]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/bb-reorder.c
tree-vrp.c: Use XNEW/XCNEW allocation wrappers.
[thirdparty/gcc.git] / gcc / bb-reorder.c
CommitLineData
295ae817 1/* Basic block reordering routines for the GNU compiler.
c80a0f26 2 Copyright (C) 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
295ae817 3
1322177d 4 This file is part of GCC.
295ae817 5
1322177d
LB
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
295ae817
JE
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
1322177d
LB
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
295ae817
JE
15
16 You should have received a copy of the GNU General Public License
1322177d 17 along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
295ae817 20
aa634f11
JZ
21/* This (greedy) algorithm constructs traces in several rounds.
22 The construction starts from "seeds". The seed for the first round
23 is the entry point of function. When there are more than one seed
24 that one is selected first that has the lowest key in the heap
25 (see function bb_to_key). Then the algorithm repeatedly adds the most
26 probable successor to the end of a trace. Finally it connects the traces.
27
28 There are two parameters: Branch Threshold and Exec Threshold.
29 If the edge to a successor of the actual basic block is lower than
30 Branch Threshold or the frequency of the successor is lower than
31 Exec Threshold the successor will be the seed in one of the next rounds.
32 Each round has these parameters lower than the previous one.
33 The last round has to have these parameters set to zero
34 so that the remaining blocks are picked up.
35
36 The algorithm selects the most probable successor from all unvisited
37 successors and successors that have been added to this trace.
38 The other successors (that has not been "sent" to the next round) will be
39 other seeds for this round and the secondary traces will start in them.
40 If the successor has not been visited in this trace it is added to the trace
41 (however, there is some heuristic for simple branches).
42 If the successor has been visited in this trace the loop has been found.
43 If the loop has many iterations the loop is rotated so that the
44 source block of the most probable edge going out from the loop
45 is the last block of the trace.
46 If the loop has few iterations and there is no edge from the last block of
47 the loop going out from loop the loop header is duplicated.
48 Finally, the construction of the trace is terminated.
49
50 When connecting traces it first checks whether there is an edge from the
51 last block of one trace to the first block of another trace.
52 When there are still some unconnected traces it checks whether there exists
53 a basic block BB such that BB is a successor of the last bb of one trace
54 and BB is a predecessor of the first block of another trace. In this case,
55 BB is duplicated and the traces are connected through this duplicate.
56 The rest of traces are simply connected so there will be a jump to the
57 beginning of the rest of trace.
58
59
60 References:
61
62 "Software Trace Cache"
63 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
64 http://citeseer.nj.nec.com/15361.html
65
295ae817
JE
66*/
67
68#include "config.h"
69#include "system.h"
4977bab6
ZW
70#include "coretypes.h"
71#include "tm.h"
295ae817 72#include "rtl.h"
7932a3db 73#include "regs.h"
295ae817 74#include "flags.h"
38700cee 75#include "timevar.h"
295ae817 76#include "output.h"
d56a8211 77#include "cfglayout.h"
aa634f11 78#include "fibheap.h"
e4ec2cac 79#include "target.h"
750054a2 80#include "function.h"
ef482a86 81#include "tm_p.h"
750054a2
CT
82#include "obstack.h"
83#include "expr.h"
bbcb0c05 84#include "params.h"
4c714dd4 85#include "toplev.h"
ef330312
PB
86#include "tree-pass.h"
87
88#ifndef HAVE_conditional_execution
89#define HAVE_conditional_execution 0
90#endif
295ae817 91
750054a2
CT
92/* The number of rounds. In most cases there will only be 4 rounds, but
93 when partitioning hot and cold basic blocks into separate sections of
94 the .o file there will be an extra round.*/
95#define N_ROUNDS 5
aa634f11 96
ef482a86
AT
97/* Stubs in case we don't have a return insn.
98 We have to check at runtime too, not only compiletime. */
99
100#ifndef HAVE_return
101#define HAVE_return 0
102#define gen_return() NULL_RTX
103#endif
104
105
aa634f11 106/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
750054a2 107static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
aa634f11
JZ
108
109/* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
750054a2 110static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
aa634f11
JZ
111
112/* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
113 block the edge destination is not duplicated while connecting traces. */
114#define DUPLICATION_THRESHOLD 100
115
116/* Length of unconditional jump instruction. */
117static int uncond_jump_length;
118
119/* Structure to hold needed information for each basic block. */
120typedef struct bbro_basic_block_data_def
121{
122 /* Which trace is the bb start of (-1 means it is not a start of a trace). */
123 int start_of_trace;
124
125 /* Which trace is the bb end of (-1 means it is not an end of a trace). */
126 int end_of_trace;
127
87c8b4be
CT
128 /* Which trace is the bb in? */
129 int in_trace;
130
aa634f11
JZ
131 /* Which heap is BB in (if any)? */
132 fibheap_t heap;
133
134 /* Which heap node is BB in (if any)? */
135 fibnode_t node;
136} bbro_basic_block_data;
137
138/* The current size of the following dynamic array. */
139static int array_size;
140
141/* The array which holds needed information for basic blocks. */
142static bbro_basic_block_data *bbd;
143
144/* To avoid frequent reallocation the size of arrays is greater than needed,
145 the number of elements is (not less than) 1.25 * size_wanted. */
146#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
147
148/* Free the memory and set the pointer to NULL. */
298e6adc 149#define FREE(P) (gcc_assert (P), free (P), P = 0)
aa634f11
JZ
150
151/* Structure for holding information about a trace. */
152struct trace
153{
154 /* First and last basic block of the trace. */
155 basic_block first, last;
156
157 /* The round of the STC creation which this trace was found in. */
158 int round;
159
160 /* The length (i.e. the number of basic blocks) of the trace. */
161 int length;
162};
163
164/* Maximum frequency and count of one of the entry blocks. */
cd735ab8
KH
165static int max_entry_frequency;
166static gcov_type max_entry_count;
aa634f11 167
295ae817 168/* Local function prototypes. */
4682ae04
AJ
169static void find_traces (int *, struct trace *);
170static basic_block rotate_loop (edge, struct trace *, int);
171static void mark_bb_visited (basic_block, int);
172static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
750054a2 173 int, fibheap_t *, int);
4682ae04
AJ
174static basic_block copy_bb (basic_block, edge, basic_block, int);
175static fibheapkey_t bb_to_key (basic_block);
750054a2 176static bool better_edge_p (basic_block, edge, int, int, int, int, edge);
4682ae04
AJ
177static void connect_traces (int, struct trace *);
178static bool copy_bb_p (basic_block, int);
179static int get_uncond_jump_length (void);
750054a2 180static bool push_to_next_round_p (basic_block, int, int, int, gcov_type);
750054a2
CT
181static void find_rarely_executed_basic_blocks_and_crossing_edges (edge *,
182 int *,
183 int *);
750054a2
CT
184static void add_labels_and_missing_jumps (edge *, int);
185static void add_reg_crossing_jump_notes (void);
186static void fix_up_fall_thru_edges (void);
187static void fix_edges_for_rarely_executed_code (edge *, int);
188static void fix_crossing_conditional_branches (void);
189static void fix_crossing_unconditional_branches (void);
f008a564 190\f
750054a2
CT
191/* Check to see if bb should be pushed into the next round of trace
192 collections or not. Reasons for pushing the block forward are 1).
193 If the block is cold, we are doing partitioning, and there will be
194 another round (cold partition blocks are not supposed to be
195 collected into traces until the very last round); or 2). There will
196 be another round, and the basic block is not "hot enough" for the
197 current round of trace collection. */
198
199static bool
200push_to_next_round_p (basic_block bb, int round, int number_of_rounds,
201 int exec_th, gcov_type count_th)
202{
203 bool there_exists_another_round;
750054a2
CT
204 bool block_not_hot_enough;
205
206 there_exists_another_round = round < number_of_rounds - 1;
750054a2
CT
207
208 block_not_hot_enough = (bb->frequency < exec_th
209 || bb->count < count_th
210 || probably_never_executed_bb_p (bb));
211
87c8b4be
CT
212 if (there_exists_another_round
213 && block_not_hot_enough)
750054a2
CT
214 return true;
215 else
216 return false;
217}
218
aa634f11
JZ
219/* Find the traces for Software Trace Cache. Chain each trace through
220 RBI()->next. Store the number of traces to N_TRACES and description of
221 traces to TRACES. */
295ae817 222
f008a564 223static void
4682ae04 224find_traces (int *n_traces, struct trace *traces)
295ae817 225{
aa634f11 226 int i;
750054a2 227 int number_of_rounds;
aa634f11 228 edge e;
628f6a4e 229 edge_iterator ei;
aa634f11
JZ
230 fibheap_t heap;
231
750054a2
CT
232 /* Add one extra round of trace collection when partitioning hot/cold
233 basic blocks into separate sections. The last round is for all the
234 cold blocks (and ONLY the cold blocks). */
235
236 number_of_rounds = N_ROUNDS - 1;
750054a2 237
aa634f11
JZ
238 /* Insert entry points of function into heap. */
239 heap = fibheap_new ();
240 max_entry_frequency = 0;
241 max_entry_count = 0;
628f6a4e 242 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
aa634f11
JZ
243 {
244 bbd[e->dest->index].heap = heap;
245 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
246 e->dest);
247 if (e->dest->frequency > max_entry_frequency)
248 max_entry_frequency = e->dest->frequency;
249 if (e->dest->count > max_entry_count)
250 max_entry_count = e->dest->count;
251 }
252
253 /* Find the traces. */
750054a2 254 for (i = 0; i < number_of_rounds; i++)
aa634f11
JZ
255 {
256 gcov_type count_threshold;
f008a564 257
c263766c
RH
258 if (dump_file)
259 fprintf (dump_file, "STC - round %d\n", i + 1);
aa634f11
JZ
260
261 if (max_entry_count < INT_MAX / 1000)
262 count_threshold = max_entry_count * exec_threshold[i] / 1000;
263 else
264 count_threshold = max_entry_count / 1000 * exec_threshold[i];
265
266 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
267 max_entry_frequency * exec_threshold[i] / 1000,
750054a2
CT
268 count_threshold, traces, n_traces, i, &heap,
269 number_of_rounds);
aa634f11
JZ
270 }
271 fibheap_delete (heap);
272
c263766c 273 if (dump_file)
aa634f11
JZ
274 {
275 for (i = 0; i < *n_traces; i++)
276 {
277 basic_block bb;
c263766c 278 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
aa634f11 279 traces[i].round + 1);
370369e1 280 for (bb = traces[i].first; bb != traces[i].last; bb = bb->aux)
c263766c
RH
281 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
282 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
aa634f11 283 }
c263766c 284 fflush (dump_file);
