]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/bitmap.h
hashtable_policy.h (__details::_Before_begin<>): New, combine a base node instance...
[thirdparty/gcc.git] / gcc / bitmap.h
CommitLineData
096ab9ea 1/* Functions to support general ended bitmaps.
0263463d 2 Copyright (C) 1997-2012 Free Software Foundation, Inc.
096ab9ea 3
1322177d 4This file is part of GCC.
096ab9ea 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
096ab9ea 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
096ab9ea
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
096ab9ea 19
88657302 20#ifndef GCC_BITMAP_H
ca7fd9cd 21#define GCC_BITMAP_H
0263463d
SB
22
23/* Implementation of sparse integer sets as a linked list.
24
25 This sparse set representation is suitable for sparse sets with an
26 unknown (a priori) universe. The set is represented as a double-linked
27 list of container nodes (struct bitmap_element_def). Each node consists
28 of an index for the first member that could be held in the container,
29 a small array of integers that represent the members in the container,
30 and pointers to the next and previous element in the linked list. The
31 elements in the list are sorted in ascending order, i.e. the head of
32 the list holds the element with the smallest member of the set.
33
34 For a given member I in the set:
35 - the element for I will have index is I / (bits per element)
36 - the position for I within element is I % (bits per element)
37
38 This representation is very space-efficient for large sparse sets, and
39 the size of the set can be changed dynamically without much overhead.
40 An important parameter is the number of bits per element. In this
41 implementation, there are 128 bits per element. This results in a
42 high storage overhead *per element*, but a small overall overhead if
43 the set is very sparse.
44
45 The downside is that many operations are relatively slow because the
46 linked list has to be traversed to test membership (i.e. member_p/
47 add_member/remove_member). To improve the performance of this set
48 representation, the last accessed element and its index are cached.
49 For membership tests on members close to recently accessed members,
50 the cached last element improves membership test to a constant-time
51 operation.
52
53 The following operations can always be performed in O(1) time:
54
55 * clear : bitmap_clear
56 * choose_one : (not implemented, but could be
57 implemented in constant time)
58
59 The following operations can be performed in O(E) time worst-case (with
60 E the number of elements in the linked list), but in O(1) time with a
61 suitable access patterns:
62
63 * member_p : bitmap_bit_p
64 * add_member : bitmap_set_bit
65 * remove_member : bitmap_clear_bit
66
67 The following operations can be performed in O(E) time:
68
69 * cardinality : bitmap_count_bits
70 * set_size : bitmap_last_set_bit (but this could
71 in constant time with a pointer to
72 the last element in the chain)
73
74 Additionally, the linked-list sparse set representation supports
75 enumeration of the members in O(E) time:
76
77 * forall : EXECUTE_IF_SET_IN_BITMAP
78 * set_copy : bitmap_copy
79 * set_intersection : bitmap_intersect_p /
80 bitmap_and / bitmap_and_into /
81 EXECUTE_IF_AND_IN_BITMAP
82 * set_union : bitmap_ior / bitmap_ior_into
83 * set_difference : bitmap_intersect_compl_p /
84 bitmap_and_comp / bitmap_and_comp_into /
85 EXECUTE_IF_AND_COMPL_IN_BITMAP
86 * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
87 * set_compare : bitmap_equal_p
88
89 Some operations on 3 sets that occur frequently in in data flow problems
90 are also implemented:
91
92 * A | (B & C) : bitmap_ior_and_into
93 * A | (B & ~C) : bitmap_ior_and_compl /
94 bitmap_ior_and_compl_into
95
96 The storage requirements for linked-list sparse sets are O(E), with E->N
97 in the worst case (a sparse set with large distances between the values
98 of the set members).
99
100 The linked-list set representation works well for problems involving very
101 sparse sets. The canonical example in GCC is, of course, the "set of
102 sets" for some CFG-based data flow problems (liveness analysis, dominance
103 frontiers, etc.).
104
105 This representation also works well for data flow problems where the size
106 of the set may grow dynamically, but care must be taken that the member_p,
107 add_member, and remove_member operations occur with a suitable access
108 pattern.
