]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/combine.c
builtins.def: Fix comment formatting.
[thirdparty/gcc.git] / gcc / combine.c
CommitLineData
230d793d 1/* Optimize by combining instructions for GNU compiler.
3c71940f 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
505ddab6 3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
230d793d 4
1322177d 5This file is part of GCC.
230d793d 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
230d793d 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
230d793d
RS
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
230d793d 21
230d793d
RS
22/* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
663522cb 61 removed because there is no way to know which register it was
230d793d
RS
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
230d793d 77#include "config.h"
670ee920 78#include "system.h"
c5c76735 79#include "rtl.h"
a091679a 80#include "tm_p.h"
230d793d
RS
81#include "flags.h"
82#include "regs.h"
55310dad 83#include "hard-reg-set.h"
230d793d
RS
84#include "basic-block.h"
85#include "insn-config.h"
49ad7cfa 86#include "function.h"
ec5c56db 87/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
d6f4ec51 88#include "expr.h"
230d793d
RS
89#include "insn-attr.h"
90#include "recog.h"
91#include "real.h"
2e107e9e 92#include "toplev.h"
f73ad30e 93
230d793d
RS
94/* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96#define gen_lowpart dont_use_gen_lowpart_you_dummy
97
98/* Number of attempts to combine instructions in this function. */
99
100static int combine_attempts;
101
102/* Number of attempts that got as far as substitution in this function. */
103
104static int combine_merges;
105
106/* Number of instructions combined with added SETs in this function. */
107
108static int combine_extras;
109
110/* Number of instructions combined in this function. */
111
112static int combine_successes;
113
114/* Totals over entire compilation. */
115
116static int total_attempts, total_merges, total_extras, total_successes;
9210df58 117
230d793d
RS
118\f
119/* Vector mapping INSN_UIDs to cuids.
5089e22e 120 The cuids are like uids but increase monotonically always.
230d793d
RS
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
125
126static int *uid_cuid;
4255220d 127static int max_uid_cuid;
230d793d
RS
128
129/* Get the cuid of an insn. */
130
1427d6d2
RK
131#define INSN_CUID(INSN) \
132(INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
230d793d 133
42a6ff51
AO
134/* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136
137#define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
505ddab6 138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
42a6ff51 139
230d793d
RS
140/* Maximum register number, which is the size of the tables below. */
141
770ae6cc 142static unsigned int combine_max_regno;
230d793d
RS
143
144/* Record last point of death of (hard or pseudo) register n. */
145
146static rtx *reg_last_death;
147
148/* Record last point of modification of (hard or pseudo) register n. */
149
150static rtx *reg_last_set;
151
152/* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
154
155static int mem_last_set;
156
157/* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
159
160static int last_call_cuid;
161
162/* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
167
168static rtx subst_insn;
169
0d9641d1
JW
170/* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
172
173static rtx subst_prev_insn;
174
230d793d
RS
175/* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
181
182static int subst_low_cuid;
183
6e25d159
RK
184/* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
186
187static HARD_REG_SET newpat_used_regs;
188
abe6e52f
RK
189/* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
192
193static rtx added_links_insn;
194
f6366fc7
ZD
195/* Basic block in which we are performing combines. */
196static basic_block this_basic_block;
715e7fbc 197
663522cb
KH
198/* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
715e7fbc
RH
200 those blocks as starting points. */
201static sbitmap refresh_blocks;
202static int need_refresh;
230d793d
RS
203\f
204/* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
5089e22e 206 operation being processed is redundant given a prior operation performed
230d793d
RS
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
209
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
212
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
216
217 Therefore, we maintain the following arrays:
218
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
da7d8304 224 reg_last_set_invalid set to nonzero when it is not valid
230d793d
RS
225 to use the value of this register in some
226 register's value
227
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
232
da7d8304 233 Entry I in reg_last_set_value is valid if it is nonzero, and either
230d793d
RS
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
235
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
240
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
244
da7d8304 245 reg_last_set_invalid[i] is set nonzero when register I is being assigned
230d793d
RS
246 to and reg_last_set_table_tick[i] == label_tick. */
247
0f41302f 248/* Record last value assigned to (hard or pseudo) register n. */
230d793d
RS
249
250static rtx *reg_last_set_value;
251
252/* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
254
568356af 255static int *reg_last_set_label;
230d793d
RS
256
257/* Record the value of label_tick when an expression involving register n
0f41302f 258 is placed in reg_last_set_value. */
230d793d 259
568356af 260static int *reg_last_set_table_tick;
230d793d 261
da7d8304 262/* Set nonzero if references to register n in expressions should not be
230d793d
RS
263 used. */
264
265static char *reg_last_set_invalid;
266
0f41302f 267/* Incremented for each label. */
230d793d 268
568356af 269static int label_tick;
230d793d
RS
270
271/* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
275
951553af 276 We record in the following array what we know about the nonzero
230d793d
RS
277 bits of a register, specifically which bits are known to be zero.
278
279 If an entry is zero, it means that we don't know anything special. */
280
55310dad 281static unsigned HOST_WIDE_INT *reg_nonzero_bits;
230d793d 282
951553af 283/* Mode used to compute significance in reg_nonzero_bits. It is the largest
5f4f0e22 284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
230d793d 285
951553af 286static enum machine_mode nonzero_bits_mode;
230d793d 287
d0ab8cd3
RK
288/* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
290
770ae6cc 291static unsigned char *reg_sign_bit_copies;
d0ab8cd3 292
951553af 293/* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
1a26b032
RK
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
230d793d 297
951553af 298static int nonzero_sign_valid;
55310dad
RK
299
300/* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
304
305static enum machine_mode *reg_last_set_mode;
306static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307static char *reg_last_set_sign_bit_copies;
230d793d
RS
308\f
309/* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
312
313struct undo
314{
241cea85 315 struct undo *next;
230d793d 316 int is_int;
3129af4c
RS
317 union {rtx r; int i;} old_contents;
318 union {rtx *r; int *i;} where;
230d793d
RS
319};
320
321/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
323
230d793d 324 other_insn is nonzero if we have modified some other insn in the process
f1c6ba8b 325 of working on subst_insn. It must be verified too. */
230d793d
RS
326
327struct undobuf
328{
241cea85
RK
329 struct undo *undos;
330 struct undo *frees;
230d793d
RS
331 rtx other_insn;
332};
333
334static struct undobuf undobuf;
335
230d793d
RS
336/* Number of times the pseudo being substituted for
337 was found and replaced. */
338
339static int n_occurrences;
340
83d2b3b9 341static void do_SUBST PARAMS ((rtx *, rtx));
3129af4c 342static void do_SUBST_INT PARAMS ((int *, int));
83d2b3b9
KG
343static void init_reg_last_arrays PARAMS ((void));
344static void setup_incoming_promotions PARAMS ((void));
345static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
c3410241 346static int cant_combine_insn_p PARAMS ((rtx));
83d2b3b9
KG
347static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
348static int sets_function_arg_p PARAMS ((rtx));
349static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
350static int contains_muldiv PARAMS ((rtx));
44a76fc8 351static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
83d2b3b9
KG
352static void undo_all PARAMS ((void));
353static void undo_commit PARAMS ((void));
354static rtx *find_split_point PARAMS ((rtx *, rtx));
355static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
356static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
357static rtx simplify_if_then_else PARAMS ((rtx));
358static rtx simplify_set PARAMS ((rtx));
359static rtx simplify_logical PARAMS ((rtx, int));
360static rtx expand_compound_operation PARAMS ((rtx));
361static rtx expand_field_assignment PARAMS ((rtx));
770ae6cc
RK
362static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
363 rtx, unsigned HOST_WIDE_INT, int,
364 int, int));
83d2b3b9
KG
365static rtx extract_left_shift PARAMS ((rtx, int));
366static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
770ae6cc
RK
367static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
368 unsigned HOST_WIDE_INT *));
83d2b3b9
KG
369static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
370 unsigned HOST_WIDE_INT, rtx, int));
371static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
372static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
373static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
374static rtx make_field_assignment PARAMS ((rtx));
375static rtx apply_distributive_law PARAMS ((rtx));
376static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
377 unsigned HOST_WIDE_INT));
378static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
770ae6cc 379static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
83d2b3b9
KG
380static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
381 enum rtx_code, HOST_WIDE_INT,
382 enum machine_mode, int *));
383static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
384 rtx, int));
385static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
386static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
83d2b3b9
KG
387static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
388 rtx, rtx));
83d2b3b9 389static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
83d2b3b9
KG
390static void update_table_tick PARAMS ((rtx));
391static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
392static void check_promoted_subreg PARAMS ((rtx, rtx));
393static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
394static void record_dead_and_set_regs PARAMS ((rtx));
395static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
396static rtx get_last_value PARAMS ((rtx));
397static int use_crosses_set_p PARAMS ((rtx, int));
398static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
399static int reg_dead_at_p PARAMS ((rtx, rtx));
400static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
401static int reg_bitfield_target_p PARAMS ((rtx, rtx));
402static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
403static void distribute_links PARAMS ((rtx));
404static void mark_used_regs_combine PARAMS ((rtx));
405static int insn_cuid PARAMS ((rtx));
c6991660 406static void record_promoted_value PARAMS ((rtx, rtx));
9a915772
JH
407static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
408static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
230d793d 409\f
76095e2f
RH
410/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
411 insn. The substitution can be undone by undo_all. If INTO is already
412 set to NEWVAL, do not record this change. Because computing NEWVAL might
413 also call SUBST, we have to compute it before we put anything into
414 the undo table. */
415
416static void
663522cb 417do_SUBST (into, newval)
76095e2f
RH
418 rtx *into, newval;
419{
420 struct undo *buf;
421 rtx oldval = *into;
422
423 if (oldval == newval)
424 return;
425
4161da12
AO
426 /* We'd like to catch as many invalid transformations here as
427 possible. Unfortunately, there are way too many mode changes
428 that are perfectly valid, so we'd waste too much effort for
429 little gain doing the checks here. Focus on catching invalid
430 transformations involving integer constants. */
431 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
432 && GET_CODE (newval) == CONST_INT)
433 {
434 /* Sanity check that we're replacing oldval with a CONST_INT
435 that is a valid sign-extension for the original mode. */
436 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
437 GET_MODE (oldval)))
438 abort ();
439
440 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
441 CONST_INT is not valid, because after the replacement, the
442 original mode would be gone. Unfortunately, we can't tell
443 when do_SUBST is called to replace the operand thereof, so we
444 perform this test on oldval instead, checking whether an
445 invalid replacement took place before we got here. */
446 if ((GET_CODE (oldval) == SUBREG
447 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
448 || (GET_CODE (oldval) == ZERO_EXTEND
449 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
450 abort ();
451 }
452
76095e2f
RH
453 if (undobuf.frees)
454 buf = undobuf.frees, undobuf.frees = buf->next;
455 else
456 buf = (struct undo *) xmalloc (sizeof (struct undo));
457
458 buf->is_int = 0;
459 buf->where.r = into;
460 buf->old_contents.r = oldval;
461 *into = newval;
462
463 buf->next = undobuf.undos, undobuf.undos = buf;
464}
465
466#define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
467
468/* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
469 for the value of a HOST_WIDE_INT value (including CONST_INT) is
470 not safe. */
471
472static void
663522cb 473do_SUBST_INT (into, newval)
3129af4c 474 int *into, newval;
76095e2f
RH
475{
476 struct undo *buf;
3129af4c 477 int oldval = *into;
76095e2f
RH
478
479 if (oldval == newval)
480 return;
481
482 if (undobuf.frees)
483 buf = undobuf.frees, undobuf.frees = buf->next;
484 else
485 buf = (struct undo *) xmalloc (sizeof (struct undo));
486
487 buf->is_int = 1;
488 buf->where.i = into;
489 buf->old_contents.i = oldval;
490 *into = newval;
491
492 buf->next = undobuf.undos, undobuf.undos = buf;
493}
494
495#define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
496\f
230d793d 497/* Main entry point for combiner. F is the first insn of the function.
663522cb 498 NREGS is the first unused pseudo-reg number.
230d793d 499
da7d8304 500 Return nonzero if the combiner has turned an indirect jump
44a76fc8
AG
501 instruction into a direct jump. */
502int
230d793d
RS
503combine_instructions (f, nregs)
504 rtx f;
770ae6cc 505 unsigned int nregs;
230d793d 506{
b3694847 507 rtx insn, next;
b729186a 508#ifdef HAVE_cc0
b3694847 509 rtx prev;
b729186a 510#endif
b3694847
SS
511 int i;
512 rtx links, nextlinks;
230d793d 513
44a76fc8
AG
514 int new_direct_jump_p = 0;
515
230d793d
RS
516 combine_attempts = 0;
517 combine_merges = 0;
518 combine_extras = 0;
519 combine_successes = 0;
520
521 combine_max_regno = nregs;
522
663522cb 523 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
c05ddfa7 524 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
770ae6cc
RK
525 reg_sign_bit_copies
526 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
c05ddfa7
MM
527
528 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
529 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
532 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
55310dad 534 reg_last_set_mode
c05ddfa7 535 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
55310dad 536 reg_last_set_nonzero_bits
c05ddfa7 537 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
55310dad 538 reg_last_set_sign_bit_copies
c05ddfa7 539 = (char *) xmalloc (nregs * sizeof (char));
55310dad 540
ef026f91 541 init_reg_last_arrays ();
230d793d
RS
542
543 init_recog_no_volatile ();
544
545 /* Compute maximum uid value so uid_cuid can be allocated. */
546
547 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
548 if (INSN_UID (insn) > i)
549 i = INSN_UID (insn);
550
c05ddfa7 551 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
4255220d 552 max_uid_cuid = i;
230d793d 553
951553af 554 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
230d793d 555
951553af 556 /* Don't use reg_nonzero_bits when computing it. This can cause problems
230d793d
RS
557 when, for example, we have j <<= 1 in a loop. */
558
951553af 559 nonzero_sign_valid = 0;
230d793d
RS
560
561 /* Compute the mapping from uids to cuids.
562 Cuids are numbers assigned to insns, like uids,
663522cb 563 except that cuids increase monotonically through the code.
230d793d
RS
564
565 Scan all SETs and see if we can deduce anything about what
951553af 566 bits are known to be zero for some registers and how many copies
d79f08e0
RK
567 of the sign bit are known to exist for those registers.
568
569 Also set any known values so that we can use it while searching
570 for what bits are known to be set. */
571
572 label_tick = 1;
230d793d 573
bcd49eb7
JW
574 /* We need to initialize it here, because record_dead_and_set_regs may call
575 get_last_value. */
576 subst_prev_insn = NULL_RTX;
577
7988fd36
RK
578 setup_incoming_promotions ();
579
d55bc081 580 refresh_blocks = sbitmap_alloc (last_basic_block);
715e7fbc
RH
581 sbitmap_zero (refresh_blocks);
582 need_refresh = 0;
583
230d793d
RS
584 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
585 {
4255220d 586 uid_cuid[INSN_UID (insn)] = ++i;
d79f08e0
RK
587 subst_low_cuid = i;
588 subst_insn = insn;
589
2c3c49de 590 if (INSN_P (insn))
d79f08e0 591 {
663522cb 592 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
84832317 593 NULL);
d79f08e0 594 record_dead_and_set_regs (insn);
2dab894a
RK
595
596#ifdef AUTO_INC_DEC
597 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
598 if (REG_NOTE_KIND (links) == REG_INC)
84832317
MM
599 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
600 NULL);
2dab894a 601#endif
d79f08e0
RK
602 }
603
604 if (GET_CODE (insn) == CODE_LABEL)
605 label_tick++;
230d793d
RS
606 }
607
951553af 608 nonzero_sign_valid = 1;
230d793d
RS
609
610 /* Now scan all the insns in forward order. */
611
612 label_tick = 1;
613 last_call_cuid = 0;
614 mem_last_set = 0;
ef026f91 615 init_reg_last_arrays ();
7988fd36
RK
616 setup_incoming_promotions ();
617
e0082a72 618 FOR_EACH_BB (this_basic_block)
230d793d 619 {
e0082a72
ZD
620 for (insn = this_basic_block->head;
621 insn != NEXT_INSN (this_basic_block->end);
622 insn = next ? next : NEXT_INSN (insn))
230d793d 623 {
e0082a72 624 next = 0;
aabb6c74 625
e0082a72
ZD
626 if (GET_CODE (insn) == CODE_LABEL)
627 label_tick++;
aabb6c74 628
e0082a72 629 else if (INSN_P (insn))
0b17ab2f 630 {
e0082a72
ZD
631 /* See if we know about function return values before this
632 insn based upon SUBREG flags. */
633 check_promoted_subreg (insn, PATTERN (insn));
230d793d 634
e0082a72 635 /* Try this insn with each insn it links back to. */
230d793d 636
e0082a72
ZD
637 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
638 if ((next = try_combine (insn, XEXP (links, 0),
639 NULL_RTX, &new_direct_jump_p)) != 0)
230d793d 640 goto retry;
0b17ab2f 641
e0082a72
ZD
642 /* Try each sequence of three linked insns ending with this one. */
643
644 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
645 {
646 rtx link = XEXP (links, 0);
647
648 /* If the linked insn has been replaced by a note, then there
649 is no point in pursuing this chain any further. */
650 if (GET_CODE (link) == NOTE)
651 continue;
652
653 for (nextlinks = LOG_LINKS (link);
654 nextlinks;
655 nextlinks = XEXP (nextlinks, 1))
656 if ((next = try_combine (insn, link,
657 XEXP (nextlinks, 0),
658 &new_direct_jump_p)) != 0)
659 goto retry;
660 }
230d793d 661
9b89393b 662#ifdef HAVE_cc0
e0082a72
ZD
663 /* Try to combine a jump insn that uses CC0
664 with a preceding insn that sets CC0, and maybe with its
665 logical predecessor as well.
666 This is how we make decrement-and-branch insns.
667 We need this special code because data flow connections
668 via CC0 do not get entered in LOG_LINKS. */
669
670 if (GET_CODE (insn) == JUMP_INSN
671 && (prev = prev_nonnote_insn (insn)) != 0
672 && GET_CODE (prev) == INSN
673 && sets_cc0_p (PATTERN (prev)))
674 {
675 if ((next = try_combine (insn, prev,
676 NULL_RTX, &new_direct_jump_p)) != 0)
677 goto retry;
678
679 for (nextlinks = LOG_LINKS (prev); nextlinks;
680 nextlinks = XEXP (nextlinks, 1))
681 if ((next = try_combine (insn, prev,
682 XEXP (nextlinks, 0),
683 &new_direct_jump_p)) != 0)
684 goto retry;
685 }
230d793d 686
e0082a72
ZD
687 /* Do the same for an insn that explicitly references CC0. */
688 if (GET_CODE (insn) == INSN
689 && (prev = prev_nonnote_insn (insn)) != 0
690 && GET_CODE (prev) == INSN
691 && sets_cc0_p (PATTERN (prev))
692 && GET_CODE (PATTERN (insn)) == SET
693 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
694 {
695 if ((next = try_combine (insn, prev,
696 NULL_RTX, &new_direct_jump_p)) != 0)
697 goto retry;
698
699 for (nextlinks = LOG_LINKS (prev); nextlinks;
700 nextlinks = XEXP (nextlinks, 1))
701 if ((next = try_combine (insn, prev,
702 XEXP (nextlinks, 0),
703 &new_direct_jump_p)) != 0)
704 goto retry;
705 }
230d793d 706
e0082a72
ZD
707 /* Finally, see if any of the insns that this insn links to
708 explicitly references CC0. If so, try this insn, that insn,
709 and its predecessor if it sets CC0. */
710 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
711 if (GET_CODE (XEXP (links, 0)) == INSN
712 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
713 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
714 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
715 && GET_CODE (prev) == INSN
716 && sets_cc0_p (PATTERN (prev))
717 && (next = try_combine (insn, XEXP (links, 0),
718 prev, &new_direct_jump_p)) != 0)
719 goto retry;
9b89393b 720#endif
e0082a72
ZD
721
722 /* Try combining an insn with two different insns whose results it
723 uses. */
724 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
725 for (nextlinks = XEXP (links, 1); nextlinks;
726 nextlinks = XEXP (nextlinks, 1))
727 if ((next = try_combine (insn, XEXP (links, 0),
728 XEXP (nextlinks, 0),
729 &new_direct_jump_p)) != 0)
730 goto retry;
731
732 if (GET_CODE (insn) != NOTE)
733 record_dead_and_set_regs (insn);
734
735 retry:
736 ;
737 }
230d793d
RS
738 }
739 }
c51d95ec 740 clear_bb_flags ();
230d793d 741
f6366fc7
ZD
742 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
743 BASIC_BLOCK (i)->flags |= BB_DIRTY);
c51d95ec 744 new_direct_jump_p |= purge_all_dead_edges (0);
0005550b
JH
745 delete_noop_moves (f);
746
c51d95ec
JH
747 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
748 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
749 | PROP_KILL_DEAD_CODE);
c05ddfa7
MM
750
751 /* Clean up. */
715e7fbc 752 sbitmap_free (refresh_blocks);
c05ddfa7
MM
753 free (reg_nonzero_bits);
754 free (reg_sign_bit_copies);
755 free (reg_last_death);
756 free (reg_last_set);
757 free (reg_last_set_value);
758 free (reg_last_set_table_tick);
759 free (reg_last_set_label);
760 free (reg_last_set_invalid);
761 free (reg_last_set_mode);
762 free (reg_last_set_nonzero_bits);
763 free (reg_last_set_sign_bit_copies);
764 free (uid_cuid);
715e7fbc 765
e7749837
RH
766 {
767 struct undo *undo, *next;
768 for (undo = undobuf.frees; undo; undo = next)
769 {
770 next = undo->next;
771 free (undo);
772 }
773 undobuf.frees = 0;
774 }
775
230d793d
RS
776 total_attempts += combine_attempts;
777 total_merges += combine_merges;
778 total_extras += combine_extras;
779 total_successes += combine_successes;
1a26b032 780
951553af 781 nonzero_sign_valid = 0;
972b320c
R
782
783 /* Make recognizer allow volatile MEMs again. */
784 init_recog ();
44a76fc8
AG
785
786 return new_direct_jump_p;
230d793d 787}
ef026f91
RS
788
789/* Wipe the reg_last_xxx arrays in preparation for another pass. */
790
791static void
792init_reg_last_arrays ()
793{
770ae6cc 794 unsigned int nregs = combine_max_regno;
ef026f91 795
961192e1
JM
796 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
797 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
798 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
800 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
801 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
802 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
803 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
804 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
ef026f91 805}
230d793d 806\f
7988fd36
RK
807/* Set up any promoted values for incoming argument registers. */
808
ee791cc3 809static void
7988fd36
RK
810setup_incoming_promotions ()
811{
812#ifdef PROMOTE_FUNCTION_ARGS
770ae6cc 813 unsigned int regno;
7988fd36
RK
814 rtx reg;
815 enum machine_mode mode;
816 int unsignedp;
817 rtx first = get_insns ();
818
c285f57a
JJ
819#ifndef OUTGOING_REGNO
820#define OUTGOING_REGNO(N) N
821#endif
7988fd36 822 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
c285f57a
JJ
823 /* Check whether this register can hold an incoming pointer
824 argument. FUNCTION_ARG_REGNO_P tests outgoing register
825 numbers, so translate if necessary due to register windows. */
826 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
7988fd36 827 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
38a448ca
RH
828 {
829 record_value_for_reg
830 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
831 : SIGN_EXTEND),
832 GET_MODE (reg),
833 gen_rtx_CLOBBER (mode, const0_rtx)));
834 }
7988fd36
RK
835#endif
836}
837\f
91102d5a
RK
838/* Called via note_stores. If X is a pseudo that is narrower than
839 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
230d793d
RS
840
841 If we are setting only a portion of X and we can't figure out what
842 portion, assume all bits will be used since we don't know what will
d0ab8cd3
RK
843 be happening.
844
845 Similarly, set how many bits of X are known to be copies of the sign bit
663522cb 846 at all locations in the function. This is the smallest number implied
d0ab8cd3 847 by any set of X. */
230d793d
RS
848
849static void
84832317 850set_nonzero_bits_and_sign_copies (x, set, data)
230d793d
RS
851 rtx x;
852 rtx set;
84832317 853 void *data ATTRIBUTE_UNUSED;
230d793d 854{
770ae6cc 855 unsigned int num;
d0ab8cd3 856
230d793d
RS
857 if (GET_CODE (x) == REG
858 && REGNO (x) >= FIRST_PSEUDO_REGISTER
e8095e80
RK
859 /* If this register is undefined at the start of the file, we can't
860 say what its contents were. */
f6366fc7 861 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
5f4f0e22 862 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
230d793d 863 {
2dab894a 864 if (set == 0 || GET_CODE (set) == CLOBBER)
e8095e80
RK
865 {
866 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
88306d12 867 reg_sign_bit_copies[REGNO (x)] = 1;
e8095e80
RK
868 return;
869 }
230d793d
RS
870
871 /* If this is a complex assignment, see if we can convert it into a
5089e22e 872 simple assignment. */
230d793d 873 set = expand_field_assignment (set);
d79f08e0
RK
874
875 /* If this is a simple assignment, or we have a paradoxical SUBREG,
876 set what we know about X. */
877
878 if (SET_DEST (set) == x
879 || (GET_CODE (SET_DEST (set)) == SUBREG
705c7b3b
JW
880 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
881 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
d79f08e0 882 && SUBREG_REG (SET_DEST (set)) == x))
d0ab8cd3 883 {
9afa3d54
RK
884 rtx src = SET_SRC (set);
885
886#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
887 /* If X is narrower than a word and SRC is a non-negative
888 constant that would appear negative in the mode of X,
889 sign-extend it for use in reg_nonzero_bits because some
890 machines (maybe most) will actually do the sign-extension
663522cb 891 and this is the conservative approach.
9afa3d54
RK
892
893 ??? For 2.5, try to tighten up the MD files in this regard
894 instead of this kludge. */
895
896 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
897 && GET_CODE (src) == CONST_INT
898 && INTVAL (src) > 0
899 && 0 != (INTVAL (src)
900 & ((HOST_WIDE_INT) 1
9e69be8c 901 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9afa3d54
RK
902 src = GEN_INT (INTVAL (src)
903 | ((HOST_WIDE_INT) (-1)
904 << GET_MODE_BITSIZE (GET_MODE (x))));
905#endif
906
0a0440c9
JJ
907 /* Don't call nonzero_bits if it cannot change anything. */
908 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
909 reg_nonzero_bits[REGNO (x)]
910 |= nonzero_bits (src, nonzero_bits_mode);
d0ab8cd3
RK
911 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
912 if (reg_sign_bit_copies[REGNO (x)] == 0
913 || reg_sign_bit_copies[REGNO (x)] > num)
914 reg_sign_bit_copies[REGNO (x)] = num;
915 }
230d793d 916 else
d0ab8cd3 917 {
951553af 918 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
88306d12 919 reg_sign_bit_copies[REGNO (x)] = 1;
d0ab8cd3 920 }
230d793d
RS
921 }
922}
923\f
924/* See if INSN can be combined into I3. PRED and SUCC are optionally
925 insns that were previously combined into I3 or that will be combined
926 into the merger of INSN and I3.
927
928 Return 0 if the combination is not allowed for any reason.
929
663522cb 930 If the combination is allowed, *PDEST will be set to the single
230d793d
RS
931 destination of INSN and *PSRC to the single source, and this function
932 will return 1. */
933
934static int
935can_combine_p (insn, i3, pred, succ, pdest, psrc)
936 rtx insn;
937 rtx i3;
e51712db
KG
938 rtx pred ATTRIBUTE_UNUSED;
939 rtx succ;
230d793d
RS
940 rtx *pdest, *psrc;
941{
942 int i;
943 rtx set = 0, src, dest;
b729186a
JL
944 rtx p;
945#ifdef AUTO_INC_DEC
76d31c63 946 rtx link;
b729186a 947#endif
230d793d
RS
948 int all_adjacent = (succ ? (next_active_insn (insn) == succ
949 && next_active_insn (succ) == i3)
950 : next_active_insn (insn) == i3);
951
952 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
663522cb 953 or a PARALLEL consisting of such a SET and CLOBBERs.
230d793d
RS
954
955 If INSN has CLOBBER parallel parts, ignore them for our processing.
956 By definition, these happen during the execution of the insn. When it
957 is merged with another insn, all bets are off. If they are, in fact,
958 needed and aren't also supplied in I3, they may be added by
663522cb 959 recog_for_combine. Otherwise, it won't match.
230d793d
RS
960
961 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
962 note.
963
663522cb 964 Get the source and destination of INSN. If more than one, can't
230d793d 965 combine. */
663522cb 966
230d793d
RS
967 if (GET_CODE (PATTERN (insn)) == SET)
968 set = PATTERN (insn);
969 else if (GET_CODE (PATTERN (insn)) == PARALLEL
970 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
971 {
972 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
973 {
974 rtx elt = XVECEXP (PATTERN (insn), 0, i);
975
976 switch (GET_CODE (elt))
977 {
e3258cef
R
978 /* This is important to combine floating point insns
979 for the SH4 port. */
980 case USE:
981 /* Combining an isolated USE doesn't make sense.
d2604ae9 982 We depend here on combinable_i3pat to reject them. */
e3258cef
R
983 /* The code below this loop only verifies that the inputs of
984 the SET in INSN do not change. We call reg_set_between_p
eaec9b3d 985 to verify that the REG in the USE does not change between
e3258cef
R
986 I3 and INSN.
987 If the USE in INSN was for a pseudo register, the matching
988 insn pattern will likely match any register; combining this
989 with any other USE would only be safe if we knew that the
990 used registers have identical values, or if there was
991 something to tell them apart, e.g. different modes. For
eaec9b3d 992 now, we forgo such complicated tests and simply disallow
e3258cef
R
993 combining of USES of pseudo registers with any other USE. */
994 if (GET_CODE (XEXP (elt, 0)) == REG
995 && GET_CODE (PATTERN (i3)) == PARALLEL)
996 {
997 rtx i3pat = PATTERN (i3);
998 int i = XVECLEN (i3pat, 0) - 1;
770ae6cc
RK
999 unsigned int regno = REGNO (XEXP (elt, 0));
1000
e3258cef
R
1001 do
1002 {
1003 rtx i3elt = XVECEXP (i3pat, 0, i);
770ae6cc 1004
e3258cef
R
1005 if (GET_CODE (i3elt) == USE
1006 && GET_CODE (XEXP (i3elt, 0)) == REG
1007 && (REGNO (XEXP (i3elt, 0)) == regno
1008 ? reg_set_between_p (XEXP (elt, 0),
1009 PREV_INSN (insn), i3)
1010 : regno >= FIRST_PSEUDO_REGISTER))
1011 return 0;
1012 }
1013 while (--i >= 0);
1014 }
1015 break;
1016
230d793d
RS
1017 /* We can ignore CLOBBERs. */
1018 case CLOBBER:
1019 break;
1020
1021 case SET:
1022 /* Ignore SETs whose result isn't used but not those that
1023 have side-effects. */
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1025 && ! side_effects_p (elt))
1026 break;
1027
1028 /* If we have already found a SET, this is a second one and
1029 so we cannot combine with this insn. */
1030 if (set)
1031 return 0;
1032
1033 set = elt;
1034 break;
1035
1036 default:
1037 /* Anything else means we can't combine. */
1038 return 0;
1039 }
1040 }
1041
1042 if (set == 0
1043 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1044 so don't do anything with it. */
1045 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1046 return 0;
1047 }
1048 else
1049 return 0;
1050
1051 if (set == 0)
1052 return 0;
1053
1054 set = expand_field_assignment (set);
1055 src = SET_SRC (set), dest = SET_DEST (set);
1056
1057 /* Don't eliminate a store in the stack pointer. */
1058 if (dest == stack_pointer_rtx
230d793d
RS
1059 /* If we couldn't eliminate a field assignment, we can't combine. */
1060 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1061 /* Don't combine with an insn that sets a register to itself if it has
1062 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
5f4f0e22 1063 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
62f7f1f5
GK
1064 /* Can't merge an ASM_OPERANDS. */
1065 || GET_CODE (src) == ASM_OPERANDS
230d793d
RS
1066 /* Can't merge a function call. */
1067 || GET_CODE (src) == CALL
cd5e8f1f 1068 /* Don't eliminate a function call argument. */
4dca5ec5
RK
1069 || (GET_CODE (i3) == CALL_INSN
1070 && (find_reg_fusage (i3, USE, dest)
1071 || (GET_CODE (dest) == REG
1072 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1073 && global_regs[REGNO (dest)])))
230d793d
RS
1074 /* Don't substitute into an incremented register. */
1075 || FIND_REG_INC_NOTE (i3, dest)
1076 || (succ && FIND_REG_INC_NOTE (succ, dest))
ec35104c 1077#if 0
230d793d 1078 /* Don't combine the end of a libcall into anything. */
ec35104c
JL
1079 /* ??? This gives worse code, and appears to be unnecessary, since no
1080 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1081 use REG_RETVAL notes for noconflict blocks, but other code here
1082 makes sure that those insns don't disappear. */
5f4f0e22 1083 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
ec35104c 1084#endif
230d793d
RS
1085 /* Make sure that DEST is not used after SUCC but before I3. */
1086 || (succ && ! all_adjacent
1087 && reg_used_between_p (dest, succ, i3))
1088 /* Make sure that the value that is to be substituted for the register
1089 does not use any registers whose values alter in between. However,
1090 If the insns are adjacent, a use can't cross a set even though we
1091 think it might (this can happen for a sequence of insns each setting
1092 the same destination; reg_last_set of that register might point to
d81481d3
RK
1093 a NOTE). If INSN has a REG_EQUIV note, the register is always
1094 equivalent to the memory so the substitution is valid even if there
1095 are intervening stores. Also, don't move a volatile asm or
1096 UNSPEC_VOLATILE across any other insns. */
230d793d 1097 || (! all_adjacent
d81481d3
RK
1098 && (((GET_CODE (src) != MEM
1099 || ! find_reg_note (insn, REG_EQUIV, src))
1100 && use_crosses_set_p (src, INSN_CUID (insn)))
a66a10c7
RS
1101 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1102 || GET_CODE (src) == UNSPEC_VOLATILE))
230d793d
RS
1103 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1104 better register allocation by not doing the combine. */
1105 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1106 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1107 /* Don't combine across a CALL_INSN, because that would possibly
1108 change whether the life span of some REGs crosses calls or not,
1109 and it is a pain to update that information.
1110 Exception: if source is a constant, moving it later can't hurt.
1111 Accept that special case, because it helps -fforce-addr a lot. */
1112 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1113 return 0;
1114
1115 /* DEST must either be a REG or CC0. */
1116 if (GET_CODE (dest) == REG)
1117 {
1118 /* If register alignment is being enforced for multi-word items in all
1119 cases except for parameters, it is possible to have a register copy
1120 insn referencing a hard register that is not allowed to contain the
1121 mode being copied and which would not be valid as an operand of most
1122 insns. Eliminate this problem by not combining with such an insn.
1123
1124 Also, on some machines we don't want to extend the life of a hard
53895717 1125 register. */
230d793d
RS
1126
1127 if (GET_CODE (src) == REG
1128 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1129 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
c448a43e
RK
1130 /* Don't extend the life of a hard register unless it is
1131 user variable (if we have few registers) or it can't
1132 fit into the desired register (meaning something special
ecd40809
RK
1133 is going on).
1134 Also avoid substituting a return register into I3, because
1135 reload can't handle a conflict with constraints of other
1136 inputs. */
230d793d 1137 || (REGNO (src) < FIRST_PSEUDO_REGISTER
53895717 1138 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
230d793d
RS
1139 return 0;
1140 }
1141 else if (GET_CODE (dest) != CC0)
1142 return 0;
1143
5f96750d
RS
1144 /* Don't substitute for a register intended as a clobberable operand.
1145 Similarly, don't substitute an expression containing a register that
1146 will be clobbered in I3. */
230d793d
RS
1147 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1148 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1149 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
5f96750d
RS
1150 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1151 src)
1152 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
230d793d
RS
1153 return 0;
1154
1155 /* If INSN contains anything volatile, or is an `asm' (whether volatile
d276f2bb 1156 or not), reject, unless nothing volatile comes between it and I3 */
230d793d
RS
1157
1158 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
d276f2bb
CM
1159 {
1160 /* Make sure succ doesn't contain a volatile reference. */
1161 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1162 return 0;
663522cb 1163
d276f2bb 1164 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2c3c49de 1165 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
cf0d9408 1166 return 0;
d276f2bb 1167 }
230d793d 1168
b79ee7eb
RH
1169 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1170 to be an explicit register variable, and was chosen for a reason. */
1171
1172 if (GET_CODE (src) == ASM_OPERANDS
1173 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1174 return 0;
1175
4b2cb4a2
RS
1176 /* If there are any volatile insns between INSN and I3, reject, because
1177 they might affect machine state. */
1178
1179 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2c3c49de 1180 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
4b2cb4a2
RS
1181 return 0;
1182
230d793d
RS
1183 /* If INSN or I2 contains an autoincrement or autodecrement,
1184 make sure that register is not used between there and I3,
1185 and not already used in I3 either.
1186 Also insist that I3 not be a jump; if it were one
1187 and the incremented register were spilled, we would lose. */
1188
1189#ifdef AUTO_INC_DEC
1190 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1191 if (REG_NOTE_KIND (link) == REG_INC
1192 && (GET_CODE (i3) == JUMP_INSN
1193 || reg_used_between_p (XEXP (link, 0), insn, i3)
1194 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1195 return 0;
1196#endif
1197
1198#ifdef HAVE_cc0
1199 /* Don't combine an insn that follows a CC0-setting insn.
1200 An insn that uses CC0 must not be separated from the one that sets it.
1201 We do, however, allow I2 to follow a CC0-setting insn if that insn
1202 is passed as I1; in that case it will be deleted also.
1203 We also allow combining in this case if all the insns are adjacent
1204 because that would leave the two CC0 insns adjacent as well.
1205 It would be more logical to test whether CC0 occurs inside I1 or I2,
1206 but that would be much slower, and this ought to be equivalent. */
1207
1208 p = prev_nonnote_insn (insn);
1209 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1210 && ! all_adjacent)
1211 return 0;
1212#endif
1213
1214 /* If we get here, we have passed all the tests and the combination is
1215 to be allowed. */
1216
1217 *pdest = dest;
1218 *psrc = src;
1219
1220 return 1;
1221}
1222\f
956d6950
JL
1223/* Check if PAT is an insn - or a part of it - used to set up an
1224 argument for a function in a hard register. */
1225
1226static int
1227sets_function_arg_p (pat)
1228 rtx pat;
1229{
1230 int i;
1231 rtx inner_dest;
1232
1233 switch (GET_CODE (pat))
1234 {
1235 case INSN:
1236 return sets_function_arg_p (PATTERN (pat));
1237
1238 case PARALLEL:
1239 for (i = XVECLEN (pat, 0); --i >= 0;)
1240 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1241 return 1;
1242
1243 break;
1244
1245 case SET:
1246 inner_dest = SET_DEST (pat);
1247 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1248 || GET_CODE (inner_dest) == SUBREG
1249 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1250 inner_dest = XEXP (inner_dest, 0);
1251
1252 return (GET_CODE (inner_dest) == REG
1253 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1254 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1d300e19
KG
1255
1256 default:
1257 break;
956d6950
JL
1258 }
1259
1260 return 0;
1261}
1262
230d793d
RS
1263/* LOC is the location within I3 that contains its pattern or the component
1264 of a PARALLEL of the pattern. We validate that it is valid for combining.
1265
1266 One problem is if I3 modifies its output, as opposed to replacing it
1267 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1268 so would produce an insn that is not equivalent to the original insns.
1269
1270 Consider:
1271
1272 (set (reg:DI 101) (reg:DI 100))
1273 (set (subreg:SI (reg:DI 101) 0) <foo>)
1274
1275 This is NOT equivalent to:
1276
1277 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
23190837 1278 (set (reg:DI 101) (reg:DI 100))])
230d793d
RS
1279
1280 Not only does this modify 100 (in which case it might still be valid
663522cb 1281 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
230d793d
RS
1282
1283 We can also run into a problem if I2 sets a register that I1
1284 uses and I1 gets directly substituted into I3 (not via I2). In that
1285 case, we would be getting the wrong value of I2DEST into I3, so we
1286 must reject the combination. This case occurs when I2 and I1 both
1287 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
da7d8304 1288 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
230d793d
RS
1289 of a SET must prevent combination from occurring.
1290
230d793d
RS
1291 Before doing the above check, we first try to expand a field assignment
1292 into a set of logical operations.
1293
da7d8304 1294 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
230d793d
RS
1295 we place a register that is both set and used within I3. If more than one
1296 such register is detected, we fail.
1297
1298 Return 1 if the combination is valid, zero otherwise. */
1299
1300static int
1301combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1302 rtx i3;
1303 rtx *loc;
1304 rtx i2dest;
1305 rtx i1dest;
1306 int i1_not_in_src;
1307 rtx *pi3dest_killed;
1308{
1309 rtx x = *loc;
1310
1311 if (GET_CODE (x) == SET)
1312 {
1313 rtx set = expand_field_assignment (x);
1314 rtx dest = SET_DEST (set);
1315 rtx src = SET_SRC (set);
29a82058 1316 rtx inner_dest = dest;
663522cb 1317
29a82058
JL
1318#if 0
1319 rtx inner_src = src;
1320#endif
230d793d
RS
1321
1322 SUBST (*loc, set);
1323
1324 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1325 || GET_CODE (inner_dest) == SUBREG
1326 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1327 inner_dest = XEXP (inner_dest, 0);
1328
1329 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1330 was added. */
1331#if 0
1332 while (GET_CODE (inner_src) == STRICT_LOW_PART
1333 || GET_CODE (inner_src) == SUBREG
1334 || GET_CODE (inner_src) == ZERO_EXTRACT)
1335 inner_src = XEXP (inner_src, 0);
1336
1337 /* If it is better that two different modes keep two different pseudos,
1338 avoid combining them. This avoids producing the following pattern
1339 on a 386:
1340 (set (subreg:SI (reg/v:QI 21) 0)
1341 (lshiftrt:SI (reg/v:SI 20)
1342 (const_int 24)))
1343 If that were made, reload could not handle the pair of
1344 reg 20/21, since it would try to get any GENERAL_REGS
1345 but some of them don't handle QImode. */
1346
1347 if (rtx_equal_p (inner_src, i2dest)
1348 && GET_CODE (inner_dest) == REG
1349 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1350 return 0;
1351#endif
1352
1353 /* Check for the case where I3 modifies its output, as
1354 discussed above. */
1355 if ((inner_dest != dest
1356 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1357 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
956d6950 1358
53895717
BS
1359 /* This is the same test done in can_combine_p except we can't test
1360 all_adjacent; we don't have to, since this instruction will stay
1361 in place, thus we are not considering increasing the lifetime of
1362 INNER_DEST.
956d6950
JL
1363
1364 Also, if this insn sets a function argument, combining it with
1365 something that might need a spill could clobber a previous
1366 function argument; the all_adjacent test in can_combine_p also
1367 checks this; here, we do a more specific test for this case. */
663522cb 1368
230d793d 1369 || (GET_CODE (inner_dest) == REG
dfbe1b2f 1370 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
c448a43e 1371 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
53895717 1372 GET_MODE (inner_dest))))
230d793d
RS
1373 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1374 return 0;
1375
1376 /* If DEST is used in I3, it is being killed in this insn,
663522cb 1377 so record that for later.
