]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/bb-reorder.c
fix PR68343: disable fuse-*.c tests for isl 0.14 or earlier
[thirdparty/gcc.git] / gcc / bb-reorder.c
CommitLineData
295ae817 1/* Basic block reordering routines for the GNU compiler.
818ab71a 2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
295ae817 3
1322177d 4 This file is part of GCC.
295ae817 5
1322177d
LB
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
9dcd6f09 8 the Free Software Foundation; either version 3, or (at your option)
295ae817
JE
9 any later version.
10
1322177d
LB
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
295ae817
JE
15
16 You should have received a copy of the GNU General Public License
9dcd6f09
NC
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
295ae817 19
248c16c4
SB
20/* This file contains the "reorder blocks" pass, which changes the control
21 flow of a function to encounter fewer branches; the "partition blocks"
22 pass, which divides the basic blocks into "hot" and "cold" partitions,
23 which are kept separate; and the "duplicate computed gotos" pass, which
24 duplicates blocks ending in an indirect jump.
25
26 There are two algorithms for "reorder blocks": the "simple" algorithm,
27 which just rearranges blocks, trying to minimize the number of executed
28 unconditional branches; and the "software trace cache" algorithm, which
29 also copies code, and in general tries a lot harder to have long linear
30 pieces of machine code executed. This algorithm is described next. */
31
aa634f11
JZ
32/* This (greedy) algorithm constructs traces in several rounds.
33 The construction starts from "seeds". The seed for the first round
4700dd70
EB
34 is the entry point of the function. When there are more than one seed,
35 the one with the lowest key in the heap is selected first (see bb_to_key).
36 Then the algorithm repeatedly adds the most probable successor to the end
37 of a trace. Finally it connects the traces.
aa634f11
JZ
38
39 There are two parameters: Branch Threshold and Exec Threshold.
4700dd70
EB
40 If the probability of an edge to a successor of the current basic block is
41 lower than Branch Threshold or its frequency is lower than Exec Threshold,
42 then the successor will be the seed in one of the next rounds.
aa634f11 43 Each round has these parameters lower than the previous one.
4700dd70
EB
44 The last round has to have these parameters set to zero so that the
45 remaining blocks are picked up.
aa634f11
JZ
46
47 The algorithm selects the most probable successor from all unvisited
48 successors and successors that have been added to this trace.
49 The other successors (that has not been "sent" to the next round) will be
4700dd70
EB
50 other seeds for this round and the secondary traces will start from them.
51 If the successor has not been visited in this trace, it is added to the
52 trace (however, there is some heuristic for simple branches).
53 If the successor has been visited in this trace, a loop has been found.
54 If the loop has many iterations, the loop is rotated so that the source
55 block of the most probable edge going out of the loop is the last block
56 of the trace.
aa634f11 57 If the loop has few iterations and there is no edge from the last block of
4700dd70 58 the loop going out of the loop, the loop header is duplicated.
aa634f11 59
4700dd70
EB
60 When connecting traces, the algorithm first checks whether there is an edge
61 from the last block of a trace to the first block of another trace.
aa634f11 62 When there are still some unconnected traces it checks whether there exists
4700dd70
EB
63 a basic block BB such that BB is a successor of the last block of a trace
64 and BB is a predecessor of the first block of another trace. In this case,
65 BB is duplicated, added at the end of the first trace and the traces are
66 connected through it.
aa634f11 67 The rest of traces are simply connected so there will be a jump to the
4700dd70 68 beginning of the rest of traces.
aa634f11 69
f7d0c571
ZC
70 The above description is for the full algorithm, which is used when the
71 function is optimized for speed. When the function is optimized for size,
72 in order to reduce long jumps and connect more fallthru edges, the
73 algorithm is modified as follows:
74 (1) Break long traces to short ones. A trace is broken at a block that has
75 multiple predecessors/ successors during trace discovery. When connecting
76 traces, only connect Trace n with Trace n + 1. This change reduces most
77 long jumps compared with the above algorithm.
78 (2) Ignore the edge probability and frequency for fallthru edges.
79 (3) Keep the original order of blocks when there is no chance to fall
80 through. We rely on the results of cfg_cleanup.
81
82 To implement the change for code size optimization, block's index is
83 selected as the key and all traces are found in one round.
aa634f11
JZ
84
85 References:
86
87 "Software Trace Cache"
88 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
89 http://citeseer.nj.nec.com/15361.html
90
295ae817
JE
91*/
92
93#include "config.h"
01736018 94#define INCLUDE_ALGORITHM /* stable_sort */
295ae817 95#include "system.h"
4977bab6 96#include "coretypes.h"
c7131fb2 97#include "backend.h"
957060b5 98#include "target.h"
295ae817 99#include "rtl.h"
957060b5
AM
100#include "tree.h"
101#include "cfghooks.h"
c7131fb2 102#include "df.h"
957060b5 103#include "optabs.h"
7932a3db 104#include "regs.h"
957060b5 105#include "emit-rtl.h"
295ae817 106#include "output.h"
750054a2 107#include "expr.h"
bbcb0c05 108#include "params.h"
718f9c0f 109#include "toplev.h" /* user_defined_section_attribute */
ef330312 110#include "tree-pass.h"
60393bbc
AM
111#include "cfgrtl.h"
112#include "cfganal.h"
113#include "cfgbuild.h"
114#include "cfgcleanup.h"
76ee381a 115#include "bb-reorder.h"
0be7e7a6 116#include "except.h"
8d261514 117#include "fibonacci_heap.h"
ef330312 118
750054a2
CT
119/* The number of rounds. In most cases there will only be 4 rounds, but
120 when partitioning hot and cold basic blocks into separate sections of
4700dd70 121 the object file there will be an extra round. */
750054a2 122#define N_ROUNDS 5
aa634f11 123
76ee381a
RS
124struct target_bb_reorder default_target_bb_reorder;
125#if SWITCHABLE_TARGET
126struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
127#endif
128
129#define uncond_jump_length \
130 (this_target_bb_reorder->x_uncond_jump_length)
131
aa634f11 132/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
cfb00b41 133static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
aa634f11
JZ
134
135/* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
cfb00b41 136static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
aa634f11
JZ
137
138/* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
139 block the edge destination is not duplicated while connecting traces. */
140#define DUPLICATION_THRESHOLD 100
141
8d261514
ML
142typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
143typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
144
aa634f11 145/* Structure to hold needed information for each basic block. */
a79683d5 146struct bbro_basic_block_data
aa634f11 147{
4700dd70 148 /* Which trace is the bb start of (-1 means it is not a start of any). */
aa634f11
JZ
149 int start_of_trace;
150
4700dd70 151 /* Which trace is the bb end of (-1 means it is not an end of any). */
aa634f11
JZ
152 int end_of_trace;
153
87c8b4be
CT
154 /* Which trace is the bb in? */
155 int in_trace;
156
bcc708fc
MM
157 /* Which trace was this bb visited in? */
158 int visited;
159
aa634f11 160 /* Which heap is BB in (if any)? */
8d261514 161 bb_heap_t *heap;
aa634f11
JZ
162
163 /* Which heap node is BB in (if any)? */
8d261514 164 bb_heap_node_t *node;
a79683d5 165};
aa634f11
JZ
166
167/* The current size of the following dynamic array. */
168static int array_size;
169
170/* The array which holds needed information for basic blocks. */
171static bbro_basic_block_data *bbd;
172
173/* To avoid frequent reallocation the size of arrays is greater than needed,
174 the number of elements is (not less than) 1.25 * size_wanted. */
175#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
176
177/* Free the memory and set the pointer to NULL. */
298e6adc 178#define FREE(P) (gcc_assert (P), free (P), P = 0)
aa634f11
JZ
179
180/* Structure for holding information about a trace. */
181struct trace
182{
183 /* First and last basic block of the trace. */
184 basic_block first, last;
185
186 /* The round of the STC creation which this trace was found in. */
187 int round;
188
189 /* The length (i.e. the number of basic blocks) of the trace. */
190 int length;
191};
192
193/* Maximum frequency and count of one of the entry blocks. */
cd735ab8
KH
194static int max_entry_frequency;
195static gcov_type max_entry_count;
aa634f11 196
295ae817 197/* Local function prototypes. */
4682ae04
AJ
198static void find_traces (int *, struct trace *);
199static basic_block rotate_loop (edge, struct trace *, int);
200static void mark_bb_visited (basic_block, int);
201static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
8d261514 202 int, bb_heap_t **, int);
4682ae04 203static basic_block copy_bb (basic_block, edge, basic_block, int);
8d261514 204static long bb_to_key (basic_block);
4700dd70
EB
205static bool better_edge_p (const_basic_block, const_edge, int, int, int, int,
206 const_edge);
f7d0c571
ZC
207static bool connect_better_edge_p (const_edge, bool, int, const_edge,
208 struct trace *);
4682ae04 209static void connect_traces (int, struct trace *);
9678086d 210static bool copy_bb_p (const_basic_block, int);
ed7a4b4b 211static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
f008a564 212\f
bcc708fc
MM
213/* Return the trace number in which BB was visited. */
214
215static int
216bb_visited_trace (const_basic_block bb)
217{
218 gcc_assert (bb->index < array_size);
219 return bbd[bb->index].visited;
220}
221
222/* This function marks BB that it was visited in trace number TRACE. */
223
224static void
225mark_bb_visited (basic_block bb, int trace)
226{
227 bbd[bb->index].visited = trace;
228 if (bbd[bb->index].heap)
229 {
8d261514 230 bbd[bb->index].heap->delete_node (bbd[bb->index].node);
bcc708fc
MM
231 bbd[bb->index].heap = NULL;
232 bbd[bb->index].node = NULL;
233 }
234}
235
750054a2
CT
236/* Check to see if bb should be pushed into the next round of trace
237 collections or not. Reasons for pushing the block forward are 1).
238 If the block is cold, we are doing partitioning, and there will be
239 another round (cold partition blocks are not supposed to be
240 collected into traces until the very last round); or 2). There will
241 be another round, and the basic block is not "hot enough" for the
242 current round of trace collection. */
243
244static bool
ed7a4b4b 245push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
750054a2
CT
246 int exec_th, gcov_type count_th)
247{
248 bool there_exists_another_round;
750054a2
CT
249 bool block_not_hot_enough;
250
251 there_exists_another_round = round < number_of_rounds - 1;
750054a2 252
c22cacf3 253 block_not_hot_enough = (bb->frequency < exec_th
750054a2 254 || bb->count < count_th
2eb712b4 255 || probably_never_executed_bb_p (cfun, bb));
750054a2 256
87c8b4be
CT
257 if (there_exists_another_round
258 && block_not_hot_enough)
750054a2 259 return true;
c22cacf3 260 else
750054a2
CT
261 return false;
262}
263
aa634f11
JZ
264/* Find the traces for Software Trace Cache. Chain each trace through
265 RBI()->next. Store the number of traces to N_TRACES and description of
266 traces to TRACES. */
295ae817 267
f008a564 268static void
4682ae04 269find_traces (int *n_traces, struct trace *traces)
295ae817 270{
aa634f11 271 int i;
750054a2 272 int number_of_rounds;
aa634f11 273 edge e;
628f6a4e 274 edge_iterator ei;
8d261514 275 bb_heap_t *heap = new bb_heap_t (LONG_MIN);
aa634f11 276
750054a2
CT
277 /* Add one extra round of trace collection when partitioning hot/cold
278 basic blocks into separate sections. The last round is for all the
279 cold blocks (and ONLY the cold blocks). */
280
281 number_of_rounds = N_ROUNDS - 1;
750054a2 282
aa634f11 283 /* Insert entry points of function into heap. */
aa634f11
JZ
284 max_entry_frequency = 0;
285 max_entry_count = 0;
fefa31b5 286 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
aa634f11
JZ
287 {
288 bbd[e->dest->index].heap = heap;
8d261514 289 bbd[e->dest->index].node = heap->insert (bb_to_key (e->dest), e->dest);
aa634f11
JZ
290 if (e->dest->frequency > max_entry_frequency)
291 max_entry_frequency = e->dest->frequency;
292 if (e->dest->count > max_entry_count)
293 max_entry_count = e->dest->count;
294 }
295
296 /* Find the traces. */
750054a2 297 for (i = 0; i < number_of_rounds; i++)
aa634f11
JZ
298 {
299 gcov_type count_threshold;
f008a564 300
c263766c
RH
301 if (dump_file)
302 fprintf (dump_file, "STC - round %d\n", i + 1);
aa634f11
JZ
303
304 if (max_entry_count < INT_MAX / 1000)
305 count_threshold = max_entry_count * exec_threshold[i] / 1000;
306 else
307 count_threshold = max_entry_count / 1000 * exec_threshold[i];
308
309 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
310 max_entry_frequency * exec_threshold[i] / 1000,
