]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/auto-inc-dec.c
Zero-initialize pass_manager
[thirdparty/gcc.git] / gcc / auto-inc-dec.c
CommitLineData
6fb5fa3c 1/* Discovery of auto-inc and auto-dec instructions.
d1e082c2 2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
6fb5fa3c 3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
b8698a0f 4
6fb5fa3c
DB
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
6fb5fa3c
DB
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
6fb5fa3c
DB
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "tree.h"
26#include "rtl.h"
27#include "tm_p.h"
28#include "hard-reg-set.h"
29#include "basic-block.h"
30#include "insn-config.h"
31#include "regs.h"
32#include "flags.h"
6fb5fa3c
DB
33#include "function.h"
34#include "except.h"
718f9c0f 35#include "diagnostic-core.h"
6fb5fa3c
DB
36#include "recog.h"
37#include "expr.h"
6fb5fa3c
DB
38#include "tree-pass.h"
39#include "df.h"
40#include "dbgcnt.h"
d4ebfa65 41#include "target.h"
6fb5fa3c
DB
42
43/* This pass was originally removed from flow.c. However there is
44 almost nothing that remains of that code.
45
46 There are (4) basic forms that are matched:
47
1154c4fa 48 (1) FORM_PRE_ADD
6fb5fa3c
DB
49 a <- b + c
50 ...
51 *a
52
53 becomes
54
55 a <- b
56 ...
57 *(a += c) pre
1154c4fa
SB
58
59
60 (2) FORM_PRE_INC
6fb5fa3c
DB
61 a += c
62 ...
63 *a
64
65 becomes
66
67 *(a += c) pre
1154c4fa
SB
68
69
70 (3) FORM_POST_ADD
6fb5fa3c
DB
71 *a
72 ...
73 b <- a + c
74
b8698a0f 75 (For this case to be true, b must not be assigned or used between
1154c4fa 76 the *a and the assignment to b. B must also be a Pmode reg.)
6fb5fa3c
DB
77
78 becomes
79
80 b <- a
81 ...
82 *(b += c) post
1154c4fa
SB
83
84
85 (4) FORM_POST_INC
6fb5fa3c
DB
86 *a
87 ...
88 a <- a + c
89
90 becomes
91
92 *(a += c) post
93
94 There are three types of values of c.
95
96 1) c is a constant equal to the width of the value being accessed by
97 the pointer. This is useful for machines that have
98 HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
99 HAVE_POST_DECREMENT defined.
100
0d52bcc1 101 2) c is a constant not equal to the width of the value being accessed
6fb5fa3c
DB
102 by the pointer. This is useful for machines that have
103 HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
104
b8698a0f
L
105 3) c is a register. This is useful for machines that have
106 HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
107
6fb5fa3c
DB
108 The is one special case: if a already had an offset equal to it +-
109 its width and that offset is equal to -c when the increment was
110 before the ref or +c if the increment was after the ref, then if we
1154c4fa 111 can do the combination but switch the pre/post bit. */
6fb5fa3c 112
6fb5fa3c
DB
113#ifdef AUTO_INC_DEC
114
115enum form
116{
117 FORM_PRE_ADD,
118 FORM_PRE_INC,
119 FORM_POST_ADD,
120 FORM_POST_INC,
121 FORM_last
122};
123
124/* The states of the second operands of mem refs and inc insns. If no
125 second operand of the mem_ref was found, it is assumed to just be
126 ZERO. SIZE is the size of the mode accessed in the memref. The
127 ANY is used for constants that are not +-size or 0. REG is used if
128 the forms are reg1 + reg2. */
129
b8698a0f 130enum inc_state
6fb5fa3c
DB
131{
132 INC_ZERO, /* == 0 */
133 INC_NEG_SIZE, /* == +size */
134 INC_POS_SIZE, /* == -size */
135 INC_NEG_ANY, /* == some -constant */
136 INC_POS_ANY, /* == some +constant */
137 INC_REG, /* == some register */
138 INC_last
139};
140
141/* The eight forms that pre/post inc/dec can take. */
142enum gen_form
143{
144 NOTHING,
145 SIMPLE_PRE_INC, /* ++size */
146 SIMPLE_POST_INC, /* size++ */
147 SIMPLE_PRE_DEC, /* --size */
148 SIMPLE_POST_DEC, /* size-- */
149 DISP_PRE, /* ++con */
150 DISP_POST, /* con++ */
151 REG_PRE, /* ++reg */
152 REG_POST /* reg++ */
153};
154
155/* Tmp mem rtx for use in cost modeling. */
156static rtx mem_tmp;
157
158static enum inc_state
159set_inc_state (HOST_WIDE_INT val, int size)
160{
161 if (val == 0)
162 return INC_ZERO;
163 if (val < 0)
164 return (val == -size) ? INC_NEG_SIZE : INC_NEG_ANY;
165 else
166 return (val == size) ? INC_POS_SIZE : INC_POS_ANY;
167}
168
169/* The DECISION_TABLE that describes what form, if any, the increment
170 or decrement will take. It is a three dimensional table. The first
171 index is the type of constant or register found as the second
172 operand of the inc insn. The second index is the type of constant
173 or register found as the second operand of the memory reference (if
174 no second operand exists, 0 is used). The third index is the form
175 and location (relative to the mem reference) of inc insn. */
176
177static bool initialized = false;
178static enum gen_form decision_table[INC_last][INC_last][FORM_last];
179
180static void
181init_decision_table (void)
182{
183 enum gen_form value;
184
185 if (HAVE_PRE_INCREMENT || HAVE_PRE_MODIFY_DISP)
186 {
187 /* Prefer the simple form if both are available. */
188 value = (HAVE_PRE_INCREMENT) ? SIMPLE_PRE_INC : DISP_PRE;
189
190 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
191 decision_table[INC_POS_SIZE][INC_ZERO][FORM_PRE_INC] = value;
192
193 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_ADD] = value;
194 decision_table[INC_POS_SIZE][INC_POS_SIZE][FORM_POST_INC] = value;
195 }
196
197 if (HAVE_POST_INCREMENT || HAVE_POST_MODIFY_DISP)
198 {
199 /* Prefer the simple form if both are available. */
200 value = (HAVE_POST_INCREMENT) ? SIMPLE_POST_INC : DISP_POST;
201
202 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_ADD] = value;
203 decision_table[INC_POS_SIZE][INC_ZERO][FORM_POST_INC] = value;
204
205 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_ADD] = value;
206 decision_table[INC_POS_SIZE][INC_NEG_SIZE][FORM_PRE_INC] = value;
207 }
208
209 if (HAVE_PRE_DECREMENT || HAVE_PRE_MODIFY_DISP)
210 {
211 /* Prefer the simple form if both are available. */
212 value = (HAVE_PRE_DECREMENT) ? SIMPLE_PRE_DEC : DISP_PRE;
213
214 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_ADD] = value;
215 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_PRE_INC] = value;
216
217 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_ADD] = value;
218 decision_table[INC_NEG_SIZE][INC_NEG_SIZE][FORM_POST_INC] = value;
219 }
220
221 if (HAVE_POST_DECREMENT || HAVE_POST_MODIFY_DISP)
222 {
223 /* Prefer the simple form if both are available. */
224 value = (HAVE_POST_DECREMENT) ? SIMPLE_POST_DEC : DISP_POST;
225
226 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_ADD] = value;
227 decision_table[INC_NEG_SIZE][INC_ZERO][FORM_POST_INC] = value;
228
229 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_ADD] = value;
230 decision_table[INC_NEG_SIZE][INC_POS_SIZE][FORM_PRE_INC] = value;
231 }
232
233 if (HAVE_PRE_MODIFY_DISP)
234 {
235 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
236 decision_table[INC_POS_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
237
238 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_ADD] = DISP_PRE;
239 decision_table[INC_POS_ANY][INC_POS_ANY][FORM_POST_INC] = DISP_PRE;
240
241 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_ADD] = DISP_PRE;
242 decision_table[INC_NEG_ANY][INC_ZERO][FORM_PRE_INC] = DISP_PRE;
243
244 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_ADD] = DISP_PRE;
245 decision_table[INC_NEG_ANY][INC_NEG_ANY][FORM_POST_INC] = DISP_PRE;
246 }
247
248 if (HAVE_POST_MODIFY_DISP)
249 {
250 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
251 decision_table[INC_POS_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
252
253 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_ADD] = DISP_POST;
254 decision_table[INC_POS_ANY][INC_NEG_ANY][FORM_PRE_INC] = DISP_POST;
255
256 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_ADD] = DISP_POST;
257 decision_table[INC_NEG_ANY][INC_ZERO][FORM_POST_INC] = DISP_POST;
258
259 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_ADD] = DISP_POST;
260 decision_table[INC_NEG_ANY][INC_POS_ANY][FORM_PRE_INC] = DISP_POST;
261 }
262
263 /* This is much simpler than the other cases because we do not look
264 for the reg1-reg2 case. Note that we do not have a INC_POS_REG
265 and INC_NEG_REG states. Most of the use of such states would be
266 on a target that had an R1 - R2 update address form.