36a9c2e9
JL
1378 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1379 STACK_POINTER_REGNUM, since these are always considered to be
1380 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
230d793d 1381 if (pi3dest_killed && GET_CODE (dest) == REG
36a9c2e9
JL
1382 && reg_referenced_p (dest, PATTERN (i3))
1383 && REGNO (dest) != FRAME_POINTER_REGNUM
6d7096b0
DE
1384#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1385 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1386#endif
36a9c2e9
JL
1387#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1388 && (REGNO (dest) != ARG_POINTER_REGNUM
1389 || ! fixed_regs [REGNO (dest)])
1390#endif
1391 && REGNO (dest) != STACK_POINTER_REGNUM)
230d793d
RS
1392 {
1393 if (*pi3dest_killed)
1394 return 0;
1395
1396 *pi3dest_killed = dest;
1397 }
1398 }
1399
1400 else if (GET_CODE (x) == PARALLEL)
1401 {
1402 int i;
1403
1404 for (i = 0; i < XVECLEN (x, 0); i++)
1405 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1406 i1_not_in_src, pi3dest_killed))
1407 return 0;
1408 }
1409
1410 return 1;
1411}
1412\f
14a774a9
RK
1413/* Return 1 if X is an arithmetic expression that contains a multiplication
1414 and division. We don't count multiplications by powers of two here. */
1415
1416static int
1417contains_muldiv (x)
1418 rtx x;
1419{
1420 switch (GET_CODE (x))
1421 {
1422 case MOD: case DIV: case UMOD: case UDIV:
1423 return 1;
1424
1425 case MULT:
1426 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1427 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1428 default:
1429 switch (GET_RTX_CLASS (GET_CODE (x)))
1430 {
1431 case 'c': case '<': case '2':
1432 return contains_muldiv (XEXP (x, 0))
1433 || contains_muldiv (XEXP (x, 1));
1434
1435 case '1':
1436 return contains_muldiv (XEXP (x, 0));
1437
1438 default:
1439 return 0;
1440 }
1441 }
1442}
1443\f
c3410241
BS
1444/* Determine whether INSN can be used in a combination. Return nonzero if
1445 not. This is used in try_combine to detect early some cases where we
1446 can't perform combinations. */
1447
1448static int
1449cant_combine_insn_p (insn)
1450 rtx insn;
1451{
1452 rtx set;
1453 rtx src, dest;
23190837 1454
c3410241
BS
1455 /* If this isn't really an insn, we can't do anything.
1456 This can occur when flow deletes an insn that it has merged into an
1457 auto-increment address. */
1458 if (! INSN_P (insn))
1459 return 1;
1460
4c11675d
DJ
1461 /* Never combine loads and stores involving hard regs. The register
1462 allocator can usually handle such reg-reg moves by tying. If we allow
1463 the combiner to make substitutions of hard regs, we risk aborting in
1464 reload on machines that have SMALL_REGISTER_CLASSES.
c3410241
BS
1465 As an exception, we allow combinations involving fixed regs; these are
1466 not available to the register allocator so there's no risk involved. */
1467
1468 set = single_set (insn);
1469 if (! set)
1470 return 0;
1471 src = SET_SRC (set);
1472 dest = SET_DEST (set);
ad334b51
JH
1473 if (GET_CODE (src) == SUBREG)
1474 src = SUBREG_REG (src);
1475 if (GET_CODE (dest) == SUBREG)
1476 dest = SUBREG_REG (dest);
53895717
BS
1477 if (REG_P (src) && REG_P (dest)
1478 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
4c11675d 1479 && ! fixed_regs[REGNO (src)])
53895717 1480 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
4c11675d 1481 && ! fixed_regs[REGNO (dest)])))
c3410241 1482 return 1;
53895717 1483
c3410241
BS
1484 return 0;
1485}
1486
230d793d
RS
1487/* Try to combine the insns I1 and I2 into I3.
1488 Here I1 and I2 appear earlier than I3.
1489 I1 can be zero; then we combine just I2 into I3.
663522cb 1490
04956a1a 1491 If we are combining three insns and the resulting insn is not recognized,
230d793d
RS
1492 try splitting it into two insns. If that happens, I2 and I3 are retained
1493 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1494 are pseudo-deleted.
1495
663522cb 1496 Return 0 if the combination does not work. Then nothing is changed.
abe6e52f 1497 If we did the combination, return the insn at which combine should
663522cb
KH
1498 resume scanning.
1499
da7d8304 1500 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
44a76fc8 1501 new direct jump instruction. */
230d793d
RS
1502
1503static rtx
44a76fc8 1504try_combine (i3, i2, i1, new_direct_jump_p)
b3694847
SS
1505 rtx i3, i2, i1;
1506 int *new_direct_jump_p;
230d793d 1507{
02359929 1508 /* New patterns for I3 and I2, respectively. */
230d793d 1509 rtx newpat, newi2pat = 0;
cddd8b72 1510 int substed_i2 = 0, substed_i1 = 0;
230d793d
RS
1511 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1512 int added_sets_1, added_sets_2;
1513 /* Total number of SETs to put into I3. */
1514 int total_sets;
1515 /* Nonzero is I2's body now appears in I3. */
1516 int i2_is_used;
1517 /* INSN_CODEs for new I3, new I2, and user of condition code. */
6a651371 1518 int insn_code_number, i2_code_number = 0, other_code_number = 0;
230d793d
RS
1519 /* Contains I3 if the destination of I3 is used in its source, which means
1520 that the old life of I3 is being killed. If that usage is placed into
1521 I2 and not in I3, a REG_DEAD note must be made. */
1522 rtx i3dest_killed = 0;
1523 /* SET_DEST and SET_SRC of I2 and I1. */
1524 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1525 /* PATTERN (I2), or a copy of it in certain cases. */
1526 rtx i2pat;
1527 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
c4e861e8 1528 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
230d793d
RS
1529 int i1_feeds_i3 = 0;
1530 /* Notes that must be added to REG_NOTES in I3 and I2. */
1531 rtx new_i3_notes, new_i2_notes;
176c9e6b
JW
1532 /* Notes that we substituted I3 into I2 instead of the normal case. */
1533 int i3_subst_into_i2 = 0;
df7d75de
RK
1534 /* Notes that I1, I2 or I3 is a MULT operation. */
1535 int have_mult = 0;
230d793d
RS
1536
1537 int maxreg;
1538 rtx temp;
b3694847 1539 rtx link;
230d793d
RS
1540 int i;
1541
c3410241
BS
1542 /* Exit early if one of the insns involved can't be used for
1543 combinations. */
1544 if (cant_combine_insn_p (i3)
1545 || cant_combine_insn_p (i2)
1546 || (i1 && cant_combine_insn_p (i1))
1547 /* We also can't do anything if I3 has a
1548 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1549 libcall. */
ec35104c
JL
1550#if 0
1551 /* ??? This gives worse code, and appears to be unnecessary, since no
1552 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1553 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1554#endif
663522cb 1555 )
230d793d
RS
1556 return 0;
1557
1558 combine_attempts++;
230d793d
RS
1559 undobuf.other_insn = 0;
1560
6e25d159
RK
1561 /* Reset the hard register usage information. */
1562 CLEAR_HARD_REG_SET (newpat_used_regs);
1563
230d793d
RS
1564 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1565 code below, set I1 to be the earlier of the two insns. */
1566 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1567 temp = i1, i1 = i2, i2 = temp;
1568
abe6e52f 1569 added_links_insn = 0;
137e889e 1570
230d793d 1571 /* First check for one important special-case that the code below will
c7be4f66 1572 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
230d793d
RS
1573 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1574 we may be able to replace that destination with the destination of I3.
1575 This occurs in the common code where we compute both a quotient and
1576 remainder into a structure, in which case we want to do the computation
1577 directly into the structure to avoid register-register copies.
1578
c7be4f66
RK
1579 Note that this case handles both multiple sets in I2 and also
1580 cases where I2 has a number of CLOBBER or PARALLELs.
1581
230d793d
RS
1582 We make very conservative checks below and only try to handle the
1583 most common cases of this. For example, we only handle the case
1584 where I2 and I3 are adjacent to avoid making difficult register
1585 usage tests. */
1586
1587 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1588 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1589 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
230d793d
RS
1590 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1591 && GET_CODE (PATTERN (i2)) == PARALLEL
1592 && ! side_effects_p (SET_DEST (PATTERN (i3)))
5089e22e
RS
1593 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1594 below would need to check what is inside (and reg_overlap_mentioned_p
1595 doesn't support those codes anyway). Don't allow those destinations;
1596 the resulting insn isn't likely to be recognized anyway. */
1597 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1598 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
230d793d
RS
1599 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1600 SET_DEST (PATTERN (i3)))
1601 && next_real_insn (i2) == i3)
5089e22e
RS
1602 {
1603 rtx p2 = PATTERN (i2);
1604
1605 /* Make sure that the destination of I3,
1606 which we are going to substitute into one output of I2,
1607 is not used within another output of I2. We must avoid making this:
1608 (parallel [(set (mem (reg 69)) ...)
1609 (set (reg 69) ...)])
1610 which is not well-defined as to order of actions.
1611 (Besides, reload can't handle output reloads for this.)
1612
1613 The problem can also happen if the dest of I3 is a memory ref,
1614 if another dest in I2 is an indirect memory ref. */
1615 for (i = 0; i < XVECLEN (p2, 0); i++)
7ca919b7
RK
1616 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1617 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
5089e22e
RS
1618 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1619 SET_DEST (XVECEXP (p2, 0, i))))
1620 break;
230d793d 1621
5089e22e
RS
1622 if (i == XVECLEN (p2, 0))
1623 for (i = 0; i < XVECLEN (p2, 0); i++)
481c7efa
FS
1624 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1625 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1626 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
5089e22e
RS
1627 {
1628 combine_merges++;
230d793d 1629
5089e22e
RS
1630 subst_insn = i3;
1631 subst_low_cuid = INSN_CUID (i2);
230d793d 1632
c4e861e8 1633 added_sets_2 = added_sets_1 = 0;
5089e22e 1634 i2dest = SET_SRC (PATTERN (i3));
230d793d 1635
5089e22e
RS
1636 /* Replace the dest in I2 with our dest and make the resulting
1637 insn the new pattern for I3. Then skip to where we
1638 validate the pattern. Everything was set up above. */
663522cb 1639 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
5089e22e
RS
1640 SET_DEST (PATTERN (i3)));
1641
1642 newpat = p2;
176c9e6b 1643 i3_subst_into_i2 = 1;
5089e22e
RS
1644 goto validate_replacement;
1645 }
1646 }
230d793d 1647
667c1c2c
RK
1648 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1649 one of those words to another constant, merge them by making a new
1650 constant. */
1651 if (i1 == 0
1652 && (temp = single_set (i2)) != 0
1653 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1654 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1655 && GET_CODE (SET_DEST (temp)) == REG
1656 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1657 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1658 && GET_CODE (PATTERN (i3)) == SET
1659 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1660 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1661 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1662 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1663 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1664 {
1665 HOST_WIDE_INT lo, hi;
1666
1667 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1668 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1669 else
1670 {
1671 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1672 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1673 }
1674
1675 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
48b4d901
AO
1676 {
1677 /* We don't handle the case of the target word being wider
1678 than a host wide int. */
1679 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1680 abort ();
1681
42a6ff51 1682 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
2ef1a7f9
GK
1683 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1684 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
48b4d901
AO
1685 }
1686 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
667c1c2c 1687 hi = INTVAL (SET_SRC (PATTERN (i3)));
48b4d901
AO
1688 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1689 {
1690 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1691 >> (HOST_BITS_PER_WIDE_INT - 1));
1692
42a6ff51
AO
1693 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1694 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1695 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1696 (INTVAL (SET_SRC (PATTERN (i3)))));
48b4d901
AO
1697 if (hi == sign)
1698 hi = lo < 0 ? -1 : 0;
1699 }
1700 else
1701 /* We don't handle the case of the higher word not fitting
1702 entirely in either hi or lo. */
1703 abort ();
667c1c2c
RK
1704
1705 combine_merges++;
1706 subst_insn = i3;
1707 subst_low_cuid = INSN_CUID (i2);
1708 added_sets_2 = added_sets_1 = 0;
1709 i2dest = SET_DEST (temp);
1710
1711 SUBST (SET_SRC (temp),
1712 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1713
1714 newpat = PATTERN (i2);
667c1c2c
RK
1715 goto validate_replacement;
1716 }
1717
230d793d
RS
1718#ifndef HAVE_cc0
1719 /* If we have no I1 and I2 looks like:
1720 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1721 (set Y OP)])
1722 make up a dummy I1 that is
1723 (set Y OP)
1724 and change I2 to be
1725 (set (reg:CC X) (compare:CC Y (const_int 0)))
1726
1727 (We can ignore any trailing CLOBBERs.)
1728
1729 This undoes a previous combination and allows us to match a branch-and-
1730 decrement insn. */
1731
1732 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1733 && XVECLEN (PATTERN (i2), 0) >= 2
1734 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1735 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1736 == MODE_CC)
1737 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1738 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1739 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1740 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1741 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1742 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1743 {
663522cb 1744 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
230d793d
RS
1745 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1746 break;
1747
1748 if (i == 1)
1749 {
1750 /* We make I1 with the same INSN_UID as I2. This gives it
1751 the same INSN_CUID for value tracking. Our fake I1 will
1752 never appear in the insn stream so giving it the same INSN_UID
1753 as I2 will not cause a problem. */
1754
0d9641d1 1755 subst_prev_insn = i1
38a448ca 1756 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
ba4f7968 1757 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
38a448ca
RH
1758 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1759 NULL_RTX);
230d793d
RS
1760
1761 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1762 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1763 SET_DEST (PATTERN (i1)));
1764 }
1765 }
1766#endif
1767
1768 /* Verify that I2 and I1 are valid for combining. */
5f4f0e22
CH
1769 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1770 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
230d793d
RS
1771 {
1772 undo_all ();
1773 return 0;
1774 }
1775
1776 /* Record whether I2DEST is used in I2SRC and similarly for the other
1777 cases. Knowing this will help in register status updating below. */
1778 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1779 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1780 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1781
916f14f1 1782 /* See if I1 directly feeds into I3. It does if I1DEST is not used
230d793d
RS
1783 in I2SRC. */
1784 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1785
1786 /* Ensure that I3's pattern can be the destination of combines. */
1787 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1788 i1 && i2dest_in_i1src && i1_feeds_i3,
1789 &i3dest_killed))
1790 {
1791 undo_all ();
1792 return 0;
1793 }
1794
df7d75de
RK
1795 /* See if any of the insns is a MULT operation. Unless one is, we will
1796 reject a combination that is, since it must be slower. Be conservative
1797 here. */
1798 if (GET_CODE (i2src) == MULT
1799 || (i1 != 0 && GET_CODE (i1src) == MULT)
1800 || (GET_CODE (PATTERN (i3)) == SET
1801 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1802 have_mult = 1;
1803
230d793d
RS
1804 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1805 We used to do this EXCEPT in one case: I3 has a post-inc in an
1806 output operand. However, that exception can give rise to insns like
23190837 1807 mov r3,(r3)+
230d793d 1808 which is a famous insn on the PDP-11 where the value of r3 used as the
5089e22e 1809 source was model-dependent. Avoid this sort of thing. */
230d793d
RS
1810
1811#if 0
1812 if (!(GET_CODE (PATTERN (i3)) == SET
1813 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1814 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1815 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1816 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1817 /* It's not the exception. */
1818#endif
1819#ifdef AUTO_INC_DEC
1820 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1821 if (REG_NOTE_KIND (link) == REG_INC
1822 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1823 || (i1 != 0
1824 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1825 {
1826 undo_all ();
1827 return 0;
1828 }
1829#endif
1830
1831 /* See if the SETs in I1 or I2 need to be kept around in the merged
1832 instruction: whenever the value set there is still needed past I3.
1833 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1834
1835 For the SET in I1, we have two cases: If I1 and I2 independently
1836 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1837 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1838 in I1 needs to be kept around unless I1DEST dies or is set in either
1839 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1840 I1DEST. If so, we know I1 feeds into I2. */
1841
1842 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1843
1844 added_sets_1
1845 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1846 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1847
1848 /* If the set in I2 needs to be kept around, we must make a copy of
1849 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
5089e22e 1850 PATTERN (I2), we are only substituting for the original I1DEST, not into
230d793d
RS
1851 an already-substituted copy. This also prevents making self-referential
1852 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1853 I2DEST. */
1854
1855 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
38a448ca 1856 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
230d793d
RS
1857 : PATTERN (i2));
1858
1859 if (added_sets_2)
1860 i2pat = copy_rtx (i2pat);
1861
1862 combine_merges++;
1863
1864 /* Substitute in the latest insn for the regs set by the earlier ones. */
1865
1866 maxreg = max_reg_num ();
1867
1868 subst_insn = i3;
230d793d
RS
1869
1870 /* It is possible that the source of I2 or I1 may be performing an
1871 unneeded operation, such as a ZERO_EXTEND of something that is known
1872 to have the high part zero. Handle that case by letting subst look at
1873 the innermost one of them.
1874
1875 Another way to do this would be to have a function that tries to
1876 simplify a single insn instead of merging two or more insns. We don't
1877 do this because of the potential of infinite loops and because
1878 of the potential extra memory required. However, doing it the way
1879 we are is a bit of a kludge and doesn't catch all cases.
1880
1881 But only do this if -fexpensive-optimizations since it slows things down
1882 and doesn't usually win. */
1883
1884 if (flag_expensive_optimizations)
1885 {
1886 /* Pass pc_rtx so no substitutions are done, just simplifications.
1887 The cases that we are interested in here do not involve the few
1888 cases were is_replaced is checked. */
1889 if (i1)
d0ab8cd3
RK
1890 {
1891 subst_low_cuid = INSN_CUID (i1);
1892 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1893 }
230d793d 1894 else
d0ab8cd3
RK
1895 {
1896 subst_low_cuid = INSN_CUID (i2);
1897 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1898 }
230d793d
RS
1899 }
1900
1901#ifndef HAVE_cc0
1902 /* Many machines that don't use CC0 have insns that can both perform an
1903 arithmetic operation and set the condition code. These operations will
1904 be represented as a PARALLEL with the first element of the vector
1905 being a COMPARE of an arithmetic operation with the constant zero.
1906 The second element of the vector will set some pseudo to the result
1907 of the same arithmetic operation. If we simplify the COMPARE, we won't
1908 match such a pattern and so will generate an extra insn. Here we test
1909 for this case, where both the comparison and the operation result are
1910 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1911 I2SRC. Later we will make the PARALLEL that contains I2. */
1912
1913 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1914 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1915 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1916 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1917 {
081f5e7e 1918#ifdef EXTRA_CC_MODES
230d793d
RS
1919 rtx *cc_use;
1920 enum machine_mode compare_mode;
081f5e7e 1921#endif
230d793d
RS
1922
1923 newpat = PATTERN (i3);
1924 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1925
1926 i2_is_used = 1;
1927
1928#ifdef EXTRA_CC_MODES
1929 /* See if a COMPARE with the operand we substituted in should be done
1930 with the mode that is currently being used. If not, do the same
1931 processing we do in `subst' for a SET; namely, if the destination
1932 is used only once, try to replace it with a register of the proper
1933 mode and also replace the COMPARE. */
1934 if (undobuf.other_insn == 0
1935 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1936 &undobuf.other_insn))
77fa0940
RK
1937 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1938 i2src, const0_rtx))
230d793d
RS
1939 != GET_MODE (SET_DEST (newpat))))
1940 {
770ae6cc 1941 unsigned int regno = REGNO (SET_DEST (newpat));
38a448ca 1942 rtx new_dest = gen_rtx_REG (compare_mode, regno);
230d793d
RS
1943
1944 if (regno < FIRST_PSEUDO_REGISTER
b1f21e0a 1945 || (REG_N_SETS (regno) == 1 && ! added_sets_2
230d793d
RS
1946 && ! REG_USERVAR_P (SET_DEST (newpat))))
1947 {
1948 if (regno >= FIRST_PSEUDO_REGISTER)
1949 SUBST (regno_reg_rtx[regno], new_dest);
1950
1951 SUBST (SET_DEST (newpat), new_dest);
1952 SUBST (XEXP (*cc_use, 0), new_dest);
1953 SUBST (SET_SRC (newpat),
f1c6ba8b 1954 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
230d793d
RS
1955 }
1956 else
1957 undobuf.other_insn = 0;
1958 }
663522cb 1959#endif
230d793d
RS
1960 }
1961 else
1962#endif
1963 {
1964 n_occurrences = 0; /* `subst' counts here */
1965
1966 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1967 need to make a unique copy of I2SRC each time we substitute it
1968 to avoid self-referential rtl. */
1969
d0ab8cd3 1970 subst_low_cuid = INSN_CUID (i2);
230d793d
RS
1971 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1972 ! i1_feeds_i3 && i1dest_in_i1src);
cddd8b72 1973 substed_i2 = 1;
230d793d
RS
1974
1975 /* Record whether i2's body now appears within i3's body. */
1976 i2_is_used = n_occurrences;
1977 }
1978
1979 /* If we already got a failure, don't try to do more. Otherwise,
1980 try to substitute in I1 if we have it. */
1981
1982 if (i1 && GET_CODE (newpat) != CLOBBER)
1983 {
1984 /* Before we can do this substitution, we must redo the test done
1985 above (see detailed comments there) that ensures that I1DEST
0f41302f 1986 isn't mentioned in any SETs in NEWPAT that are field assignments. */
230d793d 1987
5f4f0e22 1988 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
cf0d9408 1989 0, (rtx*) 0))
230d793d
RS
1990 {
1991 undo_all ();
1992 return 0;
1993 }
1994
1995 n_occurrences = 0;
d0ab8cd3 1996 subst_low_cuid = INSN_CUID (i1);
230d793d 1997 newpat = subst (newpat, i1dest, i1src, 0, 0);
cddd8b72 1998 substed_i1 = 1;
230d793d
RS
1999 }
2000
916f14f1
RK
2001 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2002 to count all the ways that I2SRC and I1SRC can be used. */
5f4f0e22 2003 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
916f14f1 2004 && i2_is_used + added_sets_2 > 1)
5f4f0e22 2005 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
916f14f1
RK
2006 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2007 > 1))
230d793d
RS
2008 /* Fail if we tried to make a new register (we used to abort, but there's
2009 really no reason to). */
2010 || max_reg_num () != maxreg
2011 /* Fail if we couldn't do something and have a CLOBBER. */
df7d75de
RK
2012 || GET_CODE (newpat) == CLOBBER
2013 /* Fail if this new pattern is a MULT and we didn't have one before
2014 at the outer level. */
2015 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2016 && ! have_mult))
230d793d
RS
2017 {
2018 undo_all ();
2019 return 0;
2020 }
2021
2022 /* If the actions of the earlier insns must be kept
2023 in addition to substituting them into the latest one,
2024 we must make a new PARALLEL for the latest insn
2025 to hold additional the SETs. */
2026
2027 if (added_sets_1 || added_sets_2)
2028 {
2029 combine_extras++;
2030
2031 if (GET_CODE (newpat) == PARALLEL)
2032 {
2033 rtvec old = XVEC (newpat, 0);
2034 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
38a448ca 2035 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
d38a30c9
KG
2036 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2037 sizeof (old->elem[0]) * old->num_elem);
230d793d
RS
2038 }
2039 else
2040 {
2041 rtx old = newpat;
2042 total_sets = 1 + added_sets_1 + added_sets_2;
38a448ca 2043 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
230d793d
RS
2044 XVECEXP (newpat, 0, 0) = old;
2045 }
2046
cf0d9408
KH
2047 if (added_sets_1)
2048 XVECEXP (newpat, 0, --total_sets)
2049 = (GET_CODE (PATTERN (i1)) == PARALLEL
2050 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2051
2052 if (added_sets_2)
2053 {
2054 /* If there is no I1, use I2's body as is. We used to also not do
2055 the subst call below if I2 was substituted into I3,
2056 but that could lose a simplification. */
2057 if (i1 == 0)
2058 XVECEXP (newpat, 0, --total_sets) = i2pat;
2059 else
2060 /* See comment where i2pat is assigned. */
2061 XVECEXP (newpat, 0, --total_sets)
2062 = subst (i2pat, i1dest, i1src, 0, 0);
2063 }
230d793d
RS
2064 }
2065
2066 /* We come here when we are replacing a destination in I2 with the
2067 destination of I3. */
2068 validate_replacement:
2069
6e25d159
RK
2070 /* Note which hard regs this insn has as inputs. */
2071 mark_used_regs_combine (newpat);
2072
230d793d 2073 /* Is the result of combination a valid instruction? */
8e2f6e35 2074 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
230d793d
RS
2075
2076 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2077 the second SET's destination is a register that is unused. In that case,
2078 we just need the first SET. This can occur when simplifying a divmod
2079 insn. We *must* test for this case here because the code below that
2080 splits two independent SETs doesn't handle this case correctly when it
2081 updates the register status. Also check the case where the first
2082 SET's destination is unused. That would not cause incorrect code, but
2083 does cause an unneeded insn to remain. */
2084
2085 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2086 && XVECLEN (newpat, 0) == 2
2087 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2088 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2089 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2090 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2091 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2092 && asm_noperands (newpat) < 0)
2093 {
2094 newpat = XVECEXP (newpat, 0, 0);
8e2f6e35 2095 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
230d793d
RS
2096 }
2097
2098 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2099 && XVECLEN (newpat, 0) == 2
2100 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2101 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2102 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2103 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2104 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2105 && asm_noperands (newpat) < 0)
2106 {
2107 newpat = XVECEXP (newpat, 0, 1);
8e2f6e35 2108 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
230d793d
RS
2109 }
2110
2111 /* If we were combining three insns and the result is a simple SET
2112 with no ASM_OPERANDS that wasn't recognized, try to split it into two
663522cb 2113 insns. There are two ways to do this. It can be split using a
916f14f1
RK
2114 machine-specific method (like when you have an addition of a large
2115 constant) or by combine in the function find_split_point. */
2116
230d793d
RS
2117 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2118 && asm_noperands (newpat) < 0)
2119 {
916f14f1 2120 rtx m_split, *split;
42495ca0 2121 rtx ni2dest = i2dest;
916f14f1
RK
2122
2123 /* See if the MD file can split NEWPAT. If it can't, see if letting it
42495ca0
RK
2124 use I2DEST as a scratch register will help. In the latter case,
2125 convert I2DEST to the mode of the source of NEWPAT if we can. */
916f14f1
RK
2126
2127 m_split = split_insns (newpat, i3);
a70c61d9
JW
2128
2129 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2130 inputs of NEWPAT. */
2131
2132 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2133 possible to try that as a scratch reg. This would require adding
2134 more code to make it work though. */
2135
2136 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
42495ca0
RK
2137 {
2138 /* If I2DEST is a hard register or the only use of a pseudo,
2139 we can change its mode. */
2140 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
02f4ada4 2141 && GET_MODE (SET_DEST (newpat)) != VOIDmode
60654f77 2142 && GET_CODE (i2dest) == REG
42495ca0 2143 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
b1f21e0a 2144 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
42495ca0 2145 && ! REG_USERVAR_P (i2dest))))
38a448ca 2146 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
c5c76735
JL
2147 REGNO (i2dest));
2148
2149 m_split = split_insns (gen_rtx_PARALLEL
2150 (VOIDmode,
2151 gen_rtvec (2, newpat,
2152 gen_rtx_CLOBBER (VOIDmode,
2153 ni2dest))),
2154 i3);
5dd3e650
R
2155 /* If the split with the mode-changed register didn't work, try
2156 the original register. */
2157 if (! m_split && ni2dest != i2dest)
c7ca5912
RK
2158 {
2159 ni2dest = i2dest;
2160 m_split = split_insns (gen_rtx_PARALLEL
2161 (VOIDmode,
2162 gen_rtvec (2, newpat,
2163 gen_rtx_CLOBBER (VOIDmode,
2164 i2dest))),
2165 i3);
2166 }
42495ca0 2167 }
916f14f1 2168
2f937369 2169 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
d340408c 2170 {
2f937369 2171 m_split = PATTERN (m_split);
d340408c
RH
2172 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2173 if (insn_code_number >= 0)
2174 newpat = m_split;
23190837 2175 }
2f937369 2176 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
d340408c 2177 && (next_real_insn (i2) == i3
2f937369 2178 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
916f14f1 2179 {
1a26b032 2180 rtx i2set, i3set;
2f937369
DM
2181 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2182 newi2pat = PATTERN (m_split);
916f14f1 2183
2f937369
DM
2184 i3set = single_set (NEXT_INSN (m_split));
2185 i2set = single_set (m_split);
1a26b032 2186
42495ca0
RK
2187 /* In case we changed the mode of I2DEST, replace it in the
2188 pseudo-register table here. We can't do it above in case this
2189 code doesn't get executed and we do a split the other way. */
2190
2191 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2192 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2193
8e2f6e35 2194 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1a26b032
RK
2195
2196 /* If I2 or I3 has multiple SETs, we won't know how to track
9cc96794
RK
2197 register status, so don't use these insns. If I2's destination
2198 is used between I2 and I3, we also can't use these insns. */
1a26b032 2199
9cc96794
RK
2200 if (i2_code_number >= 0 && i2set && i3set
2201 && (next_real_insn (i2) == i3
2202 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
8e2f6e35
BS
2203 insn_code_number = recog_for_combine (&newi3pat, i3,
2204 &new_i3_notes);
d0ab8cd3
RK
2205 if (insn_code_number >= 0)
2206 newpat = newi3pat;
2207
c767f54b 2208 /* It is possible that both insns now set the destination of I3.
22609cbf 2209 If so, we must show an extra use of it. */
c767f54b 2210
393de53f
RK
2211 if (insn_code_number >= 0)
2212 {
2213 rtx new_i3_dest = SET_DEST (i3set);
2214 rtx new_i2_dest = SET_DEST (i2set);
2215
2216 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2217 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2218 || GET_CODE (new_i3_dest) == SUBREG)
2219 new_i3_dest = XEXP (new_i3_dest, 0);
2220
d4096689
RK
2221 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2222 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2223 || GET_CODE (new_i2_dest) == SUBREG)
2224 new_i2_dest = XEXP (new_i2_dest, 0);
2225
393de53f
RK
2226 if (GET_CODE (new_i3_dest) == REG
2227 && GET_CODE (new_i2_dest) == REG
2228 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
b1f21e0a 2229 REG_N_SETS (REGNO (new_i2_dest))++;
393de53f 2230 }
916f14f1 2231 }
230d793d
RS
2232
2233 /* If we can split it and use I2DEST, go ahead and see if that
2234 helps things be recognized. Verify that none of the registers
2235 are set between I2 and I3. */
d0ab8cd3 2236 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
230d793d
RS
2237#ifdef HAVE_cc0
2238 && GET_CODE (i2dest) == REG
2239#endif
2240 /* We need I2DEST in the proper mode. If it is a hard register
2241 or the only use of a pseudo, we can change its mode. */
2242 && (GET_MODE (*split) == GET_MODE (i2dest)
2243 || GET_MODE (*split) == VOIDmode
2244 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
b1f21e0a 2245 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
230d793d
RS
2246 && ! REG_USERVAR_P (i2dest)))
2247 && (next_real_insn (i2) == i3
2248 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2249 /* We can't overwrite I2DEST if its value is still used by
2250 NEWPAT. */
2251 && ! reg_referenced_p (i2dest, newpat))
2252 {
2253 rtx newdest = i2dest;
df7d75de
RK
2254 enum rtx_code split_code = GET_CODE (*split);
2255 enum machine_mode split_mode = GET_MODE (*split);
230d793d
RS
2256
2257 /* Get NEWDEST as a register in the proper mode. We have already
2258 validated that we can do this. */
df7d75de 2259 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
230d793d 2260 {
38a448ca 2261 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
230d793d
RS
2262
2263 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2264 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2265 }
2266
2267 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2268 an ASHIFT. This can occur if it was inside a PLUS and hence
2269 appeared to be a memory address. This is a kludge. */
df7d75de 2270 if (split_code == MULT
230d793d 2271 && GET_CODE (XEXP (*split, 1)) == CONST_INT
1568d79b 2272 && INTVAL (XEXP (*split, 1)) > 0
230d793d 2273 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
1dc8a823 2274 {
f1c6ba8b
RK
2275 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2276 XEXP (*split, 0), GEN_INT (i)));
1dc8a823
JW
2277 /* Update split_code because we may not have a multiply
2278 anymore. */
2279 split_code = GET_CODE (*split);
2280 }
230d793d
RS
2281
2282#ifdef INSN_SCHEDULING
2283 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2284 be written as a ZERO_EXTEND. */
df7d75de 2285 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
25c25947
R
2286 {
2287#ifdef LOAD_EXTEND_OP
2288 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2289 what it really is. */
2290 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2291 == SIGN_EXTEND)
2292 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2293 SUBREG_REG (*split)));
2294 else
2295#endif
2296 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2297 SUBREG_REG (*split)));
2298 }
230d793d
RS
2299#endif
2300
f1c6ba8b 2301 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
230d793d 2302 SUBST (*split, newdest);
8e2f6e35 2303 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
df7d75de
RK
2304
2305 /* If the split point was a MULT and we didn't have one before,
2306 don't use one now. */
2307 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
8e2f6e35 2308 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
230d793d
RS
2309 }
2310 }
2311
2312 /* Check for a case where we loaded from memory in a narrow mode and
2313 then sign extended it, but we need both registers. In that case,
2314 we have a PARALLEL with both loads from the same memory location.
2315 We can split this into a load from memory followed by a register-register
2316 copy. This saves at least one insn, more if register allocation can
f0343c74
RK
2317 eliminate the copy.
2318
a9b2f059
JW
2319 We cannot do this if the destination of the first assignment is a
2320 condition code register or cc0. We eliminate this case by making sure
2321 the SET_DEST and SET_SRC have the same mode.
2322
f0343c74
RK
2323 We cannot do this if the destination of the second assignment is
2324 a register that we have already assumed is zero-extended. Similarly
2325 for a SUBREG of such a register. */
230d793d
RS
2326
2327 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2328 && GET_CODE (newpat) == PARALLEL
2329 && XVECLEN (newpat, 0) == 2
2330 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2331 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
a9b2f059
JW
2332 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2333 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
230d793d
RS
2334 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2335 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2336 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2337 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2338 INSN_CUID (i2))
2339 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2340 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
f0343c74
RK
2341 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2342 (GET_CODE (temp) == REG
2343 && reg_nonzero_bits[REGNO (temp)] != 0
2344 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2345 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2346 && (reg_nonzero_bits[REGNO (temp)]
2347 != GET_MODE_MASK (word_mode))))
2348 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2349 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2350 (GET_CODE (temp) == REG
2351 && reg_nonzero_bits[REGNO (temp)] != 0
2352 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2353 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2354 && (reg_nonzero_bits[REGNO (temp)]
2355 != GET_MODE_MASK (word_mode)))))
230d793d
RS
2356 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2357 SET_SRC (XVECEXP (newpat, 0, 1)))
2358 && ! find_reg_note (i3, REG_UNUSED,
2359 SET_DEST (XVECEXP (newpat, 0, 0))))
2360 {
472fbdd1
RK
2361 rtx ni2dest;
2362
230d793d 2363 newi2pat = XVECEXP (newpat, 0, 0);
472fbdd1 2364 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
230d793d
RS
2365 newpat = XVECEXP (newpat, 0, 1);
2366 SUBST (SET_SRC (newpat),
472fbdd1 2367 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
8e2f6e35 2368 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
a29ca9db 2369
230d793d 2370 if (i2_code_number >= 0)
8e2f6e35 2371 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
5089e22e
RS
2372
2373 if (insn_code_number >= 0)
2374 {
2375 rtx insn;
2376 rtx link;
2377
2378 /* If we will be able to accept this, we have made a change to the
2379 destination of I3. This can invalidate a LOG_LINKS pointing
2380 to I3. No other part of combine.c makes such a transformation.
2381
2382 The new I3 will have a destination that was previously the
2383 destination of I1 or I2 and which was used in i2 or I3. Call
2384 distribute_links to make a LOG_LINK from the next use of
2385 that destination. */
2386
2387 PATTERN (i3) = newpat;
38a448ca 2388 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
5089e22e
RS
2389
2390 /* I3 now uses what used to be its destination and which is
2391 now I2's destination. That means we need a LOG_LINK from
2392 I3 to I2. But we used to have one, so we still will.
2393
2394 However, some later insn might be using I2's dest and have
2395 a LOG_LINK pointing at I3. We must remove this link.
2396 The simplest way to remove the link is to point it at I1,
2397 which we know will be a NOTE. */
2398
2399 for (insn = NEXT_INSN (i3);
f6366fc7
ZD
2400 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2401 || insn != this_basic_block->next_bb->head);
5089e22e
RS
2402 insn = NEXT_INSN (insn))
2403 {
2c3c49de 2404 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
5089e22e
RS
2405 {
2406 for (link = LOG_LINKS (insn); link;
2407 link = XEXP (link, 1))
2408 if (XEXP (link, 0) == i3)
2409 XEXP (link, 0) = i1;
2410
2411 break;
2412 }
2413 }
2414 }
230d793d 2415 }
663522cb 2416
230d793d
RS
2417 /* Similarly, check for a case where we have a PARALLEL of two independent
2418 SETs but we started with three insns. In this case, we can do the sets
2419 as two separate insns. This case occurs when some SET allows two
2420 other insns to combine, but the destination of that SET is still live. */
2421
2422 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2423 && GET_CODE (newpat) == PARALLEL
2424 && XVECLEN (newpat, 0) == 2
2425 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2426 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2427 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2428 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2429 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2430 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2431 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2432 INSN_CUID (i2))
2433 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2434 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2435 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2436 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2437 XVECEXP (newpat, 0, 0))
2438 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
14a774a9
RK
2439 XVECEXP (newpat, 0, 1))
2440 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2441 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
230d793d 2442 {
e9a25f70
JL
2443 /* Normally, it doesn't matter which of the two is done first,
2444 but it does if one references cc0. In that case, it has to
2445 be first. */
2446#ifdef HAVE_cc0
2447 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2448 {
2449 newi2pat = XVECEXP (newpat, 0, 0);
2450 newpat = XVECEXP (newpat, 0, 1);
2451 }
2452 else
2453#endif
2454 {
2455 newi2pat = XVECEXP (newpat, 0, 1);
2456 newpat = XVECEXP (newpat, 0, 0);
2457 }
230d793d 2458
8e2f6e35 2459 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
a29ca9db 2460
230d793d 2461 if (i2_code_number >= 0)
8e2f6e35 2462 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
230d793d
RS
2463 }
2464
2465 /* If it still isn't recognized, fail and change things back the way they
2466 were. */
2467 if ((insn_code_number < 0
2468 /* Is the result a reasonable ASM_OPERANDS? */
2469 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2470 {
2471 undo_all ();
2472 return 0;
2473 }
2474
2475 /* If we had to change another insn, make sure it is valid also. */
2476 if (undobuf.other_insn)
2477 {
230d793d
RS
2478 rtx other_pat = PATTERN (undobuf.other_insn);
2479 rtx new_other_notes;
2480 rtx note, next;
2481
6e25d159
RK
2482 CLEAR_HARD_REG_SET (newpat_used_regs);
2483
8e2f6e35
BS
2484 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2485 &new_other_notes);
230d793d
RS
2486
2487 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2488 {
2489 undo_all ();
2490 return 0;
2491 }
2492
2493 PATTERN (undobuf.other_insn) = other_pat;
2494
2495 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2496 are still valid. Then add any non-duplicate notes added by
2497 recog_for_combine. */
2498 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2499 {
2500 next = XEXP (note, 1);
2501
2502 if (REG_NOTE_KIND (note) == REG_UNUSED
2503 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
1a26b032
RK
2504 {
2505 if (GET_CODE (XEXP (note, 0)) == REG)
b1f21e0a 2506 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
1a26b032
RK
2507
2508 remove_note (undobuf.other_insn, note);
2509 }
230d793d
RS
2510 }
2511
1a26b032
RK
2512 for (note = new_other_notes; note; note = XEXP (note, 1))
2513 if (GET_CODE (XEXP (note, 0)) == REG)
b1f21e0a 2514 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
1a26b032 2515
230d793d 2516 distribute_notes (new_other_notes, undobuf.other_insn,
5f4f0e22 2517 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
230d793d 2518 }
5ef17dd2 2519#ifdef HAVE_cc0
663522cb 2520 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
ec5c56db 2521 they are adjacent to each other or not. */
5ef17dd2
CC
2522 {
2523 rtx p = prev_nonnote_insn (i3);
663522cb
KH
2524 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2525 && sets_cc0_p (newi2pat))
5ef17dd2 2526 {
663522cb
KH
2527 undo_all ();
2528 return 0;
5ef17dd2 2529 }
663522cb
KH
2530 }
2531#endif
230d793d 2532
663522cb 2533 /* We now know that we can do this combination. Merge the insns and
230d793d
RS
2534 update the status of registers and LOG_LINKS. */
2535
2536 {
2537 rtx i3notes, i2notes, i1notes = 0;
2538 rtx i3links, i2links, i1links = 0;
2539 rtx midnotes = 0;
770ae6cc 2540 unsigned int regno;
ff3467a9
JW
2541 /* Compute which registers we expect to eliminate. newi2pat may be setting
2542 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2543 same as i3dest, in which case newi2pat may be setting i1dest. */
2544 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2545 || i2dest_in_i2src || i2dest_in_i1src
230d793d 2546 ? 0 : i2dest);
ff3467a9
JW
2547 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2548 || (newi2pat && reg_set_p (i1dest, newi2pat))
2549 ? 0 : i1dest);
230d793d
RS
2550
2551 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2552 clear them. */
2553 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2554 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2555 if (i1)
2556 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2557
2558 /* Ensure that we do not have something that should not be shared but
2559 occurs multiple times in the new insns. Check this by first
5089e22e 2560 resetting all the `used' flags and then copying anything is shared. */
230d793d
RS
2561
2562 reset_used_flags (i3notes);
2563 reset_used_flags (i2notes);
2564 reset_used_flags (i1notes);
2565 reset_used_flags (newpat);
2566 reset_used_flags (newi2pat);
2567 if (undobuf.other_insn)
2568 reset_used_flags (PATTERN (undobuf.other_insn));
2569
2570 i3notes = copy_rtx_if_shared (i3notes);
2571 i2notes = copy_rtx_if_shared (i2notes);
2572 i1notes = copy_rtx_if_shared (i1notes);
2573 newpat = copy_rtx_if_shared (newpat);
2574 newi2pat = copy_rtx_if_shared (newi2pat);
2575 if (undobuf.other_insn)
2576 reset_used_flags (PATTERN (undobuf.other_insn));
2577
2578 INSN_CODE (i3) = insn_code_number;
2579 PATTERN (i3) = newpat;
cddd8b72
AO
2580
2581 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2582 {
2583 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2584
2585 reset_used_flags (call_usage);
2586 call_usage = copy_rtx (call_usage);
2587
2588 if (substed_i2)
2589 replace_rtx (call_usage, i2dest, i2src);
2590
2591 if (substed_i1)
2592 replace_rtx (call_usage, i1dest, i1src);
2593
2594 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2595 }
2596
230d793d
RS
2597 if (undobuf.other_insn)
2598 INSN_CODE (undobuf.other_insn) = other_code_number;
2599
2600 /* We had one special case above where I2 had more than one set and
2601 we replaced a destination of one of those sets with the destination
2602 of I3. In that case, we have to update LOG_LINKS of insns later
176c9e6b
JW
2603 in this basic block. Note that this (expensive) case is rare.
