]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cfgcleanup.c
i386.c (make_resolver_func): Update.
[thirdparty/gcc.git] / gcc / cfgcleanup.c
CommitLineData
402209ff 1/* Control flow optimization code for GNU compiler.
cbe34bb5 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
402209ff
JH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
402209ff
JH
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
402209ff 19
1ea7e6ad 20/* This file contains optimizer of the control flow. The main entry point is
402209ff
JH
21 cleanup_cfg. Following optimizations are performed:
22
23 - Unreachable blocks removal
d1a6adeb 24 - Edge forwarding (edge to the forwarder block is forwarded to its
eaec9b3d 25 successor. Simplification of the branch instruction is performed by
402209ff 26 underlying infrastructure so branch can be converted to simplejump or
f5143c46 27 eliminated).
402209ff
JH
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
31
32#include "config.h"
33#include "system.h"
4977bab6 34#include "coretypes.h"
c7131fb2 35#include "backend.h"
957060b5 36#include "target.h"
402209ff 37#include "rtl.h"
957060b5
AM
38#include "tree.h"
39#include "cfghooks.h"
c7131fb2 40#include "df.h"
4d0cdd0c 41#include "memmodel.h"
957060b5 42#include "tm_p.h"
402209ff 43#include "insn-config.h"
957060b5 44#include "emit-rtl.h"
8ecba28a 45#include "cselib.h"
5f24e0dc 46#include "params.h"
ef330312
PB
47#include "tree-pass.h"
48#include "cfgloop.h"
60393bbc
AM
49#include "cfgrtl.h"
50#include "cfganal.h"
51#include "cfgbuild.h"
52#include "cfgcleanup.h"
c1e3e2d9 53#include "dce.h"
7d817ebc 54#include "dbgcnt.h"
a2250fe9 55#include "rtl-iter.h"
402209ff 56
2dd2d53e 57#define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
c22cacf3 58
7cf240d5
JH
59/* Set to true when we are running first pass of try_optimize_cfg loop. */
60static bool first_pass;
c1e3e2d9 61
073a8998 62/* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
bd2c6270 63static bool crossjumps_occurred;
c1e3e2d9 64
4ec5d4f5
BS
65/* Set to true if we couldn't run an optimization due to stale liveness
66 information; we should run df_analyze to enable more opportunities. */
67static bool block_was_dirty;
68
bf22920b 69static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
d329e058 70static bool try_crossjump_bb (int, basic_block);
c2fc5456 71static bool outgoing_edges_match (int, basic_block, basic_block);
da5477a9 72static enum replace_direction old_insns_match_p (int, rtx_insn *, rtx_insn *);
d329e058 73
d329e058
AJ
74static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
75static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
d329e058
AJ
76static bool try_optimize_cfg (int);
77static bool try_simplify_condjump (basic_block);
78static bool try_forward_edges (int, basic_block);
6fb5fa3c 79static edge thread_jump (edge, basic_block);
d329e058
AJ
80static bool mark_effect (rtx, bitmap);
81static void notice_new_block (basic_block);
82static void update_forwarder_flag (basic_block);
c2fc5456 83static void merge_memattrs (rtx, rtx);
635559ab
JH
84\f
85/* Set flags for newly created block. */
86
87static void
d329e058 88notice_new_block (basic_block bb)
635559ab
JH
89{
90 if (!bb)
91 return;
5f0d2358 92
635559ab 93 if (forwarder_block_p (bb))
2dd2d53e 94 bb->flags |= BB_FORWARDER_BLOCK;
635559ab
JH
95}
96
97/* Recompute forwarder flag after block has been modified. */
98
99static void
d329e058 100update_forwarder_flag (basic_block bb)
635559ab
JH
101{
102 if (forwarder_block_p (bb))
2dd2d53e 103 bb->flags |= BB_FORWARDER_BLOCK;
635559ab 104 else
2dd2d53e 105 bb->flags &= ~BB_FORWARDER_BLOCK;
635559ab 106}
402209ff
JH
107\f
108/* Simplify a conditional jump around an unconditional jump.
109 Return true if something changed. */
110
111static bool
d329e058 112try_simplify_condjump (basic_block cbranch_block)
402209ff
JH
113{
114 basic_block jump_block, jump_dest_block, cbranch_dest_block;
115 edge cbranch_jump_edge, cbranch_fallthru_edge;
da5477a9 116 rtx_insn *cbranch_insn;
402209ff
JH
117
118 /* Verify that there are exactly two successors. */
628f6a4e 119 if (EDGE_COUNT (cbranch_block->succs) != 2)
402209ff
JH
120 return false;
121
122 /* Verify that we've got a normal conditional branch at the end
123 of the block. */
a813c111 124 cbranch_insn = BB_END (cbranch_block);
402209ff
JH
125 if (!any_condjump_p (cbranch_insn))
126 return false;
127
128 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
129 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
130
131 /* The next block must not have multiple predecessors, must not
132 be the last block in the function, and must contain just the
133 unconditional jump. */
134 jump_block = cbranch_fallthru_edge->dest;
c5cbcccf 135 if (!single_pred_p (jump_block)
fefa31b5 136 || jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
635559ab 137 || !FORWARDER_BLOCK_P (jump_block))
402209ff 138 return false;
c5cbcccf 139 jump_dest_block = single_succ (jump_block);
402209ff 140
750054a2
CT
141 /* If we are partitioning hot/cold basic blocks, we don't want to
142 mess up unconditional or indirect jumps that cross between hot
c22cacf3 143 and cold sections.
8e8d5162
CT
144
145 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
146 be optimizable (or blocks that appear to be mergeable), but which really
147 must be left untouched (they are required to make it safely across
148 partition boundaries). See the comments at the top of
8e8d5162 149 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
750054a2 150
87c8b4be
CT
151 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
152 || (cbranch_jump_edge->flags & EDGE_CROSSING))
750054a2
CT
153 return false;
154
402209ff
JH
155 /* The conditional branch must target the block after the
156 unconditional branch. */
157 cbranch_dest_block = cbranch_jump_edge->dest;
158
fefa31b5 159 if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
1a8fb012 160 || jump_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
2f52c531 161 || !can_fallthru (jump_block, cbranch_dest_block))
402209ff
JH
162 return false;
163
ca6c03ca 164 /* Invert the conditional branch. */
1476d1bd
MM
165 if (!invert_jump (as_a <rtx_jump_insn *> (cbranch_insn),
166 block_label (jump_dest_block), 0))
ca6c03ca 167 return false;
402209ff 168
c263766c
RH
169 if (dump_file)
170 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
a813c111 171 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
402209ff
JH
172
173 /* Success. Update the CFG to match. Note that after this point
174 the edge variable names appear backwards; the redirection is done
175 this way to preserve edge profile data. */
176 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
177 cbranch_dest_block);
178 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
179 jump_dest_block);
180 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
181 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
b446e5a2 182 update_br_prob_note (cbranch_block);
402209ff
JH
183
184 /* Delete the block with the unconditional jump, and clean up the mess. */
f470c378
ZD
185 delete_basic_block (jump_block);
186 tidy_fallthru_edge (cbranch_jump_edge);
261139ce 187 update_forwarder_flag (cbranch_block);
402209ff
JH
188
189 return true;
190}
191\f
8ecba28a
JH
192/* Attempt to prove that operation is NOOP using CSElib or mark the effect
193 on register. Used by jump threading. */
5f0d2358 194
8ecba28a 195static bool
d329e058 196mark_effect (rtx exp, regset nonequal)
8ecba28a 197{
9f16e871 198 rtx dest;
8ecba28a
JH
199 switch (GET_CODE (exp))
200 {
201 /* In case we do clobber the register, mark it as equal, as we know the
c22cacf3 202 value is dead so it don't have to match. */
f87c27b4 203 case CLOBBER:
07a737f3
RS
204 dest = XEXP (exp, 0);
205 if (REG_P (dest))
206 bitmap_clear_range (nonequal, REGNO (dest), REG_NREGS (dest));
f87c27b4 207 return false;
5f0d2358 208
f87c27b4
KH
209 case SET:
210 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
8ecba28a 211 return false;
f87c27b4
KH
212 dest = SET_DEST (exp);
213 if (dest == pc_rtx)
8ecba28a 214 return false;
f87c27b4
KH
215 if (!REG_P (dest))
216 return true;
07a737f3 217 bitmap_set_range (nonequal, REGNO (dest), REG_NREGS (dest));
f87c27b4
KH
218 return false;
219
220 default:
221 return false;
8ecba28a
JH
222 }
223}
fe477d8b 224
a2250fe9
RS
225/* Return true if X contains a register in NONEQUAL. */
226static bool
227mentions_nonequal_regs (const_rtx x, regset nonequal)
fe477d8b 228{
a2250fe9
RS
229 subrtx_iterator::array_type array;
230 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
fe477d8b 231 {
a2250fe9
RS
232 const_rtx x = *iter;
233 if (REG_P (x))
fe477d8b 234 {
53d1bae9
RS
235 unsigned int end_regno = END_REGNO (x);
236 for (unsigned int regno = REGNO (x); regno < end_regno; ++regno)
237 if (REGNO_REG_SET_P (nonequal, regno))
238 return true;
fe477d8b
JH
239 }
240 }
a2250fe9 241 return false;
fe477d8b 242}
a2250fe9 243
8ecba28a 244/* Attempt to prove that the basic block B will have no side effects and
95bd1dd7 245 always continues in the same edge if reached via E. Return the edge
8ecba28a
JH
246 if exist, NULL otherwise. */
247
248static edge
6fb5fa3c 249thread_jump (edge e, basic_block b)
8ecba28a 250{
da5477a9
DM
251 rtx set1, set2, cond1, cond2;
252 rtx_insn *insn;
8ecba28a
JH
253 enum rtx_code code1, code2, reversed_code2;
254 bool reverse1 = false;
3cd8c58a 255 unsigned i;
8ecba28a
JH
256 regset nonequal;
257 bool failed = false;
a2041967 258 reg_set_iterator rsi;
8ecba28a 259
2dd2d53e 260 if (b->flags & BB_NONTHREADABLE_BLOCK)
1540f9eb
JH
261 return NULL;
262
8ecba28a
JH
263 /* At the moment, we do handle only conditional jumps, but later we may
264 want to extend this code to tablejumps and others. */
628f6a4e 265 if (EDGE_COUNT (e->src->succs) != 2)
8ecba28a 266 return NULL;
628f6a4e 267 if (EDGE_COUNT (b->succs) != 2)
1540f9eb 268 {
2dd2d53e 269 b->flags |= BB_NONTHREADABLE_BLOCK;
1540f9eb
JH
270 return NULL;
271 }
8ecba28a
JH
272
273 /* Second branch must end with onlyjump, as we will eliminate the jump. */
a813c111 274 if (!any_condjump_p (BB_END (e->src)))
8ecba28a 275 return NULL;
f87c27b4 276
a813c111 277 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
1540f9eb 278 {
2dd2d53e 279 b->flags |= BB_NONTHREADABLE_BLOCK;
1540f9eb
JH
280 return NULL;
281 }
8ecba28a 282
a813c111
SB
283 set1 = pc_set (BB_END (e->src));
284 set2 = pc_set (BB_END (b));
8ecba28a 285 if (((e->flags & EDGE_FALLTHRU) != 0)
68f3f6f1 286 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
8ecba28a
JH
287 reverse1 = true;
288
289 cond1 = XEXP (SET_SRC (set1), 0);
290 cond2 = XEXP (SET_SRC (set2), 0);
291 if (reverse1)
a813c111 292 code1 = reversed_comparison_code (cond1, BB_END (e->src));
8ecba28a
JH
293 else
294 code1 = GET_CODE (cond1);
295
296 code2 = GET_CODE (cond2);
a813c111 297 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
8ecba28a
JH
298
299 if (!comparison_dominates_p (code1, code2)
300 && !comparison_dominates_p (code1, reversed_code2))
301 return NULL;
302
303 /* Ensure that the comparison operators are equivalent.
95bd1dd7 304 ??? This is far too pessimistic. We should allow swapped operands,
8ecba28a
JH
305 different CCmodes, or for example comparisons for interval, that
306 dominate even when operands are not equivalent. */
307 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
308 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
309 return NULL;
310
311 /* Short circuit cases where block B contains some side effects, as we can't
312 safely bypass it. */
a813c111 313 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
8ecba28a
JH
314 insn = NEXT_INSN (insn))
315 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
1540f9eb 316 {
2dd2d53e 317 b->flags |= BB_NONTHREADABLE_BLOCK;
1540f9eb
JH
318 return NULL;
319 }
8ecba28a 320
457eeaae 321 cselib_init (0);
8ecba28a
JH
322
323 /* First process all values computed in the source basic block. */
3cd8c58a
NS
324 for (insn = NEXT_INSN (BB_HEAD (e->src));
325 insn != NEXT_INSN (BB_END (e->src));
8ecba28a
JH
326 insn = NEXT_INSN (insn))
327 if (INSN_P (insn))
328 cselib_process_insn (insn);
329
8bdbfff5 330 nonequal = BITMAP_ALLOC (NULL);
8ecba28a 331 CLEAR_REG_SET (nonequal);
5f0d2358 332
8ecba28a
JH
333 /* Now assume that we've continued by the edge E to B and continue
334 processing as if it were same basic block.
8ecba28a 335 Our goal is to prove that whole block is an NOOP. */
5f0d2358 336
3cd8c58a
NS
337 for (insn = NEXT_INSN (BB_HEAD (b));
338 insn != NEXT_INSN (BB_END (b)) && !failed;
8ecba28a 339 insn = NEXT_INSN (insn))
f87c27b4
KH
340 {
341 if (INSN_P (insn))
342 {
343 rtx pat = PATTERN (insn);
344
345 if (GET_CODE (pat) == PARALLEL)
346 {
3cd8c58a 347 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
f87c27b4
KH
348 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
349 }
350 else
351 failed |= mark_effect (pat, nonequal);
352 }
5f0d2358 353
f87c27b4
KH
354 cselib_process_insn (insn);
355 }
8ecba28a
JH
356
357 /* Later we should clear nonequal of dead registers. So far we don't
358 have life information in cfg_cleanup. */
359 if (failed)
1540f9eb 360 {
2dd2d53e 361 b->flags |= BB_NONTHREADABLE_BLOCK;
1540f9eb
JH
362 goto failed_exit;
363 }
8ecba28a 364
fe477d8b
JH
365 /* cond2 must not mention any register that is not equal to the
366 former block. */
a2250fe9 367 if (mentions_nonequal_regs (cond2, nonequal))
fe477d8b
JH
368 goto failed_exit;
369
a2041967
KH
370 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
371 goto failed_exit;
8ecba28a 372
8bdbfff5 373 BITMAP_FREE (nonequal);
8ecba28a
JH
374 cselib_finish ();
375 if ((comparison_dominates_p (code1, code2) != 0)
4deaa2f8 376 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
8ecba28a
JH
377 return BRANCH_EDGE (b);
378 else
379 return FALLTHRU_EDGE (b);
380
381failed_exit:
8bdbfff5 382 BITMAP_FREE (nonequal);
8ecba28a
JH
383 cselib_finish ();
384 return NULL;
385}
386\f
402209ff 387/* Attempt to forward edges leaving basic block B.
eaec9b3d 388 Return true if successful. */
402209ff
JH
389
390static bool
d329e058 391try_forward_edges (int mode, basic_block b)
402209ff
JH
392{
393 bool changed = false;
628f6a4e
BE
394 edge_iterator ei;
395 edge e, *threaded_edges = NULL;
402209ff 396
750054a2
CT
397 /* If we are partitioning hot/cold basic blocks, we don't want to
398 mess up unconditional or indirect jumps that cross between hot
c22cacf3
MS
399 and cold sections.