750054a2
CT
311 count_threshold, traces, n_traces, i, &heap,
312 number_of_rounds);
aa634f11 313 }
8d261514 314 delete heap;
aa634f11 315
c263766c 316 if (dump_file)
aa634f11
JZ
317 {
318 for (i = 0; i < *n_traces; i++)
319 {
320 basic_block bb;
c263766c 321 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
aa634f11 322 traces[i].round + 1);
4700dd70
EB
323 for (bb = traces[i].first;
324 bb != traces[i].last;
325 bb = (basic_block) bb->aux)
c263766c
RH
326 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
327 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
aa634f11 328 }
c263766c 329 fflush (dump_file);
aa634f11
JZ
330 }
331}
332
333/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
334 (with sequential number TRACE_N). */
335
336static basic_block
4682ae04 337rotate_loop (edge back_edge, struct trace *trace, int trace_n)
aa634f11
JZ
338{
339 basic_block bb;
340
341 /* Information about the best end (end after rotation) of the loop. */
342 basic_block best_bb = NULL;
343 edge best_edge = NULL;
344 int best_freq = -1;
345 gcov_type best_count = -1;
346 /* The best edge is preferred when its destination is not visited yet
347 or is a start block of some trace. */
348 bool is_preferred = false;
349
350 /* Find the most frequent edge that goes out from current trace. */
351 bb = back_edge->dest;
f008a564
RH
352 do
353 {
aa634f11 354 edge e;
628f6a4e
BE
355 edge_iterator ei;
356
357 FOR_EACH_EDGE (e, ei, bb->succs)
fefa31b5 358 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
bcc708fc 359 && bb_visited_trace (e->dest) != trace_n
aa634f11
JZ
360 && (e->flags & EDGE_CAN_FALLTHRU)
361 && !(e->flags & EDGE_COMPLEX))
362 {
363 if (is_preferred)
364 {
365 /* The best edge is preferred. */
bcc708fc 366 if (!bb_visited_trace (e->dest)
aa634f11
JZ
367 || bbd[e->dest->index].start_of_trace >= 0)
368 {
369 /* The current edge E is also preferred. */
370 int freq = EDGE_FREQUENCY (e);
371 if (freq > best_freq || e->count > best_count)
372 {
373 best_freq = freq;
374 best_count = e->count;
375 best_edge = e;
376 best_bb = bb;
377 }
378 }
379 }
380 else
381 {
bcc708fc 382 if (!bb_visited_trace (e->dest)
aa634f11
JZ
383 || bbd[e->dest->index].start_of_trace >= 0)
384 {
385 /* The current edge E is preferred. */
386 is_preferred = true;
387 best_freq = EDGE_FREQUENCY (e);
388 best_count = e->count;
389 best_edge = e;
390 best_bb = bb;
391 }
392 else
393 {
394 int freq = EDGE_FREQUENCY (e);
395 if (!best_edge || freq > best_freq || e->count > best_count)
396 {
397 best_freq = freq;
398 best_count = e->count;
399 best_edge = e;
400 best_bb = bb;
401 }
402 }
403 }
404 }
f883e0a7 405 bb = (basic_block) bb->aux;
aa634f11
JZ
406 }
407 while (bb != back_edge->dest);
408
409 if (best_bb)
410 {
411 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
412 the trace. */
413 if (back_edge->dest == trace->first)
414 {
f883e0a7 415 trace->first = (basic_block) best_bb->aux;
aa634f11
JZ
416 }
417 else
418 {
419 basic_block prev_bb;
ca7fd9cd 420
aa634f11 421 for (prev_bb = trace->first;
370369e1 422 prev_bb->aux != back_edge->dest;
f883e0a7 423 prev_bb = (basic_block) prev_bb->aux)
aa634f11 424 ;
370369e1 425 prev_bb->aux = best_bb->aux;
aa634f11
JZ
426
427 /* Try to get rid of uncond jump to cond jump. */
c5cbcccf 428 if (single_succ_p (prev_bb))
aa634f11 429 {
c5cbcccf 430 basic_block header = single_succ (prev_bb);
aa634f11
JZ
431
432 /* Duplicate HEADER if it is a small block containing cond jump
433 in the end. */
9fb32434 434 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
339ba33b 435 && !CROSSING_JUMP_P (BB_END (header)))
c5cbcccf 436 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
aa634f11
JZ
437 }
438 }
439 }
440 else
441 {
442 /* We have not found suitable loop tail so do no rotation. */
443 best_bb = back_edge->src;
295ae817 444 }
370369e1 445 best_bb->aux = NULL;
aa634f11 446 return best_bb;
f008a564 447}
295ae817 448
4700dd70
EB
449/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
450 not include basic blocks whose probability is lower than BRANCH_TH or whose
451 frequency is lower than EXEC_TH into traces (or whose count is lower than
452 COUNT_TH). Store the new traces into TRACES and modify the number of
453 traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
454 The function expects starting basic blocks to be in *HEAP and will delete
455 *HEAP and store starting points for the next round into new *HEAP. */
aa634f11
JZ
456
457static void
4682ae04
AJ
458find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
459 struct trace *traces, int *n_traces, int round,
8d261514 460 bb_heap_t **heap, int number_of_rounds)
aa634f11
JZ
461{
462 /* Heap for discarded basic blocks which are possible starting points for
463 the next round. */
8d261514 464 bb_heap_t *new_heap = new bb_heap_t (LONG_MIN);
f7d0c571 465 bool for_size = optimize_function_for_size_p (cfun);
aa634f11 466
8d261514 467 while (!(*heap)->empty ())
aa634f11
JZ
468 {
469 basic_block bb;
470 struct trace *trace;
471 edge best_edge, e;
8d261514 472 long key;
628f6a4e 473 edge_iterator ei;
aa634f11 474
8d261514 475 bb = (*heap)->extract_min ();
aa634f11
JZ
476 bbd[bb->index].heap = NULL;
477 bbd[bb->index].node = NULL;
478
c263766c
RH
479 if (dump_file)
480 fprintf (dump_file, "Getting bb %d\n", bb->index);
aa634f11 481
4700dd70 482 /* If the BB's frequency is too low, send BB to the next round. When
c22cacf3
MS
483 partitioning hot/cold blocks into separate sections, make sure all
484 the cold blocks (and ONLY the cold blocks) go into the (extra) final
f7d0c571 485 round. When optimizing for size, do not push to next round. */
750054a2 486
f7d0c571
ZC
487 if (!for_size
488 && push_to_next_round_p (bb, round, number_of_rounds, exec_th,
489 count_th))
aa634f11
JZ
490 {
491 int key = bb_to_key (bb);
492 bbd[bb->index].heap = new_heap;
8d261514 493 bbd[bb->index].node = new_heap->insert (key, bb);
aa634f11 494
c263766c
RH
495 if (dump_file)
496 fprintf (dump_file,
aa634f11
JZ
497 " Possible start point of next round: %d (key: %d)\n",
498 bb->index, key);
499 continue;
500 }
501
502 trace = traces + *n_traces;
503 trace->first = bb;
504 trace->round = round;
505 trace->length = 0;
87c8b4be 506 bbd[bb->index].in_trace = *n_traces;
aa634f11
JZ
507 (*n_traces)++;
508
509 do
510 {
511 int prob, freq;
934677f9 512 bool ends_in_call;
aa634f11
JZ
513
514 /* The probability and frequency of the best edge. */
515 int best_prob = INT_MIN / 2;
516 int best_freq = INT_MIN / 2;
517
518 best_edge = NULL;
519 mark_bb_visited (bb, *n_traces);
520 trace->length++;
521
c263766c
RH
522 if (dump_file)
523 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
aa634f11
JZ
524 bb->index, *n_traces - 1);
525
c22cacf3 526 ends_in_call = block_ends_with_call_p (bb);
934677f9 527
aa634f11 528 /* Select the successor that will be placed after BB. */
628f6a4e 529 FOR_EACH_EDGE (e, ei, bb->succs)
aa634f11 530 {
298e6adc 531 gcc_assert (!(e->flags & EDGE_FAKE));
aa634f11 532
fefa31b5 533 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
aa634f11
JZ
534 continue;
535
bcc708fc
MM
536 if (bb_visited_trace (e->dest)
537 && bb_visited_trace (e->dest) != *n_traces)
aa634f11
JZ
538 continue;
539
87c8b4be 540 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
750054a2
CT
541 continue;
542
aa634f11 543 prob = e->probability;
1651e640 544 freq = e->dest->frequency;
aa634f11 545
934677f9
RH
546 /* The only sensible preference for a call instruction is the
547 fallthru edge. Don't bother selecting anything else. */
548 if (ends_in_call)
549 {
550 if (e->flags & EDGE_CAN_FALLTHRU)
551 {
552 best_edge = e;
553 best_prob = prob;
554 best_freq = freq;
555 }
556 continue;
557 }
558
aa634f11 559 /* Edge that cannot be fallthru or improbable or infrequent
f7d0c571
ZC
560 successor (i.e. it is unsuitable successor). When optimizing
561 for size, ignore the probability and frequency. */
aa634f11 562 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
f7d0c571
ZC
563 || ((prob < branch_th || EDGE_FREQUENCY (e) < exec_th
564 || e->count < count_th) && (!for_size)))
aa634f11
JZ
565 continue;
566
750054a2
CT
567 /* If partitioning hot/cold basic blocks, don't consider edges
568 that cross section boundaries. */
569
570 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
571 best_edge))
aa634f11
JZ
572 {
573 best_edge = e;
574 best_prob = prob;
575 best_freq = freq;
576 }
577 }
578
c8717368 579 /* If the best destination has multiple predecessors, and can be
6d9cc15b
JZ
580 duplicated cheaper than a jump, don't allow it to be added
581 to a trace. We'll duplicate it when connecting traces. */
628f6a4e 582 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
6d9cc15b
JZ
583 && copy_bb_p (best_edge->dest, 0))
584 best_edge = NULL;
585
f7d0c571
ZC
586 /* If the best destination has multiple successors or predecessors,
587 don't allow it to be added when optimizing for size. This makes
588 sure predecessors with smaller index are handled before the best
589 destinarion. It breaks long trace and reduces long jumps.
590
591 Take if-then-else as an example.
592 A
593 / \
594 B C
595 \ /
596 D
597 If we do not remove the best edge B->D/C->D, the final order might
598 be A B D ... C. C is at the end of the program. If D's successors
599 and D are complicated, might need long jumps for A->C and C->D.
600 Similar issue for order: A C D ... B.
601
602 After removing the best edge, the final result will be ABCD/ ACBD.
603 It does not add jump compared with the previous order. But it
688010ba 604 reduces the possibility of long jumps. */
f7d0c571
ZC
605 if (best_edge && for_size
606 && (EDGE_COUNT (best_edge->dest->succs) > 1
607 || EDGE_COUNT (best_edge->dest->preds) > 1))
608 best_edge = NULL;
609
aa634f11 610 /* Add all non-selected successors to the heaps. */
628f6a4e 611 FOR_EACH_EDGE (e, ei, bb->succs)
aa634f11
JZ
612 {
613 if (e == best_edge
fefa31b5 614 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
bcc708fc 615 || bb_visited_trace (e->dest))
aa634f11
JZ
616 continue;
617
618 key = bb_to_key (e->dest);
619
620 if (bbd[e->dest->index].heap)
621 {
622 /* E->DEST is already in some heap. */
8d261514 623 if (key != bbd[e->dest->index].node->get_key ())
aa634f11 624 {
c263766c 625 if (dump_file)
aa634f11 626 {
c263766c 627 fprintf (dump_file,
aa634f11
JZ
628 "Changing key for bb %d from %ld to %ld.\n",
629 e->dest->index,
8d261514 630 (long) bbd[e->dest->index].node->get_key (),
aa634f11
JZ
631 key);
632 }
a3dc1a45 633 bbd[e->dest->index].heap->replace_key
8d261514 634 (bbd[e->dest->index].node, key);
aa634f11
JZ
635 }
636 }
637 else
638 {
8d261514 639 bb_heap_t *which_heap = *heap;
aa634f11
JZ
640
641 prob = e->probability;
642 freq = EDGE_FREQUENCY (e);
643
644 if (!(e->flags & EDGE_CAN_FALLTHRU)
645 || (e->flags & EDGE_COMPLEX)
646 || prob < branch_th || freq < exec_th
647 || e->count < count_th)
648 {
750054a2
CT
649 /* When partitioning hot/cold basic blocks, make sure
650 the cold blocks (and only the cold blocks) all get
f7d0c571
ZC
651 pushed to the last round of trace collection. When
652 optimizing for size, do not push to next round. */
750054a2 653
f7d0c571
ZC
654 if (!for_size && push_to_next_round_p (e->dest, round,
655 number_of_rounds,
656 exec_th, count_th))
aa634f11
JZ
657 which_heap = new_heap;
658 }
295ae817 659
aa634f11 660 bbd[e->dest->index].heap = which_heap;
8d261514 661 bbd[e->dest->index].node = which_heap->insert (key, e->dest);
295ae817 662
c263766c 663 if (dump_file)
aa634f11 664 {
c263766c 665 fprintf (dump_file,
aa634f11
JZ
666 " Possible start of %s round: %d (key: %ld)\n",
667 (which_heap == new_heap) ? "next" : "this",
668 e->dest->index, (long) key);
669 }
670
671 }
672 }
673
674 if (best_edge) /* Suitable successor was found. */
675 {
bcc708fc 676 if (bb_visited_trace (best_edge->dest) == *n_traces)
aa634f11
JZ
677 {
678 /* We do nothing with one basic block loops. */
679 if (best_edge->dest != bb)
680 {
681 if (EDGE_FREQUENCY (best_edge)
682 > 4 * best_edge->dest->frequency / 5)
683 {
684 /* The loop has at least 4 iterations. If the loop
685 header is not the first block of the function
686 we can rotate the loop. */
687
fefa31b5
DM
688 if (best_edge->dest
689 != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
aa634f11 690 {
c263766c 691 if (dump_file)
aa634f11 692 {
c263766c 693 fprintf (dump_file,
aa634f11
JZ
694 "Rotating loop %d - %d\n",
695 best_edge->dest->index, bb->index);
696 }
370369e1 697 bb->aux = best_edge->dest;
c22cacf3
MS
698 bbd[best_edge->dest->index].in_trace =
699 (*n_traces) - 1;
aa634f11
JZ
700 bb = rotate_loop (best_edge, trace, *n_traces);
701 }
702 }
703 else
704 {
705 /* The loop has less than 4 iterations. */
706
c5cbcccf 707 if (single_succ_p (bb)
efd8f750 708 && copy_bb_p (best_edge->dest,
4700dd70
EB
709 optimize_edge_for_speed_p
710 (best_edge)))
aa634f11
JZ
711 {
712 bb = copy_bb (best_edge->dest, best_edge, bb,
713 *n_traces);
87c8b4be 714 trace->length++;
aa634f11
JZ
715 }
716 }
717 }
718
719 /* Terminate the trace. */
720 break;
721 }
722 else
723 {
724 /* Check for a situation
725
726 A
727 /|
728 B |
729 \|
730 C
731
732 where
733 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
734 >= EDGE_FREQUENCY (AC).