2604
2605 Also, in this case, we must pretend that all REG_NOTEs for I2
2606 actually came from I3, so that REG_UNUSED notes from I2 will be
2607 properly handled. */
2608
c7be4f66 2609 if (i3_subst_into_i2)
176c9e6b 2610 {
1786009e 2611 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
95ac07b0
AO
2612 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2613 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
1786009e
ZW
2614 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2615 && ! find_reg_note (i2, REG_UNUSED,
2616 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2617 for (temp = NEXT_INSN (i2);
f6366fc7
ZD
2618 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2619 || this_basic_block->head != temp);
1786009e
ZW
2620 temp = NEXT_INSN (temp))
2621 if (temp != i3 && INSN_P (temp))
2622 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2623 if (XEXP (link, 0) == i2)
2624 XEXP (link, 0) = i3;
176c9e6b
JW
2625
2626 if (i3notes)
2627 {
2628 rtx link = i3notes;
2629 while (XEXP (link, 1))
2630 link = XEXP (link, 1);
2631 XEXP (link, 1) = i2notes;
2632 }
2633 else
2634 i3notes = i2notes;
2635 i2notes = 0;
2636 }
230d793d
RS
2637
2638 LOG_LINKS (i3) = 0;
2639 REG_NOTES (i3) = 0;
2640 LOG_LINKS (i2) = 0;
2641 REG_NOTES (i2) = 0;
2642
2643 if (newi2pat)
2644 {
2645 INSN_CODE (i2) = i2_code_number;
2646 PATTERN (i2) = newi2pat;
2647 }
2648 else
2649 {
2650 PUT_CODE (i2, NOTE);
2651 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2652 NOTE_SOURCE_FILE (i2) = 0;
2653 }
2654
2655 if (i1)
2656 {
2657 LOG_LINKS (i1) = 0;
2658 REG_NOTES (i1) = 0;
2659 PUT_CODE (i1, NOTE);
2660 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2661 NOTE_SOURCE_FILE (i1) = 0;
2662 }
2663
2664 /* Get death notes for everything that is now used in either I3 or
663522cb 2665 I2 and used to die in a previous insn. If we built two new
6eb12cef
RK
2666 patterns, move from I1 to I2 then I2 to I3 so that we get the
2667 proper movement on registers that I2 modifies. */
230d793d 2668
230d793d 2669 if (newi2pat)
6eb12cef
RK
2670 {
2671 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2672 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2673 }
2674 else
2675 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2676 i3, &midnotes);
230d793d
RS
2677
2678 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2679 if (i3notes)
5f4f0e22
CH
2680 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2681 elim_i2, elim_i1);
230d793d 2682 if (i2notes)
5f4f0e22
CH
2683 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2684 elim_i2, elim_i1);
230d793d 2685 if (i1notes)
5f4f0e22
CH
2686 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2687 elim_i2, elim_i1);
230d793d 2688 if (midnotes)
5f4f0e22
CH
2689 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2690 elim_i2, elim_i1);
230d793d
RS
2691
2692 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2693 know these are REG_UNUSED and want them to go to the desired insn,
663522cb 2694 so we always pass it as i3. We have not counted the notes in
1a26b032
RK
2695 reg_n_deaths yet, so we need to do so now. */
2696
230d793d 2697 if (newi2pat && new_i2_notes)
1a26b032
RK
2698 {
2699 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2700 if (GET_CODE (XEXP (temp, 0)) == REG)
b1f21e0a 2701 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
663522cb 2702
1a26b032
RK
2703 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2704 }
2705
230d793d 2706 if (new_i3_notes)
1a26b032
RK
2707 {
2708 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2709 if (GET_CODE (XEXP (temp, 0)) == REG)
b1f21e0a 2710 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
663522cb 2711
1a26b032
RK
2712 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2713 }
230d793d
RS
2714
2715 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
e9a25f70
JL
2716 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2717 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2718 in that case, it might delete I2. Similarly for I2 and I1.
1a26b032
RK
2719 Show an additional death due to the REG_DEAD note we make here. If
2720 we discard it in distribute_notes, we will decrement it again. */
d0ab8cd3 2721
230d793d 2722 if (i3dest_killed)
1a26b032
RK
2723 {
2724 if (GET_CODE (i3dest_killed) == REG)
b1f21e0a 2725 REG_N_DEATHS (REGNO (i3dest_killed))++;
1a26b032 2726
e9a25f70 2727 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
38a448ca
RH
2728 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2729 NULL_RTX),
ff3467a9 2730 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
e9a25f70 2731 else
38a448ca
RH
2732 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2733 NULL_RTX),
e9a25f70 2734 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
ff3467a9 2735 elim_i2, elim_i1);
1a26b032 2736 }
58c8c593 2737
230d793d 2738 if (i2dest_in_i2src)
58c8c593 2739 {
1a26b032 2740 if (GET_CODE (i2dest) == REG)
b1f21e0a 2741 REG_N_DEATHS (REGNO (i2dest))++;
1a26b032 2742
58c8c593 2743 if (newi2pat && reg_set_p (i2dest, newi2pat))
38a448ca 2744 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
58c8c593
RK
2745 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2746 else
38a448ca 2747 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
58c8c593
RK
2748 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2749 NULL_RTX, NULL_RTX);
2750 }
2751
230d793d 2752 if (i1dest_in_i1src)
58c8c593 2753 {
1a26b032 2754 if (GET_CODE (i1dest) == REG)
b1f21e0a 2755 REG_N_DEATHS (REGNO (i1dest))++;
1a26b032 2756
58c8c593 2757 if (newi2pat && reg_set_p (i1dest, newi2pat))
38a448ca 2758 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
58c8c593
RK
2759 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2760 else
38a448ca 2761 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
58c8c593
RK
2762 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2763 NULL_RTX, NULL_RTX);
2764 }
230d793d
RS
2765
2766 distribute_links (i3links);
2767 distribute_links (i2links);
2768 distribute_links (i1links);
2769
2770 if (GET_CODE (i2dest) == REG)
2771 {
d0ab8cd3
RK
2772 rtx link;
2773 rtx i2_insn = 0, i2_val = 0, set;
2774
2775 /* The insn that used to set this register doesn't exist, and
2776 this life of the register may not exist either. See if one of
663522cb 2777 I3's links points to an insn that sets I2DEST. If it does,
d0ab8cd3
RK
2778 that is now the last known value for I2DEST. If we don't update
2779 this and I2 set the register to a value that depended on its old
230d793d
RS
2780 contents, we will get confused. If this insn is used, thing
2781 will be set correctly in combine_instructions. */
d0ab8cd3
RK
2782
2783 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2784 if ((set = single_set (XEXP (link, 0))) != 0
2785 && rtx_equal_p (i2dest, SET_DEST (set)))
2786 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2787
2788 record_value_for_reg (i2dest, i2_insn, i2_val);
230d793d
RS
2789
2790 /* If the reg formerly set in I2 died only once and that was in I3,
2791 zero its use count so it won't make `reload' do any work. */
538fe8cd
ILT
2792 if (! added_sets_2
2793 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2794 && ! i2dest_in_i2src)
230d793d
RS
2795 {
2796 regno = REGNO (i2dest);
b1f21e0a 2797 REG_N_SETS (regno)--;
230d793d
RS
2798 }
2799 }
2800
2801 if (i1 && GET_CODE (i1dest) == REG)
2802 {
d0ab8cd3
RK
2803 rtx link;
2804 rtx i1_insn = 0, i1_val = 0, set;
2805
2806 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2807 if ((set = single_set (XEXP (link, 0))) != 0
2808 && rtx_equal_p (i1dest, SET_DEST (set)))
2809 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2810
2811 record_value_for_reg (i1dest, i1_insn, i1_val);
2812
230d793d 2813 regno = REGNO (i1dest);
5af91171 2814 if (! added_sets_1 && ! i1dest_in_i1src)
770ae6cc 2815 REG_N_SETS (regno)--;
230d793d
RS
2816 }
2817
951553af 2818 /* Update reg_nonzero_bits et al for any changes that may have been made
663522cb 2819 to this insn. The order of set_nonzero_bits_and_sign_copies() is
5fb7c247 2820 important. Because newi2pat can affect nonzero_bits of newpat */
22609cbf 2821 if (newi2pat)
84832317 2822 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
5fb7c247 2823 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
22609cbf 2824
44a76fc8
AG
2825 /* Set new_direct_jump_p if a new return or simple jump instruction
2826 has been created.
2827
663522cb 2828 If I3 is now an unconditional jump, ensure that it has a
230d793d 2829 BARRIER following it since it may have initially been a
381ee8af 2830 conditional jump. It may also be the last nonnote insn. */
663522cb 2831
f40f4c8e 2832 if (returnjump_p (i3) || any_uncondjump_p (i3))
44a76fc8
AG
2833 {
2834 *new_direct_jump_p = 1;
230d793d 2835
44a76fc8
AG
2836 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2837 || GET_CODE (temp) != BARRIER)
2838 emit_barrier_after (i3);
2839 }
f40f4c8e
RS
2840
2841 if (undobuf.other_insn != NULL_RTX
2842 && (returnjump_p (undobuf.other_insn)
2843 || any_uncondjump_p (undobuf.other_insn)))
2844 {
2845 *new_direct_jump_p = 1;
2846
2847 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2848 || GET_CODE (temp) != BARRIER)
2849 emit_barrier_after (undobuf.other_insn);
2850 }
2851
592a6d1d
JH
2852 /* An NOOP jump does not need barrier, but it does need cleaning up
2853 of CFG. */
2854 if (GET_CODE (newpat) == SET
2855 && SET_SRC (newpat) == pc_rtx
2856 && SET_DEST (newpat) == pc_rtx)
2857 *new_direct_jump_p = 1;
230d793d
RS
2858 }
2859
2860 combine_successes++;
e7749837 2861 undo_commit ();
230d793d 2862
bcd49eb7
JW
2863 /* Clear this here, so that subsequent get_last_value calls are not
2864 affected. */
2865 subst_prev_insn = NULL_RTX;
2866
abe6e52f
RK
2867 if (added_links_insn
2868 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2869 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2870 return added_links_insn;
2871 else
2872 return newi2pat ? i2 : i3;
230d793d
RS
2873}
2874\f
2875/* Undo all the modifications recorded in undobuf. */
2876
2877static void
2878undo_all ()
2879{
241cea85
RK
2880 struct undo *undo, *next;
2881
2882 for (undo = undobuf.undos; undo; undo = next)
7c046e4e 2883 {
241cea85
RK
2884 next = undo->next;
2885 if (undo->is_int)
2886 *undo->where.i = undo->old_contents.i;
7c046e4e 2887 else
241cea85
RK
2888 *undo->where.r = undo->old_contents.r;
2889
2890 undo->next = undobuf.frees;
2891 undobuf.frees = undo;
7c046e4e 2892 }
230d793d 2893
f1c6ba8b 2894 undobuf.undos = 0;
bcd49eb7
JW
2895
2896 /* Clear this here, so that subsequent get_last_value calls are not
2897 affected. */
2898 subst_prev_insn = NULL_RTX;
230d793d 2899}
e7749837
RH
2900
2901/* We've committed to accepting the changes we made. Move all
2902 of the undos to the free list. */
2903
2904static void
2905undo_commit ()
2906{
2907 struct undo *undo, *next;
2908
2909 for (undo = undobuf.undos; undo; undo = next)
2910 {
2911 next = undo->next;
2912 undo->next = undobuf.frees;
2913 undobuf.frees = undo;
2914 }
f1c6ba8b 2915 undobuf.undos = 0;
e7749837
RH
2916}
2917
230d793d
RS
2918\f
2919/* Find the innermost point within the rtx at LOC, possibly LOC itself,
d0ab8cd3
RK
2920 where we have an arithmetic expression and return that point. LOC will
2921 be inside INSN.
230d793d
RS
2922
2923 try_combine will call this function to see if an insn can be split into
2924 two insns. */
2925
2926static rtx *
d0ab8cd3 2927find_split_point (loc, insn)
230d793d 2928 rtx *loc;
d0ab8cd3 2929 rtx insn;
230d793d
RS
2930{
2931 rtx x = *loc;
2932 enum rtx_code code = GET_CODE (x);
2933 rtx *split;
770ae6cc
RK
2934 unsigned HOST_WIDE_INT len = 0;
2935 HOST_WIDE_INT pos = 0;
2936 int unsignedp = 0;
6a651371 2937 rtx inner = NULL_RTX;
230d793d
RS
2938
2939 /* First special-case some codes. */
2940 switch (code)
2941 {
2942 case SUBREG:
2943#ifdef INSN_SCHEDULING
2944 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2945 point. */
2946 if (GET_CODE (SUBREG_REG (x)) == MEM)
2947 return loc;
2948#endif
d0ab8cd3 2949 return find_split_point (&SUBREG_REG (x), insn);
230d793d 2950
230d793d 2951 case MEM:
916f14f1 2952#ifdef HAVE_lo_sum
230d793d
RS
2953 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2954 using LO_SUM and HIGH. */
2955 if (GET_CODE (XEXP (x, 0)) == CONST
2956 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2957 {
2958 SUBST (XEXP (x, 0),
f1c6ba8b
RK
2959 gen_rtx_LO_SUM (Pmode,
2960 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2961 XEXP (x, 0)));
230d793d
RS
2962 return &XEXP (XEXP (x, 0), 0);
2963 }
230d793d
RS
2964#endif
2965
916f14f1
RK
2966 /* If we have a PLUS whose second operand is a constant and the
2967 address is not valid, perhaps will can split it up using
2968 the machine-specific way to split large constants. We use
ddd5a7c1 2969 the first pseudo-reg (one of the virtual regs) as a placeholder;
916f14f1
RK
2970 it will not remain in the result. */
2971 if (GET_CODE (XEXP (x, 0)) == PLUS
2972 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2973 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2974 {
2975 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
38a448ca 2976 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
916f14f1
RK
2977 subst_insn);
2978
2979 /* This should have produced two insns, each of which sets our
2980 placeholder. If the source of the second is a valid address,
2981 we can make put both sources together and make a split point
2982 in the middle. */
2983
2f937369
DM
2984 if (seq
2985 && NEXT_INSN (seq) != NULL_RTX
2986 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2987 && GET_CODE (seq) == INSN
2988 && GET_CODE (PATTERN (seq)) == SET
2989 && SET_DEST (PATTERN (seq)) == reg
916f14f1 2990 && ! reg_mentioned_p (reg,
2f937369
DM
2991 SET_SRC (PATTERN (seq)))
2992 && GET_CODE (NEXT_INSN (seq)) == INSN
2993 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2994 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
916f14f1 2995 && memory_address_p (GET_MODE (x),
2f937369 2996 SET_SRC (PATTERN (NEXT_INSN (seq)))))
916f14f1 2997 {
2f937369
DM
2998 rtx src1 = SET_SRC (PATTERN (seq));
2999 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
916f14f1
RK
3000
3001 /* Replace the placeholder in SRC2 with SRC1. If we can
3002 find where in SRC2 it was placed, that can become our
3003 split point and we can replace this address with SRC2.
3004 Just try two obvious places. */
3005
3006 src2 = replace_rtx (src2, reg, src1);
3007 split = 0;
3008 if (XEXP (src2, 0) == src1)
3009 split = &XEXP (src2, 0);
3010 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3011 && XEXP (XEXP (src2, 0), 0) == src1)
3012 split = &XEXP (XEXP (src2, 0), 0);
3013
3014 if (split)
3015 {
3016 SUBST (XEXP (x, 0), src2);
3017 return split;
3018 }
3019 }
663522cb 3020
1a26b032
RK
3021 /* If that didn't work, perhaps the first operand is complex and
3022 needs to be computed separately, so make a split point there.
3023 This will occur on machines that just support REG + CONST
3024 and have a constant moved through some previous computation. */
3025
3026 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3027 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3028 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3029 == 'o')))
3030 return &XEXP (XEXP (x, 0), 0);
916f14f1
RK
3031 }
3032 break;
3033
230d793d
RS
3034 case SET:
3035#ifdef HAVE_cc0
3036 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3037 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3038 we need to put the operand into a register. So split at that
3039 point. */
3040
3041 if (SET_DEST (x) == cc0_rtx
3042 && GET_CODE (SET_SRC (x)) != COMPARE
3043 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3044 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3045 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3046 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3047 return &SET_SRC (x);
3048#endif
3049
3050 /* See if we can split SET_SRC as it stands. */
d0ab8cd3 3051 split = find_split_point (&SET_SRC (x), insn);
230d793d
RS
3052 if (split && split != &SET_SRC (x))
3053 return split;
3054
041d7180
JL
3055 /* See if we can split SET_DEST as it stands. */
3056 split = find_split_point (&SET_DEST (x), insn);
3057 if (split && split != &SET_DEST (x))
3058 return split;
3059
230d793d
RS
3060 /* See if this is a bitfield assignment with everything constant. If
3061 so, this is an IOR of an AND, so split it into that. */
3062 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3063 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
5f4f0e22 3064 <= HOST_BITS_PER_WIDE_INT)
230d793d
RS
3065 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3066 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3067 && GET_CODE (SET_SRC (x)) == CONST_INT
3068 && ((INTVAL (XEXP (SET_DEST (x), 1))
cf0d9408 3069 + INTVAL (XEXP (SET_DEST (x), 2)))
230d793d
RS
3070 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3071 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3072 {
770ae6cc
RK
3073 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3074 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3075 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
230d793d
RS
3076 rtx dest = XEXP (SET_DEST (x), 0);
3077 enum machine_mode mode = GET_MODE (dest);
5f4f0e22 3078 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
230d793d 3079
f76b9db2
ILT
3080 if (BITS_BIG_ENDIAN)
3081 pos = GET_MODE_BITSIZE (mode) - len - pos;
230d793d 3082
770ae6cc 3083 if (src == mask)
230d793d 3084 SUBST (SET_SRC (x),
5f4f0e22 3085 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
230d793d
RS
3086 else
3087 SUBST (SET_SRC (x),
3088 gen_binary (IOR, mode,
663522cb 3089 gen_binary (AND, mode, dest,
da6886f6
FS
3090 gen_int_mode (~(mask << pos),
3091 mode)),
5f4f0e22 3092 GEN_INT (src << pos)));
230d793d
RS
3093
3094 SUBST (SET_DEST (x), dest);
3095
d0ab8cd3 3096 split = find_split_point (&SET_SRC (x), insn);
230d793d
RS
3097 if (split && split != &SET_SRC (x))
3098 return split;
3099 }
3100
3101 /* Otherwise, see if this is an operation that we can split into two.
3102 If so, try to split that. */
3103 code = GET_CODE (SET_SRC (x));
3104
3105 switch (code)
3106 {
d0ab8cd3
RK
3107 case AND:
3108 /* If we are AND'ing with a large constant that is only a single
3109 bit and the result is only being used in a context where we
da7d8304 3110 need to know if it is zero or nonzero, replace it with a bit
d0ab8cd3
RK
3111 extraction. This will avoid the large constant, which might
3112 have taken more than one insn to make. If the constant were
3113 not a valid argument to the AND but took only one insn to make,
3114 this is no worse, but if it took more than one insn, it will
3115 be better. */
3116
3117 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3118 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3119 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3120 && GET_CODE (SET_DEST (x)) == REG
cf0d9408 3121 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
d0ab8cd3
RK
3122 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3123 && XEXP (*split, 0) == SET_DEST (x)
3124 && XEXP (*split, 1) == const0_rtx)
3125 {
76184def
DE
3126 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3127 XEXP (SET_SRC (x), 0),
3128 pos, NULL_RTX, 1, 1, 0, 0);
3129 if (extraction != 0)
3130 {
3131 SUBST (SET_SRC (x), extraction);
3132 return find_split_point (loc, insn);
3133 }
d0ab8cd3
RK
3134 }
3135 break;
3136
1a6ec070
RK
3137 case NE:
3138 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
ec5c56db 3139 is known to be on, this can be converted into a NEG of a shift. */
1a6ec070
RK
3140 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3141 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4eb2cb10 3142 && 1 <= (pos = exact_log2
1a6ec070
RK
3143 (nonzero_bits (XEXP (SET_SRC (x), 0),
3144 GET_MODE (XEXP (SET_SRC (x), 0))))))
3145 {
3146 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3147
3148 SUBST (SET_SRC (x),
f1c6ba8b
RK
3149 gen_rtx_NEG (mode,
3150 gen_rtx_LSHIFTRT (mode,
3151 XEXP (SET_SRC (x), 0),
3152 GEN_INT (pos))));
1a6ec070
RK
3153
3154 split = find_split_point (&SET_SRC (x), insn);
3155 if (split && split != &SET_SRC (x))
3156 return split;
3157 }
3158 break;
3159
230d793d
RS
3160 case SIGN_EXTEND:
3161 inner = XEXP (SET_SRC (x), 0);
101c1a3d
JL
3162
3163 /* We can't optimize if either mode is a partial integer
3164 mode as we don't know how many bits are significant
3165 in those modes. */
3166 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3167 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3168 break;
3169
230d793d
RS
3170 pos = 0;
3171 len = GET_MODE_BITSIZE (GET_MODE (inner));
3172 unsignedp = 0;
3173 break;
3174
3175 case SIGN_EXTRACT:
3176 case ZERO_EXTRACT:
3177 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3178 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3179 {
3180 inner = XEXP (SET_SRC (x), 0);
3181 len = INTVAL (XEXP (SET_SRC (x), 1));
3182 pos = INTVAL (XEXP (SET_SRC (x), 2));
3183
f76b9db2
ILT
3184 if (BITS_BIG_ENDIAN)
3185 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
230d793d
RS
3186 unsignedp = (code == ZERO_EXTRACT);
3187 }
3188 break;
e9a25f70
JL
3189
3190 default:
3191 break;
230d793d
RS
3192 }
3193
3194 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3195 {
3196 enum machine_mode mode = GET_MODE (SET_SRC (x));
3197
d0ab8cd3
RK
3198 /* For unsigned, we have a choice of a shift followed by an
3199 AND or two shifts. Use two shifts for field sizes where the
3200 constant might be too large. We assume here that we can
3201 always at least get 8-bit constants in an AND insn, which is
3202 true for every current RISC. */
3203
3204 if (unsignedp && len <= 8)
230d793d
RS
3205 {
3206 SUBST (SET_SRC (x),
f1c6ba8b
RK
3207 gen_rtx_AND (mode,
3208 gen_rtx_LSHIFTRT
3209 (mode, gen_lowpart_for_combine (mode, inner),
3210 GEN_INT (pos)),
3211 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
230d793d 3212
d0ab8cd3 3213 split = find_split_point (&SET_SRC (x), insn);
230d793d
RS
3214 if (split && split != &SET_SRC (x))
3215 return split;
3216 }
3217 else
3218 {
3219 SUBST (SET_SRC (x),
f1c6ba8b 3220 gen_rtx_fmt_ee
d0ab8cd3 3221 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
f1c6ba8b
RK
3222 gen_rtx_ASHIFT (mode,
3223 gen_lowpart_for_combine (mode, inner),
3224 GEN_INT (GET_MODE_BITSIZE (mode)
3225 - len - pos)),
5f4f0e22 3226 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
230d793d 3227
d0ab8cd3 3228 split = find_split_point (&SET_SRC (x), insn);
230d793d
RS
3229 if (split && split != &SET_SRC (x))
3230 return split;
3231 }
3232 }
3233
3234 /* See if this is a simple operation with a constant as the second
3235 operand. It might be that this constant is out of range and hence
3236 could be used as a split point. */
3237 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3238 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3239 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3240 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3241 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3242 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3243 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3244 == 'o'))))
3245 return &XEXP (SET_SRC (x), 1);
3246
3247 /* Finally, see if this is a simple operation with its first operand
3248 not in a register. The operation might require this operand in a
3249 register, so return it as a split point. We can always do this
3250 because if the first operand were another operation, we would have
3251 already found it as a split point. */
3252 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3253 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3254 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3255 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3256 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3257 return &XEXP (SET_SRC (x), 0);
3258
3259 return 0;
3260
3261 case AND:
3262 case IOR:
3263 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3264 it is better to write this as (not (ior A B)) so we can split it.
3265 Similarly for IOR. */
3266 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3267 {
3268 SUBST (*loc,
f1c6ba8b
RK
3269 gen_rtx_NOT (GET_MODE (x),
3270 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3271 GET_MODE (x),
3272 XEXP (XEXP (x, 0), 0),
3273 XEXP (XEXP (x, 1), 0))));
d0ab8cd3 3274 return find_split_point (loc, insn);
230d793d
RS
3275 }
3276
3277 /* Many RISC machines have a large set of logical insns. If the
3278 second operand is a NOT, put it first so we will try to split the
3279 other operand first. */
3280 if (GET_CODE (XEXP (x, 1)) == NOT)
3281 {
3282 rtx tem = XEXP (x, 0);
3283 SUBST (XEXP (x, 0), XEXP (x, 1));
3284 SUBST (XEXP (x, 1), tem);
3285 }
3286 break;
e9a25f70
JL
3287
3288 default:
3289 break;
230d793d
RS
3290 }
3291
3292 /* Otherwise, select our actions depending on our rtx class. */
3293 switch (GET_RTX_CLASS (code))
3294 {
3295 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3296 case '3':
d0ab8cd3 3297 split = find_split_point (&XEXP (x, 2), insn);
230d793d
RS
3298 if (split)
3299 return split;
0f41302f 3300 /* ... fall through ... */
230d793d
RS
3301 case '2':
3302 case 'c':
3303 case '<':
d0ab8cd3 3304 split = find_split_point (&XEXP (x, 1), insn);
230d793d
RS
3305 if (split)
3306 return split;
0f41302f 3307 /* ... fall through ... */
230d793d
RS
3308 case '1':
3309 /* Some machines have (and (shift ...) ...) insns. If X is not
3310 an AND, but XEXP (X, 0) is, use it as our split point. */
3311 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3312 return &XEXP (x, 0);
3313
d0ab8cd3 3314 split = find_split_point (&XEXP (x, 0), insn);
230d793d
RS
3315 if (split)
3316 return split;
3317 return loc;
3318 }
3319
3320 /* Otherwise, we don't have a split point. */
3321 return 0;
3322}
3323\f
3324/* Throughout X, replace FROM with TO, and return the result.
3325 The result is TO if X is FROM;
3326 otherwise the result is X, but its contents may have been modified.
3327 If they were modified, a record was made in undobuf so that
3328 undo_all will (among other things) return X to its original state.
3329
3330 If the number of changes necessary is too much to record to undo,
3331 the excess changes are not made, so the result is invalid.
3332 The changes already made can still be undone.
3333 undobuf.num_undo is incremented for such changes, so by testing that
3334 the caller can tell whether the result is valid.
3335
3336 `n_occurrences' is incremented each time FROM is replaced.
663522cb 3337
da7d8304 3338 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
230d793d 3339
da7d8304
KH
3340 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3341 by copying if `n_occurrences' is nonzero. */
230d793d
RS
3342
3343static rtx
3344subst (x, from, to, in_dest, unique_copy)
b3694847 3345 rtx x, from, to;
230d793d
RS
3346 int in_dest;
3347 int unique_copy;
3348{
b3694847 3349 enum rtx_code code = GET_CODE (x);
230d793d 3350 enum machine_mode op0_mode = VOIDmode;
b3694847
SS
3351 const char *fmt;
3352 int len, i;
8079805d 3353 rtx new;
230d793d
RS
3354
3355/* Two expressions are equal if they are identical copies of a shared
3356 RTX or if they are both registers with the same register number
3357 and mode. */
3358
3359#define COMBINE_RTX_EQUAL_P(X,Y) \
3360 ((X) == (Y) \
3361 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3362 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3363
3364 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3365 {
3366 n_occurrences++;
3367 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3368 }
3369
3370 /* If X and FROM are the same register but different modes, they will
663522cb 3371 not have been seen as equal above. However, flow.c will make a
230d793d
RS
3372 LOG_LINKS entry for that case. If we do nothing, we will try to
3373 rerecognize our original insn and, when it succeeds, we will
3374 delete the feeding insn, which is incorrect.
3375
3376 So force this insn not to match in this (rare) case. */
3377 if (! in_dest && code == REG && GET_CODE (from) == REG
3378 && REGNO (x) == REGNO (from))
38a448ca 3379 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
230d793d
RS
3380
3381 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3382 of which may contain things that can be combined. */
3383 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3384 return x;
3385
3386 /* It is possible to have a subexpression appear twice in the insn.
3387 Suppose that FROM is a register that appears within TO.
3388 Then, after that subexpression has been scanned once by `subst',
3389 the second time it is scanned, TO may be found. If we were
3390 to scan TO here, we would find FROM within it and create a
3391 self-referent rtl structure which is completely wrong. */
3392 if (COMBINE_RTX_EQUAL_P (x, to))
3393 return to;
3394
4f4b3679
RH
3395 /* Parallel asm_operands need special attention because all of the
3396 inputs are shared across the arms. Furthermore, unsharing the
3397 rtl results in recognition failures. Failure to handle this case
3398 specially can result in circular rtl.
3399
3400 Solve this by doing a normal pass across the first entry of the
3401 parallel, and only processing the SET_DESTs of the subsequent
3402 entries. Ug. */
3403
3404 if (code == PARALLEL
3405 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3406 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
230d793d 3407 {
4f4b3679
RH
3408 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3409
3410 /* If this substitution failed, this whole thing fails. */
3411 if (GET_CODE (new) == CLOBBER
3412 && XEXP (new, 0) == const0_rtx)
3413 return new;
3414
3415 SUBST (XVECEXP (x, 0, 0), new);
3416
3417 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
230d793d 3418 {
4f4b3679 3419 rtx dest = SET_DEST (XVECEXP (x, 0, i));
663522cb 3420
4f4b3679
RH
3421 if (GET_CODE (dest) != REG
3422 && GET_CODE (dest) != CC0
3423 && GET_CODE (dest) != PC)
230d793d 3424 {
4f4b3679 3425 new = subst (dest, from, to, 0, unique_copy);
230d793d 3426
4f4b3679
RH
3427 /* If this substitution failed, this whole thing fails. */
3428 if (GET_CODE (new) == CLOBBER
3429 && XEXP (new, 0) == const0_rtx)
3430 return new;
230d793d 3431
4f4b3679 3432 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
230d793d
RS
3433 }
3434 }
4f4b3679
RH
3435 }
3436 else
3437 {
3438 len = GET_RTX_LENGTH (code);
3439 fmt = GET_RTX_FORMAT (code);
3440
3441 /* We don't need to process a SET_DEST that is a register, CC0,
3442 or PC, so set up to skip this common case. All other cases
3443 where we want to suppress replacing something inside a
3444 SET_SRC are handled via the IN_DEST operand. */
3445 if (code == SET
3446 && (GET_CODE (SET_DEST (x)) == REG
3447 || GET_CODE (SET_DEST (x)) == CC0
3448 || GET_CODE (SET_DEST (x)) == PC))
3449 fmt = "ie";
3450
3451 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3452 constant. */
3453 if (fmt[0] == 'e')
3454 op0_mode = GET_MODE (XEXP (x, 0));
3455
3456 for (i = 0; i < len; i++)
230d793d 3457 {
4f4b3679 3458 if (fmt[i] == 'E')
230d793d 3459 {
b3694847 3460 int j;
4f4b3679
RH
3461 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3462 {
3463 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3464 {
3465 new = (unique_copy && n_occurrences
3466 ? copy_rtx (to) : to);
3467 n_occurrences++;
3468 }
3469 else
3470 {
3471 new = subst (XVECEXP (x, i, j), from, to, 0,
3472 unique_copy);
3473
3474 /* If this substitution failed, this whole thing
3475 fails. */
3476 if (GET_CODE (new) == CLOBBER
3477 && XEXP (new, 0) == const0_rtx)
3478 return new;
3479 }
3480
3481 SUBST (XVECEXP (x, i, j), new);
3482 }
3483 }
3484 else if (fmt[i] == 'e')
3485 {
0a33d11e
RH
3486 /* If this is a register being set, ignore it. */
3487 new = XEXP (x, i);
3488 if (in_dest
3489 && (code == SUBREG || code == STRICT_LOW_PART
3490 || code == ZERO_EXTRACT)
3491 && i == 0
3492 && GET_CODE (new) == REG)
3493 ;
3494
3495 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4f4b3679
RH
3496 {
3497 /* In general, don't install a subreg involving two
3498 modes not tieable. It can worsen register
3499 allocation, and can even make invalid reload
3500 insns, since the reg inside may need to be copied
3501 from in the outside mode, and that may be invalid
3502 if it is an fp reg copied in integer mode.
3503
3504 We allow two exceptions to this: It is valid if
3505 it is inside another SUBREG and the mode of that
3506 SUBREG and the mode of the inside of TO is
3507 tieable and it is valid if X is a SET that copies
3508 FROM to CC0. */
3509
3510 if (GET_CODE (to) == SUBREG
3511 && ! MODES_TIEABLE_P (GET_MODE (to),
3512 GET_MODE (SUBREG_REG (to)))
3513 && ! (code == SUBREG
3514 && MODES_TIEABLE_P (GET_MODE (x),
3515 GET_MODE (SUBREG_REG (to))))
42301240 3516#ifdef HAVE_cc0
4f4b3679 3517 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
42301240 3518#endif
4f4b3679
RH
3519 )
3520 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
42301240 3521
02188693 3522#ifdef CLASS_CANNOT_CHANGE_MODE
ed8afe3a
GK
3523 if (code == SUBREG
3524 && GET_CODE (to) == REG
3525 && REGNO (to) < FIRST_PSEUDO_REGISTER
3526 && (TEST_HARD_REG_BIT
02188693 3527 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
ed8afe3a 3528 REGNO (to)))
02188693
RH
3529 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3530 GET_MODE (x)))
ed8afe3a
GK
3531 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3532#endif
3533
4f4b3679
RH
3534 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3535 n_occurrences++;
3536 }
3537 else
3538 /* If we are in a SET_DEST, suppress most cases unless we
3539 have gone inside a MEM, in which case we want to
3540 simplify the address. We assume here that things that
3541 are actually part of the destination have their inner
663522cb 3542 parts in the first expression. This is true for SUBREG,
4f4b3679
RH
3543 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3544 things aside from REG and MEM that should appear in a
3545 SET_DEST. */
3546 new = subst (XEXP (x, i), from, to,
3547 (((in_dest
3548 && (code == SUBREG || code == STRICT_LOW_PART
3549 || code == ZERO_EXTRACT))
3550 || code == SET)
3551 && i == 0), unique_copy);
3552
3553 /* If we found that we will have to reject this combination,
3554 indicate that by returning the CLOBBER ourselves, rather than
3555 an expression containing it. This will speed things up as
3556 well as prevent accidents where two CLOBBERs are considered
3557 to be equal, thus producing an incorrect simplification. */
3558
3559 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3560 return new;
3561
4161da12
AO
3562 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3563 {
b0dd4808 3564 enum machine_mode mode = GET_MODE (x);
2e676d78 3565
4161da12
AO
3566 x = simplify_subreg (GET_MODE (x), new,
3567 GET_MODE (SUBREG_REG (x)),
3568 SUBREG_BYTE (x));
3569 if (! x)
b0dd4808 3570 x = gen_rtx_CLOBBER (mode, const0_rtx);
4161da12
AO
3571 }
3572 else if (GET_CODE (new) == CONST_INT
3573 && GET_CODE (x) == ZERO_EXTEND)
3574 {
3575 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3576 new, GET_MODE (XEXP (x, 0)));
3577 if (! x)
3578 abort ();
3579 }
3580 else
3581 SUBST (XEXP (x, i), new);
230d793d 3582 }
230d793d
RS
3583 }
3584 }
3585
8079805d
RK
3586 /* Try to simplify X. If the simplification changed the code, it is likely
3587 that further simplification will help, so loop, but limit the number
3588 of repetitions that will be performed. */
3589
3590 for (i = 0; i < 4; i++)
3591 {
3592 /* If X is sufficiently simple, don't bother trying to do anything
3593 with it. */
3594 if (code != CONST_INT && code != REG && code != CLOBBER)
31ec4e5e 3595 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
d0ab8cd3 3596
8079805d
RK
3597 if (GET_CODE (x) == code)
3598 break;
d0ab8cd3 3599
8079805d 3600 code = GET_CODE (x);
eeb43d32 3601
8079805d
RK
3602 /* We no longer know the original mode of operand 0 since we
3603 have changed the form of X) */
3604 op0_mode = VOIDmode;
3605 }
eeb43d32 3606
8079805d
RK
3607 return x;
3608}
3609\f
3610/* Simplify X, a piece of RTL. We just operate on the expression at the
3611 outer level; call `subst' to simplify recursively. Return the new
3612 expression.
3613
3614 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3615 will be the iteration even if an expression with a code different from
3616 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
eeb43d32 3617
8079805d 3618static rtx
31ec4e5e 3619combine_simplify_rtx (x, op0_mode, last, in_dest)
8079805d
RK
3620 rtx x;
3621 enum machine_mode op0_mode;
3622 int last;
3623 int in_dest;
3624{
3625 enum rtx_code code = GET_CODE (x);
3626 enum machine_mode mode = GET_MODE (x);
3627 rtx temp;
9a915772 3628 rtx reversed;
8079805d 3629 int i;
d0ab8cd3 3630
230d793d
RS
3631 /* If this is a commutative operation, put a constant last and a complex
3632 expression first. We don't need to do this for comparisons here. */
3633 if (GET_RTX_CLASS (code) == 'c'
e5c56fd9 3634 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
230d793d
RS
3635 {
3636 temp = XEXP (x, 0);
3637 SUBST (XEXP (x, 0), XEXP (x, 1));
3638 SUBST (XEXP (x, 1), temp);
3639 }
3640
22609cbf
RK
3641 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3642 sign extension of a PLUS with a constant, reverse the order of the sign
3643 extension and the addition. Note that this not the same as the original
3644 code, but overflow is undefined for signed values. Also note that the
3645 PLUS will have been partially moved "inside" the sign-extension, so that
3646 the first operand of X will really look like:
3647 (ashiftrt (plus (ashift A C4) C5) C4).
3648 We convert this to
3649 (plus (ashiftrt (ashift A C4) C2) C4)
3650 and replace the first operand of X with that expression. Later parts
3651 of this function may simplify the expression further.
3652
3653 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3654 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3655 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3656
3657 We do this to simplify address expressions. */
3658
3659 if ((code == PLUS || code == MINUS || code == MULT)
3660 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3661 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3662 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3663 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3664 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3665 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3666 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3667 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3668 XEXP (XEXP (XEXP (x, 0), 0), 1),
3669 XEXP (XEXP (x, 0), 1))) != 0)
3670 {
3671 rtx new
3672 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3673 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3674 INTVAL (XEXP (XEXP (x, 0), 1)));
3675
3676 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3677 INTVAL (XEXP (XEXP (x, 0), 1)));
3678
3679 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3680 }
3681
663522cb 3682 /* If this is a simple operation applied to an IF_THEN_ELSE, try
d0ab8cd3 3683 applying it to the arms of the IF_THEN_ELSE. This often simplifies
abe6e52f
RK
3684 things. Check for cases where both arms are testing the same
3685 condition.
