]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cfganal.c
[Ada] Avoid "others => <>" association in resolved record aggregates
[thirdparty/gcc.git] / gcc / cfganal.c
CommitLineData
402209ff 1/* Control flow graph analysis code for GNU compiler.
8d9254fc 2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
402209ff
JH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
402209ff
JH
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
402209ff
JH
19
20/* This file contains various simple utilities to analyze the CFG. */
532aafad 21
402209ff
JH
22#include "config.h"
23#include "system.h"
4977bab6 24#include "coretypes.h"
c7131fb2 25#include "backend.h"
957060b5 26#include "cfghooks.h"
bd454efd 27#include "timevar.h"
957060b5 28#include "cfganal.h"
44ab146a 29#include "cfgloop.h"
402209ff 30
35bfaf4d 31namespace {
402209ff 32/* Store the data structures necessary for depth-first search. */
35bfaf4d
TS
33class depth_first_search
34 {
35public:
36 depth_first_search ();
37
38 basic_block execute (basic_block);
39 void add_bb (basic_block);
402209ff 40
35bfaf4d
TS
41private:
42 /* stack for backtracking during the algorithm */
43 auto_vec<basic_block, 20> m_stack;
402209ff
JH
44
45 /* record of basic blocks already seen by depth-first search */
35bfaf4d 46 auto_sbitmap m_visited_blocks;
402209ff 47};
35bfaf4d 48}
402209ff 49\f
402209ff 50/* Mark the back edges in DFS traversal.
da7d8304 51 Return nonzero if a loop (natural or otherwise) is present.
402209ff
JH
52 Inspired by Depth_First_Search_PP described in:
53
54 Advanced Compiler Design and Implementation
55 Steven Muchnick
56 Morgan Kaufmann, 1997
57
f91a0beb 58 and heavily borrowed from pre_and_rev_post_order_compute. */
402209ff
JH
59
60bool
d329e058 61mark_dfs_back_edges (void)
402209ff 62{
402209ff
JH
63 int *pre;
64 int *post;
402209ff
JH
65 int prenum = 1;
66 int postnum = 1;
402209ff
JH
67 bool found = false;
68
69 /* Allocate the preorder and postorder number arrays. */
8b1c6fd7
DM
70 pre = XCNEWVEC (int, last_basic_block_for_fn (cfun));
71 post = XCNEWVEC (int, last_basic_block_for_fn (cfun));
402209ff
JH
72
73 /* Allocate stack for back-tracking up CFG. */
792bb49b 74 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
402209ff
JH
75
76 /* Allocate bitmap to track nodes that have been visited. */
7ba9e72d 77 auto_sbitmap visited (last_basic_block_for_fn (cfun));
402209ff
JH
78
79 /* None of the nodes in the CFG have been visited yet. */
f61e445a 80 bitmap_clear (visited);
402209ff
JH
81
82 /* Push the first edge on to the stack. */
792bb49b 83 stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
402209ff 84
792bb49b 85 while (!stack.is_empty ())
402209ff 86 {
402209ff
JH
87 basic_block src;
88 basic_block dest;
89
90 /* Look at the edge on the top of the stack. */
792bb49b 91 edge_iterator ei = stack.last ();
628f6a4e
BE
92 src = ei_edge (ei)->src;
93 dest = ei_edge (ei)->dest;
94 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
402209ff
JH
95
96 /* Check if the edge destination has been visited yet. */
fefa31b5
DM
97 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && ! bitmap_bit_p (visited,
98 dest->index))
402209ff
JH
99 {
100 /* Mark that we have visited the destination. */
d7c028c0 101 bitmap_set_bit (visited, dest->index);
402209ff 102
0b17ab2f 103 pre[dest->index] = prenum++;
628f6a4e 104 if (EDGE_COUNT (dest->succs) > 0)
402209ff
JH
105 {
106 /* Since the DEST node has been visited for the first
107 time, check its successors. */
792bb49b 108 stack.quick_push (ei_start (dest->succs));
402209ff
JH
109 }
110 else
0b17ab2f 111 post[dest->index] = postnum++;
402209ff
JH
112 }
113 else
114 {
fefa31b5
DM
115 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
116 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
0b17ab2f
RH
117 && pre[src->index] >= pre[dest->index]
118 && post[dest->index] == 0)
628f6a4e 119 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
402209ff 120
fefa31b5
DM
121 if (ei_one_before_end_p (ei)
122 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
0b17ab2f 123 post[src->index] = postnum++;
402209ff 124
628f6a4e 125 if (!ei_one_before_end_p (ei))
792bb49b 126 ei_next (&stack.last ());
402209ff 127 else
792bb49b 128 stack.pop ();
402209ff
JH
129 }
130 }
131
132 free (pre);
133 free (post);
402209ff
JH
134
135 return found;
136}
137
402209ff 138/* Find unreachable blocks. An unreachable block will have 0 in
da7d8304 139 the reachable bit in block->flags. A nonzero value indicates the
402209ff
JH
140 block is reachable. */
141
142void
d329e058 143find_unreachable_blocks (void)
402209ff
JH
144{
145 edge e;
628f6a4e 146 edge_iterator ei;
e0082a72 147 basic_block *tos, *worklist, bb;
402209ff 148
0cae8d31 149 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
402209ff
JH
150
151 /* Clear all the reachability flags. */
152
11cd3bed 153 FOR_EACH_BB_FN (bb, cfun)
e0082a72 154 bb->flags &= ~BB_REACHABLE;
402209ff
JH
155
156 /* Add our starting points to the worklist. Almost always there will
eaec9b3d 157 be only one. It isn't inconceivable that we might one day directly
402209ff
JH
158 support Fortran alternate entry points. */
159
fefa31b5 160 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
402209ff
JH
161 {
162 *tos++ = e->dest;
163
164 /* Mark the block reachable. */
165 e->dest->flags |= BB_REACHABLE;
166 }
167
168 /* Iterate: find everything reachable from what we've already seen. */
169
170 while (tos != worklist)
171 {
172 basic_block b = *--tos;
173
628f6a4e 174 FOR_EACH_EDGE (e, ei, b->succs)
0b612e0b
JL
175 {
176 basic_block dest = e->dest;
177
178 if (!(dest->flags & BB_REACHABLE))
179 {
180 *tos++ = dest;
181 dest->flags |= BB_REACHABLE;
182 }
183 }
402209ff
JH
184 }
185
186 free (worklist);
187}
a352b710
TV
188
189/* Verify that there are no unreachable blocks in the current function. */
190
191void
192verify_no_unreachable_blocks (void)
193{
194 find_unreachable_blocks ();
195
196 basic_block bb;
197 FOR_EACH_BB_FN (bb, cfun)
198 gcc_assert ((bb->flags & BB_REACHABLE) != 0);
199}
200
402209ff
JH
201\f
202/* Functions to access an edge list with a vector representation.
203 Enough data is kept such that given an index number, the
204 pred and succ that edge represents can be determined, or
205 given a pred and a succ, its index number can be returned.
