]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cfgcleanup.c
Eliminate FOR_ALL_BB macro.
[thirdparty/gcc.git] / gcc / cfgcleanup.c
CommitLineData
65f34de5 1/* Control flow optimization code for GNU compiler.
711789cc 2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
65f34de5 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
65f34de5 9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
65f34de5 19
365db11e 20/* This file contains optimizer of the control flow. The main entry point is
65f34de5 21 cleanup_cfg. Following optimizations are performed:
22
23 - Unreachable blocks removal
3927afe0 24 - Edge forwarding (edge to the forwarder block is forwarded to its
4a82352a 25 successor. Simplification of the branch instruction is performed by
65f34de5 26 underlying infrastructure so branch can be converted to simplejump or
35a3065a 27 eliminated).
65f34de5 28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
31
32#include "config.h"
33#include "system.h"
805e22b2 34#include "coretypes.h"
35#include "tm.h"
65f34de5 36#include "rtl.h"
41a8aa41 37#include "tree.h"
65f34de5 38#include "hard-reg-set.h"
42fe97ed 39#include "regs.h"
65f34de5 40#include "insn-config.h"
41#include "flags.h"
42#include "recog.h"
0b205f4c 43#include "diagnostic-core.h"
8cd78fca 44#include "cselib.h"
2a5b4716 45#include "params.h"
20eee3f6 46#include "tm_p.h"
e27e52e0 47#include "target.h"
23a070f3 48#include "function.h" /* For inline functions in emit-rtl.h they need crtl. */
4c74e6d9 49#include "emit-rtl.h"
77fce4cd 50#include "tree-pass.h"
51#include "cfgloop.h"
52#include "expr.h"
3072d30e 53#include "df.h"
1ae2ffa7 54#include "dce.h"
4ff06051 55#include "dbgcnt.h"
65f34de5 56
4fe5a223 57#define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
a0c938f0 58
10d3796f 59/* Set to true when we are running first pass of try_optimize_cfg loop. */
60static bool first_pass;
1ae2ffa7 61
9d75589a 62/* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
1ae2ffa7 63static bool crossjumps_occured;
64
bc6adae4 65/* Set to true if we couldn't run an optimization due to stale liveness
66 information; we should run df_analyze to enable more opportunities. */
67static bool block_was_dirty;
68
0f38cfdd 69static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
4c9e08a4 70static bool try_crossjump_bb (int, basic_block);
1d133110 71static bool outgoing_edges_match (int, basic_block, basic_block);
764aef11 72static enum replace_direction old_insns_match_p (int, rtx, rtx);
4c9e08a4 73
4c9e08a4 74static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
75static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
4c9e08a4 76static bool try_optimize_cfg (int);
77static bool try_simplify_condjump (basic_block);
78static bool try_forward_edges (int, basic_block);
3072d30e 79static edge thread_jump (edge, basic_block);
4c9e08a4 80static bool mark_effect (rtx, bitmap);
81static void notice_new_block (basic_block);
82static void update_forwarder_flag (basic_block);
83static int mentions_nonequal_regs (rtx *, void *);
1d133110 84static void merge_memattrs (rtx, rtx);
33dbe4d1 85\f
86/* Set flags for newly created block. */
87
88static void
4c9e08a4 89notice_new_block (basic_block bb)
33dbe4d1 90{
91 if (!bb)
92 return;
5cc577b6 93
33dbe4d1 94 if (forwarder_block_p (bb))
4fe5a223 95 bb->flags |= BB_FORWARDER_BLOCK;
33dbe4d1 96}
97
98/* Recompute forwarder flag after block has been modified. */
99
100static void
4c9e08a4 101update_forwarder_flag (basic_block bb)
33dbe4d1 102{
103 if (forwarder_block_p (bb))
4fe5a223 104 bb->flags |= BB_FORWARDER_BLOCK;
33dbe4d1 105 else
4fe5a223 106 bb->flags &= ~BB_FORWARDER_BLOCK;
33dbe4d1 107}
65f34de5 108\f
109/* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
111
112static bool
4c9e08a4 113try_simplify_condjump (basic_block cbranch_block)
65f34de5 114{
115 basic_block jump_block, jump_dest_block, cbranch_dest_block;
116 edge cbranch_jump_edge, cbranch_fallthru_edge;
117 rtx cbranch_insn;
118
119 /* Verify that there are exactly two successors. */
cd665a06 120 if (EDGE_COUNT (cbranch_block->succs) != 2)
65f34de5 121 return false;
122
123 /* Verify that we've got a normal conditional branch at the end
124 of the block. */
5496dbfc 125 cbranch_insn = BB_END (cbranch_block);
65f34de5 126 if (!any_condjump_p (cbranch_insn))
127 return false;
128
129 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
130 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
131
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block = cbranch_fallthru_edge->dest;
ea091dfd 136 if (!single_pred_p (jump_block)
34154e27 137 || jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
33dbe4d1 138 || !FORWARDER_BLOCK_P (jump_block))
65f34de5 139 return false;
ea091dfd 140 jump_dest_block = single_succ (jump_block);
65f34de5 141
4f18499c 142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
a0c938f0 144 and cold sections.
1118aef7 145
146 Basic block partitioning may result in some jumps that appear to
a0c938f0 147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
1118aef7 150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4f18499c 151
1897b881 152 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
153 || (cbranch_jump_edge->flags & EDGE_CROSSING))
4f18499c 154 return false;
155
65f34de5 156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
159
34154e27 160 if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
f3fbd62d 161 || !can_fallthru (jump_block, cbranch_dest_block))
65f34de5 162 return false;
163
b36d64df 164 /* Invert the conditional branch. */
165 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
166 return false;
65f34de5 167
450d042a 168 if (dump_file)
169 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
5496dbfc 170 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
65f34de5 171
172 /* Success. Update the CFG to match. Note that after this point
173 the edge variable names appear backwards; the redirection is done
174 this way to preserve edge profile data. */
175 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
176 cbranch_dest_block);
177 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
178 jump_dest_block);
179 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
180 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
f884e43f 181 update_br_prob_note (cbranch_block);
65f34de5 182
183 /* Delete the block with the unconditional jump, and clean up the mess. */
5f5d4cd1 184 delete_basic_block (jump_block);
185 tidy_fallthru_edge (cbranch_jump_edge);
fe4306df 186 update_forwarder_flag (cbranch_block);
65f34de5 187
188 return true;
189}
190\f
8cd78fca 191/* Attempt to prove that operation is NOOP using CSElib or mark the effect
192 on register. Used by jump threading. */
5cc577b6 193
8cd78fca 194static bool
4c9e08a4 195mark_effect (rtx exp, regset nonequal)
8cd78fca 196{
20eee3f6 197 int regno;
198 rtx dest;
8cd78fca 199 switch (GET_CODE (exp))
200 {
201 /* In case we do clobber the register, mark it as equal, as we know the
a0c938f0 202 value is dead so it don't have to match. */
db34a109 203 case CLOBBER:
204 if (REG_P (XEXP (exp, 0)))
205 {
206 dest = XEXP (exp, 0);
207 regno = REGNO (dest);
771d4616 208 if (HARD_REGISTER_NUM_P (regno))
209 bitmap_clear_range (nonequal, regno,
210 hard_regno_nregs[regno][GET_MODE (dest)]);
211 else
212 bitmap_clear_bit (nonequal, regno);
db34a109 213 }
214 return false;
5cc577b6 215
db34a109 216 case SET:
217 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
8cd78fca 218 return false;
db34a109 219 dest = SET_DEST (exp);
220 if (dest == pc_rtx)
8cd78fca 221 return false;
db34a109 222 if (!REG_P (dest))
223 return true;
224 regno = REGNO (dest);
771d4616 225 if (HARD_REGISTER_NUM_P (regno))
226 bitmap_set_range (nonequal, regno,
227 hard_regno_nregs[regno][GET_MODE (dest)]);
228 else
229 bitmap_set_bit (nonequal, regno);
db34a109 230 return false;
231
232 default:
233 return false;
8cd78fca 234 }
235}
4ccdad8e 236
845bebef 237/* Return nonzero if X is a register set in regset DATA.
4ccdad8e 238 Called via for_each_rtx. */
239static int
4c9e08a4 240mentions_nonequal_regs (rtx *x, void *data)
4ccdad8e 241{
242 regset nonequal = (regset) data;
243 if (REG_P (*x))
244 {
245 int regno;
246
247 regno = REGNO (*x);
248 if (REGNO_REG_SET_P (nonequal, regno))
249 return 1;
250 if (regno < FIRST_PSEUDO_REGISTER)
251 {
67d6c12b 252 int n = hard_regno_nregs[regno][GET_MODE (*x)];
4ccdad8e 253 while (--n > 0)
254 if (REGNO_REG_SET_P (nonequal, regno + n))
255 return 1;
256 }
257 }
258 return 0;
259}
8cd78fca 260/* Attempt to prove that the basic block B will have no side effects and
d716ce75 261 always continues in the same edge if reached via E. Return the edge
8cd78fca 262 if exist, NULL otherwise. */
263
264static edge
3072d30e 265thread_jump (edge e, basic_block b)
8cd78fca 266{
267 rtx set1, set2, cond1, cond2, insn;
268 enum rtx_code code1, code2, reversed_code2;
269 bool reverse1 = false;
4f917ffe 270 unsigned i;
8cd78fca 271 regset nonequal;
272 bool failed = false;
8c97cf13 273 reg_set_iterator rsi;
8cd78fca 274
4fe5a223 275 if (b->flags & BB_NONTHREADABLE_BLOCK)
73e2b81c 276 return NULL;
277
8cd78fca 278 /* At the moment, we do handle only conditional jumps, but later we may
279 want to extend this code to tablejumps and others. */
cd665a06 280 if (EDGE_COUNT (e->src->succs) != 2)
8cd78fca 281 return NULL;
cd665a06 282 if (EDGE_COUNT (b->succs) != 2)
73e2b81c 283 {
4fe5a223 284 b->flags |= BB_NONTHREADABLE_BLOCK;
73e2b81c 285 return NULL;
286 }
8cd78fca 287
288 /* Second branch must end with onlyjump, as we will eliminate the jump. */
5496dbfc 289 if (!any_condjump_p (BB_END (e->src)))
8cd78fca 290 return NULL;
db34a109 291
5496dbfc 292 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
73e2b81c 293 {
4fe5a223 294 b->flags |= BB_NONTHREADABLE_BLOCK;
73e2b81c 295 return NULL;
296 }
8cd78fca 297
5496dbfc 298 set1 = pc_set (BB_END (e->src));
299 set2 = pc_set (BB_END (b));
8cd78fca 300 if (((e->flags & EDGE_FALLTHRU) != 0)
dd782271 301 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
8cd78fca 302 reverse1 = true;
303
304 cond1 = XEXP (SET_SRC (set1), 0);
305 cond2 = XEXP (SET_SRC (set2), 0);
306 if (reverse1)
5496dbfc 307 code1 = reversed_comparison_code (cond1, BB_END (e->src));
8cd78fca 308 else
309 code1 = GET_CODE (cond1);
310
311 code2 = GET_CODE (cond2);
5496dbfc 312 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
8cd78fca 313
314 if (!comparison_dominates_p (code1, code2)
315 && !comparison_dominates_p (code1, reversed_code2))
316 return NULL;
317
318 /* Ensure that the comparison operators are equivalent.
d716ce75 319 ??? This is far too pessimistic. We should allow swapped operands,
8cd78fca 320 different CCmodes, or for example comparisons for interval, that
321 dominate even when operands are not equivalent. */
322 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
323 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
324 return NULL;
325
326 /* Short circuit cases where block B contains some side effects, as we can't
327 safely bypass it. */
5496dbfc 328 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
8cd78fca 329 insn = NEXT_INSN (insn))
330 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
73e2b81c 331 {
4fe5a223 332 b->flags |= BB_NONTHREADABLE_BLOCK;
73e2b81c 333 return NULL;
334 }
8cd78fca 335
35af0188 336 cselib_init (0);
8cd78fca 337
338 /* First process all values computed in the source basic block. */
4f917ffe 339 for (insn = NEXT_INSN (BB_HEAD (e->src));
340 insn != NEXT_INSN (BB_END (e->src));
8cd78fca 341 insn = NEXT_INSN (insn))
342 if (INSN_P (insn))
343 cselib_process_insn (insn);
344
27335ffd 345 nonequal = BITMAP_ALLOC (NULL);
8cd78fca 346 CLEAR_REG_SET (nonequal);
5cc577b6 347
8cd78fca 348 /* Now assume that we've continued by the edge E to B and continue
349 processing as if it were same basic block.
8cd78fca 350 Our goal is to prove that whole block is an NOOP. */
5cc577b6 351
4f917ffe 352 for (insn = NEXT_INSN (BB_HEAD (b));
353 insn != NEXT_INSN (BB_END (b)) && !failed;
8cd78fca 354 insn = NEXT_INSN (insn))
db34a109 355 {
356 if (INSN_P (insn))
357 {
358 rtx pat = PATTERN (insn);
359
360 if (GET_CODE (pat) == PARALLEL)
361 {
4f917ffe 362 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
db34a109 363 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
364 }
365 else
366 failed |= mark_effect (pat, nonequal);
367 }
5cc577b6 368
db34a109 369 cselib_process_insn (insn);
370 }
8cd78fca 371
372 /* Later we should clear nonequal of dead registers. So far we don't
373 have life information in cfg_cleanup. */
374 if (failed)
73e2b81c 375 {
4fe5a223 376 b->flags |= BB_NONTHREADABLE_BLOCK;
73e2b81c 377 goto failed_exit;
378 }
8cd78fca 379
4ccdad8e 380 /* cond2 must not mention any register that is not equal to the
381 former block. */
382 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
383 goto failed_exit;
384
8c97cf13 385 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
386 goto failed_exit;
8cd78fca 387
27335ffd 388 BITMAP_FREE (nonequal);
8cd78fca 389 cselib_finish ();
390 if ((comparison_dominates_p (code1, code2) != 0)
148444fb 391 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
8cd78fca 392 return BRANCH_EDGE (b);
393 else
394 return FALLTHRU_EDGE (b);
395
396failed_exit:
27335ffd 397 BITMAP_FREE (nonequal);
8cd78fca 398 cselib_finish ();
399 return NULL;
400}
401\f
65f34de5 402/* Attempt to forward edges leaving basic block B.