267
268 There is the remote possibility that you could also catch a = a +
269 b; *(a - b) as a postdecrement of (a + b). However, it is
270 unclear if *(a - b) would ever be generated on a machine that did
271 not have that kind of addressing mode. The IA-64 and RS6000 will
272 not do this, and I cannot speak for any other. If any
273 architecture does have an a-b update for, these cases should be
274 added. */
275 if (HAVE_PRE_MODIFY_REG)
276 {
277 decision_table[INC_REG][INC_ZERO][FORM_PRE_ADD] = REG_PRE;
278 decision_table[INC_REG][INC_ZERO][FORM_PRE_INC] = REG_PRE;
279
280 decision_table[INC_REG][INC_REG][FORM_POST_ADD] = REG_PRE;
281 decision_table[INC_REG][INC_REG][FORM_POST_INC] = REG_PRE;
282 }
283
284 if (HAVE_POST_MODIFY_REG)
285 {
286 decision_table[INC_REG][INC_ZERO][FORM_POST_ADD] = REG_POST;
287 decision_table[INC_REG][INC_ZERO][FORM_POST_INC] = REG_POST;
288 }
289
290 initialized = true;
291}
292
293/* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
294 "reg_res = reg0+c". */
295
b8698a0f 296static struct inc_insn
6fb5fa3c
DB
297{
298 rtx insn; /* The insn being parsed. */
299 rtx pat; /* The pattern of the insn. */
300 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
301 enum form form;
302 rtx reg_res;
303 rtx reg0;
304 rtx reg1;
305 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
306 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
307} inc_insn;
308
309
310/* Dump the parsed inc insn to FILE. */
311
b8698a0f 312static void
6fb5fa3c
DB
313dump_inc_insn (FILE *file)
314{
b8698a0f 315 const char *f = ((inc_insn.form == FORM_PRE_ADD)
6fb5fa3c
DB
316 || (inc_insn.form == FORM_PRE_INC)) ? "pre" : "post";
317
318 dump_insn_slim (file, inc_insn.insn);
319
320 switch (inc_insn.form)
321 {
322 case FORM_PRE_ADD:
323 case FORM_POST_ADD:
324 if (inc_insn.reg1_is_const)
b8698a0f
L
325 fprintf (file, "found %s add(%d) r[%d]=r[%d]+%d\n",
326 f, INSN_UID (inc_insn.insn),
327 REGNO (inc_insn.reg_res),
6fb5fa3c
DB
328 REGNO (inc_insn.reg0), (int) inc_insn.reg1_val);
329 else
b8698a0f
L
330 fprintf (file, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
331 f, INSN_UID (inc_insn.insn),
332 REGNO (inc_insn.reg_res),
6fb5fa3c
DB
333 REGNO (inc_insn.reg0), REGNO (inc_insn.reg1));
334 break;
b8698a0f 335
6fb5fa3c
DB
336 case FORM_PRE_INC:
337 case FORM_POST_INC:
338 if (inc_insn.reg1_is_const)
b8698a0f
L
339 fprintf (file, "found %s inc(%d) r[%d]+=%d\n",
340 f, INSN_UID (inc_insn.insn),
6fb5fa3c
DB
341 REGNO (inc_insn.reg_res), (int) inc_insn.reg1_val);
342 else
b8698a0f
L
343 fprintf (file, "found %s inc(%d) r[%d]+=r[%d]\n",
344 f, INSN_UID (inc_insn.insn),
6fb5fa3c
DB
345 REGNO (inc_insn.reg_res), REGNO (inc_insn.reg1));
346 break;
347
348 default:
349 break;
350 }
351}
352
353
354/* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
355
356static struct mem_insn
357{
358 rtx insn; /* The insn being parsed. */
359 rtx pat; /* The pattern of the insn. */
360 rtx *mem_loc; /* The address of the field that holds the mem */
361 /* that is to be replaced. */
362 bool reg1_is_const; /* True if reg1 is const, false if reg1 is a reg. */
363 rtx reg0;
364 rtx reg1; /* This is either a reg or a const depending on
365 reg1_is_const. */
366 enum inc_state reg1_state;/* The form of the const if reg1 is a const. */
367 HOST_WIDE_INT reg1_val;/* Value if reg1 is const. */
368} mem_insn;
369
370
371/* Dump the parsed mem insn to FILE. */
372
b8698a0f 373static void
6fb5fa3c
DB
374dump_mem_insn (FILE *file)
375{
376 dump_insn_slim (file, mem_insn.insn);
377
378 if (mem_insn.reg1_is_const)
b8698a0f
L
379 fprintf (file, "found mem(%d) *(r[%d]+%d)\n",
380 INSN_UID (mem_insn.insn),
6fb5fa3c
DB
381 REGNO (mem_insn.reg0), (int) mem_insn.reg1_val);
382 else
b8698a0f
L
383 fprintf (file, "found mem(%d) *(r[%d]+r[%d])\n",
384 INSN_UID (mem_insn.insn),
6fb5fa3c
DB
385 REGNO (mem_insn.reg0), REGNO (mem_insn.reg1));
386}
387
388
389/* The following three arrays contain pointers to instructions. They
390 are indexed by REGNO. At any point in the basic block where we are
391 looking these three arrays contain, respectively, the next insn
392 that uses REGNO, the next inc or add insn that uses REGNO and the
393 next insn that sets REGNO.