206 This allows algorithms which consume a lot of memory to
207 represent the normally full matrix of edge (pred,succ) with a
208 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
209 wasted space in the client code due to sparse flow graphs. */
210
211/* This functions initializes the edge list. Basically the entire
212 flowgraph is processed, and all edges are assigned a number,
213 and the data structure is filled in. */
214
215struct edge_list *
d329e058 216create_edge_list (void)
402209ff
JH
217{
218 struct edge_list *elist;
219 edge e;
220 int num_edges;
e0082a72 221 basic_block bb;
628f6a4e 222 edge_iterator ei;
402209ff 223
402209ff
JH
224 /* Determine the number of edges in the flow graph by counting successor
225 edges on each basic block. */
532aafad 226 num_edges = 0;
fefa31b5
DM
227 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
228 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
402209ff 229 {
628f6a4e 230 num_edges += EDGE_COUNT (bb->succs);
402209ff 231 }
4891442b 232
5ed6ace5 233 elist = XNEW (struct edge_list);
402209ff 234 elist->num_edges = num_edges;
5ed6ace5 235 elist->index_to_edge = XNEWVEC (edge, num_edges);
402209ff
JH
236
237 num_edges = 0;
238
e0082a72 239 /* Follow successors of blocks, and register these edges. */
fefa31b5
DM
240 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
241 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
628f6a4e 242 FOR_EACH_EDGE (e, ei, bb->succs)
e0082a72 243 elist->index_to_edge[num_edges++] = e;
4891442b 244
402209ff
JH
245 return elist;
246}
247
248/* This function free's memory associated with an edge list. */
249
250void
d329e058 251free_edge_list (struct edge_list *elist)
402209ff
JH
252{
253 if (elist)
254 {
255 free (elist->index_to_edge);
256 free (elist);
257 }
258}
259
260/* This function provides debug output showing an edge list. */
261
24e47c76 262DEBUG_FUNCTION void
d329e058 263print_edge_list (FILE *f, struct edge_list *elist)
402209ff
JH
264{
265 int x;
4891442b 266
402209ff 267 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
0cae8d31 268 n_basic_blocks_for_fn (cfun), elist->num_edges);
402209ff
JH
269
270 for (x = 0; x < elist->num_edges; x++)
271 {
272 fprintf (f, " %-4d - edge(", x);
fefa31b5 273 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
402209ff
JH
274 fprintf (f, "entry,");
275 else
0b17ab2f 276 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
402209ff 277
fefa31b5 278 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR_FOR_FN (cfun))
402209ff
JH
279 fprintf (f, "exit)\n");
280 else
0b17ab2f 281 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
402209ff
JH
282 }
283}
284
285/* This function provides an internal consistency check of an edge list,
286 verifying that all edges are present, and that there are no
287 extra edges. */
288
24e47c76 289DEBUG_FUNCTION void
d329e058 290verify_edge_list (FILE *f, struct edge_list *elist)
402209ff 291{
e0082a72 292 int pred, succ, index;
402209ff 293 edge e;
e0082a72 294 basic_block bb, p, s;
628f6a4e 295 edge_iterator ei;
402209ff 296
fefa31b5
DM
297 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
298 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
402209ff 299 {
628f6a4e 300 FOR_EACH_EDGE (e, ei, bb->succs)
402209ff 301 {
0b17ab2f
RH
302 pred = e->src->index;
303 succ = e->dest->index;
402209ff
JH
304 index = EDGE_INDEX (elist, e->src, e->dest);
305 if (index == EDGE_INDEX_NO_EDGE)
306 {
307 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
308 continue;
309 }
4891442b 310
0b17ab2f 311 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
402209ff 312 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
0b17ab2f
RH
313 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
314 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
402209ff 315 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
0b17ab2f
RH
316 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
317 }
318 }
319
e0082a72 320 /* We've verified that all the edges are in the list, now lets make sure
532aafad 321 there are no spurious edges in the list. This is an expensive check! */
402209ff 322
fefa31b5
DM
323 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR_FOR_FN (cfun),
324 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
325 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
402209ff 326 {
402209ff
JH
327 int found_edge = 0;
328
628f6a4e 329 FOR_EACH_EDGE (e, ei, p->succs)
402209ff
JH
330 if (e->dest == s)
331 {
332 found_edge = 1;
333 break;
334 }
4891442b 335
628f6a4e 336 FOR_EACH_EDGE (e, ei, s->preds)
402209ff
JH
337 if (e->src == p)
338 {
339 found_edge = 1;
340 break;
341 }
4891442b 342
e0082a72 343 if (EDGE_INDEX (elist, p, s)
402209ff
JH
344 == EDGE_INDEX_NO_EDGE && found_edge != 0)
345 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
e0082a72
ZD
346 p->index, s->index);
347 if (EDGE_INDEX (elist, p, s)
402209ff
JH
348 != EDGE_INDEX_NO_EDGE && found_edge == 0)
349 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
e0082a72 350 p->index, s->index, EDGE_INDEX (elist, p, s));
402209ff 351 }
402209ff
JH
352}
353
c8e9d8c3
RB
354
355/* Functions to compute control dependences. */
356
357/* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
358void
359control_dependences::set_control_dependence_map_bit (basic_block bb,
360 int edge_index)
361{
fefa31b5 362 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
c8e9d8c3 363 return;
fefa31b5 364 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
c8e9d8c3
RB
365 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
366}
367
368/* Clear all control dependences for block BB. */
369void
370control_dependences::clear_control_dependence_bitmap (basic_block bb)
371{
372 bitmap_clear (control_dependence_map[bb->index]);
373}
374
375/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
376 This function is necessary because some blocks have negative numbers. */
377
378static inline basic_block
379find_pdom (basic_block block)
380{
fefa31b5 381 gcc_assert (block != ENTRY_BLOCK_PTR_FOR_FN (cfun));
c8e9d8c3 382
fefa31b5
DM
383 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
384 return EXIT_BLOCK_PTR_FOR_FN (cfun);
c8e9d8c3
RB
385 else
386 {
387 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
388 if (! bb)
fefa31b5 389 return EXIT_BLOCK_PTR_FOR_FN (cfun);
c8e9d8c3
RB
390 return bb;
391 }
392}
393
394/* Determine all blocks' control dependences on the given edge with edge_list
395 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
396
397void
398control_dependences::find_control_dependence (int edge_index)
399{
400 basic_block current_block;
401 basic_block ending_block;
402
30fd2977 403 gcc_assert (get_edge_src (edge_index) != EXIT_BLOCK_PTR_FOR_FN (cfun));
c8e9d8c3 404
30fd2977
RB
405 /* For abnormal edges, we don't make current_block control
406 dependent because instructions that throw are always necessary
407 anyway. */
408 edge e = find_edge (get_edge_src (edge_index), get_edge_dest (edge_index));
409 if (e->flags & EDGE_ABNORMAL)
410 return;
411
412 if (get_edge_src (edge_index) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
fefa31b5 413 ending_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
c8e9d8c3 414 else
30fd2977 415 ending_block = find_pdom (get_edge_src (edge_index));
c8e9d8c3 416
30fd2977 417 for (current_block = get_edge_dest (edge_index);
fefa31b5
DM
418 current_block != ending_block
419 && current_block != EXIT_BLOCK_PTR_FOR_FN (cfun);
c8e9d8c3 420 current_block = find_pdom (current_block))
30fd2977 421 set_control_dependence_map_bit (current_block, edge_index);
c8e9d8c3
RB
422}
423
424/* Record all blocks' control dependences on all edges in the edge
425 list EL, ala Morgan, Section 3.6. */
426
30fd2977 427control_dependences::control_dependences ()
c8e9d8c3
RB
428{
429 timevar_push (TV_CONTROL_DEPENDENCES);
30fd2977
RB
430
431 /* Initialize the edge list. */
432 int num_edges = 0;
433 basic_block bb;
434 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
435 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
436 num_edges += EDGE_COUNT (bb->succs);
437 m_el.create (num_edges);
438 edge e;
439 edge_iterator ei;
440 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
441 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
442 FOR_EACH_EDGE (e, ei, bb->succs)
443 m_el.quick_push (std::make_pair (e->src->index, e->dest->index));
444
8b1c6fd7
DM
445 control_dependence_map.create (last_basic_block_for_fn (cfun));
446 for (int i = 0; i < last_basic_block_for_fn (cfun); ++i)
c8e9d8c3 447 control_dependence_map.quick_push (BITMAP_ALLOC (NULL));
30fd2977 448 for (int i = 0; i < num_edges; ++i)
c8e9d8c3 449 find_control_dependence (i);
30fd2977 450
c8e9d8c3
RB
451 timevar_pop (TV_CONTROL_DEPENDENCES);
452}
453
454/* Free control dependences and the associated edge list. */
455
456control_dependences::~control_dependences ()
457{
f23c0742 458 for (unsigned i = 0; i < control_dependence_map.length (); ++i)
c8e9d8c3
RB
459 BITMAP_FREE (control_dependence_map[i]);
460 control_dependence_map.release ();
30fd2977 461 m_el.release ();
c8e9d8c3
RB
462}
463
464/* Returns the bitmap of edges the basic-block I is dependent on. */
465
466bitmap
467control_dependences::get_edges_dependent_on (int i)
468{
469 return control_dependence_map[i];
470}
471
30fd2977 472/* Returns the edge source with index I from the edge list. */
c8e9d8c3 473
30fd2977
RB
474basic_block
475control_dependences::get_edge_src (int i)
476{
477 return BASIC_BLOCK_FOR_FN (cfun, m_el[i].first);
478}
479
480/* Returns the edge destination with index I from the edge list. */
481
482basic_block
483control_dependences::get_edge_dest (int i)
c8e9d8c3 484{
30fd2977 485 return BASIC_BLOCK_FOR_FN (cfun, m_el[i].second);
c8e9d8c3
RB
486}
487
488
6de9cd9a
DN
489/* Given PRED and SUCC blocks, return the edge which connects the blocks.