aa634f11
JZ
285 }
286}
287
288/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
289 (with sequential number TRACE_N). */
290
291static basic_block
4682ae04 292rotate_loop (edge back_edge, struct trace *trace, int trace_n)
aa634f11
JZ
293{
294 basic_block bb;
295
296 /* Information about the best end (end after rotation) of the loop. */
297 basic_block best_bb = NULL;
298 edge best_edge = NULL;
299 int best_freq = -1;
300 gcov_type best_count = -1;
301 /* The best edge is preferred when its destination is not visited yet
302 or is a start block of some trace. */
303 bool is_preferred = false;
304
305 /* Find the most frequent edge that goes out from current trace. */
306 bb = back_edge->dest;
f008a564
RH
307 do
308 {
aa634f11 309 edge e;
628f6a4e
BE
310 edge_iterator ei;
311
312 FOR_EACH_EDGE (e, ei, bb->succs)
aa634f11 313 if (e->dest != EXIT_BLOCK_PTR
370369e1 314 && e->dest->il.rtl->visited != trace_n
aa634f11
JZ
315 && (e->flags & EDGE_CAN_FALLTHRU)
316 && !(e->flags & EDGE_COMPLEX))
317 {
318 if (is_preferred)
319 {
320 /* The best edge is preferred. */
370369e1 321 if (!e->dest->il.rtl->visited
aa634f11
JZ
322 || bbd[e->dest->index].start_of_trace >= 0)
323 {
324 /* The current edge E is also preferred. */
325 int freq = EDGE_FREQUENCY (e);
326 if (freq > best_freq || e->count > best_count)
327 {
328 best_freq = freq;
329 best_count = e->count;
330 best_edge = e;
331 best_bb = bb;
332 }
333 }
334 }
335 else
336 {
370369e1 337 if (!e->dest->il.rtl->visited
aa634f11
JZ
338 || bbd[e->dest->index].start_of_trace >= 0)
339 {
340 /* The current edge E is preferred. */
341 is_preferred = true;
342 best_freq = EDGE_FREQUENCY (e);
343 best_count = e->count;
344 best_edge = e;
345 best_bb = bb;
346 }
347 else
348 {
349 int freq = EDGE_FREQUENCY (e);
350 if (!best_edge || freq > best_freq || e->count > best_count)
351 {
352 best_freq = freq;
353 best_count = e->count;
354 best_edge = e;
355 best_bb = bb;
356 }
357 }
358 }
359 }
370369e1 360 bb = bb->aux;
aa634f11
JZ
361 }
362 while (bb != back_edge->dest);
363
364 if (best_bb)
365 {
366 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
367 the trace. */
368 if (back_edge->dest == trace->first)
369 {
370369e1 370 trace->first = best_bb->aux;
aa634f11
JZ
371 }
372 else
373 {
374 basic_block prev_bb;
ca7fd9cd 375
aa634f11 376 for (prev_bb = trace->first;
370369e1
JH
377 prev_bb->aux != back_edge->dest;
378 prev_bb = prev_bb->aux)
aa634f11 379 ;
370369e1 380 prev_bb->aux = best_bb->aux;
aa634f11
JZ
381
382 /* Try to get rid of uncond jump to cond jump. */
c5cbcccf 383 if (single_succ_p (prev_bb))
aa634f11 384 {
c5cbcccf 385 basic_block header = single_succ (prev_bb);
aa634f11
JZ
386
387 /* Duplicate HEADER if it is a small block containing cond jump
388 in the end. */
9fb32434
CT
389 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
390 && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
391 NULL_RTX))
c5cbcccf 392 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
aa634f11
JZ
393 }
394 }
395 }
396 else
397 {
398 /* We have not found suitable loop tail so do no rotation. */
399 best_bb = back_edge->src;
295ae817 400 }
370369e1 401 best_bb->aux = NULL;
aa634f11 402 return best_bb;
f008a564 403}
295ae817 404
aa634f11
JZ
405/* This function marks BB that it was visited in trace number TRACE. */
406
407static void
4682ae04 408mark_bb_visited (basic_block bb, int trace)
aa634f11 409{
370369e1 410 bb->il.rtl->visited = trace;
aa634f11
JZ
411 if (bbd[bb->index].heap)
412 {
413 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
414 bbd[bb->index].heap = NULL;
415 bbd[bb->index].node = NULL;
416 }
417}
418
419/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
420 not include basic blocks their probability is lower than BRANCH_TH or their
421 frequency is lower than EXEC_TH into traces (or count is lower than
422 COUNT_TH). It stores the new traces into TRACES and modifies the number of
423 traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
424 expects that starting basic blocks are in *HEAP and at the end it deletes
425 *HEAP and stores starting points for the next round into new *HEAP. */
426
427static void
4682ae04
AJ
428find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
429 struct trace *traces, int *n_traces, int round,
750054a2 430 fibheap_t *heap, int number_of_rounds)
aa634f11
JZ
431{
432 /* Heap for discarded basic blocks which are possible starting points for
433 the next round. */
434 fibheap_t new_heap = fibheap_new ();
435
436 while (!fibheap_empty (*heap))
437 {
438 basic_block bb;
439 struct trace *trace;
440 edge best_edge, e;
441 fibheapkey_t key;
628f6a4e 442 edge_iterator ei;
aa634f11
JZ
443
444 bb = fibheap_extract_min (*heap);
445 bbd[bb->index].heap = NULL;
446 bbd[bb->index].node = NULL;
447
c263766c
RH
448 if (dump_file)
449 fprintf (dump_file, "Getting bb %d\n", bb->index);
aa634f11 450
750054a2
CT
451 /* If the BB's frequency is too low send BB to the next round. When
452 partitioning hot/cold blocks into separate sections, make sure all
453 the cold blocks (and ONLY the cold blocks) go into the (extra) final
454 round. */
455
456 if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
457 count_th))
aa634f11
JZ
458 {
459 int key = bb_to_key (bb);
460 bbd[bb->index].heap = new_heap;
461 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
462
c263766c
RH
463 if (dump_file)
464 fprintf (dump_file,
aa634f11
JZ
465 " Possible start point of next round: %d (key: %d)\n",
466 bb->index, key);
467 continue;
468 }
469
470 trace = traces + *n_traces;
471 trace->first = bb;
472 trace->round = round;
473 trace->length = 0;
87c8b4be 474 bbd[bb->index].in_trace = *n_traces;
aa634f11
JZ
475 (*n_traces)++;
476
477 do
478 {
479 int prob, freq;
934677f9 480 bool ends_in_call;
aa634f11
JZ
481
482 /* The probability and frequency of the best edge. */
483 int best_prob = INT_MIN / 2;
484 int best_freq = INT_MIN / 2;
485
486 best_edge = NULL;
487 mark_bb_visited (bb, *n_traces);
488 trace->length++;
489
c263766c
RH
490 if (dump_file)
491 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
aa634f11
JZ
492 bb->index, *n_traces - 1);
493
934677f9
RH
494 ends_in_call = block_ends_with_call_p (bb);
495
aa634f11 496 /* Select the successor that will be placed after BB. */
628f6a4e 497 FOR_EACH_EDGE (e, ei, bb->succs)
aa634f11 498 {
298e6adc 499 gcc_assert (!(e->flags & EDGE_FAKE));
aa634f11
JZ
500
501 if (e->dest == EXIT_BLOCK_PTR)
502 continue;
503
370369e1
JH
504 if (e->dest->il.rtl->visited
505 && e->dest->il.rtl->visited != *n_traces)
aa634f11
JZ
506 continue;
507
87c8b4be 508 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
750054a2
CT
509 continue;
510
aa634f11 511 prob = e->probability;
1651e640 512 freq = e->dest->frequency;
aa634f11 513
934677f9
RH
514 /* The only sensible preference for a call instruction is the
515 fallthru edge. Don't bother selecting anything else. */
516 if (ends_in_call)
517 {
518 if (e->flags & EDGE_CAN_FALLTHRU)
519 {
520 best_edge = e;
521 best_prob = prob;
522 best_freq = freq;
523 }
524 continue;
525 }
526
aa634f11 527 /* Edge that cannot be fallthru or improbable or infrequent
89dbed81 528 successor (i.e. it is unsuitable successor). */
aa634f11 529 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
1651e640
PH
530 || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
531 || e->count < count_th)
aa634f11
JZ
532 continue;
533
750054a2
CT
534 /* If partitioning hot/cold basic blocks, don't consider edges
535 that cross section boundaries. */
536
537 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
538 best_edge))
aa634f11
JZ
539 {
540 best_edge = e;
541 best_prob = prob;
542 best_freq = freq;
543 }
544 }
545
c8717368 546 /* If the best destination has multiple predecessors, and can be
6d9cc15b
JZ
547 duplicated cheaper than a jump, don't allow it to be added
548 to a trace. We'll duplicate it when connecting traces. */
628f6a4e 549 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
6d9cc15b
JZ
550 && copy_bb_p (best_edge->dest, 0))
551 best_edge = NULL;
552
aa634f11 553 /* Add all non-selected successors to the heaps. */
628f6a4e 554 FOR_EACH_EDGE (e, ei, bb->succs)
aa634f11
JZ
555 {
556 if (e == best_edge
557 || e->dest == EXIT_BLOCK_PTR
370369e1 558 || e->dest->il.rtl->visited)
aa634f11
JZ
559 continue;
560
561 key = bb_to_key (e->dest);
562
563 if (bbd[e->dest->index].heap)
564 {
565 /* E->DEST is already in some heap. */
566 if (key != bbd[e->dest->index].node->key)
567 {
c263766c 568 if (dump_file)
aa634f11 569 {
c263766c 570 fprintf (dump_file,
aa634f11
JZ
571 "Changing key for bb %d from %ld to %ld.\n",
572 e->dest->index,
573 (long) bbd[e->dest->index].node->key,
574 key);
575 }
576 fibheap_replace_key (bbd[e->dest->index].heap,
577 bbd[e->dest->index].node, key);
578 }
579 }
580 else
581 {
582 fibheap_t which_heap = *heap;
583
584 prob = e->probability;
585 freq = EDGE_FREQUENCY (e);
586
587 if (!(e->flags & EDGE_CAN_FALLTHRU)
588 || (e->flags & EDGE_COMPLEX)
589 || prob < branch_th || freq < exec_th
590 || e->count < count_th)
591 {
750054a2
CT
592 /* When partitioning hot/cold basic blocks, make sure
593 the cold blocks (and only the cold blocks) all get
594 pushed to the last round of trace collection. */
595
596 if (push_to_next_round_p (e->dest, round,
597 number_of_rounds,
598 exec_th, count_th))
aa634f11
JZ
599 which_heap = new_heap;
600 }
295ae817 601
aa634f11
JZ
602 bbd[e->dest->index].heap = which_heap;
603 bbd[e->dest->index].node = fibheap_insert (which_heap,
604 key, e->dest);
295ae817 605
c263766c 606 if (dump_file)
aa634f11 607 {
c263766c 608 fprintf (dump_file,
aa634f11
JZ
609 " Possible start of %s round: %d (key: %ld)\n",
610 (which_heap == new_heap) ? "next" : "this",
611 e->dest->index, (long) key);
612 }
613
614 }
615 }
616
617 if (best_edge) /* Suitable successor was found. */
618 {
370369e1 619 if (best_edge->dest->il.rtl->visited == *n_traces)
aa634f11
JZ
620 {
621 /* We do nothing with one basic block loops. */
622 if (best_edge->dest != bb)
623 {
624 if (EDGE_FREQUENCY (best_edge)
625 > 4 * best_edge->dest->frequency / 5)
626 {
627 /* The loop has at least 4 iterations. If the loop
628 header is not the first block of the function
629 we can rotate the loop. */
630
631 if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
632 {
c263766c 633 if (dump_file)
aa634f11 634 {
c263766c 635 fprintf (dump_file,
aa634f11
JZ
636 "Rotating loop %d - %d\n",
637 best_edge->dest->index, bb->index);
638 }
370369e1 639 bb->aux = best_edge->dest;
87c8b4be
CT
640 bbd[best_edge->dest->index].in_trace =
641 (*n_traces) - 1;
aa634f11
JZ
642 bb = rotate_loop (best_edge, trace, *n_traces);
643 }
644 }
645 else
646 {
647 /* The loop has less than 4 iterations. */
648
c5cbcccf 649 if (single_succ_p (bb)
51027369 650 && copy_bb_p (best_edge->dest, !optimize_size))
aa634f11
JZ
651 {
652 bb = copy_bb (best_edge->dest, best_edge, bb,
653 *n_traces);
87c8b4be 654 trace->length++;
aa634f11
JZ
655 }
656 }
657 }
658
659 /* Terminate the trace. */
660 break;
661 }
662 else
663 {
664 /* Check for a situation
665
666 A
667 /|
668 B |
669 \|
670 C
671
672 where
673 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
674 >= EDGE_FREQUENCY (AC).