394
395 The arrays are not cleared when we move from block to block so
396 whenever an insn is retrieved from these arrays, it's block number
397 must be compared with the current block.
398*/
399
400static rtx *reg_next_use = NULL;
401static rtx *reg_next_inc_use = NULL;
402static rtx *reg_next_def = NULL;
403
404
405/* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
406 not really care about moving any other notes from the inc or add
407 insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
0d52bcc1 408 does not appear that there are any other kinds of relevant notes. */
6fb5fa3c 409
b8698a0f 410static void
6fb5fa3c
DB
411move_dead_notes (rtx to_insn, rtx from_insn, rtx pattern)
412{
b8698a0f 413 rtx note;
6fb5fa3c
DB
414 rtx next_note;
415 rtx prev_note = NULL;
416
417 for (note = REG_NOTES (from_insn); note; note = next_note)
418 {
419 next_note = XEXP (note, 1);
b8698a0f 420
6fb5fa3c
DB
421 if ((REG_NOTE_KIND (note) == REG_DEAD)
422 && pattern == XEXP (note, 0))
423 {
424 XEXP (note, 1) = REG_NOTES (to_insn);
425 REG_NOTES (to_insn) = note;
426 if (prev_note)
427 XEXP (prev_note, 1) = next_note;
428 else
429 REG_NOTES (from_insn) = next_note;
430 }
431 else prev_note = note;
432 }
433}
434
435
436/* Create a mov insn DEST_REG <- SRC_REG and insert it before
437 NEXT_INSN. */
438
439static rtx
440insert_move_insn_before (rtx next_insn, rtx dest_reg, rtx src_reg)
441{
442 rtx insns;
443
444 start_sequence ();
445 emit_move_insn (dest_reg, src_reg);
446 insns = get_insns ();
447 end_sequence ();
448 emit_insn_before (insns, next_insn);
449 return insns;
450}
451
b8698a0f 452
6fb5fa3c
DB
453/* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
454 increment of INC_REG. To have reached this point, the change is a
455 legitimate one from a dataflow point of view. The only questions
456 are is this a valid change to the instruction and is this a
457 profitable change to the instruction. */
458
459static bool
460attempt_change (rtx new_addr, rtx inc_reg)
461{
462 /* There are four cases: For the two cases that involve an add
463 instruction, we are going to have to delete the add and insert a
464 mov. We are going to assume that the mov is free. This is
465 fairly early in the backend and there are a lot of opportunities
466 for removing that move later. In particular, there is the case
467 where the move may be dead, this is what dead code elimination
468 passes are for. The two cases where we have an inc insn will be
469 handled mov free. */
470
b0de17ef 471 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
6fb5fa3c
DB
472 rtx mov_insn = NULL;
473 int regno;
474 rtx mem = *mem_insn.mem_loc;
475 enum machine_mode mode = GET_MODE (mem);
476 rtx new_mem;
477 int old_cost = 0;
478 int new_cost = 0;
f40751dd 479 bool speed = optimize_bb_for_speed_p (bb);
6fb5fa3c
DB
480
481 PUT_MODE (mem_tmp, mode);
482 XEXP (mem_tmp, 0) = new_addr;
483
5e8f01f4 484 old_cost = (set_src_cost (mem, speed)
d51102f3 485 + set_rtx_cost (PATTERN (inc_insn.insn), speed));
5e8f01f4 486 new_cost = set_src_cost (mem_tmp, speed);
bbbbb16a 487
6fb5fa3c
DB
488 /* The first item of business is to see if this is profitable. */
489 if (old_cost < new_cost)
490 {
491 if (dump_file)
492 fprintf (dump_file, "cost failure old=%d new=%d\n", old_cost, new_cost);
493 return false;
494 }
495
073a8998 496 /* Jump through a lot of hoops to keep the attributes up to date. We
6fb5fa3c
DB
497 do not want to call one of the change address variants that take
498 an offset even though we know the offset in many cases. These
499 assume you are changing where the address is pointing by the
500 offset. */
501 new_mem = replace_equiv_address_nv (mem, new_addr);
502 if (! validate_change (mem_insn.insn, mem_insn.mem_loc, new_mem, 0))
503 {
504 if (dump_file)
b8698a0f 505 fprintf (dump_file, "validation failure\n");
6fb5fa3c
DB
506 return false;
507 }
508
509 /* From here to the end of the function we are committed to the
510 change, i.e. nothing fails. Generate any necessary movs, move
511 any regnotes, and fix up the reg_next_{use,inc_use,def}. */
512 switch (inc_insn.form)
513 {
514 case FORM_PRE_ADD:
c8305c98
KZ
515 /* Replace the addition with a move. Do it at the location of
516 the addition since the operand of the addition may change
517 before the memory reference. */
b8698a0f 518 mov_insn = insert_move_insn_before (inc_insn.insn,
6fb5fa3c
DB
519 inc_insn.reg_res, inc_insn.reg0);
520 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
521
522 regno = REGNO (inc_insn.reg_res);
523 reg_next_def[regno] = mov_insn;
524 reg_next_use[regno] = NULL;
525 regno = REGNO (inc_insn.reg0);
526 reg_next_use[regno] = mov_insn;
527 df_recompute_luids (bb);
528 break;
529
530 case FORM_POST_INC:
531 regno = REGNO (inc_insn.reg_res);
532 if (reg_next_use[regno] == reg_next_inc_use[regno])
533 reg_next_inc_use[regno] = NULL;
534
535 /* Fallthru. */
536 case FORM_PRE_INC:
537 regno = REGNO (inc_insn.reg_res);
538 reg_next_def[regno] = mem_insn.insn;
539 reg_next_use[regno] = NULL;
540
541 break;
542
543 case FORM_POST_ADD:
b8698a0f 544 mov_insn = insert_move_insn_before (mem_insn.insn,
6fb5fa3c
DB
545 inc_insn.reg_res, inc_insn.reg0);
546 move_dead_notes (mov_insn, inc_insn.insn, inc_insn.reg0);
547
548 /* Do not move anything to the mov insn because the instruction
549 pointer for the main iteration has not yet hit that. It is
550 still pointing to the mem insn. */
551 regno = REGNO (inc_insn.reg_res);
552 reg_next_def[regno] = mem_insn.insn;
553 reg_next_use[regno] = NULL;
554
555 regno = REGNO (inc_insn.reg0);
556 reg_next_use[regno] = mem_insn.insn;
557 if ((reg_next_use[regno] == reg_next_inc_use[regno])
558 || (reg_next_inc_use[regno] == inc_insn.insn))
559 reg_next_inc_use[regno] = NULL;
560 df_recompute_luids (bb);
561 break;
562
563 case FORM_last:
564 default:
565 gcc_unreachable ();
566 }
567
568 if (!inc_insn.reg1_is_const)
569 {
570 regno = REGNO (inc_insn.reg1);
571 reg_next_use[regno] = mem_insn.insn;
572 if ((reg_next_use[regno] == reg_next_inc_use[regno])
573 || (reg_next_inc_use[regno] == inc_insn.insn))
574 reg_next_inc_use[regno] = NULL;
575 }
576
577 delete_insn (inc_insn.insn);
578
579 if (dump_file && mov_insn)
580 {
581 fprintf (dump_file, "inserting mov ");
582 dump_insn_slim (dump_file, mov_insn);
583 }
584
585 /* Record that this insn has an implicit side effect. */
65c5f2a6 586 add_reg_note (mem_insn.insn, REG_INC, inc_reg);
6fb5fa3c
DB
587
588 if (dump_file)
589 {
590 fprintf (dump_file, "****success ");
591 dump_insn_slim (dump_file, mem_insn.insn);
592 }
593
594 return true;
595}
596
597
598/* Try to combine the instruction in INC_INSN with the instruction in
599 MEM_INSN. First the form is determined using the DECISION_TABLE
fa10beec 600 and the results of parsing the INC_INSN and the MEM_INSN.
