
95
96 There are three types of values of c.
97
98 1) c is a constant equal to the width of the value being accessed by
99 the pointer. This is useful for machines that have
100 HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
101 HAVE_POST_DECREMENT defined.
102
0d52bcc1 103 2) c is a constant not equal to the width of the value being accessed
6fb5fa3c
DB
104 by the pointer. This is useful for machines that have
105 HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
106
b8698a0f
L
107 3) c is a register. This is useful for machines that have
108 HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
109
6fb5fa3c
DB
110 The is one special case: if a already had an offset equal to it +-
111 its width and that offset is equal to -c when the increment was
112 before the ref or +c if the increment was after the ref, then if we
1154c4fa 113 can do the combination but switch the pre/post bit. */
6fb5fa3c 114
6fb5fa3c
DB
115#ifdef AUTO_INC_DEC
116
117enum form
118{
119 FORM_PRE_ADD,
120 FORM_PRE_INC,
121 FORM_POST_ADD,
122 FORM_POST_INC,
123 FORM_last
124};
125
126/* The states of the second operands of mem refs and inc insns. If no
127 second operand of the mem_ref was found, it is assumed to just be
128 ZERO. SIZE is the size of the mode accessed in the memref. The
129 ANY is used for constants that are not +-size or 0. REG is used if
130 the forms are reg1 + reg2. */
131
b8698a0f 132enum inc_state
6fb5fa3c
DB
133{
134 INC_ZERO, /* == 0 */
135 INC_NEG_SIZE, /* == +size */
136 INC_POS_SIZE, /* == -size */
137 INC_NEG_ANY, /* == some -constant */
138 INC_POS_ANY, /* == some +constant */
139 INC_REG, /* == some register */
140 INC_last
141};
142
143/* The eight forms that pre/post inc/dec can take. */
144enum gen_form
145{
146 NOTHING,
147 SIMPLE_PRE_INC, /* ++size */
148 SIMPLE_POST_INC, /* size++ */
149 SIMPLE_PRE_DEC, /* --size */
150 SIMPLE_POST_DEC, /* size-- */
151 DISP_PRE, /* ++con */
152 DISP_POST, /* con++ */
153 REG_PRE, /* ++reg */
154 REG_POST /* reg++ */
155};
156
157/* Tmp mem rtx for use in cost modeling. */
158static rtx mem_tmp;
159
160static enum inc_state
161set_inc_state (HOST_WIDE_INT val, int size)
162{
163 if (val == 0)
164 return INC_ZERO;
165 if (val < 0)
166 return (val == -size) ? INC_NEG_SIZE : INC_NEG_ANY;
167 else
168 return (val == size) ? INC_POS_SIZE : INC_POS_ANY;
169}
170
171/* The DECISION_TABLE that describes what form, if any, the increment
172 or decrement will take. It is a three dimensional table. The first
173 index is the type of constant or register found as the second
174 operand of the inc insn. The second index is the type of constant
175 or register found as the second operand of the memory reference (if
176 no second operand exists, 0 is used). The third index is the form
177 and location (relative to the mem reference) of inc insn. */
178
179static bool initialized = false;
180static enum gen_form decision_table[INC_last][INC_last][FORM_last];
181
182static void
183init_decision_table (void)
184{
185 enum gen_form value;
186
187 if (HAVE_PRE_INCREMENT || HAVE_PRE_MODIFY_DISP)
188 {
189 /* Prefer the simple form if both are available. */
190 value = (HAVE_PRE_INCREMENT) ? SIMPLE_PRE_INC : DISP_PRE;
191
192 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
193 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_INC] = value;
194
195 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_ADD] = value;
196 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_INC] = value;
197 }
198
199 if (HAVE_POST_INCREMENT || HAVE_POST_MODIFY_DISP)
200 {
201 /* Prefer the simple form if both are available. */
202 value = (HAVE_POST_INCREMENT) ? SIMPLE_POST_INC : DISP_POST;
203
204 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_ADD] = value;
205 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_INC] = value;
206
207 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_ADD] = value;
208 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_INC] = value;
209 }
210
211 if (HAVE_PRE_DECREMENT || HAVE_PRE_MODIFY_DISP)
212 {
213 /* Prefer the simple form if both are available. */
214 value = (HAVE_PRE_DECREMENT) ? SIMPLE_PRE_DEC : DISP_PRE;
215
216 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
217 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_INC] = value;
218
219 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_ADD] = value;
220 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_INC] = value;
221 }
222
223 if (HAVE_POST_DECREMENT || HAVE_POST_MODIFY_DISP)
224 {
225 /* Prefer the simple form if both are available. */
226 value = (HAVE_POST_DECREMENT) ? SIMPLE_POST_DEC : DISP_POST;
227
228 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_ADD] = value;
229 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_INC] = value;
230
231 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_ADD] = value;
232 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_INC] = value;
233 }
234
235 if (HAVE_PRE_MODIFY_DISP)
236 {
237 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
238 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
239
240 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_ADD] = DISP_PRE;
241 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_INC] = DISP_PRE;
242
243 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
244 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
245
246 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_ADD] = DISP_PRE;
247 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_INC] = DISP_PRE;
248 }
249
250 if (HAVE_POST_MODIFY_DISP)
251 {
252 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
253 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
254
255 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_ADD] = DISP_POST;
256 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_INC] = DISP_POST;
257
258 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
259 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
260
261 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_ADD] = DISP_POST;
262 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_INC] = DISP_POST;
263 }
264
265 /* This is much simpler than the other cases because we do not look
266 for the reg1-reg2 case. Note that we do not have a INC_POS_REG
267 and INC_NEG_REG states. Most of the use of such states would be
268 on a target that had an R1 - R2 update address form.