4a82352a 403 Return true if successful. */
65f34de5 404
405static bool
4c9e08a4 406try_forward_edges (int mode, basic_block b)
65f34de5 407{
408 bool changed = false;
cd665a06 409 edge_iterator ei;
410 edge e, *threaded_edges = NULL;
65f34de5 411
4f18499c 412 /* If we are partitioning hot/cold basic blocks, we don't want to
413 mess up unconditional or indirect jumps that cross between hot
a0c938f0 414 and cold sections.
415
1118aef7 416 Basic block partitioning may result in some jumps that appear to
f0b5f617 417 be optimizable (or blocks that appear to be mergeable), but which really
418 must be left untouched (they are required to make it safely across
a0c938f0 419 partition boundaries). See the comments at the top of
1118aef7 420 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
421
1897b881 422 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
4f18499c 423 return false;
424
cd665a06 425 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
65f34de5 426 {
427 basic_block target, first;
9c388755 428 int counter, goto_locus;
8cd78fca 429 bool threaded = false;
d2855ea6 430 int nthreaded_edges = 0;
bc6adae4 431 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
65f34de5 432
65f34de5 433 /* Skip complex edges because we don't know how to update them.
434
a0c938f0 435 Still handle fallthru edges, as we can succeed to forward fallthru
436 edge to the same place as the branch edge of conditional branch
437 and turn conditional branch to an unconditional branch. */
65f34de5 438 if (e->flags & EDGE_COMPLEX)
cd665a06 439 {
440 ei_next (&ei);
441 continue;
442 }
65f34de5 443
444 target = first = e->dest;
4d2e5d52 445 counter = NUM_FIXED_BLOCKS;
9c388755 446 goto_locus = e->goto_locus;
65f34de5 447
065efcb1 448 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
1118aef7 449 up jumps that cross between hot/cold sections.
450
451 Basic block partitioning may result in some jumps that appear
a0c938f0 452 to be optimizable (or blocks that appear to be mergeable), but which
453 really must be left untouched (they are required to make it safely
1118aef7 454 across partition boundaries). See the comments at the top of
455 bb-reorder.c:partition_hot_cold_basic_blocks for complete
456 details. */
065efcb1 457
34154e27 458 if (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
065efcb1 459 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
aa78dca5 460 return changed;
065efcb1 461
a28770e1 462 while (counter < n_basic_blocks_for_fn (cfun))
65f34de5 463 {
8cd78fca 464 basic_block new_target = NULL;
465 bool new_target_threaded = false;
bc6adae4 466 may_thread |= (target->flags & BB_MODIFIED) != 0;
8cd78fca 467
468 if (FORWARDER_BLOCK_P (target)
a0c938f0 469 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
34154e27 470 && single_succ (target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
8cd78fca 471 {
472 /* Bypass trivial infinite loops. */
ea091dfd 473 new_target = single_succ (target);
474 if (target == new_target)
a28770e1 475 counter = n_basic_blocks_for_fn (cfun);
9c388755 476 else if (!optimize)
477 {
478 /* When not optimizing, ensure that edges or forwarder
479 blocks with different locus are not optimized out. */
18b762f0 480 int new_locus = single_succ_edge (target)->goto_locus;
481 int locus = goto_locus;
9c388755 482
8e7408e3 483 if (new_locus != UNKNOWN_LOCATION
484 && locus != UNKNOWN_LOCATION
5169661d 485 && new_locus != locus)
18b762f0 486 new_target = NULL;
487 else
9c388755 488 {
4fba8976 489 rtx last;
490
8e7408e3 491 if (new_locus != UNKNOWN_LOCATION)
18b762f0 492 locus = new_locus;
9c388755 493
4fba8976 494 last = BB_END (target);
495 if (DEBUG_INSN_P (last))
496 last = prev_nondebug_insn (last);
497
498 new_locus = last && INSN_P (last)
5169661d 499 ? INSN_LOCATION (last) : 0;
18b762f0 500
8e7408e3 501 if (new_locus != UNKNOWN_LOCATION
502 && locus != UNKNOWN_LOCATION
5169661d 503 && new_locus != locus)
18b762f0 504 new_target = NULL;
505 else
506 {
8e7408e3 507 if (new_locus != UNKNOWN_LOCATION)
18b762f0 508 locus = new_locus;
509
510 goto_locus = locus;
511 }
9c388755 512 }
513 }
8cd78fca 514 }
5cc577b6 515
8cd78fca 516 /* Allow to thread only over one edge at time to simplify updating
517 of probabilities. */
10d3796f 518 else if ((mode & CLEANUP_THREADING) && may_thread)
8cd78fca 519 {
3072d30e 520 edge t = thread_jump (e, target);
309306ce 521 if (t)
8cd78fca 522 {
d2855ea6 523 if (!threaded_edges)
a28770e1 524 threaded_edges = XNEWVEC (edge,
525 n_basic_blocks_for_fn (cfun));
acf4e6a8 526 else
527 {
528 int i;
529
530 /* Detect an infinite loop across blocks not
531 including the start block. */
532 for (i = 0; i < nthreaded_edges; ++i)
533 if (threaded_edges[i] == t)
534 break;
535 if (i < nthreaded_edges)
e9bc5a2d 536 {
a28770e1 537 counter = n_basic_blocks_for_fn (cfun);
e9bc5a2d 538 break;
539 }
acf4e6a8 540 }
541
542 /* Detect an infinite loop across the start block. */
543 if (t->dest == b)
544 break;
545
a28770e1 546 gcc_assert (nthreaded_edges
547 < (n_basic_blocks_for_fn (cfun)
548 - NUM_FIXED_BLOCKS));
309306ce 549 threaded_edges[nthreaded_edges++] = t;
acf4e6a8 550
551 new_target = t->dest;
552 new_target_threaded = true;
8cd78fca 553 }
554 }
5cc577b6 555
8cd78fca 556 if (!new_target)
557 break;
65f34de5 558
8cd78fca 559 counter++;
560 target = new_target;
561 threaded |= new_target_threaded;
db34a109 562 }
65f34de5 563
a28770e1 564 if (counter >= n_basic_blocks_for_fn (cfun))
65f34de5 565 {
450d042a 566 if (dump_file)
567 fprintf (dump_file, "Infinite loop in BB %i.\n",
b3d6de89 568 target->index);
65f34de5 569 }
570 else if (target == first)
571 ; /* We didn't do anything. */
572 else
573 {
574 /* Save the values now, as the edge may get removed. */
575 gcov_type edge_count = e->count;
576 int edge_probability = e->probability;
8cd78fca 577 int edge_frequency;
309306ce 578 int n = 0;
65f34de5 579
9c388755 580 e->goto_locus = goto_locus;
581
8963581a 582 /* Don't force if target is exit block. */
34154e27 583 if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
65f34de5 584 {
8cd78fca 585 notice_new_block (redirect_edge_and_branch_force (e, target));
450d042a 586 if (dump_file)
587 fprintf (dump_file, "Conditionals threaded.\n");
65f34de5 588 }
8cd78fca 589 else if (!redirect_edge_and_branch (e, target))
65f34de5 590 {
450d042a 591 if (dump_file)
592 fprintf (dump_file,
5cc577b6 593 "Forwarding edge %i->%i to %i failed.\n",
b3d6de89 594 b->index, e->dest->index, target->index);
cd665a06 595 ei_next (&ei);
8cd78fca 596 continue;
65f34de5 597 }
5cc577b6 598
8cd78fca 599 /* We successfully forwarded the edge. Now update profile
600 data: for each edge we traversed in the chain, remove
601 the original edge's execution count. */
f9d4b7f4 602 edge_frequency = apply_probability (b->frequency, edge_probability);
8cd78fca 603
8cd78fca 604 do
605 {
606 edge t;
5cc577b6 607
ea091dfd 608 if (!single_succ_p (first))
acf4e6a8 609 {
cc636d56 610 gcc_assert (n < nthreaded_edges);
acf4e6a8 611 t = threaded_edges [n++];
cc636d56 612 gcc_assert (t->src == first);
615dd397 613 update_bb_profile_for_threading (first, edge_frequency,
614 edge_count, t);
f884e43f 615 update_br_prob_note (first);
acf4e6a8 616 }
8cd78fca 617 else
d2855ea6 618 {
615dd397 619 first->count -= edge_count;
620 if (first->count < 0)
621 first->count = 0;
622 first->frequency -= edge_frequency;
623 if (first->frequency < 0)
624 first->frequency = 0;
d2855ea6 625 /* It is possible that as the result of
626 threading we've removed edge as it is
627 threaded to the fallthru edge. Avoid
628 getting out of sync. */
629 if (n < nthreaded_edges
630 && first == threaded_edges [n]->src)
631 n++;
ea091dfd 632 t = single_succ_edge (first);
db34a109 633 }
5cc577b6 634
f884e43f 635 t->count -= edge_count;
636 if (t->count < 0)
637 t->count = 0;
8cd78fca 638 first = t->dest;
639 }
640 while (first != target);
641
642 changed = true;
cd665a06 643 continue;
65f34de5 644 }
cd665a06 645 ei_next (&ei);
65f34de5 646 }
647
dd045aee 648 free (threaded_edges);
65f34de5 649 return changed;
650}
651\f
65f34de5 652
653/* Blocks A and B are to be merged into a single block. A has no incoming
654 fallthru edge, so it can be moved before B without adding or modifying
655 any jumps (aside from the jump from A to B). */
656
e76f35e8 657static void
4c9e08a4 658merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
65f34de5 659{
660 rtx barrier;
65f34de5 661
4f18499c 662 /* If we are partitioning hot/cold basic blocks, we don't want to
663 mess up unconditional or indirect jumps that cross between hot
1118aef7 664 and cold sections.
a0c938f0 665
1118aef7 666 Basic block partitioning may result in some jumps that appear to
a0c938f0 667 be optimizable (or blocks that appear to be mergeable), but which really
668 must be left untouched (they are required to make it safely across
669 partition boundaries). See the comments at the top of
1118aef7 670 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
671
1897b881 672 if (BB_PARTITION (a) != BB_PARTITION (b))
4f18499c 673 return;
674
5496dbfc 675 barrier = next_nonnote_insn (BB_END (a));
cc636d56 676 gcc_assert (BARRIER_P (barrier));
e4bf866d 677 delete_insn (barrier);
65f34de5 678
65f34de5 679 /* Scramble the insn chain. */
5496dbfc 680 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
681 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
3072d30e 682 df_set_bb_dirty (a);
65f34de5 683
450d042a 684 if (dump_file)
685 fprintf (dump_file, "Moved block %d before %d and merged.\n",
b3d6de89 686 a->index, b->index);
65f34de5 687
3c0a32c9 688 /* Swap the records for the two blocks around. */
65f34de5 689
7fa55aef 690 unlink_block (a);
691 link_block (a, b->prev_bb);
692
65f34de5 693 /* Now blocks A and B are contiguous. Merge them. */
c60fa3a7 694 merge_blocks (a, b);
65f34de5 695}
696
697/* Blocks A and B are to be merged into a single block. B has no outgoing
698 fallthru edge, so it can be moved after A without adding or modifying
699 any jumps (aside from the jump from A to B). */
700
e76f35e8 701static void
4c9e08a4 702merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
65f34de5 703{
f70d6641 704 rtx barrier, real_b_end;
afff715a 705 rtx label, table;
65f34de5 706
4f18499c 707 /* If we are partitioning hot/cold basic blocks, we don't want to
708 mess up unconditional or indirect jumps that cross between hot
a0c938f0 709 and cold sections.
710
1118aef7 711 Basic block partitioning may result in some jumps that appear to
a0c938f0 712 be optimizable (or blocks that appear to be mergeable), but which really
713 must be left untouched (they are required to make it safely across
714 partition boundaries). See the comments at the top of
1118aef7 715 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
716
1897b881 717 if (BB_PARTITION (a) != BB_PARTITION (b))
4f18499c 718 return;
719
5496dbfc 720 real_b_end = BB_END (b);
65f34de5 721
afff715a 722 /* If there is a jump table following block B temporarily add the jump table
723 to block B so that it will also be moved to the correct location. */
5496dbfc 724 if (tablejump_p (BB_END (b), &label, &table)
725 && prev_active_insn (label) == BB_END (b))
65f34de5 726 {
5496dbfc 727 BB_END (b) = table;
65f34de5 728 }
729
730 /* There had better have been a barrier there. Delete it. */
5496dbfc 731 barrier = NEXT_INSN (BB_END (b));
6d7dc5b9 732 if (barrier && BARRIER_P (barrier))
e4bf866d 733 delete_insn (barrier);
65f34de5 734
65f34de5 735
736 /* Scramble the insn chain. */
5496dbfc 737 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
65f34de5 738
f70d6641 739 /* Restore the real end of b. */
5496dbfc 740 BB_END (b) = real_b_end;
f70d6641 741
450d042a 742 if (dump_file)
743 fprintf (dump_file, "Moved block %d after %d and merged.\n",
b3d6de89 744 b->index, a->index);
cd2e6f57 745
746 /* Now blocks A and B are contiguous. Merge them. */
c60fa3a7 747 merge_blocks (a, b);
65f34de5 748}
749
750/* Attempt to merge basic blocks that are potentially non-adjacent.
9d574a94 751 Return NULL iff the attempt failed, otherwise return basic block
752 where cleanup_cfg should continue. Because the merging commonly
753 moves basic block away or introduces another optimization
d01481af 754 possibility, return basic block just before B so cleanup_cfg don't
9d574a94 755 need to iterate.
756
757 It may be good idea to return basic block before C in the case
758 C has been moved after B and originally appeared earlier in the
917bbcab 759 insn sequence, but we have no information available about the
9d574a94 760 relative ordering of these two. Hopefully it is not too common. */
761
762static basic_block
c60fa3a7 763merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
65f34de5 764{
9d574a94 765 basic_block next;
65f34de5 766
4f18499c 767 /* If we are partitioning hot/cold basic blocks, we don't want to
768 mess up unconditional or indirect jumps that cross between hot
a0c938f0 769 and cold sections.