400
8e8d5162 401 Basic block partitioning may result in some jumps that appear to
fa10beec
RW
402 be optimizable (or blocks that appear to be mergeable), but which really
403 must be left untouched (they are required to make it safely across
c22cacf3 404 partition boundaries). See the comments at the top of
8e8d5162
CT
405 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
406
339ba33b 407 if (JUMP_P (BB_END (b)) && CROSSING_JUMP_P (BB_END (b)))
750054a2
CT
408 return false;
409
628f6a4e 410 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
402209ff
JH
411 {
412 basic_block target, first;
8a829274
EB
413 location_t goto_locus;
414 int counter;
8ecba28a 415 bool threaded = false;
bcb3bc6d 416 int nthreaded_edges = 0;
4ec5d4f5 417 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
402209ff 418
402209ff
JH
419 /* Skip complex edges because we don't know how to update them.
420
c22cacf3
MS
421 Still handle fallthru edges, as we can succeed to forward fallthru
422 edge to the same place as the branch edge of conditional branch
423 and turn conditional branch to an unconditional branch. */
402209ff 424 if (e->flags & EDGE_COMPLEX)
628f6a4e
BE
425 {
426 ei_next (&ei);
427 continue;
428 }
402209ff
JH
429
430 target = first = e->dest;
24bd1a0b 431 counter = NUM_FIXED_BLOCKS;
7241571e 432 goto_locus = e->goto_locus;
402209ff 433
9fb32434 434 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
8e8d5162
CT
435 up jumps that cross between hot/cold sections.
436
437 Basic block partitioning may result in some jumps that appear
c22cacf3
MS
438 to be optimizable (or blocks that appear to be mergeable), but which
439 really must be left untouched (they are required to make it safely
8e8d5162
CT
440 across partition boundaries). See the comments at the top of
441 bb-reorder.c:partition_hot_cold_basic_blocks for complete
442 details. */
9fb32434 443
fefa31b5 444 if (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
339ba33b
RS
445 && JUMP_P (BB_END (first))
446 && CROSSING_JUMP_P (BB_END (first)))
3371a64f 447 return changed;
9fb32434 448
0cae8d31 449 while (counter < n_basic_blocks_for_fn (cfun))
402209ff 450 {
8ecba28a
JH
451 basic_block new_target = NULL;
452 bool new_target_threaded = false;
4ec5d4f5 453 may_thread |= (target->flags & BB_MODIFIED) != 0;
8ecba28a
JH
454
455 if (FORWARDER_BLOCK_P (target)
c22cacf3 456 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
fefa31b5 457 && single_succ (target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
8ecba28a
JH
458 {
459 /* Bypass trivial infinite loops. */
c5cbcccf
ZD
460 new_target = single_succ (target);
461 if (target == new_target)
0cae8d31 462 counter = n_basic_blocks_for_fn (cfun);
7241571e
JJ
463 else if (!optimize)
464 {
465 /* When not optimizing, ensure that edges or forwarder
466 blocks with different locus are not optimized out. */
8a829274
EB
467 location_t new_locus = single_succ_edge (target)->goto_locus;
468 location_t locus = goto_locus;
7241571e 469
ffa4602f
EB
470 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
471 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
5368224f 472 && new_locus != locus)
50a36e42
EB
473 new_target = NULL;
474 else
7241571e 475 {
ffa4602f 476 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
50a36e42 477 locus = new_locus;
7241571e 478
da5477a9 479 rtx_insn *last = BB_END (target);
11321111
AO
480 if (DEBUG_INSN_P (last))
481 last = prev_nondebug_insn (last);
ffa4602f
EB
482 if (last && INSN_P (last))
483 new_locus = INSN_LOCATION (last);
484 else
485 new_locus = UNKNOWN_LOCATION;
11321111 486
ffa4602f
EB
487 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
488 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
5368224f 489 && new_locus != locus)
50a36e42
EB
490 new_target = NULL;
491 else
492 {
ffa4602f 493 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
50a36e42
EB
494 locus = new_locus;
495
496 goto_locus = locus;
497 }
7241571e
JJ
498 }
499 }
8ecba28a 500 }
5f0d2358 501
8ecba28a
JH
502 /* Allow to thread only over one edge at time to simplify updating
503 of probabilities. */
7cf240d5 504 else if ((mode & CLEANUP_THREADING) && may_thread)
8ecba28a 505 {
6fb5fa3c 506 edge t = thread_jump (e, target);
1c570418 507 if (t)
8ecba28a 508 {
bcb3bc6d 509 if (!threaded_edges)
0cae8d31
DM
510 threaded_edges = XNEWVEC (edge,
511 n_basic_blocks_for_fn (cfun));
3b3b1e32
RH
512 else
513 {
514 int i;
515
516 /* Detect an infinite loop across blocks not
517 including the start block. */
518 for (i = 0; i < nthreaded_edges; ++i)
519 if (threaded_edges[i] == t)
520 break;
521 if (i < nthreaded_edges)
b90e45ae 522 {
0cae8d31 523 counter = n_basic_blocks_for_fn (cfun);
b90e45ae
JH
524 break;
525 }
3b3b1e32
RH
526 }
527
528 /* Detect an infinite loop across the start block. */
529 if (t->dest == b)
530 break;
531
0cae8d31
DM
532 gcc_assert (nthreaded_edges
533 < (n_basic_blocks_for_fn (cfun)
534 - NUM_FIXED_BLOCKS));
1c570418 535 threaded_edges[nthreaded_edges++] = t;
3b3b1e32
RH
536
537 new_target = t->dest;
538 new_target_threaded = true;
8ecba28a
JH
539 }
540 }
5f0d2358 541
8ecba28a
JH
542 if (!new_target)
543 break;
402209ff 544
8ecba28a
JH
545 counter++;
546 target = new_target;
547 threaded |= new_target_threaded;
f87c27b4 548 }
402209ff 549
0cae8d31 550 if (counter >= n_basic_blocks_for_fn (cfun))
402209ff 551 {
c263766c
RH
552 if (dump_file)
553 fprintf (dump_file, "Infinite loop in BB %i.\n",
0b17ab2f 554 target->index);
402209ff
JH
555 }
556 else if (target == first)
557 ; /* We didn't do anything. */
558 else
559 {
560 /* Save the values now, as the edge may get removed. */
3995f3a2 561 profile_count edge_count = e->count;
402209ff 562 int edge_probability = e->probability;
8ecba28a 563 int edge_frequency;
1c570418 564 int n = 0;
402209ff 565
7241571e
JJ
566 e->goto_locus = goto_locus;
567
6ee3c8e4 568 /* Don't force if target is exit block. */
fefa31b5 569 if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
402209ff 570 {
8ecba28a 571 notice_new_block (redirect_edge_and_branch_force (e, target));
c263766c
RH
572 if (dump_file)
573 fprintf (dump_file, "Conditionals threaded.\n");
402209ff 574 }
8ecba28a 575 else if (!redirect_edge_and_branch (e, target))
402209ff 576 {
c263766c
RH
577 if (dump_file)
578 fprintf (dump_file,
5f0d2358 579 "Forwarding edge %i->%i to %i failed.\n",
0b17ab2f 580 b->index, e->dest->index, target->index);
628f6a4e 581 ei_next (&ei);
8ecba28a 582 continue;
402209ff 583 }
5f0d2358 584
8ecba28a
JH
585 /* We successfully forwarded the edge. Now update profile
586 data: for each edge we traversed in the chain, remove
587 the original edge's execution count. */
8ddb5a29 588 edge_frequency = apply_probability (b->frequency, edge_probability);
8ecba28a 589
8ecba28a
JH
590 do
591 {
592 edge t;
5f0d2358 593
c5cbcccf 594 if (!single_succ_p (first))
3b3b1e32 595 {
341c100f 596 gcc_assert (n < nthreaded_edges);
3b3b1e32 597 t = threaded_edges [n++];
341c100f 598 gcc_assert (t->src == first);
15db5571
JH
599 update_bb_profile_for_threading (first, edge_frequency,
600 edge_count, t);
b446e5a2 601 update_br_prob_note (first);
3b3b1e32 602 }
8ecba28a 603 else
bcb3bc6d 604 {
15db5571 605 first->count -= edge_count;
15db5571
JH
606 first->frequency -= edge_frequency;
607 if (first->frequency < 0)
608 first->frequency = 0;
bcb3bc6d
JH
609 /* It is possible that as the result of
610 threading we've removed edge as it is
611 threaded to the fallthru edge. Avoid
612 getting out of sync. */
613 if (n < nthreaded_edges
614 && first == threaded_edges [n]->src)
615 n++;
c5cbcccf 616 t = single_succ_edge (first);
f87c27b4 617 }
5f0d2358 618
b446e5a2 619 t->count -= edge_count;
8ecba28a
JH
620 first = t->dest;
621 }
622 while (first != target);
623
624 changed = true;
628f6a4e 625 continue;
402209ff 626 }
628f6a4e 627 ei_next (&ei);
402209ff
JH
628 }
629
04695783 630 free (threaded_edges);
402209ff
JH
631 return changed;
632}
633\f
402209ff
JH
634
635/* Blocks A and B are to be merged into a single block. A has no incoming
636 fallthru edge, so it can be moved before B without adding or modifying
637 any jumps (aside from the jump from A to B). */
638
4262e623 639static void
d329e058 640merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
402209ff 641{
da5477a9 642 rtx_insn *barrier;
402209ff 643
750054a2
CT
644 /* If we are partitioning hot/cold basic blocks, we don't want to
645 mess up unconditional or indirect jumps that cross between hot
8e8d5162 646 and cold sections.
c22cacf3 647
8e8d5162 648 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
649 be optimizable (or blocks that appear to be mergeable), but which really
650 must be left untouched (they are required to make it safely across
651 partition boundaries). See the comments at the top of
8e8d5162
CT
652 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
653
87c8b4be 654 if (BB_PARTITION (a) != BB_PARTITION (b))
750054a2
CT
655 return;
656
a813c111 657 barrier = next_nonnote_insn (BB_END (a));
341c100f 658 gcc_assert (BARRIER_P (barrier));
53c17031 659 delete_insn (barrier);
402209ff 660
402209ff 661 /* Scramble the insn chain. */
a813c111
SB
662 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
663 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
6fb5fa3c 664 df_set_bb_dirty (a);
402209ff 665
c263766c
RH
666 if (dump_file)
667 fprintf (dump_file, "Moved block %d before %d and merged.\n",
0b17ab2f 668 a->index, b->index);
402209ff 669
bf77398c 670 /* Swap the records for the two blocks around. */
402209ff 671
918ed612
ZD
672 unlink_block (a);
673 link_block (a, b->prev_bb);
674
402209ff 675 /* Now blocks A and B are contiguous. Merge them. */
bc35512f 676 merge_blocks (a, b);
402209ff
JH
677}
678
679/* Blocks A and B are to be merged into a single block. B has no outgoing
680 fallthru edge, so it can be moved after A without adding or modifying
681 any jumps (aside from the jump from A to B). */
682
4262e623 683static void
d329e058 684merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
402209ff 685{
da5477a9 686 rtx_insn *barrier, *real_b_end;
dfe08bc4 687 rtx_insn *label;
8942ee0f 688 rtx_jump_table_data *table;
402209ff 689
750054a2
CT
690 /* If we are partitioning hot/cold basic blocks, we don't want to
691 mess up unconditional or indirect jumps that cross between hot
c22cacf3
MS
692 and cold sections.
693
8e8d5162 694 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
695 be optimizable (or blocks that appear to be mergeable), but which really
696 must be left untouched (they are required to make it safely across
697 partition boundaries). See the comments at the top of
8e8d5162
CT
698 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
699
87c8b4be 700 if (BB_PARTITION (a) != BB_PARTITION (b))
750054a2
CT
701 return;
702
a813c111 703 real_b_end = BB_END (b);
402209ff 704
ee735eef
JZ
705 /* If there is a jump table following block B temporarily add the jump table
706 to block B so that it will also be moved to the correct location. */
a813c111 707 if (tablejump_p (BB_END (b), &label, &table)
dfe08bc4 708 && prev_active_insn (label) == BB_END (b))
402209ff 709 {
1130d5e3 710 BB_END (b) = table;
402209ff
JH
711 }
712
713 /* There had better have been a barrier there. Delete it. */
a813c111 714 barrier = NEXT_INSN (BB_END (b));
4b4bf941 715 if (barrier && BARRIER_P (barrier))
53c17031 716 delete_insn (barrier);
402209ff 717
402209ff
JH
718
719 /* Scramble the insn chain. */
a813c111 720 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
402209ff 721
f62ce55b 722 /* Restore the real end of b. */
1130d5e3 723 BB_END (b) = real_b_end;
f62ce55b 724
c263766c
RH
725 if (dump_file)
726 fprintf (dump_file, "Moved block %d after %d and merged.\n",
0b17ab2f 727 b->index, a->index);
2150ad33
RH
728
729 /* Now blocks A and B are contiguous. Merge them. */
bc35512f 730 merge_blocks (a, b);
402209ff
JH
731}
732
733/* Attempt to merge basic blocks that are potentially non-adjacent.
ec3ae3da
JH
734 Return NULL iff the attempt failed, otherwise return basic block
735 where cleanup_cfg should continue. Because the merging commonly
736 moves basic block away or introduces another optimization
e0bb17a8 737 possibility, return basic block just before B so cleanup_cfg don't
ec3ae3da
JH
738 need to iterate.
739
740 It may be good idea to return basic block before C in the case
741 C has been moved after B and originally appeared earlier in the
4d6922ee 742 insn sequence, but we have no information available about the
ec3ae3da
JH
743 relative ordering of these two. Hopefully it is not too common. */
744
745static basic_block
bc35512f 746merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
402209ff 747{
ec3ae3da 748 basic_block next;
402209ff 749
750054a2
CT
750 /* If we are partitioning hot/cold basic blocks, we don't want to
751 mess up unconditional or indirect jumps that cross between hot
c22cacf3
MS
752 and cold sections.
753
8e8d5162 754 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
755 be optimizable (or blocks that appear to be mergeable), but which really
756 must be left untouched (they are required to make it safely across
757 partition boundaries). See the comments at the top of
8e8d5162
CT
758 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
759
87c8b4be 760 if (BB_PARTITION (b) != BB_PARTITION (c))
750054a2 761 return NULL;
c22cacf3 762
402209ff
JH
763 /* If B has a fallthru edge to C, no need to move anything. */
764 if (e->flags & EDGE_FALLTHRU)
765 {
0b17ab2f 766 int b_index = b->index, c_index = c->index;
7d776ee2
RG
767
768 /* Protect the loop latches. */
769 if (current_loops && c->loop_father->latch == c)
770 return NULL;
771
bc35512f 772 merge_blocks (b, c);
635559ab 773 update_forwarder_flag (b);
402209ff 774
c263766c
RH
775 if (dump_file)
776 fprintf (dump_file, "Merged %d and %d without moving.\n",
f87c27b4 777 b_index, c_index);
402209ff 778
fefa31b5 779 return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
402209ff 780 }
5f0d2358 781
402209ff
JH
782 /* Otherwise we will need to move code around. Do that only if expensive
783 transformations are allowed. */
784 else if (mode & CLEANUP_EXPENSIVE)
785 {
4262e623
JH
786 edge tmp_edge, b_fallthru_edge;
787 bool c_has_outgoing_fallthru;
788 bool b_has_incoming_fallthru;
402209ff
JH
789
790 /* Avoid overactive code motion, as the forwarder blocks should be
c22cacf3 791 eliminated by edge redirection instead. One exception might have
402209ff
JH
792 been if B is a forwarder block and C has no fallthru edge, but
793 that should be cleaned up by bb-reorder instead. */
635559ab 794 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
ec3ae3da 795 return NULL;
402209ff
JH
796
797 /* We must make sure to not munge nesting of lexical blocks,
798 and loop notes. This is done by squeezing out all the notes
799 and leaving them there to lie. Not ideal, but functional. */
800
0fd4b31d 801 tmp_edge = find_fallthru_edge (c->succs);
402209ff 802 c_has_outgoing_fallthru = (tmp_edge != NULL);
402209ff 803
0fd4b31d 804 tmp_edge = find_fallthru_edge (b->preds);
402209ff 805 b_has_incoming_fallthru = (tmp_edge != NULL);
4262e623 806 b_fallthru_edge = tmp_edge;
ec3ae3da 807 next = b->prev_bb;
912b79e7
JH
808 if (next == c)
809 next = next->prev_bb;
4262e623
JH
810
811 /* Otherwise, we're going to try to move C after B. If C does
812 not have an outgoing fallthru, then it can be moved
813 immediately after B without introducing or modifying jumps. */
814 if (! c_has_outgoing_fallthru)
815 {
816 merge_blocks_move_successor_nojumps (b, c);
fefa31b5 817 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
4262e623 818 }
402209ff
JH
819
820 /* If B does not have an incoming fallthru, then it can be moved
821 immediately before C without introducing or modifying jumps.