269
270 There is the remote possibility that you could also catch a = a +
271 b; *(a - b) as a postdecrement of (a + b). However, it is
272 unclear if *(a - b) would ever be generated on a machine that did
273 not have that kind of addressing mode. The IA-64 and RS6000 will
274 not do this, and I cannot speak for any other. If any
275 architecture does have an a-b update for, these cases should be
276 added. */
277 if (HAVE_PRE_MODIFY_REG)
278 {
279 decision_table[INC_REG][INC_ZERO][FORM_PRE_ADD] = REG_PRE;
280 decision_table[INC_REG][INC_ZERO][FORM_PRE_INC] = REG_PRE;
281
282 decision_table[INC_REG][INC_REG][FORM_POST_ADD] = REG_PRE;
283 decision_table[INC_REG][INC_REG][FORM_POST_INC] = REG_PRE;
284 }
285
286 if (HAVE_POST_MODIFY_REG)
287 {
288 decision_table[INC_REG][INC_ZERO][FORM_POST_ADD] = REG_POST;
289 decision_table[INC_REG][INC_ZERO][FORM_POST_INC] = REG_POST;
290 }
291
292 initialized = true;
293}
294
295/* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
296 "reg_res = reg0+c". */
297
b8698a0f 298static struct inc_insn
6fb5fa3c
DB
299{
300 rtx insn; /* The insn being parsed. */
301 rtx pat; /* The pattern of the insn. */
302 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
303 enum form form;
304 rtx reg_res;
305 rtx reg0;
306 rtx reg1;
307 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
308 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
309} inc_insn;
310
311
312/* Dump the parsed inc insn to FILE. */
313
b8698a0f 314static void
6fb5fa3c
DB
315dump_inc_insn (FILE *file)
316{
b8698a0f 317 const char *f = ((inc_insn.form == FORM_PRE_ADD)
6fb5fa3c
DB
318 || (inc_insn.form == FORM_PRE_INC)) ? "pre" : "post";
319
320 dump_insn_slim (file, inc_insn.insn);
321
322 switch (inc_insn.form)
323 {
324 case FORM_PRE_ADD:
325 case FORM_POST_ADD:
326 if (inc_insn.reg1_is_const)
b8698a0f
L
327 fprintf (file, "found %s add(%d) r[%d]=r[%d]+%d\n",
328 f, INSN_UID (inc_insn.insn),
329 REGNO (inc_insn.reg_res),
6fb5fa3c
DB
330 REGNO (inc_insn.reg0), (int) inc_insn.reg1_val);
331 else
b8698a0f
L
332 fprintf (file, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
333 f, INSN_UID (inc_insn.insn),
334 REGNO (inc_insn.reg_res),
6fb5fa3c
DB
335 REGNO (inc_insn.reg0), REGNO (inc_insn.reg1));
336 break;
b8698a0f 337
6fb5fa3c
DB
338 case FORM_PRE_INC:
339 case FORM_POST_INC:
340 if (inc_insn.reg1_is_const)
b8698a0f
L
341 fprintf (file, "found %s inc(%d) r[%d]+=%d\n",
342 f, INSN_UID (inc_insn.insn),
6fb5fa3c
DB
343 REGNO (inc_insn.reg_res), (int) inc_insn.reg1_val);
344 else
b8698a0f
L
345 fprintf (file, "found %s inc(%d) r[%d]+=r[%d]\n",
346 f, INSN_UID (inc_insn.insn),
6fb5fa3c
DB
347 REGNO (inc_insn.reg_res), REGNO (inc_insn.reg1));
348 break;
349
350 default:
351 break;
352 }
353}
354
355
356/* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
357
358static struct mem_insn
359{
360 rtx insn; /* The insn being parsed. */
361 rtx pat; /* The pattern of the insn. */
362 rtx *mem_loc; /* The address of the field that holds the mem */
363 /* that is to be replaced. */
364 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
365 rtx reg0;
366 rtx reg1; /* This is either a reg or a const depending on
367 reg1_is_const. */
368 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
369 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
370} mem_insn;
371
372
373/* Dump the parsed mem insn to FILE. */
374
b8698a0f 375static void
6fb5fa3c
DB
376dump_mem_insn (FILE *file)
377{
378 dump_insn_slim (file, mem_insn.insn);
379
380 if (mem_insn.reg1_is_const)
b8698a0f
L
381 fprintf (file, "found mem(%d) *(r[%d]+%d)\n",
382 INSN_UID (mem_insn.insn),
6fb5fa3c
DB
383 REGNO (mem_insn.reg0), (int) mem_insn.reg1_val);
384 else
b8698a0f
L
385 fprintf (file, "found mem(%d) *(r[%d]+r[%d])\n",
386 INSN_UID (mem_insn.insn),
6fb5fa3c
DB
387 REGNO (mem_insn.reg0), REGNO (mem_insn.reg1));
388}
389
390
391/* The following three arrays contain pointers to instructions. They
392 are indexed by REGNO. At any point in the basic block where we are
393 looking these three arrays contain, respectively, the next insn
394 that uses REGNO, the next inc or add insn that uses REGNO and the
395 next insn that sets REGNO.
396
397 The arrays are not cleared when we move from block to block so
398 whenever an insn is retrieved from these arrays, it's block number
399 must be compared with the current block.
400*/
401
402static rtx *reg_next_use = NULL;
403static rtx *reg_next_inc_use = NULL;
404static rtx *reg_next_def = NULL;
405
406
407/* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
408 not really care about moving any other notes from the inc or add
409 insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
0d52bcc1 410 does not appear that there are any other kinds of relevant notes. */
6fb5fa3c 411
b8698a0f 412static void
6fb5fa3c
DB
413move_dead_notes (rtx to_insn, rtx from_insn, rtx pattern)
414{
b8698a0f 415 rtx note;
6fb5fa3c
DB
416 rtx next_note;
417 rtx prev_note = NULL;
418
419 for (note = REG_NOTES (from_insn); note; note = next_note)
420 {
421 next_note = XEXP (note, 1);
b8698a0f 422
6fb5fa3c
DB
423 if ((REG_NOTE_KIND (note) == REG_DEAD)
424 && pattern == XEXP (note, 0))
425 {
426 XEXP (note, 1) = REG_NOTES (to_insn);
427 REG_NOTES (to_insn) = note;
428 if (prev_note)
429 XEXP (prev_note, 1) = next_note;
430 else
431 REG_NOTES (from_insn) = next_note;
432 }
433 else prev_note = note;
434 }
435}
436
437
438/* Create a mov insn DEST_REG <- SRC_REG and insert it before
439 NEXT_INSN. */
440
441static rtx
442insert_move_insn_before (rtx next_insn, rtx dest_reg, rtx src_reg)
443{
444 rtx insns;
445
446 start_sequence ();