109
110 For random-access sets with a known, relatively small universe size, the
111 SparseSet or simple bitmap representations may be more efficient than a
112 linked-list set. For random-access sets of unknown universe, a hash table
113 or a balanced binary tree representation is likely to be a more suitable
114 choice.
115
116 Traversing linked lists is usually cache-unfriendly, even with the last
117 accessed element cached.
118
119 Cache performance can be improved by keeping the elements in the set
120 grouped together in memory, using a dedicated obstack for a set (or group
121 of related sets). Elements allocated on obstacks are released to a
122 free-list and taken off the free list. If multiple sets are allocated on
123 the same obstack, elements freed from one set may be re-used for one of
124 the other sets. This usually helps avoid cache misses.
125
126 A single free-list is used for all sets allocated in GGC space. This is
127 bad for persistent sets, so persistent sets should be allocated on an
128 obstack whenever possible. */
129
1af4bba8 130#include "hashtab.h"
f75709c6 131#include "statistics.h"
b60db1ba 132#include "obstack.h"
a05924f9 133
72e42e26
SB
134/* Fundamental storage type for bitmap. */
135
72e42e26 136typedef unsigned long BITMAP_WORD;
65a6f342
NS
137/* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
138 it is used in preprocessor directives -- hence the 1u. */
139#define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
72e42e26 140
096ab9ea
RK
141/* Number of words to use for each element in the linked list. */
142
143#ifndef BITMAP_ELEMENT_WORDS
65a6f342 144#define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
096ab9ea
RK
145#endif
146
65a6f342 147/* Number of bits in each actual element of a bitmap. */
096ab9ea 148
65a6f342 149#define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
096ab9ea 150
7932a3db 151/* Obstack for allocating bitmaps and elements from. */
d1b38208 152typedef struct GTY (()) bitmap_obstack {
7932a3db
NS
153 struct bitmap_element_def *elements;
154 struct bitmap_head_def *heads;
155 struct obstack GTY ((skip)) obstack;
156} bitmap_obstack;
157
096ab9ea
RK
158/* Bitmap set element. We use a linked list to hold only the bits that
159 are set. This allows for use to grow the bitset dynamically without
c22cacf3 160 having to realloc and copy a giant bit array.
5765e552
KZ
161
162 The free list is implemented as a list of lists. There is one
163 outer list connected together by prev fields. Each element of that
164 outer is an inner list (that may consist only of the outer list
165 element) that are connected by the next fields. The prev pointer
166 is undefined for interior elements. This allows
167 bitmap_elt_clear_from to be implemented in unit time rather than
168 linear in the number of elements to be freed. */
096ab9ea 169
7f3f8d3f
RG
170typedef struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element_def {
171 struct bitmap_element_def *next; /* Next element. */
172 struct bitmap_element_def *prev; /* Previous element. */
eebedaa5 173 unsigned int indx; /* regno/BITMAP_ELEMENT_ALL_BITS. */
72e42e26 174 BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set. */
096ab9ea
RK
175} bitmap_element;
176
f75709c6 177struct bitmap_descriptor;
01d419ae
ZW
178/* Head of bitmap linked list. gengtype ignores ifdefs, but for
179 statistics we need to add a bitmap descriptor pointer. As it is
7f3f8d3f
RG
180 not collected, we can just GTY((skip(""))) it. Likewise current
181 points to something already pointed to by the chain started by first,
182 no need to walk it again. */
01d419ae 183
d1b38208 184typedef struct GTY(()) bitmap_head_def {
7f3f8d3f
RG
185 bitmap_element *first; /* First element in linked list. */
186 bitmap_element * GTY((skip(""))) current; /* Last element looked at. */
187 unsigned int indx; /* Index of last element looked at. */
188 bitmap_obstack *obstack; /* Obstack to allocate elements from.