490 If no such edge exists, return NULL. */
491
492edge
493find_edge (basic_block pred, basic_block succ)
494{
495 edge e;
628f6a4e 496 edge_iterator ei;
6de9cd9a 497
df95526b
JL
498 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
499 {
500 FOR_EACH_EDGE (e, ei, pred->succs)
501 if (e->dest == succ)
502 return e;
503 }
504 else
505 {
506 FOR_EACH_EDGE (e, ei, succ->preds)
507 if (e->src == pred)
508 return e;
509 }
6de9cd9a
DN
510
511 return NULL;
512}
513
402209ff
JH
514/* This routine will determine what, if any, edge there is between
515 a specified predecessor and successor. */
516
517int
d329e058 518find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
402209ff
JH
519{
520 int x;
4891442b 521
402209ff 522 for (x = 0; x < NUM_EDGES (edge_list); x++)
4891442b
RK
523 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
524 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
525 return x;
526
402209ff
JH
527 return (EDGE_INDEX_NO_EDGE);
528}
402209ff 529\f
6809cbf9
RH
530/* This routine will remove any fake predecessor edges for a basic block.
531 When the edge is removed, it is also removed from whatever successor
402209ff
JH
532 list it is in. */
533
534static void
6809cbf9 535remove_fake_predecessors (basic_block bb)
402209ff
JH
536{
537 edge e;
628f6a4e 538 edge_iterator ei;
4891442b 539
628f6a4e 540 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
402209ff 541 {
628f6a4e
BE
542 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
543 remove_edge (e);
544 else
545 ei_next (&ei);
402209ff
JH
546 }
547}
548
549/* This routine will remove all fake edges from the flow graph. If
550 we remove all fake successors, it will automatically remove all
551 fake predecessors. */
552
553void
d329e058 554remove_fake_edges (void)
402209ff 555{
e0082a72 556 basic_block bb;
402209ff 557
fefa31b5 558 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
6809cbf9 559 remove_fake_predecessors (bb);
402209ff
JH
560}
561
6809cbf9
RH
562/* This routine will remove all fake edges to the EXIT_BLOCK. */
563
564void
565remove_fake_exit_edges (void)
566{
fefa31b5 567 remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun));
6809cbf9
RH
568}
569
570
402209ff
JH
571/* This function will add a fake edge between any block which has no
572 successors, and the exit block. Some data flow equations require these
573 edges to exist. */
574
575void
d329e058 576add_noreturn_fake_exit_edges (void)
402209ff 577{
e0082a72 578 basic_block bb;
402209ff 579
11cd3bed 580 FOR_EACH_BB_FN (bb, cfun)
628f6a4e 581 if (EDGE_COUNT (bb->succs) == 0)
fefa31b5 582 make_single_succ_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
402209ff
JH
583}
584
585/* This function adds a fake edge between any infinite loops to the
586 exit block. Some optimizations require a path from each node to
587 the exit node.
588
589 See also Morgan, Figure 3.10, pp. 82-83.
590
591 The current implementation is ugly, not attempting to minimize the
592 number of inserted fake edges. To reduce the number of fake edges
593 to insert, add fake edges from _innermost_ loops containing only
594 nodes not reachable from the exit block. */
595
596void
d329e058 597connect_infinite_loops_to_exit (void)
402209ff 598{
402209ff
JH
599 /* Perform depth-first search in the reverse graph to find nodes
600 reachable from the exit block. */
35bfaf4d
TS
601 depth_first_search dfs;
602 dfs.add_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
402209ff
JH
603
604 /* Repeatedly add fake edges, updating the unreachable nodes. */
35bfaf4d 605 basic_block unvisited_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
402209ff
JH
606 while (1)
607 {
35bfaf4d 608 unvisited_block = dfs.execute (unvisited_block);
402209ff
JH
609 if (!unvisited_block)
610 break;
4891442b 611
35bfaf4d 612 basic_block deadend_block = dfs_find_deadend (unvisited_block);
357067f2
JH
613 edge e = make_edge (deadend_block, EXIT_BLOCK_PTR_FOR_FN (cfun),
614 EDGE_FAKE);
357067f2 615 e->probability = profile_probability::never ();
35bfaf4d 616 dfs.add_bb (deadend_block);
402209ff 617 }
402209ff
JH
618}
619\f
6fb5fa3c 620/* Compute reverse top sort order. This is computing a post order
dd5a833e 621 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
6fb5fa3c
DB
622 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
623 true, unreachable blocks are deleted. */
4891442b 624
f91a0beb 625int
b8698a0f 626post_order_compute (int *post_order, bool include_entry_exit,
6fb5fa3c 627 bool delete_unreachable)
402209ff 628{
f91a0beb 629 int post_order_num = 0;
6fb5fa3c 630 int count;
402209ff 631
f91a0beb
KZ
632 if (include_entry_exit)
633 post_order[post_order_num++] = EXIT_BLOCK;
634
402209ff 635 /* Allocate stack for back-tracking up CFG. */
792bb49b 636 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
402209ff
JH
637
638 /* Allocate bitmap to track nodes that have been visited. */
7ba9e72d 639 auto_sbitmap visited (last_basic_block_for_fn (cfun));
402209ff
JH
640
641 /* None of the nodes in the CFG have been visited yet. */
f61e445a 642 bitmap_clear (visited);
402209ff
JH
643
644 /* Push the first edge on to the stack. */
792bb49b 645 stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
402209ff 646
792bb49b 647 while (!stack.is_empty ())
402209ff 648 {
402209ff
JH
649 basic_block src;
650 basic_block dest;
651
652 /* Look at the edge on the top of the stack. */
792bb49b 653 edge_iterator ei = stack.last ();
628f6a4e
BE
654 src = ei_edge (ei)->src;
655 dest = ei_edge (ei)->dest;
402209ff
JH
656
657 /* Check if the edge destination has been visited yet. */
fefa31b5
DM
658 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
659 && ! bitmap_bit_p (visited, dest->index))
402209ff
JH
660 {
661 /* Mark that we have visited the destination. */
d7c028c0 662 bitmap_set_bit (visited, dest->index);
402209ff 663
628f6a4e 664 if (EDGE_COUNT (dest->succs) > 0)
4891442b
RK
665 /* Since the DEST node has been visited for the first
666 time, check its successors. */
792bb49b 667 stack.quick_push (ei_start (dest->succs));
402209ff 668 else
f91a0beb 669 post_order[post_order_num++] = dest->index;
402209ff
JH
670 }
671 else
672 {
fefa31b5
DM
673 if (ei_one_before_end_p (ei)
674 && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
6fb5fa3c 675 post_order[post_order_num++] = src->index;
402209ff 676
628f6a4e 677 if (!ei_one_before_end_p (ei))
792bb49b 678 ei_next (&stack.last ());
402209ff 679 else
792bb49b 680 stack.pop ();
402209ff
JH
681 }
682 }
683
f91a0beb 684 if (include_entry_exit)
6fb5fa3c
DB
685 {
686 post_order[post_order_num++] = ENTRY_BLOCK;
687 count = post_order_num;
688 }
b8698a0f 689 else
6fb5fa3c 690 count = post_order_num + 2;
b8698a0f 691
6fb5fa3c
DB
692 /* Delete the unreachable blocks if some were found and we are
693 supposed to do it. */
0cae8d31 694 if (delete_unreachable && (count != n_basic_blocks_for_fn (cfun)))
6fb5fa3c
DB
695 {
696 basic_block b;
697 basic_block next_bb;
fefa31b5
DM
698 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
699 != EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb)
6fb5fa3c
DB
700 {
701 next_bb = b->next_bb;
b8698a0f 702
d7c028c0 703 if (!(bitmap_bit_p (visited, b->index)))
6fb5fa3c
DB
704 delete_basic_block (b);
705 }
b8698a0f 706
6fb5fa3c
DB
707 tidy_fallthru_edges ();
708 }
709
6fb5fa3c
DB
710 return post_order_num;
711}
712
713
03b06a83
SB
714/* Helper routine for inverted_post_order_compute
715 flow_dfs_compute_reverse_execute, and the reverse-CFG
716 deapth first search in dominance.c.