447 emit_move_insn (dest_reg, src_reg);
448 insns = get_insns ();
449 end_sequence ();
450 emit_insn_before (insns, next_insn);
451 return insns;
452}
453
b8698a0f 454
6fb5fa3c
DB
455/* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
456 increment of INC_REG. To have reached this point, the change is a
457 legitimate one from a dataflow point of view. The only questions
458 are is this a valid change to the instruction and is this a
459 profitable change to the instruction. */
460
461static bool
462attempt_change (rtx new_addr, rtx inc_reg)
463{
464 /* There are four cases: For the two cases that involve an add
465 instruction, we are going to have to delete the add and insert a
466 mov. We are going to assume that the mov is free. This is
467 fairly early in the backend and there are a lot of opportunities
468 for removing that move later. In particular, there is the case
469 where the move may be dead, this is what dead code elimination
470 passes are for. The two cases where we have an inc insn will be
471 handled mov free. */
472
b0de17ef 473 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
6fb5fa3c
DB
474 rtx mov_insn = NULL;
475 int regno;
476 rtx mem = *mem_insn.mem_loc;
477 enum machine_mode mode = GET_MODE (mem);
478 rtx new_mem;
479 int old_cost = 0;
480 int new_cost = 0;
f40751dd 481 bool speed = optimize_bb_for_speed_p (bb);
6fb5fa3c
DB
482
483 PUT_MODE (mem_tmp, mode);
484 XEXP (mem_tmp, 0) = new_addr;
485
bbbbb16a
ILT
486 old_cost = (rtx_cost (mem, SET, speed)
487 + rtx_cost (PATTERN (inc_insn.insn), SET, speed));
488 new_cost = rtx_cost (mem_tmp, SET, speed);
489
6fb5fa3c
DB
490 /* The first item of business is to see if this is profitable. */
491 if (old_cost < new_cost)
492 {
493 if (dump_file)
494 fprintf (dump_file, "cost failure old=%d new=%d\n", old_cost, new_cost);
495 return false;
496 }
497
498 /* Jump thru a lot of hoops to keep the attributes up to date. We
499 do not want to call one of the change address variants that take
500 an offset even though we know the offset in many cases. These
501 assume you are changing where the address is pointing by the
502 offset. */
503 new_mem = replace_equiv_address_nv (mem, new_addr);
504 if (! validate_change (mem_insn.insn, mem_insn.mem_loc, new_mem, 0))
505 {
506 if (dump_file)
b8698a0f 507 fprintf (dump_file, "validation failure\n");
6fb5fa3c
DB
508 return false;
509 }
510
511 /* From here to the end of the function we are committed to the
512 change, i.e. nothing fails. Generate any necessary movs, move
513 any regnotes, and fix up the reg_next_{use,inc_use,def}. */
514 switch (inc_insn.form)
515 {
516 case FORM_PRE_ADD:
c8305c98
KZ
517 /* Replace the addition with a move. Do it at the location of
518 the addition since the operand of the addition may change
519 before the memory reference. */
b8698a0f 520 mov_insn = insert_move_insn_before (inc_insn.insn,
6fb5fa3c
DB
521 inc_insn.reg_res, inc_insn.reg0);
522 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
523
524 regno = REGNO (inc_insn.reg_res);
525 reg_next_def[regno] = mov_insn;
526 reg_next_use[regno] = NULL;
527 regno = REGNO (inc_insn.reg0);
528 reg_next_use[regno] = mov_insn;
529 df_recompute_luids (bb);
530 break;
531
532 case FORM_POST_INC:
533 regno = REGNO (inc_insn.reg_res);
534 if (reg_next_use[regno] == reg_next_inc_use[regno])
535 reg_next_inc_use[regno] = NULL;
536
537 /* Fallthru. */
538 case FORM_PRE_INC:
539 regno = REGNO (inc_insn.reg_res);
540 reg_next_def[regno] = mem_insn.insn;
541 reg_next_use[regno] = NULL;
542
543 break;
544
545 case FORM_POST_ADD:
b8698a0f 546 mov_insn = insert_move_insn_before (mem_insn.insn,
6fb5fa3c
DB
547 inc_insn.reg_res, inc_insn.reg0);
548 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
549
550 /* Do not move anything to the mov insn because the instruction
551 pointer for the main iteration has not yet hit that. It is
552 still pointing to the mem insn. */
553 regno = REGNO (inc_insn.reg_res);
554 reg_next_def[regno] = mem_insn.insn;
555 reg_next_use[regno] = NULL;
556
557 regno = REGNO (inc_insn.reg0);
558 reg_next_use[regno] = mem_insn.insn;
559 if ((reg_next_use[regno] == reg_next_inc_use[regno])
560 || (reg_next_inc_use[regno] == inc_insn.insn))
561 reg_next_inc_use[regno] = NULL;
562 df_recompute_luids (bb);
563 break;
564
565 case FORM_last:
566 default:
567 gcc_unreachable ();
568 }
569
570 if (!inc_insn.reg1_is_const)
571 {
572 regno = REGNO (inc_insn.reg1);
573 reg_next_use[regno] = mem_insn.insn;
574 if ((reg_next_use[regno] == reg_next_inc_use[regno])
575 || (reg_next_inc_use[regno] == inc_insn.insn))
576 reg_next_inc_use[regno] = NULL;
577 }
578
579 delete_insn (inc_insn.insn);
580
581 if (dump_file && mov_insn)
582 {
583 fprintf (dump_file, "inserting mov ");
584 dump_insn_slim (dump_file, mov_insn);
585 }
586
587 /* Record that this insn has an implicit side effect. */
65c5f2a6 588 add_reg_note (mem_insn.insn, REG_INC, inc_reg);
6fb5fa3c
DB
589
590 if (dump_file)
591 {
592 fprintf (dump_file, "****success ");
593 dump_insn_slim (dump_file, mem_insn.insn);
594 }
595
596 return true;
597}
598
599
600/* Try to combine the instruction in INC_INSN with the instruction in
601 MEM_INSN. First the form is determined using the DECISION_TABLE
fa10beec 602 and the results of parsing the INC_INSN and the MEM_INSN.
6fb5fa3c
DB
603 Assuming the form is ok, a prototype new address is built which is
604 passed to ATTEMPT_CHANGE for final processing. */
605
b8698a0f 606static bool
6fb5fa3c
DB
607try_merge (void)
608{
609 enum gen_form gen_form;
610 rtx mem = *mem_insn.mem_loc;
611 rtx inc_reg = inc_insn.form == FORM_POST_ADD ?