770
1118aef7 771 Basic block partitioning may result in some jumps that appear to
a0c938f0 772 be optimizable (or blocks that appear to be mergeable), but which really
773 must be left untouched (they are required to make it safely across
774 partition boundaries). See the comments at the top of
1118aef7 775 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
776
1897b881 777 if (BB_PARTITION (b) != BB_PARTITION (c))
4f18499c 778 return NULL;
a0c938f0 779
65f34de5 780 /* If B has a fallthru edge to C, no need to move anything. */
781 if (e->flags & EDGE_FALLTHRU)
782 {
b3d6de89 783 int b_index = b->index, c_index = c->index;
79f958cb 784
785 /* Protect the loop latches. */
786 if (current_loops && c->loop_father->latch == c)
787 return NULL;
788
c60fa3a7 789 merge_blocks (b, c);
33dbe4d1 790 update_forwarder_flag (b);
65f34de5 791
450d042a 792 if (dump_file)
793 fprintf (dump_file, "Merged %d and %d without moving.\n",
db34a109 794 b_index, c_index);
65f34de5 795
34154e27 796 return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
65f34de5 797 }
5cc577b6 798
65f34de5 799 /* Otherwise we will need to move code around. Do that only if expensive
800 transformations are allowed. */
801 else if (mode & CLEANUP_EXPENSIVE)
802 {
e76f35e8 803 edge tmp_edge, b_fallthru_edge;
804 bool c_has_outgoing_fallthru;
805 bool b_has_incoming_fallthru;
65f34de5 806
807 /* Avoid overactive code motion, as the forwarder blocks should be
a0c938f0 808 eliminated by edge redirection instead. One exception might have
65f34de5 809 been if B is a forwarder block and C has no fallthru edge, but
810 that should be cleaned up by bb-reorder instead. */
33dbe4d1 811 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
9d574a94 812 return NULL;
65f34de5 813
814 /* We must make sure to not munge nesting of lexical blocks,
815 and loop notes. This is done by squeezing out all the notes
816 and leaving them there to lie. Not ideal, but functional. */
817
7f58c05e 818 tmp_edge = find_fallthru_edge (c->succs);
65f34de5 819 c_has_outgoing_fallthru = (tmp_edge != NULL);
65f34de5 820
7f58c05e 821 tmp_edge = find_fallthru_edge (b->preds);
65f34de5 822 b_has_incoming_fallthru = (tmp_edge != NULL);
e76f35e8 823 b_fallthru_edge = tmp_edge;
9d574a94 824 next = b->prev_bb;
a6a0ec1c 825 if (next == c)
826 next = next->prev_bb;
e76f35e8 827
828 /* Otherwise, we're going to try to move C after B. If C does
829 not have an outgoing fallthru, then it can be moved
830 immediately after B without introducing or modifying jumps. */
831 if (! c_has_outgoing_fallthru)
832 {
833 merge_blocks_move_successor_nojumps (b, c);
34154e27 834 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
e76f35e8 835 }
65f34de5 836
837 /* If B does not have an incoming fallthru, then it can be moved
838 immediately before C without introducing or modifying jumps.
839 C cannot be the first block, so we do not have to worry about
840 accessing a non-existent block. */
65f34de5 841
e76f35e8 842 if (b_has_incoming_fallthru)
843 {
0922c912 844 basic_block bb;
5cc577b6 845
34154e27 846 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
9d574a94 847 return NULL;
2a22a8e6 848 bb = force_nonfallthru (b_fallthru_edge);
849 if (bb)
850 notice_new_block (bb);
e76f35e8 851 }
5cc577b6 852
e76f35e8 853 merge_blocks_move_predecessor_nojumps (b, c);
34154e27 854 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
65f34de5 855 }
5cc577b6 856
63b616bf 857 return NULL;
65f34de5 858}
859\f
1d133110 860
861/* Removes the memory attributes of MEM expression
862 if they are not equal. */
863
864void
865merge_memattrs (rtx x, rtx y)
866{
867 int i;
868 int j;
869 enum rtx_code code;
870 const char *fmt;
871
872 if (x == y)
873 return;
874 if (x == 0 || y == 0)
875 return;
876
877 code = GET_CODE (x);
878
879 if (code != GET_CODE (y))
880 return;
881
882 if (GET_MODE (x) != GET_MODE (y))
883 return;
884
885 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
886 {
887 if (! MEM_ATTRS (x))
888 MEM_ATTRS (y) = 0;
889 else if (! MEM_ATTRS (y))
890 MEM_ATTRS (x) = 0;
a0c938f0 891 else
1d133110 892 {
5b2a69fa 893 HOST_WIDE_INT mem_size;
1d133110 894
895 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
896 {
897 set_mem_alias_set (x, 0);
898 set_mem_alias_set (y, 0);
899 }
a0c938f0 900
1d133110 901 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
902 {
903 set_mem_expr (x, 0);
904 set_mem_expr (y, 0);
da443c27 905 clear_mem_offset (x);
906 clear_mem_offset (y);
1d133110 907 }
da443c27 908 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
909 || (MEM_OFFSET_KNOWN_P (x)
910 && MEM_OFFSET (x) != MEM_OFFSET (y)))
1d133110 911 {
da443c27 912 clear_mem_offset (x);
913 clear_mem_offset (y);
1d133110 914 }
a0c938f0 915
5b2a69fa 916 if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
917 {
918 mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
919 set_mem_size (x, mem_size);
920 set_mem_size (y, mem_size);
921 }
1d133110 922 else
5b2a69fa 923 {
924 clear_mem_size (x);
925 clear_mem_size (y);
926 }
1d133110 927
928 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
929 set_mem_align (y, MEM_ALIGN (x));
930 }
931 }
d8a2f839 932 if (code == MEM)
933 {
934 if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
935 {
936 MEM_READONLY_P (x) = 0;
937 MEM_READONLY_P (y) = 0;
938 }
939 if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
940 {
941 MEM_NOTRAP_P (x) = 0;
942 MEM_NOTRAP_P (y) = 0;
943 }
944 if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
945 {
946 MEM_VOLATILE_P (x) = 1;
947 MEM_VOLATILE_P (y) = 1;
948 }
949 }
a0c938f0 950
1d133110 951 fmt = GET_RTX_FORMAT (code);
952 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
953 {
954 switch (fmt[i])
955 {
956 case 'E':
957 /* Two vectors must have the same length. */
958 if (XVECLEN (x, i) != XVECLEN (y, i))
959 return;
960
961 for (j = 0; j < XVECLEN (x, i); j++)
962 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
963
964 break;
965
966 case 'e':
967 merge_memattrs (XEXP (x, i), XEXP (y, i));
968 }
969 }
970 return;
971}
972
973
764aef11 974 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
975 different single sets S1 and S2. */
1d133110 976
977static bool
764aef11 978equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
979{
980 int i;
981 rtx e1, e2;
982
983 if (p1 == s1 && p2 == s2)
984 return true;
985
986 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
987 return false;
988
989 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
990 return false;
991
992 for (i = 0; i < XVECLEN (p1, 0); i++)
993 {
994 e1 = XVECEXP (p1, 0, i);
995 e2 = XVECEXP (p2, 0, i);
996 if (e1 == s1 && e2 == s2)
997 continue;
998 if (reload_completed
999 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
1000 continue;
1001
1002 return false;
1003 }
1004
1005 return true;
1006}
1007
1008/* Examine register notes on I1 and I2 and return:
1009 - dir_forward if I1 can be replaced by I2, or
1010 - dir_backward if I2 can be replaced by I1, or
1011 - dir_both if both are the case. */
1012
1013static enum replace_direction
1014can_replace_by (rtx i1, rtx i2)
1015{
1016 rtx s1, s2, d1, d2, src1, src2, note1, note2;
1017 bool c1, c2;
1018
1019 /* Check for 2 sets. */
1020 s1 = single_set (i1);
1021 s2 = single_set (i2);
1022 if (s1 == NULL_RTX || s2 == NULL_RTX)
1023 return dir_none;
1024
1025 /* Check that the 2 sets set the same dest. */
1026 d1 = SET_DEST (s1);
1027 d2 = SET_DEST (s2);
1028 if (!(reload_completed
1029 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1030 return dir_none;
1031
1032 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1033 set dest to the same value. */
1034 note1 = find_reg_equal_equiv_note (i1);
1035 note2 = find_reg_equal_equiv_note (i2);
1036 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1037 || !CONST_INT_P (XEXP (note1, 0)))
1038 return dir_none;
1039
1040 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1041 return dir_none;
1042
1043 /* Although the 2 sets set dest to the same value, we cannot replace
1044 (set (dest) (const_int))
1045 by
1046 (set (dest) (reg))
1047 because we don't know if the reg is live and has the same value at the
1048 location of replacement. */
1049 src1 = SET_SRC (s1);
1050 src2 = SET_SRC (s2);
1051 c1 = CONST_INT_P (src1);
1052 c2 = CONST_INT_P (src2);
1053 if (c1 && c2)
1054 return dir_both;
1055 else if (c2)
1056 return dir_forward;
1057 else if (c1)
1058 return dir_backward;
1059
1060 return dir_none;
1061}
1062
1063/* Merges directions A and B. */
1064
1065static enum replace_direction
1066merge_dir (enum replace_direction a, enum replace_direction b)
1067{
1068 /* Implements the following table:
1069 |bo fw bw no
1070 ---+-----------
1071 bo |bo fw bw no
1072 fw |-- fw no no
1073 bw |-- -- bw no
1074 no |-- -- -- no. */
1075
1076 if (a == b)
1077 return a;
1078
1079 if (a == dir_both)
1080 return b;
1081 if (b == dir_both)
1082 return a;
1083
1084 return dir_none;
1085}
1086
1087/* Examine I1 and I2 and return:
1088 - dir_forward if I1 can be replaced by I2, or
1089 - dir_backward if I2 can be replaced by I1, or
1090 - dir_both if both are the case. */
1091
1092static enum replace_direction
1d133110 1093old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1094{
1095 rtx p1, p2;
1096
1097 /* Verify that I1 and I2 are equivalent. */
1098 if (GET_CODE (i1) != GET_CODE (i2))
764aef11 1099 return dir_none;
1d133110 1100
616b875f 1101 /* __builtin_unreachable() may lead to empty blocks (ending with
1102 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1103 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
764aef11 1104 return dir_both;
616b875f 1105
dfe00a8f 1106 /* ??? Do not allow cross-jumping between different stack levels. */
1107 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1108 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
40125f1c 1109 if (p1 && p2)
1110 {
1111 p1 = XEXP (p1, 0);
1112 p2 = XEXP (p2, 0);
1113 if (!rtx_equal_p (p1, p2))
1114 return dir_none;
1115
1116 /* ??? Worse, this adjustment had better be constant lest we
1117 have differing incoming stack levels. */
1118 if (!frame_pointer_needed
1119 && find_args_size_adjust (i1) == HOST_WIDE_INT_MIN)
1120 return dir_none;
1121 }
1122 else if (p1 || p2)
dfe00a8f 1123 return dir_none;
1124
17d1c688 1125 p1 = PATTERN (i1);
1d133110 1126 p2 = PATTERN (i2);
1127
1128 if (GET_CODE (p1) != GET_CODE (p2))
764aef11 1129 return dir_none;
1d133110 1130
1131 /* If this is a CALL_INSN, compare register usage information.
1132 If we don't check this on stack register machines, the two
1133 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1134 numbers of stack registers in the same basic block.
1135 If we don't check this on machines with delay slots, a delay slot may
1136 be filled that clobbers a parameter expected by the subroutine.
1137
1138 ??? We take the simple route for now and assume that if they're
84c471f5 1139 equal, they were constructed identically.
1d133110 1140
84c471f5 1141 Also check for identical exception regions. */
1142
1143 if (CALL_P (i1))
1144 {
1145 /* Ensure the same EH region. */
1146 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1147 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1148
1149 if (!n1 && n2)
764aef11 1150 return dir_none;
84c471f5 1151
1152 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
764aef11 1153 return dir_none;
84c471f5 1154
1155 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
a0c938f0 1156 CALL_INSN_FUNCTION_USAGE (i2))
84c471f5 1157 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
764aef11 1158 return dir_none;
09c97583 1159
1160 /* For address sanitizer, never crossjump __asan_report_* builtins,
1161 otherwise errors might be reported on incorrect lines. */
9e46467d 1162 if (flag_sanitize & SANITIZE_ADDRESS)
09c97583 1163 {
1164 rtx call = get_call_rtx_from (i1);
1165 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
1166 {
1167 rtx symbol = XEXP (XEXP (call, 0), 0);
1168 if (SYMBOL_REF_DECL (symbol)
1169 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
1170 {
1171 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
1172 == BUILT_IN_NORMAL)
1173 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1174 >= BUILT_IN_ASAN_REPORT_LOAD1
1175 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1176 <= BUILT_IN_ASAN_REPORT_STORE16)
1177 return dir_none;
1178 }
1179 }
1180 }
84c471f5 1181 }
1d133110 1182
1183#ifdef STACK_REGS
1184 /* If cross_jump_death_matters is not 0, the insn's mode
1185 indicates whether or not the insn contains any stack-like
1186 regs. */
1187
1188 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1189 {
1190 /* If register stack conversion has already been done, then
a0c938f0 1191 death notes must also be compared before it is certain that
1192 the two instruction streams match. */
1d133110 1193
1194 rtx note;
1195 HARD_REG_SET i1_regset, i2_regset;
1196
1197 CLEAR_HARD_REG_SET (i1_regset);
1198 CLEAR_HARD_REG_SET (i2_regset);
1199
1200 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1201 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1202 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1203
1204 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1205 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1206 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1207
ddc556d1 1208 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
764aef11 1209 return dir_none;
1d133110 1210 }
1211#endif
1212
1213 if (reload_completed
1214 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
764aef11 1215 return dir_both;
1d133110 1216
764aef11 1217 return can_replace_by (i1, i2);
1d133110 1218}
1219\f
84c471f5 1220/* When comparing insns I1 and I2 in flow_find_cross_jump or
1221 flow_find_head_matching_sequence, ensure the notes match. */
1222
1223static void
1224merge_notes (rtx i1, rtx i2)
1225{
1226 /* If the merged insns have different REG_EQUAL notes, then
1227 remove them. */
1228 rtx equiv1 = find_reg_equal_equiv_note (i1);
1229 rtx equiv2 = find_reg_equal_equiv_note (i2);
1230
1231 if (equiv1 && !equiv2)
1232 remove_note (i1, equiv1);
1233 else if (!equiv1 && equiv2)
1234 remove_note (i2, equiv2);
1235 else if (equiv1 && equiv2
1236 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1237 {
1238 remove_note (i1, equiv1);
1239 remove_note (i2, equiv2);
1240 }
1241}
1242
4ef44dfa 1243 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1244 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1245 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1246 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1247 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1248
1249static void
1250walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
1251 bool *did_fallthru)
1252{
1253 edge fallthru;
1254
1255 *did_fallthru = false;
1256
1257 /* Ignore notes. */
1258 while (!NONDEBUG_INSN_P (*i1))
1259 {
1260 if (*i1 != BB_HEAD (*bb1))
1261 {
1262 *i1 = PREV_INSN (*i1);
1263 continue;
1264 }
1265
1266 if (!follow_fallthru)
1267 return;
1268
1269 fallthru = find_fallthru_edge ((*bb1)->preds);
34154e27 1270 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4ef44dfa 1271 || !single_succ_p (fallthru->src))
1272 return;
1273
1274 *bb1 = fallthru->src;
1275 *i1 = BB_END (*bb1);
1276 *did_fallthru = true;
1277 }
1278}
1279
1d133110 1280/* Look through the insns at the end of BB1 and BB2 and find the longest
764aef11 1281 sequence that are either equivalent, or allow forward or backward
1282 replacement. Store the first insns for that sequence in *F1 and *F2 and
1283 return the sequence length.