675 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
676 Best ordering is then A B C.
677
678 This situation is created for example by:
679
680 if (A) B;
681 C;
682
683 */
684
628f6a4e 685 FOR_EACH_EDGE (e, ei, bb->succs)
aa634f11
JZ
686 if (e != best_edge
687 && (e->flags & EDGE_CAN_FALLTHRU)
688 && !(e->flags & EDGE_COMPLEX)
370369e1 689 && !e->dest->il.rtl->visited
c5cbcccf 690 && single_pred_p (e->dest)
bd454efd 691 && !(e->flags & EDGE_CROSSING)
87c8b4be 692 && single_succ_p (e->dest)
c5cbcccf
ZD
693 && (single_succ_edge (e->dest)->flags
694 & EDGE_CAN_FALLTHRU)
695 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
696 && single_succ (e->dest) == best_edge->dest
aa634f11
JZ
697 && 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
698 {
699 best_edge = e;
c263766c
RH
700 if (dump_file)
701 fprintf (dump_file, "Selecting BB %d\n",
aa634f11
JZ
702 best_edge->dest->index);
703 break;
704 }
705
370369e1 706 bb->aux = best_edge->dest;
87c8b4be 707 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
aa634f11
JZ
708 bb = best_edge->dest;
709 }
710 }
711 }
712 while (best_edge);
713 trace->last = bb;
714 bbd[trace->first->index].start_of_trace = *n_traces - 1;
715 bbd[trace->last->index].end_of_trace = *n_traces - 1;
716
717 /* The trace is terminated so we have to recount the keys in heap
718 (some block can have a lower key because now one of its predecessors
719 is an end of the trace). */
628f6a4e 720 FOR_EACH_EDGE (e, ei, bb->succs)
aa634f11
JZ
721 {
722 if (e->dest == EXIT_BLOCK_PTR
370369e1 723 || e->dest->il.rtl->visited)
aa634f11
JZ
724 continue;
725
726 if (bbd[e->dest->index].heap)
727 {
728 key = bb_to_key (e->dest);
729 if (key != bbd[e->dest->index].node->key)
730 {
c263766c 731 if (dump_file)
aa634f11 732 {
c263766c 733 fprintf (dump_file,
aa634f11
JZ
734 "Changing key for bb %d from %ld to %ld.\n",
735 e->dest->index,
736 (long) bbd[e->dest->index].node->key, key);
737 }
738 fibheap_replace_key (bbd[e->dest->index].heap,
739 bbd[e->dest->index].node,
740 key);
741 }
742 }
743 }
744 }
745
746 fibheap_delete (*heap);
747
748 /* "Return" the new heap. */
749 *heap = new_heap;
750}
751
752/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
753 it to trace after BB, mark OLD_BB visited and update pass' data structures
754 (TRACE is a number of trace which OLD_BB is duplicated to). */
295ae817 755
f008a564 756static basic_block
4682ae04 757copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
f008a564 758{
aa634f11
JZ
759 basic_block new_bb;
760
b9a66240 761 new_bb = duplicate_block (old_bb, e, bb);
076c7ab8 762 BB_COPY_PARTITION (new_bb, old_bb);
9fb32434 763
298e6adc 764 gcc_assert (e->dest == new_bb);
370369e1 765 gcc_assert (!e->dest->il.rtl->visited);
298e6adc 766
c263766c
RH
767 if (dump_file)
768 fprintf (dump_file,
aa634f11
JZ
769 "Duplicated bb %d (created bb %d)\n",
770 old_bb->index, new_bb->index);
370369e1
JH
771 new_bb->il.rtl->visited = trace;
772 new_bb->aux = bb->aux;
773 bb->aux = new_bb;
f008a564 774
aa634f11 775 if (new_bb->index >= array_size || last_basic_block > array_size)
295ae817 776 {
aa634f11
JZ
777 int i;
778 int new_size;
779
780 new_size = MAX (last_basic_block, new_bb->index + 1);
781 new_size = GET_ARRAY_SIZE (new_size);
782 bbd = xrealloc (bbd, new_size * sizeof (bbro_basic_block_data));
783 for (i = array_size; i < new_size; i++)
784 {
785 bbd[i].start_of_trace = -1;
87c8b4be 786 bbd[i].in_trace = -1;
aa634f11
JZ
787 bbd[i].end_of_trace = -1;
788 bbd[i].heap = NULL;
789 bbd[i].node = NULL;
790 }
791 array_size = new_size;
295ae817 792
c263766c 793 if (dump_file)
aa634f11 794 {
c263766c 795 fprintf (dump_file,
aa634f11
JZ
796 "Growing the dynamic array to %d elements.\n",
797 array_size);
798 }
295ae817 799 }
aa634f11 800
87c8b4be
CT
801 bbd[new_bb->index].in_trace = trace;
802
aa634f11
JZ
803 return new_bb;
804}
805
806/* Compute and return the key (for the heap) of the basic block BB. */
807
808static fibheapkey_t
4682ae04 809bb_to_key (basic_block bb)
aa634f11
JZ
810{
811 edge e;
628f6a4e 812 edge_iterator ei;
aa634f11
JZ
813 int priority = 0;
814
815 /* Do not start in probably never executed blocks. */
750054a2 816
076c7ab8
ZW
817 if (BB_PARTITION (bb) == BB_COLD_PARTITION
818 || probably_never_executed_bb_p (bb))
aa634f11
JZ
819 return BB_FREQ_MAX;
820
821 /* Prefer blocks whose predecessor is an end of some trace
822 or whose predecessor edge is EDGE_DFS_BACK. */
628f6a4e 823 FOR_EACH_EDGE (e, ei, bb->preds)
402209ff 824 {
aa634f11
JZ
825 if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
826 || (e->flags & EDGE_DFS_BACK))
827 {
828 int edge_freq = EDGE_FREQUENCY (e);
829
830 if (edge_freq > priority)
831 priority = edge_freq;
832 }
402209ff 833 }
295ae817 834
aa634f11
JZ
835 if (priority)
836 /* The block with priority should have significantly lower key. */
837 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
838 return -bb->frequency;
839}
840
841/* Return true when the edge E from basic block BB is better than the temporary
842 best edge (details are in function). The probability of edge E is PROB. The
843 frequency of the successor is FREQ. The current best probability is
844 BEST_PROB, the best frequency is BEST_FREQ.
845 The edge is considered to be equivalent when PROB does not differ much from
846 BEST_PROB; similarly for frequency. */
847
848static bool
4682ae04 849better_edge_p (basic_block bb, edge e, int prob, int freq, int best_prob,
750054a2 850 int best_freq, edge cur_best_edge)
aa634f11
JZ
851{
852 bool is_better_edge;
f008a564 853
aa634f11
JZ
854 /* The BEST_* values do not have to be best, but can be a bit smaller than
855 maximum values. */
856 int diff_prob = best_prob / 10;
857 int diff_freq = best_freq / 10;
f008a564 858
aa634f11
JZ
859 if (prob > best_prob + diff_prob)
860 /* The edge has higher probability than the temporary best edge. */
861 is_better_edge = true;
862 else if (prob < best_prob - diff_prob)
863 /* The edge has lower probability than the temporary best edge. */
864 is_better_edge = false;
865 else if (freq < best_freq - diff_freq)
866 /* The edge and the temporary best edge have almost equivalent
867 probabilities. The higher frequency of a successor now means
868 that there is another edge going into that successor.