189 If NULL, then use GGC allocation. */
190 struct bitmap_descriptor GTY((skip(""))) *desc;
01d419ae 191} bitmap_head;
7932a3db 192
096ab9ea 193/* Global data */
ae0ed63a 194extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
7932a3db 195extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
096ab9ea
RK
196
197/* Clear a bitmap by freeing up the linked list. */
4682ae04 198extern void bitmap_clear (bitmap);
096ab9ea 199
eebedaa5 200/* Copy a bitmap to another bitmap. */
e326eeb5 201extern void bitmap_copy (bitmap, const_bitmap);
096ab9ea 202
8229306b 203/* True if two bitmaps are identical. */
e326eeb5 204extern bool bitmap_equal_p (const_bitmap, const_bitmap);
8229306b 205
55994078 206/* True if the bitmaps intersect (their AND is non-empty). */
e326eeb5 207extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
55994078
NS
208
209/* True if the complement of the second intersects the first (their
210 AND_COMPL is non-empty). */
e326eeb5 211extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
55994078
NS
212
213/* True if MAP is an empty bitmap. */
f61e445a
LC
214inline bool bitmap_empty_p (const_bitmap map)
215{
216 return !map->first;
217}
eb59b8de 218
76e910c6
RG
219/* True if the bitmap has only a single bit set. */
220extern bool bitmap_single_bit_set_p (const_bitmap);
221
1bc40c7e 222/* Count the number of bits set in the bitmap. */
e326eeb5 223extern unsigned long bitmap_count_bits (const_bitmap);
1bc40c7e 224
88c4f655
NS
225/* Boolean operations on bitmaps. The _into variants are two operand
226 versions that modify the first source operand. The other variants
227 are three operand versions that to not destroy the source bitmaps.
228 The operations supported are &, & ~, |, ^. */
e326eeb5 229extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
7b19209f 230extern bool bitmap_and_into (bitmap, const_bitmap);
e326eeb5
KG
231extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
232extern bool bitmap_and_compl_into (bitmap, const_bitmap);
1bc40c7e 233#define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
e326eeb5 234extern void bitmap_compl_and_into (bitmap, const_bitmap);
1bc40c7e 235extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
6fb5fa3c 236extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
e326eeb5
KG
237extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
238extern bool bitmap_ior_into (bitmap, const_bitmap);
239extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
240extern void bitmap_xor_into (bitmap, const_bitmap);
88c4f655 241
7ff23740
PB
242/* DST = A | (B & C). Return true if DST changes. */
243extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
88c4f655 244/* DST = A | (B & ~C). Return true if DST changes. */
0263463d
SB
245extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
246 const_bitmap B, const_bitmap C);
88c4f655 247/* A |= (B & ~C). Return true if A changes. */
0263463d
SB
248extern bool bitmap_ior_and_compl_into (bitmap A,
249 const_bitmap B, const_bitmap C);
096ab9ea 250
5f0d975b
RG
251/* Clear a single bit in a bitmap. Return true if the bit changed. */
252extern bool bitmap_clear_bit (bitmap, int);
096ab9ea 253
5f0d975b
RG
254/* Set a single bit in a bitmap. Return true if the bit changed. */
255extern bool bitmap_set_bit (bitmap, int);
096ab9ea
RK
256
257/* Return true if a register is set in a register set. */
4682ae04 258extern int bitmap_bit_p (bitmap, int);
096ab9ea
RK
259
260/* Debug functions to print a bitmap linked list. */
e326eeb5
KG
261extern void debug_bitmap (const_bitmap);
262extern void debug_bitmap_file (FILE *, const_bitmap);
096ab9ea 263
f9da5064 264/* Print a bitmap. */
e326eeb5 265extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
22fa5b8a 266
5765e552 267/* Initialize and release a bitmap obstack. */
7932a3db
NS
268extern void bitmap_obstack_initialize (bitmap_obstack *);