735 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
736 Best ordering is then A B C.
737
f7d0c571
ZC
738 When optimizing for size, A B C is always the best order.
739
aa634f11
JZ
740 This situation is created for example by:
741
742 if (A) B;
743 C;
744
745 */
746
628f6a4e 747 FOR_EACH_EDGE (e, ei, bb->succs)
aa634f11
JZ
748 if (e != best_edge
749 && (e->flags & EDGE_CAN_FALLTHRU)
750 && !(e->flags & EDGE_COMPLEX)
bcc708fc 751 && !bb_visited_trace (e->dest)
c5cbcccf 752 && single_pred_p (e->dest)
bd454efd 753 && !(e->flags & EDGE_CROSSING)
87c8b4be 754 && single_succ_p (e->dest)
c5cbcccf
ZD
755 && (single_succ_edge (e->dest)->flags
756 & EDGE_CAN_FALLTHRU)
757 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
758 && single_succ (e->dest) == best_edge->dest
f7d0c571
ZC
759 && (2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge)
760 || for_size))
aa634f11
JZ
761 {
762 best_edge = e;
c263766c
RH
763 if (dump_file)
764 fprintf (dump_file, "Selecting BB %d\n",
aa634f11
JZ
765 best_edge->dest->index);
766 break;
767 }
768
370369e1 769 bb->aux = best_edge->dest;
87c8b4be 770 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
aa634f11
JZ
771 bb = best_edge->dest;
772 }
773 }
774 }
775 while (best_edge);
776 trace->last = bb;
777 bbd[trace->first->index].start_of_trace = *n_traces - 1;
778 bbd[trace->last->index].end_of_trace = *n_traces - 1;
779
780 /* The trace is terminated so we have to recount the keys in heap
781 (some block can have a lower key because now one of its predecessors
782 is an end of the trace). */
628f6a4e 783 FOR_EACH_EDGE (e, ei, bb->succs)
aa634f11 784 {
fefa31b5 785 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
bcc708fc 786 || bb_visited_trace (e->dest))
aa634f11
JZ
787 continue;
788
789 if (bbd[e->dest->index].heap)
790 {
791 key = bb_to_key (e->dest);
8d261514 792 if (key != bbd[e->dest->index].node->get_key ())
aa634f11 793 {
c263766c 794 if (dump_file)
aa634f11 795 {
c263766c 796 fprintf (dump_file,
aa634f11
JZ
797 "Changing key for bb %d from %ld to %ld.\n",
798 e->dest->index,
8d261514 799 (long) bbd[e->dest->index].node->get_key (), key);
aa634f11 800 }
a3dc1a45 801 bbd[e->dest->index].heap->replace_key
8d261514 802 (bbd[e->dest->index].node, key);
aa634f11
JZ
803 }
804 }
805 }
806 }
807
8d261514 808 delete (*heap);
aa634f11
JZ
809
810 /* "Return" the new heap. */
811 *heap = new_heap;
812}
813
814/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
815 it to trace after BB, mark OLD_BB visited and update pass' data structures
816 (TRACE is a number of trace which OLD_BB is duplicated to). */
295ae817 817
f008a564 818static basic_block
4682ae04 819copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
f008a564 820{
aa634f11
JZ
821 basic_block new_bb;
822
b9a66240 823 new_bb = duplicate_block (old_bb, e, bb);
076c7ab8 824 BB_COPY_PARTITION (new_bb, old_bb);
9fb32434 825
298e6adc 826 gcc_assert (e->dest == new_bb);
298e6adc 827
c263766c
RH
828 if (dump_file)
829 fprintf (dump_file,
aa634f11
JZ
830 "Duplicated bb %d (created bb %d)\n",
831 old_bb->index, new_bb->index);
f008a564 832
8b1c6fd7
DM
833 if (new_bb->index >= array_size
834 || last_basic_block_for_fn (cfun) > array_size)
295ae817 835 {
aa634f11
JZ
836 int i;
837 int new_size;
838
8b1c6fd7 839 new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
aa634f11 840 new_size = GET_ARRAY_SIZE (new_size);
f883e0a7 841 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
aa634f11
JZ
842 for (i = array_size; i < new_size; i++)
843 {
844 bbd[i].start_of_trace = -1;
845 bbd[i].end_of_trace = -1;
bcc708fc
MM
846 bbd[i].in_trace = -1;
847 bbd[i].visited = 0;
aa634f11
JZ
848 bbd[i].heap = NULL;
849 bbd[i].node = NULL;
850 }
851 array_size = new_size;
295ae817 852
c263766c 853 if (dump_file)
aa634f11 854 {
c263766c 855 fprintf (dump_file,
aa634f11
JZ
856 "Growing the dynamic array to %d elements.\n",
857 array_size);
858 }
295ae817 859 }
aa634f11 860
bcc708fc
MM
861 gcc_assert (!bb_visited_trace (e->dest));
862 mark_bb_visited (new_bb, trace);
863 new_bb->aux = bb->aux;
864 bb->aux = new_bb;
865
87c8b4be
CT
866 bbd[new_bb->index].in_trace = trace;
867
aa634f11
JZ
868 return new_bb;
869}
870
871/* Compute and return the key (for the heap) of the basic block BB. */
872
8d261514 873static long
4682ae04 874bb_to_key (basic_block bb)
aa634f11
JZ
875{
876 edge e;
628f6a4e 877 edge_iterator ei;
aa634f11
JZ
878 int priority = 0;
879
f7d0c571
ZC
880 /* Use index as key to align with its original order. */
881 if (optimize_function_for_size_p (cfun))
882 return bb->index;
883
aa634f11 884 /* Do not start in probably never executed blocks. */
750054a2 885
076c7ab8 886 if (BB_PARTITION (bb) == BB_COLD_PARTITION
2eb712b4 887 || probably_never_executed_bb_p (cfun, bb))
aa634f11
JZ
888 return BB_FREQ_MAX;
889
890 /* Prefer blocks whose predecessor is an end of some trace
891 or whose predecessor edge is EDGE_DFS_BACK. */
628f6a4e 892 FOR_EACH_EDGE (e, ei, bb->preds)
402209ff 893 {
fefa31b5
DM
894 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
895 && bbd[e->src->index].end_of_trace >= 0)
aa634f11
JZ
896 || (e->flags & EDGE_DFS_BACK))
897 {
898 int edge_freq = EDGE_FREQUENCY (e);
899
900 if (edge_freq > priority)
901 priority = edge_freq;
902 }
402209ff 903 }
295ae817 904
aa634f11
JZ
905 if (priority)
906 /* The block with priority should have significantly lower key. */
907 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
4700dd70 908
aa634f11
JZ
909 return -bb->frequency;
910}
911
912/* Return true when the edge E from basic block BB is better than the temporary
913 best edge (details are in function). The probability of edge E is PROB. The
914 frequency of the successor is FREQ. The current best probability is
915 BEST_PROB, the best frequency is BEST_FREQ.
916 The edge is considered to be equivalent when PROB does not differ much from
917 BEST_PROB; similarly for frequency. */
918
919static bool
4700dd70
EB
920better_edge_p (const_basic_block bb, const_edge e, int prob, int freq,
921 int best_prob, int best_freq, const_edge cur_best_edge)
aa634f11
JZ
922{
923 bool is_better_edge;
f008a564 924
aa634f11
JZ
925 /* The BEST_* values do not have to be best, but can be a bit smaller than
926 maximum values. */
927 int diff_prob = best_prob / 10;
928 int diff_freq = best_freq / 10;
f008a564 929
f7d0c571
ZC
930 /* The smaller one is better to keep the original order. */
931 if (optimize_function_for_size_p (cfun))
932 return !cur_best_edge
933 || cur_best_edge->dest->index > e->dest->index;
934
aa634f11
JZ
935 if (prob > best_prob + diff_prob)
936 /* The edge has higher probability than the temporary best edge. */
937 is_better_edge = true;
938 else if (prob < best_prob - diff_prob)
939 /* The edge has lower probability than the temporary best edge. */
940 is_better_edge = false;
941 else if (freq < best_freq - diff_freq)
942 /* The edge and the temporary best edge have almost equivalent
943 probabilities. The higher frequency of a successor now means
944 that there is another edge going into that successor.
945 This successor has lower frequency so it is better. */
946 is_better_edge = true;
947 else if (freq > best_freq + diff_freq)
948 /* This successor has higher frequency so it is worse. */
949 is_better_edge = false;
950 else if (e->dest->prev_bb == bb)
951 /* The edges have equivalent probabilities and the successors
952 have equivalent frequencies. Select the previous successor. */
953 is_better_edge = true;
954 else
955 is_better_edge = false;
956
750054a2
CT
957 /* If we are doing hot/cold partitioning, make sure that we always favor
958 non-crossing edges over crossing edges. */
959
960 if (!is_better_edge
c22cacf3
MS
961 && flag_reorder_blocks_and_partition
962 && cur_best_edge
bd454efd
SB
963 && (cur_best_edge->flags & EDGE_CROSSING)
964 && !(e->flags & EDGE_CROSSING))
750054a2
CT
965 is_better_edge = true;
966
aa634f11
JZ
967 return is_better_edge;
968}
969
f7d0c571
ZC
970/* Return true when the edge E is better than the temporary best edge
971 CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
972 E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
973 BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
974 TRACES record the information about traces.
975 When optimizing for size, the edge with smaller index is better.
976 When optimizing for speed, the edge with bigger probability or longer trace
977 is better. */
978
979static bool
980connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
981 const_edge cur_best_edge, struct trace *traces)
982{
983 int e_index;
984 int b_index;
985 bool is_better_edge;
986
987 if (!cur_best_edge)
988 return true;
989
990 if (optimize_function_for_size_p (cfun))
991 {
992 e_index = src_index_p ? e->src->index : e->dest->index;
993 b_index = src_index_p ? cur_best_edge->src->index
994 : cur_best_edge->dest->index;
995 /* The smaller one is better to keep the original order. */
996 return b_index > e_index;
997 }
998
999 if (src_index_p)
1000 {
1001 e_index = e->src->index;
1002
1003 if (e->probability > cur_best_edge->probability)
1004 /* The edge has higher probability than the temporary best edge. */
1005 is_better_edge = true;
1006 else if (e->probability < cur_best_edge->probability)
1007 /* The edge has lower probability than the temporary best edge. */
1008 is_better_edge = false;
1009 else if (traces[bbd[e_index].end_of_trace].length > best_len)
1010 /* The edge and the temporary best edge have equivalent probabilities.
1011 The edge with longer trace is better. */
1012 is_better_edge = true;
1013 else
1014 is_better_edge = false;
1015 }
1016 else
1017 {
1018 e_index = e->dest->index;
1019
1020 if (e->probability > cur_best_edge->probability)
1021 /* The edge has higher probability than the temporary best edge. */
1022 is_better_edge = true;
1023 else if (e->probability < cur_best_edge->probability)
1024 /* The edge has lower probability than the temporary best edge. */
1025 is_better_edge = false;
1026 else if (traces[bbd[e_index].start_of_trace].length > best_len)
1027 /* The edge and the temporary best edge have equivalent probabilities.
1028 The edge with longer trace is better. */
1029 is_better_edge = true;
1030 else
1031 is_better_edge = false;
1032 }
1033
1034 return is_better_edge;
1035}
1036
aa634f11
JZ
1037/* Connect traces in array TRACES, N_TRACES is the count of traces. */
1038
1039static void
4682ae04 1040connect_traces (int n_traces, struct trace *traces)
aa634f11
JZ
1041{
1042 int i;
1043 bool *connected;
87c8b4be 1044 bool two_passes;
aa634f11 1045 int last_trace;
87c8b4be
CT
1046 int current_pass;
1047 int current_partition;
aa634f11
JZ
1048 int freq_threshold;
1049 gcov_type count_threshold;
f7d0c571 1050 bool for_size = optimize_function_for_size_p (cfun);
aa634f11
JZ
1051
1052 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
1053 if (max_entry_count < INT_MAX / 1000)
1054 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
1055 else
1056 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
1057
5ed6ace5 1058 connected = XCNEWVEC (bool, n_traces);
aa634f11 1059 last_trace = -1;
87c8b4be
CT
1060 current_pass = 1;
1061 current_partition = BB_PARTITION (traces[0].first);
1062 two_passes = false;
750054a2 1063
af205f67 1064 if (crtl->has_bb_partition)
87c8b4be 1065 for (i = 0; i < n_traces && !two_passes; i++)
c22cacf3 1066 if (BB_PARTITION (traces[0].first)
87c8b4be
CT
1067 != BB_PARTITION (traces[i].first))
1068 two_passes = true;
1069
1070 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
295ae817 1071 {
aa634f11
JZ
1072 int t = i;
1073 int t2;
1074 edge e, best;
1075 int best_len;
295ae817 1076
87c8b4be 1077 if (i >= n_traces)
750054a2 1078 {
41806d92
NS
1079 gcc_assert (two_passes && current_pass == 1);
1080 i = 0;
1081 t = i;
1082 current_pass = 2;
1083 if (current_partition == BB_HOT_PARTITION)
1084 current_partition = BB_COLD_PARTITION;
87c8b4be 1085 else
41806d92 1086 current_partition = BB_HOT_PARTITION;
750054a2 1087 }
c22cacf3 1088
aa634f11
JZ
1089 if (connected[t])
1090 continue;
f008a564 1091
c22cacf3 1092 if (two_passes
87c8b4be
CT
1093 && BB_PARTITION (traces[t].first) != current_partition)
1094 continue;
1095
aa634f11 1096 connected[t] = true;
b0cc7919 1097
aa634f11
JZ
1098 /* Find the predecessor traces. */
1099 for (t2 = t; t2 > 0;)
1100 {
628f6a4e 1101 edge_iterator ei;
aa634f11
JZ
1102 best = NULL;
1103 best_len = 0;
628f6a4e 1104 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
aa634f11
JZ
1105 {
1106 int si = e->src->index;
b0cc7919 1107
fefa31b5 1108 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
aa634f11
JZ
1109 && (e->flags & EDGE_CAN_FALLTHRU)
1110 && !(e->flags & EDGE_COMPLEX)
1111 && bbd[si].end_of_trace >= 0
1112 && !connected[bbd[si].end_of_trace]
87c8b4be 1113 && (BB_PARTITION (e->src) == current_partition)
f7d0c571 1114 && connect_better_edge_p (e, true, best_len, best, traces))
aa634f11
JZ
1115 {
1116 best = e;
1117 best_len = traces[bbd[si].end_of_trace].length;
1118 }
1119 }
1120 if (best)
1121 {
370369e1 1122 best->src->aux = best->dest;
aa634f11
JZ
1123 t2 = bbd[best->src->index].end_of_trace;
1124 connected[t2] = true;
750054a2 1125
c263766c 1126 if (dump_file)
aa634f11 1127 {
c263766c 1128 fprintf (dump_file, "Connection: %d %d\n",
aa634f11
JZ
1129 best->src->index, best->dest->index);
1130 }
1131 }
1132 else
1133 break;
1134 }
f008a564 1135
aa634f11 1136 if (last_trace >= 0)
370369e1 1137 traces[last_trace].last->aux = traces[t2].first;
aa634f11
JZ
1138 last_trace = t;
1139
1140 /* Find the successor traces. */
1141 while (1)
b0cc7919 1142 {
aa634f11 1143 /* Find the continuation of the chain. */
628f6a4e 1144 edge_iterator ei;
aa634f11
JZ
1145 best = NULL;
1146 best_len = 0;
628f6a4e 1147 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
aa634f11
JZ
1148 {
1149 int di = e->dest->index;
1150
fefa31b5 1151 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
aa634f11
JZ
1152 && (e->flags & EDGE_CAN_FALLTHRU)
1153 && !(e->flags & EDGE_COMPLEX)
1154 && bbd[di].start_of_trace >= 0
1155 && !connected[bbd[di].start_of_trace]
87c8b4be 1156 && (BB_PARTITION (e->dest) == current_partition)
f7d0c571 1157 && connect_better_edge_p (e, false, best_len, best, traces))
aa634f11
JZ
1158 {
1159 best = e;
1160 best_len = traces[bbd[di].start_of_trace].length;
1161 }
1162 }
1163
f7d0c571
ZC
1164 if (for_size)
1165 {
1166 if (!best)
1167 /* Stop finding the successor traces. */
1168 break;
1169
1170 /* It is OK to connect block n with block n + 1 or a block
1171 before n. For others, only connect to the loop header. */
1172 if (best->dest->index > (traces[t].last->index + 1))
1173 {
1174 int count = EDGE_COUNT (best->dest->preds);
1175
1176 FOR_EACH_EDGE (e, ei, best->dest->preds)
1177 if (e->flags & EDGE_DFS_BACK)
1178 count--;
1179
1180 /* If dest has multiple predecessors, skip it. We expect
1181 that one predecessor with smaller index connects with it
1182 later. */
1183 if (count != 1)
1184 break;
1185 }
1186
1187 /* Only connect Trace n with Trace n + 1. It is conservative
1188 to keep the order as close as possible to the original order.