6fb5fa3c
DB
717 BB has to belong to a region of CFG
718 unreachable by inverted traversal from the exit.
719 i.e. there's no control flow path from ENTRY to EXIT
720 that contains this BB.
721 This can happen in two cases - if there's an infinite loop
722 or if there's a block that has no successor
723 (call to a function with no return).
b8698a0f
L
724 Some RTL passes deal with this condition by
725 calling connect_infinite_loops_to_exit () and/or
6fb5fa3c
DB
726 add_noreturn_fake_exit_edges ().
727 However, those methods involve modifying the CFG itself
728 which may not be desirable.
729 Hence, we deal with the infinite loop/no return cases
730 by identifying a unique basic block that can reach all blocks
731 in such a region by inverted traversal.
732 This function returns a basic block that guarantees
733 that all blocks in the region are reachable
734 by starting an inverted traversal from the returned block. */
735
03b06a83 736basic_block
6fb5fa3c
DB
737dfs_find_deadend (basic_block bb)
738{
34e5c511
RB
739 auto_bitmap visited;
740 basic_block next = bb;
6fb5fa3c
DB
741
742 for (;;)
743 {
34e5c511
RB
744 if (EDGE_COUNT (next->succs) == 0)
745 return next;
6fb5fa3c 746
34e5c511
RB
747 if (! bitmap_set_bit (visited, next->index))
748 return bb;
749
750 bb = next;
44ab146a
RB
751 /* If we are in an analyzed cycle make sure to try exiting it.
752 Note this is a heuristic only and expected to work when loop
753 fixup is needed as well. */
754 if (! bb->loop_father
755 || ! loop_outer (bb->loop_father))
34e5c511 756 next = EDGE_SUCC (bb, 0)->dest;
44ab146a
RB
757 else
758 {
759 edge_iterator ei;
760 edge e;
761 FOR_EACH_EDGE (e, ei, bb->succs)
762 if (loop_exit_edge_p (bb->loop_father, e))
763 break;
34e5c511 764 next = e ? e->dest : EDGE_SUCC (bb, 0)->dest;
44ab146a 765 }
6fb5fa3c
DB
766 }
767
768 gcc_unreachable ();
769}
770
771
772/* Compute the reverse top sort order of the inverted CFG
773 i.e. starting from the exit block and following the edges backward
774 (from successors to predecessors).
775 This ordering can be used for forward dataflow problems among others.
776
e4dbb0d4
JH
777 Optionally if START_POINTS is specified, start from exit block and all
778 basic blocks in START_POINTS. This is used by CD-DCE.
779
6fb5fa3c
DB
780 This function assumes that all blocks in the CFG are reachable
781 from the ENTRY (but not necessarily from EXIT).
782
783 If there's an infinite loop,
784 a simple inverted traversal starting from the blocks
785 with no successors can't visit all blocks.
786 To solve this problem, we first do inverted traversal
787 starting from the blocks with no successor.
b8698a0f 788 And if there's any block left that's not visited by the regular
6fb5fa3c
DB
789 inverted traversal from EXIT,
790 those blocks are in such problematic region.
b8698a0f 791 Among those, we find one block that has
6fb5fa3c 792 any visited predecessor (which is an entry into such a region),
b8698a0f 793 and start looking for a "dead end" from that block
6fb5fa3c
DB
794 and do another inverted traversal from that block. */
795
6fa95e09
TS
796void
797inverted_post_order_compute (vec<int> *post_order,
e4dbb0d4 798 sbitmap *start_points)
6fb5fa3c
DB
799{
800 basic_block bb;
6fa95e09 801 post_order->reserve_exact (n_basic_blocks_for_fn (cfun));
6fb5fa3c 802
a6c764d0
MM
803 if (flag_checking)
804 verify_no_unreachable_blocks ();
a352b710 805
6fb5fa3c 806 /* Allocate stack for back-tracking up CFG. */
792bb49b 807 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
6fb5fa3c
DB
808
809 /* Allocate bitmap to track nodes that have been visited. */
7ba9e72d 810 auto_sbitmap visited (last_basic_block_for_fn (cfun));
6fb5fa3c
DB
811
812 /* None of the nodes in the CFG have been visited yet. */
f61e445a 813 bitmap_clear (visited);
6fb5fa3c 814
e4dbb0d4
JH
815 if (start_points)
816 {
817 FOR_ALL_BB_FN (bb, cfun)
818 if (bitmap_bit_p (*start_points, bb->index)
819 && EDGE_COUNT (bb->preds) > 0)
820 {
792bb49b 821 stack.quick_push (ei_start (bb->preds));
e4dbb0d4
JH
822 bitmap_set_bit (visited, bb->index);
823 }
824 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds))
825 {
792bb49b 826 stack.quick_push (ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds));
e4dbb0d4
JH
827 bitmap_set_bit (visited, EXIT_BLOCK_PTR_FOR_FN (cfun)->index);
828 }
829 }
830 else
6fb5fa3c 831 /* Put all blocks that have no successor into the initial work list. */
04a90bec 832 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
833 if (EDGE_COUNT (bb->succs) == 0)
834 {
835 /* Push the initial edge on to the stack. */
b8698a0f 836 if (EDGE_COUNT (bb->preds) > 0)
6fb5fa3c 837 {
792bb49b 838 stack.quick_push (ei_start (bb->preds));
d7c028c0 839 bitmap_set_bit (visited, bb->index);
6fb5fa3c
DB
840 }
841 }
842
b8698a0f 843 do
6fb5fa3c
DB
844 {
845 bool has_unvisited_bb = false;
846
847 /* The inverted traversal loop. */
792bb49b 848 while (!stack.is_empty ())
6fb5fa3c
DB
849 {
850 edge_iterator ei;
851 basic_block pred;
852
853 /* Look at the edge on the top of the stack. */
792bb49b 854 ei = stack.last ();
6fb5fa3c
DB
855 bb = ei_edge (ei)->dest;
856 pred = ei_edge (ei)->src;
857
858 /* Check if the predecessor has been visited yet. */
d7c028c0 859 if (! bitmap_bit_p (visited, pred->index))
6fb5fa3c
DB
860 {
861 /* Mark that we have visited the destination. */
d7c028c0 862 bitmap_set_bit (visited, pred->index);
6fb5fa3c
DB
863
864 if (EDGE_COUNT (pred->preds) > 0)
865 /* Since the predecessor node has been visited for the first
866 time, check its predecessors. */
792bb49b 867 stack.quick_push (ei_start (pred->preds));
6fb5fa3c 868 else
6fa95e09 869 post_order->quick_push (pred->index);
6fb5fa3c
DB
870 }
871 else
872 {
fefa31b5
DM
873 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
874 && ei_one_before_end_p (ei))
6fa95e09 875 post_order->quick_push (bb->index);
6fb5fa3c
DB
876
877 if (!ei_one_before_end_p (ei))
792bb49b 878 ei_next (&stack.last ());
6fb5fa3c 879 else
792bb49b 880 stack.pop ();
6fb5fa3c
DB
881 }
882 }
883
b8698a0f 884 /* Detect any infinite loop and activate the kludge.