869 This successor has lower frequency so it is better. */
870 is_better_edge = true;
871 else if (freq > best_freq + diff_freq)
872 /* This successor has higher frequency so it is worse. */
873 is_better_edge = false;
874 else if (e->dest->prev_bb == bb)
875 /* The edges have equivalent probabilities and the successors
876 have equivalent frequencies. Select the previous successor. */
877 is_better_edge = true;
878 else
879 is_better_edge = false;
880
750054a2
CT
881 /* If we are doing hot/cold partitioning, make sure that we always favor
882 non-crossing edges over crossing edges. */
883
884 if (!is_better_edge
885 && flag_reorder_blocks_and_partition
886 && cur_best_edge
bd454efd
SB
887 && (cur_best_edge->flags & EDGE_CROSSING)
888 && !(e->flags & EDGE_CROSSING))
750054a2
CT
889 is_better_edge = true;
890
aa634f11
JZ
891 return is_better_edge;
892}
893
894/* Connect traces in array TRACES, N_TRACES is the count of traces. */
895
896static void
4682ae04 897connect_traces (int n_traces, struct trace *traces)
aa634f11
JZ
898{
899 int i;
900 bool *connected;
87c8b4be 901 bool two_passes;
aa634f11 902 int last_trace;
87c8b4be
CT
903 int current_pass;
904 int current_partition;
aa634f11
JZ
905 int freq_threshold;
906 gcov_type count_threshold;
907
908 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
909 if (max_entry_count < INT_MAX / 1000)
910 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
911 else
912 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
913
5ed6ace5 914 connected = XCNEWVEC (bool, n_traces);
aa634f11 915 last_trace = -1;
87c8b4be
CT
916 current_pass = 1;
917 current_partition = BB_PARTITION (traces[0].first);
918 two_passes = false;
750054a2
CT
919
920 if (flag_reorder_blocks_and_partition)
87c8b4be
CT
921 for (i = 0; i < n_traces && !two_passes; i++)
922 if (BB_PARTITION (traces[0].first)
923 != BB_PARTITION (traces[i].first))
924 two_passes = true;
925
926 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
295ae817 927 {
aa634f11
JZ
928 int t = i;
929 int t2;
930 edge e, best;
931 int best_len;
295ae817 932
87c8b4be 933 if (i >= n_traces)
750054a2 934 {
41806d92
NS
935 gcc_assert (two_passes && current_pass == 1);
936 i = 0;
937 t = i;
938 current_pass = 2;
939 if (current_partition == BB_HOT_PARTITION)
940 current_partition = BB_COLD_PARTITION;
87c8b4be 941 else
41806d92 942 current_partition = BB_HOT_PARTITION;
750054a2 943 }
87c8b4be 944
aa634f11
JZ
945 if (connected[t])
946 continue;
f008a564 947
87c8b4be
CT
948 if (two_passes
949 && BB_PARTITION (traces[t].first) != current_partition)
950 continue;
951
aa634f11 952 connected[t] = true;
b0cc7919 953
aa634f11
JZ
954 /* Find the predecessor traces. */
955 for (t2 = t; t2 > 0;)
956 {
628f6a4e 957 edge_iterator ei;
aa634f11
JZ
958 best = NULL;
959 best_len = 0;
628f6a4e 960 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
aa634f11
JZ
961 {
962 int si = e->src->index;
b0cc7919 963
aa634f11
JZ
964 if (e->src != ENTRY_BLOCK_PTR
965 && (e->flags & EDGE_CAN_FALLTHRU)
966 && !(e->flags & EDGE_COMPLEX)
967 && bbd[si].end_of_trace >= 0
968 && !connected[bbd[si].end_of_trace]
87c8b4be 969 && (BB_PARTITION (e->src) == current_partition)
aa634f11
JZ
970 && (!best
971 || e->probability > best->probability
972 || (e->probability == best->probability
973 && traces[bbd[si].end_of_trace].length > best_len)))
974 {
975 best = e;
976 best_len = traces[bbd[si].end_of_trace].length;
977 }
978 }
979 if (best)
980 {
370369e1 981 best->src->aux = best->dest;
aa634f11
JZ
982 t2 = bbd[best->src->index].end_of_trace;
983 connected[t2] = true;
750054a2 984
c263766c 985 if (dump_file)
aa634f11 986 {
c263766c 987 fprintf (dump_file, "Connection: %d %d\n",
aa634f11
JZ
988 best->src->index, best->dest->index);
989 }
990 }
991 else
992 break;
993 }
f008a564 994
aa634f11 995 if (last_trace >= 0)
370369e1 996 traces[last_trace].last->aux = traces[t2].first;
aa634f11
JZ
997 last_trace = t;
998
999 /* Find the successor traces. */
1000 while (1)
b0cc7919 1001 {
aa634f11 1002 /* Find the continuation of the chain. */
628f6a4e 1003 edge_iterator ei;
aa634f11
JZ
1004 best = NULL;
1005 best_len = 0;
628f6a4e 1006 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
aa634f11
JZ
1007 {
1008 int di = e->dest->index;
1009
1010 if (e->dest != EXIT_BLOCK_PTR
1011 && (e->flags & EDGE_CAN_FALLTHRU)
1012 && !(e->flags & EDGE_COMPLEX)
1013 && bbd[di].start_of_trace >= 0
1014 && !connected[bbd[di].start_of_trace]
87c8b4be 1015 && (BB_PARTITION (e->dest) == current_partition)
aa634f11
JZ
1016 && (!best
1017 || e->probability > best->probability
1018 || (e->probability == best->probability
1019 && traces[bbd[di].start_of_trace].length > best_len)))
1020 {
1021 best = e;
1022 best_len = traces[bbd[di].start_of_trace].length;
1023 }
1024 }
1025
1026 if (best)
1027 {
c263766c 1028 if (dump_file)
aa634f11 1029 {
c263766c 1030 fprintf (dump_file, "Connection: %d %d\n",
aa634f11
JZ
1031 best->src->index, best->dest->index);
1032 }
1033 t = bbd[best->dest->index].start_of_trace;
370369e1 1034 traces[last_trace].last->aux = traces[t].first;
aa634f11
JZ
1035 connected[t] = true;
1036 last_trace = t;
1037 }
1038 else
1039 {
1040 /* Try to connect the traces by duplication of 1 block. */
1041 edge e2;
1042 basic_block next_bb = NULL;
99dc7277 1043 bool try_copy = false;
aa634f11 1044
628f6a4e 1045 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
aa634f11
JZ
1046 if (e->dest != EXIT_BLOCK_PTR
1047 && (e->flags & EDGE_CAN_FALLTHRU)
1048 && !(e->flags & EDGE_COMPLEX)
99dc7277 1049 && (!best || e->probability > best->probability))
aa634f11 1050 {
628f6a4e 1051 edge_iterator ei;
aa634f11
JZ
1052 edge best2 = NULL;
1053 int best2_len = 0;
1054
6d9cc15b
JZ
1055 /* If the destination is a start of a trace which is only
1056 one block long, then no need to search the successor
99dc7277 1057 blocks of the trace. Accept it. */
6d9cc15b
JZ
1058 if (bbd[e->dest->index].start_of_trace >= 0
1059 && traces[bbd[e->dest->index].start_of_trace].length
1060 == 1)
1061 {
1062 best = e;
1063 try_copy = true;
1064 continue;
1065 }
99dc7277 1066
628f6a4e 1067 FOR_EACH_EDGE (e2, ei, e->dest->succs)
aa634f11
JZ
1068 {
1069 int di = e2->dest->index;
1070
1071 if (e2->dest == EXIT_BLOCK_PTR
1072 || ((e2->flags & EDGE_CAN_FALLTHRU)
1073 && !(e2->flags & EDGE_COMPLEX)
1074 && bbd[di].start_of_trace >= 0
1075 && !connected[bbd[di].start_of_trace]
87c8b4be 1076 && (BB_PARTITION (e2->dest) == current_partition)
aa634f11
JZ
1077 && (EDGE_FREQUENCY (e2) >= freq_threshold)
1078 && (e2->count >= count_threshold)
1079 && (!best2
1080 || e2->probability > best2->probability
1081 || (e2->probability == best2->probability
1082 && traces[bbd[di].start_of_trace].length
1083 > best2_len))))
1084 {
1085 best = e;
1086 best2 = e2;
1087 if (e2->dest != EXIT_BLOCK_PTR)
1088 best2_len = traces[bbd[di].start_of_trace].length;
1089 else
1090 best2_len = INT_MAX;
1091 next_bb = e2->dest;
99dc7277 1092 try_copy = true;
aa634f11
JZ
1093 }
1094 }
1095 }
99dc7277 1096
750054a2
CT
1097 if (flag_reorder_blocks_and_partition)
1098 try_copy = false;
1099
99dc7277
RH
1100 /* Copy tiny blocks always; copy larger blocks only when the
1101 edge is traversed frequently enough. */
1102 if (try_copy
1103 && copy_bb_p (best->dest,
1104 !optimize_size
1105 && EDGE_FREQUENCY (best) >= freq_threshold
1106 && best->count >= count_threshold))
aa634f11
JZ
1107 {
1108 basic_block new_bb;
1109
c263766c 1110 if (dump_file)
aa634f11 1111 {
c263766c 1112 fprintf (dump_file, "Connection: %d %d ",
aa634f11 1113 traces[t].last->index, best->dest->index);
99dc7277 1114 if (!next_bb)
c263766c 1115 fputc ('\n', dump_file);
99dc7277 1116 else if (next_bb == EXIT_BLOCK_PTR)
c263766c 1117 fprintf (dump_file, "exit\n");
aa634f11 1118 else
c263766c 1119 fprintf (dump_file, "%d\n", next_bb->index);
aa634f11
JZ
1120 }
1121
1122 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1123 traces[t].last = new_bb;
99dc7277 1124 if (next_bb && next_bb != EXIT_BLOCK_PTR)
aa634f11
JZ
1125 {
1126 t = bbd[next_bb->index].start_of_trace;
370369e1 1127 traces[last_trace].last->aux = traces[t].first;
aa634f11
JZ
1128 connected[t] = true;
1129 last_trace = t;
1130 }
1131 else
1132 break; /* Stop finding the successor traces. */
1133 }
1134 else
1135 break; /* Stop finding the successor traces. */
1136 }
b0cc7919 1137 }
aa634f11
JZ
1138 }
1139
c263766c 1140 if (dump_file)
aa634f11
JZ
1141 {
1142 basic_block bb;
f008a564 1143
c263766c 1144 fprintf (dump_file, "Final order:\n");
370369e1 1145 for (bb = traces[0].first; bb; bb = bb->aux)
c263766c
RH
1146 fprintf (dump_file, "%d ", bb->index);
1147 fprintf (dump_file, "\n");
1148 fflush (dump_file);
295ae817
JE
1149 }
1150
aa634f11
JZ
1151 FREE (connected);
1152}
1153
1154/* Return true when BB can and should be copied. CODE_MAY_GROW is true
1155 when code size is allowed to grow by duplication. */
1156
1157static bool
4682ae04 1158copy_bb_p (basic_block bb, int code_may_grow)
aa634f11
JZ
1159{
1160 int size = 0;
1161 int max_size = uncond_jump_length;
1162 rtx insn;
1163
1164 if (!bb->frequency)
1165 return false;
628f6a4e 1166 if (EDGE_COUNT (bb->preds) < 2)
aa634f11 1167 return false;
6de9cd9a 1168 if (!can_duplicate_block_p (bb))
aa634f11
JZ
1169 return false;
1170
6ae533cf 1171 /* Avoid duplicating blocks which have many successors (PR/13430). */
628f6a4e
BE