1189 It also helps to reduce long jumps. */
1190 if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1191 break;
1192
1193 if (dump_file)
1194 fprintf (dump_file, "Connection: %d %d\n",
1195 best->src->index, best->dest->index);
1196
1197 t = bbd[best->dest->index].start_of_trace;
1198 traces[last_trace].last->aux = traces[t].first;
1199 connected[t] = true;
1200 last_trace = t;
1201 }
1202 else if (best)
aa634f11 1203 {
c263766c 1204 if (dump_file)
aa634f11 1205 {
c263766c 1206 fprintf (dump_file, "Connection: %d %d\n",
aa634f11
JZ
1207 best->src->index, best->dest->index);
1208 }
1209 t = bbd[best->dest->index].start_of_trace;
370369e1 1210 traces[last_trace].last->aux = traces[t].first;
aa634f11
JZ
1211 connected[t] = true;
1212 last_trace = t;
1213 }
1214 else
1215 {
1216 /* Try to connect the traces by duplication of 1 block. */
1217 edge e2;
1218 basic_block next_bb = NULL;
99dc7277 1219 bool try_copy = false;
aa634f11 1220
628f6a4e 1221 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
fefa31b5 1222 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
aa634f11
JZ
1223 && (e->flags & EDGE_CAN_FALLTHRU)
1224 && !(e->flags & EDGE_COMPLEX)
99dc7277 1225 && (!best || e->probability > best->probability))
aa634f11 1226 {
628f6a4e 1227 edge_iterator ei;
aa634f11
JZ
1228 edge best2 = NULL;
1229 int best2_len = 0;
1230
6d9cc15b
JZ
1231 /* If the destination is a start of a trace which is only
1232 one block long, then no need to search the successor
99dc7277 1233 blocks of the trace. Accept it. */
6d9cc15b
JZ
1234 if (bbd[e->dest->index].start_of_trace >= 0
1235 && traces[bbd[e->dest->index].start_of_trace].length
1236 == 1)
1237 {
1238 best = e;
1239 try_copy = true;
1240 continue;
1241 }
99dc7277 1242
628f6a4e 1243 FOR_EACH_EDGE (e2, ei, e->dest->succs)
aa634f11
JZ
1244 {
1245 int di = e2->dest->index;
1246
fefa31b5 1247 if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
aa634f11
JZ
1248 || ((e2->flags & EDGE_CAN_FALLTHRU)
1249 && !(e2->flags & EDGE_COMPLEX)
1250 && bbd[di].start_of_trace >= 0
1251 && !connected[bbd[di].start_of_trace]
4700dd70
EB
1252 && BB_PARTITION (e2->dest) == current_partition
1253 && EDGE_FREQUENCY (e2) >= freq_threshold
1254 && e2->count >= count_threshold
aa634f11
JZ
1255 && (!best2
1256 || e2->probability > best2->probability
1257 || (e2->probability == best2->probability
1258 && traces[bbd[di].start_of_trace].length
1259 > best2_len))))
1260 {
1261 best = e;
1262 best2 = e2;
fefa31b5 1263 if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
aa634f11
JZ
1264 best2_len = traces[bbd[di].start_of_trace].length;
1265 else
1266 best2_len = INT_MAX;
1267 next_bb = e2->dest;
99dc7277 1268 try_copy = true;
aa634f11
JZ
1269 }
1270 }
1271 }
99dc7277 1272
af205f67 1273 if (crtl->has_bb_partition)
750054a2
CT
1274 try_copy = false;
1275
99dc7277
RH
1276 /* Copy tiny blocks always; copy larger blocks only when the
1277 edge is traversed frequently enough. */
1278 if (try_copy
1279 && copy_bb_p (best->dest,
efd8f750 1280 optimize_edge_for_speed_p (best)
99dc7277
RH
1281 && EDGE_FREQUENCY (best) >= freq_threshold
1282 && best->count >= count_threshold))
aa634f11
JZ
1283 {
1284 basic_block new_bb;
1285
c263766c 1286 if (dump_file)
aa634f11 1287 {
c263766c 1288 fprintf (dump_file, "Connection: %d %d ",
aa634f11 1289 traces[t].last->index, best->dest->index);
99dc7277 1290 if (!next_bb)
c263766c 1291 fputc ('\n', dump_file);
fefa31b5 1292 else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
c263766c 1293 fprintf (dump_file, "exit\n");
aa634f11 1294 else
c263766c 1295 fprintf (dump_file, "%d\n", next_bb->index);
aa634f11
JZ
1296 }
1297
1298 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1299 traces[t].last = new_bb;
fefa31b5 1300 if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
aa634f11
JZ
1301 {
1302 t = bbd[next_bb->index].start_of_trace;
370369e1 1303 traces[last_trace].last->aux = traces[t].first;
aa634f11
JZ
1304 connected[t] = true;
1305 last_trace = t;
1306 }
1307 else
1308 break; /* Stop finding the successor traces. */
1309 }
1310 else
1311 break; /* Stop finding the successor traces. */
1312 }
b0cc7919 1313 }
aa634f11
JZ
1314 }
1315
c263766c 1316 if (dump_file)
aa634f11
JZ
1317 {
1318 basic_block bb;
f008a564 1319
c263766c 1320 fprintf (dump_file, "Final order:\n");
f883e0a7 1321 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
c263766c
RH
1322 fprintf (dump_file, "%d ", bb->index);
1323 fprintf (dump_file, "\n");
1324 fflush (dump_file);
295ae817
JE
1325 }
1326
aa634f11
JZ
1327 FREE (connected);
1328}
1329
1330/* Return true when BB can and should be copied. CODE_MAY_GROW is true
1331 when code size is allowed to grow by duplication. */
1332
1333static bool
9678086d 1334copy_bb_p (const_basic_block bb, int code_may_grow)
aa634f11
JZ
1335{
1336 int size = 0;
1337 int max_size = uncond_jump_length;
e93768e4 1338 rtx_insn *insn;
aa634f11
JZ
1339
1340 if (!bb->frequency)
1341 return false;
628f6a4e 1342 if (EDGE_COUNT (bb->preds) < 2)
aa634f11 1343 return false;
6de9cd9a 1344 if (!can_duplicate_block_p (bb))
aa634f11
JZ
1345 return false;
1346
6ae533cf 1347 /* Avoid duplicating blocks which have many successors (PR/13430). */
628f6a4e
BE
1348 if (EDGE_COUNT (bb->succs) > 8)
1349 return false;
6ae533cf 1350
efd8f750 1351 if (code_may_grow && optimize_bb_for_speed_p (bb))
f935b9e0 1352 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
aa634f11 1353
bbcb0c05 1354 FOR_BB_INSNS (bb, insn)
f008a564 1355 {
aa634f11 1356 if (INSN_P (insn))
070a7956 1357 size += get_attr_min_length (insn);
f008a564 1358 }
295ae817 1359
aa634f11
JZ
1360 if (size <= max_size)
1361 return true;
1362
c263766c 1363 if (dump_file)
f008a564 1364 {
c263766c 1365 fprintf (dump_file,
aa634f11
JZ
1366 "Block %d can't be copied because its size = %d.\n",
1367 bb->index, size);
f008a564 1368 }
295ae817 1369
aa634f11
JZ
1370 return false;
1371}
1372
1373/* Return the length of unconditional jump instruction. */
1374
ffe14686 1375int
4682ae04 1376get_uncond_jump_length (void)
aa634f11 1377{
aa634f11
JZ
1378 int length;
1379
ed2b2162 1380 start_sequence ();
e67d1102 1381 rtx_code_label *label = emit_label (gen_label_rtx ());
ec4a505f 1382 rtx_insn *jump = emit_jump_insn (targetm.gen_jump (label));
070a7956 1383 length = get_attr_min_length (jump);
ed2b2162 1384 end_sequence ();
aa634f11 1385
aa634f11 1386 return length;
295ae817
JE
1387}
1388
0be7e7a6
RH
1389/* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1390 Duplicate the landing pad and split the edges so that no EH edge
1391 crosses partitions. */
1392
1393static void
1394fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1395{
1396 eh_landing_pad new_lp;
1397 basic_block new_bb, last_bb, post_bb;
e67d1102 1398 rtx_insn *jump;
0be7e7a6
RH
1399 unsigned new_partition;
1400 edge_iterator ei;
1401 edge e;
1402
1403 /* Generate the new landing-pad structure. */
1404 new_lp = gen_eh_landing_pad (old_lp->region);
1405 new_lp->post_landing_pad = old_lp->post_landing_pad;
1406 new_lp->landing_pad = gen_label_rtx ();
1407 LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1408
1409 /* Put appropriate instructions in new bb. */
e67d1102 1410 rtx_code_label *new_label = emit_label (new_lp->landing_pad);
0be7e7a6
RH
1411
1412 expand_dw2_landing_pad_for_region (old_lp->region);
1413
1414 post_bb = BLOCK_FOR_INSN (old_lp->landing_pad);
1415 post_bb = single_succ (post_bb);
e67d1102 1416 rtx_code_label *post_label = block_label (post_bb);
ec4a505f 1417 jump = emit_jump_insn (targetm.gen_jump (post_label));
0be7e7a6
RH
1418 JUMP_LABEL (jump) = post_label;
1419
1420 /* Create new basic block to be dest for lp. */
fefa31b5 1421 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
0be7e7a6
RH
1422 new_bb = create_basic_block (new_label, jump, last_bb);
1423 new_bb->aux = last_bb->aux;
1424 last_bb->aux = new_bb;
1425
1426 emit_barrier_after_bb (new_bb);
1427
1428 make_edge (new_bb, post_bb, 0);
1429
1430 /* Make sure new bb is in the other partition. */
1431 new_partition = BB_PARTITION (old_bb);
1432 new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1433 BB_SET_PARTITION (new_bb, new_partition);
1434
1435 /* Fix up the edges. */
1436 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1437 if (BB_PARTITION (e->src) == new_partition)
1438 {
e93768e4 1439 rtx_insn *insn = BB_END (e->src);
0be7e7a6
RH
1440 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1441
1442 gcc_assert (note != NULL);
1443 gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1444 XEXP (note, 0) = GEN_INT (new_lp->index);
1445
1446 /* Adjust the edge to the new destination. */
1447 redirect_edge_succ (e, new_bb);
1448 }
1449 else
1450 ei_next (&ei);
1451}
1452
600b5b1d
TJ
1453
1454/* Ensure that all hot bbs are included in a hot path through the
1455 procedure. This is done by calling this function twice, once
1456 with WALK_UP true (to look for paths from the entry to hot bbs) and
1457 once with WALK_UP false (to look for paths from hot bbs to the exit).
1458 Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1459 to BBS_IN_HOT_PARTITION. */
1460
1461static unsigned int
1462sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1463 vec<basic_block> *bbs_in_hot_partition)
1464{
1465 /* Callers check this. */
1466 gcc_checking_assert (cold_bb_count);
1467
1468 /* Keep examining hot bbs while we still have some left to check
1469 and there are remaining cold bbs. */
1470 vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1471 while (! hot_bbs_to_check.is_empty ()
1472 && cold_bb_count)
1473 {
1474 basic_block bb = hot_bbs_to_check.pop ();
1475 vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1476 edge e;
1477 edge_iterator ei;
1478 int highest_probability = 0;
1479 int highest_freq = 0;
1480 gcov_type highest_count = 0;
1481 bool found = false;
1482
1483 /* Walk the preds/succs and check if there is at least one already
1484 marked hot. Keep track of the most frequent pred/succ so that we
1485 can mark it hot if we don't find one. */
1486 FOR_EACH_EDGE (e, ei, edges)
1487 {
1488 basic_block reach_bb = walk_up ? e->src : e->dest;
1489
1490 if (e->flags & EDGE_DFS_BACK)
1491 continue;
1492
1493 if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1494 {
1495 found = true;
1496 break;
1497 }
1498 /* The following loop will look for the hottest edge via
1499 the edge count, if it is non-zero, then fallback to the edge
1500 frequency and finally the edge probability. */
1501 if (e->count > highest_count)
1502 highest_count = e->count;
1503 int edge_freq = EDGE_FREQUENCY (e);
1504 if (edge_freq > highest_freq)
1505 highest_freq = edge_freq;
1506 if (e->probability > highest_probability)
1507 highest_probability = e->probability;
1508 }
1509
1510 /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1511 block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1512 then the most frequent pred (or succ) needs to be adjusted. In the
1513 case where multiple preds/succs have the same frequency (e.g. a
1514 50-50 branch), then both will be adjusted. */
1515 if (found)
1516 continue;
1517
1518 FOR_EACH_EDGE (e, ei, edges)
1519 {
1520 if (e->flags & EDGE_DFS_BACK)
1521 continue;
1522 /* Select the hottest edge using the edge count, if it is non-zero,
1523 then fallback to the edge frequency and finally the edge
1524 probability. */
1525 if (highest_count)
1526 {
1527 if (e->count < highest_count)
1528 continue;
1529 }
1530 else if (highest_freq)
1531 {
1532 if (EDGE_FREQUENCY (e) < highest_freq)
1533 continue;
1534 }
1535 else if (e->probability < highest_probability)
1536 continue;
1537
1538 basic_block reach_bb = walk_up ? e->src : e->dest;
1539
1540 /* We have a hot bb with an immediate dominator that is cold.