612 inc_insn.reg_res : mem_insn.reg0;
613
614 /* The width of the mem being accessed. */
615 int size = GET_MODE_SIZE (GET_MODE (mem));
616 rtx last_insn = NULL;
d4ebfa65 617 enum machine_mode reg_mode = GET_MODE (inc_reg);
6fb5fa3c
DB
618
619 switch (inc_insn.form)
620 {
621 case FORM_PRE_ADD:
622 case FORM_PRE_INC:
623 last_insn = mem_insn.insn;
624 break;
625 case FORM_POST_INC:
626 case FORM_POST_ADD:
627 last_insn = inc_insn.insn;
628 break;
629 case FORM_last:
630 default:
631 gcc_unreachable ();
632 }
633
634 /* Cannot handle auto inc of the stack. */
635 if (inc_reg == stack_pointer_rtx)
636 {
637 if (dump_file)
638 fprintf (dump_file, "cannot inc stack %d failure\n", REGNO (inc_reg));
639 return false;
640 }
641
642 /* Look to see if the inc register is dead after the memory
c8305c98 643 reference. If it is, do not do the combination. */
6fb5fa3c
DB
644 if (find_regno_note (last_insn, REG_DEAD, REGNO (inc_reg)))
645 {
646 if (dump_file)
647 fprintf (dump_file, "dead failure %d\n", REGNO (inc_reg));
648 return false;
649 }
650
b8698a0f 651 mem_insn.reg1_state = (mem_insn.reg1_is_const)
6fb5fa3c
DB
652 ? set_inc_state (mem_insn.reg1_val, size) : INC_REG;
653 inc_insn.reg1_state = (inc_insn.reg1_is_const)
654 ? set_inc_state (inc_insn.reg1_val, size) : INC_REG;
655
656 /* Now get the form that we are generating. */
b8698a0f 657 gen_form = decision_table
6fb5fa3c
DB
658 [inc_insn.reg1_state][mem_insn.reg1_state][inc_insn.form];
659
660 if (dbg_cnt (auto_inc_dec) == false)
661 return false;
662
663 switch (gen_form)
664 {
665 default:
666 case NOTHING:
667 return false;
668
669 case SIMPLE_PRE_INC: /* ++size */
670 if (dump_file)
671 fprintf (dump_file, "trying SIMPLE_PRE_INC\n");
d4ebfa65 672 return attempt_change (gen_rtx_PRE_INC (reg_mode, inc_reg), inc_reg);
6fb5fa3c 673 break;
b8698a0f 674
6fb5fa3c
DB
675 case SIMPLE_POST_INC: /* size++ */
676 if (dump_file)
677 fprintf (dump_file, "trying SIMPLE_POST_INC\n");
d4ebfa65 678 return attempt_change (gen_rtx_POST_INC (reg_mode, inc_reg), inc_reg);
6fb5fa3c 679 break;
b8698a0f 680
6fb5fa3c
DB
681 case SIMPLE_PRE_DEC: /* --size */
682 if (dump_file)
683 fprintf (dump_file, "trying SIMPLE_PRE_DEC\n");
d4ebfa65 684 return attempt_change (gen_rtx_PRE_DEC (reg_mode, inc_reg), inc_reg);
6fb5fa3c 685 break;
b8698a0f 686
6fb5fa3c
DB
687 case SIMPLE_POST_DEC: /* size-- */
688 if (dump_file)
689 fprintf (dump_file, "trying SIMPLE_POST_DEC\n");
d4ebfa65 690 return attempt_change (gen_rtx_POST_DEC (reg_mode, inc_reg), inc_reg);
6fb5fa3c 691 break;
b8698a0f 692
6fb5fa3c
DB
693 case DISP_PRE: /* ++con */
694 if (dump_file)
695 fprintf (dump_file, "trying DISP_PRE\n");
d4ebfa65 696 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
6fb5fa3c 697 inc_reg,
d4ebfa65 698 gen_rtx_PLUS (reg_mode,
6fb5fa3c
DB
699 inc_reg,
700 inc_insn.reg1)),
701 inc_reg);
702 break;
b8698a0f 703
6fb5fa3c
DB
704 case DISP_POST: /* con++ */
705 if (dump_file)
706 fprintf (dump_file, "trying POST_DISP\n");
d4ebfa65 707 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
6fb5fa3c 708 inc_reg,
d4ebfa65 709 gen_rtx_PLUS (reg_mode,
6fb5fa3c
DB
710 inc_reg,
711 inc_insn.reg1)),
712 inc_reg);
713 break;
b8698a0f 714
6fb5fa3c
DB
715 case REG_PRE: /* ++reg */
716 if (dump_file)
717 fprintf (dump_file, "trying PRE_REG\n");
d4ebfa65 718 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
6fb5fa3c 719 inc_reg,
d4ebfa65 720 gen_rtx_PLUS (reg_mode,
6fb5fa3c
DB
721 inc_reg,
722 inc_insn.reg1)),
723 inc_reg);
724 break;
b8698a0f 725
6fb5fa3c
DB
726 case REG_POST: /* reg++ */
727 if (dump_file)
728 fprintf (dump_file, "trying POST_REG\n");
d4ebfa65 729 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
6fb5fa3c 730 inc_reg,
d4ebfa65 731 gen_rtx_PLUS (reg_mode,
6fb5fa3c
DB
732 inc_reg,
733 inc_insn.reg1)),
734 inc_reg);
735 break;
736 }
737}
738
739/* Return the next insn that uses (if reg_next_use is passed in
740 NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
741 REGNO in BB. */
742
743static rtx
744get_next_ref (int regno, basic_block bb, rtx *next_array)
745{
746 rtx insn = next_array[regno];
747
748 /* Lazy about cleaning out the next_arrays. */
b0de17ef 749 if (insn && BLOCK_FOR_INSN (insn) != bb)
6fb5fa3c
DB
750 {
751 next_array[regno] = NULL;
752 insn = NULL;
753 }
754
755 return insn;
756}
757
758
759/* Reverse the operands in a mem insn. */
760
b8698a0f 761static void
6fb5fa3c
DB
762reverse_mem (void)
763{
b8698a0f 764 rtx tmp = mem_insn.reg1;
6fb5fa3c
DB
765 mem_insn.reg1 = mem_insn.reg0;
766 mem_insn.reg0 = tmp;
767}
768
769
770/* Reverse the operands in a inc insn. */
771
b8698a0f 772static void
6fb5fa3c
DB
773reverse_inc (void)
774{
b8698a0f 775 rtx tmp = inc_insn.reg1;
6fb5fa3c
DB
776 inc_insn.reg1 = inc_insn.reg0;
777 inc_insn.reg0 = tmp;