1172 if (EDGE_COUNT (bb->succs) > 8)
1173 return false;
6ae533cf 1174
aa634f11 1175 if (code_may_grow && maybe_hot_bb_p (bb))
f935b9e0 1176 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
aa634f11 1177
bbcb0c05 1178 FOR_BB_INSNS (bb, insn)
f008a564 1179 {
aa634f11 1180 if (INSN_P (insn))
070a7956 1181 size += get_attr_min_length (insn);
f008a564 1182 }
295ae817 1183
aa634f11
JZ
1184 if (size <= max_size)
1185 return true;
1186
c263766c 1187 if (dump_file)
f008a564 1188 {
c263766c 1189 fprintf (dump_file,
aa634f11
JZ
1190 "Block %d can't be copied because its size = %d.\n",
1191 bb->index, size);
f008a564 1192 }
295ae817 1193
aa634f11
JZ
1194 return false;
1195}
1196
1197/* Return the length of unconditional jump instruction. */
1198
1199static int
4682ae04 1200get_uncond_jump_length (void)
aa634f11
JZ
1201{
1202 rtx label, jump;
1203 int length;
1204
1205 label = emit_label_before (gen_label_rtx (), get_insns ());
1206 jump = emit_jump_insn (gen_jump (label));
1207
070a7956 1208 length = get_attr_min_length (jump);
aa634f11
JZ
1209
1210 delete_insn (jump);
1211 delete_insn (label);
1212 return length;
295ae817
JE
1213}
1214
750054a2
CT
1215/* Find the basic blocks that are rarely executed and need to be moved to
1216 a separate section of the .o file (to cut down on paging and improve
1217 cache locality). */
1218
1219static void
1220find_rarely_executed_basic_blocks_and_crossing_edges (edge *crossing_edges,
1221 int *n_crossing_edges,
1222 int *max_idx)
1223{
1224 basic_block bb;
9fb32434 1225 bool has_hot_blocks = false;
750054a2
CT
1226 edge e;
1227 int i;
628f6a4e 1228 edge_iterator ei;
750054a2
CT
1229
1230 /* Mark which partition (hot/cold) each basic block belongs in. */
1231
1232 FOR_EACH_BB (bb)
1233 {
1234 if (probably_never_executed_bb_p (bb))
076c7ab8 1235 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
750054a2 1236 else
9fb32434 1237 {
076c7ab8 1238 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
9fb32434
CT
1239 has_hot_blocks = true;
1240 }
750054a2
CT
1241 }
1242
1243 /* Mark every edge that crosses between sections. */
1244
1245 i = 0;
c7466dee
CT
1246 FOR_EACH_BB (bb)
1247 FOR_EACH_EDGE (e, ei, bb->succs)
9fb32434 1248 {
c7466dee
CT
1249 if (e->src != ENTRY_BLOCK_PTR
1250 && e->dest != EXIT_BLOCK_PTR
1251 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1252 {
1253 e->flags |= EDGE_CROSSING;
1254 if (i == *max_idx)
1255 {
1256 *max_idx *= 2;
1257 crossing_edges = xrealloc (crossing_edges,
1258 (*max_idx) * sizeof (edge));
1259 }
1260 crossing_edges[i++] = e;
1261 }
1262 else
1263 e->flags &= ~EDGE_CROSSING;
9fb32434 1264 }
750054a2
CT
1265 *n_crossing_edges = i;
1266}
1267
750054a2
CT
1268/* If any destination of a crossing edge does not have a label, add label;
1269 Convert any fall-through crossing edges (for blocks that do not contain
9cf737f8 1270 a jump) to unconditional jumps. */
750054a2
CT
1271
1272static void
1273add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
1274{
1275 int i;
1276 basic_block src;
1277 basic_block dest;
1278 rtx label;
1279 rtx barrier;
1280 rtx new_jump;
1281
1282 for (i=0; i < n_crossing_edges; i++)
1283 {
1284 if (crossing_edges[i])
1285 {
1286 src = crossing_edges[i]->src;
1287 dest = crossing_edges[i]->dest;
1288
1289 /* Make sure dest has a label. */
1290
1291 if (dest && (dest != EXIT_BLOCK_PTR))
1292 {
1293 label = block_label (dest);
1294
1295 /* Make sure source block ends with a jump. */
1296
1297 if (src && (src != ENTRY_BLOCK_PTR))
1298 {
4b4bf941 1299 if (!JUMP_P (BB_END (src)))
750054a2
CT
1300 /* bb just falls through. */
1301 {
1302 /* make sure there's only one successor */
c5cbcccf 1303 gcc_assert (single_succ_p (src));
298e6adc
NS
1304
1305 /* Find label in dest block. */
1306 label = block_label (dest);
1307
1308 new_jump = emit_jump_insn_after (gen_jump (label),
1309 BB_END (src));
1310 barrier = emit_barrier_after (new_jump);
1311 JUMP_LABEL (new_jump) = label;
1312 LABEL_NUSES (label) += 1;
370369e1 1313 src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
298e6adc
NS
1314 /* Mark edge as non-fallthru. */
1315 crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
750054a2
CT
1316 } /* end: 'if (GET_CODE ... ' */
1317 } /* end: 'if (src && src->index...' */
1318 } /* end: 'if (dest && dest->index...' */
1319 } /* end: 'if (crossing_edges[i]...' */
1320 } /* end for loop */
1321}
1322
1323/* Find any bb's where the fall-through edge is a crossing edge (note that
1324 these bb's must also contain a conditional jump; we've already
1325 dealt with fall-through edges for blocks that didn't have a
1326 conditional jump in the call to add_labels_and_missing_jumps).
1327 Convert the fall-through edge to non-crossing edge by inserting a
1328 new bb to fall-through into. The new bb will contain an
1329 unconditional jump (crossing edge) to the original fall through
1330 destination. */
1331
1332static void
1333fix_up_fall_thru_edges (void)
1334{
1335 basic_block cur_bb;
1336 basic_block new_bb;
1337 edge succ1;
1338 edge succ2;
1339 edge fall_thru;
4b493aa5 1340 edge cond_jump = NULL;
750054a2
CT
1341 edge e;
1342 bool cond_jump_crosses;
1343 int invert_worked;
1344 rtx old_jump;
1345 rtx fall_thru_label;
1346 rtx barrier;
1347
1348 FOR_EACH_BB (cur_bb)
1349 {
1350 fall_thru = NULL;
628f6a4e
BE
1351 if (EDGE_COUNT (cur_bb->succs) > 0)
1352 succ1 = EDGE_SUCC (cur_bb, 0);
1353 else
1354 succ1 = NULL;
1355
1356 if (EDGE_COUNT (cur_bb->succs) > 1)
1357 succ2 = EDGE_SUCC (cur_bb, 1);
750054a2
CT
1358 else
1359 succ2 = NULL;
1360
1361 /* Find the fall-through edge. */
1362
1363 if (succ1
1364 && (succ1->flags & EDGE_FALLTHRU))
1365 {
1366 fall_thru = succ1;
1367 cond_jump = succ2;
1368 }
1369 else if (succ2
1370 && (succ2->flags & EDGE_FALLTHRU))
1371 {
1372 fall_thru = succ2;
1373 cond_jump = succ1;
1374 }
1375
1376 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1377 {
1378 /* Check to see if the fall-thru edge is a crossing edge. */
1379
bd454efd 1380 if (fall_thru->flags & EDGE_CROSSING)
750054a2
CT
1381 {
1382 /* The fall_thru edge crosses; now check the cond jump edge, if
1383 it exists. */
1384
1385 cond_jump_crosses = true;
1386 invert_worked = 0;
1387 old_jump = BB_END (cur_bb);
1388
1389 /* Find the jump instruction, if there is one. */
1390
1391 if (cond_jump)
1392 {
bd454efd 1393 if (!(cond_jump->flags & EDGE_CROSSING))
750054a2
CT
1394 cond_jump_crosses = false;
1395
1396 /* We know the fall-thru edge crosses; if the cond
1397 jump edge does NOT cross, and its destination is the
1398 next block in the bb order, invert the jump
1399 (i.e. fix it so the fall thru does not cross and
1400 the cond jump does). */
1401
1402 if (!cond_jump_crosses
370369e1 1403 && cur_bb->aux == cond_jump->dest)
750054a2
CT
1404 {
1405 /* Find label in fall_thru block. We've already added
9cf737f8 1406 any missing labels, so there must be one. */
750054a2
CT
1407
1408 fall_thru_label = block_label (fall_thru->dest);
1409
1410 if (old_jump && fall_thru_label)
1411 invert_worked = invert_jump (old_jump,
1412 fall_thru_label,0);
1413 if (invert_worked)
1414 {
1415 fall_thru->flags &= ~EDGE_FALLTHRU;
1416 cond_jump->flags |= EDGE_FALLTHRU;
1417 update_br_prob_note (cur_bb);
1418 e = fall_thru;
1419 fall_thru = cond_jump;
1420 cond_jump = e;
bd454efd
SB
1421 cond_jump->flags |= EDGE_CROSSING;
1422 fall_thru->flags &= ~EDGE_CROSSING;
750054a2
CT
1423 }
1424 }
1425 }
1426
1427 if (cond_jump_crosses || !invert_worked)
1428 {
1429 /* This is the case where both edges out of the basic
1430 block are crossing edges. Here we will fix up the
1431 fall through edge. The jump edge will be taken care
1432 of later. */
1433
1434 new_bb = force_nonfallthru (fall_thru);
1435
1436 if (new_bb)
1437 {
370369e1
JH
1438 new_bb->aux = cur_bb->aux;
1439 cur_bb->aux = new_bb;
750054a2
CT
1440
1441 /* Make sure new fall-through bb is in same
1442 partition as bb it's falling through from. */
076c7ab8
ZW
1443
1444 BB_COPY_PARTITION (new_bb, cur_bb);
c5cbcccf 1445 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
750054a2
CT
1446 }
1447
1448 /* Add barrier after new jump */
1449
1450 if (new_bb)
1451 {
1452 barrier = emit_barrier_after (BB_END (new_bb));
370369e1 1453 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
750054a2
CT
1454 barrier);
1455 }
1456 else
1457 {
1458 barrier = emit_barrier_after (BB_END (cur_bb));
370369e1 1459 cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
750054a2
CT
1460 barrier);
1461 }
1462 }
1463 }
1464 }
1465 }
1466}
1467
1468/* This function checks the destination blockof a "crossing jump" to
1469 see if it has any crossing predecessors that begin with a code label
1470 and end with an unconditional jump. If so, it returns that predecessor
1471 block. (This is to avoid creating lots of new basic blocks that all
1472 contain unconditional jumps to the same destination). */
1473
1474static basic_block
1475find_jump_block (basic_block jump_dest)
1476{
1477 basic_block source_bb = NULL;
1478 edge e;
1479 rtx insn;
628f6a4e 1480 edge_iterator ei;
750054a2 1481
628f6a4e 1482 FOR_EACH_EDGE (e, ei, jump_dest->preds)
bd454efd 1483 if (e->flags & EDGE_CROSSING)
750054a2
CT
1484 {
1485 basic_block src = e->src;
1486
1487 /* Check each predecessor to see if it has a label, and contains
1488 only one executable instruction, which is an unconditional jump.