269extern void bitmap_obstack_release (bitmap_obstack *);
f75709c6
JH
270extern void bitmap_register (bitmap MEM_STAT_DECL);
271extern void dump_bitmap_statistics (void);
096ab9ea 272
7932a3db
NS
273/* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
274 to allocate from, NULL for GC'd bitmap. */
275
276static inline void
f75709c6 277bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
7932a3db
NS
278{
279 head->first = head->current = NULL;
280 head->obstack = obstack;
7aa6d18a
SB
281 if (GATHER_STATISTICS)
282 bitmap_register (head PASS_MEM_STAT);
7932a3db 283}
f75709c6 284#define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
7932a3db
NS
285
286/* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
f75709c6
JH
287extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
288#define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
289extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
290#define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
7932a3db 291extern void bitmap_obstack_free (bitmap);
096ab9ea 292
ea193996 293/* A few compatibility/functions macros for compatibility with sbitmaps */
f61e445a
LC
294inline void dump_bitmap (FILE *file, const_bitmap map)
295{
296 bitmap_print (file, map, "", "\n");
297}
298
e326eeb5 299extern unsigned bitmap_first_set_bit (const_bitmap);
12802c2b 300extern unsigned bitmap_last_set_bit (const_bitmap);
ea193996 301
1af4bba8 302/* Compute bitmap hash (for purposes of hashing etc.) */
e326eeb5 303extern hashval_t bitmap_hash(const_bitmap);
1af4bba8 304
7932a3db 305/* Allocate a bitmap from a bit obstack. */
cc175e7c 306#define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
e2500fed 307
7932a3db
NS
308/* Allocate a gc'd bitmap. */
309#define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
ca7fd9cd 310
096ab9ea 311/* Do any cleanup needed on a bitmap when it is no longer used. */
61ad0914
BE
312#define BITMAP_FREE(BITMAP) \
313 ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
e7749837 314
87c476a2 315/* Iterator for bitmaps. */
096ab9ea 316
87c476a2
ZD
317typedef struct
318{
e90ea8cb
NS
319 /* Pointer to the current bitmap element. */
320 bitmap_element *elt1;
c22cacf3 321
e90ea8cb
NS
322 /* Pointer to 2nd bitmap element when two are involved. */
323 bitmap_element *elt2;
324
325 /* Word within the current element. */
326 unsigned word_no;
c22cacf3 327
87c476a2
ZD
328 /* Contents of the actually processed word. When finding next bit
329 it is shifted right, so that the actual bit is always the least
330 significant bit of ACTUAL. */
e90ea8cb 331 BITMAP_WORD bits;
87c476a2
ZD
332} bitmap_iterator;
333
e90ea8cb
NS
334/* Initialize a single bitmap iterator. START_BIT is the first bit to
335 iterate from. */
87c476a2 336
e90ea8cb 337static inline void
e326eeb5 338bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
e90ea8cb 339 unsigned start_bit, unsigned *bit_no)
87c476a2 340{
e90ea8cb
NS
341 bi->elt1 = map->first;
342 bi->elt2 = NULL;
343
344 /* Advance elt1 until it is not before the block containing start_bit. */
345 while (1)
87c476a2 346 {
e90ea8cb
NS
347 if (!bi->elt1)
348 {
349 bi->elt1 = &bitmap_zero_bits;
350 break;
351 }
c22cacf3 352
e90ea8cb
NS
353 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
354 break;
355 bi->elt1 = bi->elt1->next;
87c476a2
ZD
356 }
357
e90ea8cb
NS
358 /* We might have gone past the start bit, so reinitialize it. */
359 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
360 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
c22cacf3 361
e90ea8cb
NS
362 /* Initialize for what is now start_bit. */
363 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
364 bi->bits = bi->elt1->bits[bi->word_no];
365 bi->bits >>= start_bit % BITMAP_WORD_BITS;
366
367 /* If this word is zero, we must make sure we're not pointing at the