1284
1285 DIR_P indicates the allowed replacement direction on function entry, and
1286 the actual replacement direction on function exit. If NULL, only equivalent
1287 sequences are allowed.
1d133110 1288
1289 To simplify callers of this function, if the blocks match exactly,
1290 store the head of the blocks in *F1 and *F2. */
1291
84c471f5 1292int
764aef11 1293flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
1294 enum replace_direction *dir_p)
1d133110 1295{
1296 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1297 int ninsns = 0;
e1ebb662 1298 rtx p1;
764aef11 1299 enum replace_direction dir, last_dir, afterlast_dir;
4ef44dfa 1300 bool follow_fallthru, did_fallthru;
764aef11 1301
1302 if (dir_p)
1303 dir = *dir_p;
1304 else
1305 dir = dir_both;
1306 afterlast_dir = dir;
1307 last_dir = afterlast_dir;
1d133110 1308
1309 /* Skip simple jumps at the end of the blocks. Complex jumps still
1310 need to be compared for equivalence, which we'll do below. */
1311
1312 i1 = BB_END (bb1);
1313 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1314 if (onlyjump_p (i1)
1315 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1316 {
1317 last1 = i1;
1318 i1 = PREV_INSN (i1);
1319 }
1320
1321 i2 = BB_END (bb2);
1322 if (onlyjump_p (i2)
1323 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1324 {
1325 last2 = i2;
1326 /* Count everything except for unconditional jump as insn. */
1327 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1328 ninsns++;
1329 i2 = PREV_INSN (i2);
1330 }
1331
1332 while (true)
1333 {
4ef44dfa 1334 /* In the following example, we can replace all jumps to C by jumps to A.
1335
1336 This removes 4 duplicate insns.
1337 [bb A] insn1 [bb C] insn1
1338 insn2 insn2
1339 [bb B] insn3 insn3
1340 insn4 insn4
1341 jump_insn jump_insn
1342
1343 We could also replace all jumps to A by jumps to C, but that leaves B
1344 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1345 step, all jumps to B would be replaced with jumps to the middle of C,
1346 achieving the same result with more effort.
1347 So we allow only the first possibility, which means that we don't allow
1348 fallthru in the block that's being replaced. */
1349
1350 follow_fallthru = dir_p && dir != dir_forward;
1351 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1352 if (did_fallthru)
1353 dir = dir_backward;
1354
1355 follow_fallthru = dir_p && dir != dir_backward;
1356 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1357 if (did_fallthru)
1358 dir = dir_forward;
1d133110 1359
1360 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1361 break;
1362
764aef11 1363 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1364 if (dir == dir_none || (!dir_p && dir != dir_both))
1d133110 1365 break;
1366
1367 merge_memattrs (i1, i2);
1368
1369 /* Don't begin a cross-jump with a NOTE insn. */
1370 if (INSN_P (i1))
1371 {
84c471f5 1372 merge_notes (i1, i2);
1d133110 1373
1374 afterlast1 = last1, afterlast2 = last2;
1375 last1 = i1, last2 = i2;
764aef11 1376 afterlast_dir = last_dir;
1377 last_dir = dir;
e1ebb662 1378 p1 = PATTERN (i1);
1379 if (!(GET_CODE (p1) == USE || GET_CODE (p1) == CLOBBER))
1380 ninsns++;
1d133110 1381 }
1382
1383 i1 = PREV_INSN (i1);
1384 i2 = PREV_INSN (i2);
1385 }
1386
1387#ifdef HAVE_cc0
1388 /* Don't allow the insn after a compare to be shared by
1389 cross-jumping unless the compare is also shared. */
1390 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
764aef11 1391 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1d133110 1392#endif
1393
1394 /* Include preceding notes and labels in the cross-jump. One,
1395 this may bring us to the head of the blocks as requested above.
1396 Two, it keeps line number notes as matched as may be. */
1397 if (ninsns)
1398 {
4ef44dfa 1399 bb1 = BLOCK_FOR_INSN (last1);
9845d120 1400 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1d133110 1401 last1 = PREV_INSN (last1);
1402
1403 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1404 last1 = PREV_INSN (last1);
1405
4ef44dfa 1406 bb2 = BLOCK_FOR_INSN (last2);
9845d120 1407 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1d133110 1408 last2 = PREV_INSN (last2);
1409
1410 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1411 last2 = PREV_INSN (last2);
1412
1413 *f1 = last1;
1414 *f2 = last2;
1415 }
1416
764aef11 1417 if (dir_p)
1418 *dir_p = last_dir;
1d133110 1419 return ninsns;
1420}
1421
84c471f5 1422/* Like flow_find_cross_jump, except start looking for a matching sequence from
1423 the head of the two blocks. Do not include jumps at the end.
1424 If STOP_AFTER is nonzero, stop after finding that many matching
1425 instructions. */
1426
1427int
1428flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1429 rtx *f2, int stop_after)
1430{
1431 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1432 int ninsns = 0;
1433 edge e;
1434 edge_iterator ei;
1435 int nehedges1 = 0, nehedges2 = 0;
1436
1437 FOR_EACH_EDGE (e, ei, bb1->succs)
1438 if (e->flags & EDGE_EH)
1439 nehedges1++;
1440 FOR_EACH_EDGE (e, ei, bb2->succs)
1441 if (e->flags & EDGE_EH)
1442 nehedges2++;
1443
1444 i1 = BB_HEAD (bb1);
1445 i2 = BB_HEAD (bb2);
1446 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1447
1448 while (true)
1449 {
bc6adae4 1450 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
84c471f5 1451 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
bc6adae4 1452 {
1453 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1454 break;
1455 i1 = NEXT_INSN (i1);
1456 }
84c471f5 1457
1458 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
bc6adae4 1459 {
1460 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1461 break;
1462 i2 = NEXT_INSN (i2);
1463 }
84c471f5 1464
2b93e478 1465 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1466 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1467 break;
1468
84c471f5 1469 if (NOTE_P (i1) || NOTE_P (i2)
1470 || JUMP_P (i1) || JUMP_P (i2))
1471 break;
1472
1473 /* A sanity check to make sure we're not merging insns with different
1474 effects on EH. If only one of them ends a basic block, it shouldn't
1475 have an EH edge; if both end a basic block, there should be the same
1476 number of EH edges. */
1477 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1478 && nehedges1 > 0)
1479 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1480 && nehedges2 > 0)
1481 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1482 && nehedges1 != nehedges2))
1483 break;
1484
764aef11 1485 if (old_insns_match_p (0, i1, i2) != dir_both)
84c471f5 1486 break;
1487
1488 merge_memattrs (i1, i2);
1489
1490 /* Don't begin a cross-jump with a NOTE insn. */
1491 if (INSN_P (i1))
1492 {
1493 merge_notes (i1, i2);
1494
1495 beforelast1 = last1, beforelast2 = last2;
1496 last1 = i1, last2 = i2;
1497 ninsns++;
1498 }
1499
1500 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1501 || (stop_after > 0 && ninsns == stop_after))
1502 break;
1503
1504 i1 = NEXT_INSN (i1);
1505 i2 = NEXT_INSN (i2);
1506 }
1507
1508#ifdef HAVE_cc0
1509 /* Don't allow a compare to be shared by cross-jumping unless the insn
1510 after the compare is also shared. */
1511 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1512 last1 = beforelast1, last2 = beforelast2, ninsns--;
1513#endif
1514
1515 if (ninsns)
1516 {
1517 *f1 = last1;
1518 *f2 = last2;
1519 }
1520
1521 return ninsns;
1522}
1523
1d133110 1524/* Return true iff outgoing edges of BB1 and BB2 match, together with
1525 the branch instruction. This means that if we commonize the control
1526 flow before end of the basic block, the semantic remains unchanged.
65f34de5 1527
1528 We may assume that there exists one edge with a common destination. */
1529
1530static bool
1d133110 1531outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
65f34de5 1532{
ba38e12b 1533 int nehedges1 = 0, nehedges2 = 0;
1534 edge fallthru1 = 0, fallthru2 = 0;
1535 edge e1, e2;
cd665a06 1536 edge_iterator ei;
ba38e12b 1537
efee62d1 1538 /* If we performed shrink-wrapping, edges to the exit block can
1f021f97 1539 only be distinguished for JUMP_INSNs. The two paths may differ in
1540 whether they went through the prologue. Sibcalls are fine, we know
1541 that we either didn't need or inserted an epilogue before them. */
1542 if (crtl->shrink_wrapped
34154e27 1543 && single_succ_p (bb1)
1544 && single_succ (bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
1f021f97 1545 && !JUMP_P (BB_END (bb1))
1546 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1547 return false;
1548
337b10d0 1549 /* If BB1 has only one successor, we may be looking at either an
1550 unconditional jump, or a fake edge to exit. */
ea091dfd 1551 if (single_succ_p (bb1)
1552 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
6d7dc5b9 1553 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
ea091dfd 1554 return (single_succ_p (bb2)
1555 && (single_succ_edge (bb2)->flags
1556 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
6d7dc5b9 1557 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
65f34de5 1558
1559 /* Match conditional jumps - this may get tricky when fallthru and branch
1560 edges are crossed. */
cd665a06 1561 if (EDGE_COUNT (bb1->succs) == 2
5496dbfc 1562 && any_condjump_p (BB_END (bb1))
1563 && onlyjump_p (BB_END (bb1)))
65f34de5 1564 {
1d133110 1565 edge b1, f1, b2, f2;
1566 bool reverse, match;
1567 rtx set1, set2, cond1, cond2;
1568 enum rtx_code code1, code2;
1569
cd665a06 1570 if (EDGE_COUNT (bb2->succs) != 2
5496dbfc 1571 || !any_condjump_p (BB_END (bb2))
1572 || !onlyjump_p (BB_END (bb2)))
26fb1781 1573 return false;
1d133110 1574
1575 b1 = BRANCH_EDGE (bb1);
1576 b2 = BRANCH_EDGE (bb2);
1577 f1 = FALLTHRU_EDGE (bb1);
1578 f2 = FALLTHRU_EDGE (bb2);
1579
1580 /* Get around possible forwarders on fallthru edges. Other cases
a0c938f0 1581 should be optimized out already. */
1d133110 1582 if (FORWARDER_BLOCK_P (f1->dest))
1583 f1 = single_succ_edge (f1->dest);
1584
1585 if (FORWARDER_BLOCK_P (f2->dest))
1586 f2 = single_succ_edge (f2->dest);
1587
1588 /* To simplify use of this function, return false if there are
1589 unneeded forwarder blocks. These will get eliminated later
1590 during cleanup_cfg. */
1591 if (FORWARDER_BLOCK_P (f1->dest)
1592 || FORWARDER_BLOCK_P (f2->dest)
1593 || FORWARDER_BLOCK_P (b1->dest)
1594 || FORWARDER_BLOCK_P (b2->dest))
1595 return false;
1596
1597 if (f1->dest == f2->dest && b1->dest == b2->dest)
1598 reverse = false;
1599 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1600 reverse = true;
1601 else
1602 return false;
1603
1604 set1 = pc_set (BB_END (bb1));
1605 set2 = pc_set (BB_END (bb2));
1606 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1607 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1608 reverse = !reverse;
1609
1610 cond1 = XEXP (SET_SRC (set1), 0);
1611 cond2 = XEXP (SET_SRC (set2), 0);
1612 code1 = GET_CODE (cond1);
1613 if (reverse)
1614 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1615 else
1616 code2 = GET_CODE (cond2);
1617
1618 if (code2 == UNKNOWN)
1619 return false;
1620
1621 /* Verify codes and operands match. */
1622 match = ((code1 == code2
1623 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1624 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1625 || (code1 == swap_condition (code2)
1626 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1627 XEXP (cond2, 0))
1628 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1629 XEXP (cond2, 1))));
1630
1631 /* If we return true, we will join the blocks. Which means that
1632 we will only have one branch prediction bit to work with. Thus
1633 we require the existing branches to have probabilities that are
1634 roughly similar. */
1635 if (match
0bfd8d5c 1636 && optimize_bb_for_speed_p (bb1)
1637 && optimize_bb_for_speed_p (bb2))
1d133110 1638 {
1639 int prob2;
1640
1641 if (b1->dest == b2->dest)
1642 prob2 = b2->probability;
1643 else
1644 /* Do not use f2 probability as f2 may be forwarded. */
1645 prob2 = REG_BR_PROB_BASE - b2->probability;
1646
1647 /* Fail if the difference in probabilities is greater than 50%.