6fb5fa3c 885 Note that this doesn't check EXIT_BLOCK itself
792bb49b 886 since EXIT_BLOCK is always added after the outer do-while loop. */
fefa31b5
DM
887 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
888 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
d7c028c0 889 if (!bitmap_bit_p (visited, bb->index))
6fb5fa3c
DB
890 {
891 has_unvisited_bb = true;
892
893 if (EDGE_COUNT (bb->preds) > 0)
894 {
895 edge_iterator ei;
896 edge e;
897 basic_block visited_pred = NULL;
898
899 /* Find an already visited predecessor. */
900 FOR_EACH_EDGE (e, ei, bb->preds)
901 {
d7c028c0 902 if (bitmap_bit_p (visited, e->src->index))
6fb5fa3c
DB
903 visited_pred = e->src;
904 }
905
906 if (visited_pred)
907 {
908 basic_block be = dfs_find_deadend (bb);
909 gcc_assert (be != NULL);
d7c028c0 910 bitmap_set_bit (visited, be->index);
792bb49b 911 stack.quick_push (ei_start (be->preds));
6fb5fa3c
DB
912 break;
913 }
914 }
915 }
916
792bb49b 917 if (has_unvisited_bb && stack.is_empty ())
6fb5fa3c 918 {
792bb49b 919 /* No blocks are reachable from EXIT at all.
6fb5fa3c 920 Find a dead-end from the ENTRY, and restart the iteration. */
fefa31b5 921 basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6fb5fa3c 922 gcc_assert (be != NULL);
d7c028c0 923 bitmap_set_bit (visited, be->index);
792bb49b 924 stack.quick_push (ei_start (be->preds));
6fb5fa3c
DB
925 }
926
b8698a0f 927 /* The only case the below while fires is
6fb5fa3c
DB
928 when there's an infinite loop. */
929 }
792bb49b 930 while (!stack.is_empty ());
6fb5fa3c
DB
931
932 /* EXIT_BLOCK is always included. */
6fa95e09 933 post_order->quick_push (EXIT_BLOCK);
402209ff
JH
934}
935
1bef9b23
RB
936/* Compute the depth first search order of FN and store in the array
937 PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
938 reverse completion number for each node. Returns the number of nodes
939 visited. A depth first search tries to get as far away from the starting
940 point as quickly as possible.
f91a0beb 941
1bef9b23
RB
942 In case the function has unreachable blocks the number of nodes
943 visited does not include them.
944
945 pre_order is a really a preorder numbering of the graph.
946 rev_post_order is really a reverse postorder numbering of the graph. */
402209ff
JH
947
948int
1bef9b23
RB
949pre_and_rev_post_order_compute_fn (struct function *fn,
950 int *pre_order, int *rev_post_order,
951 bool include_entry_exit)
402209ff 952{
f91a0beb 953 int pre_order_num = 0;
1c93f6ce 954 int rev_post_order_num = n_basic_blocks_for_fn (fn) - 1;
402209ff
JH
955
956 /* Allocate stack for back-tracking up CFG. */
1c93f6ce 957 auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (fn) + 1);
402209ff 958
f91a0beb
KZ
959 if (include_entry_exit)
960 {
961 if (pre_order)
962 pre_order[pre_order_num] = ENTRY_BLOCK;
963 pre_order_num++;
964 if (rev_post_order)
e5f95b66 965 rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
f91a0beb 966 }
b8698a0f 967 else
f91a0beb
KZ
968 rev_post_order_num -= NUM_FIXED_BLOCKS;
969
5a34952e
RB
970 /* BB flag to track nodes that have been visited. */
971 auto_bb_flag visited (fn);
402209ff
JH
972
973 /* Push the first edge on to the stack. */
792bb49b 974 stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs));
402209ff 975
792bb49b 976 while (!stack.is_empty ())
402209ff 977 {
402209ff
JH
978 basic_block src;
979 basic_block dest;
980
981 /* Look at the edge on the top of the stack. */
792bb49b 982 edge_iterator ei = stack.last ();
628f6a4e
BE
983 src = ei_edge (ei)->src;
984 dest = ei_edge (ei)->dest;
402209ff
JH
985
986 /* Check if the edge destination has been visited yet. */
fefa31b5 987 if (dest != EXIT_BLOCK_PTR_FOR_FN (fn)
5a34952e 988 && ! (dest->flags & visited))
402209ff
JH
989 {
990 /* Mark that we have visited the destination. */
5a34952e 991 dest->flags |= visited;
402209ff 992
f91a0beb
KZ
993 if (pre_order)
994 pre_order[pre_order_num] = dest->index;
f5f53ae3 995
f91a0beb 996 pre_order_num++;
402209ff 997
628f6a4e 998 if (EDGE_COUNT (dest->succs) > 0)
4891442b
RK
999 /* Since the DEST node has been visited for the first
1000 time, check its successors. */
792bb49b 1001 stack.quick_push (ei_start (dest->succs));
f91a0beb 1002 else if (rev_post_order)
4891442b
RK
1003 /* There are no successors for the DEST node so assign
1004 its reverse completion number. */
f91a0beb 1005 rev_post_order[rev_post_order_num--] = dest->index;
402209ff
JH
1006 }
1007 else
1008 {
1bef9b23 1009 if (ei_one_before_end_p (ei)
fefa31b5 1010 && src != ENTRY_BLOCK_PTR_FOR_FN (fn)
f91a0beb 1011 && rev_post_order)
4891442b
RK
1012 /* There are no more successors for the SRC node
1013 so assign its reverse completion number. */
f91a0beb 1014 rev_post_order[rev_post_order_num--] = src->index;
402209ff 1015
628f6a4e 1016 if (!ei_one_before_end_p (ei))
792bb49b 1017 ei_next (&stack.last ());
402209ff 1018 else
792bb49b 1019 stack.pop ();
402209ff
JH
1020 }
1021 }
1022
f91a0beb
KZ
1023 if (include_entry_exit)
1024 {
1025 if (pre_order)
1026 pre_order[pre_order_num] = EXIT_BLOCK;
1027 pre_order_num++;
1028 if (rev_post_order)
e5f95b66 1029 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
f91a0beb 1030 }
1bef9b23 1031
5a34952e 1032 /* Clear the temporarily allocated flag. */
1e89ab6c
RB
1033 if (!rev_post_order)
1034 rev_post_order = pre_order;
5a34952e
RB
1035 for (int i = 0; i < pre_order_num; ++i)
1036 BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags &= ~visited;
1037
1bef9b23
RB
1038 return pre_order_num;
1039}
1040
1041/* Like pre_and_rev_post_order_compute_fn but operating on the
1042 current function and asserting that all nodes were visited. */
1043
1044int
1045pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
1046 bool include_entry_exit)
1047{
1048 int pre_order_num
1049 = pre_and_rev_post_order_compute_fn (cfun, pre_order, rev_post_order,
1050 include_entry_exit);
1051 if (include_entry_exit)
1052 /* The number of nodes visited should be the number of blocks. */
0cae8d31 1053 gcc_assert (pre_order_num == n_basic_blocks_for_fn (cfun));
f91a0beb
KZ
1054 else
1055 /* The number of nodes visited should be the number of blocks minus
1056 the entry and exit blocks which are not visited here. */
0cae8d31
DM
1057 gcc_assert (pre_order_num
1058 == (n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS));
4891442b 1059
f91a0beb 1060 return pre_order_num;
402209ff
JH
1061}
1062
78ea9abc
RB
1063/* Unlike pre_and_rev_post_order_compute we fill rev_post_order backwards
1064 so iterating in RPO order needs to start with rev_post_order[n - 1]
1065 going to rev_post_order[0]. If FOR_ITERATION is true then try to
1066 make CFG cycles fit into small contiguous regions of the RPO order.
