]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/bitmap.h
Require alias support in gcc.target/i386/chkp-hidden-def.c
[thirdparty/gcc.git] / gcc / bitmap.h
CommitLineData
096ab9ea 1/* Functions to support general ended bitmaps.
818ab71a 2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
096ab9ea 3
1322177d 4This file is part of GCC.
096ab9ea 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
096ab9ea 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
096ab9ea
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
096ab9ea 19
88657302 20#ifndef GCC_BITMAP_H
ca7fd9cd 21#define GCC_BITMAP_H
0263463d
SB
22
23/* Implementation of sparse integer sets as a linked list.
24
25 This sparse set representation is suitable for sparse sets with an
26 unknown (a priori) universe. The set is represented as a double-linked
84562394 27 list of container nodes (struct bitmap_element). Each node consists
0263463d
SB
28 of an index for the first member that could be held in the container,
29 a small array of integers that represent the members in the container,
30 and pointers to the next and previous element in the linked list. The
31 elements in the list are sorted in ascending order, i.e. the head of
32 the list holds the element with the smallest member of the set.
33
34 For a given member I in the set:
35 - the element for I will have index is I / (bits per element)
36 - the position for I within element is I % (bits per element)
37
38 This representation is very space-efficient for large sparse sets, and
39 the size of the set can be changed dynamically without much overhead.
40 An important parameter is the number of bits per element. In this
41 implementation, there are 128 bits per element. This results in a
42 high storage overhead *per element*, but a small overall overhead if
43 the set is very sparse.
44
45 The downside is that many operations are relatively slow because the
46 linked list has to be traversed to test membership (i.e. member_p/
47 add_member/remove_member). To improve the performance of this set
48 representation, the last accessed element and its index are cached.
49 For membership tests on members close to recently accessed members,
50 the cached last element improves membership test to a constant-time
51 operation.
52
53 The following operations can always be performed in O(1) time:
54
55 * clear : bitmap_clear
56 * choose_one : (not implemented, but could be
57 implemented in constant time)
58
59 The following operations can be performed in O(E) time worst-case (with
60 E the number of elements in the linked list), but in O(1) time with a
61 suitable access patterns:
62
63 * member_p : bitmap_bit_p
64 * add_member : bitmap_set_bit
65 * remove_member : bitmap_clear_bit
66
67 The following operations can be performed in O(E) time:
68
69 * cardinality : bitmap_count_bits
70 * set_size : bitmap_last_set_bit (but this could
71 in constant time with a pointer to
72 the last element in the chain)
73
74 Additionally, the linked-list sparse set representation supports
75 enumeration of the members in O(E) time:
76
77 * forall : EXECUTE_IF_SET_IN_BITMAP
78 * set_copy : bitmap_copy
79 * set_intersection : bitmap_intersect_p /
80 bitmap_and / bitmap_and_into /
81 EXECUTE_IF_AND_IN_BITMAP
82 * set_union : bitmap_ior / bitmap_ior_into
83 * set_difference : bitmap_intersect_compl_p /
84 bitmap_and_comp / bitmap_and_comp_into /
85 EXECUTE_IF_AND_COMPL_IN_BITMAP
86 * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
87 * set_compare : bitmap_equal_p
88
026c3cfd 89 Some operations on 3 sets that occur frequently in data flow problems
0263463d
SB
90 are also implemented:
91
92 * A | (B & C) : bitmap_ior_and_into
93 * A | (B & ~C) : bitmap_ior_and_compl /
94 bitmap_ior_and_compl_into
95
96 The storage requirements for linked-list sparse sets are O(E), with E->N
97 in the worst case (a sparse set with large distances between the values
98 of the set members).
99
100 The linked-list set representation works well for problems involving very
101 sparse sets. The canonical example in GCC is, of course, the "set of
102 sets" for some CFG-based data flow problems (liveness analysis, dominance
103 frontiers, etc.).
104
105 This representation also works well for data flow problems where the size
106 of the set may grow dynamically, but care must be taken that the member_p,
107 add_member, and remove_member operations occur with a suitable access
108 pattern.
109
110 For random-access sets with a known, relatively small universe size, the
111 SparseSet or simple bitmap representations may be more efficient than a
112 linked-list set. For random-access sets of unknown universe, a hash table
113 or a balanced binary tree representation is likely to be a more suitable
114 choice.
115
116 Traversing linked lists is usually cache-unfriendly, even with the last
117 accessed element cached.