1648 This rules out two well-predicted branches with opposite
1649 outcomes. */
1650 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1651 {
1652 if (dump_file)
1653 fprintf (dump_file,
1654 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1655 bb1->index, bb2->index, b1->probability, prob2);
1656
1657 return false;
1658 }
1659 }
1660
1661 if (dump_file && match)
1662 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1663 bb1->index, bb2->index);
1664
1665 return match;
65f34de5 1666 }
1667
edc2a478 1668 /* Generic case - we are seeing a computed jump, table jump or trapping
ba38e12b 1669 instruction. */
1670
f2756aab 1671 /* Check whether there are tablejumps in the end of BB1 and BB2.
1672 Return true if they are identical. */
1673 {
1674 rtx label1, label2;
1675 rtx table1, table2;
1676
5496dbfc 1677 if (tablejump_p (BB_END (bb1), &label1, &table1)
1678 && tablejump_p (BB_END (bb2), &label2, &table2)
f2756aab 1679 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1680 {
1681 /* The labels should never be the same rtx. If they really are same
1682 the jump tables are same too. So disable crossjumping of blocks BB1
1683 and BB2 because when deleting the common insns in the end of BB1
4ee9c684 1684 by delete_basic_block () the jump table would be deleted too. */
cda612f5 1685 /* If LABEL2 is referenced in BB1->END do not do anything
f2756aab 1686 because we would loose information when replacing
1687 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
5496dbfc 1688 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
f2756aab 1689 {
1690 /* Set IDENTICAL to true when the tables are identical. */
1691 bool identical = false;
1692 rtx p1, p2;
1693
1694 p1 = PATTERN (table1);
1695 p2 = PATTERN (table2);
1696 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1697 {
1698 identical = true;
1699 }
1700 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1701 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1702 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1703 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1704 {
1705 int i;
1706
1707 identical = true;
1708 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1709 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1710 identical = false;
1711 }
1712
1d133110 1713 if (identical)
f2756aab 1714 {
1d133110 1715 replace_label_data rr;
f2756aab 1716 bool match;
1717
1d133110 1718 /* Temporarily replace references to LABEL1 with LABEL2
f2756aab 1719 in BB1->END so that we could compare the instructions. */
1d133110 1720 rr.r1 = label1;
1721 rr.r2 = label2;
1722 rr.update_label_nuses = false;
1723 for_each_rtx (&BB_END (bb1), replace_label, &rr);
f2756aab 1724
764aef11 1725 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1726 == dir_both);
450d042a 1727 if (dump_file && match)
1728 fprintf (dump_file,
f2756aab 1729 "Tablejumps in bb %i and %i match.\n",
1730 bb1->index, bb2->index);
1731
1d133110 1732 /* Set the original label in BB1->END because when deleting
1733 a block whose end is a tablejump, the tablejump referenced
1734 from the instruction is deleted too. */
1735 rr.r1 = label2;
1736 rr.r2 = label1;
1737 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1738
f2756aab 1739 return match;
1740 }
1741 }
1742 return false;
1743 }
1744 }
f2756aab 1745
a7920b67 1746 /* Find the last non-debug non-note instruction in each bb, except
1747 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1748 handles that case specially. old_insns_match_p does not handle
1749 other types of instruction notes. */
f73960eb 1750 rtx last1 = BB_END (bb1);
1751 rtx last2 = BB_END (bb2);
a7920b67 1752 while (!NOTE_INSN_BASIC_BLOCK_P (last1) &&
1753 (DEBUG_INSN_P (last1) || NOTE_P (last1)))
1754 last1 = PREV_INSN (last1);
1755 while (!NOTE_INSN_BASIC_BLOCK_P (last2) &&
1756 (DEBUG_INSN_P (last2) || NOTE_P (last2)))
1757 last2 = PREV_INSN (last2);
1758 gcc_assert (last1 && last2);
1759
ba38e12b 1760 /* First ensure that the instructions match. There may be many outgoing
f2756aab 1761 edges so this test is generally cheaper. */
f73960eb 1762 if (old_insns_match_p (mode, last1, last2) != dir_both)
ba38e12b 1763 return false;
1764
1765 /* Search the outgoing edges, ensure that the counts do match, find possible
1766 fallthru and exception handling edges since these needs more
1767 validation. */
cd665a06 1768 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1769 return false;
1770
f73960eb 1771 bool nonfakeedges = false;
cd665a06 1772 FOR_EACH_EDGE (e1, ei, bb1->succs)
ba38e12b 1773 {
cd665a06 1774 e2 = EDGE_SUCC (bb2, ei.index);
a0c938f0 1775
f73960eb 1776 if ((e1->flags & EDGE_FAKE) == 0)
1777 nonfakeedges = true;
1778
ba38e12b 1779 if (e1->flags & EDGE_EH)
1780 nehedges1++;
5cc577b6 1781
ba38e12b 1782 if (e2->flags & EDGE_EH)
1783 nehedges2++;
5cc577b6 1784
ba38e12b 1785 if (e1->flags & EDGE_FALLTHRU)
1786 fallthru1 = e1;
1787 if (e2->flags & EDGE_FALLTHRU)
1788 fallthru2 = e2;
1789 }
5cc577b6 1790
ba38e12b 1791 /* If number of edges of various types does not match, fail. */
cd665a06 1792 if (nehedges1 != nehedges2
5cc577b6 1793 || (fallthru1 != 0) != (fallthru2 != 0))
ba38e12b 1794 return false;
1795
f73960eb 1796 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1797 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1798 attempt to optimize, as the two basic blocks might have different
1799 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1800 traps there should be REG_ARG_SIZE notes, they could be missing
1801 for __builtin_unreachable () uses though. */
1802 if (!nonfakeedges
1803 && !ACCUMULATE_OUTGOING_ARGS
1804 && (!INSN_P (last1)
1805 || !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
1806 return false;
1807
ba38e12b 1808 /* fallthru edges must be forwarded to the same destination. */
1809 if (fallthru1)
1810 {
1811 basic_block d1 = (forwarder_block_p (fallthru1->dest)
ea091dfd 1812 ? single_succ (fallthru1->dest): fallthru1->dest);
ba38e12b 1813 basic_block d2 = (forwarder_block_p (fallthru2->dest)
ea091dfd 1814 ? single_succ (fallthru2->dest): fallthru2->dest);
5cc577b6 1815
ba38e12b 1816 if (d1 != d2)
1817 return false;
1818 }
5cc577b6 1819
79f00c53 1820 /* Ensure the same EH region. */
1821 {
5496dbfc 1822 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1823 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
5cc577b6 1824
79f00c53 1825 if (!n1 && n2)
1826 return false;
1827
1828 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1829 return false;
1830 }
5cc577b6 1831
89140b26 1832 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1833 version of sequence abstraction. */
1834 FOR_EACH_EDGE (e1, ei, bb2->succs)
1835 {
1836 edge e2;
1837 edge_iterator ei;
1838 basic_block d1 = e1->dest;
1839
1840 if (FORWARDER_BLOCK_P (d1))
1841 d1 = EDGE_SUCC (d1, 0)->dest;
1842
1843 FOR_EACH_EDGE (e2, ei, bb1->succs)
1844 {
1845 basic_block d2 = e2->dest;
1846 if (FORWARDER_BLOCK_P (d2))
1847 d2 = EDGE_SUCC (d2, 0)->dest;
1848 if (d1 == d2)
1849 break;
1850 }
1851
1852 if (!e2)
1853 return false;
1854 }
1855
ba38e12b 1856 return true;
65f34de5 1857}
1858
89140b26 1859/* Returns true if BB basic block has a preserve label. */
1860
1861static bool
1862block_has_preserve_label (basic_block bb)
1863{
1864 return (bb
1865 && block_label (bb)
1866 && LABEL_PRESERVE_P (block_label (bb)));
1867}
1868
65f34de5 1869/* E1 and E2 are edges with the same destination block. Search their
1870 predecessors for common code. If found, redirect control flow from
0f38cfdd 1871 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1872 or the other way around (dir_backward). DIR specifies the allowed
1873 replacement direction. */
65f34de5 1874
1875static bool
0f38cfdd 1876try_crossjump_to_edge (int mode, edge e1, edge e2,
1877 enum replace_direction dir)
65f34de5 1878{
1d133110 1879 int nmatch;
65f34de5 1880 basic_block src1 = e1->src, src2 = e2->src;
42e9bc25 1881 basic_block redirect_to, redirect_from, to_remove;
4ef44dfa 1882 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1d133110 1883 rtx newpos1, newpos2;
65f34de5 1884 edge s;
cd665a06 1885 edge_iterator ei;
1d133110 1886
1887 newpos1 = newpos2 = NULL_RTX;
4ee9c684 1888
4f18499c 1889 /* If we have partitioned hot/cold basic blocks, it is a bad idea
a0c938f0 1890 to try this optimization.
1118aef7 1891
1892 Basic block partitioning may result in some jumps that appear to
a0c938f0 1893 be optimizable (or blocks that appear to be mergeable), but which really
1894 must be left untouched (they are required to make it safely across
1895 partition boundaries). See the comments at the top of
1118aef7 1896 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4f18499c 1897
812ca88e 1898 if (crtl->has_bb_partition && reload_completed)
4f18499c 1899 return false;
1900
65f34de5 1901 /* Search backward through forwarder blocks. We don't need to worry
1902 about multiple entry or chained forwarders, as they will be optimized
1903 away. We do this to look past the unconditional jump following a
1904 conditional jump that is required due to the current CFG shape. */
ea091dfd 1905 if (single_pred_p (src1)
33dbe4d1 1906 && FORWARDER_BLOCK_P (src1))
ea091dfd 1907 e1 = single_pred_edge (src1), src1 = e1->src;
5cc577b6 1908
ea091dfd 1909 if (single_pred_p (src2)
33dbe4d1 1910 && FORWARDER_BLOCK_P (src2))
ea091dfd 1911 e2 = single_pred_edge (src2), src2 = e2->src;
65f34de5 1912
1913 /* Nothing to do if we reach ENTRY, or a common source block. */
34154e27 1914 if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
1915 == ENTRY_BLOCK_PTR_FOR_FN (cfun))
65f34de5 1916 return false;
1917 if (src1 == src2)
1918 return false;
1919
1920 /* Seeing more than 1 forwarder blocks would confuse us later... */
33dbe4d1 1921 if (FORWARDER_BLOCK_P (e1->dest)
ea091dfd 1922 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
65f34de5 1923 return false;
5cc577b6 1924
33dbe4d1 1925 if (FORWARDER_BLOCK_P (e2->dest)
ea091dfd 1926 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
65f34de5 1927 return false;
1928
1929 /* Likewise with dead code (possibly newly created by the other optimizations
1930 of cfg_cleanup). */
cd665a06 1931 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
65f34de5 1932 return false;
1933
65f34de5 1934 /* Look for the common insn sequence, part the first ... */
1d133110 1935 if (!outgoing_edges_match (mode, src1, src2))
65f34de5 1936 return false;
1937
1938 /* ... and part the second. */
764aef11 1939 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
43341e2f 1940
4ef44dfa 1941 osrc1 = src1;
1942 osrc2 = src2;
1943 if (newpos1 != NULL_RTX)
1944 src1 = BLOCK_FOR_INSN (newpos1);
1945 if (newpos2 != NULL_RTX)
1946 src2 = BLOCK_FOR_INSN (newpos2);
1947
0f38cfdd 1948 if (dir == dir_backward)
1949 {
1950#define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1951 SWAP (basic_block, osrc1, osrc2);
1952 SWAP (basic_block, src1, src2);
1953 SWAP (edge, e1, e2);
1954 SWAP (rtx, newpos1, newpos2);
1955#undef SWAP
1956 }
1957
43341e2f 1958 /* Don't proceed with the crossjump unless we found a sufficient number
1959 of matching instructions or the 'from' block was totally matched
1960 (such that its predecessors will hopefully be redirected and the
1961 block removed). */
1d133110 1962 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1963 && (newpos1 != BB_HEAD (src1)))
cd7f40a2 1964 return false;
65f34de5 1965
d961ae3a 1966 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
89140b26 1967 if (block_has_preserve_label (e1->dest)
1968 && (e1->flags & EDGE_ABNORMAL))
1969 return false;
1970
f2756aab 1971 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1972 will be deleted.