822 C cannot be the first block, so we do not have to worry about
823 accessing a non-existent block. */
402209ff 824
4262e623
JH
825 if (b_has_incoming_fallthru)
826 {
473fb060 827 basic_block bb;
5f0d2358 828
fefa31b5 829 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
ec3ae3da 830 return NULL;
7dddfb65
JH
831 bb = force_nonfallthru (b_fallthru_edge);
832 if (bb)
833 notice_new_block (bb);
4262e623 834 }
5f0d2358 835
4262e623 836 merge_blocks_move_predecessor_nojumps (b, c);
fefa31b5 837 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
402209ff 838 }
5f0d2358 839
10d6c0d0 840 return NULL;
402209ff
JH
841}
842\f
c2fc5456
R
843
844/* Removes the memory attributes of MEM expression
845 if they are not equal. */
846
893479de 847static void
c2fc5456
R
848merge_memattrs (rtx x, rtx y)
849{
850 int i;
851 int j;
852 enum rtx_code code;
853 const char *fmt;
854
855 if (x == y)
856 return;
857 if (x == 0 || y == 0)
858 return;
859
860 code = GET_CODE (x);
861
862 if (code != GET_CODE (y))
863 return;
864
865 if (GET_MODE (x) != GET_MODE (y))
866 return;
867
96b3c03f 868 if (code == MEM && !mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
c2fc5456
R
869 {
870 if (! MEM_ATTRS (x))
871 MEM_ATTRS (y) = 0;
872 else if (! MEM_ATTRS (y))
873 MEM_ATTRS (x) = 0;
c22cacf3 874 else
c2fc5456 875 {
f5541398 876 HOST_WIDE_INT mem_size;
c2fc5456
R
877
878 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
879 {
880 set_mem_alias_set (x, 0);
881 set_mem_alias_set (y, 0);
882 }
c22cacf3 883
c2fc5456
R
884 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
885 {
886 set_mem_expr (x, 0);
887 set_mem_expr (y, 0);
527210c4
RS
888 clear_mem_offset (x);
889 clear_mem_offset (y);
c2fc5456 890 }
527210c4
RS
891 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
892 || (MEM_OFFSET_KNOWN_P (x)
893 && MEM_OFFSET (x) != MEM_OFFSET (y)))
c2fc5456 894 {
527210c4
RS
895 clear_mem_offset (x);
896 clear_mem_offset (y);
c2fc5456 897 }
c22cacf3 898
f5541398
RS
899 if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
900 {
901 mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
902 set_mem_size (x, mem_size);
903 set_mem_size (y, mem_size);
904 }
c2fc5456 905 else
f5541398
RS
906 {
907 clear_mem_size (x);
908 clear_mem_size (y);
909 }
c2fc5456
R
910
911 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
912 set_mem_align (y, MEM_ALIGN (x));
913 }
914 }
84cf4ab6
JJ
915 if (code == MEM)
916 {
917 if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
918 {
919 MEM_READONLY_P (x) = 0;
920 MEM_READONLY_P (y) = 0;
921 }
922 if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
923 {
924 MEM_NOTRAP_P (x) = 0;
925 MEM_NOTRAP_P (y) = 0;
926 }
927 if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
928 {
929 MEM_VOLATILE_P (x) = 1;
930 MEM_VOLATILE_P (y) = 1;
931 }
932 }
c22cacf3 933
c2fc5456
R
934 fmt = GET_RTX_FORMAT (code);
935 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
936 {
937 switch (fmt[i])
938 {
939 case 'E':
940 /* Two vectors must have the same length. */
941 if (XVECLEN (x, i) != XVECLEN (y, i))
942 return;
943
944 for (j = 0; j < XVECLEN (x, i); j++)
945 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
946
947 break;
948
949 case 'e':
950 merge_memattrs (XEXP (x, i), XEXP (y, i));
951 }
952 }
953 return;
954}
955
956
472c95f5
TV
957 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
958 different single sets S1 and S2. */
c2fc5456
R
959
960static bool
472c95f5
TV
961equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
962{
963 int i;
964 rtx e1, e2;
965
966 if (p1 == s1 && p2 == s2)
967 return true;
968
969 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
970 return false;
971
972 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
973 return false;
974
975 for (i = 0; i < XVECLEN (p1, 0); i++)
976 {
977 e1 = XVECEXP (p1, 0, i);
978 e2 = XVECEXP (p2, 0, i);
979 if (e1 == s1 && e2 == s2)
980 continue;
981 if (reload_completed
982 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
983 continue;
984
21c0a521 985 return false;
472c95f5
TV
986 }
987
988 return true;
989}
990
3e87f2d6
SC
991
992/* NOTE1 is the REG_EQUAL note, if any, attached to an insn
993 that is a single_set with a SET_SRC of SRC1. Similarly
994 for NOTE2/SRC2.
995
996 So effectively NOTE1/NOTE2 are an alternate form of
997 SRC1/SRC2 respectively.
998
999 Return nonzero if SRC1 or NOTE1 has the same constant
1000 integer value as SRC2 or NOTE2. Else return zero. */
1001static int
1002values_equal_p (rtx note1, rtx note2, rtx src1, rtx src2)
1003{
1004 if (note1
1005 && note2
1006 && CONST_INT_P (XEXP (note1, 0))
1007 && rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0)))
1008 return 1;
1009
1010 if (!note1
1011 && !note2
1012 && CONST_INT_P (src1)
1013 && CONST_INT_P (src2)
1014 && rtx_equal_p (src1, src2))
1015 return 1;
1016
1017 if (note1
1018 && CONST_INT_P (src2)
1019 && rtx_equal_p (XEXP (note1, 0), src2))
1020 return 1;
1021
1022 if (note2
1023 && CONST_INT_P (src1)
1024 && rtx_equal_p (XEXP (note2, 0), src1))
1025 return 1;
1026
1027 return 0;
1028}
1029
472c95f5
TV
1030/* Examine register notes on I1 and I2 and return:
1031 - dir_forward if I1 can be replaced by I2, or
1032 - dir_backward if I2 can be replaced by I1, or
1033 - dir_both if both are the case. */
1034
1035static enum replace_direction
da5477a9 1036can_replace_by (rtx_insn *i1, rtx_insn *i2)
472c95f5
TV
1037{
1038 rtx s1, s2, d1, d2, src1, src2, note1, note2;
1039 bool c1, c2;
1040
1041 /* Check for 2 sets. */
1042 s1 = single_set (i1);
1043 s2 = single_set (i2);
1044 if (s1 == NULL_RTX || s2 == NULL_RTX)
1045 return dir_none;
1046
1047 /* Check that the 2 sets set the same dest. */
1048 d1 = SET_DEST (s1);
1049 d2 = SET_DEST (s2);
1050 if (!(reload_completed
1051 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1052 return dir_none;
1053
1054 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1055 set dest to the same value. */
1056 note1 = find_reg_equal_equiv_note (i1);
1057 note2 = find_reg_equal_equiv_note (i2);
3e87f2d6
SC
1058
1059 src1 = SET_SRC (s1);
1060 src2 = SET_SRC (s2);
1061
1062 if (!values_equal_p (note1, note2, src1, src2))
472c95f5
TV
1063 return dir_none;
1064
1065 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1066 return dir_none;
1067
1068 /* Although the 2 sets set dest to the same value, we cannot replace
1069 (set (dest) (const_int))
1070 by
1071 (set (dest) (reg))
1072 because we don't know if the reg is live and has the same value at the
1073 location of replacement. */
472c95f5
TV
1074 c1 = CONST_INT_P (src1);
1075 c2 = CONST_INT_P (src2);
1076 if (c1 && c2)
1077 return dir_both;
1078 else if (c2)
1079 return dir_forward;
1080 else if (c1)
1081 return dir_backward;
1082
1083 return dir_none;
1084}
1085
1086/* Merges directions A and B. */
1087
1088static enum replace_direction
1089merge_dir (enum replace_direction a, enum replace_direction b)
1090{
1091 /* Implements the following table:
1092 |bo fw bw no
1093 ---+-----------
1094 bo |bo fw bw no
1095 fw |-- fw no no
1096 bw |-- -- bw no
1097 no |-- -- -- no. */
1098
1099 if (a == b)
1100 return a;
1101
1102 if (a == dir_both)
1103 return b;
1104 if (b == dir_both)
1105 return a;
1106
1107 return dir_none;
1108}
1109
aade772d
JJ
1110/* Array of flags indexed by reg note kind, true if the given
1111 reg note is CFA related. */
1112static const bool reg_note_cfa_p[] = {
1113#undef REG_CFA_NOTE
1114#define DEF_REG_NOTE(NAME) false,
1115#define REG_CFA_NOTE(NAME) true,
1116#include "reg-notes.def"
1117#undef REG_CFA_NOTE
1118#undef DEF_REG_NOTE
1119 false
1120};
1121
1122/* Return true if I1 and I2 have identical CFA notes (the same order
1123 and equivalent content). */
1124
1125static bool
1126insns_have_identical_cfa_notes (rtx_insn *i1, rtx_insn *i2)
1127{
1128 rtx n1, n2;
1129 for (n1 = REG_NOTES (i1), n2 = REG_NOTES (i2); ;
1130 n1 = XEXP (n1, 1), n2 = XEXP (n2, 1))
1131 {
1132 /* Skip over reg notes not related to CFI information. */
1133 while (n1 && !reg_note_cfa_p[REG_NOTE_KIND (n1)])
1134 n1 = XEXP (n1, 1);
1135 while (n2 && !reg_note_cfa_p[REG_NOTE_KIND (n2)])
1136 n2 = XEXP (n2, 1);
1137 if (n1 == NULL_RTX && n2 == NULL_RTX)
1138 return true;
1139 if (n1 == NULL_RTX || n2 == NULL_RTX)
1140 return false;
1141 if (XEXP (n1, 0) == XEXP (n2, 0))
1142 ;
1143 else if (XEXP (n1, 0) == NULL_RTX || XEXP (n2, 0) == NULL_RTX)
1144 return false;
1145 else if (!(reload_completed
1146 ? rtx_renumbered_equal_p (XEXP (n1, 0), XEXP (n2, 0))
1147 : rtx_equal_p (XEXP (n1, 0), XEXP (n2, 0))))
1148 return false;
1149 }
1150}
1151
472c95f5
TV
1152/* Examine I1 and I2 and return:
1153 - dir_forward if I1 can be replaced by I2, or
1154 - dir_backward if I2 can be replaced by I1, or
1155 - dir_both if both are the case. */
1156
1157static enum replace_direction
da5477a9 1158old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx_insn *i1, rtx_insn *i2)
c2fc5456
R
1159{
1160 rtx p1, p2;
1161
1162 /* Verify that I1 and I2 are equivalent. */
1163 if (GET_CODE (i1) != GET_CODE (i2))
472c95f5 1164 return dir_none;
c2fc5456 1165
ba21aba3
DD
1166 /* __builtin_unreachable() may lead to empty blocks (ending with
1167 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1168 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
472c95f5 1169 return dir_both;
ba21aba3 1170
9a08d230
RH
1171 /* ??? Do not allow cross-jumping between different stack levels. */
1172 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1173 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
42aa5124
RH
1174 if (p1 && p2)
1175 {
1176 p1 = XEXP (p1, 0);
1177 p2 = XEXP (p2, 0);
1178 if (!rtx_equal_p (p1, p2))
1179 return dir_none;
1180
1181 /* ??? Worse, this adjustment had better be constant lest we
1182 have differing incoming stack levels. */
1183 if (!frame_pointer_needed
1184 && find_args_size_adjust (i1) == HOST_WIDE_INT_MIN)
1185 return dir_none;
1186 }
1187 else if (p1 || p2)
9a08d230
RH
1188 return dir_none;
1189
aade772d
JJ
1190 /* Do not allow cross-jumping between frame related insns and other
1191 insns. */
1192 if (RTX_FRAME_RELATED_P (i1) != RTX_FRAME_RELATED_P (i2))
1193 return dir_none;
1194
7752e522 1195 p1 = PATTERN (i1);
c2fc5456
R
1196 p2 = PATTERN (i2);
1197
1198 if (GET_CODE (p1) != GET_CODE (p2))
472c95f5 1199 return dir_none;
c2fc5456
R
1200
1201 /* If this is a CALL_INSN, compare register usage information.
1202 If we don't check this on stack register machines, the two
1203 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1204 numbers of stack registers in the same basic block.
1205 If we don't check this on machines with delay slots, a delay slot may
1206 be filled that clobbers a parameter expected by the subroutine.
1207
1208 ??? We take the simple route for now and assume that if they're
31ce8a53 1209 equal, they were constructed identically.
c2fc5456 1210
31ce8a53
BS
1211 Also check for identical exception regions. */
1212
1213 if (CALL_P (i1))
1214 {
1215 /* Ensure the same EH region. */
1216 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1217 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1218
1219 if (!n1 && n2)
472c95f5 1220 return dir_none;
31ce8a53
BS
1221
1222 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
472c95f5 1223 return dir_none;
31ce8a53
BS
1224
1225 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
c22cacf3 1226 CALL_INSN_FUNCTION_USAGE (i2))
31ce8a53 1227 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
472c95f5 1228 return dir_none;
68a9738a
JJ
1229
1230 /* For address sanitizer, never crossjump __asan_report_* builtins,
1231 otherwise errors might be reported on incorrect lines. */
de5a5fa1 1232 if (flag_sanitize & SANITIZE_ADDRESS)
68a9738a
JJ
1233 {
1234 rtx call = get_call_rtx_from (i1);
1235 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
1236 {
1237 rtx symbol = XEXP (XEXP (call, 0), 0);
1238 if (SYMBOL_REF_DECL (symbol)
1239 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
1240 {
1241 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
1242 == BUILT_IN_NORMAL)
1243 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1244 >= BUILT_IN_ASAN_REPORT_LOAD1
1245 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
8946c29e 1246 <= BUILT_IN_ASAN_STOREN)
68a9738a
JJ
1247 return dir_none;
1248 }
1249 }
1250 }
31ce8a53 1251 }
c2fc5456 1252
aade772d
JJ
1253 /* If both i1 and i2 are frame related, verify all the CFA notes
1254 in the same order and with the same content. */
1255 if (RTX_FRAME_RELATED_P (i1) && !insns_have_identical_cfa_notes (i1, i2))
1256 return dir_none;
1257
c2fc5456
R
1258#ifdef STACK_REGS
1259 /* If cross_jump_death_matters is not 0, the insn's mode
1260 indicates whether or not the insn contains any stack-like
1261 regs. */
1262
1263 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1264 {
1265 /* If register stack conversion has already been done, then
c22cacf3
MS
1266 death notes must also be compared before it is certain that
1267 the two instruction streams match. */
c2fc5456
R
1268
1269 rtx note;
1270 HARD_REG_SET i1_regset, i2_regset;
1271
1272 CLEAR_HARD_REG_SET (i1_regset);
1273 CLEAR_HARD_REG_SET (i2_regset);
1274
1275 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1276 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1277 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1278
1279 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1280 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1281 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1282
56b138ae 1283 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
472c95f5 1284 return dir_none;
c2fc5456
R
1285 }
1286#endif
1287
1288 if (reload_completed
1289 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
472c95f5 1290 return dir_both;
c2fc5456 1291
472c95f5 1292 return can_replace_by (i1, i2);
c2fc5456
R
1293}
1294\f
31ce8a53
BS
1295/* When comparing insns I1 and I2 in flow_find_cross_jump or
1296 flow_find_head_matching_sequence, ensure the notes match. */
1297
1298static void
da5477a9 1299merge_notes (rtx_insn *i1, rtx_insn *i2)
31ce8a53
BS
1300{
1301 /* If the merged insns have different REG_EQUAL notes, then
1302 remove them. */
1303 rtx equiv1 = find_reg_equal_equiv_note (i1);
1304 rtx equiv2 = find_reg_equal_equiv_note (i2);
1305
1306 if (equiv1 && !equiv2)
1307 remove_note (i1, equiv1);
1308 else if (!equiv1 && equiv2)
1309 remove_note (i2, equiv2);
1310 else if (equiv1 && equiv2
1311 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1312 {
1313 remove_note (i1, equiv1);
1314 remove_note (i2, equiv2);
1315 }
1316}
1317
823918ae
TV
1318 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1319 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1320 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1321 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1322 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1323
1324static void
da5477a9 1325walk_to_nondebug_insn (rtx_insn **i1, basic_block *bb1, bool follow_fallthru,
823918ae
TV
1326 bool *did_fallthru)
1327{
1328 edge fallthru;
1329
1330 *did_fallthru = false;
1331
1332 /* Ignore notes. */
1333 while (!NONDEBUG_INSN_P (*i1))
1334 {
1335 if (*i1 != BB_HEAD (*bb1))
1336 {
1337 *i1 = PREV_INSN (*i1);
1338 continue;
1339 }
1340
1341 if (!follow_fallthru)
1342 return;
1343
1344 fallthru = find_fallthru_edge ((*bb1)->preds);
fefa31b5 1345 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
823918ae
TV
1346 || !single_succ_p (fallthru->src))
1347 return;
1348
1349 *bb1 = fallthru->src;
1350 *i1 = BB_END (*bb1);
1351 *did_fallthru = true;
1352 }
1353}
1354
c2fc5456 1355/* Look through the insns at the end of BB1 and BB2 and find the longest
472c95f5
TV
1356 sequence that are either equivalent, or allow forward or backward
1357 replacement. Store the first insns for that sequence in *F1 and *F2 and
1358 return the sequence length.