118
119 Cache performance can be improved by keeping the elements in the set
120 grouped together in memory, using a dedicated obstack for a set (or group
121 of related sets). Elements allocated on obstacks are released to a
122 free-list and taken off the free list. If multiple sets are allocated on
123 the same obstack, elements freed from one set may be re-used for one of
124 the other sets. This usually helps avoid cache misses.
125
126 A single free-list is used for all sets allocated in GGC space. This is
127 bad for persistent sets, so persistent sets should be allocated on an
128 obstack whenever possible. */
129
b60db1ba 130#include "obstack.h"
2d44c7de
ML
131
132/* Bitmap memory usage. */
133struct bitmap_usage: public mem_usage
134{
135 /* Default contructor. */
136 bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
137 /* Constructor. */
138 bitmap_usage (size_t allocated, size_t times, size_t peak,
139 uint64_t nsearches, uint64_t search_iter)
140 : mem_usage (allocated, times, peak),
141 m_nsearches (nsearches), m_search_iter (search_iter) {}
142
143 /* Sum the usage with SECOND usage. */
80a4fe78
ML
144 bitmap_usage
145 operator+ (const bitmap_usage &second)
2d44c7de
ML
146 {
147 return bitmap_usage (m_allocated + second.m_allocated,
148 m_times + second.m_times,
149 m_peak + second.m_peak,
150 m_nsearches + second.m_nsearches,
151 m_search_iter + second.m_search_iter);
152 }
153
154 /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
80a4fe78
ML
155 inline void
156 dump (mem_location *loc, mem_usage &total) const
2d44c7de 157 {
ac059261 158 char *location_string = loc->to_string ();
2d44c7de 159
ac059261
ML
160 fprintf (stderr, "%-48s %10li:%5.1f%%%10li%10li:%5.1f%%%12li%12li%10s\n",
161 location_string,
2d44c7de
ML
162 (long)m_allocated, get_percent (m_allocated, total.m_allocated),
163 (long)m_peak, (long)m_times,
164 get_percent (m_times, total.m_times),
165 (long)m_nsearches, (long)m_search_iter,
166 loc->m_ggc ? "ggc" : "heap");
ac059261
ML
167
168 free (location_string);
2d44c7de
ML
169 }
170
171 /* Dump header with NAME. */
80a4fe78
ML
172 static inline void
173 dump_header (const char *name)
2d44c7de
ML
174 {
175 fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
176 "Times", "N searches", "Search iter", "Type");
177 print_dash_line ();
178 }
179
180 /* Number search operations. */
181 uint64_t m_nsearches;
182 /* Number of search iterations. */
183 uint64_t m_search_iter;
184};
185
186/* Bitmap memory description. */
187extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
a05924f9 188
72e42e26
SB
189/* Fundamental storage type for bitmap. */
190
72e42e26 191typedef unsigned long BITMAP_WORD;
65a6f342
NS
192/* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
193 it is used in preprocessor directives -- hence the 1u. */
194#define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
72e42e26 195
096ab9ea
RK
196/* Number of words to use for each element in the linked list. */
197
198#ifndef BITMAP_ELEMENT_WORDS
65a6f342 199#define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
096ab9ea
RK
200#endif
201
65a6f342 202/* Number of bits in each actual element of a bitmap. */
096ab9ea 203
65a6f342 204#define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
096ab9ea 205
7932a3db 206/* Obstack for allocating bitmaps and elements from. */
84562394
OE
207struct GTY (()) bitmap_obstack {
208 struct bitmap_element *elements;
209 struct bitmap_head *heads;
7932a3db 210 struct obstack GTY ((skip)) obstack;
84562394 211};
7932a3db 212
096ab9ea
RK
213/* Bitmap set element. We use a linked list to hold only the bits that
214 are set. This allows for use to grow the bitset dynamically without
c22cacf3 215 having to realloc and copy a giant bit array.