1541 The dominator needs to be re-marked hot. */
1542 BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1543 cold_bb_count--;
1544
1545 /* Now we need to examine newly-hot reach_bb to see if it is also
1546 dominated by a cold bb. */
1547 bbs_in_hot_partition->safe_push (reach_bb);
1548 hot_bbs_to_check.safe_push (reach_bb);
1549 }
1550 }
1551
1552 return cold_bb_count;
1553}
1554
1555
750054a2
CT
1556/* Find the basic blocks that are rarely executed and need to be moved to
1557 a separate section of the .o file (to cut down on paging and improve
ea6136a2 1558 cache locality). Return a vector of all edges that cross. */
750054a2 1559
600b5b1d 1560static vec<edge>
ea6136a2 1561find_rarely_executed_basic_blocks_and_crossing_edges (void)
750054a2 1562{
6e1aa848 1563 vec<edge> crossing_edges = vNULL;
750054a2
CT
1564 basic_block bb;
1565 edge e;
628f6a4e 1566 edge_iterator ei;
600b5b1d 1567 unsigned int cold_bb_count = 0;
548296b0 1568 auto_vec<basic_block> bbs_in_hot_partition;
750054a2
CT
1569
1570 /* Mark which partition (hot/cold) each basic block belongs in. */
11cd3bed 1571 FOR_EACH_BB_FN (bb, cfun)
750054a2 1572 {
79221839
TJ
1573 bool cold_bb = false;
1574
2eb712b4 1575 if (probably_never_executed_bb_p (cfun, bb))
79221839
TJ
1576 {
1577 /* Handle profile insanities created by upstream optimizations
1578 by also checking the incoming edge weights. If there is a non-cold
1579 incoming edge, conservatively prevent this block from being split
1580 into the cold section. */
1581 cold_bb = true;
1582 FOR_EACH_EDGE (e, ei, bb->preds)
1583 if (!probably_never_executed_edge_p (cfun, e))
1584 {
1585 cold_bb = false;
1586 break;
1587 }
1588 }
1589 if (cold_bb)
600b5b1d
TJ
1590 {
1591 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1592 cold_bb_count++;
1593 }
750054a2 1594 else
600b5b1d
TJ
1595 {
1596 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1597 bbs_in_hot_partition.safe_push (bb);
1598 }
1599 }
1600
1601 /* Ensure that hot bbs are included along a hot path from the entry to exit.
1602 Several different possibilities may include cold bbs along all paths
1603 to/from a hot bb. One is that there are edge weight insanities
1604 due to optimization phases that do not properly update basic block profile
1605 counts. The second is that the entry of the function may not be hot, because
1606 it is entered fewer times than the number of profile training runs, but there
1607 is a loop inside the function that causes blocks within the function to be
1608 above the threshold for hotness. This is fixed by walking up from hot bbs
1609 to the entry block, and then down from hot bbs to the exit, performing
1610 partitioning fixups as necessary. */
1611 if (cold_bb_count)
1612 {
1613 mark_dfs_back_edges ();
1614 cold_bb_count = sanitize_hot_paths (true, cold_bb_count,
1615 &bbs_in_hot_partition);
1616 if (cold_bb_count)
1617 sanitize_hot_paths (false, cold_bb_count, &bbs_in_hot_partition);
750054a2
CT
1618 }
1619
0be7e7a6
RH
1620 /* The format of .gcc_except_table does not allow landing pads to
1621 be in a different partition as the throw. Fix this by either
1622 moving or duplicating the landing pads. */
1623 if (cfun->eh->lp_array)
9fb32434 1624 {
0be7e7a6
RH
1625 unsigned i;
1626 eh_landing_pad lp;
1627
9771b263 1628 FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
c7466dee 1629 {
0be7e7a6
RH
1630 bool all_same, all_diff;
1631
b58d3391
JJ
1632 if (lp == NULL
1633 || lp->landing_pad == NULL_RTX
1634 || !LABEL_P (lp->landing_pad))
0be7e7a6
RH
1635 continue;
1636
1637 all_same = all_diff = true;
1638 bb = BLOCK_FOR_INSN (lp->landing_pad);
1639 FOR_EACH_EDGE (e, ei, bb->preds)
1640 {
1641 gcc_assert (e->flags & EDGE_EH);
1642 if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1643 all_diff = false;
1644 else
1645 all_same = false;
1646 }
1647
1648 if (all_same)
1649 ;
1650 else if (all_diff)
1651 {
1652 int which = BB_PARTITION (bb);
1653 which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1654 BB_SET_PARTITION (bb, which);
1655 }
1656 else
1657 fix_up_crossing_landing_pad (lp, bb);
c7466dee 1658 }
9fb32434 1659 }
ea6136a2 1660
0be7e7a6 1661 /* Mark every edge that crosses between sections. */
750054a2 1662
11cd3bed 1663 FOR_EACH_BB_FN (bb, cfun)
0be7e7a6
RH
1664 FOR_EACH_EDGE (e, ei, bb->succs)
1665 {
1666 unsigned int flags = e->flags;
4700dd70 1667
0be7e7a6
RH
1668 /* We should never have EDGE_CROSSING set yet. */
1669 gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1670
fefa31b5
DM
1671 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1672 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
0be7e7a6
RH
1673 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1674 {
9771b263 1675 crossing_edges.safe_push (e);
0be7e7a6
RH
1676 flags |= EDGE_CROSSING;
1677 }
9f68560b 1678
0be7e7a6
RH
1679 /* Now that we've split eh edges as appropriate, allow landing pads
1680 to be merged with the post-landing pads. */
1681 flags &= ~EDGE_PRESERVE;
1682
1683 e->flags = flags;
1684 }
1685
1686 return crossing_edges;
9f68560b
RH
1687}
1688
532aafad
SB
1689/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
1690
1691static void
1692set_edge_can_fallthru_flag (void)
1693{
1694 basic_block bb;
1695
11cd3bed 1696 FOR_EACH_BB_FN (bb, cfun)
532aafad
SB
1697 {
1698 edge e;
1699 edge_iterator ei;
1700
1701 FOR_EACH_EDGE (e, ei, bb->succs)
1702 {
1703 e->flags &= ~EDGE_CAN_FALLTHRU;
1704
1705 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
1706 if (e->flags & EDGE_FALLTHRU)
1707 e->flags |= EDGE_CAN_FALLTHRU;
1708 }
1709
1710 /* If the BB ends with an invertible condjump all (2) edges are
1711 CAN_FALLTHRU edges. */
1712 if (EDGE_COUNT (bb->succs) != 2)
1713 continue;
1714 if (!any_condjump_p (BB_END (bb)))
1715 continue;
1476d1bd
MM
1716
1717 rtx_jump_insn *bb_end_jump = as_a <rtx_jump_insn *> (BB_END (bb));
1718 if (!invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0))
532aafad 1719 continue;
1476d1bd 1720 invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0);
532aafad
SB
1721 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1722 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1723 }
1724}
1725
750054a2 1726/* If any destination of a crossing edge does not have a label, add label;
ea6136a2 1727 Convert any easy fall-through crossing edges to unconditional jumps. */
750054a2 1728
c22cacf3 1729static void
9771b263 1730add_labels_and_missing_jumps (vec<edge> crossing_edges)
750054a2 1731{
ea6136a2
RH
1732 size_t i;
1733 edge e;
c22cacf3 1734
9771b263 1735 FOR_EACH_VEC_ELT (crossing_edges, i, e)
750054a2 1736 {
ea6136a2
RH
1737 basic_block src = e->src;
1738 basic_block dest = e->dest;
e67d1102 1739 rtx_jump_insn *new_jump;
c22cacf3 1740
fefa31b5 1741 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
ea6136a2 1742 continue;
c22cacf3 1743
ea6136a2 1744 /* Make sure dest has a label. */
e67d1102 1745 rtx_code_label *label = block_label (dest);
c22cacf3 1746
ea6136a2 1747 /* Nothing to do for non-fallthru edges. */
fefa31b5 1748 if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
ea6136a2
RH
1749 continue;
1750 if ((e->flags & EDGE_FALLTHRU) == 0)
1751 continue;
c22cacf3 1752
ea6136a2
RH
1753 /* If the block does not end with a control flow insn, then we
1754 can trivially add a jump to the end to fixup the crossing.
1755 Otherwise the jump will have to go in a new bb, which will
1756 be handled by fix_up_fall_thru_edges function. */
1757 if (control_flow_insn_p (BB_END (src)))
1758 continue;
1759
1760 /* Make sure there's only one successor. */
1761 gcc_assert (single_succ_p (src));
1762
ec4a505f 1763 new_jump = emit_jump_insn_after (targetm.gen_jump (label), BB_END (src));
1130d5e3 1764 BB_END (src) = new_jump;
ea6136a2
RH
1765 JUMP_LABEL (new_jump) = label;
1766 LABEL_NUSES (label) += 1;
9f68560b
RH
1767
1768 emit_barrier_after_bb (src);
ea6136a2
RH
1769
1770 /* Mark edge as non-fallthru. */
1771 e->flags &= ~EDGE_FALLTHRU;
1772 }
750054a2
CT
1773}
1774
1775/* Find any bb's where the fall-through edge is a crossing edge (note that
8bf6e270
RE
1776 these bb's must also contain a conditional jump or end with a call
1777 instruction; we've already dealt with fall-through edges for blocks
1778 that didn't have a conditional jump or didn't end with call instruction
1779 in the call to add_labels_and_missing_jumps). Convert the fall-through
1780 edge to non-crossing edge by inserting a new bb to fall-through into.
1781 The new bb will contain an unconditional jump (crossing edge) to the
1782 original fall through destination. */
750054a2 1783
c22cacf3 1784static void
750054a2
CT
1785fix_up_fall_thru_edges (void)
1786{
1787 basic_block cur_bb;
1788 basic_block new_bb;
1789 edge succ1;
1790 edge succ2;
1791 edge fall_thru;
4b493aa5 1792 edge cond_jump = NULL;
750054a2
CT
1793 bool cond_jump_crosses;
1794 int invert_worked;
e93768e4 1795 rtx_insn *old_jump;
e67d1102 1796 rtx_code_label *fall_thru_label;
c22cacf3 1797
11cd3bed 1798 FOR_EACH_BB_FN (cur_bb, cfun)
750054a2
CT
1799 {
1800 fall_thru = NULL;
628f6a4e
BE
1801 if (EDGE_COUNT (cur_bb->succs) > 0)
1802 succ1 = EDGE_SUCC (cur_bb, 0);
1803 else
1804 succ1 = NULL;
1805
1806 if (EDGE_COUNT (cur_bb->succs) > 1)
c22cacf3 1807 succ2 = EDGE_SUCC (cur_bb, 1);
750054a2 1808 else
c22cacf3
MS
1809 succ2 = NULL;
1810
750054a2 1811 /* Find the fall-through edge. */
c22cacf3
MS
1812
1813 if (succ1
1814 && (succ1->flags & EDGE_FALLTHRU))
1815 {
1816 fall_thru = succ1;
1817 cond_jump = succ2;
1818 }
1819 else if (succ2
1820 && (succ2->flags & EDGE_FALLTHRU))
1821 {
1822 fall_thru = succ2;
1823 cond_jump = succ1;
1824 }
596aa3f0
JJ
1825 else if (succ1
1826 && (block_ends_with_call_p (cur_bb)
1827 || can_throw_internal (BB_END (cur_bb))))
1828 {
1829 edge e;
1830 edge_iterator ei;
1831
596aa3f0 1832 FOR_EACH_EDGE (e, ei, cur_bb->succs)
f87604f8 1833 if (e->flags & EDGE_FALLTHRU)
596aa3f0
JJ
1834 {
1835 fall_thru = e;
1836 break;
1837 }
1838 }
c22cacf3 1839
fefa31b5 1840 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
c22cacf3
MS
1841 {
1842 /* Check to see if the fall-thru edge is a crossing edge. */
1843
bd454efd 1844 if (fall_thru->flags & EDGE_CROSSING)
c22cacf3 1845 {
750054a2 1846 /* The fall_thru edge crosses; now check the cond jump edge, if
c22cacf3
MS
1847 it exists. */
1848
1849 cond_jump_crosses = true;
1850 invert_worked = 0;
750054a2 1851 old_jump = BB_END (cur_bb);
c22cacf3
MS
1852
1853 /* Find the jump instruction, if there is one. */
1854
1855 if (cond_jump)
1856 {
bd454efd 1857 if (!(cond_jump->flags & EDGE_CROSSING))
c22cacf3
MS
1858 cond_jump_crosses = false;
1859
1860 /* We know the fall-thru edge crosses; if the cond
1861 jump edge does NOT cross, and its destination is the
750054a2 1862 next block in the bb order, invert the jump
073a8998 1863 (i.e. fix it so the fall through does not cross and
c22cacf3
MS
1864 the cond jump does). */
1865
3371a64f 1866 if (!cond_jump_crosses)
c22cacf3
MS
1867 {
1868 /* Find label in fall_thru block. We've already added
1869 any missing labels, so there must be one. */
1870
1871 fall_thru_label = block_label (fall_thru->dest);
1872
1476d1bd
MM
1873 if (old_jump && fall_thru_label)
1874 {
1875 rtx_jump_insn *old_jump_insn =
1876 dyn_cast <rtx_jump_insn *> (old_jump);
1877 if (old_jump_insn)
1878 invert_worked = invert_jump (old_jump_insn,
1879 fall_thru_label, 0);
1880 }
1881
c22cacf3
MS
1882 if (invert_worked)
1883 {
1884 fall_thru->flags &= ~EDGE_FALLTHRU;
1885 cond_jump->flags |= EDGE_FALLTHRU;
1886 update_br_prob_note (cur_bb);
fab27f52 1887 std::swap (fall_thru, cond_jump);
bd454efd
SB
1888 cond_jump->flags |= EDGE_CROSSING;
1889 fall_thru->flags &= ~EDGE_CROSSING;
c22cacf3
MS
1890 }
1891 }
1892 }
1893
1894 if (cond_jump_crosses || !invert_worked)
1895 {
1896 /* This is the case where both edges out of the basic
1897 block are crossing edges. Here we will fix up the
750054a2 1898 fall through edge. The jump edge will be taken care
b8698a0f 1899 of later. The EDGE_CROSSING flag of fall_thru edge
4700dd70
EB
1900 is unset before the call to force_nonfallthru
1901 function because if a new basic-block is created
1902 this edge remains in the current section boundary
1903 while the edge between new_bb and the fall_thru->dest
1904 becomes EDGE_CROSSING. */
8bf6e270 1905
4700dd70 1906 fall_thru->flags &= ~EDGE_CROSSING;
c22cacf3
MS
1907 new_bb = force_nonfallthru (fall_thru);
1908
1909 if (new_bb)
1910 {
1911 new_bb->aux = cur_bb->aux;
1912 cur_bb->aux = new_bb;
1913
3371a64f
TJ
1914 /* This is done by force_nonfallthru_and_redirect. */
1915 gcc_assert (BB_PARTITION (new_bb)
1916 == BB_PARTITION (cur_bb));
076c7ab8 1917
c5cbcccf 1918 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
c22cacf3 1919 }
4700dd70
EB
1920 else
1921 {
1922 /* If a new basic-block was not created; restore
1923 the EDGE_CROSSING flag. */
1924 fall_thru->flags |= EDGE_CROSSING;
1925 }
c22cacf3
MS
1926
1927 /* Add barrier after new jump */
9f68560b 1928 emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
c22cacf3
MS
1929 }
1930 }
1931 }
750054a2
CT
1932 }
1933}
1934
fa10beec 1935/* This function checks the destination block of a "crossing jump" to
750054a2
CT
1936 see if it has any crossing predecessors that begin with a code label
1937 and end with an unconditional jump. If so, it returns that predecessor
1938 block. (This is to avoid creating lots of new basic blocks that all
1939 contain unconditional jumps to the same destination). */
1940
1941static basic_block
c22cacf3
MS
1942find_jump_block (basic_block jump_dest)
1943{
1944 basic_block source_bb = NULL;
750054a2 1945 edge e;
e93768e4 1946 rtx_insn *insn;
628f6a4e 1947 edge_iterator ei;
750054a2 1948
628f6a4e 1949 FOR_EACH_EDGE (e, ei, jump_dest->preds)
bd454efd 1950 if (e->flags & EDGE_CROSSING)
750054a2
CT
1951 {
1952 basic_block src = e->src;
c22cacf3 1953
750054a2
CT
1954 /* Check each predecessor to see if it has a label, and contains
1955 only one executable instruction, which is an unconditional jump.