778}
779
780
781/* Return true if INSN is of a form "a = b op c" where a and b are
782 regs. op is + if c is a reg and +|- if c is a const. Fill in
b8698a0f
L
783 INC_INSN with what is found.
784
6fb5fa3c
DB
785 This function is called in two contexts, if BEFORE_MEM is true,
786 this is called for each insn in the basic block. If BEFORE_MEM is
787 false, it is called for the instruction in the block that uses the
788 index register for some memory reference that is currently being
789 processed. */
790
791static bool
792parse_add_or_inc (rtx insn, bool before_mem)
793{
794 rtx pat = single_set (insn);
795 if (!pat)
796 return false;
797
798 /* Result must be single reg. */
799 if (!REG_P (SET_DEST (pat)))
800 return false;
801
802 if ((GET_CODE (SET_SRC (pat)) != PLUS)
803 && (GET_CODE (SET_SRC (pat)) != MINUS))
804 return false;
805
806 if (!REG_P (XEXP (SET_SRC (pat), 0)))
807 return false;
808
809 inc_insn.insn = insn;
810 inc_insn.pat = pat;
811 inc_insn.reg_res = SET_DEST (pat);
812 inc_insn.reg0 = XEXP (SET_SRC (pat), 0);
813 if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg0))
814 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
b8698a0f 815 else
6fb5fa3c
DB
816 inc_insn.form = before_mem ? FORM_PRE_ADD : FORM_POST_ADD;
817
481683e1 818 if (CONST_INT_P (XEXP (SET_SRC (pat), 1)))
6fb5fa3c
DB
819 {
820 /* Process a = b + c where c is a const. */
821 inc_insn.reg1_is_const = true;
822 if (GET_CODE (SET_SRC (pat)) == PLUS)
823 {
824 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
825 inc_insn.reg1_val = INTVAL (inc_insn.reg1);
826 }
827 else
828 {
829 inc_insn.reg1_val = -INTVAL (XEXP (SET_SRC (pat), 1));
830 inc_insn.reg1 = GEN_INT (inc_insn.reg1_val);
831 }
832 return true;
833 }
834 else if ((HAVE_PRE_MODIFY_REG || HAVE_POST_MODIFY_REG)
835 && (REG_P (XEXP (SET_SRC (pat), 1)))
836 && GET_CODE (SET_SRC (pat)) == PLUS)
837 {
838 /* Process a = b + c where c is a reg. */
839 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
840 inc_insn.reg1_is_const = false;
b8698a0f
L
841
842 if (inc_insn.form == FORM_PRE_INC
6fb5fa3c
DB
843 || inc_insn.form == FORM_POST_INC)
844 return true;
845 else if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg1))
846 {
847 /* Reverse the two operands and turn *_ADD into *_INC since
848 a = c + a. */
849 reverse_inc ();
850 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
851 return true;
852 }
b8698a0f 853 else
6fb5fa3c
DB
854 return true;
855 }
856
857 return false;
858}
859
860
861/* A recursive function that checks all of the mem uses in
862 ADDRESS_OF_X to see if any single one of them is compatible with
863 what has been found in inc_insn.
864
b8698a0f 865 -1 is returned for success. 0 is returned if nothing was found and
6fb5fa3c
DB
866 1 is returned for failure. */
867
868static int
869find_address (rtx *address_of_x)
870{
871 rtx x = *address_of_x;
872 enum rtx_code code = GET_CODE (x);
873 const char *const fmt = GET_RTX_FORMAT (code);
874 int i;
875 int value = 0;
876 int tem;
877
878 if (code == MEM && rtx_equal_p (XEXP (x, 0), inc_insn.reg_res))
879 {
880 /* Match with *reg0. */
881 mem_insn.mem_loc = address_of_x;
882 mem_insn.reg0 = inc_insn.reg_res;
883 mem_insn.reg1_is_const = true;
884 mem_insn.reg1_val = 0;
885 mem_insn.reg1 = GEN_INT (0);
886 return -1;
887 }
888 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
889 && rtx_equal_p (XEXP (XEXP (x, 0), 0), inc_insn.reg_res))
890 {
891 rtx b = XEXP (XEXP (x, 0), 1);
892 mem_insn.mem_loc = address_of_x;
893 mem_insn.reg0 = inc_insn.reg_res;
894 mem_insn.reg1 = b;
895 mem_insn.reg1_is_const = inc_insn.reg1_is_const;
481683e1 896 if (CONST_INT_P (b))
6fb5fa3c
DB
897 {
898 /* Match with *(reg0 + reg1) where reg1 is a const. */
899 HOST_WIDE_INT val = INTVAL (b);
b8698a0f 900 if (inc_insn.reg1_is_const
6fb5fa3c
DB
901 && (inc_insn.reg1_val == val || inc_insn.reg1_val == -val))
902 {
903 mem_insn.reg1_val = val;
904 return -1;
905 }
906 }
b8698a0f
L
907 else if (!inc_insn.reg1_is_const
908 && rtx_equal_p (inc_insn.reg1, b))
6fb5fa3c
DB
909 /* Match with *(reg0 + reg1). */
910 return -1;
911 }
912
913 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
914 {
915 /* If REG occurs inside a MEM used in a bit-field reference,
916 that is unacceptable. */
917 if (find_address (&XEXP (x, 0)))
918 return 1;
919 }
920
921 if (x == inc_insn.reg_res)
922 return 1;
923
924 /* Time for some deep diving. */
925 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
926 {
927 if (fmt[i] == 'e')
928 {
929 tem = find_address (&XEXP (x, i));
930 /* If this is the first use, let it go so the rest of the
931 insn can be checked. */
932 if (value == 0)
933 value = tem;
934 else if (tem != 0)
935 /* More than one match was found. */
936 return 1;
937 }
938 else if (fmt[i] == 'E')
939 {
940 int j;
941 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
942 {
943 tem = find_address (&XVECEXP (x, i, j));
944 /* If this is the first use, let it go so the rest of
945 the insn can be checked. */
946 if (value == 0)
947 value = tem;
948 else if (tem != 0)
949 /* More than one match was found. */
950 return 1;
951 }
952 }
953 }
954 return value;
955}
956
957/* Once a suitable mem reference has been found and the MEM_INSN
958 structure has been filled in, FIND_INC is called to see if there is
959 a suitable add or inc insn that follows the mem reference and
960 determine if it is suitable to merge.