9cf737f8 1489 If so, we can use it. */
750054a2 1490
4b4bf941 1491 if (LABEL_P (BB_HEAD (src)))
750054a2
CT
1492 for (insn = BB_HEAD (src);
1493 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1494 insn = NEXT_INSN (insn))
1495 {
1496 if (INSN_P (insn)
1497 && insn == BB_END (src)
4b4bf941 1498 && JUMP_P (insn)
750054a2
CT
1499 && !any_condjump_p (insn))
1500 {
1501 source_bb = src;
1502 break;
1503 }
1504 }
1505
1506 if (source_bb)
1507 break;
1508 }
1509
1510 return source_bb;
1511}
1512
1513/* Find all BB's with conditional jumps that are crossing edges;
1514 insert a new bb and make the conditional jump branch to the new
1515 bb instead (make the new bb same color so conditional branch won't
1516 be a 'crossing' edge). Insert an unconditional jump from the
1517 new bb to the original destination of the conditional jump. */
1518
1519static void
1520fix_crossing_conditional_branches (void)
1521{
1522 basic_block cur_bb;
1523 basic_block new_bb;
1524 basic_block last_bb;
1525 basic_block dest;
1526 basic_block prev_bb;
1527 edge succ1;
1528 edge succ2;
1529 edge crossing_edge;
1530 edge new_edge;
1531 rtx old_jump;
1532 rtx set_src;
1533 rtx old_label = NULL_RTX;
1534 rtx new_label;
1535 rtx new_jump;
1536 rtx barrier;
1537
1538 last_bb = EXIT_BLOCK_PTR->prev_bb;
1539
1540 FOR_EACH_BB (cur_bb)
1541 {
1542 crossing_edge = NULL;
628f6a4e
BE
1543 if (EDGE_COUNT (cur_bb->succs) > 0)
1544 succ1 = EDGE_SUCC (cur_bb, 0);
1545 else
1546 succ1 = NULL;
1547
1548 if (EDGE_COUNT (cur_bb->succs) > 1)
1549 succ2 = EDGE_SUCC (cur_bb, 1);
750054a2 1550 else
628f6a4e 1551 succ2 = NULL;
750054a2
CT
1552
1553 /* We already took care of fall-through edges, so only one successor
1554 can be a crossing edge. */
1555
bd454efd 1556 if (succ1 && (succ1->flags & EDGE_CROSSING))
750054a2 1557 crossing_edge = succ1;
bd454efd 1558 else if (succ2 && (succ2->flags & EDGE_CROSSING))
750054a2
CT
1559 crossing_edge = succ2;
1560
1561 if (crossing_edge)
1562 {
1563 old_jump = BB_END (cur_bb);
1564
1565 /* Check to make sure the jump instruction is a
1566 conditional jump. */
1567
1568 set_src = NULL_RTX;
1569
1570 if (any_condjump_p (old_jump))
1571 {
1572 if (GET_CODE (PATTERN (old_jump)) == SET)
1573 set_src = SET_SRC (PATTERN (old_jump));
1574 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1575 {
1576 set_src = XVECEXP (PATTERN (old_jump), 0,0);
1577 if (GET_CODE (set_src) == SET)
1578 set_src = SET_SRC (set_src);
1579 else
1580 set_src = NULL_RTX;
1581 }
1582 }
1583
1584 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1585 {
1586 if (GET_CODE (XEXP (set_src, 1)) == PC)
1587 old_label = XEXP (set_src, 2);
1588 else if (GET_CODE (XEXP (set_src, 2)) == PC)
1589 old_label = XEXP (set_src, 1);
1590
1591 /* Check to see if new bb for jumping to that dest has
1592 already been created; if so, use it; if not, create
1593 a new one. */
1594
1595 new_bb = find_jump_block (crossing_edge->dest);
1596
1597 if (new_bb)
1598 new_label = block_label (new_bb);
1599 else
1600 {
1601 /* Create new basic block to be dest for
1602 conditional jump. */
1603
1604 new_bb = create_basic_block (NULL, NULL, last_bb);
370369e1
JH
1605 new_bb->aux = last_bb->aux;
1606 last_bb->aux = new_bb;
750054a2
CT
1607 prev_bb = last_bb;
1608 last_bb = new_bb;
1609
1610 /* Update register liveness information. */
1611
5e2d947c
JH
1612 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1613 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1614 COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
1615 prev_bb->il.rtl->global_live_at_end);
1616 COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
1617 prev_bb->il.rtl->global_live_at_end);
750054a2
CT
1618
1619 /* Put appropriate instructions in new bb. */
1620
1621 new_label = gen_label_rtx ();
1622 emit_label_before (new_label, BB_HEAD (new_bb));
1623 BB_HEAD (new_bb) = new_label;
1624
1625 if (GET_CODE (old_label) == LABEL_REF)
1626 {
1627 old_label = JUMP_LABEL (old_jump);
1628 new_jump = emit_jump_insn_after (gen_jump
1629 (old_label),
1630 BB_END (new_bb));
1631 }
750054a2 1632 else
298e6adc
NS
1633 {
1634 gcc_assert (HAVE_return
1635 && GET_CODE (old_label) == RETURN);
1636 new_jump = emit_jump_insn_after (gen_return (),
1637 BB_END (new_bb));
1638 }
750054a2
CT
1639
1640 barrier = emit_barrier_after (new_jump);
1641 JUMP_LABEL (new_jump) = old_label;
370369e1 1642 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
750054a2
CT
1643 barrier);
1644
1645 /* Make sure new bb is in same partition as source
1646 of conditional branch. */
076c7ab8 1647 BB_COPY_PARTITION (new_bb, cur_bb);
750054a2
CT
1648 }
1649
1650 /* Make old jump branch to new bb. */
1651
1652 redirect_jump (old_jump, new_label, 0);
1653
1654 /* Remove crossing_edge as predecessor of 'dest'. */
1655
1656 dest = crossing_edge->dest;
1657
1658 redirect_edge_succ (crossing_edge, new_bb);
1659
1660 /* Make a new edge from new_bb to old dest; new edge
1661 will be a successor for new_bb and a predecessor
1662 for 'dest'. */
1663
628f6a4e 1664 if (EDGE_COUNT (new_bb->succs) == 0)
750054a2
CT
1665 new_edge = make_edge (new_bb, dest, 0);
1666 else
628f6a4e 1667 new_edge = EDGE_SUCC (new_bb, 0);
750054a2 1668
bd454efd
SB
1669 crossing_edge->flags &= ~EDGE_CROSSING;
1670 new_edge->flags |= EDGE_CROSSING;
750054a2
CT
1671 }
1672 }
1673 }
1674}
1675
1676/* Find any unconditional branches that cross between hot and cold
1677 sections. Convert them into indirect jumps instead. */
1678
1679static void
1680fix_crossing_unconditional_branches (void)
1681{
1682 basic_block cur_bb;
1683 rtx last_insn;
1684 rtx label;
1685 rtx label_addr;
1686 rtx indirect_jump_sequence;
1687 rtx jump_insn = NULL_RTX;
1688 rtx new_reg;
1689 rtx cur_insn;
1690 edge succ;
9fb32434 1691
750054a2
CT
1692 FOR_EACH_BB (cur_bb)
1693 {
1694 last_insn = BB_END (cur_bb);
87c8b4be
CT
1695
1696 if (EDGE_COUNT (cur_bb->succs) < 1)
1697 continue;
1698
628f6a4e 1699 succ = EDGE_SUCC (cur_bb, 0);
750054a2
CT
1700
1701 /* Check to see if bb ends in a crossing (unconditional) jump. At
1702 this point, no crossing jumps should be conditional. */
1703
4b4bf941 1704 if (JUMP_P (last_insn)
bd454efd 1705 && (succ->flags & EDGE_CROSSING))
750054a2
CT
1706 {
1707 rtx label2, table;
1708
298e6adc 1709 gcc_assert (!any_condjump_p (last_insn));
750054a2
CT
1710
1711 /* Make sure the jump is not already an indirect or table jump. */
1712
298e6adc
NS
1713 if (!computed_jump_p (last_insn)
1714 && !tablejump_p (last_insn, &label2, &table))
750054a2
CT
1715 {
1716 /* We have found a "crossing" unconditional branch. Now
1717 we must convert it to an indirect jump. First create
1718 reference of label, as target for jump. */
1719
1720 label = JUMP_LABEL (last_insn);
b50b729d 1721 label_addr = gen_rtx_LABEL_REF (Pmode, label);
750054a2
CT
1722 LABEL_NUSES (label) += 1;
1723
1724 /* Get a register to use for the indirect jump. */
1725
1726 new_reg = gen_reg_rtx (Pmode);
1727
1728 /* Generate indirect the jump sequence. */
1729
1730 start_sequence ();
1731 emit_move_insn (new_reg, label_addr);
1732 emit_indirect_jump (new_reg);
1733 indirect_jump_sequence = get_insns ();
1734 end_sequence ();
1735
1736 /* Make sure every instruction in the new jump sequence has
1737 its basic block set to be cur_bb. */
1738
1739 for (cur_insn = indirect_jump_sequence; cur_insn;
1740 cur_insn = NEXT_INSN (cur_insn))
1741 {
0e714a54
EB
1742 if (!BARRIER_P (cur_insn))
1743 BLOCK_FOR_INSN (cur_insn) = cur_bb;
4b4bf941 1744 if (JUMP_P (cur_insn))
750054a2
CT
1745 jump_insn = cur_insn;
1746 }
1747
1748 /* Insert the new (indirect) jump sequence immediately before
1749 the unconditional jump, then delete the unconditional jump. */
1750
1751 emit_insn_before (indirect_jump_sequence, last_insn);
1752 delete_insn (last_insn);
1753
1754 /* Make BB_END for cur_bb be the jump instruction (NOT the
1755 barrier instruction at the end of the sequence...). */
1756
1757 BB_END (cur_bb) = jump_insn;
1758 }
1759 }
1760 }
1761}
1762
1763/* Add REG_CROSSING_JUMP note to all crossing jump insns. */
1764
1765static void
1766add_reg_crossing_jump_notes (void)
1767{
1768 basic_block bb;
1769 edge e;
628f6a4e 1770 edge_iterator ei;
750054a2
CT
1771
1772 FOR_EACH_BB (bb)
628f6a4e 1773 FOR_EACH_EDGE (e, ei, bb->succs)
bd454efd 1774 if ((e->flags & EDGE_CROSSING)
4b4bf941 1775 && JUMP_P (BB_END (e->src)))
750054a2
CT
1776 REG_NOTES (BB_END (e->src)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1777 NULL_RTX,
1778 REG_NOTES (BB_END
1779 (e->src)));
1780}
1781
830113fd 1782/* Hot and cold basic blocks are partitioned and put in separate
87c8b4be
CT
1783 sections of the .o file, to reduce paging and improve cache
1784 performance (hopefully). This can result in bits of code from the
1785 same function being widely separated in the .o file. However this
1786 is not obvious to the current bb structure. Therefore we must take
1787 care to ensure that: 1). There are no fall_thru edges that cross
1788 between sections; 2). For those architectures which have "short"
1789 conditional branches, all conditional branches that attempt to
1790 cross between sections are converted to unconditional branches;
1791 and, 3). For those architectures which have "short" unconditional
1792 branches, all unconditional branches that attempt to cross between
1793 sections are converted to indirect jumps.