1067 When FOR_ITERATION is true this requires up-to-date loop structures. */
1068
1069int
1070rev_post_order_and_mark_dfs_back_seme (struct function *fn, edge entry,
1071 bitmap exit_bbs, bool for_iteration,
1072 int *rev_post_order)
1073{
1074 int pre_order_num = 0;
1075 int rev_post_order_num = 0;
1076
1077 /* Allocate stack for back-tracking up CFG. Worst case we need
1078 O(n^2) edges but the following should suffice in practice without
1079 a need to re-allocate. */
1080 auto_vec<edge, 20> stack (2 * n_basic_blocks_for_fn (fn));
1081
1082 int *pre = XNEWVEC (int, 2 * last_basic_block_for_fn (fn));
1083 int *post = pre + last_basic_block_for_fn (fn);
1084
1085 /* BB flag to track nodes that have been visited. */
1086 auto_bb_flag visited (fn);
1087 /* BB flag to track which nodes have post[] assigned to avoid
1088 zeroing post. */
1089 auto_bb_flag post_assigned (fn);
1090
1091 /* Push the first edge on to the stack. */
1092 stack.quick_push (entry);
1093
1094 while (!stack.is_empty ())
1095 {
1096 basic_block src;
1097 basic_block dest;
1098
1099 /* Look at the edge on the top of the stack. */
1100 int idx = stack.length () - 1;
1101 edge e = stack[idx];
1102 src = e->src;
1103 dest = e->dest;
1104 e->flags &= ~EDGE_DFS_BACK;
1105
1106 /* Check if the edge destination has been visited yet. */
1107 if (! bitmap_bit_p (exit_bbs, dest->index)
1108 && ! (dest->flags & visited))
1109 {
1110 /* Mark that we have visited the destination. */
1111 dest->flags |= visited;
1112
1113 pre[dest->index] = pre_order_num++;
1114
1115 if (EDGE_COUNT (dest->succs) > 0)
1116 {
1117 /* Since the DEST node has been visited for the first
1118 time, check its successors. */
1119 /* Push the edge vector in reverse to match previous behavior. */
1120 stack.reserve (EDGE_COUNT (dest->succs));
1121 for (int i = EDGE_COUNT (dest->succs) - 1; i >= 0; --i)
1122 stack.quick_push (EDGE_SUCC (dest, i));
1123 /* Generalize to handle more successors? */
1124 if (for_iteration
1125 && EDGE_COUNT (dest->succs) == 2)
1126 {
1127 edge &e1 = stack[stack.length () - 2];
1128 if (loop_exit_edge_p (e1->src->loop_father, e1))
1129 std::swap (e1, stack.last ());
1130 }
1131 }
1132 else
1133 {
1134 /* There are no successors for the DEST node so assign
1135 its reverse completion number. */
1136 post[dest->index] = rev_post_order_num;
1137 dest->flags |= post_assigned;
1138 rev_post_order[rev_post_order_num] = dest->index;
1139 rev_post_order_num++;
1140 }
1141 }
1142 else
1143 {
1144 if (dest->flags & visited
1145 && src != entry->src
1146 && pre[src->index] >= pre[dest->index]
1147 && !(dest->flags & post_assigned))
1148 e->flags |= EDGE_DFS_BACK;
1149
1150 if (idx != 0 && stack[idx - 1]->src != src)
1151 {
1152 /* There are no more successors for the SRC node
1153 so assign its reverse completion number. */
1154 post[src->index] = rev_post_order_num;
1155 src->flags |= post_assigned;
1156 rev_post_order[rev_post_order_num] = src->index;
1157 rev_post_order_num++;
1158 }
1159
1160 stack.pop ();
1161 }
1162 }
1163
1164 XDELETEVEC (pre);
1165
1166 /* Clear the temporarily allocated flags. */
1167 for (int i = 0; i < rev_post_order_num; ++i)
1168 BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags
1169 &= ~(post_assigned|visited);
1170
1171 return rev_post_order_num;
1172}
1173
1174
1175
402209ff 1176/* Compute the depth first search order on the _reverse_ graph and
78ea9abc 1177 store it in the array DFS_ORDER, marking the nodes visited in VISITED.
402209ff
JH
1178 Returns the number of nodes visited.
1179
1180 The computation is split into three pieces:
1181
1182 flow_dfs_compute_reverse_init () creates the necessary data
1183 structures.
1184
1185 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1186 structures. The block will start the search.
1187
1188 flow_dfs_compute_reverse_execute () continues (or starts) the
1189 search using the block on the top of the stack, stopping when the
1190 stack is empty.
1191
1192 flow_dfs_compute_reverse_finish () destroys the necessary data
1193 structures.
1194
1195 Thus, the user will probably call ..._init(), call ..._add_bb() to
1196 add a beginning basic block to the stack, call ..._execute(),
1197 possibly add another bb to the stack and again call ..._execute(),
1198 ..., and finally call _finish(). */
1199
1200/* Initialize the data structures used for depth-first search on the
1201 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1202 added to the basic block stack. DATA is the current depth-first
da7d8304 1203 search context. If INITIALIZE_STACK is nonzero, there is an
402209ff
JH
1204 element on the stack. */
1205
35bfaf4d
TS
1206depth_first_search::depth_first_search () :
1207 m_stack (n_basic_blocks_for_fn (cfun)),
1208 m_visited_blocks (last_basic_block_for_fn (cfun))
402209ff 1209{
35bfaf4d 1210 bitmap_clear (m_visited_blocks);
402209ff
JH
1211}
1212
1213/* Add the specified basic block to the top of the dfs data
1214 structures. When the search continues, it will start at the
1215 block. */
1216
35bfaf4d
TS
1217void
1218depth_first_search::add_bb (basic_block bb)
402209ff 1219{
35bfaf4d
TS
1220 m_stack.quick_push (bb);
1221 bitmap_set_bit (m_visited_blocks, bb->index);
402209ff
JH
1222}
1223
4891442b
RK
1224/* Continue the depth-first search through the reverse graph starting with the
1225 block at the stack's top and ending when the stack is empty. Visited nodes
1226 are marked. Returns an unvisited basic block, or NULL if there is none
1227 available. */
402209ff 1228
35bfaf4d
TS
1229basic_block
1230depth_first_search::execute (basic_block last_unvisited)
402209ff
JH
1231{
1232 basic_block bb;
1233 edge e;
628f6a4e 1234 edge_iterator ei;
402209ff 1235
35bfaf4d 1236 while (!m_stack.is_empty ())
402209ff 1237 {
35bfaf4d 1238 bb = m_stack.pop ();
4891442b 1239
db4a8254 1240 /* Perform depth-first search on adjacent vertices. */
628f6a4e 1241 FOR_EACH_EDGE (e, ei, bb->preds)
35bfaf4d
TS
1242 if (!bitmap_bit_p (m_visited_blocks, e->src->index))
1243 add_bb (e->src);
402209ff
JH
1244 }
1245
1246 /* Determine if there are unvisited basic blocks. */
24c75ec6 1247 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
35bfaf4d 1248 if (!bitmap_bit_p (m_visited_blocks, bb->index))
d7bd989c 1249 return bb;
4891442b 1250
402209ff
JH
1251 return NULL;
1252}
1253
2ecfd709
ZD
1254/* Performs dfs search from BB over vertices satisfying PREDICATE;
1255 if REVERSE, go against direction of edges. Returns number of blocks
1256 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1257int
d329e058 1258dfs_enumerate_from (basic_block bb, int reverse,
ed7a4b4b
KG
1259 bool (*predicate) (const_basic_block, const void *),
1260 basic_block *rslt, int rslt_max, const void *data)
2ecfd709
ZD
1261{
1262 basic_block *st, lbb;
1263 int sp = 0, tv = 0;
9e32d2be 1264
e144a2b3 1265 auto_bb_flag visited (cfun);
9e32d2be 1266
e144a2b3
RB
1267#define MARK_VISITED(BB) ((BB)->flags |= visited)
1268#define UNMARK_VISITED(BB) ((BB)->flags &= ~visited)
1269#define VISITED_P(BB) (((BB)->flags & visited) != 0)
2ecfd709 1270
c302207e 1271 st = XNEWVEC (basic_block, rslt_max);
2ecfd709 1272 rslt[tv++] = st[sp++] = bb;
9e32d2be 1273 MARK_VISITED (bb);
2ecfd709
ZD
1274 while (sp)
1275 {
1276 edge e;
628f6a4e 1277 edge_iterator ei;
2ecfd709
ZD
1278 lbb = st[--sp];
1279 if (reverse)
c22cacf3 1280 {
628f6a4e 1281 FOR_EACH_EDGE (e, ei, lbb->preds)
9e32d2be 1282 if (!VISITED_P (e->src) && predicate (e->src, data))
2ecfd709 1283 {
c22cacf3
MS
1284 gcc_assert (tv != rslt_max);
1285 rslt[tv++] = st[sp++] = e->src;
1286 MARK_VISITED (e->src);
2ecfd709 1287 }
c22cacf3 1288 }
2ecfd709 1289 else
c22cacf3 1290 {
628f6a4e 1291 FOR_EACH_EDGE (e, ei, lbb->succs)
9e32d2be 1292 if (!VISITED_P (e->dest) && predicate (e->dest, data))
2ecfd709 1293 {
c22cacf3
MS
1294 gcc_assert (tv != rslt_max);
1295 rslt[tv++] = st[sp++] = e->dest;
1296 MARK_VISITED (e->dest);
2ecfd709
ZD
1297 }
1298 }
1299 }
1300 free (st);
1301 for (sp = 0; sp < tv; sp++)
9e32d2be 1302 UNMARK_VISITED (rslt[sp]);
2ecfd709 1303 return tv;
9e32d2be
ZD
1304#undef MARK_VISITED
1305#undef UNMARK_VISITED
1306#undef VISITED_P
2ecfd709 1307}
bd454efd
SB
1308
1309
4c7f5fea 1310/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
c22cacf3 1311
4c7f5fea 1312 This algorithm can be found in Timothy Harvey's PhD thesis, at
708bde14 1313 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
4c7f5fea 1314 dominance algorithms.