961
962 In the case where the MEM_INSN has two registers in the reference,
963 this function may be called recursively. The first time looking
964 for an add of the first register, and if that fails, looking for an
965 add of the second register. The FIRST_TRY parameter is used to
966 only allow the parameters to be reversed once. */
967
b8698a0f 968static bool
6fb5fa3c
DB
969find_inc (bool first_try)
970{
971 rtx insn;
b0de17ef 972 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
6fb5fa3c 973 rtx other_insn;
57512f53 974 df_ref *def_rec;
6fb5fa3c
DB
975
976 /* Make sure this reg appears only once in this insn. */
977 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg0, 1) != 1)
978 {
979 if (dump_file)
b8698a0f 980 fprintf (dump_file, "mem count failure\n");
6fb5fa3c
DB
981 return false;
982 }
983
984 if (dump_file)
985 dump_mem_insn (dump_file);
986
987 /* Find the next use that is an inc. */
b8698a0f 988 insn = get_next_ref (REGNO (mem_insn.reg0),
b0de17ef 989 BLOCK_FOR_INSN (mem_insn.insn),
6fb5fa3c
DB
990 reg_next_inc_use);
991 if (!insn)
992 return false;
993
994 /* Even though we know the next use is an add or inc because it came
995 from the reg_next_inc_use, we must still reparse. */
996 if (!parse_add_or_inc (insn, false))
997 {
998 /* Next use was not an add. Look for one extra case. It could be
999 that we have:
b8698a0f 1000
6fb5fa3c
DB
1001 *(a + b)
1002 ...= a;
1003 ...= b + a
b8698a0f 1004
6fb5fa3c
DB
1005 if we reverse the operands in the mem ref we would
1006 find this. Only try it once though. */
1007 if (first_try && !mem_insn.reg1_is_const)
1008 {
1009 reverse_mem ();
1010 return find_inc (false);
1011 }
1012 else
1013 return false;
1014 }
1015
b8698a0f 1016 /* Need to assure that none of the operands of the inc instruction are
6fb5fa3c
DB
1017 assigned to by the mem insn. */
1018 for (def_rec = DF_INSN_DEFS (mem_insn.insn); *def_rec; def_rec++)
1019 {
57512f53 1020 df_ref def = *def_rec;
6fb5fa3c 1021 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 1022 if ((regno == REGNO (inc_insn.reg0))
6fb5fa3c
DB
1023 || (regno == REGNO (inc_insn.reg_res)))
1024 {
1025 if (dump_file)
1026 fprintf (dump_file, "inc conflicts with store failure.\n");
1027 return false;
1028 }
1029 if (!inc_insn.reg1_is_const && (regno == REGNO (inc_insn.reg1)))
1030 {
1031 if (dump_file)
1032 fprintf (dump_file, "inc conflicts with store failure.\n");
1033 return false;
1034 }
1035 }
1036
1037 if (dump_file)
1038 dump_inc_insn (dump_file);
1039
1040 if (inc_insn.form == FORM_POST_ADD)
1041 {
1042 /* Make sure that there is no insn that assigns to inc_insn.res
1043 between the mem_insn and the inc_insn. */
b8698a0f 1044 rtx other_insn = get_next_ref (REGNO (inc_insn.reg_res),
b0de17ef 1045 BLOCK_FOR_INSN (mem_insn.insn),
6fb5fa3c
DB
1046 reg_next_def);
1047 if (other_insn != inc_insn.insn)
1048 {
1049 if (dump_file)
b8698a0f 1050 fprintf (dump_file,
6fb5fa3c
DB
1051 "result of add is assigned to between mem and inc insns.\n");
1052 return false;
1053 }
1054
b8698a0f 1055 other_insn = get_next_ref (REGNO (inc_insn.reg_res),
b0de17ef 1056 BLOCK_FOR_INSN (mem_insn.insn),
6fb5fa3c 1057 reg_next_use);
b8698a0f 1058 if (other_insn
6fb5fa3c
DB
1059 && (other_insn != inc_insn.insn)
1060 && (DF_INSN_LUID (inc_insn.insn) > DF_INSN_LUID (other_insn)))
1061 {
1062 if (dump_file)
b8698a0f 1063 fprintf (dump_file,
6fb5fa3c
DB
1064 "result of add is used between mem and inc insns.\n");
1065 return false;
1066 }
1067
1068 /* For the post_add to work, the result_reg of the inc must not be
1069 used in the mem insn since this will become the new index
1070 register. */
71df5a7e 1071 if (reg_overlap_mentioned_p (inc_insn.reg_res, PATTERN (mem_insn.insn)))
6fb5fa3c
DB
1072 {
1073 if (dump_file)
1074 fprintf (dump_file, "base reg replacement failure.\n");
1075 return false;
1076 }
1077 }
1078
1079 if (mem_insn.reg1_is_const)
1080 {
1081 if (mem_insn.reg1_val == 0)
1082 {
1083 if (!inc_insn.reg1_is_const)
1084 {
1085 /* The mem looks like *r0 and the rhs of the add has two
1086 registers. */
1087 int luid = DF_INSN_LUID (inc_insn.insn);
1088 if (inc_insn.form == FORM_POST_ADD)
1089 {
b8698a0f 1090 /* The trick is that we are not going to increment r0,
6fb5fa3c
DB
1091 we are going to increment the result of the add insn.
1092 For this trick to be correct, the result reg of
1093 the inc must be a valid addressing reg. */
d4ebfa65
BE
1094 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1095 if (GET_MODE (inc_insn.reg_res)
1096 != targetm.addr_space.address_mode (as))
6fb5fa3c
DB
1097 {
1098 if (dump_file)
1099 fprintf (dump_file, "base reg mode failure.\n");
1100 return false;
1101 }
1102
1103 /* We also need to make sure that the next use of
1104 inc result is after the inc. */
b8698a0f 1105 other_insn
6fb5fa3c
DB
1106 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1107 if (other_insn && luid > DF_INSN_LUID (other_insn))
1108 return false;
1109
1110 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
b8698a0f 1111 reverse_inc ();
6fb5fa3c
DB
1112 }
1113
b8698a0f 1114 other_insn
6fb5fa3c
DB
1115 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1116 if (other_insn && luid > DF_INSN_LUID (other_insn))
1117 return false;
1118 }
1119 }
1120 /* Both the inc/add and the mem have a constant. Need to check
1121 that the constants are ok. */
1122 else if ((mem_insn.reg1_val != inc_insn.reg1_val)
1123 && (mem_insn.reg1_val != -inc_insn.reg1_val))
1124 return false;
1125 }
1126 else
1127 {
1128 /* The mem insn is of the form *(a + b) where a and b are both
1129 regs. It may be that in order to match the add or inc we
1130 need to treat it as if it was *(b + a). It may also be that
1131 the add is of the form a + c where c does not match b and
1132 then we just abandon this. */
b8698a0f 1133
6fb5fa3c
DB
1134 int luid = DF_INSN_LUID (inc_insn.insn);
1135 rtx other_insn;
b8698a0f 1136
6fb5fa3c
DB
1137 /* Make sure this reg appears only once in this insn. */
1138 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg1, 1) != 1)
1139 return false;
b8698a0f 1140
6fb5fa3c
DB
1141 if (inc_insn.form == FORM_POST_ADD)
1142 {
1143 /* For this trick to be correct, the result reg of the inc
1144 must be a valid addressing reg. */
d4ebfa65
BE
1145 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1146 if (GET_MODE (inc_insn.reg_res)
1147 != targetm.addr_space.address_mode (as))
6fb5fa3c
DB
1148 {
1149 if (dump_file)
1150 fprintf (dump_file, "base reg mode failure.\n");
1151 return false;
1152 }
1153
1154 if (rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1155 {
1156 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1157 {
1158 /* See comment above on find_inc (false) call. */
1159 if (first_try)
1160 {
1161 reverse_mem ();
1162 return find_inc (false);
1163 }
1164 else
1165 return false;
1166 }
1167
0d52bcc1 1168 /* Need to check that there are no assignments to b
6fb5fa3c 1169 before the add insn. */
b8698a0f 1170 other_insn
6fb5fa3c
DB
1171 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1172 if (other_insn && luid > DF_INSN_LUID (other_insn))
1173 return false;
1174 /* All ok for the next step. */
1175 }
1176 else
1177 {
1178 /* We know that mem_insn.reg0 must equal inc_insn.reg1
1179 or else we would not have found the inc insn. */
1180 reverse_mem ();
1181 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1182 {
1183 /* See comment above on find_inc (false) call. */
1184 if (first_try)
1185 return find_inc (false);
1186 else
1187 return false;
1188 }
1189 /* To have gotten here know that.