1359
1360 DIR_P indicates the allowed replacement direction on function entry, and
1361 the actual replacement direction on function exit. If NULL, only equivalent
1362 sequences are allowed.
c2fc5456
R
1363
1364 To simplify callers of this function, if the blocks match exactly,
1365 store the head of the blocks in *F1 and *F2. */
1366
31ce8a53 1367int
da5477a9
DM
1368flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx_insn **f1,
1369 rtx_insn **f2, enum replace_direction *dir_p)
c2fc5456 1370{
da5477a9 1371 rtx_insn *i1, *i2, *last1, *last2, *afterlast1, *afterlast2;
c2fc5456 1372 int ninsns = 0;
472c95f5 1373 enum replace_direction dir, last_dir, afterlast_dir;
823918ae 1374 bool follow_fallthru, did_fallthru;
472c95f5
TV
1375
1376 if (dir_p)
1377 dir = *dir_p;
1378 else
1379 dir = dir_both;
1380 afterlast_dir = dir;
1381 last_dir = afterlast_dir;
c2fc5456
R
1382
1383 /* Skip simple jumps at the end of the blocks. Complex jumps still
1384 need to be compared for equivalence, which we'll do below. */
1385
1386 i1 = BB_END (bb1);
da5477a9 1387 last1 = afterlast1 = last2 = afterlast2 = NULL;
c2fc5456
R
1388 if (onlyjump_p (i1)
1389 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1390 {
1391 last1 = i1;
1392 i1 = PREV_INSN (i1);
1393 }
1394
1395 i2 = BB_END (bb2);
1396 if (onlyjump_p (i2)
1397 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1398 {
1399 last2 = i2;
a0cbe71e
JJ
1400 /* Count everything except for unconditional jump as insn.
1401 Don't count any jumps if dir_p is NULL. */
1402 if (!simplejump_p (i2) && !returnjump_p (i2) && last1 && dir_p)
c2fc5456
R
1403 ninsns++;
1404 i2 = PREV_INSN (i2);
1405 }
1406
1407 while (true)
1408 {
823918ae
TV
1409 /* In the following example, we can replace all jumps to C by jumps to A.
1410
1411 This removes 4 duplicate insns.
1412 [bb A] insn1 [bb C] insn1
1413 insn2 insn2
1414 [bb B] insn3 insn3
1415 insn4 insn4
1416 jump_insn jump_insn
1417
1418 We could also replace all jumps to A by jumps to C, but that leaves B
1419 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1420 step, all jumps to B would be replaced with jumps to the middle of C,
1421 achieving the same result with more effort.
1422 So we allow only the first possibility, which means that we don't allow
1423 fallthru in the block that's being replaced. */
1424
1425 follow_fallthru = dir_p && dir != dir_forward;
1426 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1427 if (did_fallthru)
1428 dir = dir_backward;
1429
1430 follow_fallthru = dir_p && dir != dir_backward;
1431 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1432 if (did_fallthru)
1433 dir = dir_forward;
c2fc5456
R
1434
1435 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1436 break;
1437
472c95f5
TV
1438 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1439 if (dir == dir_none || (!dir_p && dir != dir_both))
c2fc5456
R
1440 break;
1441
1442 merge_memattrs (i1, i2);
1443
1444 /* Don't begin a cross-jump with a NOTE insn. */
1445 if (INSN_P (i1))
1446 {
31ce8a53 1447 merge_notes (i1, i2);
c2fc5456
R
1448
1449 afterlast1 = last1, afterlast2 = last2;
1450 last1 = i1, last2 = i2;
472c95f5
TV
1451 afterlast_dir = last_dir;
1452 last_dir = dir;
a0cbe71e 1453 if (active_insn_p (i1))
2a562b0a 1454 ninsns++;
c2fc5456
R
1455 }
1456
1457 i1 = PREV_INSN (i1);
1458 i2 = PREV_INSN (i2);
1459 }
1460
c2fc5456
R
1461 /* Don't allow the insn after a compare to be shared by
1462 cross-jumping unless the compare is also shared. */
618f4073
TS
1463 if (HAVE_cc0 && ninsns && reg_mentioned_p (cc0_rtx, last1)
1464 && ! sets_cc0_p (last1))
472c95f5 1465 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
c2fc5456
R
1466
1467 /* Include preceding notes and labels in the cross-jump. One,
1468 this may bring us to the head of the blocks as requested above.
1469 Two, it keeps line number notes as matched as may be. */
1470 if (ninsns)
1471 {
823918ae 1472 bb1 = BLOCK_FOR_INSN (last1);
b5b8b0ac 1473 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
c2fc5456
R
1474 last1 = PREV_INSN (last1);
1475
1476 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1477 last1 = PREV_INSN (last1);
1478
823918ae 1479 bb2 = BLOCK_FOR_INSN (last2);
b5b8b0ac 1480 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
c2fc5456
R
1481 last2 = PREV_INSN (last2);
1482
1483 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1484 last2 = PREV_INSN (last2);
1485
1486 *f1 = last1;
1487 *f2 = last2;
1488 }
1489
472c95f5
TV
1490 if (dir_p)
1491 *dir_p = last_dir;
c2fc5456
R
1492 return ninsns;
1493}
1494
31ce8a53
BS
1495/* Like flow_find_cross_jump, except start looking for a matching sequence from
1496 the head of the two blocks. Do not include jumps at the end.
1497 If STOP_AFTER is nonzero, stop after finding that many matching
b59e0455
JJ
1498 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1499 non-zero, only count active insns. */
31ce8a53
BS
1500
1501int
da5477a9
DM
1502flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx_insn **f1,
1503 rtx_insn **f2, int stop_after)
31ce8a53 1504{
da5477a9 1505 rtx_insn *i1, *i2, *last1, *last2, *beforelast1, *beforelast2;
31ce8a53
BS
1506 int ninsns = 0;
1507 edge e;
1508 edge_iterator ei;
1509 int nehedges1 = 0, nehedges2 = 0;
1510
1511 FOR_EACH_EDGE (e, ei, bb1->succs)
1512 if (e->flags & EDGE_EH)
1513 nehedges1++;
1514 FOR_EACH_EDGE (e, ei, bb2->succs)
1515 if (e->flags & EDGE_EH)
1516 nehedges2++;
1517
1518 i1 = BB_HEAD (bb1);
1519 i2 = BB_HEAD (bb2);
da5477a9 1520 last1 = beforelast1 = last2 = beforelast2 = NULL;
31ce8a53
BS
1521
1522 while (true)
1523 {
4ec5d4f5 1524 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
31ce8a53 1525 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
4ec5d4f5
BS
1526 {
1527 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1528 break;
1529 i1 = NEXT_INSN (i1);
1530 }
31ce8a53
BS
1531
1532 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
4ec5d4f5
BS
1533 {
1534 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1535 break;
1536 i2 = NEXT_INSN (i2);
1537 }
31ce8a53 1538
662592e1
BS
1539 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1540 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1541 break;
1542
31ce8a53
BS
1543 if (NOTE_P (i1) || NOTE_P (i2)
1544 || JUMP_P (i1) || JUMP_P (i2))
1545 break;
1546
1547 /* A sanity check to make sure we're not merging insns with different
1548 effects on EH. If only one of them ends a basic block, it shouldn't
1549 have an EH edge; if both end a basic block, there should be the same
1550 number of EH edges. */
1551 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1552 && nehedges1 > 0)
1553 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1554 && nehedges2 > 0)
1555 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1556 && nehedges1 != nehedges2))
1557 break;
1558
472c95f5 1559 if (old_insns_match_p (0, i1, i2) != dir_both)
31ce8a53
BS
1560 break;
1561
1562 merge_memattrs (i1, i2);
1563
1564 /* Don't begin a cross-jump with a NOTE insn. */
1565 if (INSN_P (i1))
1566 {
1567 merge_notes (i1, i2);
1568
1569 beforelast1 = last1, beforelast2 = last2;
1570 last1 = i1, last2 = i2;
b59e0455 1571 if (!stop_after || active_insn_p (i1))
a0cbe71e 1572 ninsns++;
31ce8a53
BS
1573 }
1574
1575 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1576 || (stop_after > 0 && ninsns == stop_after))
1577 break;
1578
1579 i1 = NEXT_INSN (i1);
1580 i2 = NEXT_INSN (i2);
1581 }
1582
31ce8a53
BS
1583 /* Don't allow a compare to be shared by cross-jumping unless the insn
1584 after the compare is also shared. */
618f4073
TS
1585 if (HAVE_cc0 && ninsns && reg_mentioned_p (cc0_rtx, last1)
1586 && sets_cc0_p (last1))
31ce8a53 1587 last1 = beforelast1, last2 = beforelast2, ninsns--;
31ce8a53
BS
1588
1589 if (ninsns)
1590 {
1591 *f1 = last1;
1592 *f2 = last2;
1593 }
1594
1595 return ninsns;
1596}
1597
c2fc5456
R
1598/* Return true iff outgoing edges of BB1 and BB2 match, together with
1599 the branch instruction. This means that if we commonize the control
1600 flow before end of the basic block, the semantic remains unchanged.
402209ff
JH
1601
1602 We may assume that there exists one edge with a common destination. */
1603
1604static bool
c2fc5456 1605outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
402209ff 1606{
0dd0e980
JH
1607 int nehedges1 = 0, nehedges2 = 0;
1608 edge fallthru1 = 0, fallthru2 = 0;
1609 edge e1, e2;
628f6a4e 1610 edge_iterator ei;
0dd0e980 1611
6626665f 1612 /* If we performed shrink-wrapping, edges to the exit block can
484db665
BS
1613 only be distinguished for JUMP_INSNs. The two paths may differ in
1614 whether they went through the prologue. Sibcalls are fine, we know
1615 that we either didn't need or inserted an epilogue before them. */
1616 if (crtl->shrink_wrapped
fefa31b5
DM
1617 && single_succ_p (bb1)
1618 && single_succ (bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
484db665
BS
1619 && !JUMP_P (BB_END (bb1))
1620 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1621 return false;
1622
c04cf67b
RH
1623 /* If BB1 has only one successor, we may be looking at either an
1624 unconditional jump, or a fake edge to exit. */
c5cbcccf
ZD
1625 if (single_succ_p (bb1)
1626 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
4b4bf941 1627 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
c5cbcccf
ZD
1628 return (single_succ_p (bb2)
1629 && (single_succ_edge (bb2)->flags
1630 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
4b4bf941 1631 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
402209ff
JH
1632
1633 /* Match conditional jumps - this may get tricky when fallthru and branch
1634 edges are crossed. */
628f6a4e 1635 if (EDGE_COUNT (bb1->succs) == 2
a813c111
SB
1636 && any_condjump_p (BB_END (bb1))
1637 && onlyjump_p (BB_END (bb1)))
402209ff 1638 {
c2fc5456
R
1639 edge b1, f1, b2, f2;
1640 bool reverse, match;
1641 rtx set1, set2, cond1, cond2;
1642 enum rtx_code code1, code2;
1643
628f6a4e 1644 if (EDGE_COUNT (bb2->succs) != 2
a813c111
SB
1645 || !any_condjump_p (BB_END (bb2))
1646 || !onlyjump_p (BB_END (bb2)))
0a2ed1f1 1647 return false;
c2fc5456
R
1648
1649 b1 = BRANCH_EDGE (bb1);
1650 b2 = BRANCH_EDGE (bb2);
1651 f1 = FALLTHRU_EDGE (bb1);
1652 f2 = FALLTHRU_EDGE (bb2);
1653
1654 /* Get around possible forwarders on fallthru edges. Other cases
c22cacf3 1655 should be optimized out already. */
c2fc5456
R
1656 if (FORWARDER_BLOCK_P (f1->dest))
1657 f1 = single_succ_edge (f1->dest);
1658
1659 if (FORWARDER_BLOCK_P (f2->dest))
1660 f2 = single_succ_edge (f2->dest);
1661
1662 /* To simplify use of this function, return false if there are
1663 unneeded forwarder blocks. These will get eliminated later
1664 during cleanup_cfg. */
1665 if (FORWARDER_BLOCK_P (f1->dest)
1666 || FORWARDER_BLOCK_P (f2->dest)
1667 || FORWARDER_BLOCK_P (b1->dest)
1668 || FORWARDER_BLOCK_P (b2->dest))
1669 return false;
1670
1671 if (f1->dest == f2->dest && b1->dest == b2->dest)
1672 reverse = false;
1673 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1674 reverse = true;
1675 else
1676 return false;
1677
1678 set1 = pc_set (BB_END (bb1));
1679 set2 = pc_set (BB_END (bb2));
1680 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1681 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1682 reverse = !reverse;
1683
1684 cond1 = XEXP (SET_SRC (set1), 0);
1685 cond2 = XEXP (SET_SRC (set2), 0);
1686 code1 = GET_CODE (cond1);
1687 if (reverse)
1688 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1689 else
1690 code2 = GET_CODE (cond2);
1691
1692 if (code2 == UNKNOWN)
1693 return false;
1694
1695 /* Verify codes and operands match. */
1696 match = ((code1 == code2
1697 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1698 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1699 || (code1 == swap_condition (code2)
1700 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1701 XEXP (cond2, 0))
1702 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1703 XEXP (cond2, 1))));
1704
1705 /* If we return true, we will join the blocks. Which means that
1706 we will only have one branch prediction bit to work with. Thus
1707 we require the existing branches to have probabilities that are
1708 roughly similar. */
1709 if (match
efd8f750
JH
1710 && optimize_bb_for_speed_p (bb1)
1711 && optimize_bb_for_speed_p (bb2))
c2fc5456
R
1712 {
1713 int prob2;
1714
1715 if (b1->dest == b2->dest)
1716 prob2 = b2->probability;
1717 else
1718 /* Do not use f2 probability as f2 may be forwarded. */
1719 prob2 = REG_BR_PROB_BASE - b2->probability;
1720
1721 /* Fail if the difference in probabilities is greater than 50%.