6fb5fa3c
DB
601 Assuming the form is ok, a prototype new address is built which is
602 passed to ATTEMPT_CHANGE for final processing. */
603
b8698a0f 604static bool
6fb5fa3c
DB
605try_merge (void)
606{
607 enum gen_form gen_form;
608 rtx mem = *mem_insn.mem_loc;
609 rtx inc_reg = inc_insn.form == FORM_POST_ADD ?
610 inc_insn.reg_res : mem_insn.reg0;
611
612 /* The width of the mem being accessed. */
613 int size = GET_MODE_SIZE (GET_MODE (mem));
614 rtx last_insn = NULL;
d4ebfa65 615 enum machine_mode reg_mode = GET_MODE (inc_reg);
6fb5fa3c
DB
616
617 switch (inc_insn.form)
618 {
619 case FORM_PRE_ADD:
620 case FORM_PRE_INC:
621 last_insn = mem_insn.insn;
622 break;
623 case FORM_POST_INC:
624 case FORM_POST_ADD:
625 last_insn = inc_insn.insn;
626 break;
627 case FORM_last:
628 default:
629 gcc_unreachable ();
630 }
631
632 /* Cannot handle auto inc of the stack. */
633 if (inc_reg == stack_pointer_rtx)
634 {
635 if (dump_file)
636 fprintf (dump_file, "cannot inc stack %d failure\n", REGNO (inc_reg));
637 return false;
638 }
639
640 /* Look to see if the inc register is dead after the memory
c8305c98 641 reference. If it is, do not do the combination. */
6fb5fa3c
DB
642 if (find_regno_note (last_insn, REG_DEAD, REGNO (inc_reg)))
643 {
644 if (dump_file)
645 fprintf (dump_file, "dead failure %d\n", REGNO (inc_reg));
646 return false;
647 }
648
b8698a0f 649 mem_insn.reg1_state = (mem_insn.reg1_is_const)
6fb5fa3c
DB
650 ? set_inc_state (mem_insn.reg1_val, size) : INC_REG;
651 inc_insn.reg1_state = (inc_insn.reg1_is_const)
652 ? set_inc_state (inc_insn.reg1_val, size) : INC_REG;
653
654 /* Now get the form that we are generating. */
b8698a0f 655 gen_form = decision_table
6fb5fa3c
DB
656 [inc_insn.reg1_state][mem_insn.reg1_state][inc_insn.form];
657
658 if (dbg_cnt (auto_inc_dec) == false)
659 return false;
660
661 switch (gen_form)
662 {
663 default:
664 case NOTHING:
665 return false;
666
667 case SIMPLE_PRE_INC: /* ++size */
668 if (dump_file)
669 fprintf (dump_file, "trying SIMPLE_PRE_INC\n");
d4ebfa65 670 return attempt_change (gen_rtx_PRE_INC (reg_mode, inc_reg), inc_reg);
6fb5fa3c 671 break;
b8698a0f 672
6fb5fa3c
DB
673 case SIMPLE_POST_INC: /* size++ */
674 if (dump_file)
675 fprintf (dump_file, "trying SIMPLE_POST_INC\n");
d4ebfa65 676 return attempt_change (gen_rtx_POST_INC (reg_mode, inc_reg), inc_reg);
6fb5fa3c 677 break;
b8698a0f 678
6fb5fa3c
DB
679 case SIMPLE_PRE_DEC: /* --size */
680 if (dump_file)
681 fprintf (dump_file, "trying SIMPLE_PRE_DEC\n");
d4ebfa65 682 return attempt_change (gen_rtx_PRE_DEC (reg_mode, inc_reg), inc_reg);
6fb5fa3c 683 break;
b8698a0f 684
6fb5fa3c
DB
685 case SIMPLE_POST_DEC: /* size-- */
686 if (dump_file)
687 fprintf (dump_file, "trying SIMPLE_POST_DEC\n");
d4ebfa65 688 return attempt_change (gen_rtx_POST_DEC (reg_mode, inc_reg), inc_reg);
6fb5fa3c 689 break;
b8698a0f 690
6fb5fa3c
DB
691 case DISP_PRE: /* ++con */
692 if (dump_file)
693 fprintf (dump_file, "trying DISP_PRE\n");
d4ebfa65 694 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
6fb5fa3c 695 inc_reg,
d4ebfa65 696 gen_rtx_PLUS (reg_mode,
6fb5fa3c
DB
697 inc_reg,
698 inc_insn.reg1)),
699 inc_reg);
700 break;
b8698a0f 701
6fb5fa3c
DB
702 case DISP_POST: /* con++ */
703 if (dump_file)
704 fprintf (dump_file, "trying POST_DISP\n");
d4ebfa65 705 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
6fb5fa3c 706 inc_reg,
d4ebfa65 707 gen_rtx_PLUS (reg_mode,
6fb5fa3c
DB
708 inc_reg,
709 inc_insn.reg1)),
710 inc_reg);
711 break;
b8698a0f 712
6fb5fa3c
DB
713 case REG_PRE: /* ++reg */
714 if (dump_file)
715 fprintf (dump_file, "trying PRE_REG\n");
d4ebfa65 716 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode,
6fb5fa3c 717 inc_reg,
d4ebfa65 718 gen_rtx_PLUS (reg_mode,
6fb5fa3c
DB
719 inc_reg,
720 inc_insn.reg1)),
721 inc_reg);
722 break;
b8698a0f 723
6fb5fa3c
DB
724 case REG_POST: /* reg++ */
725 if (dump_file)
726 fprintf (dump_file, "trying POST_REG\n");
d4ebfa65 727 return attempt_change (gen_rtx_POST_MODIFY (reg_mode,
6fb5fa3c 728 inc_reg,
d4ebfa65 729 gen_rtx_PLUS (reg_mode,
6fb5fa3c
DB
730 inc_reg,
731 inc_insn.reg1)),
732 inc_reg);
733 break;
734 }
735}
736
737/* Return the next insn that uses (if reg_next_use is passed in
738 NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
739 REGNO in BB. */
740
741static rtx
742get_next_ref (int regno, basic_block bb, rtx *next_array)
743{
744 rtx insn = next_array[regno];
745
746 /* Lazy about cleaning out the next_arrays. */
b0de17ef 747 if (insn && BLOCK_FOR_INSN (insn) != bb)
6fb5fa3c
DB
748 {
749 next_array[regno] = NULL;
750 insn = NULL;
751 }
752
753 return insn;
754}
755
756
757/* Reverse the operands in a mem insn. */
758
b8698a0f 759static void
6fb5fa3c
DB
760reverse_mem (void)
761{
b8698a0f 762 rtx tmp = mem_insn.reg1;
6fb5fa3c
DB
763 mem_insn.reg1 = mem_insn.reg0;
764 mem_insn.reg0 = tmp;
765}
766
767
768/* Reverse the operands in a inc insn. */
769
b8698a0f 770static void
6fb5fa3c
DB
771reverse_inc (void)
772{
b8698a0f 773 rtx tmp = inc_insn.reg1;
6fb5fa3c
DB
774 inc_insn.reg1 = inc_insn.reg0;
775 inc_insn.reg0 = tmp;