1190 *(b + a)
b8698a0f 1191
6fb5fa3c 1192 ... = (b + a)
b8698a0f 1193
6fb5fa3c
DB
1194 We also know that the lhs of the inc is not b or a. We
1195 need to make sure that there are no assignments to b
b8698a0f
L
1196 between the mem ref and the inc. */
1197
1198 other_insn
6fb5fa3c
DB
1199 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_def);
1200 if (other_insn && luid > DF_INSN_LUID (other_insn))
1201 return false;
1202 }
1203
1204 /* Need to check that the next use of the add result is later than
1205 add insn since this will be the reg incremented. */
b8698a0f 1206 other_insn
6fb5fa3c
DB
1207 = get_next_ref (REGNO (inc_insn.reg_res), bb, reg_next_use);
1208 if (other_insn && luid > DF_INSN_LUID (other_insn))
1209 return false;
1210 }
1211 else /* FORM_POST_INC. There is less to check here because we
b8698a0f 1212 know that operands must line up. */
6fb5fa3c
DB
1213 {
1214 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1215 /* See comment above on find_inc (false) call. */
1216 {
1217 if (first_try)
1218 {
1219 reverse_mem ();
1220 return find_inc (false);
1221 }
b8698a0f 1222 else
6fb5fa3c
DB
1223 return false;
1224 }
b8698a0f 1225
6fb5fa3c
DB
1226 /* To have gotten here know that.
1227 *(a + b)
b8698a0f 1228
6fb5fa3c 1229 ... = (a + b)
b8698a0f 1230
6fb5fa3c
DB
1231 We also know that the lhs of the inc is not b. We need to make
1232 sure that there are no assignments to b between the mem ref and
1233 the inc. */
b8698a0f 1234 other_insn
6fb5fa3c
DB
1235 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1236 if (other_insn && luid > DF_INSN_LUID (other_insn))
1237 return false;
1238 }
1239 }
1240
1241 if (inc_insn.form == FORM_POST_INC)
1242 {
b8698a0f 1243 other_insn
6fb5fa3c
DB
1244 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_use);
1245 /* When we found inc_insn, we were looking for the
1246 next add or inc, not the next insn that used the
1247 reg. Because we are going to increment the reg
1248 in this form, we need to make sure that there
6ed3da00 1249 were no intervening uses of reg. */
6fb5fa3c
DB
1250 if (inc_insn.insn != other_insn)
1251 return false;
1252 }
1253
1254 return try_merge ();
1255}
1256
1257
1258/* A recursive function that walks ADDRESS_OF_X to find all of the mem
1259 uses in pat that could be used as an auto inc or dec. It then
1260 calls FIND_INC for each one. */
1261
1262static bool
1263find_mem (rtx *address_of_x)
1264{
1265 rtx x = *address_of_x;
1266 enum rtx_code code = GET_CODE (x);
1267 const char *const fmt = GET_RTX_FORMAT (code);
1268 int i;
1269
1270 if (code == MEM && REG_P (XEXP (x, 0)))
1271 {
1272 /* Match with *reg0. */
1273 mem_insn.mem_loc = address_of_x;
1274 mem_insn.reg0 = XEXP (x, 0);
1275 mem_insn.reg1_is_const = true;
1276 mem_insn.reg1_val = 0;
1277 mem_insn.reg1 = GEN_INT (0);
1278 if (find_inc (true))
1279 return true;
1280 }
1281 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
1282 && REG_P (XEXP (XEXP (x, 0), 0)))
1283 {
1284 rtx reg1 = XEXP (XEXP (x, 0), 1);
1285 mem_insn.mem_loc = address_of_x;
1286 mem_insn.reg0 = XEXP (XEXP (x, 0), 0);
1287 mem_insn.reg1 = reg1;
481683e1 1288 if (CONST_INT_P (reg1))
6fb5fa3c
DB
1289 {
1290 mem_insn.reg1_is_const = true;
1291 /* Match with *(reg0 + c) where c is a const. */
1292 mem_insn.reg1_val = INTVAL (reg1);
1293 if (find_inc (true))
1294 return true;
1295 }
1296 else if (REG_P (reg1))
1297 {
1298 /* Match with *(reg0 + reg1). */
1299 mem_insn.reg1_is_const = false;
1300 if (find_inc (true))
1301 return true;
1302 }
1303 }
1304
1305 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
1306 {
1307 /* If REG occurs inside a MEM used in a bit-field reference,
1308 that is unacceptable. */
1309 return false;
1310 }
1311
1312 /* Time for some deep diving. */
1313 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1314 {
1315 if (fmt[i] == 'e')
1316 {
1317 if (find_mem (&XEXP (x, i)))
1318 return true;
1319 }
1320 else if (fmt[i] == 'E')
1321 {
1322 int j;
1323 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1324 if (find_mem (&XVECEXP (x, i, j)))
1325 return true;
1326 }
1327 }
1328 return false;
1329}
1330
1331
1332/* Try to combine all incs and decs by constant values with memory
1333 references in BB. */
1334
1335static void
1336merge_in_block (int max_reg, basic_block bb)
1337{
1338 rtx insn;
1339 rtx curr;
1340 int success_in_block = 0;
1341
1342 if (dump_file)
1343 fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);
1344
1345 FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
1346 {
1347 unsigned int uid = INSN_UID (insn);
1348 bool insn_is_add_or_inc = true;
1349
b5b8b0ac 1350 if (!NONDEBUG_INSN_P (insn))
b8698a0f 1351 continue;
6fb5fa3c
DB
1352
1353 /* This continue is deliberate. We do not want the uses of the
b8698a0f 1354 jump put into reg_next_use because it is not considered safe to
6fb5fa3c
DB
1355 combine a preincrement with a jump. */
1356 if (JUMP_P (insn))
1357 continue;
1358
1359 if (dump_file)