1794
750054a2
CT
1795 The code for fixing up fall_thru edges that cross between hot and
1796 cold basic blocks does so by creating new basic blocks containing
1797 unconditional branches to the appropriate label in the "other"
1798 section. The new basic block is then put in the same (hot or cold)
1799 section as the original conditional branch, and the fall_thru edge
1800 is modified to fall into the new basic block instead. By adding
1801 this level of indirection we end up with only unconditional branches
1802 crossing between hot and cold sections.
1803
1804 Conditional branches are dealt with by adding a level of indirection.
1805 A new basic block is added in the same (hot/cold) section as the
1806 conditional branch, and the conditional branch is retargeted to the
1807 new basic block. The new basic block contains an unconditional branch
1808 to the original target of the conditional branch (in the other section).
1809
1810 Unconditional branches are dealt with by converting them into
1811 indirect jumps. */
1812
1813static void
1814fix_edges_for_rarely_executed_code (edge *crossing_edges,
1815 int n_crossing_edges)
1816{
1817 /* Make sure the source of any crossing edge ends in a jump and the
1818 destination of any crossing edge has a label. */
1819
1820 add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
1821
1822 /* Convert all crossing fall_thru edges to non-crossing fall
1823 thrus to unconditional jumps (that jump to the original fall
1824 thru dest). */
1825
1826 fix_up_fall_thru_edges ();
1827
c7466dee
CT
1828 /* If the architecture does not have conditional branches that can
1829 span all of memory, convert crossing conditional branches into
1830 crossing unconditional branches. */
750054a2 1831
c7466dee
CT
1832 if (!HAS_LONG_COND_BRANCH)
1833 fix_crossing_conditional_branches ();
e5e625da 1834
c7466dee
CT
1835 /* If the architecture does not have unconditional branches that
1836 can span all of memory, convert crossing unconditional branches
1837 into indirect jumps. Since adding an indirect jump also adds
1838 a new register usage, update the register usage information as
1839 well. */
1840
1841 if (!HAS_LONG_UNCOND_BRANCH)
1842 {
1843 fix_crossing_unconditional_branches ();
1844 reg_scan (get_insns(), max_reg_num ());
9fb32434 1845 }
c7466dee
CT
1846
1847 add_reg_crossing_jump_notes ();
750054a2
CT
1848}
1849
87c8b4be
CT
1850/* Verify, in the basic block chain, that there is at most one switch
1851 between hot/cold partitions. This is modelled on
1852 rtl_verify_flow_info_1, but it cannot go inside that function
1853 because this condition will not be true until after
1854 reorder_basic_blocks is called. */
1855
1856static void
1857verify_hot_cold_block_grouping (void)
1858{
1859 basic_block bb;
1860 int err = 0;
1861 bool switched_sections = false;
1862 int current_partition = 0;
1863
1864 FOR_EACH_BB (bb)
1865 {
1866 if (!current_partition)
1867 current_partition = BB_PARTITION (bb);
1868 if (BB_PARTITION (bb) != current_partition)
1869 {
1870 if (switched_sections)
1871 {
ab532386 1872 error ("multiple hot/cold transitions found (bb %i)",
87c8b4be
CT
1873 bb->index);
1874 err = 1;
1875 }
1876 else
1877 {
1878 switched_sections = true;
1879 current_partition = BB_PARTITION (bb);
1880 }
1881 }
1882 }
1883
1ad435a5 1884 gcc_assert(!err);
87c8b4be
CT
1885}
1886
35b6b437
RS
1887/* Reorder basic blocks. The main entry point to this file. FLAGS is
1888 the set of flags to pass to cfg_layout_initialize(). */
295ae817
JE
1889
1890void
35b6b437 1891reorder_basic_blocks (unsigned int flags)
295ae817 1892{
aa634f11
JZ
1893 int n_traces;
1894 int i;
1895 struct trace *traces;
1896
24bd1a0b 1897 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
295ae817
JE
1898 return;
1899
245f1bfa 1900 if (targetm.cannot_modify_jumps_p ())
e4ec2cac
AO
1901 return;
1902
35b6b437 1903 cfg_layout_initialize (flags);
74490e05 1904
aa634f11
JZ
1905 set_edge_can_fallthru_flag ();
1906 mark_dfs_back_edges ();
1907
e0bb17a8
KH
1908 /* We are estimating the length of uncond jump insn only once since the code
1909 for getting the insn length always returns the minimal length now. */
4682ae04 1910 if (uncond_jump_length == 0)
aa634f11
JZ
1911 uncond_jump_length = get_uncond_jump_length ();
1912
1913 /* We need to know some information for each basic block. */
1914 array_size = GET_ARRAY_SIZE (last_basic_block);
5ed6ace5 1915 bbd = XNEWVEC (bbro_basic_block_data, array_size);
aa634f11
JZ
1916 for (i = 0; i < array_size; i++)
1917 {
1918 bbd[i].start_of_trace = -1;
87c8b4be 1919 bbd[i].in_trace = -1;
aa634f11
JZ
1920 bbd[i].end_of_trace = -1;
1921 bbd[i].heap = NULL;
1922 bbd[i].node = NULL;
1923 }
1924
5ed6ace5 1925 traces = XNEWVEC (struct trace, n_basic_blocks);
aa634f11
JZ
1926 n_traces = 0;
1927 find_traces (&n_traces, traces);
1928 connect_traces (n_traces, traces);
1929 FREE (traces);
1930 FREE (bbd);
402209ff 1931
c263766c
RH
1932 if (dump_file)
1933 dump_flow_info (dump_file);
402209ff 1934
d56a8211 1935 cfg_layout_finalize ();
c7466dee
CT
1936 if (flag_reorder_blocks_and_partition)
1937 verify_hot_cold_block_grouping ();
295ae817 1938}
bbcb0c05 1939
87c8b4be
CT
1940/* Determine which partition the first basic block in the function
1941 belongs to, then find the first basic block in the current function
1942 that belongs to a different section, and insert a
1943 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1944 instruction stream. When writing out the assembly code,
1945 encountering this note will make the compiler switch between the
1946 hot and cold text sections. */
1947
43f237b4 1948static void
87c8b4be
CT
1949insert_section_boundary_note (void)
1950{
1951 basic_block bb;
1952 rtx new_note;
1953 int first_partition = 0;
1954
c7466dee 1955 if (flag_reorder_blocks_and_partition)
87c8b4be
CT
1956 FOR_EACH_BB (bb)
1957 {
1958 if (!first_partition)
1959 first_partition = BB_PARTITION (bb);
1960 if (BB_PARTITION (bb) != first_partition)
1961 {
1962 new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1963 BB_HEAD (bb));
1964 break;
1965 }
1966 }
1967}
1968
bbcb0c05
SB
1969/* Duplicate the blocks containing computed gotos. This basically unfactors
1970 computed gotos that were factored early on in the compilation process to
1971 speed up edge based data flow. We used to not unfactoring them again,
1972 which can seriously pessimize code with many computed jumps in the source
1973 code, such as interpreters. See e.g. PR15242. */
1974
ef330312
PB
1975static bool
1976gate_duplicate_computed_gotos (void)
1977{
1978 return (optimize > 0 && flag_expensive_optimizations && !optimize_size);
1979}
1980
1981
1982static void
bbcb0c05
SB
1983duplicate_computed_gotos (void)
1984{
1985 basic_block bb, new_bb;
1986 bitmap candidates;
1987 int max_size;
1988
24bd1a0b 1989 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
bbcb0c05
SB
1990 return;
1991
1992 if (targetm.cannot_modify_jumps_p ())
1993 return;
1994
bbcb0c05
SB
1995 cfg_layout_initialize (0);
1996
1997 /* We are estimating the length of uncond jump insn only once
1998 since the code for getting the insn length always returns
1999 the minimal length now. */
2000 if (uncond_jump_length == 0)
2001 uncond_jump_length = get_uncond_jump_length ();
2002
2003 max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
8bdbfff5 2004 candidates = BITMAP_ALLOC (NULL);
bbcb0c05 2005
00b28cb0
SB
2006 /* Look for blocks that end in a computed jump, and see if such blocks
2007 are suitable for unfactoring. If a block is a candidate for unfactoring,
2008 mark it in the candidates. */
bbcb0c05
SB
2009 FOR_EACH_BB (bb)
2010 {
00b28cb0
SB
2011 rtx insn;
2012 edge e;
2013 edge_iterator ei;
2014 int size, all_flags;
2015
2016 /* Build the reorder chain for the original order of blocks. */
bbcb0c05 2017 if (bb->next_bb != EXIT_BLOCK_PTR)
370369e1 2018 bb->aux = bb->next_bb;
bbcb0c05 2019
00b28cb0
SB
2020 /* Obviously the block has to end in a computed jump. */
2021 if (!computed_jump_p (BB_END (bb)))
2022 continue;
bbcb0c05 2023
00b28cb0
SB
2024 /* Only consider blocks that can be duplicated. */
2025 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2026 || !can_duplicate_block_p (bb))
2027 continue;
bbcb0c05 2028
00b28cb0
SB
2029 /* Make sure that the block is small enough. */
2030 size = 0;
2031 FOR_BB_INSNS (bb, insn)
2032 if (INSN_P (insn))
2033 {
070a7956 2034 size += get_attr_min_length (insn);
00b28cb0
SB
2035 if (size > max_size)
2036 break;
2037 }
2038 if (size > max_size)
2039 continue;
2040
2041 /* Final check: there must not be any incoming abnormal edges. */
2042 all_flags = 0;
2043 FOR_EACH_EDGE (e, ei, bb->preds)
2044 all_flags |= e->flags;
2045 if (all_flags & EDGE_COMPLEX)
2046 continue;
2047
2048 bitmap_set_bit (candidates, bb->index);
bbcb0c05
SB
2049 }
2050
2051 /* Nothing to do if there is no computed jump here. */
2052 if (bitmap_empty_p (candidates))
2053 goto done;
2054
2055 /* Duplicate computed gotos. */
2056 FOR_EACH_BB (bb)
2057 {
370369e1 2058 if (bb->il.rtl->visited)
bbcb0c05
SB
2059 continue;
2060
370369e1 2061 bb->il.rtl->visited = 1;
bbcb0c05
SB
2062
2063 /* BB must have one outgoing edge. That edge must not lead to
2064 the exit block or the next block.