1722 This rules out two well-predicted branches with opposite
1723 outcomes. */
1724 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1725 {
1726 if (dump_file)
1727 fprintf (dump_file,
1728 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1729 bb1->index, bb2->index, b1->probability, prob2);
1730
1731 return false;
1732 }
1733 }
1734
1735 if (dump_file && match)
1736 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1737 bb1->index, bb2->index);
1738
1739 return match;
402209ff
JH
1740 }
1741
09da1532 1742 /* Generic case - we are seeing a computed jump, table jump or trapping
0dd0e980
JH
1743 instruction. */
1744
39811184
JZ
1745 /* Check whether there are tablejumps in the end of BB1 and BB2.
1746 Return true if they are identical. */
1747 {
dfe08bc4 1748 rtx_insn *label1, *label2;
8942ee0f 1749 rtx_jump_table_data *table1, *table2;
39811184 1750
a813c111
SB
1751 if (tablejump_p (BB_END (bb1), &label1, &table1)
1752 && tablejump_p (BB_END (bb2), &label2, &table2)
39811184
JZ
1753 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1754 {
1755 /* The labels should never be the same rtx. If they really are same
1756 the jump tables are same too. So disable crossjumping of blocks BB1
1757 and BB2 because when deleting the common insns in the end of BB1
6de9cd9a 1758 by delete_basic_block () the jump table would be deleted too. */
4af16369 1759 /* If LABEL2 is referenced in BB1->END do not do anything
39811184
JZ
1760 because we would loose information when replacing
1761 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
a813c111 1762 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
39811184
JZ
1763 {
1764 /* Set IDENTICAL to true when the tables are identical. */
1765 bool identical = false;
1766 rtx p1, p2;
1767
1768 p1 = PATTERN (table1);
1769 p2 = PATTERN (table2);
1770 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1771 {
1772 identical = true;
1773 }
1774 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1775 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1776 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1777 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1778 {
1779 int i;
1780
1781 identical = true;
1782 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1783 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1784 identical = false;
1785 }
1786
c2fc5456 1787 if (identical)
39811184 1788 {
39811184
JZ
1789 bool match;
1790
c2fc5456 1791 /* Temporarily replace references to LABEL1 with LABEL2
39811184 1792 in BB1->END so that we could compare the instructions. */
a2b7026c 1793 replace_label_in_insn (BB_END (bb1), label1, label2, false);
39811184 1794
472c95f5
TV
1795 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1796 == dir_both);
c263766c
RH
1797 if (dump_file && match)
1798 fprintf (dump_file,
39811184
JZ
1799 "Tablejumps in bb %i and %i match.\n",
1800 bb1->index, bb2->index);
1801
c2fc5456
R
1802 /* Set the original label in BB1->END because when deleting
1803 a block whose end is a tablejump, the tablejump referenced
1804 from the instruction is deleted too. */
a2b7026c 1805 replace_label_in_insn (BB_END (bb1), label2, label1, false);
c2fc5456 1806
39811184
JZ
1807 return match;
1808 }
1809 }
1810 return false;
1811 }
1812 }
39811184 1813
d41d6122
TJ
1814 /* Find the last non-debug non-note instruction in each bb, except
1815 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1816 handles that case specially. old_insns_match_p does not handle
1817 other types of instruction notes. */
da5477a9
DM
1818 rtx_insn *last1 = BB_END (bb1);
1819 rtx_insn *last2 = BB_END (bb2);
d41d6122
TJ
1820 while (!NOTE_INSN_BASIC_BLOCK_P (last1) &&
1821 (DEBUG_INSN_P (last1) || NOTE_P (last1)))
1822 last1 = PREV_INSN (last1);
1823 while (!NOTE_INSN_BASIC_BLOCK_P (last2) &&
1824 (DEBUG_INSN_P (last2) || NOTE_P (last2)))
1825 last2 = PREV_INSN (last2);
1826 gcc_assert (last1 && last2);
1827
0dd0e980 1828 /* First ensure that the instructions match. There may be many outgoing
39811184 1829 edges so this test is generally cheaper. */
206604dc 1830 if (old_insns_match_p (mode, last1, last2) != dir_both)
0dd0e980
JH
1831 return false;
1832
1833 /* Search the outgoing edges, ensure that the counts do match, find possible
1834 fallthru and exception handling edges since these needs more
1835 validation. */
628f6a4e
BE
1836 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1837 return false;
1838
206604dc 1839 bool nonfakeedges = false;
628f6a4e 1840 FOR_EACH_EDGE (e1, ei, bb1->succs)
0dd0e980 1841 {
628f6a4e 1842 e2 = EDGE_SUCC (bb2, ei.index);
c22cacf3 1843
206604dc
JJ
1844 if ((e1->flags & EDGE_FAKE) == 0)
1845 nonfakeedges = true;
1846
0dd0e980
JH
1847 if (e1->flags & EDGE_EH)
1848 nehedges1++;
5f0d2358 1849
0dd0e980
JH
1850 if (e2->flags & EDGE_EH)
1851 nehedges2++;
5f0d2358 1852
0dd0e980
JH
1853 if (e1->flags & EDGE_FALLTHRU)
1854 fallthru1 = e1;
1855 if (e2->flags & EDGE_FALLTHRU)
1856 fallthru2 = e2;
1857 }
5f0d2358 1858
0dd0e980 1859 /* If number of edges of various types does not match, fail. */
628f6a4e 1860 if (nehedges1 != nehedges2
5f0d2358 1861 || (fallthru1 != 0) != (fallthru2 != 0))
0dd0e980
JH
1862 return false;
1863
206604dc
JJ
1864 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1865 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1866 attempt to optimize, as the two basic blocks might have different
1867 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1868 traps there should be REG_ARG_SIZE notes, they could be missing
1869 for __builtin_unreachable () uses though. */
1870 if (!nonfakeedges
1871 && !ACCUMULATE_OUTGOING_ARGS
1872 && (!INSN_P (last1)
1873 || !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
1874 return false;
1875
0dd0e980
JH
1876 /* fallthru edges must be forwarded to the same destination. */
1877 if (fallthru1)
1878 {
1879 basic_block d1 = (forwarder_block_p (fallthru1->dest)
c5cbcccf 1880 ? single_succ (fallthru1->dest): fallthru1->dest);
0dd0e980 1881 basic_block d2 = (forwarder_block_p (fallthru2->dest)
c5cbcccf 1882 ? single_succ (fallthru2->dest): fallthru2->dest);
5f0d2358 1883
0dd0e980
JH
1884 if (d1 != d2)
1885 return false;
1886 }
5f0d2358 1887
5f77fbd4
JJ
1888 /* Ensure the same EH region. */
1889 {
a813c111
SB
1890 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1891 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
5f0d2358 1892
5f77fbd4
JJ
1893 if (!n1 && n2)
1894 return false;
1895
1896 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1897 return false;
1898 }
5f0d2358 1899
38109dab
GL
1900 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1901 version of sequence abstraction. */
1902 FOR_EACH_EDGE (e1, ei, bb2->succs)
1903 {
1904 edge e2;
1905 edge_iterator ei;
1906 basic_block d1 = e1->dest;
1907
1908 if (FORWARDER_BLOCK_P (d1))
1909 d1 = EDGE_SUCC (d1, 0)->dest;
1910
1911 FOR_EACH_EDGE (e2, ei, bb1->succs)
1912 {
1913 basic_block d2 = e2->dest;
1914 if (FORWARDER_BLOCK_P (d2))
1915 d2 = EDGE_SUCC (d2, 0)->dest;
1916 if (d1 == d2)
1917 break;
1918 }
1919
1920 if (!e2)
1921 return false;
1922 }
1923
0dd0e980 1924 return true;
402209ff
JH
1925}
1926
38109dab
GL
1927/* Returns true if BB basic block has a preserve label. */
1928
1929static bool
1930block_has_preserve_label (basic_block bb)
1931{
1932 return (bb
1933 && block_label (bb)
1934 && LABEL_PRESERVE_P (block_label (bb)));
1935}
1936
402209ff
JH
1937/* E1 and E2 are edges with the same destination block. Search their
1938 predecessors for common code. If found, redirect control flow from
bf22920b
TV
1939 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1940 or the other way around (dir_backward). DIR specifies the allowed
1941 replacement direction. */
402209ff
JH
1942
1943static bool
bf22920b
TV
1944try_crossjump_to_edge (int mode, edge e1, edge e2,
1945 enum replace_direction dir)
402209ff 1946{
c2fc5456 1947 int nmatch;
402209ff 1948 basic_block src1 = e1->src, src2 = e2->src;
39587bb9 1949 basic_block redirect_to, redirect_from, to_remove;
823918ae 1950 basic_block osrc1, osrc2, redirect_edges_to, tmp;
da5477a9 1951 rtx_insn *newpos1, *newpos2;
402209ff 1952 edge s;
628f6a4e 1953 edge_iterator ei;
c2fc5456 1954
da5477a9 1955 newpos1 = newpos2 = NULL;
6de9cd9a 1956
750054a2 1957 /* If we have partitioned hot/cold basic blocks, it is a bad idea
c22cacf3 1958 to try this optimization.
8e8d5162
CT
1959
1960 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
1961 be optimizable (or blocks that appear to be mergeable), but which really
1962 must be left untouched (they are required to make it safely across
1963 partition boundaries). See the comments at the top of
8e8d5162 1964 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
750054a2 1965
af205f67 1966 if (crtl->has_bb_partition && reload_completed)
750054a2
CT
1967 return false;
1968
402209ff
JH
1969 /* Search backward through forwarder blocks. We don't need to worry
1970 about multiple entry or chained forwarders, as they will be optimized
1971 away. We do this to look past the unconditional jump following a
1972 conditional jump that is required due to the current CFG shape. */
c5cbcccf 1973 if (single_pred_p (src1)
635559ab 1974 && FORWARDER_BLOCK_P (src1))
c5cbcccf 1975 e1 = single_pred_edge (src1), src1 = e1->src;
5f0d2358 1976
c5cbcccf 1977 if (single_pred_p (src2)
635559ab 1978 && FORWARDER_BLOCK_P (src2))
c5cbcccf 1979 e2 = single_pred_edge (src2), src2 = e2->src;
402209ff
JH
1980
1981 /* Nothing to do if we reach ENTRY, or a common source block. */
fefa31b5
DM
1982 if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
1983 == ENTRY_BLOCK_PTR_FOR_FN (cfun))
402209ff
JH
1984 return false;
1985 if (src1 == src2)
1986 return false;
1987
1988 /* Seeing more than 1 forwarder blocks would confuse us later... */
635559ab 1989 if (FORWARDER_BLOCK_P (e1->dest)
c5cbcccf 1990 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
402209ff 1991 return false;
5f0d2358 1992
635559ab 1993 if (FORWARDER_BLOCK_P (e2->dest)
c5cbcccf 1994 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
402209ff
JH
1995 return false;
1996
1997 /* Likewise with dead code (possibly newly created by the other optimizations
1998 of cfg_cleanup). */
628f6a4e 1999 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
402209ff
JH
2000 return false;
2001
402209ff 2002 /* Look for the common insn sequence, part the first ... */
c2fc5456 2003 if (!outgoing_edges_match (mode, src1, src2))
402209ff
JH
2004 return false;
2005
2006 /* ... and part the second. */
472c95f5 2007 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
12183e0f 2008
823918ae
TV
2009 osrc1 = src1;
2010 osrc2 = src2;
2011 if (newpos1 != NULL_RTX)
2012 src1 = BLOCK_FOR_INSN (newpos1);
2013 if (newpos2 != NULL_RTX)
2014 src2 = BLOCK_FOR_INSN (newpos2);
2015
dd68669b
JL
2016 /* Check that SRC1 and SRC2 have preds again. They may have changed
2017 above due to the call to flow_find_cross_jump. */
2018 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
2019 return false;
2020
bf22920b
TV
2021 if (dir == dir_backward)
2022 {
2023#define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
2024 SWAP (basic_block, osrc1, osrc2);
2025 SWAP (basic_block, src1, src2);
2026 SWAP (edge, e1, e2);
da5477a9 2027 SWAP (rtx_insn *, newpos1, newpos2);
bf22920b
TV
2028#undef SWAP
2029 }
2030
12183e0f
PH
2031 /* Don't proceed with the crossjump unless we found a sufficient number
2032 of matching instructions or the 'from' block was totally matched
2033 (such that its predecessors will hopefully be redirected and the
2034 block removed). */
c2fc5456
R
2035 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
2036 && (newpos1 != BB_HEAD (src1)))
7d22e898 2037 return false;
402209ff 2038
75c40d56 2039 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
38109dab
GL
2040 if (block_has_preserve_label (e1->dest)
2041 && (e1->flags & EDGE_ABNORMAL))
2042 return false;
2043
39811184
JZ
2044 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2045 will be deleted.