9cf737f8 1956 If so, we can use it. */
c22cacf3 1957
4b4bf941 1958 if (LABEL_P (BB_HEAD (src)))
c22cacf3 1959 for (insn = BB_HEAD (src);
750054a2
CT
1960 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1961 insn = NEXT_INSN (insn))
1962 {
1963 if (INSN_P (insn)
1964 && insn == BB_END (src)
4b4bf941 1965 && JUMP_P (insn)
750054a2
CT
1966 && !any_condjump_p (insn))
1967 {
1968 source_bb = src;
1969 break;
1970 }
1971 }
c22cacf3 1972
750054a2
CT
1973 if (source_bb)
1974 break;
1975 }
1976
1977 return source_bb;
1978}
1979
1980/* Find all BB's with conditional jumps that are crossing edges;
1981 insert a new bb and make the conditional jump branch to the new
1982 bb instead (make the new bb same color so conditional branch won't
1983 be a 'crossing' edge). Insert an unconditional jump from the
1984 new bb to the original destination of the conditional jump. */
1985
1986static void
1987fix_crossing_conditional_branches (void)
1988{
1989 basic_block cur_bb;
1990 basic_block new_bb;
750054a2 1991 basic_block dest;
750054a2
CT
1992 edge succ1;
1993 edge succ2;
1994 edge crossing_edge;
1995 edge new_edge;
750054a2
CT
1996 rtx set_src;
1997 rtx old_label = NULL_RTX;
1476d1bd 1998 rtx_code_label *new_label;
c22cacf3 1999
11cd3bed 2000 FOR_EACH_BB_FN (cur_bb, cfun)
750054a2
CT
2001 {
2002 crossing_edge = NULL;
628f6a4e
BE
2003 if (EDGE_COUNT (cur_bb->succs) > 0)
2004 succ1 = EDGE_SUCC (cur_bb, 0);
2005 else
2006 succ1 = NULL;
c22cacf3 2007
628f6a4e
BE
2008 if (EDGE_COUNT (cur_bb->succs) > 1)
2009 succ2 = EDGE_SUCC (cur_bb, 1);
750054a2 2010 else
628f6a4e 2011 succ2 = NULL;
c22cacf3 2012
750054a2
CT
2013 /* We already took care of fall-through edges, so only one successor
2014 can be a crossing edge. */
c22cacf3 2015
bd454efd 2016 if (succ1 && (succ1->flags & EDGE_CROSSING))
750054a2 2017 crossing_edge = succ1;
bd454efd 2018 else if (succ2 && (succ2->flags & EDGE_CROSSING))
c22cacf3
MS
2019 crossing_edge = succ2;
2020
2021 if (crossing_edge)
2022 {
d08093db 2023 rtx_insn *old_jump = BB_END (cur_bb);
c22cacf3 2024
750054a2
CT
2025 /* Check to make sure the jump instruction is a
2026 conditional jump. */
c22cacf3 2027
750054a2
CT
2028 set_src = NULL_RTX;
2029
2030 if (any_condjump_p (old_jump))
2031 {
2032 if (GET_CODE (PATTERN (old_jump)) == SET)
2033 set_src = SET_SRC (PATTERN (old_jump));
2034 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2035 {
2036 set_src = XVECEXP (PATTERN (old_jump), 0,0);
2037 if (GET_CODE (set_src) == SET)
2038 set_src = SET_SRC (set_src);
2039 else
2040 set_src = NULL_RTX;
2041 }
2042 }
2043
2044 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2045 {
d08093db
MM
2046 rtx_jump_insn *old_jump_insn =
2047 as_a <rtx_jump_insn *> (old_jump);
2048
750054a2
CT
2049 if (GET_CODE (XEXP (set_src, 1)) == PC)
2050 old_label = XEXP (set_src, 2);
2051 else if (GET_CODE (XEXP (set_src, 2)) == PC)
2052 old_label = XEXP (set_src, 1);
c22cacf3 2053
750054a2
CT
2054 /* Check to see if new bb for jumping to that dest has
2055 already been created; if so, use it; if not, create
2056 a new one. */
2057
2058 new_bb = find_jump_block (crossing_edge->dest);
c22cacf3 2059
750054a2
CT
2060 if (new_bb)
2061 new_label = block_label (new_bb);
2062 else
2063 {
6774a66f 2064 basic_block last_bb;
1476d1bd
MM
2065 rtx_code_label *old_jump_target;
2066 rtx_jump_insn *new_jump;
6774a66f 2067
750054a2
CT
2068 /* Create new basic block to be dest for
2069 conditional jump. */
c22cacf3 2070
750054a2 2071 /* Put appropriate instructions in new bb. */
c22cacf3 2072
750054a2 2073 new_label = gen_label_rtx ();
6774a66f 2074 emit_label (new_label);
c22cacf3 2075
6774a66f 2076 gcc_assert (GET_CODE (old_label) == LABEL_REF);
d08093db 2077 old_jump_target = old_jump_insn->jump_target ();
1476d1bd 2078 new_jump = as_a <rtx_jump_insn *>
ec4a505f 2079 (emit_jump_insn (targetm.gen_jump (old_jump_target)));
1476d1bd 2080 new_jump->set_jump_target (old_jump_target);
6774a66f 2081
fefa31b5 2082 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
6774a66f
RH
2083 new_bb = create_basic_block (new_label, new_jump, last_bb);
2084 new_bb->aux = last_bb->aux;
2085 last_bb->aux = new_bb;
9f68560b
RH
2086
2087 emit_barrier_after_bb (new_bb);
c22cacf3 2088
750054a2
CT
2089 /* Make sure new bb is in same partition as source
2090 of conditional branch. */
076c7ab8 2091 BB_COPY_PARTITION (new_bb, cur_bb);
750054a2 2092 }
c22cacf3 2093
750054a2 2094 /* Make old jump branch to new bb. */
c22cacf3 2095
d08093db 2096 redirect_jump (old_jump_insn, new_label, 0);
c22cacf3 2097
750054a2 2098 /* Remove crossing_edge as predecessor of 'dest'. */
c22cacf3 2099
750054a2 2100 dest = crossing_edge->dest;
c22cacf3 2101
750054a2 2102 redirect_edge_succ (crossing_edge, new_bb);
c22cacf3 2103
750054a2
CT
2104 /* Make a new edge from new_bb to old dest; new edge
2105 will be a successor for new_bb and a predecessor
2106 for 'dest'. */
c22cacf3 2107
628f6a4e 2108 if (EDGE_COUNT (new_bb->succs) == 0)
750054a2
CT
2109 new_edge = make_edge (new_bb, dest, 0);
2110 else
628f6a4e 2111 new_edge = EDGE_SUCC (new_bb, 0);
c22cacf3 2112
bd454efd
SB
2113 crossing_edge->flags &= ~EDGE_CROSSING;
2114 new_edge->flags |= EDGE_CROSSING;
750054a2 2115 }
c22cacf3 2116 }
750054a2
CT
2117 }
2118}
2119
2120/* Find any unconditional branches that cross between hot and cold
2121 sections. Convert them into indirect jumps instead. */
2122
2123static void
2124fix_crossing_unconditional_branches (void)
2125{
2126 basic_block cur_bb;
e93768e4 2127 rtx_insn *last_insn;
750054a2
CT
2128 rtx label;
2129 rtx label_addr;
e93768e4
DM
2130 rtx_insn *indirect_jump_sequence;
2131 rtx_insn *jump_insn = NULL;
750054a2 2132 rtx new_reg;
e93768e4 2133 rtx_insn *cur_insn;
750054a2 2134 edge succ;
9fb32434 2135
11cd3bed 2136 FOR_EACH_BB_FN (cur_bb, cfun)
750054a2
CT
2137 {
2138 last_insn = BB_END (cur_bb);
87c8b4be
CT
2139
2140 if (EDGE_COUNT (cur_bb->succs) < 1)
2141 continue;
2142
628f6a4e 2143 succ = EDGE_SUCC (cur_bb, 0);
750054a2
CT
2144
2145 /* Check to see if bb ends in a crossing (unconditional) jump. At
c22cacf3 2146 this point, no crossing jumps should be conditional. */
750054a2 2147
4b4bf941 2148 if (JUMP_P (last_insn)
bd454efd 2149 && (succ->flags & EDGE_CROSSING))
750054a2 2150 {
298e6adc 2151 gcc_assert (!any_condjump_p (last_insn));
750054a2
CT
2152
2153 /* Make sure the jump is not already an indirect or table jump. */
2154
298e6adc 2155 if (!computed_jump_p (last_insn)
7bca81dc 2156 && !tablejump_p (last_insn, NULL, NULL))
750054a2
CT
2157 {
2158 /* We have found a "crossing" unconditional branch. Now
2159 we must convert it to an indirect jump. First create
2160 reference of label, as target for jump. */
c22cacf3 2161
750054a2 2162 label = JUMP_LABEL (last_insn);
b50b729d 2163 label_addr = gen_rtx_LABEL_REF (Pmode, label);
750054a2 2164 LABEL_NUSES (label) += 1;
c22cacf3 2165
750054a2 2166 /* Get a register to use for the indirect jump. */
c22cacf3 2167
750054a2 2168 new_reg = gen_reg_rtx (Pmode);
c22cacf3 2169
750054a2 2170 /* Generate indirect the jump sequence. */
c22cacf3 2171
750054a2
CT
2172 start_sequence ();
2173 emit_move_insn (new_reg, label_addr);
2174 emit_indirect_jump (new_reg);
2175 indirect_jump_sequence = get_insns ();
2176 end_sequence ();
c22cacf3 2177
750054a2
CT
2178 /* Make sure every instruction in the new jump sequence has
2179 its basic block set to be cur_bb. */
c22cacf3 2180
750054a2
CT
2181 for (cur_insn = indirect_jump_sequence; cur_insn;
2182 cur_insn = NEXT_INSN (cur_insn))
2183 {
0e714a54
EB
2184 if (!BARRIER_P (cur_insn))
2185 BLOCK_FOR_INSN (cur_insn) = cur_bb;
4b4bf941 2186 if (JUMP_P (cur_insn))
750054a2
CT
2187 jump_insn = cur_insn;
2188 }
c22cacf3 2189
750054a2
CT
2190 /* Insert the new (indirect) jump sequence immediately before
2191 the unconditional jump, then delete the unconditional jump. */
c22cacf3 2192
750054a2
CT
2193 emit_insn_before (indirect_jump_sequence, last_insn);
2194 delete_insn (last_insn);
c22cacf3 2195
8fce217e
JJ
2196 JUMP_LABEL (jump_insn) = label;
2197 LABEL_NUSES (label)++;
2198
750054a2
CT
2199 /* Make BB_END for cur_bb be the jump instruction (NOT the
2200 barrier instruction at the end of the sequence...). */
c22cacf3 2201
1130d5e3 2202 BB_END (cur_bb) = jump_insn;
750054a2
CT
2203 }
2204 }
2205 }
2206}
2207
339ba33b 2208/* Update CROSSING_JUMP_P flags on all jump insns. */
750054a2
CT
2209
2210static void
339ba33b 2211update_crossing_jump_flags (void)
750054a2
CT
2212{
2213 basic_block bb;
2214 edge e;
628f6a4e 2215 edge_iterator ei;
750054a2 2216
11cd3bed 2217 FOR_EACH_BB_FN (bb, cfun)
628f6a4e 2218 FOR_EACH_EDGE (e, ei, bb->succs)
339ba33b
RS
2219 if (e->flags & EDGE_CROSSING)
2220 {
2221 if (JUMP_P (BB_END (bb))
2222 /* Some flags were added during fix_up_fall_thru_edges, via
2223 force_nonfallthru_and_redirect. */
2224 && !CROSSING_JUMP_P (BB_END (bb)))
2225 CROSSING_JUMP_P (BB_END (bb)) = 1;
2226 break;
2227 }
750054a2
CT
2228}
2229
af71fa39 2230/* Reorder basic blocks using the software trace cache (STC) algorithm. */
295ae817 2231
711417cd 2232static void
af71fa39 2233reorder_basic_blocks_software_trace_cache (void)
295ae817 2234{
248c16c4
SB
2235 if (dump_file)
2236 fprintf (dump_file, "\nReordering with the STC algorithm.\n\n");
2237
aa634f11
JZ
2238 int n_traces;
2239 int i;
2240 struct trace *traces;
2241
e0bb17a8
KH
2242 /* We are estimating the length of uncond jump insn only once since the code
2243 for getting the insn length always returns the minimal length now. */
4682ae04 2244 if (uncond_jump_length == 0)
aa634f11
JZ
2245 uncond_jump_length = get_uncond_jump_length ();
2246
2247 /* We need to know some information for each basic block. */
8b1c6fd7 2248 array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
5ed6ace5 2249 bbd = XNEWVEC (bbro_basic_block_data, array_size);
aa634f11
JZ
2250 for (i = 0; i < array_size; i++)
2251 {
2252 bbd[i].start_of_trace = -1;
2253 bbd[i].end_of_trace = -1;
bcc708fc
MM
2254 bbd[i].in_trace = -1;
2255 bbd[i].visited = 0;
aa634f11
JZ
2256 bbd[i].heap = NULL;
2257 bbd[i].node = NULL;
2258 }
2259
0cae8d31 2260 traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
aa634f11
JZ
2261 n_traces = 0;
2262 find_traces (&n_traces, traces);
2263 connect_traces (n_traces, traces);
2264 FREE (traces);
2265 FREE (bbd);
af71fa39
SB
2266}
2267
248c16c4
SB
2268/* Return true if edge E1 is more desirable as a fallthrough edge than
2269 edge E2 is. */
2270
2271static bool
2272edge_order (edge e1, edge e2)
2273{
2274 return EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2);
2275}
2276
2277/* Reorder basic blocks using the "simple" algorithm. This tries to
2278 maximize the dynamic number of branches that are fallthrough, without
2279 copying instructions. The algorithm is greedy, looking at the most
2280 frequently executed branch first. */
2281
2282static void
2283reorder_basic_blocks_simple (void)
2284{
2285 if (dump_file)
2286 fprintf (dump_file, "\nReordering with the \"simple\" algorithm.\n\n");
2287
2288 edge *edges = new edge[2 * n_basic_blocks_for_fn (cfun)];
2289
2290 /* First, collect all edges that can be optimized by reordering blocks:
2291 simple jumps and conditional jumps, as well as the function entry edge. */
2292
2293 int n = 0;
2294 edges[n++] = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2295
2296 basic_block bb;
2297 FOR_EACH_BB_FN (bb, cfun)
2298 {
2299 rtx_insn *end = BB_END (bb);
2300
2301 if (computed_jump_p (end) || tablejump_p (end, NULL, NULL))
2302 continue;
2303
2304 /* We cannot optimize asm goto. */
2305 if (JUMP_P (end) && extract_asm_operands (end))
2306 continue;
2307
d4c8d5ed
SB
2308 if (single_succ_p (bb))
2309 edges[n++] = EDGE_SUCC (bb, 0);
2310 else if (any_condjump_p (end))
248c16c4 2311 {
c70f0ca2
SB
2312 edge e0 = EDGE_SUCC (bb, 0);
2313 edge e1 = EDGE_SUCC (bb, 1);
2314 /* When optimizing for size it is best to keep the original
2315 fallthrough edges. */