5765e552
KZ
216
217 The free list is implemented as a list of lists. There is one
218 outer list connected together by prev fields. Each element of that
219 outer is an inner list (that may consist only of the outer list
220 element) that are connected by the next fields. The prev pointer
221 is undefined for interior elements. This allows
222 bitmap_elt_clear_from to be implemented in unit time rather than
223 linear in the number of elements to be freed. */
096ab9ea 224
84562394
OE
225struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element {
226 struct bitmap_element *next; /* Next element. */
227 struct bitmap_element *prev; /* Previous element. */
eebedaa5 228 unsigned int indx; /* regno/BITMAP_ELEMENT_ALL_BITS. */
72e42e26 229 BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set. */
84562394 230};
096ab9ea 231
3c53f55a
SB
232/* Head of bitmap linked list. The 'current' member points to something
233 already pointed to by the chain started by first, so GTY((skip)) it. */
01d419ae 234
84562394 235struct GTY(()) bitmap_head {
3c53f55a
SB
236 unsigned int indx; /* Index of last element looked at. */
237 unsigned int descriptor_id; /* Unique identifier for the allocation
238 site of this bitmap, for detailed
239 statistics gathering. */
7f3f8d3f
RG
240 bitmap_element *first; /* First element in linked list. */
241 bitmap_element * GTY((skip(""))) current; /* Last element looked at. */
7f3f8d3f
RG
242 bitmap_obstack *obstack; /* Obstack to allocate elements from.
243 If NULL, then use GGC allocation. */
84562394 244};
7932a3db 245
096ab9ea 246/* Global data */
ae0ed63a 247extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
7932a3db 248extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
096ab9ea
RK
249
250/* Clear a bitmap by freeing up the linked list. */
4682ae04 251extern void bitmap_clear (bitmap);
096ab9ea 252
eebedaa5 253/* Copy a bitmap to another bitmap. */
e326eeb5 254extern void bitmap_copy (bitmap, const_bitmap);
096ab9ea 255
8229306b 256/* True if two bitmaps are identical. */
e326eeb5 257extern bool bitmap_equal_p (const_bitmap, const_bitmap);
8229306b 258
55994078 259/* True if the bitmaps intersect (their AND is non-empty). */
e326eeb5 260extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
55994078
NS
261
262/* True if the complement of the second intersects the first (their
263 AND_COMPL is non-empty). */
e326eeb5 264extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
55994078
NS
265
266/* True if MAP is an empty bitmap. */
f61e445a
LC
267inline bool bitmap_empty_p (const_bitmap map)
268{
269 return !map->first;
270}
eb59b8de 271
76e910c6
RG
272/* True if the bitmap has only a single bit set. */
273extern bool bitmap_single_bit_set_p (const_bitmap);
274
1bc40c7e 275/* Count the number of bits set in the bitmap. */
e326eeb5 276extern unsigned long bitmap_count_bits (const_bitmap);
1bc40c7e 277
88c4f655
NS
278/* Boolean operations on bitmaps. The _into variants are two operand
279 versions that modify the first source operand. The other variants
280 are three operand versions that to not destroy the source bitmaps.
281 The operations supported are &, & ~, |, ^. */
e326eeb5 282extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
7b19209f 283extern bool bitmap_and_into (bitmap, const_bitmap);
e326eeb5
KG
284extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
285extern bool bitmap_and_compl_into (bitmap, const_bitmap);
1bc40c7e 286#define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
e326eeb5 287extern void bitmap_compl_and_into (bitmap, const_bitmap);
1bc40c7e 288extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
6fb5fa3c 289extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
e326eeb5
KG
290extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
291extern bool bitmap_ior_into (bitmap, const_bitmap);
292extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
293extern void bitmap_xor_into (bitmap, const_bitmap);