2046 If we have tablejumps in the end of SRC1 and SRC2
2047 they have been already compared for equivalence in outgoing_edges_match ()
2048 so replace the references to TABLE1 by references to TABLE2. */
21c0a521 2049 {
dfe08bc4 2050 rtx_insn *label1, *label2;
8942ee0f 2051 rtx_jump_table_data *table1, *table2;
39811184 2052
823918ae
TV
2053 if (tablejump_p (BB_END (osrc1), &label1, &table1)
2054 && tablejump_p (BB_END (osrc2), &label2, &table2)
39811184
JZ
2055 && label1 != label2)
2056 {
da5477a9 2057 rtx_insn *insn;
39811184
JZ
2058
2059 /* Replace references to LABEL1 with LABEL2. */
39811184
JZ
2060 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2061 {
2062 /* Do not replace the label in SRC1->END because when deleting
2063 a block whose end is a tablejump, the tablejump referenced
2064 from the instruction is deleted too. */
823918ae 2065 if (insn != BB_END (osrc1))
a2b7026c 2066 replace_label_in_insn (insn, label1, label2, true);
39811184
JZ
2067 }
2068 }
21c0a521 2069 }
10d6c0d0 2070
b604fe9b
SB
2071 /* Avoid splitting if possible. We must always split when SRC2 has
2072 EH predecessor edges, or we may end up with basic blocks with both
2073 normal and EH predecessor edges. */
c2fc5456 2074 if (newpos2 == BB_HEAD (src2)
b604fe9b 2075 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
402209ff
JH
2076 redirect_to = src2;
2077 else
2078 {
c2fc5456 2079 if (newpos2 == BB_HEAD (src2))
b604fe9b
SB
2080 {
2081 /* Skip possible basic block header. */
c2fc5456
R
2082 if (LABEL_P (newpos2))
2083 newpos2 = NEXT_INSN (newpos2);
b5b8b0ac
AO
2084 while (DEBUG_INSN_P (newpos2))
2085 newpos2 = NEXT_INSN (newpos2);
c2fc5456
R
2086 if (NOTE_P (newpos2))
2087 newpos2 = NEXT_INSN (newpos2);
b5b8b0ac
AO
2088 while (DEBUG_INSN_P (newpos2))
2089 newpos2 = NEXT_INSN (newpos2);
b604fe9b
SB
2090 }
2091
c263766c
RH
2092 if (dump_file)
2093 fprintf (dump_file, "Splitting bb %i before %i insns\n",
0b17ab2f 2094 src2->index, nmatch);
c2fc5456 2095 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
402209ff
JH
2096 }
2097
c263766c 2098 if (dump_file)
c2fc5456
R
2099 fprintf (dump_file,
2100 "Cross jumping from bb %i to bb %i; %i common insns\n",
2101 src1->index, src2->index, nmatch);
402209ff 2102
6fc0bb99 2103 /* We may have some registers visible through the block. */
6fb5fa3c 2104 df_set_bb_dirty (redirect_to);
402209ff 2105
823918ae
TV
2106 if (osrc2 == src2)
2107 redirect_edges_to = redirect_to;
2108 else
2109 redirect_edges_to = osrc2;
2110
402209ff 2111 /* Recompute the frequencies and counts of outgoing edges. */
823918ae 2112 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
402209ff
JH
2113 {
2114 edge s2;
628f6a4e 2115 edge_iterator ei;
402209ff
JH
2116 basic_block d = s->dest;
2117
635559ab 2118 if (FORWARDER_BLOCK_P (d))
c5cbcccf 2119 d = single_succ (d);
5f0d2358 2120
628f6a4e 2121 FOR_EACH_EDGE (s2, ei, src1->succs)
402209ff
JH
2122 {
2123 basic_block d2 = s2->dest;
635559ab 2124 if (FORWARDER_BLOCK_P (d2))
c5cbcccf 2125 d2 = single_succ (d2);
402209ff
JH
2126 if (d == d2)
2127 break;
2128 }
5f0d2358 2129
402209ff
JH
2130 s->count += s2->count;
2131
2132 /* Take care to update possible forwarder blocks. We verified
c22cacf3
MS
2133 that there is no more than one in the chain, so we can't run
2134 into infinite loop. */
635559ab 2135 if (FORWARDER_BLOCK_P (s->dest))
402209ff 2136 {
c5cbcccf 2137 single_succ_edge (s->dest)->count += s2->count;
402209ff
JH
2138 s->dest->count += s2->count;
2139 s->dest->frequency += EDGE_FREQUENCY (s);
2140 }
5f0d2358 2141
635559ab 2142 if (FORWARDER_BLOCK_P (s2->dest))
402209ff 2143 {
c5cbcccf 2144 single_succ_edge (s2->dest)->count -= s2->count;
402209ff
JH
2145 s2->dest->count -= s2->count;
2146 s2->dest->frequency -= EDGE_FREQUENCY (s);
b446e5a2
JH
2147 if (s2->dest->frequency < 0)
2148 s2->dest->frequency = 0;
402209ff 2149 }
5f0d2358 2150
823918ae 2151 if (!redirect_edges_to->frequency && !src1->frequency)
402209ff
JH
2152 s->probability = (s->probability + s2->probability) / 2;
2153 else
5f0d2358 2154 s->probability
823918ae 2155 = ((s->probability * redirect_edges_to->frequency +
5f0d2358 2156 s2->probability * src1->frequency)
823918ae 2157 / (redirect_edges_to->frequency + src1->frequency));
402209ff
JH
2158 }
2159
52982a97
EB
2160 /* Adjust count and frequency for the block. An earlier jump
2161 threading pass may have left the profile in an inconsistent
2162 state (see update_bb_profile_for_threading) so we must be
2163 prepared for overflows. */
823918ae
TV
2164 tmp = redirect_to;
2165 do
2166 {
2167 tmp->count += src1->count;
2168 tmp->frequency += src1->frequency;
2169 if (tmp->frequency > BB_FREQ_MAX)
2170 tmp->frequency = BB_FREQ_MAX;
2171 if (tmp == redirect_edges_to)
2172 break;
2173 tmp = find_fallthru_edge (tmp->succs)->dest;
2174 }
2175 while (true);
2176 update_br_prob_note (redirect_edges_to);
402209ff
JH
2177
2178 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2179
c2fc5456
R
2180 /* Skip possible basic block header. */
2181 if (LABEL_P (newpos1))
2182 newpos1 = NEXT_INSN (newpos1);
b5b8b0ac
AO
2183
2184 while (DEBUG_INSN_P (newpos1))
2185 newpos1 = NEXT_INSN (newpos1);
2186
cd9c1ca8 2187 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
c2fc5456
R
2188 newpos1 = NEXT_INSN (newpos1);
2189
b5b8b0ac
AO
2190 while (DEBUG_INSN_P (newpos1))
2191 newpos1 = NEXT_INSN (newpos1);
2192
c2fc5456 2193 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
c5cbcccf 2194 to_remove = single_succ (redirect_from);
402209ff 2195
c5cbcccf 2196 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
f470c378 2197 delete_basic_block (to_remove);
402209ff 2198
39587bb9 2199 update_forwarder_flag (redirect_from);
7cbd12b8
JJ
2200 if (redirect_to != src2)
2201 update_forwarder_flag (src2);
635559ab 2202
402209ff
JH
2203 return true;
2204}
2205
2206/* Search the predecessors of BB for common insn sequences. When found,
2207 share code between them by redirecting control flow. Return true if
2208 any changes made. */
2209
2210static bool
d329e058 2211try_crossjump_bb (int mode, basic_block bb)
402209ff 2212{
628f6a4e 2213 edge e, e2, fallthru;
402209ff 2214 bool changed;
628f6a4e 2215 unsigned max, ix, ix2;
402209ff 2216
f63d1bf7 2217 /* Nothing to do if there is not at least two incoming edges. */
628f6a4e 2218 if (EDGE_COUNT (bb->preds) < 2)
402209ff
JH
2219 return false;
2220
bbcb0c05
SB
2221 /* Don't crossjump if this block ends in a computed jump,
2222 unless we are optimizing for size. */
efd8f750 2223 if (optimize_bb_for_size_p (bb)
fefa31b5 2224 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
bbcb0c05
SB
2225 && computed_jump_p (BB_END (bb)))
2226 return false;
2227
750054a2
CT
2228 /* If we are partitioning hot/cold basic blocks, we don't want to
2229 mess up unconditional or indirect jumps that cross between hot
c22cacf3
MS
2230 and cold sections.
2231
8e8d5162 2232 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
2233 be optimizable (or blocks that appear to be mergeable), but which really
2234 must be left untouched (they are required to make it safely across
2235 partition boundaries). See the comments at the top of
8e8d5162
CT
2236 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2237
c22cacf3
MS
2238 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2239 BB_PARTITION (EDGE_PRED (bb, 1)->src)
87c8b4be 2240 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
750054a2
CT
2241 return false;
2242
402209ff
JH
2243 /* It is always cheapest to redirect a block that ends in a branch to
2244 a block that falls through into BB, as that adds no branches to the
2245 program. We'll try that combination first. */
5f24e0dc
RH
2246 fallthru = NULL;
2247 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
628f6a4e
BE
2248
2249 if (EDGE_COUNT (bb->preds) > max)
2250 return false;
2251
0fd4b31d 2252 fallthru = find_fallthru_edge (bb->preds);
402209ff
JH
2253
2254 changed = false;
0248bceb 2255 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
402209ff 2256 {
0248bceb 2257 e = EDGE_PRED (bb, ix);
628f6a4e 2258 ix++;
402209ff 2259
c1e3e2d9
SB
2260 /* As noted above, first try with the fallthru predecessor (or, a
2261 fallthru predecessor if we are in cfglayout mode). */
402209ff
JH
2262 if (fallthru)
2263 {
2264 /* Don't combine the fallthru edge into anything else.
2265 If there is a match, we'll do it the other way around. */
2266 if (e == fallthru)
2267 continue;
7cf240d5
JH
2268 /* If nothing changed since the last attempt, there is nothing
2269 we can do. */
2270 if (!first_pass
4ec5d4f5
BS
2271 && !((e->src->flags & BB_MODIFIED)
2272 || (fallthru->src->flags & BB_MODIFIED)))
7cf240d5 2273 continue;
402209ff 2274
bf22920b 2275 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
402209ff
JH
2276 {
2277 changed = true;
628f6a4e 2278 ix = 0;
402209ff
JH
2279 continue;
2280 }
2281 }
2282
2283 /* Non-obvious work limiting check: Recognize that we're going
2284 to call try_crossjump_bb on every basic block. So if we have
2285 two blocks with lots of outgoing edges (a switch) and they
2286 share lots of common destinations, then we would do the
2287 cross-jump check once for each common destination.
2288
2289 Now, if the blocks actually are cross-jump candidates, then
2290 all of their destinations will be shared. Which means that
2291 we only need check them for cross-jump candidacy once. We
2292 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2293 choosing to do the check from the block for which the edge
2294 in question is the first successor of A. */
628f6a4e 2295 if (EDGE_SUCC (e->src, 0) != e)
402209ff
JH
2296 continue;
2297
0248bceb 2298 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
402209ff 2299 {
0248bceb 2300 e2 = EDGE_PRED (bb, ix2);
402209ff
JH
2301
2302 if (e2 == e)
2303 continue;
2304
2305 /* We've already checked the fallthru edge above. */
2306 if (e2 == fallthru)
2307 continue;
2308
402209ff
JH
2309 /* The "first successor" check above only prevents multiple
2310 checks of crossjump(A,B). In order to prevent redundant
2311 checks of crossjump(B,A), require that A be the block
2312 with the lowest index. */
0b17ab2f 2313 if (e->src->index > e2->src->index)
402209ff
JH
2314 continue;
2315
7cf240d5
JH
2316 /* If nothing changed since the last attempt, there is nothing
2317 we can do. */
2318 if (!first_pass
4ec5d4f5
BS
2319 && !((e->src->flags & BB_MODIFIED)
2320 || (e2->src->flags & BB_MODIFIED)))
7cf240d5
JH
2321 continue;
2322
bf22920b
TV
2323 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2324 direction. */
2325 if (try_crossjump_to_edge (mode, e, e2, dir_both))
402209ff
JH
2326 {
2327 changed = true;
628f6a4e 2328 ix = 0;
402209ff
JH
2329 break;
2330 }
2331 }
2332 }
2333
c1e3e2d9 2334 if (changed)
bd2c6270 2335 crossjumps_occurred = true;
c1e3e2d9 2336
402209ff
JH
2337 return changed;
2338}
2339
4ec5d4f5
BS
2340/* Search the successors of BB for common insn sequences. When found,
2341 share code between them by moving it across the basic block
2342 boundary. Return true if any changes made. */
2343
2344static bool
2345try_head_merge_bb (basic_block bb)
2346{
2347 basic_block final_dest_bb = NULL;
2348 int max_match = INT_MAX;
2349 edge e0;
da5477a9 2350 rtx_insn **headptr, **currptr, **nextptr;
4ec5d4f5
BS
2351 bool changed, moveall;
2352 unsigned ix;
da5477a9 2353 rtx_insn *e0_last_head;
61aa0978
DM
2354 rtx cond;
2355 rtx_insn *move_before;
4ec5d4f5 2356 unsigned nedges = EDGE_COUNT (bb->succs);
da5477a9 2357 rtx_insn *jump = BB_END (bb);
4ec5d4f5
BS
2358 regset live, live_union;
2359
2360 /* Nothing to do if there is not at least two outgoing edges. */
2361 if (nedges < 2)
2362 return false;
2363
2364 /* Don't crossjump if this block ends in a computed jump,
2365 unless we are optimizing for size. */
2366 if (optimize_bb_for_size_p (bb)
fefa31b5 2367 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
4ec5d4f5
BS
2368 && computed_jump_p (BB_END (bb)))
2369 return false;
2370
2371 cond = get_condition (jump, &move_before, true, false);
2372 if (cond == NULL_RTX)
43052d45 2373 {
618f4073 2374 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
43052d45
BS
2375 move_before = prev_nonnote_nondebug_insn (jump);
2376 else
43052d45
BS
2377 move_before = jump;
2378 }
4ec5d4f5
BS
2379
2380 for (ix = 0; ix < nedges; ix++)
fefa31b5 2381 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4ec5d4f5
BS
2382 return false;
2383
2384 for (ix = 0; ix < nedges; ix++)
2385 {
2386 edge e = EDGE_SUCC (bb, ix);
2387 basic_block other_bb = e->dest;
2388
2389 if (df_get_bb_dirty (other_bb))
2390 {
2391 block_was_dirty = true;
2392 return false;
2393 }
2394
2395 if (e->flags & EDGE_ABNORMAL)
2396 return false;
2397
2398 /* Normally, all destination blocks must only be reachable from this
2399 block, i.e. they must have one incoming edge.
2400
2401 There is one special case we can handle, that of multiple consecutive
2402 jumps where the first jumps to one of the targets of the second jump.
2403 This happens frequently in switch statements for default labels.
2404 The structure is as follows:
2405 FINAL_DEST_BB
2406 ....
2407 if (cond) jump A;
2408 fall through
2409 BB
2410 jump with targets A, B, C, D...