bd454efd 1315
4c7f5fea 1316 First, we identify each join point, j (any node with more than one
c22cacf3 1317 incoming edge is a join point).
bd454efd 1318
4c7f5fea 1319 We then examine each predecessor, p, of j and walk up the dominator tree
c22cacf3
MS
1320 starting at p.
1321
4c7f5fea
DB
1322 We stop the walk when we reach j's immediate dominator - j is in the
1323 dominance frontier of each of the nodes in the walk, except for j's
1324 immediate dominator. Intuitively, all of the rest of j's dominators are
1325 shared by j's predecessors as well.
1326 Since they dominate j, they will not have j in their dominance frontiers.
1327
c22cacf3 1328 The number of nodes touched by this algorithm is equal to the size
4c7f5fea
DB
1329 of the dominance frontiers, no more, no less.
1330*/
bd454efd 1331
d78b7095
RB
1332void
1333compute_dominance_frontiers (bitmap_head *frontiers)
bd454efd 1334{
d78b7095
RB
1335 timevar_push (TV_DOM_FRONTIERS);
1336
4c7f5fea 1337 edge p;
628f6a4e 1338 edge_iterator ei;
4c7f5fea 1339 basic_block b;
11cd3bed 1340 FOR_EACH_BB_FN (b, cfun)
bd454efd 1341 {
4c7f5fea 1342 if (EDGE_COUNT (b->preds) >= 2)
bd454efd 1343 {
d78b7095 1344 basic_block domsb = get_immediate_dominator (CDI_DOMINATORS, b);
4c7f5fea
DB
1345 FOR_EACH_EDGE (p, ei, b->preds)
1346 {
1347 basic_block runner = p->src;
fefa31b5 1348 if (runner == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4c7f5fea 1349 continue;
c22cacf3 1350
4c7f5fea
DB
1351 while (runner != domsb)
1352 {
d78b7095 1353 if (!bitmap_set_bit (&frontiers[runner->index], b->index))
26eeea94 1354 break;
d78b7095 1355 runner = get_immediate_dominator (CDI_DOMINATORS, runner);
4c7f5fea
DB
1356 }
1357 }
87c476a2 1358 }
bd454efd 1359 }
bd454efd
SB
1360
1361 timevar_pop (TV_DOM_FRONTIERS);
1362}
25e87727
SB
1363
1364/* Given a set of blocks with variable definitions (DEF_BLOCKS),
1365 return a bitmap with all the blocks in the iterated dominance
1366 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1367 frontier information as returned by compute_dominance_frontiers.
1368
1369 The resulting set of blocks are the potential sites where PHI nodes
1370 are needed. The caller is responsible for freeing the memory
1371 allocated for the return value. */
1372
1373bitmap
0fc555fb 1374compute_idf (bitmap def_blocks, bitmap_head *dfs)
25e87727
SB
1375{
1376 bitmap_iterator bi;
1377 unsigned bb_index, i;
25e87727
SB
1378 bitmap phi_insertion_points;
1379
25e87727
SB
1380 phi_insertion_points = BITMAP_ALLOC (NULL);
1381
d78b7095
RB
1382 /* Seed the work set with all the blocks in DEF_BLOCKS. */
1383 auto_bitmap work_set;
1384 bitmap_copy (work_set, def_blocks);
1385 bitmap_tree_view (work_set);
25e87727 1386
d78b7095 1387 /* Pop a block off the workset, add every block that appears in
25e87727 1388 the original block's DF that we have not already processed to
d78b7095
RB
1389 the workset. Iterate until the workset is empty. Blocks
1390 which are added to the workset are potential sites for
25e87727 1391 PHI nodes. */
d78b7095 1392 while (!bitmap_empty_p (work_set))
25e87727 1393 {
d78b7095
RB
1394 /* The dominance frontier of a block is blocks after it so iterating
1395 on earlier blocks first is better.
1396 ??? Basic blocks are by no means guaranteed to be ordered in
1397 optimal order for this iteration. */
1398 bb_index = bitmap_first_set_bit (work_set);
1399 bitmap_clear_bit (work_set, bb_index);
25e87727
SB
1400
1401 /* Since the registration of NEW -> OLD name mappings is done
1402 separately from the call to update_ssa, when updating the SSA
1403 form, the basic blocks where new and/or old names are defined
1404 may have disappeared by CFG cleanup calls. In this case,
1405 we may pull a non-existing block from the work stack. */
8b1c6fd7
DM
1406 gcc_checking_assert (bb_index
1407 < (unsigned) last_basic_block_for_fn (cfun));
25e87727 1408
0fc555fb 1409 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
25e87727
SB
1410 0, i, bi)
1411 {
d78b7095 1412 bitmap_set_bit (work_set, i);
25e87727
SB
1413 bitmap_set_bit (phi_insertion_points, i);
1414 }
1415 }
1416
25e87727
SB
1417 return phi_insertion_points;
1418}
1419
3c2c4f22
SB
1420/* Intersection and union of preds/succs for sbitmap based data flow
1421 solvers. All four functions defined below take the same arguments:
1422 B is the basic block to perform the operation for. DST is the
1423 target sbitmap, i.e. the result. SRC is an sbitmap vector of size
1424 last_basic_block so that it can be indexed with basic block indices.