88c4f655 294
7ff23740
PB
295/* DST = A | (B & C). Return true if DST changes. */
296extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
88c4f655 297/* DST = A | (B & ~C). Return true if DST changes. */
0263463d
SB
298extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
299 const_bitmap B, const_bitmap C);
88c4f655 300/* A |= (B & ~C). Return true if A changes. */
0263463d
SB
301extern bool bitmap_ior_and_compl_into (bitmap A,
302 const_bitmap B, const_bitmap C);
096ab9ea 303
5f0d975b
RG
304/* Clear a single bit in a bitmap. Return true if the bit changed. */
305extern bool bitmap_clear_bit (bitmap, int);
096ab9ea 306
5f0d975b
RG
307/* Set a single bit in a bitmap. Return true if the bit changed. */
308extern bool bitmap_set_bit (bitmap, int);
096ab9ea
RK
309
310/* Return true if a register is set in a register set. */
4682ae04 311extern int bitmap_bit_p (bitmap, int);
096ab9ea
RK
312
313/* Debug functions to print a bitmap linked list. */
e326eeb5
KG
314extern void debug_bitmap (const_bitmap);
315extern void debug_bitmap_file (FILE *, const_bitmap);
096ab9ea 316
f9da5064 317/* Print a bitmap. */
e326eeb5 318extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
22fa5b8a 319
5765e552 320/* Initialize and release a bitmap obstack. */
7932a3db
NS
321extern void bitmap_obstack_initialize (bitmap_obstack *);
322extern void bitmap_obstack_release (bitmap_obstack *);
f75709c6
JH
323extern void bitmap_register (bitmap MEM_STAT_DECL);
324extern void dump_bitmap_statistics (void);
096ab9ea 325
7932a3db
NS
326/* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
327 to allocate from, NULL for GC'd bitmap. */
328
329static inline void
f75709c6 330bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
7932a3db
NS
331{
332 head->first = head->current = NULL;
333 head->obstack = obstack;
7aa6d18a
SB
334 if (GATHER_STATISTICS)
335 bitmap_register (head PASS_MEM_STAT);
7932a3db 336}
f75709c6 337#define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
7932a3db
NS
338
339/* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
f75709c6
JH
340extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
341#define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
342extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
343#define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
7932a3db 344extern void bitmap_obstack_free (bitmap);
096ab9ea 345
ea193996 346/* A few compatibility/functions macros for compatibility with sbitmaps */
f61e445a
LC
347inline void dump_bitmap (FILE *file, const_bitmap map)
348{
349 bitmap_print (file, map, "", "\n");
350}
84562394
OE
351extern void debug (const bitmap_head &ref);
352extern void debug (const bitmap_head *ptr);
f61e445a 353
e326eeb5 354extern unsigned bitmap_first_set_bit (const_bitmap);
12802c2b 355extern unsigned bitmap_last_set_bit (const_bitmap);
ea193996 356
1af4bba8 357/* Compute bitmap hash (for purposes of hashing etc.) */
c3284718 358extern hashval_t bitmap_hash (const_bitmap);
1af4bba8 359
7932a3db 360/* Allocate a bitmap from a bit obstack. */
cc175e7c 361#define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
e2500fed 362
7932a3db
NS
363/* Allocate a gc'd bitmap. */
364#define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
ca7fd9cd 365
096ab9ea 366/* Do any cleanup needed on a bitmap when it is no longer used. */
61ad0914
BE
367#define BITMAP_FREE(BITMAP) \
368 ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
e7749837 369
87c476a2 370/* Iterator for bitmaps. */
096ab9ea 371
84562394 372struct bitmap_iterator
87c476a2 373{
e90ea8cb
NS
374 /* Pointer to the current bitmap element. */
375 bitmap_element *elt1;
c22cacf3 376
e90ea8cb
NS
377 /* Pointer to 2nd bitmap element when two are involved. */
378 bitmap_element *elt2;
379
380 /* Word within the current element. */
381 unsigned word_no;
c22cacf3 382
87c476a2
ZD
383 /* Contents of the actually processed word. When finding next bit