3686
3687 Don't do anything if all operands are very simple. */
3688
3689 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3690 || GET_RTX_CLASS (code) == '<')
3691 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3692 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3693 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3694 == 'o')))
3695 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3696 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3697 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3698 == 'o')))))
3699 || (GET_RTX_CLASS (code) == '1'
3700 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3701 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3702 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3703 == 'o'))))))
d0ab8cd3 3704 {
d6edb99e 3705 rtx cond, true_rtx, false_rtx;
abe6e52f 3706
d6edb99e 3707 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
0802d516
RK
3708 if (cond != 0
3709 /* If everything is a comparison, what we have is highly unlikely
3710 to be simpler, so don't use it. */
3711 && ! (GET_RTX_CLASS (code) == '<'
d6edb99e
ZW
3712 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3713 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
abe6e52f
RK
3714 {
3715 rtx cop1 = const0_rtx;
3716 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3717
15448afc
RK
3718 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3719 return x;
3720
663522cb 3721 /* Simplify the alternative arms; this may collapse the true and
9210df58 3722 false arms to store-flag values. */
d6edb99e
ZW
3723 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3724 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
9210df58 3725
d6edb99e 3726 /* If true_rtx and false_rtx are not general_operands, an if_then_else
085f1714 3727 is unlikely to be simpler. */
d6edb99e
ZW
3728 if (general_operand (true_rtx, VOIDmode)
3729 && general_operand (false_rtx, VOIDmode))
085f1714
RH
3730 {
3731 /* Restarting if we generate a store-flag expression will cause
3732 us to loop. Just drop through in this case. */
3733
3734 /* If the result values are STORE_FLAG_VALUE and zero, we can
3735 just make the comparison operation. */
d6edb99e 3736 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
085f1714 3737 x = gen_binary (cond_code, mode, cond, cop1);
fa4e13e0
RH
3738 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3739 && reverse_condition (cond_code) != UNKNOWN)
085f1714
RH
3740 x = gen_binary (reverse_condition (cond_code),
3741 mode, cond, cop1);
3742
3743 /* Likewise, we can make the negate of a comparison operation
3744 if the result values are - STORE_FLAG_VALUE and zero. */
d6edb99e
ZW
3745 else if (GET_CODE (true_rtx) == CONST_INT
3746 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3747 && false_rtx == const0_rtx)
f1c6ba8b
RK
3748 x = simplify_gen_unary (NEG, mode,
3749 gen_binary (cond_code, mode, cond,
3750 cop1),
3751 mode);
d6edb99e
ZW
3752 else if (GET_CODE (false_rtx) == CONST_INT
3753 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3754 && true_rtx == const0_rtx)
f1c6ba8b
RK
3755 x = simplify_gen_unary (NEG, mode,
3756 gen_binary (reverse_condition
3757 (cond_code),
3758 mode, cond, cop1),
3759 mode);
085f1714
RH
3760 else
3761 return gen_rtx_IF_THEN_ELSE (mode,
3762 gen_binary (cond_code, VOIDmode,
3763 cond, cop1),
d6edb99e 3764 true_rtx, false_rtx);
5109d49f 3765
085f1714
RH
3766 code = GET_CODE (x);
3767 op0_mode = VOIDmode;
3768 }
abe6e52f 3769 }
d0ab8cd3
RK
3770 }
3771
230d793d
RS
3772 /* Try to fold this expression in case we have constants that weren't
3773 present before. */
3774 temp = 0;
3775 switch (GET_RTX_CLASS (code))
3776 {
3777 case '1':
3778 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3779 break;
3780 case '<':
47b1e19b
JH
3781 {
3782 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3783 if (cmp_mode == VOIDmode)
1cac8785
DD
3784 {
3785 cmp_mode = GET_MODE (XEXP (x, 1));
3786 if (cmp_mode == VOIDmode)
3787 cmp_mode = op0_mode;
3788 }
47b1e19b
JH
3789 temp = simplify_relational_operation (code, cmp_mode,
3790 XEXP (x, 0), XEXP (x, 1));
3791 }
77fa0940 3792#ifdef FLOAT_STORE_FLAG_VALUE
12530dbe
RH
3793 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3794 {
3795 if (temp == const0_rtx)
3796 temp = CONST0_RTX (mode);
3797 else
5692c7bc
ZW
3798 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3799 mode);
12530dbe 3800 }
77fa0940 3801#endif
230d793d
RS
3802 break;
3803 case 'c':
3804 case '2':
3805 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3806 break;
3807 case 'b':
3808 case '3':
3809 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3810 XEXP (x, 1), XEXP (x, 2));
3811 break;
3812 }
3813
3814 if (temp)
4531c1c7
DN
3815 {
3816 x = temp;
3817 code = GET_CODE (temp);
3818 op0_mode = VOIDmode;
3819 mode = GET_MODE (temp);
3820 }
230d793d 3821
230d793d 3822 /* First see if we can apply the inverse distributive law. */
224eeff2
RK
3823 if (code == PLUS || code == MINUS
3824 || code == AND || code == IOR || code == XOR)
230d793d
RS
3825 {
3826 x = apply_distributive_law (x);
3827 code = GET_CODE (x);
6e20204f 3828 op0_mode = VOIDmode;
230d793d
RS
3829 }
3830
3831 /* If CODE is an associative operation not otherwise handled, see if we
3832 can associate some operands. This can win if they are constants or
e0e08ac2 3833 if they are logically related (i.e. (a & b) & a). */
493efd37
TM
3834 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3835 || code == AND || code == IOR || code == XOR
230d793d 3836 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
493efd37 3837 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4ba5f925 3838 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
230d793d
RS
3839 {
3840 if (GET_CODE (XEXP (x, 0)) == code)
3841 {
3842 rtx other = XEXP (XEXP (x, 0), 0);
3843 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3844 rtx inner_op1 = XEXP (x, 1);
3845 rtx inner;
663522cb 3846
230d793d
RS
3847 /* Make sure we pass the constant operand if any as the second
3848 one if this is a commutative operation. */
3849 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3850 {
3851 rtx tem = inner_op0;
3852 inner_op0 = inner_op1;
3853 inner_op1 = tem;
3854 }
3855 inner = simplify_binary_operation (code == MINUS ? PLUS
3856 : code == DIV ? MULT
230d793d
RS
3857 : code,
3858 mode, inner_op0, inner_op1);
3859
3860 /* For commutative operations, try the other pair if that one
3861 didn't simplify. */
3862 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3863 {
3864 other = XEXP (XEXP (x, 0), 1);
3865 inner = simplify_binary_operation (code, mode,
3866 XEXP (XEXP (x, 0), 0),
3867 XEXP (x, 1));
3868 }
3869
3870 if (inner)
8079805d 3871 return gen_binary (code, mode, other, inner);
230d793d
RS
3872 }
3873 }
3874
3875 /* A little bit of algebraic simplification here. */
3876 switch (code)
3877 {
3878 case MEM:
3879 /* Ensure that our address has any ASHIFTs converted to MULT in case
3880 address-recognizing predicates are called later. */
3881 temp = make_compound_operation (XEXP (x, 0), MEM);
3882 SUBST (XEXP (x, 0), temp);
3883 break;
3884
3885 case SUBREG:
eea50aa0
JH
3886 if (op0_mode == VOIDmode)
3887 op0_mode = GET_MODE (SUBREG_REG (x));
230d793d 3888
eea50aa0 3889 /* simplify_subreg can't use gen_lowpart_for_combine. */
3c99d5ff 3890 if (CONSTANT_P (SUBREG_REG (x))
156755ac
JJ
3891 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3892 /* Don't call gen_lowpart_for_combine if the inner mode
3893 is VOIDmode and we cannot simplify it, as SUBREG without
3894 inner mode is invalid. */
3895 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3896 || gen_lowpart_common (mode, SUBREG_REG (x))))
230d793d
RS
3897 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3898
a13287e1
AM
3899 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3900 break;
eea50aa0
JH
3901 {
3902 rtx temp;
3903 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
23190837 3904 SUBREG_BYTE (x));
eea50aa0
JH
3905 if (temp)
3906 return temp;
3907 }
b65c1b5b 3908
30984c57
JJ
3909 /* Don't change the mode of the MEM if that would change the meaning
3910 of the address. */
3911 if (GET_CODE (SUBREG_REG (x)) == MEM
3912 && (MEM_VOLATILE_P (SUBREG_REG (x))
3913 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3914 return gen_rtx_CLOBBER (mode, const0_rtx);
3915
87e3e0c1
RK
3916 /* Note that we cannot do any narrowing for non-constants since
3917 we might have been counting on using the fact that some bits were
3918 zero. We now do this in the SET. */
3919
230d793d
RS
3920 break;
3921
3922 case NOT:
3923 /* (not (plus X -1)) can become (neg X). */
3924 if (GET_CODE (XEXP (x, 0)) == PLUS
3925 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
f1c6ba8b 3926 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
230d793d
RS
3927
3928 /* Similarly, (not (neg X)) is (plus X -1). */
3929 if (GET_CODE (XEXP (x, 0)) == NEG)
f1c6ba8b 3930 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
230d793d 3931
663522cb 3932 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
d0ab8cd3
RK
3933 if (GET_CODE (XEXP (x, 0)) == XOR
3934 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3935 && (temp = simplify_unary_operation (NOT, mode,
3936 XEXP (XEXP (x, 0), 1),
3937 mode)) != 0)
787745f5 3938 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
663522cb 3939
230d793d
RS
3940 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3941 other than 1, but that is not valid. We could do a similar
3942 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3943 but this doesn't seem common enough to bother with. */
3944 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3945 && XEXP (XEXP (x, 0), 0) == const1_rtx)
f1c6ba8b
RK
3946 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3947 const1_rtx, mode),
38a448ca 3948 XEXP (XEXP (x, 0), 1));
663522cb 3949
230d793d
RS
3950 if (GET_CODE (XEXP (x, 0)) == SUBREG
3951 && subreg_lowpart_p (XEXP (x, 0))
3952 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3953 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3954 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3955 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3956 {
3957 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3958
38a448ca 3959 x = gen_rtx_ROTATE (inner_mode,
f1c6ba8b
RK
3960 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3961 inner_mode),
38a448ca 3962 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
8079805d 3963 return gen_lowpart_for_combine (mode, x);
230d793d 3964 }
663522cb 3965
0802d516
RK
3966 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3967 reversing the comparison code if valid. */
3968 if (STORE_FLAG_VALUE == -1
3969 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
9a915772
JH
3970 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3971 XEXP (XEXP (x, 0), 1))))
3972 return reversed;
500c518b 3973
e61465ed
GS
3974 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3975 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
0802d516 3976 perform the above simplification. */
500c518b 3977
0802d516 3978 if (STORE_FLAG_VALUE == -1
500c518b
RK
3979 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3980 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3981 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
f1c6ba8b 3982 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
230d793d
RS
3983
3984 /* Apply De Morgan's laws to reduce number of patterns for machines
23190837
AJ
3985 with negating logical insns (and-not, nand, etc.). If result has
3986 only one NOT, put it first, since that is how the patterns are
3987 coded. */
230d793d
RS
3988
3989 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
23190837 3990 {
663522cb 3991 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
5bd60ce6 3992 enum machine_mode op_mode;
230d793d 3993
5bd60ce6 3994 op_mode = GET_MODE (in1);
f1c6ba8b 3995 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
230d793d 3996
5bd60ce6
RH
3997 op_mode = GET_MODE (in2);
3998 if (op_mode == VOIDmode)
3999 op_mode = mode;
f1c6ba8b 4000 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
663522cb 4001
5bd60ce6 4002 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
663522cb
KH
4003 {
4004 rtx tem = in2;
4005 in2 = in1; in1 = tem;
4006 }
4007
f1c6ba8b
RK
4008 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4009 mode, in1, in2);
663522cb 4010 }
230d793d
RS
4011 break;
4012
4013 case NEG:
4014 /* (neg (plus X 1)) can become (not X). */
4015 if (GET_CODE (XEXP (x, 0)) == PLUS
4016 && XEXP (XEXP (x, 0), 1) == const1_rtx)
f1c6ba8b 4017 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
230d793d
RS
4018
4019 /* Similarly, (neg (not X)) is (plus X 1). */
4020 if (GET_CODE (XEXP (x, 0)) == NOT)
8079805d 4021 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
230d793d 4022
71925bc0
RS
4023 /* (neg (minus X Y)) can become (minus Y X). This transformation
4024 isn't safe for modes with signed zeros, since if X and Y are
4025 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4026 mode is towards +infinity (or -infinity) then the two expressions
4027 will be rounded differently. */
230d793d 4028 if (GET_CODE (XEXP (x, 0)) == MINUS
71925bc0
RS
4029 && !HONOR_SIGNED_ZEROS (mode)
4030 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
8079805d
RK
4031 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4032 XEXP (XEXP (x, 0), 0));
230d793d 4033
0f41302f 4034 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
d0ab8cd3 4035 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
951553af 4036 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
8079805d 4037 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
d0ab8cd3 4038
230d793d
RS
4039 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4040 if we can then eliminate the NEG (e.g.,
4041 if the operand is a constant). */
4042
4043 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4044 {
4045 temp = simplify_unary_operation (NEG, mode,
4046 XEXP (XEXP (x, 0), 0), mode);
4047 if (temp)
9def18da 4048 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
230d793d
RS
4049 }
4050
4051 temp = expand_compound_operation (XEXP (x, 0));
4052
4053 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
23190837 4054 replaced by (lshiftrt X C). This will convert
230d793d
RS
4055 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4056
4057 if (GET_CODE (temp) == ASHIFTRT
4058 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4059 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
8079805d
RK
4060 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4061 INTVAL (XEXP (temp, 1)));
230d793d 4062
951553af 4063 /* If X has only a single bit that might be nonzero, say, bit I, convert
230d793d
RS
4064 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4065 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4066 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4067 or a SUBREG of one since we'd be making the expression more
4068 complex if it was just a register. */
4069
4070 if (GET_CODE (temp) != REG
4071 && ! (GET_CODE (temp) == SUBREG
4072 && GET_CODE (SUBREG_REG (temp)) == REG)
951553af 4073 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
230d793d
RS
4074 {
4075 rtx temp1 = simplify_shift_const
5f4f0e22
CH
4076 (NULL_RTX, ASHIFTRT, mode,
4077 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
230d793d
RS
4078 GET_MODE_BITSIZE (mode) - 1 - i),
4079 GET_MODE_BITSIZE (mode) - 1 - i);
4080
4081 /* If all we did was surround TEMP with the two shifts, we
4082 haven't improved anything, so don't use it. Otherwise,
4083 we are better off with TEMP1. */
4084 if (GET_CODE (temp1) != ASHIFTRT
4085 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4086 || XEXP (XEXP (temp1, 0), 0) != temp)
8079805d 4087 return temp1;
230d793d
RS
4088 }
4089 break;
4090
2ca9ae17 4091 case TRUNCATE:
e30fb98f
JL
4092 /* We can't handle truncation to a partial integer mode here
4093 because we don't know the real bitsize of the partial
4094 integer mode. */
4095 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4096 break;
4097
80608e27
JL
4098 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4099 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4100 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
2ca9ae17
JW
4101 SUBST (XEXP (x, 0),
4102 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4103 GET_MODE_MASK (mode), NULL_RTX, 0));
0f13a422
ILT
4104
4105 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4106 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4107 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4108 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4109 return XEXP (XEXP (x, 0), 0);
4110
4111 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4112 (OP:SI foo:SI) if OP is NEG or ABS. */
4113 if ((GET_CODE (XEXP (x, 0)) == ABS
4114 || GET_CODE (XEXP (x, 0)) == NEG)
4115 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4116 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4117 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
f1c6ba8b
RK
4118 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4119 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
0f13a422
ILT
4120
4121 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4122 (truncate:SI x). */
4123 if (GET_CODE (XEXP (x, 0)) == SUBREG
4124 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4125 && subreg_lowpart_p (XEXP (x, 0)))
4126 return SUBREG_REG (XEXP (x, 0));
4127
4128 /* If we know that the value is already truncated, we can
14a774a9
RK
4129 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4130 is nonzero for the corresponding modes. But don't do this
4131 for an (LSHIFTRT (MULT ...)) since this will cause problems
4132 with the umulXi3_highpart patterns. */
6a992214
JL
4133 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4134 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4135 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
26c34780 4136 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
14a774a9 4137 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
23190837 4138 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
0f13a422
ILT
4139 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4140
4141 /* A truncate of a comparison can be replaced with a subreg if
4142 STORE_FLAG_VALUE permits. This is like the previous test,
4143 but it works even if the comparison is done in a mode larger
4144 than HOST_BITS_PER_WIDE_INT. */
4145 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4146 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
663522cb 4147 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
0f13a422
ILT
4148 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4149
4150 /* Similarly, a truncate of a register whose value is a
4151 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4152 permits. */
4153 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
663522cb 4154 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
0f13a422
ILT
4155 && (temp = get_last_value (XEXP (x, 0)))
4156 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4157 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4158
2ca9ae17
JW
4159 break;
4160
230d793d
RS
4161 case FLOAT_TRUNCATE:
4162 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4163 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4164 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
663522cb 4165 return XEXP (XEXP (x, 0), 0);
4635f748
RK
4166
4167 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4168 (OP:SF foo:SF) if OP is NEG or ABS. */
4169 if ((GET_CODE (XEXP (x, 0)) == ABS
4170 || GET_CODE (XEXP (x, 0)) == NEG)
4171 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4172 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
f1c6ba8b
RK
4173 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4174 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
1d12df72
RK
4175
4176 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4177 is (float_truncate:SF x). */
4178 if (GET_CODE (XEXP (x, 0)) == SUBREG
4179 && subreg_lowpart_p (XEXP (x, 0))
4180 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4181 return SUBREG_REG (XEXP (x, 0));
663522cb 4182 break;
230d793d
RS
4183
4184#ifdef HAVE_cc0
4185 case COMPARE:
4186 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4187 using cc0, in which case we want to leave it as a COMPARE
4188 so we can distinguish it from a register-register-copy. */
4189 if (XEXP (x, 1) == const0_rtx)
4190 return XEXP (x, 0);
4191
71925bc0
RS
4192 /* x - 0 is the same as x unless x's mode has signed zeros and
4193 allows rounding towards -infinity. Under those conditions,
4194 0 - 0 is -0. */
4195 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4196 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
230d793d
RS
4197 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4198 return XEXP (x, 0);
4199 break;
4200#endif
4201
4202 case CONST:
4203 /* (const (const X)) can become (const X). Do it this way rather than
4204 returning the inner CONST since CONST can be shared with a
4205 REG_EQUAL note. */
4206 if (GET_CODE (XEXP (x, 0)) == CONST)
4207 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4208 break;
4209
4210#ifdef HAVE_lo_sum
4211 case LO_SUM:
4212 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4213 can add in an offset. find_split_point will split this address up
4214 again if it doesn't match. */
4215 if (GET_CODE (XEXP (x, 0)) == HIGH
4216 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4217 return XEXP (x, 1);
4218 break;
4219#endif
4220
4221 case PLUS:
4222 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4223 outermost. That's because that's the way indexed addresses are
4224 supposed to appear. This code used to check many more cases, but
4225 they are now checked elsewhere. */
4226 if (GET_CODE (XEXP (x, 0)) == PLUS
4227 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4228 return gen_binary (PLUS, mode,
4229 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4230 XEXP (x, 1)),
4231 XEXP (XEXP (x, 0), 1));
4232
4233 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4234 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4235 bit-field and can be replaced by either a sign_extend or a
e6380233
JL
4236 sign_extract. The `and' may be a zero_extend and the two
4237 <c>, -<c> constants may be reversed. */
230d793d
RS
4238 if (GET_CODE (XEXP (x, 0)) == XOR
4239 && GET_CODE (XEXP (x, 1)) == CONST_INT
4240 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
663522cb 4241 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
e6380233
JL
4242 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4243 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5f4f0e22 4244 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
230d793d
RS
4245 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4246 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4247 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5f4f0e22 4248 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
230d793d
RS
4249 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4250 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
770ae6cc 4251 == (unsigned int) i + 1))))
8079805d
RK
4252 return simplify_shift_const
4253 (NULL_RTX, ASHIFTRT, mode,
4254 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4255 XEXP (XEXP (XEXP (x, 0), 0), 0),
4256 GET_MODE_BITSIZE (mode) - (i + 1)),
4257 GET_MODE_BITSIZE (mode) - (i + 1));
230d793d 4258
bc0776c6
RK
4259 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4260 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4261 is 1. This produces better code than the alternative immediately
4262 below. */
4263 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
bc0776c6 4264 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
9a915772
JH
4265 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4266 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4267 XEXP (XEXP (x, 0), 0),
4268 XEXP (XEXP (x, 0), 1))))
8079805d 4269 return
f1c6ba8b 4270 simplify_gen_unary (NEG, mode, reversed, mode);
bc0776c6
RK
4271
4272 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
230d793d
RS
4273 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4274 the bitsize of the mode - 1. This allows simplification of
4275 "a = (b & 8) == 0;" */
4276 if (XEXP (x, 1) == constm1_rtx
4277 && GET_CODE (XEXP (x, 0)) != REG
4278 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4279 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
951553af 4280 && nonzero_bits (XEXP (x, 0), mode) == 1)
8079805d
RK
4281 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4282 simplify_shift_const (NULL_RTX, ASHIFT, mode,
f1c6ba8b 4283 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
8079805d
RK
4284 GET_MODE_BITSIZE (mode) - 1),
4285 GET_MODE_BITSIZE (mode) - 1);
02f4ada4
RK
4286
4287 /* If we are adding two things that have no bits in common, convert
4288 the addition into an IOR. This will often be further simplified,
4289 for example in cases like ((a & 1) + (a & 2)), which can
4290 become a & 3. */
4291
ac49a949 4292 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
951553af
RK
4293 && (nonzero_bits (XEXP (x, 0), mode)
4294 & nonzero_bits (XEXP (x, 1), mode)) == 0)
085f1714
RH
4295 {
4296 /* Try to simplify the expression further. */
4297 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4298 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4299
4300 /* If we could, great. If not, do not go ahead with the IOR
4301 replacement, since PLUS appears in many special purpose
4302 address arithmetic instructions. */
4303 if (GET_CODE (temp) != CLOBBER && temp != tor)
4304 return temp;
4305 }
230d793d
RS
4306 break;
4307
4308 case MINUS:
0802d516
RK
4309 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4310 by reversing the comparison code if valid. */
4311 if (STORE_FLAG_VALUE == 1
4312 && XEXP (x, 0) == const1_rtx
5109d49f 4313 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
9a915772
JH
4314 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4315 XEXP (XEXP (x, 1), 0),
4316 XEXP (XEXP (x, 1), 1))))
4317 return reversed;
5109d49f 4318
230d793d
RS
4319 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4320 (and <foo> (const_int pow2-1)) */
4321 if (GET_CODE (XEXP (x, 1)) == AND
4322 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
663522cb 4323 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
230d793d 4324 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
8079805d 4325 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
663522cb 4326 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
7bef8680
RK
4327
4328 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4329 integers. */
4330 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
8079805d
RK
4331 return gen_binary (MINUS, mode,
4332 gen_binary (MINUS, mode, XEXP (x, 0),
4333 XEXP (XEXP (x, 1), 0)),
4334 XEXP (XEXP (x, 1), 1));
230d793d
RS
4335 break;
4336
4337 case MULT:
4338 /* If we have (mult (plus A B) C), apply the distributive law and then
4339 the inverse distributive law to see if things simplify. This
4340 occurs mostly in addresses, often when unrolling loops. */
4341
4342 if (GET_CODE (XEXP (x, 0)) == PLUS)
4343 {
4344 x = apply_distributive_law
4345 (gen_binary (PLUS, mode,
4346 gen_binary (MULT, mode,
4347 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4348 gen_binary (MULT, mode,
3749f4ca
BS
4349 XEXP (XEXP (x, 0), 1),
4350 copy_rtx (XEXP (x, 1)))));
230d793d
RS
4351
4352 if (GET_CODE (x) != MULT)
8079805d 4353 return x;
230d793d 4354 }
4ba5f925
JH
4355 /* Try simplify a*(b/c) as (a*b)/c. */
4356 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4357 && GET_CODE (XEXP (x, 0)) == DIV)
4358 {
4359 rtx tem = simplify_binary_operation (MULT, mode,
4360 XEXP (XEXP (x, 0), 0),
4361 XEXP (x, 1));
4362 if (tem)
4363 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4364 }
230d793d
RS
4365 break;
4366
4367 case UDIV:
4368 /* If this is a divide by a power of two, treat it as a shift if
4369 its first operand is a shift. */
4370 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4371 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4372 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4373 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4374 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4375 || GET_CODE (XEXP (x, 0)) == ROTATE
4376 || GET_CODE (XEXP (x, 0)) == ROTATERT))
8079805d 4377 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
230d793d
RS
4378 break;
4379
4380 case EQ: case NE:
4381 case GT: case GTU: case GE: case GEU:
4382 case LT: case LTU: case LE: case LEU:
69bc0a1f 4383 case UNEQ: case LTGT:
23190837
AJ
4384 case UNGT: case UNGE:
4385 case UNLT: case UNLE:
69bc0a1f 4386 case UNORDERED: case ORDERED:
230d793d
RS
4387 /* If the first operand is a condition code, we can't do anything
4388 with it. */
4389 if (GET_CODE (XEXP (x, 0)) == COMPARE
4390 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4391#ifdef HAVE_cc0
4392 && XEXP (x, 0) != cc0_rtx
4393#endif
663522cb 4394 ))
230d793d
RS
4395 {
4396 rtx op0 = XEXP (x, 0);
4397 rtx op1 = XEXP (x, 1);
4398 enum rtx_code new_code;
4399
4400 if (GET_CODE (op0) == COMPARE)
4401 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4402
4403 /* Simplify our comparison, if possible. */
4404 new_code = simplify_comparison (code, &op0, &op1);
4405
230d793d 4406 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
951553af 4407 if only the low-order bit is possibly nonzero in X (such as when
5109d49f
RK
4408 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4409 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4410 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4411 (plus X 1).
4412
4413 Remove any ZERO_EXTRACT we made when thinking this was a
4414 comparison. It may now be simpler to use, e.g., an AND. If a
4415 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4416 the call to make_compound_operation in the SET case. */
4417
0802d516
RK
4418 if (STORE_FLAG_VALUE == 1
4419 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
a191f0ee
RH
4420 && op1 == const0_rtx
4421 && mode == GET_MODE (op0)
4422 && nonzero_bits (op0, mode) == 1)
818b11b9
RK
4423 return gen_lowpart_for_combine (mode,
4424 expand_compound_operation (op0));
5109d49f 4425
0802d516
RK
4426 else if (STORE_FLAG_VALUE == 1
4427 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4428 && op1 == const0_rtx
a191f0ee 4429 && mode == GET_MODE (op0)
5109d49f
RK
4430 && (num_sign_bit_copies (op0, mode)
4431 == GET_MODE_BITSIZE (mode)))
4432 {
4433 op0 = expand_compound_operation (op0);
f1c6ba8b
RK
4434 return simplify_gen_unary (NEG, mode,
4435 gen_lowpart_for_combine (mode, op0),
4436 mode);
5109d49f
RK
4437 }
4438
0802d516
RK
4439 else if (STORE_FLAG_VALUE == 1
4440 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
230d793d 4441 && op1 == const0_rtx
a191f0ee 4442 && mode == GET_MODE (op0)
5109d49f 4443 && nonzero_bits (op0, mode) == 1)
818b11b9
RK
4444 {
4445 op0 = expand_compound_operation (op0);
8079805d
RK
4446 return gen_binary (XOR, mode,
4447 gen_lowpart_for_combine (mode, op0),
4448 const1_rtx);
5109d49f 4449 }
818b11b9 4450
0802d516
RK
4451 else if (STORE_FLAG_VALUE == 1
4452 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4453 && op1 == const0_rtx
a191f0ee 4454 && mode == GET_MODE (op0)
5109d49f
RK
4455 && (num_sign_bit_copies (op0, mode)
4456 == GET_MODE_BITSIZE (mode)))
4457 {
4458 op0 = expand_compound_operation (op0);
8079805d 4459 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
818b11b9 4460 }
230d793d 4461
5109d49f
RK
4462 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4463 those above. */
0802d516
RK
4464 if (STORE_FLAG_VALUE == -1
4465 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
230d793d 4466 && op1 == const0_rtx
5109d49f
RK
4467 && (num_sign_bit_copies (op0, mode)
4468 == GET_MODE_BITSIZE (mode)))
4469 return gen_lowpart_for_combine (mode,
4470 expand_compound_operation (op0));
4471
0802d516
RK
4472 else if (STORE_FLAG_VALUE == -1
4473 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4474 && op1 == const0_rtx
a191f0ee 4475 && mode == GET_MODE (op0)
5109d49f
RK
4476 && nonzero_bits (op0, mode) == 1)
4477 {
4478 op0 = expand_compound_operation (op0);
f1c6ba8b
RK
4479 return simplify_gen_unary (NEG, mode,
4480 gen_lowpart_for_combine (mode, op0),
4481 mode);
5109d49f
RK
4482 }
4483
0802d516
RK
4484 else if (STORE_FLAG_VALUE == -1
4485 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4486 && op1 == const0_rtx
a191f0ee 4487 && mode == GET_MODE (op0)
5109d49f
RK
4488 && (num_sign_bit_copies (op0, mode)
4489 == GET_MODE_BITSIZE (mode)))
230d793d 4490 {
818b11b9 4491 op0 = expand_compound_operation (op0);
f1c6ba8b
RK
4492 return simplify_gen_unary (NOT, mode,
4493 gen_lowpart_for_combine (mode, op0),
4494 mode);
5109d49f
RK
4495 }
4496
4497 /* If X is 0/1, (eq X 0) is X-1. */
0802d516
RK
4498 else if (STORE_FLAG_VALUE == -1
4499 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5109d49f 4500 && op1 == const0_rtx
a191f0ee 4501 && mode == GET_MODE (op0)
5109d49f
RK
4502 && nonzero_bits (op0, mode) == 1)
4503 {
4504 op0 = expand_compound_operation (op0);
8079805d 4505 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
230d793d 4506 }
230d793d
RS
4507
4508 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
951553af
RK
4509 one bit that might be nonzero, we can convert (ne x 0) to
4510 (ashift x c) where C puts the bit in the sign bit. Remove any
4511 AND with STORE_FLAG_VALUE when we are done, since we are only
4512 going to test the sign bit. */
3f508eca 4513 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5f4f0e22 4514 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
0802d516 4515 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
e51712db 4516 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
230d793d
RS
4517 && op1 == const0_rtx
4518 && mode == GET_MODE (op0)
5109d49f 4519 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
230d793d 4520 {
818b11b9
RK
4521 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4522 expand_compound_operation (op0),
230d793d
RS
4523 GET_MODE_BITSIZE (mode) - 1 - i);
4524 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4525 return XEXP (x, 0);
4526 else
4527 return x;
4528 }
4529
4530 /* If the code changed, return a whole new comparison. */
4531 if (new_code != code)
f1c6ba8b 4532 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
230d793d 4533
663522cb 4534 /* Otherwise, keep this operation, but maybe change its operands.
230d793d
RS
4535 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4536 SUBST (XEXP (x, 0), op0);
4537 SUBST (XEXP (x, 1), op1);
4538 }
4539 break;
663522cb 4540
230d793d 4541 case IF_THEN_ELSE:
8079805d 4542 return simplify_if_then_else (x);
9210df58 4543
8079805d
RK
4544 case ZERO_EXTRACT:
4545 case SIGN_EXTRACT:
4546 case ZERO_EXTEND:
4547 case SIGN_EXTEND:
0f41302f 4548 /* If we are processing SET_DEST, we are done. */
8079805d
RK
4549 if (in_dest)
4550 return x;
d0ab8cd3 4551
8079805d 4552 return expand_compound_operation (x);
d0ab8cd3 4553
8079805d
RK
4554 case SET:
4555 return simplify_set (x);
1a26b032 4556
8079805d
RK
4557 case AND:
4558 case IOR:
4559 case XOR:
4560 return simplify_logical (x, last);
d0ab8cd3 4561
663522cb 4562 case ABS:
8079805d
RK
4563 /* (abs (neg <foo>)) -> (abs <foo>) */
4564 if (GET_CODE (XEXP (x, 0)) == NEG)
4565 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
1a26b032 4566
b472527b
JL
4567 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4568 do nothing. */
4569 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4570 break;
f40421ce 4571
8079805d
RK
4572 /* If operand is something known to be positive, ignore the ABS. */
4573 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4574 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4575 <= HOST_BITS_PER_WIDE_INT)
4576 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4577 & ((HOST_WIDE_INT) 1
4578 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4579 == 0)))
4580 return XEXP (x, 0);
1a26b032 4581
8079805d
RK
4582 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4583 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
f1c6ba8b 4584 return gen_rtx_NEG (mode, XEXP (x, 0));
1a26b032 4585
8079805d 4586 break;
1a26b032 4587
8079805d
RK
4588 case FFS:
4589 /* (ffs (*_extend <X>)) = (ffs <X>) */
4590 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4591 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4592 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4593 break;
1a26b032 4594
8079805d
RK
4595 case FLOAT:
4596 /* (float (sign_extend <X>)) = (float <X>). */
4597 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4598 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4599 break;
1a26b032 4600
8079805d
RK
4601 case ASHIFT:
4602 case LSHIFTRT:
4603 case ASHIFTRT:
4604 case ROTATE:
4605 case ROTATERT:
4606 /* If this is a shift by a constant amount, simplify it. */
4607 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
663522cb 4608 return simplify_shift_const (x, code, mode, XEXP (x, 0),
8079805d
RK
4609 INTVAL (XEXP (x, 1)));
4610
4611#ifdef SHIFT_COUNT_TRUNCATED
4612 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4613 SUBST (XEXP (x, 1),
f1b1186f 4614 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
663522cb 4615 ((HOST_WIDE_INT) 1
8079805d
RK
4616 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4617 - 1,
4618 NULL_RTX, 0));
4619#endif
4620
4621 break;
e9a25f70 4622
82be40f7
BS
4623 case VEC_SELECT:
4624 {
4625 rtx op0 = XEXP (x, 0);
4626 rtx op1 = XEXP (x, 1);
4627 int len;
4628
4629 if (GET_CODE (op1) != PARALLEL)
4630 abort ();
4631 len = XVECLEN (op1, 0);
4632 if (len == 1
4633 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4634 && GET_CODE (op0) == VEC_CONCAT)
4635 {
4636 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4637
4638 /* Try to find the element in the VEC_CONCAT. */
4639 for (;;)
4640 {
4641 if (GET_MODE (op0) == GET_MODE (x))
4642 return op0;
4643 if (GET_CODE (op0) == VEC_CONCAT)
4644 {
4645 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4646 if (op0_size < offset)
4647 op0 = XEXP (op0, 0);
4648 else
4649 {
4650 offset -= op0_size;
4651 op0 = XEXP (op0, 1);
4652 }
4653 }
4654 else
4655 break;
4656 }
4657 }
4658 }
4659
4660 break;
23190837 4661
e9a25f70
JL
4662 default:
4663 break;
8079805d
RK
4664 }
4665
4666 return x;
4667}
4668\f
4669/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5109d49f 4670
8079805d
RK
4671static rtx
4672simplify_if_then_else (x)
4673 rtx x;
4674{
4675 enum machine_mode mode = GET_MODE (x);
4676 rtx cond = XEXP (x, 0);
d6edb99e
ZW
4677 rtx true_rtx = XEXP (x, 1);
4678 rtx false_rtx = XEXP (x, 2);
8079805d
RK
4679 enum rtx_code true_code = GET_CODE (cond);
4680 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4681 rtx temp;
4682 int i;
9a915772
JH
4683 enum rtx_code false_code;
4684 rtx reversed;
8079805d 4685
0f41302f 4686 /* Simplify storing of the truth value. */
d6edb99e 4687 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
8079805d 4688 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
663522cb 4689
0f41302f 4690 /* Also when the truth value has to be reversed. */
9a915772 4691 if (comparison_p
d6edb99e 4692 && true_rtx == const0_rtx && false_rtx == const_true_rtx
9a915772
JH
4693 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4694 XEXP (cond, 1))))
4695 return reversed;
8079805d
RK
4696
4697 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4698 in it is being compared against certain values. Get the true and false
4699 comparisons and see if that says anything about the value of each arm. */
4700
9a915772
JH
4701 if (comparison_p
4702 && ((false_code = combine_reversed_comparison_code (cond))
4703 != UNKNOWN)
8079805d
RK
4704 && GET_CODE (XEXP (cond, 0)) == REG)
4705 {
4706 HOST_WIDE_INT nzb;
4707 rtx from = XEXP (cond, 0);
8079805d
RK
4708 rtx true_val = XEXP (cond, 1);
4709 rtx false_val = true_val;
4710 int swapped = 0;
9210df58 4711
8079805d 4712 /* If FALSE_CODE is EQ, swap the codes and arms. */
5109d49f 4713
8079805d 4714 if (false_code == EQ)
1a26b032 4715 {
8079805d 4716 swapped = 1, true_code = EQ, false_code = NE;
d6edb99e 4717 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
8079805d 4718 }
5109d49f 4719
8079805d
RK
4720 /* If we are comparing against zero and the expression being tested has
4721 only a single bit that might be nonzero, that is its value when it is
4722 not equal to zero. Similarly if it is known to be -1 or 0. */
4723
4724 if (true_code == EQ && true_val == const0_rtx
4725 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4726 false_code = EQ, false_val = GEN_INT (nzb);
4727 else if (true_code == EQ && true_val == const0_rtx
4728 && (num_sign_bit_copies (from, GET_MODE (from))
4729 == GET_MODE_BITSIZE (GET_MODE (from))))
4730 false_code = EQ, false_val = constm1_rtx;
4731
4732 /* Now simplify an arm if we know the value of the register in the
4733 branch and it is used in the arm. Be careful due to the potential
4734 of locally-shared RTL. */
4735
d6edb99e
ZW
4736 if (reg_mentioned_p (from, true_rtx))
4737 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4738 from, true_val),
8079805d 4739 pc_rtx, pc_rtx, 0, 0);
d6edb99e
ZW
4740 if (reg_mentioned_p (from, false_rtx))
4741 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
8079805d
RK
4742 from, false_val),
4743 pc_rtx, pc_rtx, 0, 0);
4744
d6edb99e
ZW
4745 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4746 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
8079805d 4747
d6edb99e
ZW
4748 true_rtx = XEXP (x, 1);
4749 false_rtx = XEXP (x, 2);
4750 true_code = GET_CODE (cond);
8079805d 4751 }
5109d49f 4752
8079805d
RK
4753 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4754 reversed, do so to avoid needing two sets of patterns for
4755 subtract-and-branch insns. Similarly if we have a constant in the true
4756 arm, the false arm is the same as the first operand of the comparison, or
4757 the false arm is more complicated than the true arm. */
4758
9a915772
JH
4759 if (comparison_p
4760 && combine_reversed_comparison_code (cond) != UNKNOWN
d6edb99e
ZW
4761 && (true_rtx == pc_rtx
4762 || (CONSTANT_P (true_rtx)
4763 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4764 || true_rtx == const0_rtx
4765 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4766 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4767 || (GET_CODE (true_rtx) == SUBREG
4768 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4769 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4770 || reg_mentioned_p (true_rtx, false_rtx)
4771 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
8079805d 4772 {
9a915772 4773 true_code = reversed_comparison_code (cond, NULL);
8079805d 4774 SUBST (XEXP (x, 0),
9a915772
JH
4775 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4776 XEXP (cond, 1)));
5109d49f 4777
d6edb99e
ZW
4778 SUBST (XEXP (x, 1), false_rtx);
4779 SUBST (XEXP (x, 2), true_rtx);
1a26b032 4780
d6edb99e
ZW
4781 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4782 cond = XEXP (x, 0);
bb821298 4783
0f41302f 4784 /* It is possible that the conditional has been simplified out. */
bb821298
RK
4785 true_code = GET_CODE (cond);
4786 comparison_p = GET_RTX_CLASS (true_code) == '<';
8079805d 4787 }
abe6e52f 4788
8079805d 4789 /* If the two arms are identical, we don't need the comparison. */
1a26b032 4790
d6edb99e
ZW
4791 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4792 return true_rtx;
1a26b032 4793
5be669c7
RK
4794 /* Convert a == b ? b : a to "a". */
4795 if (true_code == EQ && ! side_effects_p (cond)
73e42cf3 4796 && !HONOR_NANS (mode)
d6edb99e
ZW
4797 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4798 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4799 return false_rtx;
5be669c7 4800 else if (true_code == NE && ! side_effects_p (cond)
73e42cf3 4801 && !HONOR_NANS (mode)
d6edb99e
ZW
4802 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4803 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4804 return true_rtx;
5be669c7 4805
8079805d
RK
4806 /* Look for cases where we have (abs x) or (neg (abs X)). */
4807
4808 if (GET_MODE_CLASS (mode) == MODE_INT
d6edb99e
ZW
4809 && GET_CODE (false_rtx) == NEG
4810 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
8079805d 4811 && comparison_p
d6edb99e
ZW
4812 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4813 && ! side_effects_p (true_rtx))
8079805d
RK
4814 switch (true_code)
4815 {
4816 case GT:
4817 case GE:
f1c6ba8b 4818 return simplify_gen_unary (ABS, mode, true_rtx, mode);
8079805d
RK
4819 case LT:
4820 case LE:
f1c6ba8b
RK
4821 return
4822 simplify_gen_unary (NEG, mode,
4823 simplify_gen_unary (ABS, mode, true_rtx, mode),
4824 mode);
cf0d9408
KH
4825 default:
4826 break;
8079805d
RK
4827 }
4828
4829 /* Look for MIN or MAX. */
4830
de6c5979 4831 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
8079805d 4832 && comparison_p
d6edb99e
ZW
4833 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4834 && rtx_equal_p (XEXP (cond, 1), false_rtx)
8079805d
RK
4835 && ! side_effects_p (cond))
4836 switch (true_code)
4837 {
4838 case GE:
4839 case GT:
d6edb99e 4840 return gen_binary (SMAX, mode, true_rtx, false_rtx);
8079805d
RK
4841 case LE:
4842 case LT:
d6edb99e 4843 return gen_binary (SMIN, mode, true_rtx, false_rtx);
8079805d
RK
4844 case GEU:
4845 case GTU:
d6edb99e 4846 return gen_binary (UMAX, mode, true_rtx, false_rtx);
8079805d
RK
4847 case LEU:
4848 case LTU:
d6edb99e 4849 return gen_binary (UMIN, mode, true_rtx, false_rtx);
e9a25f70
JL
4850 default:
4851 break;
8079805d 4852 }
663522cb 4853
8079805d
RK
4854 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4855 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4856 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4857 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4858 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
0802d516 4859 neither 1 or -1, but it isn't worth checking for. */
8079805d 4860
0802d516
RK
4861 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4862 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
8079805d 4863 {
d6edb99e
ZW
4864 rtx t = make_compound_operation (true_rtx, SET);
4865 rtx f = make_compound_operation (false_rtx, SET);
8079805d
RK
4866 rtx cond_op0 = XEXP (cond, 0);
4867 rtx cond_op1 = XEXP (cond, 1);
6a651371 4868 enum rtx_code op = NIL, extend_op = NIL;
8079805d 4869 enum machine_mode m = mode;
6a651371 4870 rtx z = 0, c1 = NULL_RTX;
8079805d 4871
8079805d
RK
4872 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4873 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4874 || GET_CODE (t) == ASHIFT
4875 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4876 && rtx_equal_p (XEXP (t, 0), f))
4877 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4878
4879 /* If an identity-zero op is commutative, check whether there
0f41302f 4880 would be a match if we swapped the operands. */
8079805d
RK
4881 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4882 || GET_CODE (t) == XOR)
4883 && rtx_equal_p (XEXP (t, 1), f))
4884 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4885 else if (GET_CODE (t) == SIGN_EXTEND
4886 && (GET_CODE (XEXP (t, 0)) == PLUS
4887 || GET_CODE (XEXP (t, 0)) == MINUS
4888 || GET_CODE (XEXP (t, 0)) == IOR
4889 || GET_CODE (XEXP (t, 0)) == XOR
4890 || GET_CODE (XEXP (t, 0)) == ASHIFT
4891 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4892 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4893 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4894 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4895 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4896 && (num_sign_bit_copies (f, GET_MODE (f))
26c34780
RS
4897 > (unsigned int)
4898 (GET_MODE_BITSIZE (mode)
8079805d
RK
4899 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4900 {
4901 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4902 extend_op = SIGN_EXTEND;
4903 m = GET_MODE (XEXP (t, 0));
1a26b032 4904 }
8079805d
RK
4905 else if (GET_CODE (t) == SIGN_EXTEND
4906 && (GET_CODE (XEXP (t, 0)) == PLUS
4907 || GET_CODE (XEXP (t, 0)) == IOR
4908 || GET_CODE (XEXP (t, 0)) == XOR)
4909 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4910 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4911 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4912 && (num_sign_bit_copies (f, GET_MODE (f))
26c34780
RS
4913 > (unsigned int)
4914 (GET_MODE_BITSIZE (mode)
8079805d
RK
4915 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4916 {
4917 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4918 extend_op = SIGN_EXTEND;
4919 m = GET_MODE (XEXP (t, 0));
4920 }
4921 else if (GET_CODE (t) == ZERO_EXTEND
4922 && (GET_CODE (XEXP (t, 0)) == PLUS
4923 || GET_CODE (XEXP (t, 0)) == MINUS
4924 || GET_CODE (XEXP (t, 0)) == IOR
4925 || GET_CODE (XEXP (t, 0)) == XOR
4926 || GET_CODE (XEXP (t, 0)) == ASHIFT
4927 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4928 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4929 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4930 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4931 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4932 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4933 && ((nonzero_bits (f, GET_MODE (f))
663522cb 4934 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
8079805d
RK
4935 == 0))
4936 {
4937 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4938 extend_op = ZERO_EXTEND;
4939 m = GET_MODE (XEXP (t, 0));
4940 }
4941 else if (GET_CODE (t) == ZERO_EXTEND
4942 && (GET_CODE (XEXP (t, 0)) == PLUS
4943 || GET_CODE (XEXP (t, 0)) == IOR
4944 || GET_CODE (XEXP (t, 0)) == XOR)
4945 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4946 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4947 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4948 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4949 && ((nonzero_bits (f, GET_MODE (f))
663522cb 4950 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
8079805d
RK
4951 == 0))
4952 {
4953 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4954 extend_op = ZERO_EXTEND;
4955 m = GET_MODE (XEXP (t, 0));
4956 }
663522cb 4957
8079805d
RK
4958 if (z)
4959 {
4960 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4961 pc_rtx, pc_rtx, 0, 0);
4962 temp = gen_binary (MULT, m, temp,
4963 gen_binary (MULT, m, c1, const_true_rtx));
4964 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4965 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4966
4967 if (extend_op != NIL)
f1c6ba8b 4968 temp = simplify_gen_unary (extend_op, mode, temp, m);
8079805d
RK
4969
4970 return temp;
4971 }
4972 }
224eeff2 4973
8079805d
RK
4974 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4975 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4976 negation of a single bit, we can convert this operation to a shift. We
4977 can actually do this more generally, but it doesn't seem worth it. */
4978
4979 if (true_code == NE && XEXP (cond, 1) == const0_rtx
d6edb99e 4980 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
8079805d 4981 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
d6edb99e 4982 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
8079805d
RK
4983 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4984 == GET_MODE_BITSIZE (mode))
d6edb99e 4985 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
8079805d
RK
4986 return
4987 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4988 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
230d793d 4989
8079805d
RK
4990 return x;
4991}
4992\f
4993/* Simplify X, a SET expression. Return the new expression. */
230d793d 4994
8079805d
RK
4995static rtx
4996simplify_set (x)
4997 rtx x;
4998{
4999 rtx src = SET_SRC (x);
5000 rtx dest = SET_DEST (x);
5001 enum machine_mode mode
5002 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5003 rtx other_insn;
5004 rtx *cc_use;
5005
5006 /* (set (pc) (return)) gets written as (return). */
5007 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5008 return src;
230d793d 5009
87e3e0c1
RK
5010 /* Now that we know for sure which bits of SRC we are using, see if we can
5011 simplify the expression for the object knowing that we only need the
5012 low-order bits. */
5013
855c3a2e
IS
5014 if (GET_MODE_CLASS (mode) == MODE_INT
5015 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
c5c76735 5016 {
e8dc6d50 5017 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
c5c76735
JL
5018 SUBST (SET_SRC (x), src);
5019 }
87e3e0c1 5020
8079805d
RK
5021 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5022 the comparison result and try to simplify it unless we already have used
5023 undobuf.other_insn. */
5024 if ((GET_CODE (src) == COMPARE
230d793d 5025#ifdef HAVE_cc0
8079805d 5026 || dest == cc0_rtx
230d793d 5027#endif
8079805d
RK
5028 )
5029 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5030 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5031 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
c0d3ac4d 5032 && rtx_equal_p (XEXP (*cc_use, 0), dest))
8079805d
RK
5033 {
5034 enum rtx_code old_code = GET_CODE (*cc_use);
5035 enum rtx_code new_code;
f40f4c8e 5036 rtx op0, op1, tmp;
8079805d
RK
5037 int other_changed = 0;
5038 enum machine_mode compare_mode = GET_MODE (dest);
f40f4c8e 5039 enum machine_mode tmp_mode;
8079805d
RK
5040
5041 if (GET_CODE (src) == COMPARE)
5042 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5043 else
5044 op0 = src, op1 = const0_rtx;
230d793d 5045
f40f4c8e
RS
5046 /* Check whether the comparison is known at compile time. */
5047 if (GET_MODE (op0) != VOIDmode)
5048 tmp_mode = GET_MODE (op0);
5049 else if (GET_MODE (op1) != VOIDmode)
5050 tmp_mode = GET_MODE (op1);
5051 else
5052 tmp_mode = compare_mode;
5053 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5054 if (tmp != NULL_RTX)
5055 {
5056 rtx pat = PATTERN (other_insn);
5057 undobuf.other_insn = other_insn;
5058 SUBST (*cc_use, tmp);
5059
5060 /* Attempt to simplify CC user. */
5061 if (GET_CODE (pat) == SET)
5062 {
5063 rtx new = simplify_rtx (SET_SRC (pat));
5064 if (new != NULL_RTX)
5065 SUBST (SET_SRC (pat), new);
5066 }
5067
5068 /* Convert X into a no-op move. */
5069 SUBST (SET_DEST (x), pc_rtx);
5070 SUBST (SET_SRC (x), pc_rtx);
5071 return x;
5072 }
5073
8079805d
RK
5074 /* Simplify our comparison, if possible. */
5075 new_code = simplify_comparison (old_code, &op0, &op1);
230d793d 5076
c141a106 5077#ifdef EXTRA_CC_MODES
8079805d
RK
5078 /* If this machine has CC modes other than CCmode, check to see if we
5079 need to use a different CC mode here. */
5080 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
c141a106 5081#endif /* EXTRA_CC_MODES */
230d793d 5082
c141a106 5083#if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
8079805d
RK
5084 /* If the mode changed, we have to change SET_DEST, the mode in the
5085 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5086 a hard register, just build new versions with the proper mode. If it
5087 is a pseudo, we lose unless it is only time we set the pseudo, in
5088 which case we can safely change its mode. */
5089 if (compare_mode != GET_MODE (dest))
5090 {
770ae6cc 5091 unsigned int regno = REGNO (dest);
38a448ca 5092 rtx new_dest = gen_rtx_REG (compare_mode, regno);
8079805d
RK
5093
5094 if (regno < FIRST_PSEUDO_REGISTER
b1f21e0a 5095 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
230d793d 5096 {
8079805d
RK
5097 if (regno >= FIRST_PSEUDO_REGISTER)
5098 SUBST (regno_reg_rtx[regno], new_dest);
230d793d 5099
8079805d
RK
5100 SUBST (SET_DEST (x), new_dest);
5101 SUBST (XEXP (*cc_use, 0), new_dest);
5102 other_changed = 1;
230d793d 5103
8079805d 5104 dest = new_dest;
230d793d 5105 }
8079805d 5106 }
230d793d
RS
5107#endif
5108
8079805d
RK
5109 /* If the code changed, we have to build a new comparison in
5110 undobuf.other_insn. */
5111 if (new_code != old_code)
5112 {
5113 unsigned HOST_WIDE_INT mask;
5114
f1c6ba8b
RK
5115 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5116 dest, const0_rtx));
8079805d
RK
5117
5118 /* If the only change we made was to change an EQ into an NE or
5119 vice versa, OP0 has only one bit that might be nonzero, and OP1
5120 is zero, check if changing the user of the condition code will
5121 produce a valid insn. If it won't, we can keep the original code
5122 in that insn by surrounding our operation with an XOR. */
5123
5124 if (((old_code == NE && new_code == EQ)
5125 || (old_code == EQ && new_code == NE))
5126 && ! other_changed && op1 == const0_rtx
5127 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5128 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
230d793d 5129 {
8079805d 5130 rtx pat = PATTERN (other_insn), note = 0;
230d793d 5131
8e2f6e35 5132 if ((recog_for_combine (&pat, other_insn, &note) < 0
8079805d
RK
5133 && ! check_asm_operands (pat)))
5134 {
5135 PUT_CODE (*cc_use, old_code);
5136 other_insn = 0;
230d793d 5137
8079805d 5138 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
230d793d 5139 }
230d793d
RS
5140 }
5141
8079805d
RK
5142 other_changed = 1;
5143 }
5144
5145 if (other_changed)
5146 undobuf.other_insn = other_insn;
230d793d
RS
5147
5148#ifdef HAVE_cc0
8079805d
RK
5149 /* If we are now comparing against zero, change our source if
5150 needed. If we do not use cc0, we always have a COMPARE. */
5151 if (op1 == const0_rtx && dest == cc0_rtx)
5152 {
5153 SUBST (SET_SRC (x), op0);
5154 src = op0;
5155 }
5156 else
230d793d
RS
5157#endif
5158
8079805d
RK
5159 /* Otherwise, if we didn't previously have a COMPARE in the
5160 correct mode, we need one. */
5161 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5162 {
f1c6ba8b 5163 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
8079805d 5164 src = SET_SRC (x);
230d793d
RS
5165 }
5166 else
5167 {
8079805d
RK
5168 /* Otherwise, update the COMPARE if needed. */
5169 SUBST (XEXP (src, 0), op0);
5170 SUBST (XEXP (src, 1), op1);
230d793d 5171 }
8079805d
RK
5172 }
5173 else
5174 {
5175 /* Get SET_SRC in a form where we have placed back any
5176 compound expressions. Then do the checks below. */
5177 src = make_compound_operation (src, SET);
5178 SUBST (SET_SRC (x), src);
5179 }
230d793d 5180
8079805d
RK
5181 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5182 and X being a REG or (subreg (reg)), we may be able to convert this to
663522cb 5183 (set (subreg:m2 x) (op)).