776}
777
778
779/* Return true if INSN is of a form "a = b op c" where a and b are
780 regs. op is + if c is a reg and +|- if c is a const. Fill in
b8698a0f
L
781 INC_INSN with what is found.
782
6fb5fa3c
DB
783 This function is called in two contexts, if BEFORE_MEM is true,
784 this is called for each insn in the basic block. If BEFORE_MEM is
785 false, it is called for the instruction in the block that uses the
786 index register for some memory reference that is currently being
787 processed. */
788
789static bool
790parse_add_or_inc (rtx insn, bool before_mem)
791{
792 rtx pat = single_set (insn);
793 if (!pat)
794 return false;
795
796 /* Result must be single reg. */
797 if (!REG_P (SET_DEST (pat)))
798 return false;
799
800 if ((GET_CODE (SET_SRC (pat)) != PLUS)
801 && (GET_CODE (SET_SRC (pat)) != MINUS))
802 return false;
803
804 if (!REG_P (XEXP (SET_SRC (pat), 0)))
805 return false;
806
807 inc_insn.insn = insn;
808 inc_insn.pat = pat;
809 inc_insn.reg_res = SET_DEST (pat);
810 inc_insn.reg0 = XEXP (SET_SRC (pat), 0);
811 if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg0))
812 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
b8698a0f 813 else
6fb5fa3c
DB
814 inc_insn.form = before_mem ? FORM_PRE_ADD : FORM_POST_ADD;
815
481683e1 816 if (CONST_INT_P (XEXP (SET_SRC (pat), 1)))
6fb5fa3c
DB
817 {
818 /* Process a = b + c where c is a const. */
819 inc_insn.reg1_is_const = true;
820 if (GET_CODE (SET_SRC (pat)) == PLUS)
821 {
822 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
823 inc_insn.reg1_val = INTVAL (inc_insn.reg1);
824 }
825 else
826 {
827 inc_insn.reg1_val = -INTVAL (XEXP (SET_SRC (pat), 1));
828 inc_insn.reg1 = GEN_INT (inc_insn.reg1_val);
829 }
830 return true;
831 }
832 else if ((HAVE_PRE_MODIFY_REG || HAVE_POST_MODIFY_REG)
833 && (REG_P (XEXP (SET_SRC (pat), 1)))
834 && GET_CODE (SET_SRC (pat)) == PLUS)
835 {
836 /* Process a = b + c where c is a reg. */
837 inc_insn.reg1 = XEXP (SET_SRC (pat), 1);
838 inc_insn.reg1_is_const = false;
b8698a0f
L
839
840 if (inc_insn.form == FORM_PRE_INC
6fb5fa3c
DB
841 || inc_insn.form == FORM_POST_INC)
842 return true;
843 else if (rtx_equal_p (inc_insn.reg_res, inc_insn.reg1))
844 {
845 /* Reverse the two operands and turn *_ADD into *_INC since
846 a = c + a. */
847 reverse_inc ();
848 inc_insn.form = before_mem ? FORM_PRE_INC : FORM_POST_INC;
849 return true;
850 }
b8698a0f 851 else
6fb5fa3c
DB
852 return true;
853 }
854
855 return false;
856}
857
858
859/* A recursive function that checks all of the mem uses in
860 ADDRESS_OF_X to see if any single one of them is compatible with
861 what has been found in inc_insn.
862
b8698a0f 863 -1 is returned for success. 0 is returned if nothing was found and
6fb5fa3c
DB
864 1 is returned for failure. */
865
866static int
867find_address (rtx *address_of_x)
868{
869 rtx x = *address_of_x;
870 enum rtx_code code = GET_CODE (x);
871 const char *const fmt = GET_RTX_FORMAT (code);
872 int i;
873 int value = 0;
874 int tem;
875
876 if (code == MEM && rtx_equal_p (XEXP (x, 0), inc_insn.reg_res))
877 {
878 /* Match with *reg0. */
879 mem_insn.mem_loc = address_of_x;
880 mem_insn.reg0 = inc_insn.reg_res;
881 mem_insn.reg1_is_const = true;
882 mem_insn.reg1_val = 0;
883 mem_insn.reg1 = GEN_INT (0);
884 return -1;
885 }
886 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
887 && rtx_equal_p (XEXP (XEXP (x, 0), 0), inc_insn.reg_res))
888 {
889 rtx b = XEXP (XEXP (x, 0), 1);
890 mem_insn.mem_loc = address_of_x;
891 mem_insn.reg0 = inc_insn.reg_res;
892 mem_insn.reg1 = b;
893 mem_insn.reg1_is_const = inc_insn.reg1_is_const;
481683e1 894 if (CONST_INT_P (b))
6fb5fa3c
DB
895 {
896 /* Match with *(reg0 + reg1) where reg1 is a const. */
897 HOST_WIDE_INT val = INTVAL (b);
b8698a0f 898 if (inc_insn.reg1_is_const
6fb5fa3c
DB
899 && (inc_insn.reg1_val == val || inc_insn.reg1_val == -val))
900 {
901 mem_insn.reg1_val = val;
902 return -1;
903 }
904 }
b8698a0f
L
905 else if (!inc_insn.reg1_is_const
906 && rtx_equal_p (inc_insn.reg1, b))
6fb5fa3c
DB
907 /* Match with *(reg0 + reg1). */
908 return -1;
909 }
910
911 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
912 {
913 /* If REG occurs inside a MEM used in a bit-field reference,
914 that is unacceptable. */
915 if (find_address (&XEXP (x, 0)))
916 return 1;
917 }
918
919 if (x == inc_insn.reg_res)
920 return 1;
921
922 /* Time for some deep diving. */
923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
924 {
925 if (fmt[i] == 'e')
926 {
927 tem = find_address (&XEXP (x, i));
928 /* If this is the first use, let it go so the rest of the
929 insn can be checked. */
930 if (value == 0)
931 value = tem;
932 else if (tem != 0)
933 /* More than one match was found. */
934 return 1;
935 }
936 else if (fmt[i] == 'E')
937 {
938 int j;
939 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
940 {
941 tem = find_address (&XVECEXP (x, i, j));
942 /* If this is the first use, let it go so the rest of
943 the insn can be checked. */
944 if (value == 0)
945 value = tem;
946 else if (tem != 0)
947 /* More than one match was found. */
948 return 1;
949 }
950 }
951 }
952 return value;
953}
954
955/* Once a suitable mem reference has been found and the MEM_INSN
956 structure has been filled in, FIND_INC is called to see if there is
957 a suitable add or inc insn that follows the mem reference and
958 determine if it is suitable to merge.