384 it is shifted right, so that the actual bit is always the least
385 significant bit of ACTUAL. */
e90ea8cb 386 BITMAP_WORD bits;
84562394 387};
87c476a2 388
e90ea8cb
NS
389/* Initialize a single bitmap iterator. START_BIT is the first bit to
390 iterate from. */
87c476a2 391
e90ea8cb 392static inline void
e326eeb5 393bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
e90ea8cb 394 unsigned start_bit, unsigned *bit_no)
87c476a2 395{
e90ea8cb
NS
396 bi->elt1 = map->first;
397 bi->elt2 = NULL;
398
399 /* Advance elt1 until it is not before the block containing start_bit. */
400 while (1)
87c476a2 401 {
e90ea8cb
NS
402 if (!bi->elt1)
403 {
404 bi->elt1 = &bitmap_zero_bits;
405 break;
406 }
c22cacf3 407
e90ea8cb
NS
408 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
409 break;
410 bi->elt1 = bi->elt1->next;
87c476a2
ZD
411 }
412
e90ea8cb
NS
413 /* We might have gone past the start bit, so reinitialize it. */
414 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
415 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
c22cacf3 416
e90ea8cb
NS
417 /* Initialize for what is now start_bit. */
418 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
419 bi->bits = bi->elt1->bits[bi->word_no];
420 bi->bits >>= start_bit % BITMAP_WORD_BITS;
421
422 /* If this word is zero, we must make sure we're not pointing at the
423 first bit, otherwise our incrementing to the next word boundary
424 will fail. It won't matter if this increment moves us into the
425 next word. */
426 start_bit += !bi->bits;
c22cacf3 427
e90ea8cb 428 *bit_no = start_bit;
87c476a2
ZD
429}
430
e90ea8cb
NS
431/* Initialize an iterator to iterate over the intersection of two
432 bitmaps. START_BIT is the bit to commence from. */
87c476a2 433
e90ea8cb 434static inline void
e326eeb5 435bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
e90ea8cb 436 unsigned start_bit, unsigned *bit_no)
87c476a2 437{
e90ea8cb
NS
438 bi->elt1 = map1->first;
439 bi->elt2 = map2->first;
87c476a2 440
e90ea8cb
NS
441 /* Advance elt1 until it is not before the block containing
442 start_bit. */
87c476a2
ZD
443 while (1)
444 {
e90ea8cb 445 if (!bi->elt1)
87c476a2 446 {
e90ea8cb
NS
447 bi->elt2 = NULL;
448 break;
87c476a2 449 }
c22cacf3 450
e90ea8cb
NS
451 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
452 break;
453 bi->elt1 = bi->elt1->next;
87c476a2 454 }
c22cacf3 455
e90ea8cb
NS
456 /* Advance elt2 until it is not before elt1. */
457 while (1)
87c476a2 458 {
e90ea8cb
NS
459 if (!bi->elt2)
460 {
461 bi->elt1 = bi->elt2 = &bitmap_zero_bits;
462 break;
463 }
c22cacf3 464
e90ea8cb
NS
465 if (bi->elt2->indx >= bi->elt1->indx)
466 break;
467 bi->elt2 = bi->elt2->next;
87c476a2
ZD
468 }
469
e28d0cfb 470 /* If we're at the same index, then we have some intersecting bits. */
e90ea8cb 471 if (bi->elt1->indx == bi->elt2->indx)
87c476a2 472 {
e90ea8cb 473 /* We might have advanced beyond the start_bit, so reinitialize
c22cacf3 474 for that. */
e90ea8cb
NS
475 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
476 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
c22cacf3 477
e90ea8cb
NS
478 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
479 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
480 bi->bits >>= start_bit % BITMAP_WORD_BITS;
87c476a2
ZD
481 }
482 else
483 {
e90ea8cb
NS
484 /* Otherwise we must immediately advance elt1, so initialize for
485 that. */
486 bi->word_no = BITMAP_ELEMENT_WORDS - 1;
487 bi->bits = 0;
87c476a2 488 }
c22cacf3 489
e90ea8cb
NS
490 /* If this word is zero, we must make sure we're not pointing at the
491 first bit, otherwise our incrementing to the next word boundary
492 will fail. It won't matter if this increment moves us into the
493 next word. */
494 start_bit += !bi->bits;
c22cacf3 495
e90ea8cb 496 *bit_no = start_bit;
87c476a2
ZD
497}
498
e90ea8cb
NS
499/* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
500 */
87c476a2 501
e90ea8cb 502static inline void