1973 If we have tablejumps in the end of SRC1 and SRC2
1974 they have been already compared for equivalence in outgoing_edges_match ()
1975 so replace the references to TABLE1 by references to TABLE2. */
1976 {
1977 rtx label1, label2;
1978 rtx table1, table2;
1979
4ef44dfa 1980 if (tablejump_p (BB_END (osrc1), &label1, &table1)
1981 && tablejump_p (BB_END (osrc2), &label2, &table2)
f2756aab 1982 && label1 != label2)
1983 {
cda612f5 1984 replace_label_data rr;
f2756aab 1985 rtx insn;
1986
1987 /* Replace references to LABEL1 with LABEL2. */
1988 rr.r1 = label1;
1989 rr.r2 = label2;
cda612f5 1990 rr.update_label_nuses = true;
f2756aab 1991 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1992 {
1993 /* Do not replace the label in SRC1->END because when deleting
1994 a block whose end is a tablejump, the tablejump referenced
1995 from the instruction is deleted too. */
4ef44dfa 1996 if (insn != BB_END (osrc1))
f2756aab 1997 for_each_rtx (&insn, replace_label, &rr);
1998 }
1999 }
2000 }
63b616bf 2001
12ea1478 2002 /* Avoid splitting if possible. We must always split when SRC2 has
2003 EH predecessor edges, or we may end up with basic blocks with both
2004 normal and EH predecessor edges. */
1d133110 2005 if (newpos2 == BB_HEAD (src2)
12ea1478 2006 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
65f34de5 2007 redirect_to = src2;
2008 else
2009 {
1d133110 2010 if (newpos2 == BB_HEAD (src2))
12ea1478 2011 {
2012 /* Skip possible basic block header. */
1d133110 2013 if (LABEL_P (newpos2))
2014 newpos2 = NEXT_INSN (newpos2);
9845d120 2015 while (DEBUG_INSN_P (newpos2))
2016 newpos2 = NEXT_INSN (newpos2);
1d133110 2017 if (NOTE_P (newpos2))
2018 newpos2 = NEXT_INSN (newpos2);
9845d120 2019 while (DEBUG_INSN_P (newpos2))
2020 newpos2 = NEXT_INSN (newpos2);
12ea1478 2021 }
2022
450d042a 2023 if (dump_file)
2024 fprintf (dump_file, "Splitting bb %i before %i insns\n",
b3d6de89 2025 src2->index, nmatch);
1d133110 2026 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
65f34de5 2027 }
2028
450d042a 2029 if (dump_file)
1d133110 2030 fprintf (dump_file,
2031 "Cross jumping from bb %i to bb %i; %i common insns\n",
2032 src1->index, src2->index, nmatch);
65f34de5 2033
554f2707 2034 /* We may have some registers visible through the block. */
3072d30e 2035 df_set_bb_dirty (redirect_to);
65f34de5 2036
4ef44dfa 2037 if (osrc2 == src2)
2038 redirect_edges_to = redirect_to;
2039 else
2040 redirect_edges_to = osrc2;
2041
65f34de5 2042 /* Recompute the frequencies and counts of outgoing edges. */
4ef44dfa 2043 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
65f34de5 2044 {
2045 edge s2;
cd665a06 2046 edge_iterator ei;
65f34de5 2047 basic_block d = s->dest;
2048
33dbe4d1 2049 if (FORWARDER_BLOCK_P (d))
ea091dfd 2050 d = single_succ (d);
5cc577b6 2051
cd665a06 2052 FOR_EACH_EDGE (s2, ei, src1->succs)
65f34de5 2053 {
2054 basic_block d2 = s2->dest;
33dbe4d1 2055 if (FORWARDER_BLOCK_P (d2))
ea091dfd 2056 d2 = single_succ (d2);
65f34de5 2057 if (d == d2)
2058 break;
2059 }
5cc577b6 2060
65f34de5 2061 s->count += s2->count;
2062
2063 /* Take care to update possible forwarder blocks. We verified
a0c938f0 2064 that there is no more than one in the chain, so we can't run
2065 into infinite loop. */
33dbe4d1 2066 if (FORWARDER_BLOCK_P (s->dest))
65f34de5 2067 {
ea091dfd 2068 single_succ_edge (s->dest)->count += s2->count;
65f34de5 2069 s->dest->count += s2->count;
2070 s->dest->frequency += EDGE_FREQUENCY (s);
2071 }
5cc577b6 2072
33dbe4d1 2073 if (FORWARDER_BLOCK_P (s2->dest))
65f34de5 2074 {
ea091dfd 2075 single_succ_edge (s2->dest)->count -= s2->count;
2076 if (single_succ_edge (s2->dest)->count < 0)
2077 single_succ_edge (s2->dest)->count = 0;
65f34de5 2078 s2->dest->count -= s2->count;
2079 s2->dest->frequency -= EDGE_FREQUENCY (s);
f884e43f 2080 if (s2->dest->frequency < 0)
2081 s2->dest->frequency = 0;
2082 if (s2->dest->count < 0)
2083 s2->dest->count = 0;
65f34de5 2084 }
5cc577b6 2085
4ef44dfa 2086 if (!redirect_edges_to->frequency && !src1->frequency)
65f34de5 2087 s->probability = (s->probability + s2->probability) / 2;
2088 else
5cc577b6 2089 s->probability
4ef44dfa 2090 = ((s->probability * redirect_edges_to->frequency +
5cc577b6 2091 s2->probability * src1->frequency)
4ef44dfa 2092 / (redirect_edges_to->frequency + src1->frequency));
65f34de5 2093 }
2094
8c09e55e 2095 /* Adjust count and frequency for the block. An earlier jump
2096 threading pass may have left the profile in an inconsistent
2097 state (see update_bb_profile_for_threading) so we must be
2098 prepared for overflows. */
4ef44dfa 2099 tmp = redirect_to;
2100 do
2101 {
2102 tmp->count += src1->count;
2103 tmp->frequency += src1->frequency;
2104 if (tmp->frequency > BB_FREQ_MAX)
2105 tmp->frequency = BB_FREQ_MAX;
2106 if (tmp == redirect_edges_to)
2107 break;
2108 tmp = find_fallthru_edge (tmp->succs)->dest;
2109 }
2110 while (true);
2111 update_br_prob_note (redirect_edges_to);
65f34de5 2112
2113 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2114
1d133110 2115 /* Skip possible basic block header. */
2116 if (LABEL_P (newpos1))
2117 newpos1 = NEXT_INSN (newpos1);
9845d120 2118
2119 while (DEBUG_INSN_P (newpos1))
2120 newpos1 = NEXT_INSN (newpos1);
2121
25e880b1 2122 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
1d133110 2123 newpos1 = NEXT_INSN (newpos1);
2124
9845d120 2125 while (DEBUG_INSN_P (newpos1))
2126 newpos1 = NEXT_INSN (newpos1);
2127
1d133110 2128 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
ea091dfd 2129 to_remove = single_succ (redirect_from);
65f34de5 2130
ea091dfd 2131 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
5f5d4cd1 2132 delete_basic_block (to_remove);
65f34de5 2133
42e9bc25 2134 update_forwarder_flag (redirect_from);
30ad61ed 2135 if (redirect_to != src2)
2136 update_forwarder_flag (src2);
33dbe4d1 2137
65f34de5 2138 return true;
2139}
2140
2141/* Search the predecessors of BB for common insn sequences. When found,
2142 share code between them by redirecting control flow. Return true if
2143 any changes made. */
2144
2145static bool
4c9e08a4 2146try_crossjump_bb (int mode, basic_block bb)
65f34de5 2147{
cd665a06 2148 edge e, e2, fallthru;
65f34de5 2149 bool changed;
cd665a06 2150 unsigned max, ix, ix2;
65f34de5 2151
dd5b4b36 2152 /* Nothing to do if there is not at least two incoming edges. */
cd665a06 2153 if (EDGE_COUNT (bb->preds) < 2)
65f34de5 2154 return false;
2155
b70a5a99 2156 /* Don't crossjump if this block ends in a computed jump,
2157 unless we are optimizing for size. */
0bfd8d5c 2158 if (optimize_bb_for_size_p (bb)
34154e27 2159 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
b70a5a99 2160 && computed_jump_p (BB_END (bb)))
2161 return false;
2162
4f18499c 2163 /* If we are partitioning hot/cold basic blocks, we don't want to
2164 mess up unconditional or indirect jumps that cross between hot
a0c938f0 2165 and cold sections.
2166
1118aef7 2167 Basic block partitioning may result in some jumps that appear to
a0c938f0 2168 be optimizable (or blocks that appear to be mergeable), but which really
2169 must be left untouched (they are required to make it safely across
2170 partition boundaries). See the comments at the top of
1118aef7 2171 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2172
a0c938f0 2173 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2174 BB_PARTITION (EDGE_PRED (bb, 1)->src)
1897b881 2175 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
4f18499c 2176 return false;
2177
65f34de5 2178 /* It is always cheapest to redirect a block that ends in a branch to
2179 a block that falls through into BB, as that adds no branches to the
2180 program. We'll try that combination first. */
2a5b4716 2181 fallthru = NULL;
2182 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
cd665a06 2183
2184 if (EDGE_COUNT (bb->preds) > max)
2185 return false;
2186
7f58c05e 2187 fallthru = find_fallthru_edge (bb->preds);
65f34de5 2188
2189 changed = false;
e8911909 2190 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
65f34de5 2191 {
e8911909 2192 e = EDGE_PRED (bb, ix);
cd665a06 2193 ix++;
65f34de5 2194
1ae2ffa7 2195 /* As noted above, first try with the fallthru predecessor (or, a
2196 fallthru predecessor if we are in cfglayout mode). */
65f34de5 2197 if (fallthru)
2198 {
2199 /* Don't combine the fallthru edge into anything else.
2200 If there is a match, we'll do it the other way around. */
2201 if (e == fallthru)
2202 continue;
10d3796f 2203 /* If nothing changed since the last attempt, there is nothing
2204 we can do. */
2205 if (!first_pass
bc6adae4 2206 && !((e->src->flags & BB_MODIFIED)
2207 || (fallthru->src->flags & BB_MODIFIED)))
10d3796f 2208 continue;
65f34de5 2209
0f38cfdd 2210 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
65f34de5 2211 {
2212 changed = true;
cd665a06 2213 ix = 0;
65f34de5 2214 continue;
2215 }
2216 }
2217
2218 /* Non-obvious work limiting check: Recognize that we're going
2219 to call try_crossjump_bb on every basic block. So if we have
2220 two blocks with lots of outgoing edges (a switch) and they
2221 share lots of common destinations, then we would do the
2222 cross-jump check once for each common destination.
2223
2224 Now, if the blocks actually are cross-jump candidates, then
2225 all of their destinations will be shared. Which means that
2226 we only need check them for cross-jump candidacy once. We
2227 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2228 choosing to do the check from the block for which the edge
2229 in question is the first successor of A. */
cd665a06 2230 if (EDGE_SUCC (e->src, 0) != e)
65f34de5 2231 continue;
2232
e8911909 2233 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
65f34de5 2234 {
e8911909 2235 e2 = EDGE_PRED (bb, ix2);
65f34de5 2236
2237 if (e2 == e)
2238 continue;
2239
2240 /* We've already checked the fallthru edge above. */
2241 if (e2 == fallthru)
2242 continue;
2243
65f34de5 2244 /* The "first successor" check above only prevents multiple
2245 checks of crossjump(A,B). In order to prevent redundant
2246 checks of crossjump(B,A), require that A be the block
2247 with the lowest index. */
b3d6de89 2248 if (e->src->index > e2->src->index)
65f34de5 2249 continue;
2250
10d3796f 2251 /* If nothing changed since the last attempt, there is nothing
2252 we can do. */
2253 if (!first_pass
bc6adae4 2254 && !((e->src->flags & BB_MODIFIED)
2255 || (e2->src->flags & BB_MODIFIED)))
10d3796f 2256 continue;
2257
0f38cfdd 2258 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2259 direction. */
2260 if (try_crossjump_to_edge (mode, e, e2, dir_both))
65f34de5 2261 {
2262 changed = true;
cd665a06 2263 ix = 0;
65f34de5 2264 break;
2265 }
2266 }
2267 }
2268
1ae2ffa7 2269 if (changed)
2270 crossjumps_occured = true;
2271
65f34de5 2272 return changed;
2273}
2274
bc6adae4 2275/* Search the successors of BB for common insn sequences. When found,
2276 share code between them by moving it across the basic block
2277 boundary. Return true if any changes made. */
2278
2279static bool
2280try_head_merge_bb (basic_block bb)
2281{
2282 basic_block final_dest_bb = NULL;
2283 int max_match = INT_MAX;
2284 edge e0;
2285 rtx *headptr, *currptr, *nextptr;
2286 bool changed, moveall;
2287 unsigned ix;
2288 rtx e0_last_head, cond, move_before;
2289 unsigned nedges = EDGE_COUNT (bb->succs);
2290 rtx jump = BB_END (bb);
2291 regset live, live_union;
2292
2293 /* Nothing to do if there is not at least two outgoing edges. */
2294 if (nedges < 2)
2295 return false;
2296
2297 /* Don't crossjump if this block ends in a computed jump,
2298 unless we are optimizing for size. */
2299 if (optimize_bb_for_size_p (bb)
34154e27 2300 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
bc6adae4 2301 && computed_jump_p (BB_END (bb)))
2302 return false;
2303
2304 cond = get_condition (jump, &move_before, true, false);
2305 if (cond == NULL_RTX)
3cc98df4 2306 {
2307#ifdef HAVE_cc0
2308 if (reg_mentioned_p (cc0_rtx, jump))
2309 move_before = prev_nonnote_nondebug_insn (jump);
2310 else
2311#endif
2312 move_before = jump;
2313 }
bc6adae4 2314
2315 for (ix = 0; ix < nedges; ix++)
34154e27 2316 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
bc6adae4 2317 return false;
2318
2319 for (ix = 0; ix < nedges; ix++)
2320 {
2321 edge e = EDGE_SUCC (bb, ix);
2322 basic_block other_bb = e->dest;
2323
2324 if (df_get_bb_dirty (other_bb))
2325 {
2326 block_was_dirty = true;
2327 return false;
2328 }
2329
2330 if (e->flags & EDGE_ABNORMAL)
2331 return false;
2332
2333 /* Normally, all destination blocks must only be reachable from this
2334 block, i.e. they must have one incoming edge.
2335
2336 There is one special case we can handle, that of multiple consecutive
2337 jumps where the first jumps to one of the targets of the second jump.
2338 This happens frequently in switch statements for default labels.
2339 The structure is as follows:
2340 FINAL_DEST_BB
2341 ....
2342 if (cond) jump A;
2343 fall through
2344 BB
2345 jump with targets A, B, C, D...