959
960 In the case where the MEM_INSN has two registers in the reference,
961 this function may be called recursively. The first time looking
962 for an add of the first register, and if that fails, looking for an
963 add of the second register. The FIRST_TRY parameter is used to
964 only allow the parameters to be reversed once. */
965
b8698a0f 966static bool
6fb5fa3c
DB
967find_inc (bool first_try)
968{
969 rtx insn;
b0de17ef 970 basic_block bb = BLOCK_FOR_INSN (mem_insn.insn);
6fb5fa3c 971 rtx other_insn;
57512f53 972 df_ref *def_rec;
6fb5fa3c
DB
973
974 /* Make sure this reg appears only once in this insn. */
975 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg0, 1) != 1)
976 {
977 if (dump_file)
b8698a0f 978 fprintf (dump_file, "mem count failure\n");
6fb5fa3c
DB
979 return false;
980 }
981
982 if (dump_file)
983 dump_mem_insn (dump_file);
984
985 /* Find the next use that is an inc. */
b8698a0f 986 insn = get_next_ref (REGNO (mem_insn.reg0),
b0de17ef 987 BLOCK_FOR_INSN (mem_insn.insn),
6fb5fa3c
DB
988 reg_next_inc_use);
989 if (!insn)
990 return false;
991
992 /* Even though we know the next use is an add or inc because it came
993 from the reg_next_inc_use, we must still reparse. */
994 if (!parse_add_or_inc (insn, false))
995 {
996 /* Next use was not an add. Look for one extra case. It could be
997 that we have:
b8698a0f 998
6fb5fa3c
DB
999 *(a + b)
1000 ...= a;
1001 ...= b + a
b8698a0f 1002
6fb5fa3c
DB
1003 if we reverse the operands in the mem ref we would
1004 find this. Only try it once though. */
1005 if (first_try && !mem_insn.reg1_is_const)
1006 {
1007 reverse_mem ();
1008 return find_inc (false);
1009 }
1010 else
1011 return false;
1012 }
1013
b8698a0f 1014 /* Need to assure that none of the operands of the inc instruction are
6fb5fa3c
DB
1015 assigned to by the mem insn. */
1016 for (def_rec = DF_INSN_DEFS (mem_insn.insn); *def_rec; def_rec++)
1017 {
57512f53 1018 df_ref def = *def_rec;
6fb5fa3c 1019 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 1020 if ((regno == REGNO (inc_insn.reg0))
6fb5fa3c
DB
1021 || (regno == REGNO (inc_insn.reg_res)))
1022 {
1023 if (dump_file)
1024 fprintf (dump_file, "inc conflicts with store failure.\n");
1025 return false;
1026 }
1027 if (!inc_insn.reg1_is_const && (regno == REGNO (inc_insn.reg1)))
1028 {
1029 if (dump_file)
1030 fprintf (dump_file, "inc conflicts with store failure.\n");
1031 return false;
1032 }
1033 }
1034
1035 if (dump_file)
1036 dump_inc_insn (dump_file);
1037
1038 if (inc_insn.form == FORM_POST_ADD)
1039 {
1040 /* Make sure that there is no insn that assigns to inc_insn.res
1041 between the mem_insn and the inc_insn. */
b8698a0f 1042 rtx other_insn = get_next_ref (REGNO (inc_insn.reg_res),
b0de17ef 1043 BLOCK_FOR_INSN (mem_insn.insn),
6fb5fa3c
DB
1044 reg_next_def);
1045 if (other_insn != inc_insn.insn)
1046 {
1047 if (dump_file)
b8698a0f 1048 fprintf (dump_file,
6fb5fa3c
DB
1049 "result of add is assigned to between mem and inc insns.\n");
1050 return false;
1051 }
1052
b8698a0f 1053 other_insn = get_next_ref (REGNO (inc_insn.reg_res),
b0de17ef 1054 BLOCK_FOR_INSN (mem_insn.insn),
6fb5fa3c 1055 reg_next_use);
b8698a0f 1056 if (other_insn
6fb5fa3c
DB
1057 && (other_insn != inc_insn.insn)
1058 && (DF_INSN_LUID (inc_insn.insn) > DF_INSN_LUID (other_insn)))
1059 {
1060 if (dump_file)
b8698a0f 1061 fprintf (dump_file,
6fb5fa3c
DB
1062 "result of add is used between mem and inc insns.\n");
1063 return false;
1064 }
1065
1066 /* For the post_add to work, the result_reg of the inc must not be
1067 used in the mem insn since this will become the new index
1068 register. */
71df5a7e 1069 if (reg_overlap_mentioned_p (inc_insn.reg_res, PATTERN (mem_insn.insn)))
6fb5fa3c
DB
1070 {
1071 if (dump_file)
1072 fprintf (dump_file, "base reg replacement failure.\n");
1073 return false;
1074 }
1075 }
1076
1077 if (mem_insn.reg1_is_const)
1078 {
1079 if (mem_insn.reg1_val == 0)
1080 {
1081 if (!inc_insn.reg1_is_const)
1082 {
1083 /* The mem looks like *r0 and the rhs of the add has two
1084 registers. */
1085 int luid = DF_INSN_LUID (inc_insn.insn);
1086 if (inc_insn.form == FORM_POST_ADD)
1087 {
b8698a0f 1088 /* The trick is that we are not going to increment r0,
6fb5fa3c
DB
1089 we are going to increment the result of the add insn.