1360 dump_insn_slim (dump_file, insn);
1361
1362 /* Does this instruction increment or decrement a register? */
1363 if (parse_add_or_inc (insn, true))
1364 {
1365 int regno = REGNO (inc_insn.reg_res);
1366 /* Cannot handle case where there are three separate regs
1367 before a mem ref. Too many moves would be needed to be
1368 profitable. */
1369 if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
1370 {
1371 mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
1372 if (mem_insn.insn)
1373 {
1374 bool ok = true;
1375 if (!inc_insn.reg1_is_const)
1376 {
1377 /* We are only here if we are going to try a
1378 HAVE_*_MODIFY_REG type transformation. c is a
1379 reg and we must sure that the path from the
1380 inc_insn to the mem_insn.insn is both def and use
1381 clear of c because the inc insn is going to move
1382 into the mem_insn.insn. */
1383 int luid = DF_INSN_LUID (mem_insn.insn);
b8698a0f 1384 rtx other_insn
6fb5fa3c 1385 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
b8698a0f 1386
6fb5fa3c
DB
1387 if (other_insn && luid > DF_INSN_LUID (other_insn))
1388 ok = false;
b8698a0f
L
1389
1390 other_insn
6fb5fa3c 1391 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
b8698a0f 1392
6fb5fa3c
DB
1393 if (other_insn && luid > DF_INSN_LUID (other_insn))
1394 ok = false;
1395 }
b8698a0f 1396
6fb5fa3c
DB
1397 if (dump_file)
1398 dump_inc_insn (dump_file);
b8698a0f 1399
6fb5fa3c
DB
1400 if (ok && find_address (&PATTERN (mem_insn.insn)) == -1)
1401 {
1402 if (dump_file)
1403 dump_mem_insn (dump_file);
1404 if (try_merge ())
1405 {
1406 success_in_block++;
1407 insn_is_add_or_inc = false;
1408 }
1409 }
1410 }
1411 }
1412 }
1413 else
1414 {
1415 insn_is_add_or_inc = false;
1416 mem_insn.insn = insn;
1417 if (find_mem (&PATTERN (insn)))
1418 success_in_block++;
1419 }
b8698a0f 1420
6fb5fa3c
DB
1421 /* If the inc insn was merged with a mem, the inc insn is gone
1422 and there is noting to update. */
b5b8b0ac 1423 if (DF_INSN_UID_GET (uid))
6fb5fa3c 1424 {
57512f53
KZ
1425 df_ref *def_rec;
1426 df_ref *use_rec;
6fb5fa3c
DB
1427 /* Need to update next use. */
1428 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1429 {
57512f53 1430 df_ref def = *def_rec;
6fb5fa3c
DB
1431 reg_next_use[DF_REF_REGNO (def)] = NULL;
1432 reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
1433 reg_next_def[DF_REF_REGNO (def)] = insn;
1434 }
b8698a0f 1435
6fb5fa3c
DB
1436 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1437 {
57512f53 1438 df_ref use = *use_rec;
6fb5fa3c
DB
1439 reg_next_use[DF_REF_REGNO (use)] = insn;
1440 if (insn_is_add_or_inc)
1441 reg_next_inc_use[DF_REF_REGNO (use)] = insn;
1442 else
1443 reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
b8698a0f 1444 }
6fb5fa3c
DB
1445 }
1446 else if (dump_file)
1447 fprintf (dump_file, "skipping update of deleted insn %d\n", uid);
1448 }
1449
1450 /* If we were successful, try again. There may have been several
1451 opportunities that were interleaved. This is rare but
1452 gcc.c-torture/compile/pr17273.c actually exhibits this. */
1453 if (success_in_block)
1454 {
1455 /* In this case, we must clear these vectors since the trick of
1456 testing if the stale insn in the block will not work. */
1457 memset (reg_next_use, 0, max_reg * sizeof(rtx));
1458 memset (reg_next_inc_use, 0, max_reg * sizeof(rtx));
1459 memset (reg_next_def, 0, max_reg * sizeof(rtx));
1460 df_recompute_luids (bb);
1461 merge_in_block (max_reg, bb);
1462 }
1463}
1464
1465#endif
1466
b8698a0f 1467static unsigned int
6fb5fa3c
DB
1468rest_of_handle_auto_inc_dec (void)
1469{
1470#ifdef AUTO_INC_DEC
1471 basic_block bb;
1472 int max_reg = max_reg_num ();
1473
1474 if (!initialized)
1475 init_decision_table ();
1476
1477 mem_tmp = gen_rtx_MEM (Pmode, NULL_RTX);
1478
1479 df_note_add_problem ();
1480 df_analyze ();
1481
1482 reg_next_use = XCNEWVEC (rtx, max_reg);
1483 reg_next_inc_use = XCNEWVEC (rtx, max_reg);
1484 reg_next_def = XCNEWVEC (rtx, max_reg);
1485 FOR_EACH_BB (bb)
1486 merge_in_block (max_reg, bb);
1487
1488 free (reg_next_use);
1489 free (reg_next_inc_use);
1490 free (reg_next_def);
1491
1492 mem_tmp = NULL;
1493#endif
1494 return 0;
1495}
1496
1497
1498/* Discover auto-inc auto-dec instructions. */
1499
1500static bool
1501gate_auto_inc_dec (void)
1502{
1503#ifdef AUTO_INC_DEC
1504 return (optimize > 0 && flag_auto_inc_dec);
1505#else
1506 return false;
1507#endif
1508}
1509
1510
8ddbbcae 1511struct rtl_opt_pass pass_inc_dec =
6fb5fa3c 1512{
8ddbbcae
JH
1513 {
1514 RTL_PASS,
00b251a0 1515 "auto_inc_dec", /* name */
6fb5fa3c
DB
1516 gate_auto_inc_dec, /* gate */
1517 rest_of_handle_auto_inc_dec, /* execute */
1518 NULL, /* sub */
1519 NULL, /* next */
1520 0, /* static_pass_number */
1521 TV_AUTO_INC_DEC, /* tv_id */
1522 0, /* properties_required */
1523 0, /* properties_provided */
1524 0, /* properties_destroyed */
1525 0, /* todo_flags_start */
6fb5fa3c 1526 TODO_df_finish, /* todo_flags_finish */
8ddbbcae 1527 }
6fb5fa3c 1528};