2316 if (e1->flags & EDGE_FALLTHRU)
2317 std::swap (e0, e1);
2318 edges[n++] = e0;
2319 edges[n++] = e1;
248c16c4 2320 }
248c16c4
SB
2321 }
2322
c70f0ca2
SB
2323 /* Sort the edges, the most desirable first. When optimizing for size
2324 all edges are equally desirable. */
248c16c4 2325
c70f0ca2
SB
2326 if (optimize_function_for_speed_p (cfun))
2327 std::stable_sort (edges, edges + n, edge_order);
248c16c4
SB
2328
2329 /* Now decide which of those edges to make fallthrough edges. We set
2330 BB_VISITED if a block already has a fallthrough successor assigned
2331 to it. We make ->AUX of an endpoint point to the opposite endpoint
2332 of a sequence of blocks that fall through, and ->AUX will be NULL
2333 for a block that is in such a sequence but not an endpoint anymore.
2334
2335 To start with, everything points to itself, nothing is assigned yet. */
2336
2337 FOR_ALL_BB_FN (bb, cfun)
2338 bb->aux = bb;
2339
2340 EXIT_BLOCK_PTR_FOR_FN (cfun)->aux = 0;
2341
2342 /* Now for all edges, the most desirable first, see if that edge can
2343 connect two sequences. If it can, update AUX and BB_VISITED; if it
2344 cannot, zero out the edge in the table. */
2345
2346 for (int j = 0; j < n; j++)
2347 {
2348 edge e = edges[j];
2349
2350 basic_block tail_a = e->src;
2351 basic_block head_b = e->dest;
2352 basic_block head_a = (basic_block) tail_a->aux;
2353 basic_block tail_b = (basic_block) head_b->aux;
2354
2355 /* An edge cannot connect two sequences if:
2356 - it crosses partitions;
2357 - its src is not a current endpoint;
2358 - its dest is not a current endpoint;
2359 - or, it would create a loop. */
2360
2361 if (e->flags & EDGE_CROSSING
2362 || tail_a->flags & BB_VISITED
2363 || !tail_b
2364 || (!(head_b->flags & BB_VISITED) && head_b != tail_b)
2365 || tail_a == tail_b)
2366 {
2367 edges[j] = 0;
2368 continue;
2369 }
2370
2371 tail_a->aux = 0;
2372 head_b->aux = 0;
2373 head_a->aux = tail_b;
2374 tail_b->aux = head_a;
2375 tail_a->flags |= BB_VISITED;
2376 }
2377
2378 /* Put the pieces together, in the same order that the start blocks of
2379 the sequences already had. The hot/cold partitioning gives a little
2380 complication: as a first pass only do this for blocks in the same
2381 partition as the start block, and (if there is anything left to do)
2382 in a second pass handle the other partition. */
2383
2384 basic_block last_tail = (basic_block) ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2385
2386 int current_partition = BB_PARTITION (last_tail);
2387 bool need_another_pass = true;
2388
2389 for (int pass = 0; pass < 2 && need_another_pass; pass++)
2390 {
2391 need_another_pass = false;
2392
2393 FOR_EACH_BB_FN (bb, cfun)
2394 if ((bb->flags & BB_VISITED && bb->aux) || bb->aux == bb)
2395 {
2396 if (BB_PARTITION (bb) != current_partition)
2397 {
2398 need_another_pass = true;
2399 continue;
2400 }
2401
2402 last_tail->aux = bb;
2403 last_tail = (basic_block) bb->aux;
2404 }
2405
2406 current_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
2407 }
2408
2409 last_tail->aux = 0;
2410
2411 /* Finally, link all the chosen fallthrough edges. */
2412
2413 for (int j = 0; j < n; j++)
2414 if (edges[j])
2415 edges[j]->src->aux = edges[j]->dest;
2416
2417 delete[] edges;
2418
2419 /* If the entry edge no longer falls through we have to make a new
2420 block so it can do so again. */
2421
2422 edge e = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2423 if (e->dest != ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux)
2424 {
2425 force_nonfallthru (e);
2426 e->src->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2427 BB_COPY_PARTITION (e->src, e->dest);
2428 }
2429}
2430
af71fa39
SB
2431/* Reorder basic blocks. The main entry point to this file. */
2432
2433static void
2434reorder_basic_blocks (void)
2435{
2436 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2437
2438 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2439 return;
2440
2441 set_edge_can_fallthru_flag ();
2442 mark_dfs_back_edges ();
2443
59faab7c
SB
2444 switch (flag_reorder_blocks_algorithm)
2445 {
2446 case REORDER_BLOCKS_ALGORITHM_SIMPLE:
2447 reorder_basic_blocks_simple ();
2448 break;
2449
2450 case REORDER_BLOCKS_ALGORITHM_STC:
2451 reorder_basic_blocks_software_trace_cache ();
2452 break;
2453
2454 default:
2455 gcc_unreachable ();
2456 }
402209ff 2457
ad21dab7
SB
2458 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2459
c263766c 2460 if (dump_file)
532aafad
SB
2461 {
2462 if (dump_flags & TDF_DETAILS)
2463 dump_reg_info (dump_file);
2464 dump_flow_info (dump_file, dump_flags);
2465 }
402209ff 2466
af205f67
TJ
2467 /* Signal that rtl_verify_flow_info_1 can now verify that there
2468 is at most one switch between hot/cold sections. */
2469 crtl->bb_reorder_complete = true;
295ae817 2470}
bbcb0c05 2471
87c8b4be
CT
2472/* Determine which partition the first basic block in the function
2473 belongs to, then find the first basic block in the current function
2474 that belongs to a different section, and insert a
2475 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2476 instruction stream. When writing out the assembly code,
2477 encountering this note will make the compiler switch between the
2478 hot and cold text sections. */
2479
3371a64f 2480void
87c8b4be
CT
2481insert_section_boundary_note (void)
2482{
2483 basic_block bb;
3371a64f
TJ
2484 bool switched_sections = false;
2485 int current_partition = 0;
c22cacf3 2486
3371a64f 2487 if (!crtl->has_bb_partition)
9645d434
BS
2488 return;
2489
11cd3bed 2490 FOR_EACH_BB_FN (bb, cfun)
87c8b4be 2491 {
3371a64f
TJ
2492 if (!current_partition)
2493 current_partition = BB_PARTITION (bb);
2494 if (BB_PARTITION (bb) != current_partition)
87c8b4be 2495 {
3371a64f
TJ
2496 gcc_assert (!switched_sections);
2497 switched_sections = true;
2498 emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2499 current_partition = BB_PARTITION (bb);
87c8b4be
CT
2500 }
2501 }
2502}
2503
27a4cd48
DM
2504namespace {
2505
2506const pass_data pass_data_reorder_blocks =
427b8bb8 2507{
27a4cd48
DM
2508 RTL_PASS, /* type */
2509 "bbro", /* name */
2510 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
2511 TV_REORDER_BLOCKS, /* tv_id */
2512 0, /* properties_required */
2513 0, /* properties_provided */
2514 0, /* properties_destroyed */
2515 0, /* todo_flags_start */
3bea341f 2516 0, /* todo_flags_finish */
427b8bb8
EB
2517};
2518
27a4cd48
DM
2519class pass_reorder_blocks : public rtl_opt_pass
2520{
2521public:
c3284718
RS
2522 pass_reorder_blocks (gcc::context *ctxt)
2523 : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
27a4cd48
DM
2524 {}
2525
2526 /* opt_pass methods: */
1a3d085c
TS
2527 virtual bool gate (function *)
2528 {
2529 if (targetm.cannot_modify_jumps_p ())
2530 return false;
2531 return (optimize > 0
2532 && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2533 }
2534
be55bfe6 2535 virtual unsigned int execute (function *);
27a4cd48
DM
2536
2537}; // class pass_reorder_blocks
2538
be55bfe6
TS
2539unsigned int
2540pass_reorder_blocks::execute (function *fun)
2541{
2542 basic_block bb;
2543
2544 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2545 splitting possibly introduced more crossjumping opportunities. */
2546 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2547
2548 reorder_basic_blocks ();
2549 cleanup_cfg (CLEANUP_EXPENSIVE);
2550
2551 FOR_EACH_BB_FN (bb, fun)
2552 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2553 bb->aux = bb->next_bb;
2554 cfg_layout_finalize ();
2555
2556 return 0;
2557}
2558
27a4cd48
DM
2559} // anon namespace
2560
2561rtl_opt_pass *
2562make_pass_reorder_blocks (gcc::context *ctxt)
2563{
2564 return new pass_reorder_blocks (ctxt);
2565}
2566
bbcb0c05
SB
2567/* Duplicate the blocks containing computed gotos. This basically unfactors
2568 computed gotos that were factored early on in the compilation process to
2569 speed up edge based data flow. We used to not unfactoring them again,
2570 which can seriously pessimize code with many computed jumps in the source
2571 code, such as interpreters. See e.g. PR15242. */
2572
be55bfe6 2573namespace {
ef330312 2574
be55bfe6
TS
2575const pass_data pass_data_duplicate_computed_gotos =
2576{
2577 RTL_PASS, /* type */
2578 "compgotos", /* name */
2579 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
2580 TV_REORDER_BLOCKS, /* tv_id */
2581 0, /* properties_required */
2582 0, /* properties_provided */
2583 0, /* properties_destroyed */
2584 0, /* todo_flags_start */
3bea341f 2585 0, /* todo_flags_finish */
be55bfe6
TS
2586};
2587
2588class pass_duplicate_computed_gotos : public rtl_opt_pass
2589{
2590public:
2591 pass_duplicate_computed_gotos (gcc::context *ctxt)
2592 : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2593 {}
2594
2595 /* opt_pass methods: */
2596 virtual bool gate (function *);
2597 virtual unsigned int execute (function *);
2598
2599}; // class pass_duplicate_computed_gotos
2600
2601bool
2602pass_duplicate_computed_gotos::gate (function *fun)
2603{
2604 if (targetm.cannot_modify_jumps_p ())
2605 return false;
2606 return (optimize > 0
2607 && flag_expensive_optimizations
2608 && ! optimize_function_for_size_p (fun));
2609}
2610
2611unsigned int
2612pass_duplicate_computed_gotos::execute (function *fun)
bbcb0c05
SB
2613{
2614 basic_block bb, new_bb;
2615 bitmap candidates;
2616 int max_size;
b55bf120 2617 bool changed = false;
bbcb0c05 2618
be55bfe6 2619 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
c2924966 2620 return 0;
bbcb0c05 2621
bcc708fc 2622 clear_bb_flags ();
bbcb0c05
SB
2623 cfg_layout_initialize (0);
2624
2625 /* We are estimating the length of uncond jump insn only once
2626 since the code for getting the insn length always returns
2627 the minimal length now. */
2628 if (uncond_jump_length == 0)
2629 uncond_jump_length = get_uncond_jump_length ();
2630
4700dd70
EB
2631 max_size
2632 = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
8bdbfff5 2633 candidates = BITMAP_ALLOC (NULL);
bbcb0c05 2634
00b28cb0
SB
2635 /* Look for blocks that end in a computed jump, and see if such blocks
2636 are suitable for unfactoring. If a block is a candidate for unfactoring,
2637 mark it in the candidates. */
be55bfe6 2638 FOR_EACH_BB_FN (bb, fun)
bbcb0c05 2639 {
e93768e4 2640 rtx_insn *insn;
00b28cb0
SB
2641 edge e;
2642 edge_iterator ei;
2643 int size, all_flags;
2644
2645 /* Build the reorder chain for the original order of blocks. */
be55bfe6 2646 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
370369e1 2647 bb->aux = bb->next_bb;
bbcb0c05 2648
00b28cb0
SB
2649 /* Obviously the block has to end in a computed jump. */
2650 if (!computed_jump_p (BB_END (bb)))
2651 continue;
bbcb0c05 2652
00b28cb0 2653 /* Only consider blocks that can be duplicated. */
339ba33b 2654 if (CROSSING_JUMP_P (BB_END (bb))
00b28cb0
SB
2655 || !can_duplicate_block_p (bb))
2656 continue;
bbcb0c05 2657
00b28cb0
SB
2658 /* Make sure that the block is small enough. */
2659 size = 0;
2660 FOR_BB_INSNS (bb, insn)
2661 if (INSN_P (insn))
2662 {
070a7956 2663 size += get_attr_min_length (insn);
00b28cb0
SB
2664 if (size > max_size)
2665 break;
2666 }
2667 if (size > max_size)
2668 continue;
2669
2670 /* Final check: there must not be any incoming abnormal edges. */
2671 all_flags = 0;
2672 FOR_EACH_EDGE (e, ei, bb->preds)
2673 all_flags |= e->flags;
2674 if (all_flags & EDGE_COMPLEX)
2675 continue;
2676
2677 bitmap_set_bit (candidates, bb->index);
bbcb0c05
SB
2678 }
2679
2680 /* Nothing to do if there is no computed jump here. */
2681 if (bitmap_empty_p (candidates))
2682 goto done;
2683
2684 /* Duplicate computed gotos. */
be55bfe6 2685 FOR_EACH_BB_FN (bb, fun)
bbcb0c05 2686 {
bcc708fc 2687 if (bb->flags & BB_VISITED)
bbcb0c05
SB
2688 continue;
2689
bcc708fc 2690 bb->flags |= BB_VISITED;
bbcb0c05
SB
2691
2692 /* BB must have one outgoing edge. That edge must not lead to
c22cacf3 2693 the exit block or the next block.