2411 A
2412 has two incoming edges, from FINAL_DEST_BB and BB
2413
2414 In this case, we can try to move the insns through BB and into
2415 FINAL_DEST_BB. */
2416 if (EDGE_COUNT (other_bb->preds) != 1)
2417 {
2418 edge incoming_edge, incoming_bb_other_edge;
2419 edge_iterator ei;
2420
2421 if (final_dest_bb != NULL
2422 || EDGE_COUNT (other_bb->preds) != 2)
2423 return false;
2424
2425 /* We must be able to move the insns across the whole block. */
2426 move_before = BB_HEAD (bb);
2427 while (!NONDEBUG_INSN_P (move_before))
2428 move_before = NEXT_INSN (move_before);
2429
2430 if (EDGE_COUNT (bb->preds) != 1)
2431 return false;
2432 incoming_edge = EDGE_PRED (bb, 0);
2433 final_dest_bb = incoming_edge->src;
2434 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2435 return false;
2436 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2437 if (incoming_bb_other_edge != incoming_edge)
2438 break;
2439 if (incoming_bb_other_edge->dest != other_bb)
2440 return false;
2441 }
2442 }
2443
2444 e0 = EDGE_SUCC (bb, 0);
da5477a9 2445 e0_last_head = NULL;
4ec5d4f5
BS
2446 changed = false;
2447
2448 for (ix = 1; ix < nedges; ix++)
2449 {
2450 edge e = EDGE_SUCC (bb, ix);
da5477a9 2451 rtx_insn *e0_last, *e_last;
4ec5d4f5
BS
2452 int nmatch;
2453
2454 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2455 &e0_last, &e_last, 0);
2456 if (nmatch == 0)
2457 return false;
2458
2459 if (nmatch < max_match)
2460 {
2461 max_match = nmatch;
2462 e0_last_head = e0_last;
2463 }
2464 }
2465
2466 /* If we matched an entire block, we probably have to avoid moving the
2467 last insn. */
2468 if (max_match > 0
2469 && e0_last_head == BB_END (e0->dest)
2470 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2471 || control_flow_insn_p (e0_last_head)))
2472 {
2473 max_match--;
2474 if (max_match == 0)
2475 return false;
b59e0455
JJ
2476 do
2477 e0_last_head = prev_real_insn (e0_last_head);
2478 while (DEBUG_INSN_P (e0_last_head));
4ec5d4f5
BS
2479 }
2480
2481 if (max_match == 0)
2482 return false;
2483
2484 /* We must find a union of the live registers at each of the end points. */
2485 live = BITMAP_ALLOC (NULL);
2486 live_union = BITMAP_ALLOC (NULL);
2487
da5477a9
DM
2488 currptr = XNEWVEC (rtx_insn *, nedges);
2489 headptr = XNEWVEC (rtx_insn *, nedges);
2490 nextptr = XNEWVEC (rtx_insn *, nedges);
4ec5d4f5
BS
2491
2492 for (ix = 0; ix < nedges; ix++)
2493 {
2494 int j;
2495 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
da5477a9 2496 rtx_insn *head = BB_HEAD (merge_bb);
4ec5d4f5 2497
b59e0455
JJ
2498 while (!NONDEBUG_INSN_P (head))
2499 head = NEXT_INSN (head);
4ec5d4f5
BS
2500 headptr[ix] = head;
2501 currptr[ix] = head;
2502
2503 /* Compute the end point and live information */
2504 for (j = 1; j < max_match; j++)
b59e0455
JJ
2505 do
2506 head = NEXT_INSN (head);
2507 while (!NONDEBUG_INSN_P (head));
4ec5d4f5
BS
2508 simulate_backwards_to_point (merge_bb, live, head);
2509 IOR_REG_SET (live_union, live);
2510 }
2511
2512 /* If we're moving across two blocks, verify the validity of the
2513 first move, then adjust the target and let the loop below deal
2514 with the final move. */
2515 if (final_dest_bb != NULL)
2516 {
61aa0978 2517 rtx_insn *move_upto;
4ec5d4f5
BS
2518
2519 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2520 jump, e0->dest, live_union,
2521 NULL, &move_upto);
2522 if (!moveall)
2523 {
2524 if (move_upto == NULL_RTX)
2525 goto out;
2526
2527 while (e0_last_head != move_upto)
2528 {
2529 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2530 live_union);
2531 e0_last_head = PREV_INSN (e0_last_head);
2532 }
2533 }
2534 if (e0_last_head == NULL_RTX)
2535 goto out;
2536
2537 jump = BB_END (final_dest_bb);
2538 cond = get_condition (jump, &move_before, true, false);
2539 if (cond == NULL_RTX)
43052d45 2540 {
618f4073 2541 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
43052d45
BS
2542 move_before = prev_nonnote_nondebug_insn (jump);
2543 else
43052d45
BS
2544 move_before = jump;
2545 }
4ec5d4f5
BS
2546 }
2547
2548 do
2549 {
61aa0978 2550 rtx_insn *move_upto;
4ec5d4f5
BS
2551 moveall = can_move_insns_across (currptr[0], e0_last_head,
2552 move_before, jump, e0->dest, live_union,
2553 NULL, &move_upto);
2554 if (!moveall && move_upto == NULL_RTX)
2555 {
2556 if (jump == move_before)
2557 break;
2558
2559 /* Try again, using a different insertion point. */
2560 move_before = jump;
2561
4ec5d4f5
BS
2562 /* Don't try moving before a cc0 user, as that may invalidate
2563 the cc0. */
618f4073 2564 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
4ec5d4f5 2565 break;
4ec5d4f5
BS
2566
2567 continue;
2568 }
2569
2570 if (final_dest_bb && !moveall)
2571 /* We haven't checked whether a partial move would be OK for the first
2572 move, so we have to fail this case. */
2573 break;
2574
2575 changed = true;
2576 for (;;)
2577 {
2578 if (currptr[0] == move_upto)
2579 break;
2580 for (ix = 0; ix < nedges; ix++)
2581 {
da5477a9 2582 rtx_insn *curr = currptr[ix];
4ec5d4f5
BS
2583 do
2584 curr = NEXT_INSN (curr);
2585 while (!NONDEBUG_INSN_P (curr));
2586 currptr[ix] = curr;
2587 }
2588 }
2589
2590 /* If we can't currently move all of the identical insns, remember
2591 each insn after the range that we'll merge. */
2592 if (!moveall)
2593 for (ix = 0; ix < nedges; ix++)
2594 {
da5477a9 2595 rtx_insn *curr = currptr[ix];
4ec5d4f5
BS
2596 do
2597 curr = NEXT_INSN (curr);
2598 while (!NONDEBUG_INSN_P (curr));
2599 nextptr[ix] = curr;
2600 }
2601
2602 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2603 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2604 if (final_dest_bb != NULL)
2605 df_set_bb_dirty (final_dest_bb);
2606 df_set_bb_dirty (bb);
2607 for (ix = 1; ix < nedges; ix++)
2608 {
2609 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2610 delete_insn_chain (headptr[ix], currptr[ix], false);
2611 }
2612 if (!moveall)
2613 {
2614 if (jump == move_before)
2615 break;
2616
2617 /* For the unmerged insns, try a different insertion point. */
2618 move_before = jump;
2619
4ec5d4f5
BS
2620 /* Don't try moving before a cc0 user, as that may invalidate
2621 the cc0. */
618f4073 2622 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
4ec5d4f5 2623 break;
4ec5d4f5
BS
2624
2625 for (ix = 0; ix < nedges; ix++)
2626 currptr[ix] = headptr[ix] = nextptr[ix];
2627 }
2628 }
2629 while (!moveall);
2630
2631 out:
2632 free (currptr);
2633 free (headptr);
2634 free (nextptr);
2635
bd2c6270 2636 crossjumps_occurred |= changed;
4ec5d4f5
BS
2637
2638 return changed;
2639}
2640
7752e522
JJ
2641/* Return true if BB contains just bb note, or bb note followed
2642 by only DEBUG_INSNs. */
2643
2644static bool
2645trivially_empty_bb_p (basic_block bb)
2646{
da5477a9 2647 rtx_insn *insn = BB_END (bb);
7752e522
JJ
2648
2649 while (1)
2650 {
2651 if (insn == BB_HEAD (bb))
2652 return true;
2653 if (!DEBUG_INSN_P (insn))
2654 return false;
2655 insn = PREV_INSN (insn);
2656 }
2657}
2658
45676a7c
SB
2659/* Return true if BB contains just a return and possibly a USE of the
2660 return value. Fill in *RET and *USE with the return and use insns
2ea0d750 2661 if any found, otherwise NULL. All CLOBBERs are ignored. */
45676a7c
SB
2662
2663static bool
2664bb_is_just_return (basic_block bb, rtx_insn **ret, rtx_insn **use)
2665{
2666 *ret = *use = NULL;
2667 rtx_insn *insn;
2668
2669 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2670 return false;
2671
2672 FOR_BB_INSNS (bb, insn)
2673 if (NONDEBUG_INSN_P (insn))
2674 {
2ea0d750
SB
2675 rtx pat = PATTERN (insn);
2676
2677 if (!*ret && ANY_RETURN_P (pat))
45676a7c 2678 *ret = insn;
2ea0d750
SB
2679 else if (!*ret && !*use && GET_CODE (pat) == USE
2680 && REG_P (XEXP (pat, 0))
2681 && REG_FUNCTION_VALUE_P (XEXP (pat, 0)))
45676a7c 2682 *use = insn;
2ea0d750 2683 else if (GET_CODE (pat) != CLOBBER)
45676a7c
SB
2684 return false;
2685 }
2686
2687 return !!*ret;
2688}
2689
402209ff
JH
2690/* Do simple CFG optimizations - basic block merging, simplifying of jump
2691 instructions etc. Return nonzero if changes were made. */
2692
2693static bool
d329e058 2694try_optimize_cfg (int mode)
402209ff 2695{
402209ff
JH
2696 bool changed_overall = false;
2697 bool changed;
2698 int iterations = 0;
ec3ae3da 2699 basic_block bb, b, next;
402209ff 2700
6fb5fa3c 2701 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
38c1593d
JH
2702 clear_bb_flags ();
2703
bd2c6270 2704 crossjumps_occurred = false;
c1e3e2d9 2705
11cd3bed 2706 FOR_EACH_BB_FN (bb, cfun)
2dd2d53e
SB
2707 update_forwarder_flag (bb);
2708
245f1bfa 2709 if (! targetm.cannot_modify_jumps_p ())
402209ff 2710 {
7cf240d5 2711 first_pass = true;
e4ec2cac
AO
2712 /* Attempt to merge blocks as made possible by edge removal. If
2713 a block has only one successor, and the successor has only
2714 one predecessor, they may be combined. */
2715 do
402209ff 2716 {
4ec5d4f5 2717 block_was_dirty = false;
e4ec2cac
AO
2718 changed = false;
2719 iterations++;
2720
c263766c
RH
2721 if (dump_file)
2722 fprintf (dump_file,
e4ec2cac
AO
2723 "\n\ntry_optimize_cfg iteration %i\n\n",
2724 iterations);
402209ff 2725
fefa31b5
DM
2726 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
2727 != EXIT_BLOCK_PTR_FOR_FN (cfun);)
402209ff 2728 {
e0082a72 2729 basic_block c;
e4ec2cac
AO
2730 edge s;
2731 bool changed_here = false;
5f0d2358 2732
468059bc
DD
2733 /* Delete trivially dead basic blocks. This is either
2734 blocks with no predecessors, or empty blocks with no
1e211590
DD
2735 successors. However if the empty block with no
2736 successors is the successor of the ENTRY_BLOCK, it is
2737 kept. This ensures that the ENTRY_BLOCK will have a
2738 successor which is a precondition for many RTL
2739 passes. Empty blocks may result from expanding
468059bc
DD
2740 __builtin_unreachable (). */
2741 if (EDGE_COUNT (b->preds) == 0
1e211590 2742 || (EDGE_COUNT (b->succs) == 0
7752e522 2743 && trivially_empty_bb_p (b)
fefa31b5
DM
2744 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
2745 != b))
e4ec2cac 2746 {
f6366fc7 2747 c = b->prev_bb;
f1de5107 2748 if (EDGE_COUNT (b->preds) > 0)
3b5fda81
JJ
2749 {
2750 edge e;
2751 edge_iterator ei;
2752
f1de5107
JJ
2753 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2754 {
bcc708fc
MM
2755 if (BB_FOOTER (b)
2756 && BARRIER_P (BB_FOOTER (b)))
f1de5107
JJ
2757 FOR_EACH_EDGE (e, ei, b->preds)
2758 if ((e->flags & EDGE_FALLTHRU)
bcc708fc 2759 && BB_FOOTER (e->src) == NULL)
f1de5107 2760 {
bcc708fc 2761 if (BB_FOOTER (b))
f1de5107 2762 {
d8ce2eae
DM
2763 BB_FOOTER (e->src) = BB_FOOTER (b);
2764 BB_FOOTER (b) = NULL;
f1de5107
JJ
2765 }
2766 else
2767 {
2768 start_sequence ();
d8ce2eae 2769 BB_FOOTER (e->src) = emit_barrier ();
f1de5107
JJ
2770 end_sequence ();
2771 }
2772 }
2773 }
2774 else
2775 {
da5477a9 2776 rtx_insn *last = get_last_bb_insn (b);
f1de5107
JJ
2777 if (last && BARRIER_P (last))
2778 FOR_EACH_EDGE (e, ei, b->preds)
2779 if ((e->flags & EDGE_FALLTHRU))
2780 emit_barrier_after (BB_END (e->src));
2781 }
3b5fda81 2782 }
f470c378 2783 delete_basic_block (b);
bef16e87 2784 changed = true;
6626665f 2785 /* Avoid trying to remove the exit block. */
fefa31b5 2786 b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
83bd032b 2787 continue;
e4ec2cac 2788 }
402209ff 2789
6ce2bcb7 2790 /* Remove code labels no longer used. */
c5cbcccf
ZD
2791 if (single_pred_p (b)
2792 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2793 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
4b4bf941 2794 && LABEL_P (BB_HEAD (b))
6c979aa1 2795 && !LABEL_PRESERVE_P (BB_HEAD (b))
e4ec2cac
AO
2796 /* If the previous block ends with a branch to this
2797 block, we can't delete the label. Normally this
2798 is a condjump that is yet to be simplified, but
2799 if CASE_DROPS_THRU, this can be a tablejump with
2800 some element going to the same place as the
2801 default (fallthru). */
fefa31b5 2802 && (single_pred (b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
c5cbcccf 2803 || !JUMP_P (BB_END (single_pred (b)))
a813c111 2804 || ! label_is_jump_target_p (BB_HEAD (b),
c5cbcccf 2805 BB_END (single_pred (b)))))
e4ec2cac 2806 {
03fbe718 2807 delete_insn (BB_HEAD (b));
c263766c
RH
2808 if (dump_file)
2809 fprintf (dump_file, "Deleted label in block %i.\n",
0b17ab2f 2810 b->index);
e4ec2cac 2811 }
402209ff 2812
e4ec2cac 2813 /* If we fall through an empty block, we can remove it. */
9be94227 2814 if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
c5cbcccf
ZD
2815 && single_pred_p (b)
2816 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
4b4bf941 2817 && !LABEL_P (BB_HEAD (b))
e4ec2cac
AO
2818 && FORWARDER_BLOCK_P (b)
2819 /* Note that forwarder_block_p true ensures that
2820 there is a successor for this block. */
c5cbcccf 2821 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
0cae8d31 2822 && n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
e4ec2cac 2823 {
c263766c
RH
2824 if (dump_file)
2825 fprintf (dump_file,
e4ec2cac 2826 "Deleting fallthru block %i.\n",
0b17ab2f 2827 b->index);
e4ec2cac 2828
fefa31b5
DM
2829 c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2830 ? b->next_bb : b->prev_bb);
c5cbcccf
ZD
2831 redirect_edge_succ_nodup (single_pred_edge (b),
2832 single_succ (b));
f470c378 2833 delete_basic_block (b);
e4ec2cac
AO
2834 changed = true;
2835 b = c;
1e211590 2836 continue;
e4ec2cac 2837 }
5f0d2358 2838
50a36e42 2839 /* Merge B with its single successor, if any. */
c5cbcccf
ZD
2840 if (single_succ_p (b)
2841 && (s = single_succ_edge (b))
ec3ae3da 2842 && !(s->flags & EDGE_COMPLEX)
fefa31b5 2843 && (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
c5cbcccf 2844 && single_pred_p (c)
bc35512f
JH
2845 && b != c)
2846 {
2847 /* When not in cfg_layout mode use code aware of reordering
2848 INSN. This code possibly creates new basic blocks so it
2849 does not fit merge_blocks interface and is kept here in
2850 hope that it will become useless once more of compiler
2851 is transformed to use cfg_layout mode. */
c22cacf3 2852
bc35512f
JH
2853 if ((mode & CLEANUP_CFGLAYOUT)
2854 && can_merge_blocks_p (b, c))
2855 {
2856 merge_blocks (b, c);
2857 update_forwarder_flag (b);
2858 changed_here = true;
2859 }
2860 else if (!(mode & CLEANUP_CFGLAYOUT)
2861 /* If the jump insn has side effects,
2862 we can't kill the edge. */
4b4bf941 2863 && (!JUMP_P (BB_END (b))
e24e7211 2864 || (reload_completed
a813c111 2865 ? simplejump_p (BB_END (b))
e4efa971
JH
2866 : (onlyjump_p (BB_END (b))
2867 && !tablejump_p (BB_END (b),
2868 NULL, NULL))))
bc35512f
JH
2869 && (next = merge_blocks_move (s, b, c, mode)))
2870 {
2871 b = next;
2872 changed_here = true;
2873 }
ec3ae3da 2874 }
e4ec2cac 2875
45676a7c
SB
2876 /* Try to change a branch to a return to just that return. */
2877 rtx_insn *ret, *use;
2878 if (single_succ_p (b)
2879 && onlyjump_p (BB_END (b))
2880 && bb_is_just_return (single_succ (b), &ret, &use))
2881 {
2882 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2883 PATTERN (ret), 0))
2884 {
2885 if (use)
2886 emit_insn_before (copy_insn (PATTERN (use)),