368 first bit, otherwise our incrementing to the next word boundary
369 will fail. It won't matter if this increment moves us into the
370 next word. */
371 start_bit += !bi->bits;
c22cacf3 372
e90ea8cb 373 *bit_no = start_bit;
87c476a2
ZD
374}
375
e90ea8cb
NS
376/* Initialize an iterator to iterate over the intersection of two
377 bitmaps. START_BIT is the bit to commence from. */
87c476a2 378
e90ea8cb 379static inline void
e326eeb5 380bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
e90ea8cb 381 unsigned start_bit, unsigned *bit_no)
87c476a2 382{
e90ea8cb
NS
383 bi->elt1 = map1->first;
384 bi->elt2 = map2->first;
87c476a2 385
e90ea8cb
NS
386 /* Advance elt1 until it is not before the block containing
387 start_bit. */
87c476a2
ZD
388 while (1)
389 {
e90ea8cb 390 if (!bi->elt1)
87c476a2 391 {
e90ea8cb
NS
392 bi->elt2 = NULL;
393 break;
87c476a2 394 }
c22cacf3 395
e90ea8cb
NS
396 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
397 break;
398 bi->elt1 = bi->elt1->next;
87c476a2 399 }
c22cacf3 400
e90ea8cb
NS
401 /* Advance elt2 until it is not before elt1. */
402 while (1)
87c476a2 403 {
e90ea8cb
NS
404 if (!bi->elt2)
405 {
406 bi->elt1 = bi->elt2 = &bitmap_zero_bits;
407 break;
408 }
c22cacf3 409
e90ea8cb
NS
410 if (bi->elt2->indx >= bi->elt1->indx)
411 break;
412 bi->elt2 = bi->elt2->next;
87c476a2
ZD
413 }
414
e28d0cfb 415 /* If we're at the same index, then we have some intersecting bits. */
e90ea8cb 416 if (bi->elt1->indx == bi->elt2->indx)
87c476a2 417 {
e90ea8cb 418 /* We might have advanced beyond the start_bit, so reinitialize
c22cacf3 419 for that. */
e90ea8cb
NS
420 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
421 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
c22cacf3 422
e90ea8cb
NS
423 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
424 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
425 bi->bits >>= start_bit % BITMAP_WORD_BITS;
87c476a2
ZD
426 }
427 else
428 {
e90ea8cb
NS
429 /* Otherwise we must immediately advance elt1, so initialize for
430 that. */
431 bi->word_no = BITMAP_ELEMENT_WORDS - 1;
432 bi->bits = 0;
87c476a2 433 }
c22cacf3 434
e90ea8cb
NS
435 /* If this word is zero, we must make sure we're not pointing at the
436 first bit, otherwise our incrementing to the next word boundary
437 will fail. It won't matter if this increment moves us into the
438 next word. */
439 start_bit += !bi->bits;
c22cacf3 440
e90ea8cb 441 *bit_no = start_bit;
87c476a2
ZD
442}
443
e90ea8cb
NS
444/* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
445 */
87c476a2 446
e90ea8cb 447static inline void
0263463d
SB
448bmp_iter_and_compl_init (bitmap_iterator *bi,
449 const_bitmap map1, const_bitmap map2,
e90ea8cb 450 unsigned start_bit, unsigned *bit_no)
87c476a2 451{
e90ea8cb
NS
452 bi->elt1 = map1->first;
453 bi->elt2 = map2->first;
87c476a2 454
e90ea8cb 455 /* Advance elt1 until it is not before the block containing start_bit. */
87c476a2
ZD
456 while (1)
457 {
e90ea8cb 458 if (!bi->elt1)
87c476a2 459 {
e90ea8cb
NS
460 bi->elt1 = &bitmap_zero_bits;
461 break;
87c476a2 462 }
c22cacf3 463
e90ea8cb
NS
464 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
465 break;
466 bi->elt1 = bi->elt1->next;
87c476a2 467 }
e90ea8cb
NS
468
469 /* Advance elt2 until it is not before elt1. */
470 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
471 bi->elt2 = bi->elt2->next;
472
473 /* We might have advanced beyond the start_bit, so reinitialize for
474 that. */
475 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
476 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
c22cacf3 477
e90ea8cb
NS
478 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
479 bi->bits = bi->elt1->bits[bi->word_no];
480 if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
481 bi->bits &= ~bi->elt2->bits[bi->word_no];
482 bi->bits >>= start_bit % BITMAP_WORD_BITS;
c22cacf3 483
e90ea8cb