0263463d
SB
503bmp_iter_and_compl_init (bitmap_iterator *bi,
504 const_bitmap map1, const_bitmap map2,
e90ea8cb 505 unsigned start_bit, unsigned *bit_no)
87c476a2 506{
e90ea8cb
NS
507 bi->elt1 = map1->first;
508 bi->elt2 = map2->first;
87c476a2 509
e90ea8cb 510 /* Advance elt1 until it is not before the block containing start_bit. */
87c476a2
ZD
511 while (1)
512 {
e90ea8cb 513 if (!bi->elt1)
87c476a2 514 {
e90ea8cb
NS
515 bi->elt1 = &bitmap_zero_bits;
516 break;
87c476a2 517 }
c22cacf3 518
e90ea8cb
NS
519 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
520 break;
521 bi->elt1 = bi->elt1->next;
87c476a2 522 }
e90ea8cb
NS
523
524 /* Advance elt2 until it is not before elt1. */
525 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
526 bi->elt2 = bi->elt2->next;
527
528 /* We might have advanced beyond the start_bit, so reinitialize for
529 that. */
530 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
531 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
c22cacf3 532
e90ea8cb
NS
533 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
534 bi->bits = bi->elt1->bits[bi->word_no];
535 if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
536 bi->bits &= ~bi->elt2->bits[bi->word_no];
537 bi->bits >>= start_bit % BITMAP_WORD_BITS;
c22cacf3 538
e90ea8cb
NS
539 /* If this word is zero, we must make sure we're not pointing at the
540 first bit, otherwise our incrementing to the next word boundary
541 will fail. It won't matter if this increment moves us into the
542 next word. */
543 start_bit += !bi->bits;
c22cacf3 544
e90ea8cb 545 *bit_no = start_bit;
87c476a2
ZD
546}
547
e90ea8cb 548/* Advance to the next bit in BI. We don't advance to the next
d46aed51 549 nonzero bit yet. */
87c476a2 550
e90ea8cb
NS
551static inline void
552bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
87c476a2 553{
e90ea8cb
NS
554 bi->bits >>= 1;
555 *bit_no += 1;
556}
87c476a2 557
d5568f03
JH
558/* Advance to first set bit in BI. */
559
560static inline void
561bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
562{
563#if (GCC_VERSION >= 3004)
564 {
565 unsigned int n = __builtin_ctzl (bi->bits);
566 gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
567 bi->bits >>= n;
568 *bit_no += n;
569 }
570#else
571 while (!(bi->bits & 1))
572 {
573 bi->bits >>= 1;
574 *bit_no += 1;
575 }
576#endif
577}
578
d46aed51 579/* Advance to the next nonzero bit of a single bitmap, we will have
e90ea8cb
NS
580 already advanced past the just iterated bit. Return true if there
581 is a bit to iterate. */
87c476a2 582
e90ea8cb
NS
583static inline bool
584bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
585{
d46aed51 586 /* If our current word is nonzero, it contains the bit we want. */
e90ea8cb 587 if (bi->bits)
87c476a2 588 {
e90ea8cb 589 next_bit:
d5568f03 590 bmp_iter_next_bit (bi, bit_no);
e90ea8cb 591 return true;
87c476a2
ZD
592 }
593
e90ea8cb
NS
594 /* Round up to the word boundary. We might have just iterated past
595 the end of the last word, hence the -1. It is not possible for
596 bit_no to point at the beginning of the now last word. */
597 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
598 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
599 bi->word_no++;
87c476a2 600
e90ea8cb 601 while (1)
87c476a2 602 {
d46aed51 603 /* Find the next nonzero word in this elt. */
e90ea8cb
NS
604 while (bi->word_no != BITMAP_ELEMENT_WORDS)
605 {
606 bi->bits = bi->elt1->bits[bi->word_no];
607 if (bi->bits)
608 goto next_bit;
609 *bit_no += BITMAP_WORD_BITS;
610 bi->word_no++;
611 }
c22cacf3 612
e90ea8cb
NS
613 /* Advance to the next element. */
614 bi->elt1 = bi->elt1->next;
615 if (!bi->elt1)
616 return false;
617 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
618 bi->word_no = 0;
87c476a2 619 }
87c476a2
ZD
620}
621
d46aed51
KH
622/* Advance to the next nonzero bit of an intersecting pair of
623 bitmaps. We will have already advanced past the just iterated bit.