df62f951 5184
8079805d
RK
5185 We can always do this if M1 is narrower than M2 because that means that
5186 we only care about the low bits of the result.
df62f951 5187
8079805d 5188 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
9ec36da5 5189 perform a narrower operation than requested since the high-order bits will
8079805d
RK
5190 be undefined. On machine where it is defined, this transformation is safe
5191 as long as M1 and M2 have the same number of words. */
663522cb 5192
8079805d
RK
5193 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5194 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5195 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5196 / UNITS_PER_WORD)
5197 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5198 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
8baf60bb 5199#ifndef WORD_REGISTER_OPERATIONS
8079805d
RK
5200 && (GET_MODE_SIZE (GET_MODE (src))
5201 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
df62f951 5202#endif
02188693 5203#ifdef CLASS_CANNOT_CHANGE_MODE
f507a070
RK
5204 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5205 && (TEST_HARD_REG_BIT
02188693 5206 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
f507a070 5207 REGNO (dest)))
02188693
RH
5208 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5209 GET_MODE (SUBREG_REG (src))))
663522cb 5210#endif
8079805d
RK
5211 && (GET_CODE (dest) == REG
5212 || (GET_CODE (dest) == SUBREG
5213 && GET_CODE (SUBREG_REG (dest)) == REG)))
5214 {
5215 SUBST (SET_DEST (x),
5216 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5217 dest));
5218 SUBST (SET_SRC (x), SUBREG_REG (src));
5219
5220 src = SET_SRC (x), dest = SET_DEST (x);
5221 }
df62f951 5222
8c1d52a3
KH
5223#ifdef HAVE_cc0
5224 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5225 in SRC. */
5226 if (dest == cc0_rtx
5227 && GET_CODE (src) == SUBREG
5228 && subreg_lowpart_p (src)
5229 && (GET_MODE_BITSIZE (GET_MODE (src))
5230 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5231 {
5232 rtx inner = SUBREG_REG (src);
5233 enum machine_mode inner_mode = GET_MODE (inner);
5234
5235 /* Here we make sure that we don't have a sign bit on. */
5236 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5237 && (nonzero_bits (inner, inner_mode)
5238 < ((unsigned HOST_WIDE_INT) 1
ff076520 5239 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
8c1d52a3
KH
5240 {
5241 SUBST (SET_SRC (x), inner);
5242 src = SET_SRC (x);
5243 }
5244 }
5245#endif
5246
8baf60bb 5247#ifdef LOAD_EXTEND_OP
8079805d
RK
5248 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5249 would require a paradoxical subreg. Replace the subreg with a
0f41302f 5250 zero_extend to avoid the reload that would otherwise be required. */
8079805d
RK
5251
5252 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5253 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
ddef6bc7 5254 && SUBREG_BYTE (src) == 0
8079805d
RK
5255 && (GET_MODE_SIZE (GET_MODE (src))
5256 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5257 && GET_CODE (SUBREG_REG (src)) == MEM)
5258 {
5259 SUBST (SET_SRC (x),
f1c6ba8b 5260 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
ddef6bc7 5261 GET_MODE (src), SUBREG_REG (src)));
8079805d
RK
5262
5263 src = SET_SRC (x);
5264 }
230d793d
RS
5265#endif
5266
8079805d
RK
5267 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5268 are comparing an item known to be 0 or -1 against 0, use a logical
5269 operation instead. Check for one of the arms being an IOR of the other
5270 arm with some value. We compute three terms to be IOR'ed together. In
5271 practice, at most two will be nonzero. Then we do the IOR's. */
5272
5273 if (GET_CODE (dest) != PC
5274 && GET_CODE (src) == IF_THEN_ELSE
36b8d792 5275 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
8079805d
RK
5276 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5277 && XEXP (XEXP (src, 0), 1) == const0_rtx
6dd49058 5278 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
ea414472
DE
5279#ifdef HAVE_conditional_move
5280 && ! can_conditionally_move_p (GET_MODE (src))
5281#endif
8079805d
RK
5282 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5283 GET_MODE (XEXP (XEXP (src, 0), 0)))
5284 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5285 && ! side_effects_p (src))
5286 {
d6edb99e 5287 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
8079805d 5288 ? XEXP (src, 1) : XEXP (src, 2));
d6edb99e 5289 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
8079805d
RK
5290 ? XEXP (src, 2) : XEXP (src, 1));
5291 rtx term1 = const0_rtx, term2, term3;
5292
d6edb99e
ZW
5293 if (GET_CODE (true_rtx) == IOR
5294 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5295 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5296 else if (GET_CODE (true_rtx) == IOR
5297 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5298 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5299 else if (GET_CODE (false_rtx) == IOR
5300 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5301 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5302 else if (GET_CODE (false_rtx) == IOR
5303 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5304 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5305
5306 term2 = gen_binary (AND, GET_MODE (src),
5307 XEXP (XEXP (src, 0), 0), true_rtx);
8079805d 5308 term3 = gen_binary (AND, GET_MODE (src),
f1c6ba8b
RK
5309 simplify_gen_unary (NOT, GET_MODE (src),
5310 XEXP (XEXP (src, 0), 0),
5311 GET_MODE (src)),
d6edb99e 5312 false_rtx);
8079805d
RK
5313
5314 SUBST (SET_SRC (x),
5315 gen_binary (IOR, GET_MODE (src),
5316 gen_binary (IOR, GET_MODE (src), term1, term2),
5317 term3));
5318
5319 src = SET_SRC (x);
5320 }
230d793d 5321
246e00f2
RK
5322 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5323 whole thing fail. */
5324 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5325 return src;
5326 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5327 return dest;
5328 else
5329 /* Convert this into a field assignment operation, if possible. */
5330 return make_field_assignment (x);
8079805d
RK
5331}
5332\f
5333/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5334 result. LAST is nonzero if this is the last retry. */
5335
5336static rtx
5337simplify_logical (x, last)
5338 rtx x;
5339 int last;
5340{
5341 enum machine_mode mode = GET_MODE (x);
5342 rtx op0 = XEXP (x, 0);
5343 rtx op1 = XEXP (x, 1);
9a915772 5344 rtx reversed;
8079805d
RK
5345
5346 switch (GET_CODE (x))
5347 {
230d793d 5348 case AND:
663522cb 5349 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
8079805d
RK
5350 insn (and may simplify more). */
5351 if (GET_CODE (op0) == XOR
5352 && rtx_equal_p (XEXP (op0, 0), op1)
5353 && ! side_effects_p (op1))
0c1c8ea6 5354 x = gen_binary (AND, mode,
f1c6ba8b
RK
5355 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5356 op1);
8079805d
RK
5357
5358 if (GET_CODE (op0) == XOR
5359 && rtx_equal_p (XEXP (op0, 1), op1)
5360 && ! side_effects_p (op1))
0c1c8ea6 5361 x = gen_binary (AND, mode,
f1c6ba8b
RK
5362 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5363 op1);
8079805d 5364
663522cb 5365 /* Similarly for (~(A ^ B)) & A. */
8079805d
RK
5366 if (GET_CODE (op0) == NOT
5367 && GET_CODE (XEXP (op0, 0)) == XOR
5368 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5369 && ! side_effects_p (op1))
5370 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5371
5372 if (GET_CODE (op0) == NOT
5373 && GET_CODE (XEXP (op0, 0)) == XOR
5374 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5375 && ! side_effects_p (op1))
5376 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5377
2e8f9abf
DM
5378 /* We can call simplify_and_const_int only if we don't lose
5379 any (sign) bits when converting INTVAL (op1) to
5380 "unsigned HOST_WIDE_INT". */
5381 if (GET_CODE (op1) == CONST_INT
5382 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5383 || INTVAL (op1) > 0))
230d793d 5384 {
8079805d 5385 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
230d793d
RS
5386
5387 /* If we have (ior (and (X C1) C2)) and the next restart would be
5388 the last, simplify this by making C1 as small as possible
0f41302f 5389 and then exit. */
8079805d
RK
5390 if (last
5391 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5392 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5393 && GET_CODE (op1) == CONST_INT)
5394 return gen_binary (IOR, mode,
5395 gen_binary (AND, mode, XEXP (op0, 0),
5396 GEN_INT (INTVAL (XEXP (op0, 1))
663522cb 5397 & ~INTVAL (op1))), op1);
230d793d
RS
5398
5399 if (GET_CODE (x) != AND)
8079805d 5400 return x;
0e32506c 5401
663522cb 5402 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
0e32506c
RK
5403 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5404 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
230d793d
RS
5405 }
5406
5407 /* Convert (A | B) & A to A. */
8079805d
RK
5408 if (GET_CODE (op0) == IOR
5409 && (rtx_equal_p (XEXP (op0, 0), op1)
5410 || rtx_equal_p (XEXP (op0, 1), op1))
5411 && ! side_effects_p (XEXP (op0, 0))
5412 && ! side_effects_p (XEXP (op0, 1)))
5413 return op1;
230d793d 5414
d0ab8cd3 5415 /* In the following group of tests (and those in case IOR below),
230d793d
RS
5416 we start with some combination of logical operations and apply
5417 the distributive law followed by the inverse distributive law.
5418 Most of the time, this results in no change. However, if some of
5419 the operands are the same or inverses of each other, simplifications
5420 will result.
5421
5422 For example, (and (ior A B) (not B)) can occur as the result of
5423 expanding a bit field assignment. When we apply the distributive
5424 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
663522cb 5425 which then simplifies to (and (A (not B))).
230d793d 5426
8079805d 5427 If we have (and (ior A B) C), apply the distributive law and then
230d793d
RS
5428 the inverse distributive law to see if things simplify. */
5429
8079805d 5430 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
230d793d
RS
5431 {
5432 x = apply_distributive_law
8079805d
RK
5433 (gen_binary (GET_CODE (op0), mode,
5434 gen_binary (AND, mode, XEXP (op0, 0), op1),
3749f4ca
BS
5435 gen_binary (AND, mode, XEXP (op0, 1),
5436 copy_rtx (op1))));
230d793d 5437 if (GET_CODE (x) != AND)
8079805d 5438 return x;
230d793d
RS
5439 }
5440
8079805d
RK
5441 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5442 return apply_distributive_law
5443 (gen_binary (GET_CODE (op1), mode,
5444 gen_binary (AND, mode, XEXP (op1, 0), op0),
3749f4ca
BS
5445 gen_binary (AND, mode, XEXP (op1, 1),
5446 copy_rtx (op0))));
230d793d
RS
5447
5448 /* Similarly, taking advantage of the fact that
5449 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5450
8079805d
RK
5451 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5452 return apply_distributive_law
5453 (gen_binary (XOR, mode,
5454 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
3749f4ca
BS
5455 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5456 XEXP (op1, 1))));
663522cb 5457
8079805d
RK
5458 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5459 return apply_distributive_law
5460 (gen_binary (XOR, mode,
5461 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
3749f4ca 5462 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
230d793d
RS
5463 break;
5464
5465 case IOR:
951553af 5466 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
8079805d 5467 if (GET_CODE (op1) == CONST_INT
ac49a949 5468 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
663522cb 5469 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
8079805d 5470 return op1;
d0ab8cd3 5471
230d793d 5472 /* Convert (A & B) | A to A. */
8079805d
RK
5473 if (GET_CODE (op0) == AND
5474 && (rtx_equal_p (XEXP (op0, 0), op1)
5475 || rtx_equal_p (XEXP (op0, 1), op1))
5476 && ! side_effects_p (XEXP (op0, 0))
5477 && ! side_effects_p (XEXP (op0, 1)))
5478 return op1;
230d793d
RS
5479
5480 /* If we have (ior (and A B) C), apply the distributive law and then
5481 the inverse distributive law to see if things simplify. */
5482
8079805d 5483 if (GET_CODE (op0) == AND)
230d793d
RS
5484 {
5485 x = apply_distributive_law
5486 (gen_binary (AND, mode,
8079805d 5487 gen_binary (IOR, mode, XEXP (op0, 0), op1),
3749f4ca
BS
5488 gen_binary (IOR, mode, XEXP (op0, 1),
5489 copy_rtx (op1))));
230d793d
RS
5490
5491 if (GET_CODE (x) != IOR)
8079805d 5492 return x;
230d793d
RS
5493 }
5494
8079805d 5495 if (GET_CODE (op1) == AND)
230d793d
RS
5496 {
5497 x = apply_distributive_law
5498 (gen_binary (AND, mode,
8079805d 5499 gen_binary (IOR, mode, XEXP (op1, 0), op0),
3749f4ca
BS
5500 gen_binary (IOR, mode, XEXP (op1, 1),
5501 copy_rtx (op0))));
230d793d
RS
5502
5503 if (GET_CODE (x) != IOR)
8079805d 5504 return x;
230d793d
RS
5505 }
5506
5507 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5508 mode size to (rotate A CX). */
5509
8079805d
RK
5510 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5511 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5512 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5513 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5514 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5515 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
230d793d 5516 == GET_MODE_BITSIZE (mode)))
38a448ca
RH
5517 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5518 (GET_CODE (op0) == ASHIFT
5519 ? XEXP (op0, 1) : XEXP (op1, 1)));
230d793d 5520
71923da7
RK
5521 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5522 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5523 does not affect any of the bits in OP1, it can really be done
5524 as a PLUS and we can associate. We do this by seeing if OP1
5525 can be safely shifted left C bits. */
5526 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5527 && GET_CODE (XEXP (op0, 0)) == PLUS
5528 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5529 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5530 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5531 {
5532 int count = INTVAL (XEXP (op0, 1));
5533 HOST_WIDE_INT mask = INTVAL (op1) << count;
5534
5535 if (mask >> count == INTVAL (op1)
5536 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5537 {
5538 SUBST (XEXP (XEXP (op0, 0), 1),
5539 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5540 return op0;
5541 }
5542 }
230d793d
RS
5543 break;
5544
5545 case XOR:
79e8185c
JH
5546 /* If we are XORing two things that have no bits in common,
5547 convert them into an IOR. This helps to detect rotation encoded
5548 using those methods and possibly other simplifications. */
5549
5550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5551 && (nonzero_bits (op0, mode)
5552 & nonzero_bits (op1, mode)) == 0)
5553 return (gen_binary (IOR, mode, op0, op1));
5554
230d793d
RS
5555 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5556 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5557 (NOT y). */
5558 {
5559 int num_negated = 0;
230d793d 5560
8079805d
RK
5561 if (GET_CODE (op0) == NOT)
5562 num_negated++, op0 = XEXP (op0, 0);
5563 if (GET_CODE (op1) == NOT)
5564 num_negated++, op1 = XEXP (op1, 0);
230d793d
RS
5565
5566 if (num_negated == 2)
5567 {
8079805d
RK
5568 SUBST (XEXP (x, 0), op0);
5569 SUBST (XEXP (x, 1), op1);
230d793d
RS
5570 }
5571 else if (num_negated == 1)
f1c6ba8b
RK
5572 return
5573 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5574 mode);
230d793d
RS
5575 }
5576
5577 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5578 correspond to a machine insn or result in further simplifications
5579 if B is a constant. */
5580
8079805d
RK
5581 if (GET_CODE (op0) == AND
5582 && rtx_equal_p (XEXP (op0, 1), op1)
5583 && ! side_effects_p (op1))
0c1c8ea6 5584 return gen_binary (AND, mode,
f1c6ba8b 5585 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
8079805d 5586 op1);
230d793d 5587
8079805d
RK
5588 else if (GET_CODE (op0) == AND
5589 && rtx_equal_p (XEXP (op0, 0), op1)
5590 && ! side_effects_p (op1))
0c1c8ea6 5591 return gen_binary (AND, mode,
f1c6ba8b 5592 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
8079805d 5593 op1);
230d793d 5594
230d793d 5595 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
0802d516
RK
5596 comparison if STORE_FLAG_VALUE is 1. */
5597 if (STORE_FLAG_VALUE == 1
5598 && op1 == const1_rtx
8079805d 5599 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
9a915772
JH
5600 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5601 XEXP (op0, 1))))
5602 return reversed;
500c518b
RK
5603
5604 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5605 is (lt foo (const_int 0)), so we can perform the above
0802d516 5606 simplification if STORE_FLAG_VALUE is 1. */
500c518b 5607
0802d516
RK
5608 if (STORE_FLAG_VALUE == 1
5609 && op1 == const1_rtx
8079805d
RK
5610 && GET_CODE (op0) == LSHIFTRT
5611 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5612 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
f1c6ba8b 5613 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
230d793d
RS
5614
5615 /* (xor (comparison foo bar) (const_int sign-bit))
5616 when STORE_FLAG_VALUE is the sign bit. */
5f4f0e22 5617 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
0802d516 5618 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
e51712db 5619 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
8079805d
RK
5620 && op1 == const_true_rtx
5621 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
9a915772
JH
5622 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5623 XEXP (op0, 1))))
5624 return reversed;
0918eca0 5625
230d793d 5626 break;
e9a25f70
JL
5627
5628 default:
5629 abort ();
230d793d
RS
5630 }
5631
5632 return x;
5633}
5634\f
5635/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5636 operations" because they can be replaced with two more basic operations.
5637 ZERO_EXTEND is also considered "compound" because it can be replaced with
5638 an AND operation, which is simpler, though only one operation.
5639
5640 The function expand_compound_operation is called with an rtx expression
663522cb 5641 and will convert it to the appropriate shifts and AND operations,
230d793d
RS
5642 simplifying at each stage.
5643
5644 The function make_compound_operation is called to convert an expression
5645 consisting of shifts and ANDs into the equivalent compound expression.
5646 It is the inverse of this function, loosely speaking. */
5647
5648static rtx
5649expand_compound_operation (x)
5650 rtx x;
5651{
770ae6cc 5652 unsigned HOST_WIDE_INT pos = 0, len;
230d793d 5653 int unsignedp = 0;
770ae6cc 5654 unsigned int modewidth;
230d793d
RS
5655 rtx tem;
5656
5657 switch (GET_CODE (x))
5658 {
5659 case ZERO_EXTEND:
5660 unsignedp = 1;
5661 case SIGN_EXTEND:
75473182
RS
5662 /* We can't necessarily use a const_int for a multiword mode;
5663 it depends on implicitly extending the value.
5664 Since we don't know the right way to extend it,
5665 we can't tell whether the implicit way is right.
5666
5667 Even for a mode that is no wider than a const_int,
5668 we can't win, because we need to sign extend one of its bits through
5669 the rest of it, and we don't know which bit. */
230d793d 5670 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
75473182 5671 return x;
230d793d 5672
8079805d
RK
5673 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5674 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5675 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5676 reloaded. If not for that, MEM's would very rarely be safe.
5677
5678 Reject MODEs bigger than a word, because we might not be able
5679 to reference a two-register group starting with an arbitrary register
5680 (and currently gen_lowpart might crash for a SUBREG). */
663522cb 5681
8079805d 5682 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
230d793d
RS
5683 return x;
5684
71012d97
GK
5685 /* Reject MODEs that aren't scalar integers because turning vector
5686 or complex modes into shifts causes problems. */
5687
5688 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5689 return x;
5690
230d793d
RS
5691 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5692 /* If the inner object has VOIDmode (the only way this can happen
e0a2f705 5693 is if it is an ASM_OPERANDS), we can't do anything since we don't
230d793d
RS
5694 know how much masking to do. */
5695 if (len == 0)
5696 return x;
5697
5698 break;
5699
5700 case ZERO_EXTRACT:
5701 unsignedp = 1;
5702 case SIGN_EXTRACT:
5703 /* If the operand is a CLOBBER, just return it. */
5704 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5705 return XEXP (x, 0);
5706
5707 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5708 || GET_CODE (XEXP (x, 2)) != CONST_INT
5709 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5710 return x;
5711
71012d97
GK
5712 /* Reject MODEs that aren't scalar integers because turning vector
5713 or complex modes into shifts causes problems. */
5714
5715 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5716 return x;
5717
230d793d
RS
5718 len = INTVAL (XEXP (x, 1));
5719 pos = INTVAL (XEXP (x, 2));
5720
5721 /* If this goes outside the object being extracted, replace the object
5722 with a (use (mem ...)) construct that only combine understands
5723 and is used only for this purpose. */
5724 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
38a448ca 5725 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
230d793d 5726
f76b9db2
ILT
5727 if (BITS_BIG_ENDIAN)
5728 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5729
230d793d
RS
5730 break;
5731
5732 default:
5733 return x;
5734 }
0f808b6f
JH
5735 /* Convert sign extension to zero extension, if we know that the high
5736 bit is not set, as this is easier to optimize. It will be converted
5737 back to cheaper alternative in make_extraction. */
5738 if (GET_CODE (x) == SIGN_EXTEND
5739 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5740 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
663522cb 5741 & ~(((unsigned HOST_WIDE_INT)
0f808b6f
JH
5742 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5743 >> 1))
5744 == 0)))
5745 {
5746 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5747 return expand_compound_operation (temp);
5748 }
230d793d 5749
0f13a422
ILT
5750 /* We can optimize some special cases of ZERO_EXTEND. */
5751 if (GET_CODE (x) == ZERO_EXTEND)
5752 {
5753 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5754 know that the last value didn't have any inappropriate bits
5755 set. */
5756 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5757 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5758 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5759 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
663522cb 5760 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
0f13a422
ILT
5761 return XEXP (XEXP (x, 0), 0);
5762
5763 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5764 if (GET_CODE (XEXP (x, 0)) == SUBREG
5765 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5766 && subreg_lowpart_p (XEXP (x, 0))
5767 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5768 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
663522cb 5769 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
0f13a422
ILT
5770 return SUBREG_REG (XEXP (x, 0));
5771
5772 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5773 is a comparison and STORE_FLAG_VALUE permits. This is like
5774 the first case, but it works even when GET_MODE (x) is larger
5775 than HOST_WIDE_INT. */
5776 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5777 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5778 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5779 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5780 <= HOST_BITS_PER_WIDE_INT)
23190837 5781 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
663522cb 5782 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
0f13a422
ILT
5783 return XEXP (XEXP (x, 0), 0);
5784
5785 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5786 if (GET_CODE (XEXP (x, 0)) == SUBREG
5787 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5788 && subreg_lowpart_p (XEXP (x, 0))
5789 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5790 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5791 <= HOST_BITS_PER_WIDE_INT)
5792 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
663522cb 5793 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
0f13a422
ILT
5794 return SUBREG_REG (XEXP (x, 0));
5795
0f13a422
ILT
5796 }
5797
230d793d
RS
5798 /* If we reach here, we want to return a pair of shifts. The inner
5799 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5800 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5801 logical depending on the value of UNSIGNEDP.
5802
5803 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5804 converted into an AND of a shift.
5805
5806 We must check for the case where the left shift would have a negative
5807 count. This can happen in a case like (x >> 31) & 255 on machines
5808 that can't shift by a constant. On those machines, we would first
663522cb 5809 combine the shift with the AND to produce a variable-position
230d793d
RS
5810 extraction. Then the constant of 31 would be substituted in to produce
5811 a such a position. */
5812
5813 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
770ae6cc 5814 if (modewidth + len >= pos)
5f4f0e22 5815 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
230d793d 5816 GET_MODE (x),
5f4f0e22
CH
5817 simplify_shift_const (NULL_RTX, ASHIFT,
5818 GET_MODE (x),
230d793d
RS
5819 XEXP (x, 0),
5820 modewidth - pos - len),
5821 modewidth - len);
5822
5f4f0e22
CH
5823 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5824 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5825 simplify_shift_const (NULL_RTX, LSHIFTRT,
230d793d
RS
5826 GET_MODE (x),
5827 XEXP (x, 0), pos),
5f4f0e22 5828 ((HOST_WIDE_INT) 1 << len) - 1);
230d793d
RS
5829 else
5830 /* Any other cases we can't handle. */
5831 return x;
230d793d
RS
5832
5833 /* If we couldn't do this for some reason, return the original
5834 expression. */
5835 if (GET_CODE (tem) == CLOBBER)
5836 return x;
5837
5838 return tem;
5839}
5840\f
5841/* X is a SET which contains an assignment of one object into
5842 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5843 or certain SUBREGS). If possible, convert it into a series of
5844 logical operations.
5845
5846 We half-heartedly support variable positions, but do not at all
5847 support variable lengths. */
5848
5849static rtx
5850expand_field_assignment (x)
5851 rtx x;
5852{
5853 rtx inner;
0f41302f 5854 rtx pos; /* Always counts from low bit. */
230d793d
RS
5855 int len;
5856 rtx mask;
5857 enum machine_mode compute_mode;
5858
5859 /* Loop until we find something we can't simplify. */
5860 while (1)
5861 {
5862 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5863 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5864 {
5865 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5866 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
47073a38 5867 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
230d793d
RS
5868 }
5869 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5870 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5871 {
5872 inner = XEXP (SET_DEST (x), 0);
5873 len = INTVAL (XEXP (SET_DEST (x), 1));
5874 pos = XEXP (SET_DEST (x), 2);
5875
5876 /* If the position is constant and spans the width of INNER,
5877 surround INNER with a USE to indicate this. */
5878 if (GET_CODE (pos) == CONST_INT
5879 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
38a448ca 5880 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
230d793d 5881
f76b9db2
ILT
5882 if (BITS_BIG_ENDIAN)
5883 {
5884 if (GET_CODE (pos) == CONST_INT)
5885 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5886 - INTVAL (pos));
5887 else if (GET_CODE (pos) == MINUS
5888 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5889 && (INTVAL (XEXP (pos, 1))
5890 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5891 /* If position is ADJUST - X, new position is X. */
5892 pos = XEXP (pos, 0);
5893 else
5894 pos = gen_binary (MINUS, GET_MODE (pos),
5895 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5896 - len),
5897 pos);
5898 }
230d793d
RS
5899 }
5900
5901 /* A SUBREG between two modes that occupy the same numbers of words
5902 can be done by moving the SUBREG to the source. */
5903 else if (GET_CODE (SET_DEST (x)) == SUBREG
b1e9c8a9
AO
5904 /* We need SUBREGs to compute nonzero_bits properly. */
5905 && nonzero_sign_valid
230d793d
RS
5906 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5907 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5908 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5909 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5910 {
38a448ca 5911 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
c5c76735
JL
5912 gen_lowpart_for_combine
5913 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5914 SET_SRC (x)));
230d793d
RS
5915 continue;
5916 }
5917 else
5918 break;
5919
5920 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5921 inner = SUBREG_REG (inner);
5922
5923 compute_mode = GET_MODE (inner);
5924
71012d97
GK
5925 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5926 if (! SCALAR_INT_MODE_P (compute_mode))
861556b4
RH
5927 {
5928 enum machine_mode imode;
5929
71012d97 5930 /* Don't do anything for vector or complex integral types. */
861556b4
RH
5931 if (! FLOAT_MODE_P (compute_mode))
5932 break;
5933
5934 /* Try to find an integral mode to pun with. */
5935 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5936 if (imode == BLKmode)
5937 break;
5938
5939 compute_mode = imode;
5940 inner = gen_lowpart_for_combine (imode, inner);
5941 }
5942
230d793d 5943 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5f4f0e22
CH
5944 if (len < HOST_BITS_PER_WIDE_INT)
5945 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
230d793d
RS
5946 else
5947 break;
5948
5949 /* Now compute the equivalent expression. Make a copy of INNER
5950 for the SET_DEST in case it is a MEM into which we will substitute;
5951 we don't want shared RTL in that case. */
c5c76735
JL
5952 x = gen_rtx_SET
5953 (VOIDmode, copy_rtx (inner),
5954 gen_binary (IOR, compute_mode,
5955 gen_binary (AND, compute_mode,
f1c6ba8b
RK
5956 simplify_gen_unary (NOT, compute_mode,
5957 gen_binary (ASHIFT,
5958 compute_mode,
5959 mask, pos),
5960 compute_mode),
c5c76735
JL
5961 inner),
5962 gen_binary (ASHIFT, compute_mode,
5963 gen_binary (AND, compute_mode,
5964 gen_lowpart_for_combine
5965 (compute_mode, SET_SRC (x)),
5966 mask),
5967 pos)));
230d793d
RS
5968 }
5969
5970 return x;
5971}
5972\f
8999a12e
RK
5973/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5974 it is an RTX that represents a variable starting position; otherwise,
5975 POS is the (constant) starting bit position (counted from the LSB).
230d793d
RS
5976
5977 INNER may be a USE. This will occur when we started with a bitfield
5978 that went outside the boundary of the object in memory, which is
5979 allowed on most machines. To isolate this case, we produce a USE
5980 whose mode is wide enough and surround the MEM with it. The only
5981 code that understands the USE is this routine. If it is not removed,
5982 it will cause the resulting insn not to match.
5983
da7d8304 5984 UNSIGNEDP is nonzero for an unsigned reference and zero for a
230d793d
RS
5985 signed reference.
5986
da7d8304
KH
5987 IN_DEST is nonzero if this is a reference in the destination of a
5988 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
230d793d
RS
5989 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5990 be used.
5991
da7d8304 5992 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
230d793d
RS
5993 ZERO_EXTRACT should be built even for bits starting at bit 0.
5994
76184def
DE
5995 MODE is the desired mode of the result (if IN_DEST == 0).
5996
5997 The result is an RTX for the extraction or NULL_RTX if the target
5998 can't handle it. */
230d793d
RS
5999
6000static rtx
6001make_extraction (mode, inner, pos, pos_rtx, len,
6002 unsignedp, in_dest, in_compare)
6003 enum machine_mode mode;
6004 rtx inner;
770ae6cc 6005 HOST_WIDE_INT pos;
230d793d 6006 rtx pos_rtx;
770ae6cc 6007 unsigned HOST_WIDE_INT len;
230d793d
RS
6008 int unsignedp;
6009 int in_dest, in_compare;
6010{
94b4b17a
RS
6011 /* This mode describes the size of the storage area
6012 to fetch the overall value from. Within that, we
6013 ignore the POS lowest bits, etc. */
230d793d
RS
6014 enum machine_mode is_mode = GET_MODE (inner);
6015 enum machine_mode inner_mode;
d7cd794f
RK
6016 enum machine_mode wanted_inner_mode = byte_mode;
6017 enum machine_mode wanted_inner_reg_mode = word_mode;
230d793d
RS
6018 enum machine_mode pos_mode = word_mode;
6019 enum machine_mode extraction_mode = word_mode;
6020 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6021 int spans_byte = 0;
6022 rtx new = 0;
8999a12e 6023 rtx orig_pos_rtx = pos_rtx;
770ae6cc 6024 HOST_WIDE_INT orig_pos;
230d793d
RS
6025
6026 /* Get some information about INNER and get the innermost object. */
6027 if (GET_CODE (inner) == USE)
94b4b17a 6028 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
230d793d
RS
6029 /* We don't need to adjust the position because we set up the USE
6030 to pretend that it was a full-word object. */
6031 spans_byte = 1, inner = XEXP (inner, 0);
6032 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
94b4b17a
RS
6033 {
6034 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6035 consider just the QI as the memory to extract from.
6036 The subreg adds or removes high bits; its mode is
6037 irrelevant to the meaning of this extraction,
6038 since POS and LEN count from the lsb. */
6039 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6040 is_mode = GET_MODE (SUBREG_REG (inner));
6041 inner = SUBREG_REG (inner);
6042 }
988ef418
RS
6043 else if (GET_CODE (inner) == ASHIFT
6044 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6045 && pos_rtx == 0 && pos == 0
3129af4c 6046 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
988ef418
RS
6047 {
6048 /* We're extracting the least significant bits of an rtx
6049 (ashift X (const_int C)), where LEN > C. Extract the
6050 least significant (LEN - C) bits of X, giving an rtx
6051 whose mode is MODE, then shift it left C times. */
6052 new = make_extraction (mode, XEXP (inner, 0),
6053 0, 0, len - INTVAL (XEXP (inner, 1)),
6054 unsignedp, in_dest, in_compare);
6055 if (new != 0)
6056 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6057 }
230d793d
RS
6058
6059 inner_mode = GET_MODE (inner);
6060
6061 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
8999a12e 6062 pos = INTVAL (pos_rtx), pos_rtx = 0;
230d793d
RS
6063
6064 /* See if this can be done without an extraction. We never can if the
6065 width of the field is not the same as that of some integer mode. For
6066 registers, we can only avoid the extraction if the position is at the
6067 low-order bit and this is either not in the destination or we have the
6068 appropriate STRICT_LOW_PART operation available.