NS
484 /* If this word is zero, we must make sure we're not pointing at the
485 first bit, otherwise our incrementing to the next word boundary
486 will fail. It won't matter if this increment moves us into the
487 next word. */
488 start_bit += !bi->bits;
c22cacf3 489
e90ea8cb 490 *bit_no = start_bit;
87c476a2
ZD
491}
492
e90ea8cb 493/* Advance to the next bit in BI. We don't advance to the next
d46aed51 494 nonzero bit yet. */
87c476a2 495
e90ea8cb
NS
496static inline void
497bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
87c476a2 498{
e90ea8cb
NS
499 bi->bits >>= 1;
500 *bit_no += 1;
501}
87c476a2 502
d5568f03
JH
503/* Advance to first set bit in BI. */
504
505static inline void
506bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
507{
508#if (GCC_VERSION >= 3004)
509 {
510 unsigned int n = __builtin_ctzl (bi->bits);
511 gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
512 bi->bits >>= n;
513 *bit_no += n;
514 }
515#else
516 while (!(bi->bits & 1))
517 {
518 bi->bits >>= 1;
519 *bit_no += 1;
520 }
521#endif
522}
523
d46aed51 524/* Advance to the next nonzero bit of a single bitmap, we will have
e90ea8cb
NS
525 already advanced past the just iterated bit. Return true if there
526 is a bit to iterate. */
87c476a2 527
e90ea8cb
NS
528static inline bool
529bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
530{
d46aed51 531 /* If our current word is nonzero, it contains the bit we want. */
e90ea8cb 532 if (bi->bits)
87c476a2 533 {
e90ea8cb 534 next_bit:
d5568f03 535 bmp_iter_next_bit (bi, bit_no);
e90ea8cb 536 return true;
87c476a2
ZD
537 }
538
e90ea8cb
NS
539 /* Round up to the word boundary. We might have just iterated past
540 the end of the last word, hence the -1. It is not possible for
541 bit_no to point at the beginning of the now last word. */
542 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
543 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
544 bi->word_no++;
87c476a2 545
e90ea8cb 546 while (1)
87c476a2 547 {
d46aed51 548 /* Find the next nonzero word in this elt. */
e90ea8cb
NS
549 while (bi->word_no != BITMAP_ELEMENT_WORDS)
550 {
551 bi->bits = bi->elt1->bits[bi->word_no];
552 if (bi->bits)
553 goto next_bit;
554 *bit_no += BITMAP_WORD_BITS;
555 bi->word_no++;
556 }
c22cacf3 557
e90ea8cb
NS
558 /* Advance to the next element. */
559 bi->elt1 = bi->elt1->next;
560 if (!bi->elt1)
561 return false;
562 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
563 bi->word_no = 0;
87c476a2 564 }
87c476a2
ZD
565}
566
d46aed51
KH
567/* Advance to the next nonzero bit of an intersecting pair of
568 bitmaps. We will have already advanced past the just iterated bit.
e90ea8cb 569 Return true if there is a bit to iterate. */
87c476a2 570
e90ea8cb
NS
571static inline bool
572bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
87c476a2 573{
d46aed51 574 /* If our current word is nonzero, it contains the bit we want. */
e90ea8cb
NS
575 if (bi->bits)
576 {
577 next_bit:
d5568f03 578 bmp_iter_next_bit (bi, bit_no);
e90ea8cb
NS
579 return true;
580 }
87c476a2 581
e90ea8cb
NS
582 /* Round up to the word boundary. We might have just iterated past
583 the end of the last word, hence the -1. It is not possible for
584 bit_no to point at the beginning of the now last word. */
585 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
586 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
587 bi->word_no++;
c22cacf3 588
87c476a2
ZD
589 while (1)
590 {
d46aed51 591 /* Find the next nonzero word in this elt. */
e90ea8cb 592 while (bi->word_no != BITMAP_ELEMENT_WORDS)
87c476a2 593 {
e90ea8cb
NS
594 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
595 if (bi->bits)
596 goto next_bit;
597 *bit_no += BITMAP_WORD_BITS;
598 bi->word_no++;
87c476a2 599 }
c22cacf3 600
e90ea8cb 601 /* Advance to the next identical element. */
87c476a2
ZD
602 do
603 {
e90ea8cb