1090 For this trick to be correct, the result reg of
1091 the inc must be a valid addressing reg. */
d4ebfa65
BE
1092 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1093 if (GET_MODE (inc_insn.reg_res)
1094 != targetm.addr_space.address_mode (as))
6fb5fa3c
DB
1095 {
1096 if (dump_file)
1097 fprintf (dump_file, "base reg mode failure.\n");
1098 return false;
1099 }
1100
1101 /* We also need to make sure that the next use of
1102 inc result is after the inc. */
b8698a0f 1103 other_insn
6fb5fa3c
DB
1104 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
1105 if (other_insn && luid > DF_INSN_LUID (other_insn))
1106 return false;
1107
1108 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
b8698a0f 1109 reverse_inc ();
6fb5fa3c
DB
1110 }
1111
b8698a0f 1112 other_insn
6fb5fa3c
DB
1113 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1114 if (other_insn && luid > DF_INSN_LUID (other_insn))
1115 return false;
1116 }
1117 }
1118 /* Both the inc/add and the mem have a constant. Need to check
1119 that the constants are ok. */
1120 else if ((mem_insn.reg1_val != inc_insn.reg1_val)
1121 && (mem_insn.reg1_val != -inc_insn.reg1_val))
1122 return false;
1123 }
1124 else
1125 {
1126 /* The mem insn is of the form *(a + b) where a and b are both
1127 regs. It may be that in order to match the add or inc we
1128 need to treat it as if it was *(b + a). It may also be that
1129 the add is of the form a + c where c does not match b and
1130 then we just abandon this. */
b8698a0f 1131
6fb5fa3c
DB
1132 int luid = DF_INSN_LUID (inc_insn.insn);
1133 rtx other_insn;
b8698a0f 1134
6fb5fa3c
DB
1135 /* Make sure this reg appears only once in this insn. */
1136 if (count_occurrences (PATTERN (mem_insn.insn), mem_insn.reg1, 1) != 1)
1137 return false;
b8698a0f 1138
6fb5fa3c
DB
1139 if (inc_insn.form == FORM_POST_ADD)
1140 {
1141 /* For this trick to be correct, the result reg of the inc
1142 must be a valid addressing reg. */
d4ebfa65
BE
1143 addr_space_t as = MEM_ADDR_SPACE (*mem_insn.mem_loc);
1144 if (GET_MODE (inc_insn.reg_res)
1145 != targetm.addr_space.address_mode (as))
6fb5fa3c
DB
1146 {
1147 if (dump_file)
1148 fprintf (dump_file, "base reg mode failure.\n");
1149 return false;
1150 }
1151
1152 if (rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1153 {
1154 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1155 {
1156 /* See comment above on find_inc (false) call. */
1157 if (first_try)
1158 {
1159 reverse_mem ();
1160 return find_inc (false);
1161 }
1162 else
1163 return false;
1164 }
1165
0d52bcc1 1166 /* Need to check that there are no assignments to b
6fb5fa3c 1167 before the add insn. */
b8698a0f 1168 other_insn
6fb5fa3c
DB
1169 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1170 if (other_insn && luid > DF_INSN_LUID (other_insn))
1171 return false;
1172 /* All ok for the next step. */
1173 }
1174 else
1175 {
1176 /* We know that mem_insn.reg0 must equal inc_insn.reg1
1177 or else we would not have found the inc insn. */
1178 reverse_mem ();
1179 if (!rtx_equal_p (mem_insn.reg0, inc_insn.reg0))
1180 {
1181 /* See comment above on find_inc (false) call. */
1182 if (first_try)
1183 return find_inc (false);
1184 else
1185 return false;
1186 }
1187 /* To have gotten here know that.
1188 *(b + a)
b8698a0f 1189
6fb5fa3c 1190 ... = (b + a)
b8698a0f 1191
6fb5fa3c
DB
1192 We also know that the lhs of the inc is not b or a. We
1193 need to make sure that there are no assignments to b
b8698a0f
L
1194 between the mem ref and the inc. */
1195
1196 other_insn
6fb5fa3c
DB
1197 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_def);
1198 if (other_insn && luid > DF_INSN_LUID (other_insn))
1199 return false;
1200 }
1201
1202 /* Need to check that the next use of the add result is later than
1203 add insn since this will be the reg incremented. */
b8698a0f 1204 other_insn
6fb5fa3c
DB
1205 = get_next_ref (REGNO (inc_insn.reg_res), bb, reg_next_use);
1206 if (other_insn && luid > DF_INSN_LUID (other_insn))
1207 return false;
1208 }
1209 else /* FORM_POST_INC. There is less to check here because we
b8698a0f 1210 know that operands must line up. */
6fb5fa3c
DB
1211 {
1212 if (!rtx_equal_p (mem_insn.reg1, inc_insn.reg1))
1213 /* See comment above on find_inc (false) call. */
1214 {
1215 if (first_try)
1216 {
1217 reverse_mem ();
1218 return find_inc (false);
1219 }
b8698a0f 1220 else
6fb5fa3c
DB
1221 return false;
1222 }
b8698a0f 1223
6fb5fa3c
DB
1224 /* To have gotten here know that.
1225 *(a + b)
b8698a0f 1226
6fb5fa3c 1227 ... = (a + b)
b8698a0f 1228
6fb5fa3c
DB
1229 We also know that the lhs of the inc is not b. We need to make
1230 sure that there are no assignments to b between the mem ref and
1231 the inc. */
b8698a0f 1232 other_insn
6fb5fa3c
DB
1233 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
1234 if (other_insn && luid > DF_INSN_LUID (other_insn))
1235 return false;
1236 }
1237 }
1238
1239 if (inc_insn.form == FORM_POST_INC)
1240 {
b8698a0f 1241 other_insn
6fb5fa3c
DB
1242 = get_next_ref (REGNO (inc_insn.reg0), bb, reg_next_use);
1243 /* When we found inc_insn, we were looking for the
1244 next add or inc, not the next insn that used the
1245 reg. Because we are going to increment the reg
1246 in this form, we need to make sure that there
6ed3da00 1247 were no intervening uses of reg. */
6fb5fa3c
DB
1248 if (inc_insn.insn != other_insn)
1249 return false;
1250 }
1251
1252 return try_merge ();
1253}
1254
1255
1256/* A recursive function that walks ADDRESS_OF_X to find all of the mem
1257 uses in pat that could be used as an auto inc or dec. It then
1258 calls FIND_INC for each one. */
1259
1260static bool
1261find_mem (rtx *address_of_x)
1262{
1263 rtx x = *address_of_x;
1264 enum rtx_code code = GET_CODE (x);
1265 const char *const fmt = GET_RTX_FORMAT (code);
1266 int i;
1267
1268 if (code == MEM && REG_P (XEXP (x, 0)))
1269 {
1270 /* Match with *reg0. */
1271 mem_insn.mem_loc = address_of_x;
1272 mem_insn.reg0 = XEXP (x, 0);
1273 mem_insn.reg1_is_const = true;
1274 mem_insn.reg1_val = 0;
1275 mem_insn.reg1 = GEN_INT (0);
1276 if (find_inc (true))
1277 return true;
1278 }
1279 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
1280 && REG_P (XEXP (XEXP (x, 0), 0)))
1281 {
1282 rtx reg1 = XEXP (XEXP (x, 0), 1);
1283 mem_insn.mem_loc = address_of_x;
1284 mem_insn.reg0 = XEXP (XEXP (x, 0), 0);
1285 mem_insn.reg1 = reg1;
481683e1 1286 if (CONST_INT_P (reg1))
6fb5fa3c
DB
1287 {
1288 mem_insn.reg1_is_const = true;
1289 /* Match with *(reg0 + c) where c is a const. */
1290 mem_insn.reg1_val = INTVAL (reg1);
1291 if (find_inc (true))
1292 return true;
1293 }