6069
6070 For MEM, we can avoid an extract if the field starts on an appropriate
6071 boundary and we can change the mode of the memory reference. However,
6072 we cannot directly access the MEM if we have a USE and the underlying
6073 MEM is not TMODE. This combination means that MEM was being used in a
6074 context where bits outside its mode were being referenced; that is only
6075 valid in bit-field insns. */
6076
6077 if (tmode != BLKmode
6078 && ! (spans_byte && inner_mode != tmode)
4d9cfc7b
RK
6079 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6080 && GET_CODE (inner) != MEM
230d793d 6081 && (! in_dest
df62f951 6082 || (GET_CODE (inner) == REG
ef89d648 6083 && have_insn_for (STRICT_LOW_PART, tmode))))
8999a12e 6084 || (GET_CODE (inner) == MEM && pos_rtx == 0
dfbe1b2f
RK
6085 && (pos
6086 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6087 : BITS_PER_UNIT)) == 0
230d793d
RS
6088 /* We can't do this if we are widening INNER_MODE (it
6089 may not be aligned, for one thing). */
6090 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6091 && (inner_mode == tmode
6092 || (! mode_dependent_address_p (XEXP (inner, 0))
6093 && ! MEM_VOLATILE_P (inner))))))
6094 {
230d793d
RS
6095 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6096 field. If the original and current mode are the same, we need not
663522cb 6097 adjust the offset. Otherwise, we do if bytes big endian.
230d793d 6098
4d9cfc7b
RK
6099 If INNER is not a MEM, get a piece consisting of just the field
6100 of interest (in this case POS % BITS_PER_WORD must be 0). */
230d793d
RS
6101
6102 if (GET_CODE (inner) == MEM)
6103 {
f1ec5147
RK
6104 HOST_WIDE_INT offset;
6105
94b4b17a
RS
6106 /* POS counts from lsb, but make OFFSET count in memory order. */
6107 if (BYTES_BIG_ENDIAN)
6108 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6109 else
6110 offset = pos / BITS_PER_UNIT;
230d793d 6111
f1ec5147 6112 new = adjust_address_nv (inner, tmode, offset);
230d793d 6113 }
df62f951 6114 else if (GET_CODE (inner) == REG)
c0d3ac4d
RK
6115 {
6116 /* We can't call gen_lowpart_for_combine here since we always want
6117 a SUBREG and it would sometimes return a new hard register. */
6118 if (tmode != inner_mode)
ddef6bc7 6119 {
f1ec5147 6120 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
ddef6bc7
JJ
6121
6122 if (WORDS_BIG_ENDIAN
6123 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6124 final_word = ((GET_MODE_SIZE (inner_mode)
6125 - GET_MODE_SIZE (tmode))
6126 / UNITS_PER_WORD) - final_word;
6127
6128 final_word *= UNITS_PER_WORD;
6129 if (BYTES_BIG_ENDIAN &&
6130 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6131 final_word += (GET_MODE_SIZE (inner_mode)
6132 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6133
307f767b 6134 /* Avoid creating invalid subregs, for example when
991b6592 6135 simplifying (x>>32)&255. */
307f767b
DJ
6136 if (final_word >= GET_MODE_SIZE (inner_mode))
6137 return NULL_RTX;
6138
ddef6bc7
JJ
6139 new = gen_rtx_SUBREG (tmode, inner, final_word);
6140 }
23190837
AJ
6141 else
6142 new = inner;
6143 }
230d793d 6144 else
6139ff20
RK
6145 new = force_to_mode (inner, tmode,
6146 len >= HOST_BITS_PER_WIDE_INT
0345195a 6147 ? ~(unsigned HOST_WIDE_INT) 0
729a2125 6148 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
e3d616e3 6149 NULL_RTX, 0);
230d793d 6150
663522cb 6151 /* If this extraction is going into the destination of a SET,
230d793d
RS
6152 make a STRICT_LOW_PART unless we made a MEM. */
6153
6154 if (in_dest)
6155 return (GET_CODE (new) == MEM ? new
77fa0940 6156 : (GET_CODE (new) != SUBREG
38a448ca 6157 ? gen_rtx_CLOBBER (tmode, const0_rtx)
f1c6ba8b 6158 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
230d793d 6159
0f808b6f
JH
6160 if (mode == tmode)
6161 return new;
6162
0a7ec763 6163 if (GET_CODE (new) == CONST_INT)
2496c7bd 6164 return gen_int_mode (INTVAL (new), mode);
0a7ec763 6165
0f808b6f
JH
6166 /* If we know that no extraneous bits are set, and that the high
6167 bit is not set, convert the extraction to the cheaper of
6168 sign and zero extension, that are equivalent in these cases. */
6169 if (flag_expensive_optimizations
6170 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6171 && ((nonzero_bits (new, tmode)
663522cb
KH
6172 & ~(((unsigned HOST_WIDE_INT)
6173 GET_MODE_MASK (tmode))
6174 >> 1))
0f808b6f
JH
6175 == 0)))
6176 {
6177 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6178 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6179
6180 /* Prefer ZERO_EXTENSION, since it gives more information to
6181 backends. */
25ffb1f6 6182 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
0f808b6f
JH
6183 return temp;
6184 return temp1;
6185 }
6186
230d793d
RS
6187 /* Otherwise, sign- or zero-extend unless we already are in the
6188 proper mode. */
6189
f1c6ba8b
RK
6190 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6191 mode, new));
230d793d
RS
6192 }
6193
cc471082
RS
6194 /* Unless this is a COMPARE or we have a funny memory reference,
6195 don't do anything with zero-extending field extracts starting at
6196 the low-order bit since they are simple AND operations. */
8999a12e
RK
6197 if (pos_rtx == 0 && pos == 0 && ! in_dest
6198 && ! in_compare && ! spans_byte && unsignedp)
230d793d
RS
6199 return 0;
6200
c5c76735
JL
6201 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6202 we would be spanning bytes or if the position is not a constant and the
6203 length is not 1. In all other cases, we would only be going outside
6204 our object in cases when an original shift would have been
e7373556 6205 undefined. */
c5c76735 6206 if (! spans_byte && GET_CODE (inner) == MEM
e7373556
RK
6207 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6208 || (pos_rtx != 0 && len != 1)))
6209 return 0;
6210
d7cd794f 6211 /* Get the mode to use should INNER not be a MEM, the mode for the position,
230d793d 6212 and the mode for the result. */
505ddab6 6213 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
230d793d 6214 {
da920570
ZW
6215 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6216 pos_mode = mode_for_extraction (EP_insv, 2);
6217 extraction_mode = mode_for_extraction (EP_insv, 3);
230d793d 6218 }
230d793d 6219
da920570
ZW
6220 if (! in_dest && unsignedp
6221 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
230d793d 6222 {
da920570
ZW
6223 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6224 pos_mode = mode_for_extraction (EP_extzv, 3);
6225 extraction_mode = mode_for_extraction (EP_extzv, 0);
230d793d 6226 }
230d793d 6227
da920570
ZW
6228 if (! in_dest && ! unsignedp
6229 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
230d793d 6230 {
da920570
ZW
6231 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6232 pos_mode = mode_for_extraction (EP_extv, 3);
6233 extraction_mode = mode_for_extraction (EP_extv, 0);
230d793d 6234 }
230d793d
RS
6235
6236 /* Never narrow an object, since that might not be safe. */
6237
6238 if (mode != VOIDmode
6239 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6240 extraction_mode = mode;
6241
6242 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6243 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6244 pos_mode = GET_MODE (pos_rtx);
6245
d7cd794f
RK
6246 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6247 if we have to change the mode of memory and cannot, the desired mode is
6248 EXTRACTION_MODE. */
6249 if (GET_CODE (inner) != MEM)
6250 wanted_inner_mode = wanted_inner_reg_mode;
6251 else if (inner_mode != wanted_inner_mode
6252 && (mode_dependent_address_p (XEXP (inner, 0))
6253 || MEM_VOLATILE_P (inner)))
6254 wanted_inner_mode = extraction_mode;
230d793d 6255
6139ff20
RK
6256 orig_pos = pos;
6257
f76b9db2
ILT
6258 if (BITS_BIG_ENDIAN)
6259 {
cf54c2cd
DE
6260 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6261 BITS_BIG_ENDIAN style. If position is constant, compute new
6262 position. Otherwise, build subtraction.
6263 Note that POS is relative to the mode of the original argument.
6264 If it's a MEM we need to recompute POS relative to that.
6265 However, if we're extracting from (or inserting into) a register,
6266 we want to recompute POS relative to wanted_inner_mode. */
6267 int width = (GET_CODE (inner) == MEM
6268 ? GET_MODE_BITSIZE (is_mode)
6269 : GET_MODE_BITSIZE (wanted_inner_mode));
6270
f76b9db2 6271 if (pos_rtx == 0)
cf54c2cd 6272 pos = width - len - pos;
f76b9db2
ILT
6273 else
6274 pos_rtx
f1c6ba8b 6275 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
cf54c2cd
DE
6276 /* POS may be less than 0 now, but we check for that below.
6277 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
f76b9db2 6278 }
230d793d
RS
6279
6280 /* If INNER has a wider mode, make it smaller. If this is a constant
6281 extract, try to adjust the byte to point to the byte containing
6282 the value. */
d7cd794f
RK
6283 if (wanted_inner_mode != VOIDmode
6284 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
230d793d 6285 && ((GET_CODE (inner) == MEM
d7cd794f 6286 && (inner_mode == wanted_inner_mode
230d793d
RS
6287 || (! mode_dependent_address_p (XEXP (inner, 0))
6288 && ! MEM_VOLATILE_P (inner))))))
6289 {
6290 int offset = 0;
6291
6292 /* The computations below will be correct if the machine is big
6293 endian in both bits and bytes or little endian in bits and bytes.
6294 If it is mixed, we must adjust. */
663522cb 6295
230d793d 6296 /* If bytes are big endian and we had a paradoxical SUBREG, we must
0f41302f 6297 adjust OFFSET to compensate. */
f76b9db2
ILT
6298 if (BYTES_BIG_ENDIAN
6299 && ! spans_byte
230d793d
RS
6300 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6301 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
230d793d
RS
6302
6303 /* If this is a constant position, we can move to the desired byte. */
8999a12e 6304 if (pos_rtx == 0)
230d793d
RS
6305 {
6306 offset += pos / BITS_PER_UNIT;
d7cd794f 6307 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
230d793d
RS
6308 }
6309
f76b9db2
ILT
6310 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6311 && ! spans_byte
d7cd794f 6312 && is_mode != wanted_inner_mode)
c6b3f1f2 6313 offset = (GET_MODE_SIZE (is_mode)
d7cd794f 6314 - GET_MODE_SIZE (wanted_inner_mode) - offset);
c6b3f1f2 6315
d7cd794f 6316 if (offset != 0 || inner_mode != wanted_inner_mode)
f1ec5147 6317 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
230d793d
RS
6318 }
6319
9e74dc41
RK
6320 /* If INNER is not memory, we can always get it into the proper mode. If we
6321 are changing its mode, POS must be a constant and smaller than the size
6322 of the new mode. */
230d793d 6323 else if (GET_CODE (inner) != MEM)
9e74dc41
RK
6324 {
6325 if (GET_MODE (inner) != wanted_inner_mode
6326 && (pos_rtx != 0
6327 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6328 return 0;
6329
6330 inner = force_to_mode (inner, wanted_inner_mode,
6331 pos_rtx
6332 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
0345195a 6333 ? ~(unsigned HOST_WIDE_INT) 0
729a2125
RK
6334 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6335 << orig_pos),
9e74dc41
RK
6336 NULL_RTX, 0);
6337 }
230d793d
RS
6338
6339 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6340 have to zero extend. Otherwise, we can just use a SUBREG. */
8999a12e 6341 if (pos_rtx != 0
230d793d 6342 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
0f808b6f 6343 {
f1c6ba8b 6344 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
0f808b6f
JH
6345
6346 /* If we know that no extraneous bits are set, and that the high
eaec9b3d 6347 bit is not set, convert extraction to cheaper one - either
0f808b6f
JH
6348 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6349 cases. */
6350 if (flag_expensive_optimizations
6351 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6352 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
663522cb
KH
6353 & ~(((unsigned HOST_WIDE_INT)
6354 GET_MODE_MASK (GET_MODE (pos_rtx)))
6355 >> 1))
0f808b6f
JH
6356 == 0)))
6357 {
6358 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6359
25ffb1f6 6360 /* Prefer ZERO_EXTENSION, since it gives more information to
0f808b6f
JH
6361 backends. */
6362 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6363 temp = temp1;
6364 }
6365 pos_rtx = temp;
6366 }
8999a12e 6367 else if (pos_rtx != 0
230d793d
RS
6368 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6369 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6370
8999a12e
RK
6371 /* Make POS_RTX unless we already have it and it is correct. If we don't
6372 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
0f41302f 6373 be a CONST_INT. */
8999a12e
RK
6374 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6375 pos_rtx = orig_pos_rtx;
6376
6377 else if (pos_rtx == 0)
5f4f0e22 6378 pos_rtx = GEN_INT (pos);
230d793d
RS
6379
6380 /* Make the required operation. See if we can use existing rtx. */
f1c6ba8b 6381 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
5f4f0e22 6382 extraction_mode, inner, GEN_INT (len), pos_rtx);
230d793d
RS
6383 if (! in_dest)
6384 new = gen_lowpart_for_combine (mode, new);
6385
6386 return new;
6387}
6388\f
71923da7
RK
6389/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6390 with any other operations in X. Return X without that shift if so. */
6391
6392static rtx
6393extract_left_shift (x, count)
6394 rtx x;
6395 int count;
6396{
6397 enum rtx_code code = GET_CODE (x);
6398 enum machine_mode mode = GET_MODE (x);
6399 rtx tem;
6400
6401 switch (code)
6402 {
6403 case ASHIFT:
6404 /* This is the shift itself. If it is wide enough, we will return
6405 either the value being shifted if the shift count is equal to
6406 COUNT or a shift for the difference. */
6407 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6408 && INTVAL (XEXP (x, 1)) >= count)
6409 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6410 INTVAL (XEXP (x, 1)) - count);
6411 break;
6412
6413 case NEG: case NOT:
6414 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
f1c6ba8b 6415 return simplify_gen_unary (code, mode, tem, mode);
71923da7
RK
6416
6417 break;
6418
6419 case PLUS: case IOR: case XOR: case AND:
6420 /* If we can safely shift this constant and we find the inner shift,
6421 make a new operation. */
6422 if (GET_CODE (XEXP (x,1)) == CONST_INT
b729186a 6423 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
71923da7 6424 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
663522cb 6425 return gen_binary (code, mode, tem,
71923da7
RK
6426 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6427
6428 break;
663522cb 6429
e9a25f70
JL
6430 default:
6431 break;
71923da7
RK
6432 }
6433
6434 return 0;
6435}
6436\f
230d793d
RS
6437/* Look at the expression rooted at X. Look for expressions
6438 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6439 Form these expressions.
6440
6441 Return the new rtx, usually just X.
6442
8aeea6e6 6443 Also, for machines like the VAX that don't have logical shift insns,
230d793d
RS
6444 try to convert logical to arithmetic shift operations in cases where
6445 they are equivalent. This undoes the canonicalizations to logical
6446 shifts done elsewhere.
6447
6448 We try, as much as possible, to re-use rtl expressions to save memory.
6449
6450 IN_CODE says what kind of expression we are processing. Normally, it is
42495ca0
RK
6451 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6452 being kludges), it is MEM. When processing the arguments of a comparison
230d793d
RS
6453 or a COMPARE against zero, it is COMPARE. */
6454
6455static rtx
6456make_compound_operation (x, in_code)
6457 rtx x;
6458 enum rtx_code in_code;
6459{
6460 enum rtx_code code = GET_CODE (x);
6461 enum machine_mode mode = GET_MODE (x);
6462 int mode_width = GET_MODE_BITSIZE (mode);
71923da7 6463 rtx rhs, lhs;
230d793d 6464 enum rtx_code next_code;
f24ad0e4 6465 int i;
230d793d 6466 rtx new = 0;
280f58ba 6467 rtx tem;
6f7d635c 6468 const char *fmt;
230d793d
RS
6469
6470 /* Select the code to be used in recursive calls. Once we are inside an
6471 address, we stay there. If we have a comparison, set to COMPARE,
6472 but once inside, go back to our default of SET. */
6473
42495ca0 6474 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
230d793d
RS
6475 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6476 && XEXP (x, 1) == const0_rtx) ? COMPARE
6477 : in_code == COMPARE ? SET : in_code);
6478
6479 /* Process depending on the code of this operation. If NEW is set
da7d8304 6480 nonzero, it will be returned. */
230d793d
RS
6481
6482 switch (code)
6483 {
6484 case ASHIFT:
230d793d
RS
6485 /* Convert shifts by constants into multiplications if inside
6486 an address. */
6487 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
5f4f0e22 6488 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
230d793d 6489 && INTVAL (XEXP (x, 1)) >= 0)
280f58ba
RK
6490 {
6491 new = make_compound_operation (XEXP (x, 0), next_code);
f1c6ba8b
RK
6492 new = gen_rtx_MULT (mode, new,
6493 GEN_INT ((HOST_WIDE_INT) 1
6494 << INTVAL (XEXP (x, 1))));
280f58ba 6495 }
230d793d
RS
6496 break;
6497
6498 case AND:
6499 /* If the second operand is not a constant, we can't do anything
6500 with it. */
6501 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6502 break;
6503
6504 /* If the constant is a power of two minus one and the first operand
6505 is a logical right shift, make an extraction. */
6506 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6507 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
280f58ba
RK
6508 {
6509 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6510 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6511 0, in_code == COMPARE);
6512 }
dfbe1b2f 6513
230d793d
RS
6514 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6515 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6516 && subreg_lowpart_p (XEXP (x, 0))
6517 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6518 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
280f58ba
RK
6519 {
6520 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6521 next_code);
2f99f437 6522 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
280f58ba
RK
6523 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6524 0, in_code == COMPARE);
6525 }
45620ed4 6526 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
c2f9f64e
JW
6527 else if ((GET_CODE (XEXP (x, 0)) == XOR
6528 || GET_CODE (XEXP (x, 0)) == IOR)
6529 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6530 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6531 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6532 {
6533 /* Apply the distributive law, and then try to make extractions. */
f1c6ba8b
RK
6534 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6535 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6536 XEXP (x, 1)),
6537 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6538 XEXP (x, 1)));
c2f9f64e
JW
6539 new = make_compound_operation (new, in_code);
6540 }
a7c99304
RK
6541
6542 /* If we are have (and (rotate X C) M) and C is larger than the number
6543 of bits in M, this is an extraction. */
6544
6545 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6546 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6547 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6548 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
280f58ba
RK
6549 {
6550 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6551 new = make_extraction (mode, new,
6552 (GET_MODE_BITSIZE (mode)
6553 - INTVAL (XEXP (XEXP (x, 0), 1))),
6554 NULL_RTX, i, 1, 0, in_code == COMPARE);
6555 }
a7c99304
RK
6556
6557 /* On machines without logical shifts, if the operand of the AND is
230d793d
RS
6558 a logical shift and our mask turns off all the propagated sign
6559 bits, we can replace the logical shift with an arithmetic shift. */
ef89d648
ZW
6560 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6561 && !have_insn_for (LSHIFTRT, mode)
6562 && have_insn_for (ASHIFTRT, mode)
230d793d
RS
6563 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6564 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
5f4f0e22
CH
6565 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6566 && mode_width <= HOST_BITS_PER_WIDE_INT)
230d793d 6567 {
5f4f0e22 6568 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
230d793d
RS
6569
6570 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6571 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6572 SUBST (XEXP (x, 0),
f1c6ba8b
RK
6573 gen_rtx_ASHIFTRT (mode,
6574 make_compound_operation
6575 (XEXP (XEXP (x, 0), 0), next_code),
6576 XEXP (XEXP (x, 0), 1)));
230d793d
RS
6577 }
6578
6579 /* If the constant is one less than a power of two, this might be
6580 representable by an extraction even if no shift is present.
6581 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6582 we are in a COMPARE. */
6583 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
280f58ba
RK
6584 new = make_extraction (mode,
6585 make_compound_operation (XEXP (x, 0),
6586 next_code),
6587 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
230d793d
RS
6588
6589 /* If we are in a comparison and this is an AND with a power of two,
6590 convert this into the appropriate bit extract. */
6591 else if (in_code == COMPARE
6592 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
280f58ba
RK
6593 new = make_extraction (mode,
6594 make_compound_operation (XEXP (x, 0),
6595 next_code),
6596 i, NULL_RTX, 1, 1, 0, 1);
230d793d
RS
6597
6598 break;
6599
6600 case LSHIFTRT:
6601 /* If the sign bit is known to be zero, replace this with an
6602 arithmetic shift. */
ef89d648
ZW
6603 if (have_insn_for (ASHIFTRT, mode)
6604 && ! have_insn_for (LSHIFTRT, mode)
5f4f0e22 6605 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 6606 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
230d793d 6607 {
f1c6ba8b
RK
6608 new = gen_rtx_ASHIFTRT (mode,
6609 make_compound_operation (XEXP (x, 0),
6610 next_code),
6611 XEXP (x, 1));
230d793d
RS
6612 break;
6613 }
6614
0f41302f 6615 /* ... fall through ... */
230d793d
RS
6616
6617 case ASHIFTRT:
71923da7
RK
6618 lhs = XEXP (x, 0);
6619 rhs = XEXP (x, 1);
6620
230d793d
RS
6621 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6622 this is a SIGN_EXTRACT. */
71923da7
RK
6623 if (GET_CODE (rhs) == CONST_INT
6624 && GET_CODE (lhs) == ASHIFT
6625 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6626 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
280f58ba 6627 {
71923da7 6628 new = make_compound_operation (XEXP (lhs, 0), next_code);
280f58ba 6629 new = make_extraction (mode, new,
71923da7
RK
6630 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6631 NULL_RTX, mode_width - INTVAL (rhs),
d0ab8cd3 6632 code == LSHIFTRT, 0, in_code == COMPARE);
8231ad94 6633 break;
d0ab8cd3
RK
6634 }
6635
71923da7
RK
6636 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6637 If so, try to merge the shifts into a SIGN_EXTEND. We could
6638 also do this for some cases of SIGN_EXTRACT, but it doesn't
6639 seem worth the effort; the case checked for occurs on Alpha. */
663522cb 6640
71923da7
RK
6641 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6642 && ! (GET_CODE (lhs) == SUBREG
6643 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6644 && GET_CODE (rhs) == CONST_INT
6645 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6646 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6647 new = make_extraction (mode, make_compound_operation (new, next_code),
6648 0, NULL_RTX, mode_width - INTVAL (rhs),
6649 code == LSHIFTRT, 0, in_code == COMPARE);
663522cb 6650
230d793d 6651 break;
280f58ba
RK
6652
6653 case SUBREG:
6654 /* Call ourselves recursively on the inner expression. If we are
6655 narrowing the object and it has a different RTL code from
6656 what it originally did, do this SUBREG as a force_to_mode. */
6657
0a5cbff6 6658 tem = make_compound_operation (SUBREG_REG (x), in_code);
280f58ba
RK
6659 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6660 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6661 && subreg_lowpart_p (x))
0a5cbff6 6662 {
e8dc6d50
JH
6663 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6664 NULL_RTX, 0);
0a5cbff6
RK
6665
6666 /* If we have something other than a SUBREG, we might have
eaec9b3d 6667 done an expansion, so rerun ourselves. */
0a5cbff6
RK
6668 if (GET_CODE (newer) != SUBREG)
6669 newer = make_compound_operation (newer, in_code);
6670
6671 return newer;
6672 }
6f28d3e9
RH
6673
6674 /* If this is a paradoxical subreg, and the new code is a sign or
6675 zero extension, omit the subreg and widen the extension. If it
6676 is a regular subreg, we can still get rid of the subreg by not
6677 widening so much, or in fact removing the extension entirely. */
6678 if ((GET_CODE (tem) == SIGN_EXTEND
6679 || GET_CODE (tem) == ZERO_EXTEND)
6680 && subreg_lowpart_p (x))
6681 {
6682 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6683 || (GET_MODE_SIZE (mode) >
6684 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
b10f2187
R
6685 {
6686 if (! INTEGRAL_MODE_P (mode))
6687 break;
6688 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6689 }
6f28d3e9
RH
6690 else
6691 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6692 return tem;
6693 }
e9a25f70 6694 break;
663522cb 6695
e9a25f70
JL
6696 default:
6697 break;
230d793d
RS
6698 }
6699
6700 if (new)
6701 {
df62f951 6702 x = gen_lowpart_for_combine (mode, new);
230d793d
RS
6703 code = GET_CODE (x);
6704 }
6705
6706 /* Now recursively process each operand of this operation. */
6707 fmt = GET_RTX_FORMAT (code);
6708 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6709 if (fmt[i] == 'e')
6710 {
6711 new = make_compound_operation (XEXP (x, i), next_code);
6712 SUBST (XEXP (x, i), new);
6713 }
6714
6715 return x;
6716}
6717\f
6718/* Given M see if it is a value that would select a field of bits
663522cb
KH
6719 within an item, but not the entire word. Return -1 if not.
6720 Otherwise, return the starting position of the field, where 0 is the
6721 low-order bit.
230d793d
RS
6722
6723 *PLEN is set to the length of the field. */
6724
6725static int
6726get_pos_from_mask (m, plen)
5f4f0e22 6727 unsigned HOST_WIDE_INT m;
770ae6cc 6728 unsigned HOST_WIDE_INT *plen;
230d793d
RS
6729{
6730 /* Get the bit number of the first 1 bit from the right, -1 if none. */
663522cb 6731 int pos = exact_log2 (m & -m);
d3bc8938 6732 int len;
230d793d
RS
6733
6734 if (pos < 0)
6735 return -1;
6736
6737 /* Now shift off the low-order zero bits and see if we have a power of
6738 two minus 1. */
d3bc8938 6739 len = exact_log2 ((m >> pos) + 1);
230d793d 6740
d3bc8938 6741 if (len <= 0)
230d793d
RS
6742 return -1;
6743
d3bc8938 6744 *plen = len;
230d793d
RS
6745 return pos;
6746}
6747\f
6139ff20
RK
6748/* See if X can be simplified knowing that we will only refer to it in
6749 MODE and will only refer to those bits that are nonzero in MASK.
6750 If other bits are being computed or if masking operations are done
6751 that select a superset of the bits in MASK, they can sometimes be
6752 ignored.
6753
6754 Return a possibly simplified expression, but always convert X to
6755 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
dfbe1b2f 6756
da7d8304 6757 Also, if REG is nonzero and X is a register equal in value to REG,
e3d616e3
RK
6758 replace X with REG.
6759
6760 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6761 are all off in X. This is used when X will be complemented, by either
180b8e4b 6762 NOT, NEG, or XOR. */
dfbe1b2f
RK
6763
6764static rtx
e3d616e3 6765force_to_mode (x, mode, mask, reg, just_select)
dfbe1b2f
RK
6766 rtx x;
6767 enum machine_mode mode;
6139ff20 6768 unsigned HOST_WIDE_INT mask;
dfbe1b2f 6769 rtx reg;
e3d616e3 6770 int just_select;
dfbe1b2f
RK
6771{
6772 enum rtx_code code = GET_CODE (x);
180b8e4b 6773 int next_select = just_select || code == XOR || code == NOT || code == NEG;
ef026f91
RS
6774 enum machine_mode op_mode;
6775 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6139ff20
RK
6776 rtx op0, op1, temp;
6777
132d2040
RK
6778 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6779 code below will do the wrong thing since the mode of such an
663522cb 6780 expression is VOIDmode.
be3d27d6
CI
6781
6782 Also do nothing if X is a CLOBBER; this can happen if X was
6783 the return value from a call to gen_lowpart_for_combine. */
6784 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
246e00f2
RK
6785 return x;
6786
6139ff20
RK
6787 /* We want to perform the operation is its present mode unless we know
6788 that the operation is valid in MODE, in which case we do the operation
6789 in MODE. */
1c75dfa4 6790 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
ef89d648 6791 && have_insn_for (code, mode))
ef026f91 6792 ? mode : GET_MODE (x));
e3d616e3 6793
aa988991
RS
6794 /* It is not valid to do a right-shift in a narrower mode
6795 than the one it came in with. */
6796 if ((code == LSHIFTRT || code == ASHIFTRT)
6797 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6798 op_mode = GET_MODE (x);
ef026f91
RS
6799
6800 /* Truncate MASK to fit OP_MODE. */
6801 if (op_mode)
6802 mask &= GET_MODE_MASK (op_mode);
6139ff20
RK
6803
6804 /* When we have an arithmetic operation, or a shift whose count we
6805 do not know, we need to assume that all bit the up to the highest-order
6806 bit in MASK will be needed. This is how we form such a mask. */
ef026f91
RS
6807 if (op_mode)
6808 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6809 ? GET_MODE_MASK (op_mode)
729a2125
RK
6810 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6811 - 1));
ef026f91 6812 else
663522cb 6813 fuller_mask = ~(HOST_WIDE_INT) 0;
ef026f91
RS
6814
6815 /* Determine what bits of X are guaranteed to be (non)zero. */
6816 nonzero = nonzero_bits (x, mode);
6139ff20
RK
6817
6818 /* If none of the bits in X are needed, return a zero. */
e3d616e3 6819 if (! just_select && (nonzero & mask) == 0)
6139ff20 6820 return const0_rtx;
dfbe1b2f 6821
6139ff20
RK
6822 /* If X is a CONST_INT, return a new one. Do this here since the
6823 test below will fail. */
6824 if (GET_CODE (x) == CONST_INT)
2dd36f90 6825 return gen_int_mode (INTVAL (x) & mask, mode);
dfbe1b2f 6826
180b8e4b
RK
6827 /* If X is narrower than MODE and we want all the bits in X's mode, just
6828 get X in the proper mode. */
6829 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
663522cb 6830 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
dfbe1b2f
RK
6831 return gen_lowpart_for_combine (mode, x);
6832
71923da7
RK
6833 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6834 MASK are already known to be zero in X, we need not do anything. */
663522cb 6835 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6139ff20
RK
6836 return x;
6837
dfbe1b2f
RK
6838 switch (code)
6839 {
6139ff20
RK
6840 case CLOBBER:
6841 /* If X is a (clobber (const_int)), return it since we know we are
0f41302f 6842 generating something that won't match. */
6139ff20
RK
6843 return x;
6844
6139ff20
RK
6845 case USE:
6846 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6847 spanned the boundary of the MEM. If we are now masking so it is
6848 within that boundary, we don't need the USE any more. */
f76b9db2 6849 if (! BITS_BIG_ENDIAN
663522cb 6850 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
e3d616e3 6851 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
f76b9db2 6852 break;
6139ff20 6853
dfbe1b2f
RK
6854 case SIGN_EXTEND:
6855 case ZERO_EXTEND:
6856 case ZERO_EXTRACT:
6857 case SIGN_EXTRACT:
6858 x = expand_compound_operation (x);
6859 if (GET_CODE (x) != code)
e3d616e3 6860 return force_to_mode (x, mode, mask, reg, next_select);
dfbe1b2f
RK
6861 break;
6862
6863 case REG:
6864 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6865 || rtx_equal_p (reg, get_last_value (x))))
6866 x = reg;
6867 break;
6868
dfbe1b2f 6869 case SUBREG:
6139ff20 6870 if (subreg_lowpart_p (x)
180b8e4b
RK
6871 /* We can ignore the effect of this SUBREG if it narrows the mode or
6872 if the constant masks to zero all the bits the mode doesn't
6873 have. */
6139ff20
RK
6874 && ((GET_MODE_SIZE (GET_MODE (x))
6875 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6139ff20
RK
6876 || (0 == (mask
6877 & GET_MODE_MASK (GET_MODE (x))
663522cb 6878 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
e3d616e3 6879 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
dfbe1b2f
RK
6880 break;
6881
6882 case AND:
6139ff20
RK
6883 /* If this is an AND with a constant, convert it into an AND
6884 whose constant is the AND of that constant with MASK. If it
6885 remains an AND of MASK, delete it since it is redundant. */
dfbe1b2f 6886
2ca9ae17 6887 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
dfbe1b2f 6888 {
6139ff20
RK
6889 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6890 mask & INTVAL (XEXP (x, 1)));
dfbe1b2f
RK
6891
6892 /* If X is still an AND, see if it is an AND with a mask that
71923da7
RK
6893 is just some low-order bits. If so, and it is MASK, we don't
6894 need it. */
dfbe1b2f
RK
6895
6896 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
d0c9db30 6897 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
3129af4c 6898 == mask))
dfbe1b2f 6899 x = XEXP (x, 0);
d0ab8cd3 6900
71923da7
RK
6901 /* If it remains an AND, try making another AND with the bits
6902 in the mode mask that aren't in MASK turned on. If the
6903 constant in the AND is wide enough, this might make a
6904 cheaper constant. */
6905
6906 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
2ca9ae17
JW
6907 && GET_MODE_MASK (GET_MODE (x)) != mask
6908 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
71923da7
RK
6909 {
6910 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
663522cb 6911 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
71923da7
RK
6912 int width = GET_MODE_BITSIZE (GET_MODE (x));
6913 rtx y;
6914
6915 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6916 number, sign extend it. */
6917 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6918 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6919 cval |= (HOST_WIDE_INT) -1 << width;
6920
6921 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6922 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6923 x = y;
6924 }
6925
d0ab8cd3 6926 break;
dfbe1b2f
RK
6927 }
6928
6139ff20 6929 goto binop;
dfbe1b2f
RK
6930
6931 case PLUS:
6139ff20
RK
6932 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6933 low-order bits (as in an alignment operation) and FOO is already
6934 aligned to that boundary, mask C1 to that boundary as well.
6935 This may eliminate that PLUS and, later, the AND. */
9fa6d012
TG
6936
6937 {
770ae6cc 6938 unsigned int width = GET_MODE_BITSIZE (mode);
9fa6d012
TG
6939 unsigned HOST_WIDE_INT smask = mask;
6940
6941 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6942 number, sign extend it. */
6943
6944 if (width < HOST_BITS_PER_WIDE_INT
6945 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6946 smask |= (HOST_WIDE_INT) -1 << width;
6947
6948 if (GET_CODE (XEXP (x, 1)) == CONST_INT
563c12b0
RH
6949 && exact_log2 (- smask) >= 0
6950 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6951 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6952 return force_to_mode (plus_constant (XEXP (x, 0),
6953 (INTVAL (XEXP (x, 1)) & smask)),
6954 mode, smask, reg, next_select);
9fa6d012 6955 }
6139ff20 6956
0f41302f 6957 /* ... fall through ... */
6139ff20 6958
dfbe1b2f 6959 case MULT:
6139ff20
RK
6960 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6961 most significant bit in MASK since carries from those bits will
6962 affect the bits we are interested in. */
6963 mask = fuller_mask;
6964 goto binop;
6965
d41638e4
RH
6966 case MINUS:
6967 /* If X is (minus C Y) where C's least set bit is larger than any bit
6968 in the mask, then we may replace with (neg Y). */
6969 if (GET_CODE (XEXP (x, 0)) == CONST_INT
0345195a
RK
6970 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6971 & -INTVAL (XEXP (x, 0))))
6972 > mask))
d41638e4 6973 {
f1c6ba8b
RK
6974 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6975 GET_MODE (x));
d41638e4
RH
6976 return force_to_mode (x, mode, mask, reg, next_select);
6977 }
6978
6979 /* Similarly, if C contains every bit in the mask, then we may
6980 replace with (not Y). */
6981 if (GET_CODE (XEXP (x, 0)) == CONST_INT
0345195a
RK
6982 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6983 == INTVAL (XEXP (x, 0))))
d41638e4 6984 {
f1c6ba8b
RK
6985 x = simplify_gen_unary (NOT, GET_MODE (x),
6986 XEXP (x, 1), GET_MODE (x));
d41638e4
RH
6987 return force_to_mode (x, mode, mask, reg, next_select);
6988 }
6989
6990 mask = fuller_mask;
6991 goto binop;
6992
dfbe1b2f
RK
6993 case IOR:
6994 case XOR:
6139ff20
RK
6995 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6996 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6997 operation which may be a bitfield extraction. Ensure that the
6998 constant we form is not wider than the mode of X. */
6999
7000 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7001 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7002 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7003 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7004 && GET_CODE (XEXP (x, 1)) == CONST_INT
7005 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7006 + floor_log2 (INTVAL (XEXP (x, 1))))
7007 < GET_MODE_BITSIZE (GET_MODE (x)))
7008 && (INTVAL (XEXP (x, 1))
663522cb 7009 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6139ff20
RK
7010 {
7011 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
663522cb 7012 << INTVAL (XEXP (XEXP (x, 0), 1)));
6139ff20
RK
7013 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7014 XEXP (XEXP (x, 0), 0), temp);
d4d2b13f
RK
7015 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7016 XEXP (XEXP (x, 0), 1));
e3d616e3 7017 return force_to_mode (x, mode, mask, reg, next_select);
6139ff20
RK
7018 }
7019
7020 binop:
dfbe1b2f 7021 /* For most binary operations, just propagate into the operation and
6d2f8887 7022 change the mode if we have an operation of that mode. */
6139ff20 7023
e3d616e3
RK
7024 op0 = gen_lowpart_for_combine (op_mode,
7025 force_to_mode (XEXP (x, 0), mode, mask,
7026 reg, next_select));
7027 op1 = gen_lowpart_for_combine (op_mode,
7028 force_to_mode (XEXP (x, 1), mode, mask,
7029 reg, next_select));
6139ff20
RK
7030
7031 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7032 x = gen_binary (code, op_mode, op0, op1);
d0ab8cd3 7033 break;
dfbe1b2f
RK
7034
7035 case ASHIFT:
dfbe1b2f 7036 /* For left shifts, do the same, but just for the first operand.
f6785026
RK
7037 However, we cannot do anything with shifts where we cannot
7038 guarantee that the counts are smaller than the size of the mode
7039 because such a count will have a different meaning in a
6139ff20 7040 wider mode. */
f6785026
RK
7041
7042 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6139ff20 7043 && INTVAL (XEXP (x, 1)) >= 0
f6785026
RK
7044 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7045 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7046 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
adb7a1cb 7047 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
f6785026 7048 break;
663522cb 7049
6139ff20
RK
7050 /* If the shift count is a constant and we can do arithmetic in
7051 the mode of the shift, refine which bits we need. Otherwise, use the
7052 conservative form of the mask. */
7053 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7054 && INTVAL (XEXP (x, 1)) >= 0
7055 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7056 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7057 mask >>= INTVAL (XEXP (x, 1));
7058 else
7059 mask = fuller_mask;
7060
7061 op0 = gen_lowpart_for_combine (op_mode,
7062 force_to_mode (XEXP (x, 0), op_mode,
e3d616e3 7063 mask, reg, next_select));
6139ff20
RK
7064
7065 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
663522cb 7066 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
d0ab8cd3 7067 break;
dfbe1b2f
RK
7068
7069 case LSHIFTRT:
1347292b
JW
7070 /* Here we can only do something if the shift count is a constant,
7071 this shift constant is valid for the host, and we can do arithmetic
7072 in OP_MODE. */
dfbe1b2f
RK
7073
7074 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1347292b 7075 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6139ff20 7076 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
d0ab8cd3 7077 {
6139ff20 7078 rtx inner = XEXP (x, 0);
402b6c2a 7079 unsigned HOST_WIDE_INT inner_mask;
6139ff20
RK
7080
7081 /* Select the mask of the bits we need for the shift operand. */
402b6c2a 7082 inner_mask = mask << INTVAL (XEXP (x, 1));
d0ab8cd3 7083
6139ff20 7084 /* We can only change the mode of the shift if we can do arithmetic
402b6c2a
JW
7085 in the mode of the shift and INNER_MASK is no wider than the
7086 width of OP_MODE. */
6139ff20 7087 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
663522cb 7088 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
d0ab8cd3
RK
7089 op_mode = GET_MODE (x);
7090
402b6c2a 7091 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6139ff20
RK
7092
7093 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7094 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
d0ab8cd3 7095 }
6139ff20
RK
7096
7097 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7098 shift and AND produces only copies of the sign bit (C2 is one less
7099 than a power of two), we can do this with just a shift. */
7100
7101 if (GET_CODE (x) == LSHIFTRT
7102 && GET_CODE (XEXP (x, 1)) == CONST_INT
cfff35c1
JW
7103 /* The shift puts one of the sign bit copies in the least significant
7104 bit. */
6139ff20
RK
7105 && ((INTVAL (XEXP (x, 1))
7106 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7107 >= GET_MODE_BITSIZE (GET_MODE (x)))
7108 && exact_log2 (mask + 1) >= 0
cfff35c1
JW
7109 /* Number of bits left after the shift must be more than the mask
7110 needs. */
7111 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7112 <= GET_MODE_BITSIZE (GET_MODE (x)))
7113 /* Must be more sign bit copies than the mask needs. */
770ae6cc 7114 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6139ff20
RK
7115 >= exact_log2 (mask + 1)))
7116 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7117 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7118 - exact_log2 (mask + 1)));
fae2db47
JW
7119
7120 goto shiftrt;
d0ab8cd3
RK
7121
7122 case ASHIFTRT:
6139ff20
RK
7123 /* If we are just looking for the sign bit, we don't need this shift at
7124 all, even if it has a variable count. */
9bf22b75 7125 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
e51712db 7126 && (mask == ((unsigned HOST_WIDE_INT) 1
9bf22b75 7127 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
e3d616e3 7128 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6139ff20
RK
7129
7130 /* If this is a shift by a constant, get a mask that contains those bits
7131 that are not copies of the sign bit. We then have two cases: If
7132 MASK only includes those bits, this can be a logical shift, which may
7133 allow simplifications. If MASK is a single-bit field not within
7134 those bits, we are requesting a copy of the sign bit and hence can
7135 shift the sign bit to the appropriate location. */
7136
7137 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7138 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7139 {
7140 int i = -1;
7141
3e92902c 7142 /* If the considered data is wider than HOST_WIDE_INT, we can't
b69960ac
RK
7143 represent a mask for all its bits in a single scalar.
7144 But we only care about the lower bits, so calculate these. */
7145
6a11342f 7146 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
b69960ac 7147 {
663522cb 7148 nonzero = ~(HOST_WIDE_INT) 0;
b69960ac
RK
7149
7150 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7151 is the number of bits a full-width mask would have set.