NS
604 /* Advance elt1 while it is less than elt2. We always want
605 to advance one elt. */
606 do
87c476a2 607 {
e90ea8cb
NS
608 bi->elt1 = bi->elt1->next;
609 if (!bi->elt1)
610 return false;
611 }
612 while (bi->elt1->indx < bi->elt2->indx);
c22cacf3 613
e90ea8cb
NS
614 /* Advance elt2 to be no less than elt1. This might not
615 advance. */
616 while (bi->elt2->indx < bi->elt1->indx)
617 {
618 bi->elt2 = bi->elt2->next;
619 if (!bi->elt2)
620 return false;
87c476a2
ZD
621 }
622 }
e90ea8cb 623 while (bi->elt1->indx != bi->elt2->indx);
c22cacf3 624
e90ea8cb
NS
625 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
626 bi->word_no = 0;
87c476a2
ZD
627 }
628}
629
d46aed51 630/* Advance to the next nonzero bit in the intersection of
e90ea8cb
NS
631 complemented bitmaps. We will have already advanced past the just
632 iterated bit. */
87c476a2 633
e90ea8cb
NS
634static inline bool
635bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
87c476a2 636{
d46aed51 637 /* If our current word is nonzero, it contains the bit we want. */
e90ea8cb 638 if (bi->bits)
87c476a2 639 {
e90ea8cb 640 next_bit:
d5568f03 641 bmp_iter_next_bit (bi, bit_no);
e90ea8cb 642 return true;
87c476a2
ZD
643 }
644
e90ea8cb
NS
645 /* Round up to the word boundary. We might have just iterated past
646 the end of the last word, hence the -1. It is not possible for
647 bit_no to point at the beginning of the now last word. */
648 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
649 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
650 bi->word_no++;
87c476a2 651
e90ea8cb 652 while (1)
87c476a2 653 {
d46aed51 654 /* Find the next nonzero word in this elt. */
e90ea8cb
NS
655 while (bi->word_no != BITMAP_ELEMENT_WORDS)
656 {
657 bi->bits = bi->elt1->bits[bi->word_no];
658 if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
659 bi->bits &= ~bi->elt2->bits[bi->word_no];
660 if (bi->bits)
661 goto next_bit;
662 *bit_no += BITMAP_WORD_BITS;
663 bi->word_no++;
664 }
c22cacf3 665
e90ea8cb
NS
666 /* Advance to the next element of elt1. */
667 bi->elt1 = bi->elt1->next;
668 if (!bi->elt1)
669 return false;
670
671 /* Advance elt2 until it is no less than elt1. */
672 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
673 bi->elt2 = bi->elt2->next;
c22cacf3 674
e90ea8cb
NS
675 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
676 bi->word_no = 0;
87c476a2 677 }
87c476a2
ZD
678}
679
e90ea8cb
NS
680/* Loop over all bits set in BITMAP, starting with MIN and setting
681 BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
682 should be treated as a read-only variable as it contains loop
683 state. */
87c476a2 684
e90ea8cb
NS
685#define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
686 for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
687 bmp_iter_set (&(ITER), &(BITNUM)); \
688 bmp_iter_next (&(ITER), &(BITNUM)))
689
690/* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
691 and setting BITNUM to the bit number. ITER is a bitmap iterator.
692 BITNUM should be treated as a read-only variable as it contains
693 loop state. */
694
695#define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
c22cacf3 696 for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
e90ea8cb
NS
697 &(BITNUM)); \
698 bmp_iter_and (&(ITER), &(BITNUM)); \
699 bmp_iter_next (&(ITER), &(BITNUM)))
700
701/* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
702 and setting BITNUM to the bit number. ITER is a bitmap iterator.
703 BITNUM should be treated as a read-only variable as it contains
704 loop state. */
705
706#define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
707 for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
c22cacf3 708 &(BITNUM)); \
e90ea8cb
NS
709 bmp_iter_and_compl (&(ITER), &(BITNUM)); \
710 bmp_iter_next (&(ITER), &(BITNUM)))
a05924f9 711
88657302 712#endif /* GCC_BITMAP_H */