2346 A
2347 has two incoming edges, from FINAL_DEST_BB and BB
2348
2349 In this case, we can try to move the insns through BB and into
2350 FINAL_DEST_BB. */
2351 if (EDGE_COUNT (other_bb->preds) != 1)
2352 {
2353 edge incoming_edge, incoming_bb_other_edge;
2354 edge_iterator ei;
2355
2356 if (final_dest_bb != NULL
2357 || EDGE_COUNT (other_bb->preds) != 2)
2358 return false;
2359
2360 /* We must be able to move the insns across the whole block. */
2361 move_before = BB_HEAD (bb);
2362 while (!NONDEBUG_INSN_P (move_before))
2363 move_before = NEXT_INSN (move_before);
2364
2365 if (EDGE_COUNT (bb->preds) != 1)
2366 return false;
2367 incoming_edge = EDGE_PRED (bb, 0);
2368 final_dest_bb = incoming_edge->src;
2369 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2370 return false;
2371 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2372 if (incoming_bb_other_edge != incoming_edge)
2373 break;
2374 if (incoming_bb_other_edge->dest != other_bb)
2375 return false;
2376 }
2377 }
2378
2379 e0 = EDGE_SUCC (bb, 0);
2380 e0_last_head = NULL_RTX;
2381 changed = false;
2382
2383 for (ix = 1; ix < nedges; ix++)
2384 {
2385 edge e = EDGE_SUCC (bb, ix);
2386 rtx e0_last, e_last;
2387 int nmatch;
2388
2389 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2390 &e0_last, &e_last, 0);
2391 if (nmatch == 0)
2392 return false;
2393
2394 if (nmatch < max_match)
2395 {
2396 max_match = nmatch;
2397 e0_last_head = e0_last;
2398 }
2399 }
2400
2401 /* If we matched an entire block, we probably have to avoid moving the
2402 last insn. */
2403 if (max_match > 0
2404 && e0_last_head == BB_END (e0->dest)
2405 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2406 || control_flow_insn_p (e0_last_head)))
2407 {
2408 max_match--;
2409 if (max_match == 0)
2410 return false;
2411 do
2412 e0_last_head = prev_real_insn (e0_last_head);
2413 while (DEBUG_INSN_P (e0_last_head));
2414 }
2415
2416 if (max_match == 0)
2417 return false;
2418
2419 /* We must find a union of the live registers at each of the end points. */
2420 live = BITMAP_ALLOC (NULL);
2421 live_union = BITMAP_ALLOC (NULL);
2422
2423 currptr = XNEWVEC (rtx, nedges);
2424 headptr = XNEWVEC (rtx, nedges);
2425 nextptr = XNEWVEC (rtx, nedges);
2426
2427 for (ix = 0; ix < nedges; ix++)
2428 {
2429 int j;
2430 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2431 rtx head = BB_HEAD (merge_bb);
2432
2433 while (!NONDEBUG_INSN_P (head))
2434 head = NEXT_INSN (head);
2435 headptr[ix] = head;
2436 currptr[ix] = head;
2437
2438 /* Compute the end point and live information */
2439 for (j = 1; j < max_match; j++)
2440 do
2441 head = NEXT_INSN (head);
2442 while (!NONDEBUG_INSN_P (head));
2443 simulate_backwards_to_point (merge_bb, live, head);
2444 IOR_REG_SET (live_union, live);
2445 }
2446
2447 /* If we're moving across two blocks, verify the validity of the
2448 first move, then adjust the target and let the loop below deal
2449 with the final move. */
2450 if (final_dest_bb != NULL)
2451 {
2452 rtx move_upto;
2453
2454 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2455 jump, e0->dest, live_union,
2456 NULL, &move_upto);
2457 if (!moveall)
2458 {
2459 if (move_upto == NULL_RTX)
2460 goto out;
2461
2462 while (e0_last_head != move_upto)
2463 {
2464 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2465 live_union);
2466 e0_last_head = PREV_INSN (e0_last_head);
2467 }
2468 }
2469 if (e0_last_head == NULL_RTX)
2470 goto out;
2471
2472 jump = BB_END (final_dest_bb);
2473 cond = get_condition (jump, &move_before, true, false);
2474 if (cond == NULL_RTX)
3cc98df4 2475 {
2476#ifdef HAVE_cc0
2477 if (reg_mentioned_p (cc0_rtx, jump))
2478 move_before = prev_nonnote_nondebug_insn (jump);
2479 else
2480#endif
2481 move_before = jump;
2482 }
bc6adae4 2483 }
2484
2485 do
2486 {
2487 rtx move_upto;
2488 moveall = can_move_insns_across (currptr[0], e0_last_head,
2489 move_before, jump, e0->dest, live_union,
2490 NULL, &move_upto);
2491 if (!moveall && move_upto == NULL_RTX)
2492 {
2493 if (jump == move_before)
2494 break;
2495
2496 /* Try again, using a different insertion point. */
2497 move_before = jump;
2498
2499#ifdef HAVE_cc0
2500 /* Don't try moving before a cc0 user, as that may invalidate
2501 the cc0. */
2502 if (reg_mentioned_p (cc0_rtx, jump))
2503 break;
2504#endif
2505
2506 continue;
2507 }
2508
2509 if (final_dest_bb && !moveall)
2510 /* We haven't checked whether a partial move would be OK for the first
2511 move, so we have to fail this case. */
2512 break;
2513
2514 changed = true;
2515 for (;;)
2516 {
2517 if (currptr[0] == move_upto)
2518 break;
2519 for (ix = 0; ix < nedges; ix++)
2520 {
2521 rtx curr = currptr[ix];
2522 do
2523 curr = NEXT_INSN (curr);
2524 while (!NONDEBUG_INSN_P (curr));
2525 currptr[ix] = curr;
2526 }
2527 }
2528
2529 /* If we can't currently move all of the identical insns, remember
2530 each insn after the range that we'll merge. */
2531 if (!moveall)
2532 for (ix = 0; ix < nedges; ix++)
2533 {
2534 rtx curr = currptr[ix];
2535 do
2536 curr = NEXT_INSN (curr);
2537 while (!NONDEBUG_INSN_P (curr));
2538 nextptr[ix] = curr;
2539 }
2540
2541 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2542 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2543 if (final_dest_bb != NULL)
2544 df_set_bb_dirty (final_dest_bb);
2545 df_set_bb_dirty (bb);
2546 for (ix = 1; ix < nedges; ix++)
2547 {
2548 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2549 delete_insn_chain (headptr[ix], currptr[ix], false);
2550 }
2551 if (!moveall)
2552 {
2553 if (jump == move_before)
2554 break;
2555
2556 /* For the unmerged insns, try a different insertion point. */
2557 move_before = jump;
2558
2559#ifdef HAVE_cc0
2560 /* Don't try moving before a cc0 user, as that may invalidate
2561 the cc0. */
2562 if (reg_mentioned_p (cc0_rtx, jump))
2563 break;
2564#endif
2565
2566 for (ix = 0; ix < nedges; ix++)
2567 currptr[ix] = headptr[ix] = nextptr[ix];
2568 }
2569 }
2570 while (!moveall);
2571
2572 out:
2573 free (currptr);
2574 free (headptr);
2575 free (nextptr);
2576
2577 crossjumps_occured |= changed;
2578
2579 return changed;
2580}
2581
17d1c688 2582/* Return true if BB contains just bb note, or bb note followed
2583 by only DEBUG_INSNs. */
2584
2585static bool
2586trivially_empty_bb_p (basic_block bb)
2587{
2588 rtx insn = BB_END (bb);
2589
2590 while (1)
2591 {
2592 if (insn == BB_HEAD (bb))
2593 return true;
2594 if (!DEBUG_INSN_P (insn))
2595 return false;
2596 insn = PREV_INSN (insn);
2597 }
2598}
2599
65f34de5 2600/* Do simple CFG optimizations - basic block merging, simplifying of jump
2601 instructions etc. Return nonzero if changes were made. */
2602
2603static bool
4c9e08a4 2604try_optimize_cfg (int mode)
65f34de5 2605{
65f34de5 2606 bool changed_overall = false;
2607 bool changed;
2608 int iterations = 0;
9d574a94 2609 basic_block bb, b, next;
65f34de5 2610
3072d30e 2611 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
308f9b79 2612 clear_bb_flags ();
2613
1ae2ffa7 2614 crossjumps_occured = false;
2615
fc00614f 2616 FOR_EACH_BB_FN (bb, cfun)
4fe5a223 2617 update_forwarder_flag (bb);
2618
6fb33aa0 2619 if (! targetm.cannot_modify_jumps_p ())
65f34de5 2620 {
10d3796f 2621 first_pass = true;
e27e52e0 2622 /* Attempt to merge blocks as made possible by edge removal. If
2623 a block has only one successor, and the successor has only
2624 one predecessor, they may be combined. */
2625 do
65f34de5 2626 {
bc6adae4 2627 block_was_dirty = false;
e27e52e0 2628 changed = false;
2629 iterations++;
2630
450d042a 2631 if (dump_file)
2632 fprintf (dump_file,
e27e52e0 2633 "\n\ntry_optimize_cfg iteration %i\n\n",
2634 iterations);
65f34de5 2635
34154e27 2636 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
2637 != EXIT_BLOCK_PTR_FOR_FN (cfun);)
65f34de5 2638 {
4c26117a 2639 basic_block c;
e27e52e0 2640 edge s;
2641 bool changed_here = false;
5cc577b6 2642
d2b48f0c 2643 /* Delete trivially dead basic blocks. This is either
2644 blocks with no predecessors, or empty blocks with no
c4d13c5c 2645 successors. However if the empty block with no
2646 successors is the successor of the ENTRY_BLOCK, it is
2647 kept. This ensures that the ENTRY_BLOCK will have a
2648 successor which is a precondition for many RTL
2649 passes. Empty blocks may result from expanding
d2b48f0c 2650 __builtin_unreachable (). */
2651 if (EDGE_COUNT (b->preds) == 0
c4d13c5c 2652 || (EDGE_COUNT (b->succs) == 0
17d1c688 2653 && trivially_empty_bb_p (b)
34154e27 2654 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
2655 != b))
e27e52e0 2656 {
345ac34a 2657 c = b->prev_bb;
625a1adc 2658 if (EDGE_COUNT (b->preds) > 0)
dcb172b4 2659 {
2660 edge e;
2661 edge_iterator ei;
2662
625a1adc 2663 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2664 {
43e94e51 2665 if (BB_FOOTER (b)
2666 && BARRIER_P (BB_FOOTER (b)))
625a1adc 2667 FOR_EACH_EDGE (e, ei, b->preds)
2668 if ((e->flags & EDGE_FALLTHRU)
43e94e51 2669 && BB_FOOTER (e->src) == NULL)
625a1adc 2670 {
43e94e51 2671 if (BB_FOOTER (b))
625a1adc 2672 {
43e94e51 2673 BB_FOOTER (e->src) = BB_FOOTER (b);
2674 BB_FOOTER (b) = NULL;
625a1adc 2675 }
2676 else
2677 {
2678 start_sequence ();
43e94e51 2679 BB_FOOTER (e->src) = emit_barrier ();
625a1adc 2680 end_sequence ();
2681 }
2682 }
2683 }
2684 else
2685 {
2686 rtx last = get_last_bb_insn (b);
2687 if (last && BARRIER_P (last))
2688 FOR_EACH_EDGE (e, ei, b->preds)
2689 if ((e->flags & EDGE_FALLTHRU))
2690 emit_barrier_after (BB_END (e->src));
2691 }
dcb172b4 2692 }
5f5d4cd1 2693 delete_basic_block (b);
2decfaa7 2694 changed = true;
efee62d1 2695 /* Avoid trying to remove the exit block. */
34154e27 2696 b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
2a3e49aa 2697 continue;
e27e52e0 2698 }
65f34de5 2699
fbac255a 2700 /* Remove code labels no longer used. */
ea091dfd 2701 if (single_pred_p (b)
2702 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2703 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
6d7dc5b9 2704 && LABEL_P (BB_HEAD (b))
e27e52e0 2705 /* If the previous block ends with a branch to this
2706 block, we can't delete the label. Normally this
2707 is a condjump that is yet to be simplified, but
2708 if CASE_DROPS_THRU, this can be a tablejump with
2709 some element going to the same place as the
2710 default (fallthru). */
34154e27 2711 && (single_pred (b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
ea091dfd 2712 || !JUMP_P (BB_END (single_pred (b)))
5496dbfc 2713 || ! label_is_jump_target_p (BB_HEAD (b),
ea091dfd 2714 BB_END (single_pred (b)))))
e27e52e0 2715 {
a2b85e40 2716 delete_insn (BB_HEAD (b));
450d042a 2717 if (dump_file)
2718 fprintf (dump_file, "Deleted label in block %i.\n",
b3d6de89 2719 b->index);
e27e52e0 2720 }
65f34de5 2721
e27e52e0 2722 /* If we fall through an empty block, we can remove it. */
8ddad41d 2723 if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
ea091dfd 2724 && single_pred_p (b)
2725 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
6d7dc5b9 2726 && !LABEL_P (BB_HEAD (b))
e27e52e0 2727 && FORWARDER_BLOCK_P (b)
2728 /* Note that forwarder_block_p true ensures that
2729 there is a successor for this block. */
ea091dfd 2730 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
a28770e1 2731 && n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
e27e52e0 2732 {
450d042a 2733 if (dump_file)
2734 fprintf (dump_file,
e27e52e0 2735 "Deleting fallthru block %i.\n",
b3d6de89 2736 b->index);
e27e52e0 2737
34154e27 2738 c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2739 ? b->next_bb : b->prev_bb);
ea091dfd 2740 redirect_edge_succ_nodup (single_pred_edge (b),
2741 single_succ (b));
5f5d4cd1 2742 delete_basic_block (b);
e27e52e0 2743 changed = true;
2744 b = c;
c4d13c5c 2745 continue;
e27e52e0 2746 }
5cc577b6 2747
18b762f0 2748 /* Merge B with its single successor, if any. */
ea091dfd 2749 if (single_succ_p (b)
2750 && (s = single_succ_edge (b))
9d574a94 2751 && !(s->flags & EDGE_COMPLEX)
34154e27 2752 && (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
ea091dfd 2753 && single_pred_p (c)
c60fa3a7 2754 && b != c)
2755 {
2756 /* When not in cfg_layout mode use code aware of reordering
2757 INSN. This code possibly creates new basic blocks so it
2758 does not fit merge_blocks interface and is kept here in
2759 hope that it will become useless once more of compiler
2760 is transformed to use cfg_layout mode. */
a0c938f0 2761
c60fa3a7 2762 if ((mode & CLEANUP_CFGLAYOUT)
2763 && can_merge_blocks_p (b, c))
2764 {
2765 merge_blocks (b, c);
2766 update_forwarder_flag (b);
2767 changed_here = true;
2768 }
2769 else if (!(mode & CLEANUP_CFGLAYOUT)