7152 We need only shift if these are fewer than nonzero can
7153 hold. If not, we must keep all bits set in nonzero. */
7154
7155 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7156 < HOST_BITS_PER_WIDE_INT)
7157 nonzero >>= INTVAL (XEXP (x, 1))
7158 + HOST_BITS_PER_WIDE_INT
7159 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7160 }
7161 else
7162 {
7163 nonzero = GET_MODE_MASK (GET_MODE (x));
7164 nonzero >>= INTVAL (XEXP (x, 1));
7165 }
6139ff20 7166
663522cb 7167 if ((mask & ~nonzero) == 0
6139ff20
RK
7168 || (i = exact_log2 (mask)) >= 0)
7169 {
7170 x = simplify_shift_const
7171 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7172 i < 0 ? INTVAL (XEXP (x, 1))
7173 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7174
7175 if (GET_CODE (x) != ASHIFTRT)
e3d616e3 7176 return force_to_mode (x, mode, mask, reg, next_select);
6139ff20
RK
7177 }
7178 }
7179
e0a2f705 7180 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
6139ff20
RK
7181 even if the shift count isn't a constant. */
7182 if (mask == 1)
7183 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7184
fae2db47
JW
7185 shiftrt:
7186
7187 /* If this is a zero- or sign-extension operation that just affects bits
4c002f29
RK
7188 we don't care about, remove it. Be sure the call above returned
7189 something that is still a shift. */
d0ab8cd3 7190
4c002f29
RK
7191 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7192 && GET_CODE (XEXP (x, 1)) == CONST_INT
d0ab8cd3 7193 && INTVAL (XEXP (x, 1)) >= 0
6139ff20
RK
7194 && (INTVAL (XEXP (x, 1))
7195 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
d0ab8cd3
RK
7196 && GET_CODE (XEXP (x, 0)) == ASHIFT
7197 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7198 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
e3d616e3
RK
7199 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7200 reg, next_select);
6139ff20 7201
dfbe1b2f
RK
7202 break;
7203
6139ff20
RK
7204 case ROTATE:
7205 case ROTATERT:
7206 /* If the shift count is constant and we can do computations
7207 in the mode of X, compute where the bits we care about are.
7208 Otherwise, we can't do anything. Don't change the mode of
7209 the shift or propagate MODE into the shift, though. */
7210 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7211 && INTVAL (XEXP (x, 1)) >= 0)
7212 {
7213 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7214 GET_MODE (x), GEN_INT (mask),
7215 XEXP (x, 1));
7d171a1e 7216 if (temp && GET_CODE(temp) == CONST_INT)
6139ff20
RK
7217 SUBST (XEXP (x, 0),
7218 force_to_mode (XEXP (x, 0), GET_MODE (x),
e3d616e3 7219 INTVAL (temp), reg, next_select));
6139ff20
RK
7220 }
7221 break;
663522cb 7222
dfbe1b2f 7223 case NEG:
180b8e4b 7224 /* If we just want the low-order bit, the NEG isn't needed since it
3ef42a0c 7225 won't change the low-order bit. */
180b8e4b
RK
7226 if (mask == 1)
7227 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7228
6139ff20
RK
7229 /* We need any bits less significant than the most significant bit in
7230 MASK since carries from those bits will affect the bits we are
7231 interested in. */
7232 mask = fuller_mask;
7233 goto unop;
7234
dfbe1b2f 7235 case NOT:
6139ff20
RK
7236 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7237 same as the XOR case above. Ensure that the constant we form is not
7238 wider than the mode of X. */
7239
7240 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7241 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7242 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7243 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7244 < GET_MODE_BITSIZE (GET_MODE (x)))
7245 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7246 {
7247 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7248 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7249 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7250
e3d616e3 7251 return force_to_mode (x, mode, mask, reg, next_select);
6139ff20
RK
7252 }
7253
f82da7d2
JW
7254 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7255 use the full mask inside the NOT. */
7256 mask = fuller_mask;
7257
6139ff20 7258 unop:
e3d616e3
RK
7259 op0 = gen_lowpart_for_combine (op_mode,
7260 force_to_mode (XEXP (x, 0), mode, mask,
7261 reg, next_select));
6139ff20 7262 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
f1c6ba8b 7263 x = simplify_gen_unary (code, op_mode, op0, op_mode);
6139ff20
RK
7264 break;
7265
7266 case NE:
7267 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
3aceff0d 7268 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
1a6ec070 7269 which is equal to STORE_FLAG_VALUE. */
663522cb 7270 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
3aceff0d 7271 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
1a6ec070 7272 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
e3d616e3 7273 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6139ff20 7274
d0ab8cd3
RK
7275 break;
7276
7277 case IF_THEN_ELSE:
7278 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7279 written in a narrower mode. We play it safe and do not do so. */
7280
7281 SUBST (XEXP (x, 1),
7282 gen_lowpart_for_combine (GET_MODE (x),
7283 force_to_mode (XEXP (x, 1), mode,
e3d616e3 7284 mask, reg, next_select)));
d0ab8cd3
RK
7285 SUBST (XEXP (x, 2),
7286 gen_lowpart_for_combine (GET_MODE (x),
7287 force_to_mode (XEXP (x, 2), mode,
e3d616e3 7288 mask, reg,next_select)));
d0ab8cd3 7289 break;
663522cb 7290
e9a25f70
JL
7291 default:
7292 break;
dfbe1b2f
RK
7293 }
7294
d0ab8cd3 7295 /* Ensure we return a value of the proper mode. */
dfbe1b2f
RK
7296 return gen_lowpart_for_combine (mode, x);
7297}
7298\f
abe6e52f
RK
7299/* Return nonzero if X is an expression that has one of two values depending on
7300 whether some other value is zero or nonzero. In that case, we return the
7301 value that is being tested, *PTRUE is set to the value if the rtx being
7302 returned has a nonzero value, and *PFALSE is set to the other alternative.
7303
7304 If we return zero, we set *PTRUE and *PFALSE to X. */
7305
7306static rtx
7307if_then_else_cond (x, ptrue, pfalse)
7308 rtx x;
7309 rtx *ptrue, *pfalse;
7310{
7311 enum machine_mode mode = GET_MODE (x);
7312 enum rtx_code code = GET_CODE (x);
abe6e52f
RK
7313 rtx cond0, cond1, true0, true1, false0, false1;
7314 unsigned HOST_WIDE_INT nz;
7315
14a774a9
RK
7316 /* If we are comparing a value against zero, we are done. */
7317 if ((code == NE || code == EQ)
7318 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7319 {
e8758a3a
JL
7320 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7321 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
14a774a9
RK
7322 return XEXP (x, 0);
7323 }
7324
abe6e52f
RK
7325 /* If this is a unary operation whose operand has one of two values, apply
7326 our opcode to compute those values. */
14a774a9
RK
7327 else if (GET_RTX_CLASS (code) == '1'
7328 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
abe6e52f 7329 {
f1c6ba8b
RK
7330 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7331 *pfalse = simplify_gen_unary (code, mode, false0,
7332 GET_MODE (XEXP (x, 0)));
abe6e52f
RK
7333 return cond0;
7334 }
7335
3a19aabc 7336 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
ddd5a7c1 7337 make can't possibly match and would suppress other optimizations. */
3a19aabc
RK
7338 else if (code == COMPARE)
7339 ;
7340
abe6e52f
RK
7341 /* If this is a binary operation, see if either side has only one of two
7342 values. If either one does or if both do and they are conditional on
7343 the same value, compute the new true and false values. */
7344 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7345 || GET_RTX_CLASS (code) == '<')
7346 {
7347 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7348 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7349
7350 if ((cond0 != 0 || cond1 != 0)
7351 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7352 {
987e845a
JW
7353 /* If if_then_else_cond returned zero, then true/false are the
7354 same rtl. We must copy one of them to prevent invalid rtl
7355 sharing. */
7356 if (cond0 == 0)
7357 true0 = copy_rtx (true0);
7358 else if (cond1 == 0)
7359 true1 = copy_rtx (true1);
7360
abe6e52f
RK
7361 *ptrue = gen_binary (code, mode, true0, true1);
7362 *pfalse = gen_binary (code, mode, false0, false1);
7363 return cond0 ? cond0 : cond1;
7364 }
9210df58 7365
9210df58 7366 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
da7d8304 7367 operands is zero when the other is nonzero, and vice-versa,
0802d516 7368 and STORE_FLAG_VALUE is 1 or -1. */
9210df58 7369
0802d516
RK
7370 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7371 && (code == PLUS || code == IOR || code == XOR || code == MINUS
663522cb 7372 || code == UMAX)
9210df58
RK
7373 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7374 {
7375 rtx op0 = XEXP (XEXP (x, 0), 1);
7376 rtx op1 = XEXP (XEXP (x, 1), 1);
7377
7378 cond0 = XEXP (XEXP (x, 0), 0);
7379 cond1 = XEXP (XEXP (x, 1), 0);
7380
7381 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7382 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
9a915772 7383 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
9210df58
RK
7384 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7385 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7386 || ((swap_condition (GET_CODE (cond0))
9a915772 7387 == combine_reversed_comparison_code (cond1))
9210df58
RK
7388 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7389 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7390 && ! side_effects_p (x))
7391 {
7392 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
663522cb
KH
7393 *pfalse = gen_binary (MULT, mode,
7394 (code == MINUS
f1c6ba8b
RK
7395 ? simplify_gen_unary (NEG, mode, op1,
7396 mode)
7397 : op1),
9210df58
RK
7398 const_true_rtx);
7399 return cond0;
7400 }
7401 }
7402
eaec9b3d 7403 /* Similarly for MULT, AND and UMIN, except that for these the result
9210df58 7404 is always zero. */
0802d516
RK
7405 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7406 && (code == MULT || code == AND || code == UMIN)
9210df58
RK
7407 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7408 {
7409 cond0 = XEXP (XEXP (x, 0), 0);
7410 cond1 = XEXP (XEXP (x, 1), 0);
7411
7412 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7413 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
9a915772 7414 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
9210df58
RK
7415 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7416 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7417 || ((swap_condition (GET_CODE (cond0))
9a915772 7418 == combine_reversed_comparison_code (cond1))
9210df58
RK
7419 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7420 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7421 && ! side_effects_p (x))
7422 {
7423 *ptrue = *pfalse = const0_rtx;
7424 return cond0;
7425 }
7426 }
abe6e52f
RK
7427 }
7428
7429 else if (code == IF_THEN_ELSE)
7430 {
7431 /* If we have IF_THEN_ELSE already, extract the condition and
7432 canonicalize it if it is NE or EQ. */
7433 cond0 = XEXP (x, 0);
7434 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7435 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7436 return XEXP (cond0, 0);
7437 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7438 {
7439 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7440 return XEXP (cond0, 0);
7441 }
7442 else
7443 return cond0;
7444 }
7445
0631e0bf
JH
7446 /* If X is a SUBREG, we can narrow both the true and false values
7447 if the inner expression, if there is a condition. */
7448 else if (code == SUBREG
abe6e52f
RK
7449 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7450 &true0, &false0)))
7451 {
0631e0bf
JH
7452 *ptrue = simplify_gen_subreg (mode, true0,
7453 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7454 *pfalse = simplify_gen_subreg (mode, false0,
7455 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
abe6e52f 7456
abe6e52f
RK
7457 return cond0;
7458 }
7459
7460 /* If X is a constant, this isn't special and will cause confusions
7461 if we treat it as such. Likewise if it is equivalent to a constant. */
7462 else if (CONSTANT_P (x)
7463 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7464 ;
7465
1f3f36d1
RH
7466 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7467 will be least confusing to the rest of the compiler. */
7468 else if (mode == BImode)
7469 {
7470 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7471 return x;
7472 }
7473
663522cb 7474 /* If X is known to be either 0 or -1, those are the true and
abe6e52f 7475 false values when testing X. */
49219895
JH
7476 else if (x == constm1_rtx || x == const0_rtx
7477 || (mode != VOIDmode
7478 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
abe6e52f
RK
7479 {
7480 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7481 return x;
7482 }
7483
7484 /* Likewise for 0 or a single bit. */
49219895
JH
7485 else if (mode != VOIDmode
7486 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7487 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
abe6e52f 7488 {
578fc63d 7489 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
abe6e52f
RK
7490 return x;
7491 }
7492
7493 /* Otherwise fail; show no condition with true and false values the same. */
7494 *ptrue = *pfalse = x;
7495 return 0;
7496}
7497\f
1a26b032
RK
7498/* Return the value of expression X given the fact that condition COND
7499 is known to be true when applied to REG as its first operand and VAL
7500 as its second. X is known to not be shared and so can be modified in
7501 place.
7502
7503 We only handle the simplest cases, and specifically those cases that
7504 arise with IF_THEN_ELSE expressions. */
7505
7506static rtx
7507known_cond (x, cond, reg, val)
7508 rtx x;
7509 enum rtx_code cond;
7510 rtx reg, val;
7511{
7512 enum rtx_code code = GET_CODE (x);
f24ad0e4 7513 rtx temp;
6f7d635c 7514 const char *fmt;
1a26b032
RK
7515 int i, j;
7516
7517 if (side_effects_p (x))
7518 return x;
7519
805f1694
JL
7520 /* If either operand of the condition is a floating point value,
7521 then we have to avoid collapsing an EQ comparison. */
7522 if (cond == EQ
7523 && rtx_equal_p (x, reg)
7524 && ! FLOAT_MODE_P (GET_MODE (x))
7525 && ! FLOAT_MODE_P (GET_MODE (val)))
69bc0a1f 7526 return val;
805f1694 7527
69bc0a1f 7528 if (cond == UNEQ && rtx_equal_p (x, reg))
1a26b032
RK
7529 return val;
7530
7531 /* If X is (abs REG) and we know something about REG's relationship
7532 with zero, we may be able to simplify this. */
7533
7534 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7535 switch (cond)
7536 {
7537 case GE: case GT: case EQ:
7538 return XEXP (x, 0);
7539 case LT: case LE:
f1c6ba8b
RK
7540 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7541 XEXP (x, 0),
7542 GET_MODE (XEXP (x, 0)));
e9a25f70
JL
7543 default:
7544 break;
1a26b032
RK
7545 }
7546
7547 /* The only other cases we handle are MIN, MAX, and comparisons if the
7548 operands are the same as REG and VAL. */
7549
7550 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7551 {
7552 if (rtx_equal_p (XEXP (x, 0), val))
7553 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7554
7555 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7556 {
7557 if (GET_RTX_CLASS (code) == '<')
1eb8759b
RH
7558 {
7559 if (comparison_dominates_p (cond, code))
7560 return const_true_rtx;
1a26b032 7561
9a915772 7562 code = combine_reversed_comparison_code (x);
1eb8759b
RH
7563 if (code != UNKNOWN
7564 && comparison_dominates_p (cond, code))
7565 return const0_rtx;
7566 else
7567 return x;
7568 }
1a26b032
RK
7569 else if (code == SMAX || code == SMIN
7570 || code == UMIN || code == UMAX)
7571 {
7572 int unsignedp = (code == UMIN || code == UMAX);
7573
ac4cdf40
JE
7574 /* Do not reverse the condition when it is NE or EQ.
7575 This is because we cannot conclude anything about
7576 the value of 'SMAX (x, y)' when x is not equal to y,
23190837 7577 but we can when x equals y. */
ac4cdf40
JE
7578 if ((code == SMAX || code == UMAX)
7579 && ! (cond == EQ || cond == NE))
1a26b032
RK
7580 cond = reverse_condition (cond);
7581
7582 switch (cond)
7583 {
7584 case GE: case GT:
7585 return unsignedp ? x : XEXP (x, 1);
7586 case LE: case LT:
7587 return unsignedp ? x : XEXP (x, 0);
7588 case GEU: case GTU:
7589 return unsignedp ? XEXP (x, 1) : x;
7590 case LEU: case LTU:
7591 return unsignedp ? XEXP (x, 0) : x;
e9a25f70
JL
7592 default:
7593 break;
1a26b032
RK
7594 }
7595 }
7596 }
7597 }
9a360704
AO
7598 else if (code == SUBREG)
7599 {
7600 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7601 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7602
7603 if (SUBREG_REG (x) != r)
7604 {
7605 /* We must simplify subreg here, before we lose track of the
7606 original inner_mode. */
7607 new = simplify_subreg (GET_MODE (x), r,
7608 inner_mode, SUBREG_BYTE (x));
7609 if (new)
7610 return new;
7611 else
7612 SUBST (SUBREG_REG (x), r);
7613 }
7614
7615 return x;
7616 }
4161da12
AO
7617 /* We don't have to handle SIGN_EXTEND here, because even in the
7618 case of replacing something with a modeless CONST_INT, a
7619 CONST_INT is already (supposed to be) a valid sign extension for
7620 its narrower mode, which implies it's already properly
7621 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7622 story is different. */
7623 else if (code == ZERO_EXTEND)
7624 {
7625 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7626 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7627
7628 if (XEXP (x, 0) != r)
7629 {
7630 /* We must simplify the zero_extend here, before we lose
7631 track of the original inner_mode. */
7632 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7633 r, inner_mode);
7634 if (new)
7635 return new;
7636 else
7637 SUBST (XEXP (x, 0), r);
7638 }
7639
7640 return x;
7641 }
1a26b032
RK
7642
7643 fmt = GET_RTX_FORMAT (code);
7644 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7645 {
7646 if (fmt[i] == 'e')
7647 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7648 else if (fmt[i] == 'E')
7649 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7650 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7651 cond, reg, val));
7652 }
7653
7654 return x;
7655}
7656\f
e11fa86f
RK
7657/* See if X and Y are equal for the purposes of seeing if we can rewrite an
7658 assignment as a field assignment. */
7659
7660static int
7661rtx_equal_for_field_assignment_p (x, y)
7662 rtx x;
7663 rtx y;
7664{
e11fa86f
RK
7665 if (x == y || rtx_equal_p (x, y))
7666 return 1;
7667
7668 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7669 return 0;
7670
7671 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7672 Note that all SUBREGs of MEM are paradoxical; otherwise they
7673 would have been rewritten. */
7674 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7675 && GET_CODE (SUBREG_REG (y)) == MEM
7676 && rtx_equal_p (SUBREG_REG (y),
7677 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7678 return 1;
7679
7680 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7681 && GET_CODE (SUBREG_REG (x)) == MEM
7682 && rtx_equal_p (SUBREG_REG (x),
7683 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7684 return 1;
7685
9ec36da5
JL
7686 /* We used to see if get_last_value of X and Y were the same but that's
7687 not correct. In one direction, we'll cause the assignment to have
7688 the wrong destination and in the case, we'll import a register into this
7689 insn that might have already have been dead. So fail if none of the
7690 above cases are true. */
7691 return 0;
e11fa86f
RK
7692}
7693\f
230d793d
RS
7694/* See if X, a SET operation, can be rewritten as a bit-field assignment.
7695 Return that assignment if so.
7696
7697 We only handle the most common cases. */
7698
7699static rtx
7700make_field_assignment (x)
7701 rtx x;
7702{
7703 rtx dest = SET_DEST (x);
7704 rtx src = SET_SRC (x);
dfbe1b2f 7705 rtx assign;
e11fa86f 7706 rtx rhs, lhs;
5f4f0e22 7707 HOST_WIDE_INT c1;
770ae6cc
RK
7708 HOST_WIDE_INT pos;
7709 unsigned HOST_WIDE_INT len;
dfbe1b2f
RK
7710 rtx other;
7711 enum machine_mode mode;
230d793d
RS
7712
7713 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7714 a clear of a one-bit field. We will have changed it to
7715 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7716 for a SUBREG. */
7717
7718 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7719 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7720 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
e11fa86f 7721 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
230d793d 7722 {
8999a12e 7723 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
230d793d 7724 1, 1, 1, 0);
76184def 7725 if (assign != 0)
38a448ca 7726 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
76184def 7727 return x;
230d793d
RS
7728 }
7729
7730 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7731 && subreg_lowpart_p (XEXP (src, 0))
663522cb 7732 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
230d793d
RS
7733 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7734 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7735 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
e11fa86f 7736 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
230d793d 7737 {
8999a12e 7738 assign = make_extraction (VOIDmode, dest, 0,
230d793d
RS
7739 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7740 1, 1, 1, 0);
76184def 7741 if (assign != 0)
38a448ca 7742 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
76184def 7743 return x;
230d793d
RS
7744 }
7745
9dd11dcb 7746 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
230d793d
RS
7747 one-bit field. */
7748 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7749 && XEXP (XEXP (src, 0), 0) == const1_rtx
e11fa86f 7750 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
230d793d 7751 {
8999a12e 7752 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
230d793d 7753 1, 1, 1, 0);
76184def 7754 if (assign != 0)
38a448ca 7755 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
76184def 7756 return x;
230d793d
RS
7757 }
7758
dfbe1b2f 7759 /* The other case we handle is assignments into a constant-position
9dd11dcb 7760 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
dfbe1b2f
RK
7761 a mask that has all one bits except for a group of zero bits and
7762 OTHER is known to have zeros where C1 has ones, this is such an
7763 assignment. Compute the position and length from C1. Shift OTHER
7764 to the appropriate position, force it to the required mode, and
7765 make the extraction. Check for the AND in both operands. */
7766
9dd11dcb 7767 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
e11fa86f
RK
7768 return x;
7769
7770 rhs = expand_compound_operation (XEXP (src, 0));
7771 lhs = expand_compound_operation (XEXP (src, 1));
7772
7773 if (GET_CODE (rhs) == AND
7774 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7775 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7776 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7777 else if (GET_CODE (lhs) == AND
7778 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7779 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7780 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
dfbe1b2f
RK
7781 else
7782 return x;
230d793d 7783
663522cb 7784 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
dfbe1b2f 7785 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
e5e809f4
JL
7786 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7787 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
dfbe1b2f 7788 return x;
230d793d 7789
5f4f0e22 7790 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
76184def
DE
7791 if (assign == 0)
7792 return x;
230d793d 7793
dfbe1b2f
RK
7794 /* The mode to use for the source is the mode of the assignment, or of
7795 what is inside a possible STRICT_LOW_PART. */
663522cb 7796 mode = (GET_CODE (assign) == STRICT_LOW_PART
dfbe1b2f 7797 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
230d793d 7798
dfbe1b2f
RK
7799 /* Shift OTHER right POS places and make it the source, restricting it
7800 to the proper length and mode. */
230d793d 7801
5f4f0e22
CH
7802 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7803 GET_MODE (src), other, pos),
6139ff20
RK
7804 mode,
7805 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
0345195a 7806 ? ~(unsigned HOST_WIDE_INT) 0
729a2125 7807 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
e3d616e3 7808 dest, 0);
230d793d 7809
f1c6ba8b 7810 return gen_rtx_SET (VOIDmode, assign, src);
230d793d
RS
7811}
7812\f
7813/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7814 if so. */
7815
7816static rtx
7817apply_distributive_law (x)
7818 rtx x;
7819{
7820 enum rtx_code code = GET_CODE (x);
7821 rtx lhs, rhs, other;
7822 rtx tem;
7823 enum rtx_code inner_code;
7824
d8a8a4da
RS
7825 /* Distributivity is not true for floating point.
7826 It can change the value. So don't do it.
7827 -- rms and moshier@world.std.com. */
3ad2180a 7828 if (FLOAT_MODE_P (GET_MODE (x)))
d8a8a4da
RS
7829 return x;
7830
230d793d
RS
7831 /* The outer operation can only be one of the following: */
7832 if (code != IOR && code != AND && code != XOR
7833 && code != PLUS && code != MINUS)
7834 return x;
7835
7836 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7837
0f41302f
MS
7838 /* If either operand is a primitive we can't do anything, so get out
7839 fast. */
230d793d 7840 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
dfbe1b2f 7841 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
230d793d
RS
7842 return x;
7843
7844 lhs = expand_compound_operation (lhs);
7845 rhs = expand_compound_operation (rhs);
7846 inner_code = GET_CODE (lhs);
7847 if (inner_code != GET_CODE (rhs))
7848 return x;
7849
7850 /* See if the inner and outer operations distribute. */
7851 switch (inner_code)
7852 {
7853 case LSHIFTRT:
7854 case ASHIFTRT:
7855 case AND:
7856 case IOR:
7857 /* These all distribute except over PLUS. */
7858 if (code == PLUS || code == MINUS)
7859 return x;
7860 break;
7861
7862 case MULT:
7863 if (code != PLUS && code != MINUS)
7864 return x;
7865 break;
7866
7867 case ASHIFT:
45620ed4 7868 /* This is also a multiply, so it distributes over everything. */
230d793d
RS
7869 break;
7870
7871 case SUBREG:
dfbe1b2f 7872 /* Non-paradoxical SUBREGs distributes over all operations, provided
ddef6bc7 7873 the inner modes and byte offsets are the same, this is an extraction
2b4bd1bc
JW
7874 of a low-order part, we don't convert an fp operation to int or
7875 vice versa, and we would not be converting a single-word
dfbe1b2f 7876 operation into a multi-word operation. The latter test is not
2b4bd1bc 7877 required, but it prevents generating unneeded multi-word operations.
dfbe1b2f
RK
7878 Some of the previous tests are redundant given the latter test, but
7879 are retained because they are required for correctness.
7880
7881 We produce the result slightly differently in this case. */
7882
7883 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
ddef6bc7 7884 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
dfbe1b2f 7885 || ! subreg_lowpart_p (lhs)
2b4bd1bc
JW
7886 || (GET_MODE_CLASS (GET_MODE (lhs))
7887 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
dfbe1b2f 7888 || (GET_MODE_SIZE (GET_MODE (lhs))
8af24e26 7889 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
dfbe1b2f 7890 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
230d793d
RS
7891 return x;
7892
7893 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7894 SUBREG_REG (lhs), SUBREG_REG (rhs));
7895 return gen_lowpart_for_combine (GET_MODE (x), tem);
7896
7897 default:
7898 return x;
7899 }
7900
7901 /* Set LHS and RHS to the inner operands (A and B in the example
7902 above) and set OTHER to the common operand (C in the example).
7903 These is only one way to do this unless the inner operation is
7904 commutative. */
7905 if (GET_RTX_CLASS (inner_code) == 'c'
7906 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7907 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7908 else if (GET_RTX_CLASS (inner_code) == 'c'
7909 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7910 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7911 else if (GET_RTX_CLASS (inner_code) == 'c'
7912 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7913 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7914 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7915 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7916 else
7917 return x;
7918
7919 /* Form the new inner operation, seeing if it simplifies first. */
7920 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7921
7922 /* There is one exception to the general way of distributing:
7923 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7924 if (code == XOR && inner_code == IOR)
7925 {
7926 inner_code = AND;
f1c6ba8b 7927 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
230d793d
RS
7928 }
7929
7930 /* We may be able to continuing distributing the result, so call
7931 ourselves recursively on the inner operation before forming the
7932 outer operation, which we return. */
7933 return gen_binary (inner_code, GET_MODE (x),
7934 apply_distributive_law (tem), other);
7935}
7936\f
7937/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7938 in MODE.
7939
7940 Return an equivalent form, if different from X. Otherwise, return X. If
7941 X is zero, we are to always construct the equivalent form. */
7942
7943static rtx
7944simplify_and_const_int (x, mode, varop, constop)
7945 rtx x;
7946 enum machine_mode mode;
7947 rtx varop;
5f4f0e22 7948 unsigned HOST_WIDE_INT constop;
230d793d 7949{
951553af 7950 unsigned HOST_WIDE_INT nonzero;
42301240 7951 int i;
230d793d 7952
6139ff20 7953 /* Simplify VAROP knowing that we will be only looking at some of the
8bc52806
JL
7954 bits in it.
7955
7956 Note by passing in CONSTOP, we guarantee that the bits not set in
7957 CONSTOP are not significant and will never be examined. We must
7958 ensure that is the case by explicitly masking out those bits
7959 before returning. */
e3d616e3 7960 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
230d793d 7961
8bc52806
JL
7962 /* If VAROP is a CLOBBER, we will fail so return it. */
7963 if (GET_CODE (varop) == CLOBBER)
6139ff20 7964 return varop;
230d793d 7965
8bc52806
JL
7966 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7967 to VAROP and return the new constant. */
7968 if (GET_CODE (varop) == CONST_INT)
7969 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7970
fc06d7aa
RK
7971 /* See what bits may be nonzero in VAROP. Unlike the general case of
7972 a call to nonzero_bits, here we don't care about bits outside
7973 MODE. */
7974
7975 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9fa6d012 7976
230d793d 7977 /* Turn off all bits in the constant that are known to already be zero.
951553af 7978 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
230d793d
RS
7979 which is tested below. */
7980
951553af 7981 constop &= nonzero;
230d793d
RS
7982
7983 /* If we don't have any bits left, return zero. */
7984 if (constop == 0)
7985 return const0_rtx;
7986
42301240 7987 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
e0a2f705 7988 a power of two, we can replace this with an ASHIFT. */
42301240
RK
7989 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7990 && (i = exact_log2 (constop)) >= 0)
7991 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
663522cb 7992
6139ff20
RK
7993 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7994 or XOR, then try to apply the distributive law. This may eliminate
7995 operations if either branch can be simplified because of the AND.
7996 It may also make some cases more complex, but those cases probably
7997 won't match a pattern either with or without this. */
7998
7999 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8000 return
8001 gen_lowpart_for_combine
8002 (mode,
8003 apply_distributive_law
8004 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8005 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8006 XEXP (varop, 0), constop),
8007 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8008 XEXP (varop, 1), constop))));
8009
8deb7514
RH
8010 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8011 the AND and see if one of the operands simplifies to zero. If so, we
8012 may eliminate it. */
8013
8014 if (GET_CODE (varop) == PLUS
8015 && exact_log2 (constop + 1) >= 0)
8016 {
8017 rtx o0, o1;
8018
8019 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8020 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8021 if (o0 == const0_rtx)
8022 return o1;
8023 if (o1 == const0_rtx)
8024 return o0;
8025 }
8026
230d793d
RS
8027 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8028 if we already had one (just check for the simplest cases). */
8029 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8030 && GET_MODE (XEXP (x, 0)) == mode
8031 && SUBREG_REG (XEXP (x, 0)) == varop)
8032 varop = XEXP (x, 0);
8033 else
8034 varop = gen_lowpart_for_combine (mode, varop);
8035
0f41302f 8036 /* If we can't make the SUBREG, try to return what we were given. */
230d793d
RS
8037 if (GET_CODE (varop) == CLOBBER)
8038 return x ? x : varop;
8039
8040 /* If we are only masking insignificant bits, return VAROP. */
951553af 8041 if (constop == nonzero)
230d793d 8042 x = varop;
230d793d
RS
8043 else
8044 {
d0c9db30 8045 /* Otherwise, return an AND. */
3b5708e7 8046 constop = trunc_int_for_mode (constop, mode);
d0c9db30
AM
8047 /* See how much, if any, of X we can use. */
8048 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8049 x = gen_binary (AND, mode, varop, GEN_INT (constop));
230d793d 8050
d0c9db30
AM
8051 else
8052 {
8053 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8054 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8055 SUBST (XEXP (x, 1), GEN_INT (constop));
8056
8057 SUBST (XEXP (x, 0), varop);
8058 }
230d793d
RS
8059 }
8060
8061 return x;
8062}
8063\f
b3728b0e
JW
8064/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8065 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8066 is less useful. We can't allow both, because that results in exponential
956d6950 8067 run time recursion. There is a nullstone testcase that triggered
b3728b0e
JW
8068 this. This macro avoids accidental uses of num_sign_bit_copies. */
8069#define num_sign_bit_copies()
8070
da7d8304 8071/* Given an expression, X, compute which bits in X can be nonzero.
230d793d
RS
8072 We don't care about bits outside of those defined in MODE.
8073
8074 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8075 a shift, AND, or zero_extract, we can do better. */
8076
5f4f0e22 8077static unsigned HOST_WIDE_INT
951553af 8078nonzero_bits (x, mode)
230d793d
RS
8079 rtx x;
8080 enum machine_mode mode;
8081{
951553af
RK
8082 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8083 unsigned HOST_WIDE_INT inner_nz;
230d793d 8084 enum rtx_code code;
770ae6cc 8085 unsigned int mode_width = GET_MODE_BITSIZE (mode);
230d793d
RS
8086 rtx tem;
8087
1c75dfa4
RK
8088 /* For floating-point values, assume all bits are needed. */
8089 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8090 return nonzero;
8091
230d793d
RS
8092 /* If X is wider than MODE, use its mode instead. */
8093 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8094 {
8095 mode = GET_MODE (x);
951553af 8096 nonzero = GET_MODE_MASK (mode);
230d793d
RS
8097 mode_width = GET_MODE_BITSIZE (mode);
8098 }
8099
5f4f0e22 8100 if (mode_width > HOST_BITS_PER_WIDE_INT)
230d793d
RS
8101 /* Our only callers in this case look for single bit values. So
8102 just return the mode mask. Those tests will then be false. */
951553af 8103 return nonzero;
230d793d 8104
8baf60bb 8105#ifndef WORD_REGISTER_OPERATIONS
c6965c0f 8106 /* If MODE is wider than X, but both are a single word for both the host
663522cb 8107 and target machines, we can compute this from which bits of the
0840fd91
RK
8108 object might be nonzero in its own mode, taking into account the fact
8109 that on many CISC machines, accessing an object in a wider mode
8110 causes the high-order bits to become undefined. So they are
8111 not known to be zero. */
8112
8113 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8114 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8115 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
c6965c0f 8116 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
0840fd91
RK
8117 {
8118 nonzero &= nonzero_bits (x, GET_MODE (x));
663522cb 8119 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
0840fd91
RK
8120 return nonzero;
8121 }
8122#endif
8123
230d793d
RS
8124 code = GET_CODE (x);
8125 switch (code)
8126 {
8127 case REG:
6dd12198 8128#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
320dd7a7
RK
8129 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8130 all the bits above ptr_mode are known to be zero. */
8131 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3502dc9c 8132 && REG_POINTER (x))
320dd7a7
RK
8133 nonzero &= GET_MODE_MASK (ptr_mode);
8134#endif
8135
563c12b0 8136 /* Include declared information about alignment of pointers. */
ebbb0a63
RH
8137 /* ??? We don't properly preserve REG_POINTER changes across
8138 pointer-to-integer casts, so we can't trust it except for
8139 things that we know must be pointers. See execute/960116-1.c. */
8140 if ((x == stack_pointer_rtx
8141 || x == frame_pointer_rtx
8142 || x == arg_pointer_rtx)
8143 && REGNO_POINTER_ALIGN (REGNO (x)))
230d793d 8144 {
563c12b0
RH
8145 unsigned HOST_WIDE_INT alignment
8146 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
230d793d
RS
8147
8148#ifdef PUSH_ROUNDING
563c12b0
RH
8149 /* If PUSH_ROUNDING is defined, it is possible for the
8150 stack to be momentarily aligned only to that amount,
8151 so we pick the least alignment. */
8152 if (x == stack_pointer_rtx && PUSH_ARGS)
8153 alignment = MIN (PUSH_ROUNDING (1), alignment);
230d793d
RS
8154#endif
8155
563c12b0 8156 nonzero &= ~(alignment - 1);
230d793d 8157 }
230d793d 8158
55310dad
RK
8159 /* If X is a register whose nonzero bits value is current, use it.
8160 Otherwise, if X is a register whose value we can find, use that
8161 value. Otherwise, use the previously-computed global nonzero bits
8162 for this register. */
8163
8164 if (reg_last_set_value[REGNO (x)] != 0
0a0440c9
JJ
8165 && (reg_last_set_mode[REGNO (x)] == mode
8166 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8167 && GET_MODE_CLASS (mode) == MODE_INT))
57cf50a4
GRK
8168 && (reg_last_set_label[REGNO (x)] == label_tick
8169 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8170 && REG_N_SETS (REGNO (x)) == 1
f6366fc7 8171 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
57cf50a4 8172 REGNO (x))))
55310dad 8173 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
563c12b0 8174 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
230d793d
RS
8175
8176 tem = get_last_value (x);
9afa3d54 8177
230d793d 8178 if (tem)
9afa3d54
RK
8179 {
8180#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8181 /* If X is narrower than MODE and TEM is a non-negative
8182 constant that would appear negative in the mode of X,
8183 sign-extend it for use in reg_nonzero_bits because some
8184 machines (maybe most) will actually do the sign-extension
663522cb 8185 and this is the conservative approach.
9afa3d54
RK
8186
8187 ??? For 2.5, try to tighten up the MD files in this regard
8188 instead of this kludge. */
8189
8190 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8191 && GET_CODE (tem) == CONST_INT
8192 && INTVAL (tem) > 0
8193 && 0 != (INTVAL (tem)
8194 & ((HOST_WIDE_INT) 1
9e69be8c 8195 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9afa3d54
RK
8196 tem = GEN_INT (INTVAL (tem)
8197 | ((HOST_WIDE_INT) (-1)
8198 << GET_MODE_BITSIZE (GET_MODE (x))));
8199#endif
563c12b0 8200 return nonzero_bits (tem, mode) & nonzero;
9afa3d54 8201 }
951553af 8202 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7958f3c7
JJ
8203 {
8204 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8205
8206 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8207 /* We don't know anything about the upper bits. */
8208 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8209 return nonzero & mask;
8210 }
230d793d 8211 else
951553af 8212 return nonzero;
230d793d
RS
8213
8214 case CONST_INT:
9afa3d54
RK
8215#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8216 /* If X is negative in MODE, sign-extend the value. */
9e69be8c
RK
8217 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8218 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8219 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
9afa3d54
RK
8220#endif
8221
230d793d
RS
8222 return INTVAL (x);
8223
230d793d 8224 case MEM:
8baf60bb 8225#ifdef LOAD_EXTEND_OP
230d793d
RS
8226 /* In many, if not most, RISC machines, reading a byte from memory
8227 zeros the rest of the register. Noticing that fact saves a lot
8228 of extra zero-extends. */
8baf60bb
RK
8229 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8230 nonzero &= GET_MODE_MASK (GET_MODE (x));
230d793d 8231#endif
8baf60bb 8232 break;
230d793d 8233
230d793d 8234 case EQ: case NE:
69bc0a1f
JH
8235 case UNEQ: case LTGT:
8236 case GT: case GTU: case UNGT:
8237 case LT: case LTU: case UNLT:
8238 case GE: case GEU: case UNGE:
8239 case LE: case LEU: case UNLE:
8240 case UNORDERED: case ORDERED:
3f508eca 8241
c6965c0f
RK
8242 /* If this produces an integer result, we know which bits are set.