1425 DST may be (but does not have to be) SRC[B->index]. */
25e87727 1426
3c2c4f22
SB
1427/* Set the bitmap DST to the intersection of SRC of successors of
1428 basic block B. */
1429
1430void
d7c028c0 1431bitmap_intersection_of_succs (sbitmap dst, sbitmap *src, basic_block b)
3c2c4f22
SB
1432{
1433 unsigned int set_size = dst->size;
1434 edge e;
1435 unsigned ix;
1436
3c2c4f22
SB
1437 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1438 {
1439 e = EDGE_SUCC (b, ix);
fefa31b5 1440 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3c2c4f22
SB
1441 continue;
1442
f61e445a 1443 bitmap_copy (dst, src[e->dest->index]);
3c2c4f22
SB
1444 break;
1445 }
1446
1447 if (e == 0)
f61e445a 1448 bitmap_ones (dst);
3c2c4f22
SB
1449 else
1450 for (++ix; ix < EDGE_COUNT (b->succs); ix++)
1451 {
1452 unsigned int i;
1453 SBITMAP_ELT_TYPE *p, *r;
1454
1455 e = EDGE_SUCC (b, ix);
fefa31b5 1456 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3c2c4f22
SB
1457 continue;
1458
1459 p = src[e->dest->index]->elms;
1460 r = dst->elms;
1461 for (i = 0; i < set_size; i++)
1462 *r++ &= *p++;
1463 }
1464}
1465
1466/* Set the bitmap DST to the intersection of SRC of predecessors of
1467 basic block B. */
1468
1469void
d7c028c0 1470bitmap_intersection_of_preds (sbitmap dst, sbitmap *src, basic_block b)
3c2c4f22
SB
1471{
1472 unsigned int set_size = dst->size;
1473 edge e;
1474 unsigned ix;
1475
3c2c4f22
SB
1476 for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1477 {
1478 e = EDGE_PRED (b, ix);
fefa31b5 1479 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
3c2c4f22
SB
1480 continue;
1481
f61e445a 1482 bitmap_copy (dst, src[e->src->index]);
3c2c4f22
SB
1483 break;
1484 }
1485
1486 if (e == 0)
f61e445a 1487 bitmap_ones (dst);
3c2c4f22
SB
1488 else
1489 for (++ix; ix < EDGE_COUNT (b->preds); ix++)
1490 {
1491 unsigned int i;
1492 SBITMAP_ELT_TYPE *p, *r;
1493
1494 e = EDGE_PRED (b, ix);
fefa31b5 1495 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
3c2c4f22
SB
1496 continue;
1497
1498 p = src[e->src->index]->elms;
1499 r = dst->elms;
1500 for (i = 0; i < set_size; i++)
1501 *r++ &= *p++;
1502 }
1503}
1504
1505/* Set the bitmap DST to the union of SRC of successors of
1506 basic block B. */
1507
1508void
d7c028c0 1509bitmap_union_of_succs (sbitmap dst, sbitmap *src, basic_block b)
3c2c4f22
SB
1510{
1511 unsigned int set_size = dst->size;
1512 edge e;
1513 unsigned ix;
1514
3c2c4f22
SB
1515 for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1516 {
1517 e = EDGE_SUCC (b, ix);
fefa31b5 1518 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3c2c4f22
SB
1519 continue;
1520
f61e445a 1521 bitmap_copy (dst, src[e->dest->index]);
3c2c4f22
SB
1522 break;
1523 }
1524
1525 if (ix == EDGE_COUNT (b->succs))
f61e445a 1526 bitmap_clear (dst);
3c2c4f22
SB
1527 else
1528 for (ix++; ix < EDGE_COUNT (b->succs); ix++)
1529 {
1530 unsigned int i;
1531 SBITMAP_ELT_TYPE *p, *r;
1532
1533 e = EDGE_SUCC (b, ix);
fefa31b5 1534 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3c2c4f22
SB
1535 continue;
1536
1537 p = src[e->dest->index]->elms;
1538 r = dst->elms;
1539 for (i = 0; i < set_size; i++)
1540 *r++ |= *p++;
1541 }
1542}
1543
1544/* Set the bitmap DST to the union of SRC of predecessors of
1545 basic block B. */
1546
1547void
d7c028c0 1548bitmap_union_of_preds (sbitmap dst, sbitmap *src, basic_block b)
3c2c4f22
SB
1549{
1550 unsigned int set_size = dst->size;
1551 edge e;
1552 unsigned ix;
1553
3c2c4f22
SB
1554 for (ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1555 {
1556 e = EDGE_PRED (b, ix);
fefa31b5 1557 if (e->src== ENTRY_BLOCK_PTR_FOR_FN (cfun))
3c2c4f22
SB
1558 continue;
1559
f61e445a 1560 bitmap_copy (dst, src[e->src->index]);
3c2c4f22
SB
1561 break;
1562 }
1563
1564 if (ix == EDGE_COUNT (b->preds))
f61e445a 1565 bitmap_clear (dst);
3c2c4f22
SB
1566 else
1567 for (ix++; ix < EDGE_COUNT (b->preds); ix++)
1568 {
1569 unsigned int i;
1570 SBITMAP_ELT_TYPE *p, *r;
1571
1572 e = EDGE_PRED (b, ix);
fefa31b5 1573 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
3c2c4f22
SB
1574 continue;
1575
1576 p = src[e->src->index]->elms;
1577 r = dst->elms;
1578 for (i = 0; i < set_size; i++)
1579 *r++ |= *p++;
1580 }
1581}
3d9c733e
AM
1582
1583/* Returns the list of basic blocks in the function in an order that guarantees
1584 that if a block X has just a single predecessor Y, then Y is after X in the
1585 ordering. */
1586
1587basic_block *
1588single_pred_before_succ_order (void)
1589{
1590 basic_block x, y;
0cae8d31
DM
1591 basic_block *order = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1592 unsigned n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
3d9c733e 1593 unsigned np, i;
7ba9e72d 1594 auto_sbitmap visited (last_basic_block_for_fn (cfun));
3d9c733e
AM
1595
1596#define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1597#define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1598
1599 bitmap_clear (visited);
1600
fefa31b5 1601 MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun));
11cd3bed 1602 FOR_EACH_BB_FN (x, cfun)
3d9c733e
AM
1603 {
1604 if (VISITED_P (x))
1605 continue;
1606
1607 /* Walk the predecessors of x as long as they have precisely one
1608 predecessor and add them to the list, so that they get stored
1609 after x. */
1610 for (y = x, np = 1;
1611 single_pred_p (y) && !VISITED_P (single_pred (y));
1612 y = single_pred (y))
1613 np++;
1614 for (y = x, i = n - np;
1615 single_pred_p (y) && !VISITED_P (single_pred (y));
1616 y = single_pred (y), i++)
1617 {
1618 order[i] = y;
1619 MARK_VISITED (y);
1620 }
1621 order[i] = y;
1622 MARK_VISITED (y);
1623
1624 gcc_assert (i == n - 1);
1625 n -= np;
1626 }
1627
3d9c733e
AM
1628 gcc_assert (n == 0);
1629 return order;
1630
1631#undef MARK_VISITED
1632#undef VISITED_P
1633}
2965f127
JL
1634
1635/* Ignoring loop backedges, if BB has precisely one incoming edge then
1636 return that edge. Otherwise return NULL.
1637
1638 When IGNORE_NOT_EXECUTABLE is true, also ignore edges that are not marked
1639 as executable. */
1640
1641edge
1642single_pred_edge_ignoring_loop_edges (basic_block bb,
1643 bool ignore_not_executable)
1644{
1645 edge retval = NULL;
1646 edge e;
1647 edge_iterator ei;
1648
1649 FOR_EACH_EDGE (e, ei, bb->preds)
1650 {
1651 /* A loop back edge can be identified by the destination of
1652 the edge dominating the source of the edge. */
1653 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1654 continue;
1655
1656 /* We can safely ignore edges that are not executable. */
1657 if (ignore_not_executable
1658 && (e->flags & EDGE_EXECUTABLE) == 0)
1659 continue;
1660
1661 /* If we have already seen a non-loop edge, then we must have
1662 multiple incoming non-loop edges and thus we return NULL. */
1663 if (retval)
1664 return NULL;
1665
1666 /* This is the first non-loop incoming edge we have found. Record
1667 it. */
1668 retval = e;
1669 }
1670
1671 return retval;
1672}