2770 /* If the jump insn has side effects,
2771 we can't kill the edge. */
6d7dc5b9 2772 && (!JUMP_P (BB_END (b))
18f811c9 2773 || (reload_completed
5496dbfc 2774 ? simplejump_p (BB_END (b))
902c164d 2775 : (onlyjump_p (BB_END (b))
2776 && !tablejump_p (BB_END (b),
2777 NULL, NULL))))
c60fa3a7 2778 && (next = merge_blocks_move (s, b, c, mode)))
2779 {
2780 b = next;
2781 changed_here = true;
2782 }
9d574a94 2783 }
e27e52e0 2784
2785 /* Simplify branch over branch. */
c60fa3a7 2786 if ((mode & CLEANUP_EXPENSIVE)
2787 && !(mode & CLEANUP_CFGLAYOUT)
2788 && try_simplify_condjump (b))
308f9b79 2789 changed_here = true;
65f34de5 2790
e27e52e0 2791 /* If B has a single outgoing edge, but uses a
2792 non-trivial jump instruction without side-effects, we
2793 can either delete the jump entirely, or replace it
e5562ab8 2794 with a simple unconditional jump. */
ea091dfd 2795 if (single_succ_p (b)
34154e27 2796 && single_succ (b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
5496dbfc 2797 && onlyjump_p (BB_END (b))
4f18499c 2798 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
ea091dfd 2799 && try_redirect_by_replacing_jump (single_succ_edge (b),
2800 single_succ (b),
fa015b9a 2801 (mode & CLEANUP_CFGLAYOUT) != 0))
e27e52e0 2802 {
e27e52e0 2803 update_forwarder_flag (b);
2804 changed_here = true;
2805 }
65f34de5 2806
e27e52e0 2807 /* Simplify branch to branch. */
2808 if (try_forward_edges (mode, b))
50f4aeca 2809 {
2810 update_forwarder_flag (b);
2811 changed_here = true;
2812 }
65f34de5 2813
e27e52e0 2814 /* Look for shared code between blocks. */
2815 if ((mode & CLEANUP_CROSSJUMP)
2816 && try_crossjump_bb (mode, b))
2817 changed_here = true;
65f34de5 2818
bc6adae4 2819 if ((mode & CLEANUP_CROSSJUMP)
2820 /* This can lengthen register lifetimes. Do it only after
2821 reload. */
2822 && reload_completed
2823 && try_head_merge_bb (b))
2824 changed_here = true;
2825
e27e52e0 2826 /* Don't get confused by the index shift caused by
2827 deleting blocks. */
2828 if (!changed_here)
4c26117a 2829 b = b->next_bb;
e27e52e0 2830 else
2831 changed = true;
2832 }
65f34de5 2833
e27e52e0 2834 if ((mode & CLEANUP_CROSSJUMP)
34154e27 2835 && try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
65f34de5 2836 changed = true;
65f34de5 2837
bc6adae4 2838 if (block_was_dirty)
2839 {
2840 /* This should only be set by head-merging. */
2841 gcc_assert (mode & CLEANUP_CROSSJUMP);
2842 df_analyze ();
2843 }
2844
e27e52e0 2845 if (changed)
80adc5a6 2846 {
2847 /* Edge forwarding in particular can cause hot blocks previously
2848 reached by both hot and cold blocks to become dominated only
2849 by cold blocks. This will cause the verification below to fail,
2850 and lead to now cold code in the hot section. This is not easy
2851 to detect and fix during edge forwarding, and in some cases
2852 is only visible after newly unreachable blocks are deleted,
2853 which will be done in fixup_partitions. */
2854 fixup_partitions ();
2855
2856#ifdef ENABLE_CHECKING
2857 verify_flow_info ();
65f34de5 2858#endif
80adc5a6 2859 }
65f34de5 2860
e27e52e0 2861 changed_overall |= changed;
10d3796f 2862 first_pass = false;
e27e52e0 2863 }
2864 while (changed);
65f34de5 2865 }
b36d64df 2866
ed7d889a 2867 FOR_ALL_BB_FN (b, cfun)
4fe5a223 2868 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
33dbe4d1 2869
65f34de5 2870 return changed_overall;
2871}
2872\f
1e625a2e 2873/* Delete all unreachable basic blocks. */
e76f35e8 2874
cd0fe062 2875bool
4c9e08a4 2876delete_unreachable_blocks (void)
65f34de5 2877{
65f34de5 2878 bool changed = false;
9845d120 2879 basic_block b, prev_bb;
65f34de5 2880
2881 find_unreachable_blocks ();
2882
9845d120 2883 /* When we're in GIMPLE mode and there may be debug insns, we should
2884 delete blocks in reverse dominator order, so as to get a chance
2885 to substitute all released DEFs into debug stmts. If we don't
2886 have dominators information, walking blocks backward gets us a
2887 better chance of retaining most debug information than
2888 otherwise. */
4a020a8c 2889 if (MAY_HAVE_DEBUG_INSNS && current_ir_type () == IR_GIMPLE
9845d120 2890 && dom_info_available_p (CDI_DOMINATORS))
65f34de5 2891 {
34154e27 2892 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2893 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
9845d120 2894 {
2895 prev_bb = b->prev_bb;
2896
2897 if (!(b->flags & BB_REACHABLE))
2898 {
2899 /* Speed up the removal of blocks that don't dominate
2900 others. Walking backwards, this should be the common
2901 case. */
2902 if (!first_dom_son (CDI_DOMINATORS, b))
2903 delete_basic_block (b);
2904 else
2905 {
f1f41a6c 2906 vec<basic_block> h
9845d120 2907 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2908
f1f41a6c 2909 while (h.length ())
9845d120 2910 {
f1f41a6c 2911 b = h.pop ();
9845d120 2912
2913 prev_bb = b->prev_bb;
b3d6de89 2914
9845d120 2915 gcc_assert (!(b->flags & BB_REACHABLE));
2916
2917 delete_basic_block (b);
2918 }
2919
f1f41a6c 2920 h.release ();
9845d120 2921 }
2922
2923 changed = true;
2924 }
2925 }
2926 }
2927 else
2928 {
34154e27 2929 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2930 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
8f8dcce4 2931 {
9845d120 2932 prev_bb = b->prev_bb;
2933
2934 if (!(b->flags & BB_REACHABLE))
2935 {
2936 delete_basic_block (b);
2937 changed = true;
2938 }
8f8dcce4 2939 }
65f34de5 2940 }
2941
2942 if (changed)
2943 tidy_fallthru_edges ();
2944 return changed;
2945}
3072d30e 2946
2947/* Delete any jump tables never referenced. We can't delete them at the
c38b28e7 2948 time of removing tablejump insn as they are referenced by the preceding
2949 insns computing the destination, so we delay deleting and garbagecollect
2950 them once life information is computed. */
3072d30e 2951void
2952delete_dead_jumptables (void)
2953{
2954 basic_block bb;
2955
c38b28e7 2956 /* A dead jump table does not belong to any basic block. Scan insns
2957 between two adjacent basic blocks. */
fc00614f 2958 FOR_EACH_BB_FN (bb, cfun)
3072d30e 2959 {
c38b28e7 2960 rtx insn, next;
2961
2962 for (insn = NEXT_INSN (BB_END (bb));
2963 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2964 insn = next)
0b3f0f44 2965 {
c38b28e7 2966 next = NEXT_INSN (insn);
2967 if (LABEL_P (insn)
2968 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2969 && JUMP_TABLE_DATA_P (next))
2970 {
2971 rtx label = insn, jump = next;
2972
2973 if (dump_file)
2974 fprintf (dump_file, "Dead jumptable %i removed\n",
2975 INSN_UID (insn));
2976
2977 next = NEXT_INSN (next);
2978 delete_insn (jump);
2979 delete_insn (label);
2980 }
3072d30e 2981 }
2982 }
2983}
2984
65f34de5 2985\f
2986/* Tidy the CFG by deleting unreachable code and whatnot. */
2987
2988bool
4c9e08a4 2989cleanup_cfg (int mode)
65f34de5 2990{
65f34de5 2991 bool changed = false;
2992
30641a08 2993 /* Set the cfglayout mode flag here. We could update all the callers
2994 but that is just inconvenient, especially given that we eventually
2995 want to have cfglayout mode as the default. */
2996 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2997 mode |= CLEANUP_CFGLAYOUT;
2998
65f34de5 2999 timevar_push (TV_CLEANUP_CFG);
fb20d6fa 3000 if (delete_unreachable_blocks ())
3001 {
3002 changed = true;
3003 /* We've possibly created trivially dead code. Cleanup it right
d716ce75 3004 now to introduce more opportunities for try_optimize_cfg. */
3072d30e 3005 if (!(mode & (CLEANUP_NO_INSN_DEL))
fb20d6fa 3006 && !reload_completed)
d4473c84 3007 delete_trivially_dead_insns (get_insns (), max_reg_num ());
fb20d6fa 3008 }
3c0a32c9 3009
3010 compact_blocks ();
3011
1ae2ffa7 3012 /* To tail-merge blocks ending in the same noreturn function (e.g.
3013 a call to abort) we have to insert fake edges to exit. Do this
3014 here once. The fake edges do not interfere with any other CFG
3015 cleanups. */
3016 if (mode & CLEANUP_CROSSJUMP)
3017 add_noreturn_fake_exit_edges ();
3018
4ff06051 3019 if (!dbg_cnt (cfg_cleanup))
3020 return changed;
3021
fb20d6fa 3022 while (try_optimize_cfg (mode))
3023 {
3024 delete_unreachable_blocks (), changed = true;
1ae2ffa7 3025 if (!(mode & CLEANUP_NO_INSN_DEL))
fb20d6fa 3026 {
1ae2ffa7 3027 /* Try to remove some trivially dead insns when doing an expensive
3028 cleanup. But delete_trivially_dead_insns doesn't work after
3029 reload (it only handles pseudos) and run_fast_dce is too costly
3030 to run in every iteration.
3031
3032 For effective cross jumping, we really want to run a fast DCE to
3033 clean up any dead conditions, or they get in the way of performing
3034 useful tail merges.
3035
3036 Other transformations in cleanup_cfg are not so sensitive to dead
3037 code, so delete_trivially_dead_insns or even doing nothing at all
3038 is good enough. */
3039 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
3040 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
fb20d6fa 3041 break;
bc6adae4 3042 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
bc27bb3b 3043 run_fast_dce ();
fb20d6fa 3044 }
3045 else
3046 break;
fb20d6fa 3047 }
65f34de5 3048
1ae2ffa7 3049 if (mode & CLEANUP_CROSSJUMP)
3050 remove_fake_exit_edges ();
3051
c38b28e7 3052 /* Don't call delete_dead_jumptables in cfglayout mode, because
3053 that function assumes that jump tables are in the insns stream.
3054 But we also don't _have_ to delete dead jumptables in cfglayout
3055 mode because we shouldn't even be looking at things that are
3056 not in a basic block. Dead jumptables are cleaned up when
3057 going out of cfglayout mode. */
3058 if (!(mode & CLEANUP_CFGLAYOUT))
3072d30e 3059 delete_dead_jumptables ();
3060
79f958cb 3061 /* ??? We probably do this way too often. */
3062 if (current_loops
3063 && (changed
3064 || (mode & CLEANUP_CFG_CHANGED)))
3065 {
79f958cb 3066 timevar_push (TV_REPAIR_LOOPS);
3067 /* The above doesn't preserve dominance info if available. */
3068 gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
3069 calculate_dominance_info (CDI_DOMINATORS);
022d4ccc 3070 fix_loop_structure (NULL);
79f958cb 3071 free_dominance_info (CDI_DOMINATORS);
3072 timevar_pop (TV_REPAIR_LOOPS);
3073 }
3074
65f34de5 3075 timevar_pop (TV_CLEANUP_CFG);
3076
65f34de5 3077 return changed;
3078}
77fce4cd 3079\f
2a1990e9 3080static unsigned int
76cdbc6d 3081execute_jump (void)
77fce4cd 3082{
77fce4cd 3083 delete_trivially_dead_insns (get_insns (), max_reg_num ());
77fce4cd 3084 if (dump_file)
562d71e8 3085 dump_flow_info (dump_file, dump_flags);
da0f98a7 3086 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
a0c938f0 3087 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2a1990e9 3088 return 0;
77fce4cd 3089}
3090
cbe8bda8 3091namespace {
3092
3093const pass_data pass_data_jump =
76cdbc6d 3094{
cbe8bda8 3095 RTL_PASS, /* type */
3096 "jump", /* name */
3097 OPTGROUP_NONE, /* optinfo_flags */
3098 false, /* has_gate */
3099 true, /* has_execute */
3100 TV_JUMP, /* tv_id */
3101 0, /* properties_required */
3102 0, /* properties_provided */
3103 0, /* properties_destroyed */
3104 0, /* todo_flags_start */
3105 TODO_verify_rtl_sharing, /* todo_flags_finish */
76cdbc6d 3106};
cbe8bda8 3107
3108class pass_jump : public rtl_opt_pass
3109{
3110public:
9af5ce0c 3111 pass_jump (gcc::context *ctxt)
3112 : rtl_opt_pass (pass_data_jump, ctxt)
cbe8bda8 3113 {}
3114
3115 /* opt_pass methods: */
3116 unsigned int execute () { return execute_jump (); }
3117
3118}; // class pass_jump
3119
3120} // anon namespace
3121
3122rtl_opt_pass *
3123make_pass_jump (gcc::context *ctxt)
3124{
3125 return new pass_jump (ctxt);
3126}
76cdbc6d 3127\f
3128static unsigned int
3129execute_jump2 (void)
3130{
3131 cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
3132 return 0;
3133}
77fce4cd 3134
cbe8bda8 3135namespace {
3136
3137const pass_data pass_data_jump2 =
77fce4cd 3138{
cbe8bda8 3139 RTL_PASS, /* type */
3140 "jump2", /* name */
3141 OPTGROUP_NONE, /* optinfo_flags */
3142 false, /* has_gate */
3143 true, /* has_execute */
3144 TV_JUMP, /* tv_id */
3145 0, /* properties_required */
3146 0, /* properties_provided */
3147 0, /* properties_destroyed */
3148 0, /* todo_flags_start */
3149 TODO_verify_rtl_sharing, /* todo_flags_finish */
77fce4cd 3150};
cbe8bda8 3151
3152class pass_jump2 : public rtl_opt_pass
3153{
3154public:
9af5ce0c 3155 pass_jump2 (gcc::context *ctxt)
3156 : rtl_opt_pass (pass_data_jump2, ctxt)
cbe8bda8 3157 {}
3158
3159 /* opt_pass methods: */
3160 unsigned int execute () { return execute_jump2 (); }
3161
3162}; // class pass_jump2
3163
3164} // anon namespace
3165
3166rtl_opt_pass *
3167make_pass_jump2 (gcc::context *ctxt)
3168{
3169 return new pass_jump2 (ctxt);
3170}