bbcb0c05 2694 The destination must have more than one predecessor. */
c5cbcccf 2695 if (!single_succ_p (bb)
be55bfe6 2696 || single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (fun)
c5cbcccf
ZD
2697 || single_succ (bb) == bb->next_bb
2698 || single_pred_p (single_succ (bb)))
bbcb0c05
SB
2699 continue;
2700
2701 /* The successor block has to be a duplication candidate. */
c5cbcccf 2702 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
bbcb0c05
SB
2703 continue;
2704
3371a64f
TJ
2705 /* Don't duplicate a partition crossing edge, which requires difficult
2706 fixup. */
339ba33b 2707 if (JUMP_P (BB_END (bb)) && CROSSING_JUMP_P (BB_END (bb)))
3371a64f
TJ
2708 continue;
2709
b9a66240 2710 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
370369e1
JH
2711 new_bb->aux = bb->aux;
2712 bb->aux = new_bb;
bcc708fc 2713 new_bb->flags |= BB_VISITED;
b55bf120 2714 changed = true;
bbcb0c05
SB
2715 }
2716
fc56f9d2 2717 done:
b55bf120 2718 if (changed)
fc56f9d2
RH
2719 {
2720 /* Duplicating blocks above will redirect edges and may cause hot
2721 blocks previously reached by both hot and cold blocks to become
2722 dominated only by cold blocks. */
2723 fixup_partitions ();
2724
2725 /* Merge the duplicated blocks into predecessors, when possible. */
2726 cfg_layout_finalize ();
2727 cleanup_cfg (0);
2728 }
2729 else
2730 cfg_layout_finalize ();
bbcb0c05 2731
8bdbfff5 2732 BITMAP_FREE (candidates);
c2924966 2733 return 0;
bbcb0c05 2734}
750054a2 2735
27a4cd48
DM
2736} // anon namespace
2737
2738rtl_opt_pass *
2739make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2740{
2741 return new pass_duplicate_computed_gotos (ctxt);
2742}
2743
750054a2
CT
2744/* This function is the main 'entrance' for the optimization that
2745 partitions hot and cold basic blocks into separate sections of the
2746 .o file (to improve performance and cache locality). Ideally it
2747 would be called after all optimizations that rearrange the CFG have
2748 been called. However part of this optimization may introduce new
2749 register usage, so it must be called before register allocation has
2750 occurred. This means that this optimization is actually called
8e8d5162
CT
2751 well before the optimization that reorders basic blocks (see
2752 function above).
750054a2
CT
2753
2754 This optimization checks the feedback information to determine
87c8b4be
CT
2755 which basic blocks are hot/cold, updates flags on the basic blocks
2756 to indicate which section they belong in. This information is
2757 later used for writing out sections in the .o file. Because hot
2758 and cold sections can be arbitrarily large (within the bounds of
2759 memory), far beyond the size of a single function, it is necessary
2760 to fix up all edges that cross section boundaries, to make sure the
2761 instructions used can actually span the required distance. The
2762 fixes are described below.
8e8d5162
CT
2763
2764 Fall-through edges must be changed into jumps; it is not safe or
2765 legal to fall through across a section boundary. Whenever a
2766 fall-through edge crossing a section boundary is encountered, a new
2767 basic block is inserted (in the same section as the fall-through
2768 source), and the fall through edge is redirected to the new basic
2769 block. The new basic block contains an unconditional jump to the
2770 original fall-through target. (If the unconditional jump is
2771 insufficient to cross section boundaries, that is dealt with a
2772 little later, see below).
2773
2774 In order to deal with architectures that have short conditional
2775 branches (which cannot span all of memory) we take any conditional
2776 jump that attempts to cross a section boundary and add a level of
2777 indirection: it becomes a conditional jump to a new basic block, in
2778 the same section. The new basic block contains an unconditional
2779 jump to the original target, in the other section.
2780
2781 For those architectures whose unconditional branch is also
2782 incapable of reaching all of memory, those unconditional jumps are
2783 converted into indirect jumps, through a register.
2784
2785 IMPORTANT NOTE: This optimization causes some messy interactions
2786 with the cfg cleanup optimizations; those optimizations want to
2787 merge blocks wherever possible, and to collapse indirect jump
2788 sequences (change "A jumps to B jumps to C" directly into "A jumps
2789 to C"). Those optimizations can undo the jump fixes that
2790 partitioning is required to make (see above), in order to ensure
2791 that jumps attempting to cross section boundaries are really able
2792 to cover whatever distance the jump requires (on many architectures
2793 conditional or unconditional jumps are not able to reach all of
2794 memory). Therefore tests have to be inserted into each such
2795 optimization to make sure that it does not undo stuff necessary to
2796 cross partition boundaries. This would be much less of a problem
2797 if we could perform this optimization later in the compilation, but
2798 unfortunately the fact that we may need to create indirect jumps
2799 (through registers) requires that this optimization be performed
ea6136a2 2800 before register allocation.
750054a2 2801
ea6136a2
RH
2802 Hot and cold basic blocks are partitioned and put in separate
2803 sections of the .o file, to reduce paging and improve cache
2804 performance (hopefully). This can result in bits of code from the
2805 same function being widely separated in the .o file. However this
2806 is not obvious to the current bb structure. Therefore we must take
2807 care to ensure that: 1). There are no fall_thru edges that cross
2808 between sections; 2). For those architectures which have "short"
2809 conditional branches, all conditional branches that attempt to
2810 cross between sections are converted to unconditional branches;
2811 and, 3). For those architectures which have "short" unconditional
2812 branches, all unconditional branches that attempt to cross between
2813 sections are converted to indirect jumps.
2814
2815 The code for fixing up fall_thru edges that cross between hot and
2816 cold basic blocks does so by creating new basic blocks containing
2817 unconditional branches to the appropriate label in the "other"
2818 section. The new basic block is then put in the same (hot or cold)
2819 section as the original conditional branch, and the fall_thru edge
2820 is modified to fall into the new basic block instead. By adding
2821 this level of indirection we end up with only unconditional branches
2822 crossing between hot and cold sections.
2823
2824 Conditional branches are dealt with by adding a level of indirection.
2825 A new basic block is added in the same (hot/cold) section as the
2826 conditional branch, and the conditional branch is retargeted to the
2827 new basic block. The new basic block contains an unconditional branch
2828 to the original target of the conditional branch (in the other section).
2829
2830 Unconditional branches are dealt with by converting them into
2831 indirect jumps. */
2832
be55bfe6
TS
2833namespace {
2834
2835const pass_data pass_data_partition_blocks =
2836{
2837 RTL_PASS, /* type */
2838 "bbpart", /* name */
2839 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
2840 TV_REORDER_BLOCKS, /* tv_id */
2841 PROP_cfglayout, /* properties_required */
2842 0, /* properties_provided */
2843 0, /* properties_destroyed */
2844 0, /* todo_flags_start */
2845 0, /* todo_flags_finish */
2846};
2847
2848class pass_partition_blocks : public rtl_opt_pass
2849{
2850public:
2851 pass_partition_blocks (gcc::context *ctxt)
2852 : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2853 {}
2854
2855 /* opt_pass methods: */
2856 virtual bool gate (function *);
2857 virtual unsigned int execute (function *);
2858
2859}; // class pass_partition_blocks
2860
2861bool
2862pass_partition_blocks::gate (function *fun)
2863{
2864 /* The optimization to partition hot/cold basic blocks into separate
2865 sections of the .o file does not work well with linkonce or with
2866 user defined section attributes. Don't call it if either case
2867 arises. */
2868 return (flag_reorder_blocks_and_partition
2869 && optimize
2870 /* See gate_handle_reorder_blocks. We should not partition if
2871 we are going to omit the reordering. */
2872 && optimize_function_for_speed_p (fun)
cf288ed3 2873 && !DECL_COMDAT_GROUP (current_function_decl)
be55bfe6
TS
2874 && !user_defined_section_attribute);
2875}
2876
2877unsigned
2878pass_partition_blocks::execute (function *fun)
750054a2 2879{
9771b263 2880 vec<edge> crossing_edges;
c22cacf3 2881
be55bfe6 2882 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
ea6136a2
RH
2883 return 0;
2884
0be7e7a6
RH
2885 df_set_flags (DF_DEFER_INSN_RESCAN);
2886
ea6136a2 2887 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
9771b263 2888 if (!crossing_edges.exists ())
ea6136a2
RH
2889 return 0;
2890
af205f67
TJ
2891 crtl->has_bb_partition = true;
2892
ea6136a2
RH
2893 /* Make sure the source of any crossing edge ends in a jump and the
2894 destination of any crossing edge has a label. */
2895 add_labels_and_missing_jumps (crossing_edges);
2896
2897 /* Convert all crossing fall_thru edges to non-crossing fall
2898 thrus to unconditional jumps (that jump to the original fall
073a8998 2899 through dest). */
ea6136a2
RH
2900 fix_up_fall_thru_edges ();
2901
2902 /* If the architecture does not have conditional branches that can
2903 span all of memory, convert crossing conditional branches into
2904 crossing unconditional branches. */
2905 if (!HAS_LONG_COND_BRANCH)
2906 fix_crossing_conditional_branches ();
c22cacf3 2907
ea6136a2
RH
2908 /* If the architecture does not have unconditional branches that
2909 can span all of memory, convert crossing unconditional branches
2910 into indirect jumps. Since adding an indirect jump also adds
2911 a new register usage, update the register usage information as
2912 well. */
2913 if (!HAS_LONG_UNCOND_BRANCH)
2914 fix_crossing_unconditional_branches ();
750054a2 2915
339ba33b 2916 update_crossing_jump_flags ();
750054a2 2917
b71d7f85
JJ
2918 /* Clear bb->aux fields that the above routines were using. */
2919 clear_aux_for_blocks ();
2920
9771b263 2921 crossing_edges.release ();
c22cacf3 2922
0be7e7a6
RH
2923 /* ??? FIXME: DF generates the bb info for a block immediately.
2924 And by immediately, I mean *during* creation of the block.
2925
2926 #0 df_bb_refs_collect
2927 #1 in df_bb_refs_record
2928 #2 in create_basic_block_structure
2929
2930 Which means that the bb_has_eh_pred test in df_bb_refs_collect
2931 will *always* fail, because no edges can have been added to the
2932 block yet. Which of course means we don't add the right
2933 artificial refs, which means we fail df_verify (much) later.
2934
2935 Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
2936 that we also shouldn't grab data from the new blocks those new
2937 insns are in either. In this way one can create the block, link
2938 it up properly, and have everything Just Work later, when deferred
2939 insns are processed.
2940
2941 In the meantime, we have no other option but to throw away all
2942 of the DF data and recompute it all. */
be55bfe6 2943 if (fun->eh->lp_array)
0be7e7a6
RH
2944 {
2945 df_finish_pass (true);
2946 df_scan_alloc (NULL);
2947 df_scan_blocks ();
2948 /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
2949 data. We blindly generated all of them when creating the new
2950 landing pad. Delete those assignments we don't use. */
2951 df_set_flags (DF_LR_RUN_DCE);
2952 df_analyze ();
2953 }
2954
3bea341f 2955 return 0;
750054a2 2956}
ef330312 2957
27a4cd48
DM
2958} // anon namespace
2959
2960rtl_opt_pass *
2961make_pass_partition_blocks (gcc::context *ctxt)
2962{
2963 return new pass_partition_blocks (ctxt);
2964}