e90ea8cb 624 Return true if there is a bit to iterate. */
87c476a2 625
e90ea8cb
NS
626static inline bool
627bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
87c476a2 628{
d46aed51 629 /* If our current word is nonzero, it contains the bit we want. */
e90ea8cb
NS
630 if (bi->bits)
631 {
632 next_bit:
d5568f03 633 bmp_iter_next_bit (bi, bit_no);
e90ea8cb
NS
634 return true;
635 }
87c476a2 636
e90ea8cb
NS
637 /* Round up to the word boundary. We might have just iterated past
638 the end of the last word, hence the -1. It is not possible for
639 bit_no to point at the beginning of the now last word. */
640 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
641 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
642 bi->word_no++;
c22cacf3 643
87c476a2
ZD
644 while (1)
645 {
d46aed51 646 /* Find the next nonzero word in this elt. */
e90ea8cb 647 while (bi->word_no != BITMAP_ELEMENT_WORDS)
87c476a2 648 {
e90ea8cb
NS
649 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
650 if (bi->bits)
651 goto next_bit;
652 *bit_no += BITMAP_WORD_BITS;
653 bi->word_no++;
87c476a2 654 }
c22cacf3 655
e90ea8cb 656 /* Advance to the next identical element. */
87c476a2
ZD
657 do
658 {
e90ea8cb
NS
659 /* Advance elt1 while it is less than elt2. We always want
660 to advance one elt. */
661 do
87c476a2 662 {
e90ea8cb
NS
663 bi->elt1 = bi->elt1->next;
664 if (!bi->elt1)
665 return false;
666 }
667 while (bi->elt1->indx < bi->elt2->indx);
c22cacf3 668
e90ea8cb
NS
669 /* Advance elt2 to be no less than elt1. This might not
670 advance. */
671 while (bi->elt2->indx < bi->elt1->indx)
672 {
673 bi->elt2 = bi->elt2->next;
674 if (!bi->elt2)
675 return false;
87c476a2
ZD
676 }
677 }
e90ea8cb 678 while (bi->elt1->indx != bi->elt2->indx);
c22cacf3 679
e90ea8cb
NS
680 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
681 bi->word_no = 0;
87c476a2
ZD
682 }
683}
684
d46aed51 685/* Advance to the next nonzero bit in the intersection of
e90ea8cb
NS
686 complemented bitmaps. We will have already advanced past the just
687 iterated bit. */
87c476a2 688
e90ea8cb
NS
689static inline bool
690bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
87c476a2 691{
d46aed51 692 /* If our current word is nonzero, it contains the bit we want. */
e90ea8cb 693 if (bi->bits)
87c476a2 694 {
e90ea8cb 695 next_bit:
d5568f03 696 bmp_iter_next_bit (bi, bit_no);
e90ea8cb 697 return true;
87c476a2
ZD
698 }
699
e90ea8cb
NS
700 /* Round up to the word boundary. We might have just iterated past
701 the end of the last word, hence the -1. It is not possible for
702 bit_no to point at the beginning of the now last word. */
703 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
704 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
705 bi->word_no++;
87c476a2 706
e90ea8cb 707 while (1)
87c476a2 708 {
d46aed51 709 /* Find the next nonzero word in this elt. */
e90ea8cb
NS
710 while (bi->word_no != BITMAP_ELEMENT_WORDS)
711 {
712 bi->bits = bi->elt1->bits[bi->word_no];
713 if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
714 bi->bits &= ~bi->elt2->bits[bi->word_no];
715 if (bi->bits)
716 goto next_bit;
717 *bit_no += BITMAP_WORD_BITS;
718 bi->word_no++;
719 }
c22cacf3 720
e90ea8cb
NS
721 /* Advance to the next element of elt1. */
722 bi->elt1 = bi->elt1->next;
723 if (!bi->elt1)
724 return false;
725
726 /* Advance elt2 until it is no less than elt1. */
727 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
728 bi->elt2 = bi->elt2->next;
c22cacf3 729
e90ea8cb
NS
730 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
731 bi->word_no = 0;
87c476a2 732 }
87c476a2
ZD
733}
734
e90ea8cb
NS
735/* Loop over all bits set in BITMAP, starting with MIN and setting
736 BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
737 should be treated as a read-only variable as it contains loop
738 state. */
87c476a2 739
d4ac4ce2
LC
740#ifndef EXECUTE_IF_SET_IN_BITMAP
741/* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
e90ea8cb
NS
742#define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
743 for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
744 bmp_iter_set (&(ITER), &(BITNUM)); \
745 bmp_iter_next (&(ITER), &(BITNUM)))
d4ac4ce2 746#endif
e90ea8cb
NS
747
748/* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
749 and setting BITNUM to the bit number. ITER is a bitmap iterator.
750 BITNUM should be treated as a read-only variable as it contains
751 loop state. */
752
753#define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
c22cacf3 754 for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
e90ea8cb
NS
755 &(BITNUM)); \
756 bmp_iter_and (&(ITER), &(BITNUM)); \
757 bmp_iter_next (&(ITER), &(BITNUM)))
758
759/* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
760 and setting BITNUM to the bit number. ITER is a bitmap iterator.
761 BITNUM should be treated as a read-only variable as it contains
762 loop state. */
763
764#define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
765 for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
c22cacf3 766 &(BITNUM)); \
e90ea8cb
NS
767 bmp_iter_and_compl (&(ITER), &(BITNUM)); \
768 bmp_iter_next (&(ITER), &(BITNUM)))
a05924f9 769
88657302 770#endif /* GCC_BITMAP_H */