2065 The destination must have more than one predecessor. */
c5cbcccf
ZD
2066 if (!single_succ_p (bb)
2067 || single_succ (bb) == EXIT_BLOCK_PTR
2068 || single_succ (bb) == bb->next_bb
2069 || single_pred_p (single_succ (bb)))
bbcb0c05
SB
2070 continue;
2071
2072 /* The successor block has to be a duplication candidate. */
c5cbcccf 2073 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
bbcb0c05
SB
2074 continue;
2075
b9a66240 2076 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
370369e1
JH
2077 new_bb->aux = bb->aux;
2078 bb->aux = new_bb;
2079 new_bb->il.rtl->visited = 1;
bbcb0c05
SB
2080 }
2081
2082done:
2083 cfg_layout_finalize ();
2084
8bdbfff5 2085 BITMAP_FREE (candidates);
bbcb0c05 2086}
750054a2 2087
ef330312
PB
2088struct tree_opt_pass pass_duplicate_computed_gotos =
2089{
defb77dc 2090 "compgotos", /* name */
ef330312
PB
2091 gate_duplicate_computed_gotos, /* gate */
2092 duplicate_computed_gotos, /* execute */
2093 NULL, /* sub */
2094 NULL, /* next */
2095 0, /* static_pass_number */
2096 TV_REORDER_BLOCKS, /* tv_id */
2097 0, /* properties_required */
2098 0, /* properties_provided */
2099 0, /* properties_destroyed */
2100 0, /* todo_flags_start */
defb77dc 2101 TODO_dump_func, /* todo_flags_finish */
ef330312
PB
2102 0 /* letter */
2103};
2104
2105
750054a2
CT
2106/* This function is the main 'entrance' for the optimization that
2107 partitions hot and cold basic blocks into separate sections of the
2108 .o file (to improve performance and cache locality). Ideally it
2109 would be called after all optimizations that rearrange the CFG have
2110 been called. However part of this optimization may introduce new
2111 register usage, so it must be called before register allocation has
2112 occurred. This means that this optimization is actually called
8e8d5162
CT
2113 well before the optimization that reorders basic blocks (see
2114 function above).
750054a2
CT
2115
2116 This optimization checks the feedback information to determine
87c8b4be
CT
2117 which basic blocks are hot/cold, updates flags on the basic blocks
2118 to indicate which section they belong in. This information is
2119 later used for writing out sections in the .o file. Because hot
2120 and cold sections can be arbitrarily large (within the bounds of
2121 memory), far beyond the size of a single function, it is necessary
2122 to fix up all edges that cross section boundaries, to make sure the
2123 instructions used can actually span the required distance. The
2124 fixes are described below.
8e8d5162
CT
2125
2126 Fall-through edges must be changed into jumps; it is not safe or
2127 legal to fall through across a section boundary. Whenever a
2128 fall-through edge crossing a section boundary is encountered, a new
2129 basic block is inserted (in the same section as the fall-through
2130 source), and the fall through edge is redirected to the new basic
2131 block. The new basic block contains an unconditional jump to the
2132 original fall-through target. (If the unconditional jump is
2133 insufficient to cross section boundaries, that is dealt with a
2134 little later, see below).
2135
2136 In order to deal with architectures that have short conditional
2137 branches (which cannot span all of memory) we take any conditional
2138 jump that attempts to cross a section boundary and add a level of
2139 indirection: it becomes a conditional jump to a new basic block, in
2140 the same section. The new basic block contains an unconditional
2141 jump to the original target, in the other section.
2142
2143 For those architectures whose unconditional branch is also
2144 incapable of reaching all of memory, those unconditional jumps are
2145 converted into indirect jumps, through a register.
2146
2147 IMPORTANT NOTE: This optimization causes some messy interactions
2148 with the cfg cleanup optimizations; those optimizations want to
2149 merge blocks wherever possible, and to collapse indirect jump
2150 sequences (change "A jumps to B jumps to C" directly into "A jumps
2151 to C"). Those optimizations can undo the jump fixes that
2152 partitioning is required to make (see above), in order to ensure
2153 that jumps attempting to cross section boundaries are really able
2154 to cover whatever distance the jump requires (on many architectures
2155 conditional or unconditional jumps are not able to reach all of
2156 memory). Therefore tests have to be inserted into each such
2157 optimization to make sure that it does not undo stuff necessary to
2158 cross partition boundaries. This would be much less of a problem
2159 if we could perform this optimization later in the compilation, but
2160 unfortunately the fact that we may need to create indirect jumps
2161 (through registers) requires that this optimization be performed
2162 before register allocation. */
750054a2 2163
081c6ba6 2164static void
750054a2
CT
2165partition_hot_cold_basic_blocks (void)
2166{
2167 basic_block cur_bb;
2168 edge *crossing_edges;
2169 int n_crossing_edges;
2170 int max_edges = 2 * last_basic_block;
2171
24bd1a0b 2172 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
750054a2
CT
2173 return;
2174
5ed6ace5 2175 crossing_edges = XCNEWVEC (edge, max_edges);
750054a2 2176
35b6b437 2177 cfg_layout_initialize (0);
750054a2
CT
2178
2179 FOR_EACH_BB (cur_bb)
24bd1a0b
DB
2180 if (cur_bb->index >= NUM_FIXED_BLOCKS
2181 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
370369e1 2182 cur_bb->aux = cur_bb->next_bb;
750054a2
CT
2183
2184 find_rarely_executed_basic_blocks_and_crossing_edges (crossing_edges,
2185 &n_crossing_edges,
2186 &max_edges);
2187
2188 if (n_crossing_edges > 0)
2189 fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
2190
2191 free (crossing_edges);
2192
2193 cfg_layout_finalize();
2194}
ef330312
PB
2195\f
2196static bool
2197gate_handle_reorder_blocks (void)
2198{
2199 return (optimize > 0);
2200}
2201
2202
2203/* Reorder basic blocks. */
2204static void
2205rest_of_handle_reorder_blocks (void)
2206{
2207 bool changed;
2208 unsigned int liveness_flags;
2209
2210 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2211 splitting possibly introduced more crossjumping opportunities. */
2212 liveness_flags = (!HAVE_conditional_execution ? CLEANUP_UPDATE_LIFE : 0);
2213 changed = cleanup_cfg (CLEANUP_EXPENSIVE | liveness_flags);
2214
2215 if (flag_sched2_use_traces && flag_schedule_insns_after_reload)
2216 {
2217 timevar_push (TV_TRACER);
2218 tracer (liveness_flags);
2219 timevar_pop (TV_TRACER);
2220 }
2221
2222 if (flag_reorder_blocks || flag_reorder_blocks_and_partition)
2223 reorder_basic_blocks (liveness_flags);
2224 if (flag_reorder_blocks || flag_reorder_blocks_and_partition
2225 || (flag_sched2_use_traces && flag_schedule_insns_after_reload))
2226 changed |= cleanup_cfg (CLEANUP_EXPENSIVE | liveness_flags);
2227
2228 /* On conditional execution targets we can not update the life cheaply, so
2229 we deffer the updating to after both cleanups. This may lose some cases
2230 but should not be terribly bad. */
2231 if (changed && HAVE_conditional_execution)
2232 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
2233 PROP_DEATH_NOTES);
43f237b4
EB
2234
2235 /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
2236 insert_section_boundary_note ();
ef330312
PB
2237}
2238
2239struct tree_opt_pass pass_reorder_blocks =
2240{
2241 "bbro", /* name */
2242 gate_handle_reorder_blocks, /* gate */
2243 rest_of_handle_reorder_blocks, /* execute */
2244 NULL, /* sub */
2245 NULL, /* next */
2246 0, /* static_pass_number */
2247 TV_REORDER_BLOCKS, /* tv_id */
2248 0, /* properties_required */
2249 0, /* properties_provided */
2250 0, /* properties_destroyed */
2251 0, /* todo_flags_start */
2252 TODO_dump_func, /* todo_flags_finish */
2253 'B' /* letter */
2254};
2255
2256static bool
2257gate_handle_partition_blocks (void)
2258{
2259 /* The optimization to partition hot/cold basic blocks into separate
2260 sections of the .o file does not work well with linkonce or with
2261 user defined section attributes. Don't call it if either case
2262 arises. */
2263
2264 return (flag_reorder_blocks_and_partition
2265 && !DECL_ONE_ONLY (current_function_decl)
2266 && !user_defined_section_attribute);
2267}
2268
2269/* Partition hot and cold basic blocks. */
2270static void
2271rest_of_handle_partition_blocks (void)
2272{
2273 no_new_pseudos = 0;
2274 partition_hot_cold_basic_blocks ();
2275 allocate_reg_life_data ();
2276 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
2277 PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
2278 no_new_pseudos = 1;
2279}
2280
2281struct tree_opt_pass pass_partition_blocks =
2282{
defb77dc 2283 "bbpart", /* name */
ef330312
PB
2284 gate_handle_partition_blocks, /* gate */
2285 rest_of_handle_partition_blocks, /* execute */
2286 NULL, /* sub */
2287 NULL, /* next */
2288 0, /* static_pass_number */
2289 TV_REORDER_BLOCKS, /* tv_id */
2290 0, /* properties_required */
2291 0, /* properties_provided */
2292 0, /* properties_destroyed */
2293 0, /* todo_flags_start */
defb77dc 2294 TODO_dump_func, /* todo_flags_finish */
ef330312
PB
2295 0 /* letter */
2296};
2297
2298