1294 else if (REG_P (reg1))
1295 {
1296 /* Match with *(reg0 + reg1). */
1297 mem_insn.reg1_is_const = false;
1298 if (find_inc (true))
1299 return true;
1300 }
1301 }
1302
1303 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
1304 {
1305 /* If REG occurs inside a MEM used in a bit-field reference,
1306 that is unacceptable. */
1307 return false;
1308 }
1309
1310 /* Time for some deep diving. */
1311 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1312 {
1313 if (fmt[i] == 'e')
1314 {
1315 if (find_mem (&XEXP (x, i)))
1316 return true;
1317 }
1318 else if (fmt[i] == 'E')
1319 {
1320 int j;
1321 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1322 if (find_mem (&XVECEXP (x, i, j)))
1323 return true;
1324 }
1325 }
1326 return false;
1327}
1328
1329
1330/* Try to combine all incs and decs by constant values with memory
1331 references in BB. */
1332
1333static void
1334merge_in_block (int max_reg, basic_block bb)
1335{
1336 rtx insn;
1337 rtx curr;
1338 int success_in_block = 0;
1339
1340 if (dump_file)
1341 fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);
1342
1343 FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
1344 {
1345 unsigned int uid = INSN_UID (insn);
1346 bool insn_is_add_or_inc = true;
1347
b5b8b0ac 1348 if (!NONDEBUG_INSN_P (insn))
b8698a0f 1349 continue;
6fb5fa3c
DB
1350
1351 /* This continue is deliberate. We do not want the uses of the
b8698a0f 1352 jump put into reg_next_use because it is not considered safe to
6fb5fa3c
DB
1353 combine a preincrement with a jump. */
1354 if (JUMP_P (insn))
1355 continue;
1356
1357 if (dump_file)
1358 dump_insn_slim (dump_file, insn);
1359
1360 /* Does this instruction increment or decrement a register? */
1361 if (parse_add_or_inc (insn, true))
1362 {
1363 int regno = REGNO (inc_insn.reg_res);
1364 /* Cannot handle case where there are three separate regs
1365 before a mem ref. Too many moves would be needed to be
1366 profitable. */
1367 if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
1368 {
1369 mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
1370 if (mem_insn.insn)
1371 {
1372 bool ok = true;
1373 if (!inc_insn.reg1_is_const)
1374 {
1375 /* We are only here if we are going to try a
1376 HAVE_*_MODIFY_REG type transformation. c is a
1377 reg and we must sure that the path from the
1378 inc_insn to the mem_insn.insn is both def and use
1379 clear of c because the inc insn is going to move
1380 into the mem_insn.insn. */
1381 int luid = DF_INSN_LUID (mem_insn.insn);
b8698a0f 1382 rtx other_insn
6fb5fa3c 1383 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);
b8698a0f 1384
6fb5fa3c
DB
1385 if (other_insn && luid > DF_INSN_LUID (other_insn))
1386 ok = false;
b8698a0f
L
1387
1388 other_insn
6fb5fa3c 1389 = get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);
b8698a0f 1390
6fb5fa3c
DB
1391 if (other_insn && luid > DF_INSN_LUID (other_insn))
1392 ok = false;
1393 }
b8698a0f 1394
6fb5fa3c
DB
1395 if (dump_file)
1396 dump_inc_insn (dump_file);
b8698a0f 1397
6fb5fa3c
DB
1398 if (ok && find_address (&PATTERN (mem_insn.insn)) == -1)
1399 {
1400 if (dump_file)
1401 dump_mem_insn (dump_file);
1402 if (try_merge ())
1403 {
1404 success_in_block++;
1405 insn_is_add_or_inc = false;
1406 }
1407 }
1408 }
1409 }
1410 }
1411 else
1412 {
1413 insn_is_add_or_inc = false;
1414 mem_insn.insn = insn;
1415 if (find_mem (&PATTERN (insn)))
1416 success_in_block++;
1417 }
b8698a0f 1418
6fb5fa3c
DB
1419 /* If the inc insn was merged with a mem, the inc insn is gone
1420 and there is noting to update. */
b5b8b0ac 1421 if (DF_INSN_UID_GET (uid))
6fb5fa3c 1422 {
57512f53
KZ
1423 df_ref *def_rec;
1424 df_ref *use_rec;
6fb5fa3c
DB
1425 /* Need to update next use. */
1426 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1427 {
57512f53 1428 df_ref def = *def_rec;
6fb5fa3c
DB
1429 reg_next_use[DF_REF_REGNO (def)] = NULL;
1430 reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
1431 reg_next_def[DF_REF_REGNO (def)] = insn;
1432 }
b8698a0f 1433
6fb5fa3c
DB
1434 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1435 {
57512f53 1436 df_ref use = *use_rec;
6fb5fa3c
DB
1437 reg_next_use[DF_REF_REGNO (use)] = insn;
1438 if (insn_is_add_or_inc)
1439 reg_next_inc_use[DF_REF_REGNO (use)] = insn;
1440 else
1441 reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
b8698a0f 1442 }
6fb5fa3c
DB
1443 }
1444 else if (dump_file)
1445 fprintf (dump_file, "skipping update of deleted insn %d\n", uid);
1446 }
1447
1448 /* If we were successful, try again. There may have been several
1449 opportunities that were interleaved. This is rare but
1450 gcc.c-torture/compile/pr17273.c actually exhibits this. */
1451 if (success_in_block)
1452 {
1453 /* In this case, we must clear these vectors since the trick of
1454 testing if the stale insn in the block will not work. */
1455 memset (reg_next_use, 0, max_reg * sizeof(rtx));
1456 memset (reg_next_inc_use, 0, max_reg * sizeof(rtx));
1457 memset (reg_next_def, 0, max_reg * sizeof(rtx));
1458 df_recompute_luids (bb);
1459 merge_in_block (max_reg, bb);
1460 }
1461}
1462
1463#endif
1464
b8698a0f 1465static unsigned int
6fb5fa3c
DB
1466rest_of_handle_auto_inc_dec (void)
1467{
1468#ifdef AUTO_INC_DEC
1469 basic_block bb;
1470 int max_reg = max_reg_num ();
1471
1472 if (!initialized)
1473 init_decision_table ();
1474
1475 mem_tmp = gen_rtx_MEM (Pmode, NULL_RTX);
1476
1477 df_note_add_problem ();
1478 df_analyze ();
1479
1480 reg_next_use = XCNEWVEC (rtx, max_reg);
1481 reg_next_inc_use = XCNEWVEC (rtx, max_reg);
1482 reg_next_def = XCNEWVEC (rtx, max_reg);
1483 FOR_EACH_BB (bb)
1484 merge_in_block (max_reg, bb);
1485
1486 free (reg_next_use);
1487 free (reg_next_inc_use);
1488 free (reg_next_def);
1489
1490 mem_tmp = NULL;
1491#endif
1492 return 0;
1493}
1494
1495
1496/* Discover auto-inc auto-dec instructions. */
1497
1498static bool
1499gate_auto_inc_dec (void)
1500{
1501#ifdef AUTO_INC_DEC
1502 return (optimize > 0 && flag_auto_inc_dec);
1503#else
1504 return false;
1505#endif
1506}
1507
1508
8ddbbcae 1509struct rtl_opt_pass pass_inc_dec =
6fb5fa3c 1510{
8ddbbcae
JH
1511 {
1512 RTL_PASS,
00b251a0 1513 "auto_inc_dec", /* name */
2b4e6bf1 1514 OPTGROUP_NONE, /* optinfo_flags */
6fb5fa3c
DB
1515 gate_auto_inc_dec, /* gate */
1516 rest_of_handle_auto_inc_dec, /* execute */
1517 NULL, /* sub */
1518 NULL, /* next */
1519 0, /* static_pass_number */
1520 TV_AUTO_INC_DEC, /* tv_id */
1521 0, /* properties_required */
1522 0, /* properties_provided */
1523 0, /* properties_destroyed */
1524 0, /* todo_flags_start */
6fb5fa3c 1525 TODO_df_finish, /* todo_flags_finish */
8ddbbcae 1526 }
6fb5fa3c 1527};