2887 BB_END (b));
2888 if (dump_file)
2889 fprintf (dump_file, "Changed jump %d->%d to return.\n",
2890 b->index, single_succ (b)->index);
2891 redirect_edge_succ (single_succ_edge (b),
2892 EXIT_BLOCK_PTR_FOR_FN (cfun));
2893 single_succ_edge (b)->flags &= ~EDGE_CROSSING;
2894 changed_here = true;
2895 }
2896 }
2897
2898 /* Try to change a conditional branch to a return to the
2899 respective conditional return. */
2900 if (EDGE_COUNT (b->succs) == 2
2901 && any_condjump_p (BB_END (b))
2902 && bb_is_just_return (BRANCH_EDGE (b)->dest, &ret, &use))
2903 {
2904 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2905 PATTERN (ret), 0))
2906 {
2907 if (use)
2908 emit_insn_before (copy_insn (PATTERN (use)),
2909 BB_END (b));
2910 if (dump_file)
2911 fprintf (dump_file, "Changed conditional jump %d->%d "
2912 "to conditional return.\n",
2913 b->index, BRANCH_EDGE (b)->dest->index);
2914 redirect_edge_succ (BRANCH_EDGE (b),
2915 EXIT_BLOCK_PTR_FOR_FN (cfun));
2916 BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
2917 changed_here = true;
2918 }
2919 }
2920
2921 /* Try to flip a conditional branch that falls through to
2922 a return so that it becomes a conditional return and a
2923 new jump to the original branch target. */
2924 if (EDGE_COUNT (b->succs) == 2
ac2a4c0d 2925 && BRANCH_EDGE (b)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
45676a7c
SB
2926 && any_condjump_p (BB_END (b))
2927 && bb_is_just_return (FALLTHRU_EDGE (b)->dest, &ret, &use))
2928 {
2929 if (invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2930 JUMP_LABEL (BB_END (b)), 0))
2931 {
2932 basic_block new_ft = BRANCH_EDGE (b)->dest;
2933 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2934 PATTERN (ret), 0))
2935 {
2936 if (use)
2937 emit_insn_before (copy_insn (PATTERN (use)),
2938 BB_END (b));
2939 if (dump_file)
2940 fprintf (dump_file, "Changed conditional jump "
2941 "%d->%d to conditional return, adding "
2942 "fall-through jump.\n",
2943 b->index, BRANCH_EDGE (b)->dest->index);
2944 redirect_edge_succ (BRANCH_EDGE (b),
2945 EXIT_BLOCK_PTR_FOR_FN (cfun));
2946 BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
2947 std::swap (BRANCH_EDGE (b)->probability,
2948 FALLTHRU_EDGE (b)->probability);
2949 update_br_prob_note (b);
2950 basic_block jb = force_nonfallthru (FALLTHRU_EDGE (b));
2951 notice_new_block (jb);
2952 if (!redirect_jump (as_a <rtx_jump_insn *> (BB_END (jb)),
2953 block_label (new_ft), 0))
2954 gcc_unreachable ();
2955 redirect_edge_succ (single_succ_edge (jb), new_ft);
2956 changed_here = true;
2957 }
2958 else
2959 {
2960 /* Invert the jump back to what it was. This should
2961 never fail. */
2962 if (!invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2963 JUMP_LABEL (BB_END (b)), 0))
2964 gcc_unreachable ();
2965 }
2966 }
2967 }
2968
e4ec2cac 2969 /* Simplify branch over branch. */
bc35512f
JH
2970 if ((mode & CLEANUP_EXPENSIVE)
2971 && !(mode & CLEANUP_CFGLAYOUT)
2972 && try_simplify_condjump (b))
38c1593d 2973 changed_here = true;
402209ff 2974
e4ec2cac
AO
2975 /* If B has a single outgoing edge, but uses a
2976 non-trivial jump instruction without side-effects, we
2977 can either delete the jump entirely, or replace it
3348b696 2978 with a simple unconditional jump. */
c5cbcccf 2979 if (single_succ_p (b)
fefa31b5 2980 && single_succ (b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
a813c111 2981 && onlyjump_p (BB_END (b))
339ba33b 2982 && !CROSSING_JUMP_P (BB_END (b))
c5cbcccf
ZD
2983 && try_redirect_by_replacing_jump (single_succ_edge (b),
2984 single_succ (b),
20b4e8ae 2985 (mode & CLEANUP_CFGLAYOUT) != 0))
e4ec2cac 2986 {
e4ec2cac
AO
2987 update_forwarder_flag (b);
2988 changed_here = true;
2989 }
402209ff 2990
e4ec2cac
AO
2991 /* Simplify branch to branch. */
2992 if (try_forward_edges (mode, b))
afe8b6ec
EB
2993 {
2994 update_forwarder_flag (b);
2995 changed_here = true;
2996 }
402209ff 2997
e4ec2cac
AO
2998 /* Look for shared code between blocks. */
2999 if ((mode & CLEANUP_CROSSJUMP)
3000 && try_crossjump_bb (mode, b))
3001 changed_here = true;
402209ff 3002
4ec5d4f5
BS
3003 if ((mode & CLEANUP_CROSSJUMP)
3004 /* This can lengthen register lifetimes. Do it only after
3005 reload. */
3006 && reload_completed
3007 && try_head_merge_bb (b))
3008 changed_here = true;
3009
e4ec2cac
AO
3010 /* Don't get confused by the index shift caused by
3011 deleting blocks. */
3012 if (!changed_here)
e0082a72 3013 b = b->next_bb;
e4ec2cac
AO
3014 else
3015 changed = true;
3016 }
402209ff 3017
e4ec2cac 3018 if ((mode & CLEANUP_CROSSJUMP)
fefa31b5 3019 && try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
402209ff 3020 changed = true;
402209ff 3021
4ec5d4f5
BS
3022 if (block_was_dirty)
3023 {
3024 /* This should only be set by head-merging. */
3025 gcc_assert (mode & CLEANUP_CROSSJUMP);
3026 df_analyze ();
3027 }
3028
e4ec2cac 3029 if (changed)
600b5b1d
TJ
3030 {
3031 /* Edge forwarding in particular can cause hot blocks previously
3032 reached by both hot and cold blocks to become dominated only
3033 by cold blocks. This will cause the verification below to fail,
3034 and lead to now cold code in the hot section. This is not easy
3035 to detect and fix during edge forwarding, and in some cases
3036 is only visible after newly unreachable blocks are deleted,
3037 which will be done in fixup_partitions. */
b2b29377
MM
3038 fixup_partitions ();
3039 checking_verify_flow_info ();
600b5b1d 3040 }
402209ff 3041
e4ec2cac 3042 changed_overall |= changed;
7cf240d5 3043 first_pass = false;
e4ec2cac
AO
3044 }
3045 while (changed);
402209ff 3046 }
ca6c03ca 3047
04a90bec 3048 FOR_ALL_BB_FN (b, cfun)
2dd2d53e 3049 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
635559ab 3050
402209ff
JH
3051 return changed_overall;
3052}
3053\f
6d2f8887 3054/* Delete all unreachable basic blocks. */
4262e623 3055
969d70ca 3056bool
d329e058 3057delete_unreachable_blocks (void)
402209ff 3058{
402209ff 3059 bool changed = false;
b5b8b0ac 3060 basic_block b, prev_bb;
402209ff
JH
3061
3062 find_unreachable_blocks ();
3063
b5b8b0ac
AO
3064 /* When we're in GIMPLE mode and there may be debug insns, we should
3065 delete blocks in reverse dominator order, so as to get a chance
3066 to substitute all released DEFs into debug stmts. If we don't
3067 have dominators information, walking blocks backward gets us a
3068 better chance of retaining most debug information than
3069 otherwise. */
532aafad 3070 if (MAY_HAVE_DEBUG_INSNS && current_ir_type () == IR_GIMPLE
b5b8b0ac 3071 && dom_info_available_p (CDI_DOMINATORS))
402209ff 3072 {
fefa31b5
DM
3073 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
3074 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
b5b8b0ac
AO
3075 {
3076 prev_bb = b->prev_bb;
3077
3078 if (!(b->flags & BB_REACHABLE))
3079 {
3080 /* Speed up the removal of blocks that don't dominate
3081 others. Walking backwards, this should be the common
3082 case. */
3083 if (!first_dom_son (CDI_DOMINATORS, b))
3084 delete_basic_block (b);
3085 else
3086 {
9771b263 3087 vec<basic_block> h
b5b8b0ac
AO
3088 = get_all_dominated_blocks (CDI_DOMINATORS, b);
3089
9771b263 3090 while (h.length ())
b5b8b0ac 3091 {
9771b263 3092 b = h.pop ();
b5b8b0ac
AO
3093
3094 prev_bb = b->prev_bb;
0b17ab2f 3095
b5b8b0ac
AO
3096 gcc_assert (!(b->flags & BB_REACHABLE));
3097
3098 delete_basic_block (b);
3099 }
3100
9771b263 3101 h.release ();
b5b8b0ac
AO
3102 }
3103
3104 changed = true;
3105 }
3106 }
3107 }
3108 else
3109 {
fefa31b5
DM
3110 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
3111 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
6a58eee9 3112 {
b5b8b0ac
AO
3113 prev_bb = b->prev_bb;
3114
3115 if (!(b->flags & BB_REACHABLE))
3116 {
3117 delete_basic_block (b);
3118 changed = true;
3119 }
6a58eee9 3120 }
402209ff
JH
3121 }
3122
3123 if (changed)
3124 tidy_fallthru_edges ();
3125 return changed;
3126}
6fb5fa3c
DB
3127
3128/* Delete any jump tables never referenced. We can't delete them at the
29f3fd5b
SB
3129 time of removing tablejump insn as they are referenced by the preceding
3130 insns computing the destination, so we delay deleting and garbagecollect
3131 them once life information is computed. */
6fb5fa3c
DB
3132void
3133delete_dead_jumptables (void)
3134{
3135 basic_block bb;
3136
29f3fd5b
SB
3137 /* A dead jump table does not belong to any basic block. Scan insns
3138 between two adjacent basic blocks. */
11cd3bed 3139 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 3140 {
da5477a9 3141 rtx_insn *insn, *next;
29f3fd5b
SB
3142
3143 for (insn = NEXT_INSN (BB_END (bb));
3144 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
3145 insn = next)
57d6c446 3146 {
29f3fd5b
SB
3147 next = NEXT_INSN (insn);
3148 if (LABEL_P (insn)
3149 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
3150 && JUMP_TABLE_DATA_P (next))
3151 {
da5477a9 3152 rtx_insn *label = insn, *jump = next;
29f3fd5b
SB
3153
3154 if (dump_file)
3155 fprintf (dump_file, "Dead jumptable %i removed\n",
3156 INSN_UID (insn));
3157
3158 next = NEXT_INSN (next);
3159 delete_insn (jump);
3160 delete_insn (label);
3161 }
6fb5fa3c
DB
3162 }
3163 }
3164}
3165
402209ff
JH
3166\f
3167/* Tidy the CFG by deleting unreachable code and whatnot. */
3168
3169bool
d329e058 3170cleanup_cfg (int mode)
402209ff 3171{
402209ff
JH
3172 bool changed = false;
3173
aeceeb06
SB
3174 /* Set the cfglayout mode flag here. We could update all the callers
3175 but that is just inconvenient, especially given that we eventually
3176 want to have cfglayout mode as the default. */
3177 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3178 mode |= CLEANUP_CFGLAYOUT;
3179
402209ff 3180 timevar_push (TV_CLEANUP_CFG);
3dec4024
JH
3181 if (delete_unreachable_blocks ())
3182 {
3183 changed = true;
3184 /* We've possibly created trivially dead code. Cleanup it right
95bd1dd7 3185 now to introduce more opportunities for try_optimize_cfg. */
6fb5fa3c 3186 if (!(mode & (CLEANUP_NO_INSN_DEL))
3dec4024 3187 && !reload_completed)
62e5bf5d 3188 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3dec4024 3189 }
bf77398c
ZD
3190
3191 compact_blocks ();
3192
c1e3e2d9
SB
3193 /* To tail-merge blocks ending in the same noreturn function (e.g.
3194 a call to abort) we have to insert fake edges to exit. Do this
3195 here once. The fake edges do not interfere with any other CFG
3196 cleanups. */
3197 if (mode & CLEANUP_CROSSJUMP)
3198 add_noreturn_fake_exit_edges ();
3199
7d817ebc
DE
3200 if (!dbg_cnt (cfg_cleanup))
3201 return changed;
3202
3dec4024
JH
3203 while (try_optimize_cfg (mode))
3204 {
3205 delete_unreachable_blocks (), changed = true;
c1e3e2d9 3206 if (!(mode & CLEANUP_NO_INSN_DEL))
3dec4024 3207 {
c1e3e2d9
SB
3208 /* Try to remove some trivially dead insns when doing an expensive
3209 cleanup. But delete_trivially_dead_insns doesn't work after
3210 reload (it only handles pseudos) and run_fast_dce is too costly
3211 to run in every iteration.
3212
3213 For effective cross jumping, we really want to run a fast DCE to
3214 clean up any dead conditions, or they get in the way of performing
3215 useful tail merges.
3216
3217 Other transformations in cleanup_cfg are not so sensitive to dead
3218 code, so delete_trivially_dead_insns or even doing nothing at all
3219 is good enough. */
3220 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
3221 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3dec4024 3222 break;
bd2c6270 3223 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occurred)
f842d54f 3224 run_fast_dce ();
3dec4024
JH
3225 }
3226 else
3227 break;
3dec4024 3228 }
402209ff 3229
c1e3e2d9
SB
3230 if (mode & CLEANUP_CROSSJUMP)
3231 remove_fake_exit_edges ();
3232
29f3fd5b
SB
3233 /* Don't call delete_dead_jumptables in cfglayout mode, because
3234 that function assumes that jump tables are in the insns stream.
3235 But we also don't _have_ to delete dead jumptables in cfglayout
3236 mode because we shouldn't even be looking at things that are
3237 not in a basic block. Dead jumptables are cleaned up when
3238 going out of cfglayout mode. */
3239 if (!(mode & CLEANUP_CFGLAYOUT))
6fb5fa3c
DB
3240 delete_dead_jumptables ();
3241
7d776ee2
RG
3242 /* ??? We probably do this way too often. */
3243 if (current_loops
3244 && (changed
3245 || (mode & CLEANUP_CFG_CHANGED)))
3246 {
7d776ee2
RG
3247 timevar_push (TV_REPAIR_LOOPS);
3248 /* The above doesn't preserve dominance info if available. */
3249 gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
3250 calculate_dominance_info (CDI_DOMINATORS);
01cb1ef5 3251 fix_loop_structure (NULL);
7d776ee2
RG
3252 free_dominance_info (CDI_DOMINATORS);
3253 timevar_pop (TV_REPAIR_LOOPS);
3254 }
3255
402209ff
JH
3256 timevar_pop (TV_CLEANUP_CFG);
3257
402209ff
JH
3258 return changed;
3259}
ef330312 3260\f
27a4cd48
DM
3261namespace {
3262
3263const pass_data pass_data_jump =
11a687e7 3264{
27a4cd48
DM
3265 RTL_PASS, /* type */
3266 "jump", /* name */
3267 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3268 TV_JUMP, /* tv_id */
3269 0, /* properties_required */
3270 0, /* properties_provided */
3271 0, /* properties_destroyed */
3272 0, /* todo_flags_start */
3bea341f 3273 0, /* todo_flags_finish */
11a687e7 3274};
27a4cd48
DM
3275
3276class pass_jump : public rtl_opt_pass
3277{
3278public:
c3284718
RS
3279 pass_jump (gcc::context *ctxt)
3280 : rtl_opt_pass (pass_data_jump, ctxt)
27a4cd48
DM
3281 {}
3282
3283 /* opt_pass methods: */
be55bfe6 3284 virtual unsigned int execute (function *);
27a4cd48
DM
3285
3286}; // class pass_jump
3287
be55bfe6
TS
3288unsigned int
3289pass_jump::execute (function *)
3290{
3291 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3292 if (dump_file)
3293 dump_flow_info (dump_file, dump_flags);
3294 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
3295 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
3296 return 0;
3297}
3298
27a4cd48
DM
3299} // anon namespace
3300
3301rtl_opt_pass *
3302make_pass_jump (gcc::context *ctxt)
3303{
3304 return new pass_jump (ctxt);
3305}
11a687e7 3306\f
27a4cd48
DM
3307namespace {
3308
3309const pass_data pass_data_jump2 =
ef330312 3310{
27a4cd48
DM
3311 RTL_PASS, /* type */
3312 "jump2", /* name */
3313 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3314 TV_JUMP, /* tv_id */
3315 0, /* properties_required */
3316 0, /* properties_provided */
3317 0, /* properties_destroyed */
3318 0, /* todo_flags_start */
3bea341f 3319 0, /* todo_flags_finish */
ef330312 3320};
27a4cd48
DM
3321
3322class pass_jump2 : public rtl_opt_pass
3323{
3324public:
c3284718
RS
3325 pass_jump2 (gcc::context *ctxt)
3326 : rtl_opt_pass (pass_data_jump2, ctxt)
27a4cd48
DM
3327 {}
3328
3329 /* opt_pass methods: */
be55bfe6
TS
3330 virtual unsigned int execute (function *)
3331 {
3332 cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
3333 return 0;
3334 }
27a4cd48
DM
3335
3336}; // class pass_jump2
3337
3338} // anon namespace
3339
3340rtl_opt_pass *
3341make_pass_jump2 (gcc::context *ctxt)
3342{
3343 return new pass_jump2 (ctxt);
3344}