8243 Code here used to clear bits outside the mode of X, but that is
8244 now done above. */
230d793d 8245
c6965c0f
RK
8246 if (GET_MODE_CLASS (mode) == MODE_INT
8247 && mode_width <= HOST_BITS_PER_WIDE_INT)
8248 nonzero = STORE_FLAG_VALUE;
230d793d 8249 break;
230d793d 8250
230d793d 8251 case NEG:
b3728b0e
JW
8252#if 0
8253 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8254 and num_sign_bit_copies. */
d0ab8cd3
RK
8255 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8256 == GET_MODE_BITSIZE (GET_MODE (x)))
951553af 8257 nonzero = 1;
b3728b0e 8258#endif
230d793d
RS
8259
8260 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
663522cb 8261 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
230d793d 8262 break;
d0ab8cd3
RK
8263
8264 case ABS:
b3728b0e
JW
8265#if 0
8266 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8267 and num_sign_bit_copies. */
d0ab8cd3
RK
8268 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8269 == GET_MODE_BITSIZE (GET_MODE (x)))
951553af 8270 nonzero = 1;
b3728b0e 8271#endif
d0ab8cd3 8272 break;
230d793d
RS
8273
8274 case TRUNCATE:
951553af 8275 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
230d793d
RS
8276 break;
8277
8278 case ZERO_EXTEND:
951553af 8279 nonzero &= nonzero_bits (XEXP (x, 0), mode);
230d793d 8280 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
951553af 8281 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
230d793d
RS
8282 break;
8283
8284 case SIGN_EXTEND:
8285 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8286 Otherwise, show all the bits in the outer mode but not the inner
da7d8304 8287 may be nonzero. */
951553af 8288 inner_nz = nonzero_bits (XEXP (x, 0), mode);
230d793d
RS
8289 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8290 {
951553af 8291 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
e3da301d
MS
8292 if (inner_nz
8293 & (((HOST_WIDE_INT) 1
8294 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
951553af 8295 inner_nz |= (GET_MODE_MASK (mode)
663522cb 8296 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
230d793d
RS
8297 }
8298
951553af 8299 nonzero &= inner_nz;
230d793d
RS
8300 break;
8301
8302 case AND:
951553af
RK
8303 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8304 & nonzero_bits (XEXP (x, 1), mode));
230d793d
RS
8305 break;
8306
d0ab8cd3
RK
8307 case XOR: case IOR:
8308 case UMIN: case UMAX: case SMIN: case SMAX:
0a0440c9
JJ
8309 {
8310 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8311
8312 /* Don't call nonzero_bits for the second time if it cannot change
8313 anything. */
8314 if ((nonzero & nonzero0) != nonzero)
8315 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8316 }
230d793d
RS
8317 break;
8318
8319 case PLUS: case MINUS:
8320 case MULT:
8321 case DIV: case UDIV:
8322 case MOD: case UMOD:
8323 /* We can apply the rules of arithmetic to compute the number of
8324 high- and low-order zero bits of these operations. We start by
da7d8304 8325 computing the width (position of the highest-order nonzero bit)
230d793d
RS
8326 and the number of low-order zero bits for each value. */
8327 {
951553af
RK
8328 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8329 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8330 int width0 = floor_log2 (nz0) + 1;
8331 int width1 = floor_log2 (nz1) + 1;
8332 int low0 = floor_log2 (nz0 & -nz0);
8333 int low1 = floor_log2 (nz1 & -nz1);
318b149c
RK
8334 HOST_WIDE_INT op0_maybe_minusp
8335 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8336 HOST_WIDE_INT op1_maybe_minusp
8337 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
770ae6cc 8338 unsigned int result_width = mode_width;
230d793d
RS
8339 int result_low = 0;
8340
8341 switch (code)
8342 {
8343 case PLUS:
8344 result_width = MAX (width0, width1) + 1;
8345 result_low = MIN (low0, low1);
8346 break;
8347 case MINUS:
8348 result_low = MIN (low0, low1);
8349 break;
8350 case MULT:
8351 result_width = width0 + width1;
8352 result_low = low0 + low1;
8353 break;
8354 case DIV:
2a8bb5cf
AH
8355 if (width1 == 0)
8356 break;
230d793d
RS
8357 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8358 result_width = width0;
8359 break;
8360 case UDIV:
2a8bb5cf
AH
8361 if (width1 == 0)
8362 break;
230d793d
RS
8363 result_width = width0;
8364 break;
8365 case MOD:
2a8bb5cf
AH
8366 if (width1 == 0)
8367 break;
230d793d
RS
8368 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8369 result_width = MIN (width0, width1);
8370 result_low = MIN (low0, low1);
8371 break;
8372 case UMOD:
2a8bb5cf
AH
8373 if (width1 == 0)
8374 break;
230d793d
RS
8375 result_width = MIN (width0, width1);
8376 result_low = MIN (low0, low1);
8377 break;
e9a25f70
JL
8378 default:
8379 abort ();
230d793d
RS
8380 }
8381
8382 if (result_width < mode_width)
951553af 8383 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
230d793d
RS
8384
8385 if (result_low > 0)
663522cb 8386 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
d1405722
RK
8387
8388#ifdef POINTERS_EXTEND_UNSIGNED
8389 /* If pointers extend unsigned and this is an addition or subtraction
8390 to a pointer in Pmode, all the bits above ptr_mode are known to be
8391 zero. */
6dd12198 8392 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
d1405722
RK
8393 && (code == PLUS || code == MINUS)
8394 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8395 nonzero &= GET_MODE_MASK (ptr_mode);
8396#endif
230d793d
RS
8397 }
8398 break;
8399
8400 case ZERO_EXTRACT:
8401 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5f4f0e22 8402 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
951553af 8403 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
230d793d
RS
8404 break;
8405
8406 case SUBREG:
c3c2cb37
RK
8407 /* If this is a SUBREG formed for a promoted variable that has
8408 been zero-extended, we know that at least the high-order bits
8409 are zero, though others might be too. */
8410
7879b81e 8411 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
951553af
RK
8412 nonzero = (GET_MODE_MASK (GET_MODE (x))
8413 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
c3c2cb37 8414
230d793d
RS
8415 /* If the inner mode is a single word for both the host and target
8416 machines, we can compute this from which bits of the inner
951553af 8417 object might be nonzero. */
230d793d 8418 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
5f4f0e22
CH
8419 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8420 <= HOST_BITS_PER_WIDE_INT))
230d793d 8421 {
951553af 8422 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8baf60bb 8423
b52ce03d
R
8424#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8425 /* If this is a typical RISC machine, we only have to worry
8426 about the way loads are extended. */
0e603223
RS
8427 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8428 ? (((nonzero
8429 & (((unsigned HOST_WIDE_INT) 1
8430 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8431 != 0))
8432 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8433 || GET_CODE (SUBREG_REG (x)) != MEM)
230d793d 8434#endif
b52ce03d
R
8435 {
8436 /* On many CISC machines, accessing an object in a wider mode
8437 causes the high-order bits to become undefined. So they are
8438 not known to be zero. */
8439 if (GET_MODE_SIZE (GET_MODE (x))
8440 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8441 nonzero |= (GET_MODE_MASK (GET_MODE (x))
663522cb 8442 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
b52ce03d 8443 }
230d793d
RS
8444 }
8445 break;
8446
8447 case ASHIFTRT:
8448 case LSHIFTRT:
8449 case ASHIFT:
230d793d 8450 case ROTATE:
951553af 8451 /* The nonzero bits are in two classes: any bits within MODE
230d793d 8452 that aren't in GET_MODE (x) are always significant. The rest of the
951553af 8453 nonzero bits are those that are significant in the operand of
230d793d
RS
8454 the shift when shifted the appropriate number of bits. This
8455 shows that high-order bits are cleared by the right shift and
8456 low-order bits by left shifts. */
8457 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8458 && INTVAL (XEXP (x, 1)) >= 0
5f4f0e22 8459 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
230d793d
RS
8460 {
8461 enum machine_mode inner_mode = GET_MODE (x);
770ae6cc 8462 unsigned int width = GET_MODE_BITSIZE (inner_mode);
230d793d 8463 int count = INTVAL (XEXP (x, 1));
5f4f0e22 8464 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
951553af
RK
8465 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8466 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
5f4f0e22 8467 unsigned HOST_WIDE_INT outer = 0;
230d793d
RS
8468
8469 if (mode_width > width)
663522cb 8470 outer = (op_nonzero & nonzero & ~mode_mask);
230d793d
RS
8471
8472 if (code == LSHIFTRT)
8473 inner >>= count;
8474 else if (code == ASHIFTRT)
8475 {
8476 inner >>= count;
8477
951553af 8478 /* If the sign bit may have been nonzero before the shift, we
230d793d 8479 need to mark all the places it could have been copied to
951553af 8480 by the shift as possibly nonzero. */
5f4f0e22
CH
8481 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8482 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
230d793d 8483 }
45620ed4 8484 else if (code == ASHIFT)
230d793d
RS
8485 inner <<= count;
8486 else
8487 inner = ((inner << (count % width)
8488 | (inner >> (width - (count % width)))) & mode_mask);
8489
951553af 8490 nonzero &= (outer | inner);
230d793d
RS
8491 }
8492 break;
8493
8494 case FFS:
8495 /* This is at most the number of bits in the mode. */
951553af 8496 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
230d793d 8497 break;
d0ab8cd3
RK
8498
8499 case IF_THEN_ELSE:
951553af
RK
8500 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8501 | nonzero_bits (XEXP (x, 2), mode));
d0ab8cd3 8502 break;
663522cb 8503
e9a25f70
JL
8504 default:
8505 break;
230d793d
RS
8506 }
8507
951553af 8508 return nonzero;
230d793d 8509}
b3728b0e
JW
8510
8511/* See the macro definition above. */
8512#undef num_sign_bit_copies
230d793d 8513\f
d0ab8cd3 8514/* Return the number of bits at the high-order end of X that are known to
5109d49f
RK
8515 be equal to the sign bit. X will be used in mode MODE; if MODE is
8516 VOIDmode, X will be used in its own mode. The returned value will always
8517 be between 1 and the number of bits in MODE. */
d0ab8cd3 8518
770ae6cc 8519static unsigned int
d0ab8cd3
RK
8520num_sign_bit_copies (x, mode)
8521 rtx x;
8522 enum machine_mode mode;
8523{
8524 enum rtx_code code = GET_CODE (x);
770ae6cc 8525 unsigned int bitwidth;
d0ab8cd3 8526 int num0, num1, result;
951553af 8527 unsigned HOST_WIDE_INT nonzero;
d0ab8cd3
RK
8528 rtx tem;
8529
8530 /* If we weren't given a mode, use the mode of X. If the mode is still
1c75dfa4
RK
8531 VOIDmode, we don't know anything. Likewise if one of the modes is
8532 floating-point. */
d0ab8cd3
RK
8533
8534 if (mode == VOIDmode)
8535 mode = GET_MODE (x);
8536
1c75dfa4 8537 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
6752e8d2 8538 return 1;
d0ab8cd3
RK
8539
8540 bitwidth = GET_MODE_BITSIZE (mode);
8541
0f41302f 8542 /* For a smaller object, just ignore the high bits. */
312def2e 8543 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
770ae6cc
RK
8544 {
8545 num0 = num_sign_bit_copies (x, GET_MODE (x));
8546 return MAX (1,
8547 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8548 }
663522cb 8549
e9a25f70
JL
8550 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8551 {
0c314d1a
RK
8552#ifndef WORD_REGISTER_OPERATIONS
8553 /* If this machine does not do all register operations on the entire
8554 register and MODE is wider than the mode of X, we can say nothing
8555 at all about the high-order bits. */
e9a25f70
JL
8556 return 1;
8557#else
8558 /* Likewise on machines that do, if the mode of the object is smaller
8559 than a word and loads of that size don't sign extend, we can say
8560 nothing about the high order bits. */
8561 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8562#ifdef LOAD_EXTEND_OP
8563 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8564#endif
8565 )
8566 return 1;
0c314d1a 8567#endif
e9a25f70 8568 }
0c314d1a 8569
d0ab8cd3
RK
8570 switch (code)
8571 {
8572 case REG:
55310dad 8573
6dd12198 8574#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
ff0dbdd1
RK
8575 /* If pointers extend signed and this is a pointer in Pmode, say that
8576 all the bits above ptr_mode are known to be sign bit copies. */
8577 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
3502dc9c 8578 && REG_POINTER (x))
ff0dbdd1
RK
8579 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8580#endif
8581
55310dad
RK
8582 if (reg_last_set_value[REGNO (x)] != 0
8583 && reg_last_set_mode[REGNO (x)] == mode
57cf50a4
GRK
8584 && (reg_last_set_label[REGNO (x)] == label_tick
8585 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8586 && REG_N_SETS (REGNO (x)) == 1
f6366fc7 8587 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
57cf50a4 8588 REGNO (x))))
55310dad
RK
8589 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8590 return reg_last_set_sign_bit_copies[REGNO (x)];
d0ab8cd3 8591
663522cb 8592 tem = get_last_value (x);
d0ab8cd3
RK
8593 if (tem != 0)
8594 return num_sign_bit_copies (tem, mode);
55310dad 8595
7958f3c7
JJ
8596 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8597 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
55310dad 8598 return reg_sign_bit_copies[REGNO (x)];
d0ab8cd3
RK
8599 break;
8600
457816e2 8601 case MEM:
8baf60bb 8602#ifdef LOAD_EXTEND_OP
457816e2 8603 /* Some RISC machines sign-extend all loads of smaller than a word. */
8baf60bb 8604 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
770ae6cc
RK
8605 return MAX (1, ((int) bitwidth
8606 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
457816e2 8607#endif
8baf60bb 8608 break;
457816e2 8609
d0ab8cd3
RK
8610 case CONST_INT:
8611 /* If the constant is negative, take its 1's complement and remask.
8612 Then see how many zero bits we have. */
951553af 8613 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
ac49a949 8614 if (bitwidth <= HOST_BITS_PER_WIDE_INT
951553af 8615 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
663522cb 8616 nonzero = (~nonzero) & GET_MODE_MASK (mode);
d0ab8cd3 8617
951553af 8618 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
d0ab8cd3
RK
8619
8620 case SUBREG:
c3c2cb37
RK
8621 /* If this is a SUBREG for a promoted object that is sign-extended
8622 and we are looking at it in a wider mode, we know that at least the
8623 high-order bits are known to be sign bit copies. */
8624
8625 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
770ae6cc
RK
8626 {
8627 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8628 return MAX ((int) bitwidth
8629 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8630 num0);
8631 }
663522cb 8632
0f41302f 8633 /* For a smaller object, just ignore the high bits. */
d0ab8cd3
RK
8634 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8635 {
8636 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8637 return MAX (1, (num0
770ae6cc
RK
8638 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8639 - bitwidth)));
d0ab8cd3 8640 }
457816e2 8641
8baf60bb 8642#ifdef WORD_REGISTER_OPERATIONS
2aec5b7a 8643#ifdef LOAD_EXTEND_OP
8baf60bb
RK
8644 /* For paradoxical SUBREGs on machines where all register operations
8645 affect the entire register, just look inside. Note that we are
8646 passing MODE to the recursive call, so the number of sign bit copies
8647 will remain relative to that mode, not the inner mode. */
457816e2 8648
2aec5b7a
JW
8649 /* This works only if loads sign extend. Otherwise, if we get a
8650 reload for the inner part, it may be loaded from the stack, and
8651 then we lose all sign bit copies that existed before the store
8652 to the stack. */
8653
8654 if ((GET_MODE_SIZE (GET_MODE (x))
8655 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
0e603223
RS
8656 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8657 && GET_CODE (SUBREG_REG (x)) == MEM)
457816e2 8658 return num_sign_bit_copies (SUBREG_REG (x), mode);
2aec5b7a 8659#endif
457816e2 8660#endif
d0ab8cd3
RK
8661 break;
8662
8663 case SIGN_EXTRACT:
8664 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
770ae6cc 8665 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
d0ab8cd3
RK
8666 break;
8667
663522cb 8668 case SIGN_EXTEND:
d0ab8cd3
RK
8669 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8670 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8671
8672 case TRUNCATE:
0f41302f 8673 /* For a smaller object, just ignore the high bits. */
d0ab8cd3 8674 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
770ae6cc
RK
8675 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8676 - bitwidth)));
d0ab8cd3
RK
8677
8678 case NOT:
8679 return num_sign_bit_copies (XEXP (x, 0), mode);
8680
8681 case ROTATE: case ROTATERT:
8682 /* If we are rotating left by a number of bits less than the number
8683 of sign bit copies, we can just subtract that amount from the
8684 number. */
8685 if (GET_CODE (XEXP (x, 1)) == CONST_INT
ae0ed63a
JM
8686 && INTVAL (XEXP (x, 1)) >= 0
8687 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
d0ab8cd3
RK
8688 {
8689 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8690 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
770ae6cc 8691 : (int) bitwidth - INTVAL (XEXP (x, 1))));
d0ab8cd3
RK
8692 }
8693 break;
8694
8695 case NEG:
8696 /* In general, this subtracts one sign bit copy. But if the value
8697 is known to be positive, the number of sign bit copies is the
951553af
RK
8698 same as that of the input. Finally, if the input has just one bit
8699 that might be nonzero, all the bits are copies of the sign bit. */
70186b34
BS
8700 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8701 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8702 return num0 > 1 ? num0 - 1 : 1;
8703
951553af
RK
8704 nonzero = nonzero_bits (XEXP (x, 0), mode);
8705 if (nonzero == 1)
d0ab8cd3
RK
8706 return bitwidth;
8707
d0ab8cd3 8708 if (num0 > 1
951553af 8709 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
d0ab8cd3
RK
8710 num0--;
8711
8712 return num0;
8713
8714 case IOR: case AND: case XOR:
8715 case SMIN: case SMAX: case UMIN: case UMAX:
8716 /* Logical operations will preserve the number of sign-bit copies.
8717 MIN and MAX operations always return one of the operands. */
8718 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8719 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8720 return MIN (num0, num1);
8721
8722 case PLUS: case MINUS:
8723 /* For addition and subtraction, we can have a 1-bit carry. However,
8724 if we are subtracting 1 from a positive number, there will not
8725 be such a carry. Furthermore, if the positive number is known to
8726 be 0 or 1, we know the result is either -1 or 0. */
8727
3e3ea975 8728 if (code == PLUS && XEXP (x, 1) == constm1_rtx
9295e6af 8729 && bitwidth <= HOST_BITS_PER_WIDE_INT)
d0ab8cd3 8730 {
951553af
RK
8731 nonzero = nonzero_bits (XEXP (x, 0), mode);
8732 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8733 return (nonzero == 1 || nonzero == 0 ? bitwidth
8734 : bitwidth - floor_log2 (nonzero) - 1);
d0ab8cd3
RK
8735 }
8736
8737 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8738 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
d1405722
RK
8739 result = MAX (1, MIN (num0, num1) - 1);
8740
8741#ifdef POINTERS_EXTEND_UNSIGNED
8742 /* If pointers extend signed and this is an addition or subtraction
8743 to a pointer in Pmode, all the bits above ptr_mode are known to be
8744 sign bit copies. */
8745 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8746 && (code == PLUS || code == MINUS)
8747 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
505ddab6
KH
8748 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8749 - GET_MODE_BITSIZE (ptr_mode) + 1),
d1405722
RK
8750 result);
8751#endif
8752 return result;
663522cb 8753
d0ab8cd3
RK
8754 case MULT:
8755 /* The number of bits of the product is the sum of the number of
8756 bits of both terms. However, unless one of the terms if known
8757 to be positive, we must allow for an additional bit since negating
8758 a negative number can remove one sign bit copy. */
8759
8760 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8761 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8762
8763 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8764 if (result > 0
70186b34
BS
8765 && (bitwidth > HOST_BITS_PER_WIDE_INT
8766 || (((nonzero_bits (XEXP (x, 0), mode)
8767 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8768 && ((nonzero_bits (XEXP (x, 1), mode)
8769 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
d0ab8cd3
RK
8770 result--;
8771
8772 return MAX (1, result);
8773
8774 case UDIV:
70186b34
BS
8775 /* The result must be <= the first operand. If the first operand
8776 has the high bit set, we know nothing about the number of sign
8777 bit copies. */
8778 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8779 return 1;
8780 else if ((nonzero_bits (XEXP (x, 0), mode)
8781 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8782 return 1;
8783 else
8784 return num_sign_bit_copies (XEXP (x, 0), mode);
663522cb 8785
d0ab8cd3 8786 case UMOD:
eaec9b3d 8787 /* The result must be <= the second operand. */
d0ab8cd3
RK
8788 return num_sign_bit_copies (XEXP (x, 1), mode);
8789
8790 case DIV:
8791 /* Similar to unsigned division, except that we have to worry about
8792 the case where the divisor is negative, in which case we have
8793 to add 1. */
8794 result = num_sign_bit_copies (XEXP (x, 0), mode);
8795 if (result > 1
70186b34
BS
8796 && (bitwidth > HOST_BITS_PER_WIDE_INT
8797 || (nonzero_bits (XEXP (x, 1), mode)
8798 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8799 result--;
d0ab8cd3
RK
8800
8801 return result;
8802
8803 case MOD:
8804 result = num_sign_bit_copies (XEXP (x, 1), mode);
8805 if (result > 1
70186b34
BS
8806 && (bitwidth > HOST_BITS_PER_WIDE_INT
8807 || (nonzero_bits (XEXP (x, 1), mode)
8808 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8809 result--;
d0ab8cd3
RK
8810
8811 return result;
8812
8813 case ASHIFTRT:
8814 /* Shifts by a constant add to the number of bits equal to the
8815 sign bit. */
8816 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8817 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8818 && INTVAL (XEXP (x, 1)) > 0)
ae0ed63a 8819 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
d0ab8cd3
RK
8820
8821 return num0;
8822
8823 case ASHIFT:
d0ab8cd3
RK
8824 /* Left shifts destroy copies. */
8825 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8826 || INTVAL (XEXP (x, 1)) < 0
ae0ed63a 8827 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
d0ab8cd3
RK
8828 return 1;
8829
8830 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8831 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8832
8833 case IF_THEN_ELSE:
8834 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8835 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8836 return MIN (num0, num1);
8837
d0ab8cd3 8838 case EQ: case NE: case GE: case GT: case LE: case LT:
69bc0a1f 8839 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
d0ab8cd3 8840 case GEU: case GTU: case LEU: case LTU:
69bc0a1f
JH
8841 case UNORDERED: case ORDERED:
8842 /* If the constant is negative, take its 1's complement and remask.
8843 Then see how many zero bits we have. */
8844 nonzero = STORE_FLAG_VALUE;
8845 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8846 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8847 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8848
8849 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
e9a25f70 8850 break;
663522cb 8851
e9a25f70
JL
8852 default:
8853 break;
d0ab8cd3
RK
8854 }
8855
8856 /* If we haven't been able to figure it out by one of the above rules,
8857 see if some of the high-order bits are known to be zero. If so,
ac49a949
RS
8858 count those bits and return one less than that amount. If we can't
8859 safely compute the mask for this mode, always return BITWIDTH. */
8860
8861 if (bitwidth > HOST_BITS_PER_WIDE_INT)
6752e8d2 8862 return 1;
d0ab8cd3 8863
951553af 8864 nonzero = nonzero_bits (x, mode);
df6f4086 8865 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
951553af 8866 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
d0ab8cd3
RK
8867}
8868\f
1a26b032
RK
8869/* Return the number of "extended" bits there are in X, when interpreted
8870 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8871 unsigned quantities, this is the number of high-order zero bits.
8872 For signed quantities, this is the number of copies of the sign bit
8873 minus 1. In both case, this function returns the number of "spare"
8874 bits. For example, if two quantities for which this function returns
8875 at least 1 are added, the addition is known not to overflow.
8876
8877 This function will always return 0 unless called during combine, which
8878 implies that it must be called from a define_split. */
8879
770ae6cc 8880unsigned int
1a26b032
RK
8881extended_count (x, mode, unsignedp)
8882 rtx x;
8883 enum machine_mode mode;
8884 int unsignedp;
8885{
951553af 8886 if (nonzero_sign_valid == 0)
1a26b032
RK
8887 return 0;
8888
8889 return (unsignedp
ac49a949 8890 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
26c34780
RS
8891 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8892 - floor_log2 (nonzero_bits (x, mode)))
770ae6cc 8893 : 0)
1a26b032
RK
8894 : num_sign_bit_copies (x, mode) - 1);
8895}
8896\f
230d793d
RS
8897/* This function is called from `simplify_shift_const' to merge two
8898 outer operations. Specifically, we have already found that we need
8899 to perform operation *POP0 with constant *PCONST0 at the outermost
8900 position. We would now like to also perform OP1 with constant CONST1
8901 (with *POP0 being done last).
8902
8903 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
663522cb 8904 the resulting operation. *PCOMP_P is set to 1 if we would need to
230d793d
RS
8905 complement the innermost operand, otherwise it is unchanged.
8906
8907 MODE is the mode in which the operation will be done. No bits outside
8908 the width of this mode matter. It is assumed that the width of this mode
5f4f0e22 8909 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
230d793d
RS
8910
8911 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8912 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8913 result is simply *PCONST0.
8914
8915 If the resulting operation cannot be expressed as one operation, we
8916 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8917
8918static int
8919merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8920 enum rtx_code *pop0;
5f4f0e22 8921 HOST_WIDE_INT *pconst0;
230d793d 8922 enum rtx_code op1;
5f4f0e22 8923 HOST_WIDE_INT const1;
230d793d
RS
8924 enum machine_mode mode;
8925 int *pcomp_p;
8926{
8927 enum rtx_code op0 = *pop0;
5f4f0e22 8928 HOST_WIDE_INT const0 = *pconst0;
230d793d
RS
8929
8930 const0 &= GET_MODE_MASK (mode);
8931 const1 &= GET_MODE_MASK (mode);
8932
8933 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8934 if (op0 == AND)
8935 const1 &= const0;
8936
8937 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8938 if OP0 is SET. */
8939
8940 if (op1 == NIL || op0 == SET)
8941 return 1;
8942
8943 else if (op0 == NIL)
8944 op0 = op1, const0 = const1;
8945
8946 else if (op0 == op1)
8947 {
8948 switch (op0)
8949 {
8950 case AND:
8951 const0 &= const1;
8952 break;
8953 case IOR:
8954 const0 |= const1;
8955 break;
8956 case XOR:
8957 const0 ^= const1;
8958 break;
8959 case PLUS:
8960 const0 += const1;
8961 break;
8962 case NEG:
8963 op0 = NIL;
8964 break;
e9a25f70
JL
8965 default:
8966 break;
230d793d
RS
8967 }
8968 }
8969
8970 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8971 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8972 return 0;
8973
8974 /* If the two constants aren't the same, we can't do anything. The
8975 remaining six cases can all be done. */
8976 else if (const0 != const1)
8977 return 0;
8978
8979 else
8980 switch (op0)
8981 {
8982 case IOR:
8983 if (op1 == AND)
8984 /* (a & b) | b == b */
8985 op0 = SET;
8986 else /* op1 == XOR */
8987 /* (a ^ b) | b == a | b */
b729186a 8988 {;}
230d793d
RS
8989 break;
8990
8991 case XOR:
8992 if (op1 == AND)
8993 /* (a & b) ^ b == (~a) & b */
8994 op0 = AND, *pcomp_p = 1;
8995 else /* op1 == IOR */
8996 /* (a | b) ^ b == a & ~b */
663522cb 8997 op0 = AND, *pconst0 = ~const0;
230d793d
RS
8998 break;
8999
9000 case AND:
9001 if (op1 == IOR)
9002 /* (a | b) & b == b */
9003 op0 = SET;
9004 else /* op1 == XOR */
9005 /* (a ^ b) & b) == (~a) & b */
9006 *pcomp_p = 1;
9007 break;
e9a25f70
JL
9008 default:
9009 break;
230d793d
RS
9010 }
9011
9012 /* Check for NO-OP cases. */
9013 const0 &= GET_MODE_MASK (mode);
9014 if (const0 == 0
9015 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9016 op0 = NIL;
9017 else if (const0 == 0 && op0 == AND)
9018 op0 = SET;
e51712db
KG
9019 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9020 && op0 == AND)
230d793d
RS
9021 op0 = NIL;
9022
7e4ce834
RH
9023 /* ??? Slightly redundant with the above mask, but not entirely.
9024 Moving this above means we'd have to sign-extend the mode mask
9025 for the final test. */
9026 const0 = trunc_int_for_mode (const0, mode);
9fa6d012 9027
230d793d
RS
9028 *pop0 = op0;
9029 *pconst0 = const0;
9030
9031 return 1;
9032}
9033\f
9034/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
da7d8304 9035 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
230d793d
RS
9036 that we started with.
9037
9038 The shift is normally computed in the widest mode we find in VAROP, as
9039 long as it isn't a different number of words than RESULT_MODE. Exceptions
9040 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9041
9042static rtx
0051b6ca 9043simplify_shift_const (x, code, result_mode, varop, orig_count)
230d793d
RS
9044 rtx x;
9045 enum rtx_code code;
9046 enum machine_mode result_mode;
9047 rtx varop;
0051b6ca 9048 int orig_count;
230d793d
RS
9049{
9050 enum rtx_code orig_code = code;
770ae6cc
RK
9051 unsigned int count;
9052 int signed_count;
230d793d
RS
9053 enum machine_mode mode = result_mode;
9054 enum machine_mode shift_mode, tmode;
770ae6cc 9055 unsigned int mode_words
230d793d
RS
9056 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9057 /* We form (outer_op (code varop count) (outer_const)). */
9058 enum rtx_code outer_op = NIL;
c4e861e8 9059 HOST_WIDE_INT outer_const = 0;
230d793d
RS
9060 rtx const_rtx;
9061 int complement_p = 0;
9062 rtx new;
9063
0051b6ca
RH
9064 /* Make sure and truncate the "natural" shift on the way in. We don't
9065 want to do this inside the loop as it makes it more difficult to
9066 combine shifts. */
9067#ifdef SHIFT_COUNT_TRUNCATED
9068 if (SHIFT_COUNT_TRUNCATED)
9069 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9070#endif
9071
230d793d
RS
9072 /* If we were given an invalid count, don't do anything except exactly
9073 what was requested. */
9074
0051b6ca 9075 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
230d793d
RS
9076 {
9077 if (x)
9078 return x;
9079
0051b6ca 9080 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
230d793d
RS
9081 }
9082
0051b6ca 9083 count = orig_count;
853d8828 9084
230d793d
RS
9085 /* Unless one of the branches of the `if' in this loop does a `continue',
9086 we will `break' the loop after the `if'. */
9087
9088 while (count != 0)
9089 {
9090 /* If we have an operand of (clobber (const_int 0)), just return that
9091 value. */
9092 if (GET_CODE (varop) == CLOBBER)
9093 return varop;
9094
9095 /* If we discovered we had to complement VAROP, leave. Making a NOT
9096 here would cause an infinite loop. */
9097 if (complement_p)
9098 break;
9099
abc95ed3 9100 /* Convert ROTATERT to ROTATE. */
230d793d 9101 if (code == ROTATERT)
ad9df12f
IS
9102 {
9103 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9104 code = ROTATE;
9105 if (VECTOR_MODE_P (result_mode))
9106 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9107 else
9108 count = bitsize - count;
9109 }
230d793d 9110
230d793d 9111 /* We need to determine what mode we will do the shift in. If the
f6789c77
RK
9112 shift is a right shift or a ROTATE, we must always do it in the mode
9113 it was originally done in. Otherwise, we can do it in MODE, the
0f41302f 9114 widest mode encountered. */
f6789c77
RK
9115 shift_mode
9116 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9117 ? result_mode : mode);
230d793d
RS
9118
9119 /* Handle cases where the count is greater than the size of the mode
853d8828
RH
9120 minus 1. For ASHIFT, use the size minus one as the count (this can
9121 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9122 take the count modulo the size. For other shifts, the result is
9123 zero.
230d793d
RS
9124
9125 Since these shifts are being produced by the compiler by combining
9126 multiple operations, each of which are defined, we know what the
9127 result is supposed to be. */
663522cb 9128
26c34780 9129 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
230d793d
RS
9130 {
9131 if (code == ASHIFTRT)
9132 count = GET_MODE_BITSIZE (shift_mode) - 1;
9133 else if (code == ROTATE || code == ROTATERT)
9134 count %= GET_MODE_BITSIZE (shift_mode);
9135 else
9136 {
9137 /* We can't simply return zero because there may be an
9138 outer op. */
9139 varop = const0_rtx;
9140 count = 0;
9141 break;
9142 }
9143 }
9144
312def2e
RK
9145 /* An arithmetic right shift of a quantity known to be -1 or 0
9146 is a no-op. */
9147 if (code == ASHIFTRT
9148 && (num_sign_bit_copies (varop, shift_mode)
9149 == GET_MODE_BITSIZE (shift_mode)))
d0ab8cd3 9150 {
312def2e
RK
9151 count = 0;
9152 break;
9153 }
d0ab8cd3 9154
312def2e
RK
9155 /* If we are doing an arithmetic right shift and discarding all but
9156 the sign bit copies, this is equivalent to doing a shift by the
9157 bitsize minus one. Convert it into that shift because it will often
9158 allow other simplifications. */
500c518b 9159
312def2e
RK
9160 if (code == ASHIFTRT
9161 && (count + num_sign_bit_copies (varop, shift_mode)
9162 >= GET_MODE_BITSIZE (shift_mode)))
9163 count = GET_MODE_BITSIZE (shift_mode) - 1;
500c518b 9164
230d793d
RS
9165 /* We simplify the tests below and elsewhere by converting
9166 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
e0a2f705
KH
9167 `make_compound_operation' will convert it to an ASHIFTRT for
9168 those machines (such as VAX) that don't have an LSHIFTRT. */
5f4f0e22 9169 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
230d793d 9170 && code == ASHIFTRT
951553af 9171 && ((nonzero_bits (varop, shift_mode)
5f4f0e22
CH
9172 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9173 == 0))
230d793d
RS
9174 code = LSHIFTRT;
9175
9176 switch (GET_CODE (varop))
9177 {
9178 case SIGN_EXTEND:
9179 case ZERO_EXTEND:
9180 case SIGN_EXTRACT:
9181 case ZERO_EXTRACT:
9182 new = expand_compound_operation (varop);
9183 if (new != varop)
9184 {
9185 varop = new;
9186 continue;
9187 }
9188 break;
9189
9190 case MEM:
9191 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9192 minus the width of a smaller mode, we can do this with a
9193 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9194 if ((code == ASHIFTRT || code == LSHIFTRT)
9195 && ! mode_dependent_address_p (XEXP (varop, 0))
9196 && ! MEM_VOLATILE_P (varop)
9197 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9198 MODE_INT, 1)) != BLKmode)
9199 {
f1ec5147
RK
9200 new = adjust_address_nv (varop, tmode,
9201 BYTES_BIG_ENDIAN ? 0
9202 : count / BITS_PER_UNIT);
bf49b139 9203
f1c6ba8b
RK
9204 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9205 : ZERO_EXTEND, mode, new);
230d793d
RS
9206 count = 0;
9207 continue;
9208 }
9209 break;
9210
9211 case USE:
9212 /* Similar to the case above, except that we can only do this if
9213 the resulting mode is the same as that of the underlying
9214 MEM and adjust the address depending on the *bits* endianness
9215 because of the way that bit-field extract insns are defined. */
9216 if ((code == ASHIFTRT || code == LSHIFTRT)
9217 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9218 MODE_INT, 1)) != BLKmode
9219 && tmode == GET_MODE (XEXP (varop, 0)))
9220 {
f76b9db2
ILT
9221 if (BITS_BIG_ENDIAN)
9222 new = XEXP (varop, 0);
9223 else
9224 {
9225 new = copy_rtx (XEXP (varop, 0));
663522cb 9226 SUBST (XEXP (new, 0),
f76b9db2
ILT
9227 plus_constant (XEXP (new, 0),
9228 count / BITS_PER_UNIT));
9229 }
230d793d 9230
f1c6ba8b
RK
9231 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9232 : ZERO_EXTEND, mode, new);
230d793d
RS
9233 count = 0;
9234 continue;
9235 }
9236 break;
9237
9238 case SUBREG:
9239 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9240 the same number of words as what we've seen so far. Then store
9241 the widest mode in MODE. */
f9e67232
RS
9242 if (subreg_lowpart_p (varop)
9243 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9244 > GET_MODE_SIZE (GET_MODE (varop)))
26c34780
RS
9245 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9246 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9247 == mode_words)
230d793d
RS
9248 {
9249 varop = SUBREG_REG (varop);
9250 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9251 mode = GET_MODE (varop);
9252 continue;
9253 }
9254 break;
9255
9256 case MULT:
9257 /* Some machines use MULT instead of ASHIFT because MULT
9258 is cheaper. But it is still better on those machines to
9259 merge two shifts into one. */
9260 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9261 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9262 {
770ae6cc
RK
9263 varop
9264 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9265 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
230d793d
RS
9266 continue;
9267 }
9268 break;
9269
9270 case UDIV:
9271 /* Similar, for when divides are cheaper. */
9272 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9273 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9274 {
770ae6cc
RK
9275 varop
9276 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9277 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
230d793d
RS
9278 continue;
9279 }
9280 break;
9281
9282 case ASHIFTRT:
8f8d8d6e
AO
9283 /* If we are extracting just the sign bit of an arithmetic
9284 right shift, that shift is not needed. However, the sign
9285 bit of a wider mode may be different from what would be
9286 interpreted as the sign bit in a narrower mode, so, if
9287 the result is narrower, don't discard the shift. */
26c34780
RS
9288 if (code == LSHIFTRT
9289 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8f8d8d6e
AO
9290 && (GET_MODE_BITSIZE (result_mode)
9291 >= GET_MODE_BITSIZE (GET_MODE (varop))))
230d793d
RS
9292 {
9293 varop = XEXP (varop, 0);
9294 continue;
9295 }
9296
0f41302f 9297 /* ... fall through ... */
230d793d
RS
9298
9299 case LSHIFTRT:
9300 case ASHIFT:
230d793d
RS
9301 case ROTATE:
9302 /* Here we have two nested shifts. The result is usually the
9303 AND of a new shift with a mask. We compute the result below. */
9304 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9305 && INTVAL (XEXP (varop, 1)) >= 0
9306 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
5f4f0e22
CH
9307 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9308 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
230d793d
RS
9309 {
9310 enum rtx_code first_code = GET_CODE (varop);
770ae6cc 9311 unsigned int first_count = INTVAL (XEXP (varop, 1));
5f4f0e22 9312 unsigned HOST_WIDE_INT mask;
230d793d 9313 rtx mask_rtx;
230d793d 9314
230d793d
RS
9315 /* We have one common special case. We can't do any merging if
9316 the inner code is an ASHIFTRT of a smaller mode. However, if
9317 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9318 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9319 we can convert it to
9320 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9321 This simplifies certain SIGN_EXTEND operations. */
9322 if (code == ASHIFT && first_code == ASHIFTRT
26c34780
RS
9323 && count == (unsigned int)
9324 (GET_MODE_BITSIZE (result_mode)
9325 - GET_MODE_BITSIZE (GET_MODE (varop))))
230d793d
RS
9326 {
9327 /* C3 has the low-order C1 bits zero. */
663522cb 9328
5f4f0e22 9329 mask = (GET_MODE_MASK (mode)
663522cb 9330 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
230d793d 9331
5f4f0e22 9332 varop = simplify_and_const_int (NULL_RTX, result_mode,
230d793d 9333 XEXP (varop, 0), mask);
5f4f0e22 9334 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
230d793d
RS
9335 varop, count);
9336 count = first_count;
9337 code = ASHIFTRT;
9338 continue;
9339 }
663522cb 9340
d0ab8cd3
RK
9341 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9342 than C1 high-order bits equal to the sign bit, we can convert
e0a2f705 9343 this to either an ASHIFT or an ASHIFTRT depending on the
663522cb 9344 two counts.
230d793d
RS
9345
9346 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9347
9348 if (code == ASHIFTRT && first_code == ASHIFT
9349 && GET_MODE (varop) == shift_mode
d0ab8cd3
RK
9350 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9351 > first_count))
230d793d 9352 {
d0ab8cd3 9353 varop = XEXP (varop, 0);
770ae6cc
RK
9354
9355 signed_count = count - first_count;
9356 if (signed_count < 0)
663522cb 9357 count = -signed_count, code = ASHIFT;
770ae6cc
RK
9358 else
9359 count = signed_count;
9360
d0ab8cd3 9361 continue;
230d793d
RS
9362 }
9363
9364 /* There are some cases we can't do. If CODE is ASHIFTRT,
9365 we can only do this if FIRST_CODE is also ASHIFTRT.
9366
9367 We can't do the case when CODE is ROTATE and FIRST_CODE is
9368 ASHIFTRT.
9369
9370 If the mode of this shift is not the mode of the outer shift,
bdaae9a0 9371 we can't do this if either shift is a right shift or ROTATE.
230d793d
RS
9372
9373 Finally, we can't do any of these if the mode is too wide
9374 unless the codes are the same.
9375
9376 Handle the case where the shift codes are the same
9377 first. */
9378
9379 if (code == first_code)
9380 {
9381 if (GET_MODE (varop) != result_mode
bdaae9a0
RK
9382 && (code == ASHIFTRT || code == LSHIFTRT
9383 || code == ROTATE))
230d793d
RS
9384 break;
9385
9386 count += first_count;
9387 varop = XEXP (varop, 0);
9388 continue;
9389 }
9390
9391 if (code == ASHIFTRT
9392 || (code == ROTATE && first_code == ASHIFTRT)
5f4f0e22 9393 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
230d793d 9394 || (GET_MODE (varop) != result_mode
bdaae9a0
RK
9395 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9396 || first_code == ROTATE
230d793d
RS
9397 || code == ROTATE)))
9398 break;
9399
9400 /* To compute the mask to apply after the shift, shift the
663522cb 9401 nonzero bits of the inner shift the same way the
230d793d
RS
9402 outer shift will. */
9403
951553af 9404 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
230d793d
RS
9405
9406 mask_rtx
9407 = simplify_binary_operation (code, result_mode, mask_rtx,
5f4f0e22 9408 GEN_INT (count));
663522cb 9409
230d793d
RS
9410 /* Give up if we can't compute an outer operation to use. */
9411 if (mask_rtx == 0
9412 || GET_CODE (mask_rtx) != CONST_INT
9413 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9414 INTVAL (mask_rtx),
9415 result_mode, &complement_p))
9416 break;
9417
9418 /* If the shifts are in the same direction, we add the
9419 counts. Otherwise, we subtract them. */
770ae6cc 9420 signed_count = count;
230d793d
RS
9421 if ((code == ASHIFTRT || code == LSHIFTRT)
9422 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
770ae6cc 9423 signed_count += first_count;
230d793d 9424 else
770ae6cc 9425 signed_count -= first_count;
230d793d 9426
663522cb 9427 /* If COUNT is positive, the new shift is usually CODE,
230d793d
RS
9428 except for the two exceptions below, in which case it is
9429 FIRST_CODE. If the count is negative, FIRST_CODE should
9430 always be used */
770ae6cc 9431 if (signed_count > 0
230d793d
RS
9432 && ((first_code == ROTATE && code == ASHIFT)
9433 || (first_code == ASHIFTRT && code == LSHIFTRT)))
770ae6cc
RK
9434 code = first_code, count = signed_count;
9435 else if (signed_count < 0)
663522cb 9436 code = first_code, count = -signed_count;
770ae6cc
RK
9437 else
9438 count = signed_count;
230d793d
RS
9439
9440 varop = XEXP (varop, 0);
9441 continue;
9442 }
9443
9444 /* If we have (A << B << C) for any shift, we can convert this to
9445 (A << C << B). This wins if A is a constant. Only try this if
9446 B is not a constant. */
9447
9448 else if (GET_CODE (varop) == code
9449 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9450 && 0 != (new
9451 = simplify_binary_operation (code, mode,
9452 XEXP (varop, 0),
5f4f0e22 9453 GEN_INT (count))))
230d793d 9454 {
f1c6ba8b 9455 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
230d793d
RS
9456 count = 0;
9457 continue;
9458 }
9459 break;
9460
9461 case NOT:
9462 /* Make this fit the case below. */
f1c6ba8b
RK
9463 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9464 GEN_INT (GET_MODE_MASK (mode)));
230d793d
RS
9465 continue;
9466
9467 case IOR:
9468 case AND:
9469 case XOR:
9470 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9471 with C the size of VAROP - 1 and the shift is logical if
9472 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9473 we have an (le X 0) operation. If we have an arithmetic shift
9474 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9475 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9476
9477 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9478 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9479 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9480 && (code == LSHIFTRT || code == ASHIFTRT)
26c34780
RS
9481 && count == (unsigned int)
9482 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
230d793d
RS
9483 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9484 {
9485 count = 0;
f1c6ba8b
RK
9486 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9487 const0_rtx);
230d793d
RS
9488
9489 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
f1c6ba8b 9490 varop = gen_rtx_NEG (GET_MODE (varop), varop);
230d793d
RS
9491
9492 continue;
9493 }
9494
9495 /* If we have (shift (logical)), move the logical to the outside
9496 to allow it to possibly combine with another logical and the
9497 shift to combine with another shift. This also canonicalizes to
9498 what a ZERO_EXTRACT looks like. Also, some machines have
9499 (and (shift)) insns. */
9500
9501 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9502 && (new = simplify_binary_operation (code, result_mode,
9503 XEXP (varop, 1),
5f4f0e22 9504 GEN_INT (count))) != 0
663522cb 9505 && GET_CODE (new) == CONST_INT
230d793d
RS
9506 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9507 INTVAL (new), result_mode, &complement_p))
9508 {
9509 varop = XEXP (varop, 0);
9510 continue;
9511 }
9512
9513 /* If we can't do that, try to simplify the shift in each arm of the
9514 logical expression, make a new logical expression, and apply
9515 the inverse distributive law. */
9516 {
00d4ca1c 9517 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
230d793d 9518 XEXP (varop, 0), count);
00d4ca1c 9519 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
230d793d
RS
9520 XEXP (varop, 1), count);
9521
21a64bf1 9522 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
230d793d
RS
9523 varop = apply_distributive_law (varop);
9524
9525 count = 0;
9526 }
9527 break;
9528
9529 case EQ:
45620ed4 9530 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
230d793d 9531 says that the sign bit can be tested, FOO has mode MODE, C is
45620ed4
RK
9532 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9533 that may be nonzero. */
9534 if (code == LSHIFTRT
230d793d
RS
9535 && XEXP (varop, 1) == const0_rtx
9536 && GET_MODE (XEXP (varop, 0)) == result_mode
26c34780 9537 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
5f4f0e22 9538 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
230d793d 9539 && ((STORE_FLAG_VALUE
663522cb 9540 & ((HOST_WIDE_INT) 1
770ae6cc 9541 < (GET_MODE_BITSIZE (result_mode) - 1))))
951553af 9542 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
5f4f0e22
CH
9543 && merge_outer_ops (&outer_op, &outer_const, XOR,
9544 (HOST_WIDE_INT) 1, result_mode,
9545 &complement_p))
230d793d
RS
9546 {
9547 varop = XEXP (varop, 0);
9548 count = 0;
9549 continue;
9550 }
9551 break;
9552
9553 case NEG:
d0ab8cd3
RK
9554 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9555 than the number of bits in the mode is equivalent to A. */
26c34780
RS
9556 if (code == LSHIFTRT
9557 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
951553af 9558 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
230d793d 9559 {
d0ab8cd3 9560 varop = XEXP (varop, 0);
230d793d
RS
9561 count = 0;
9562 continue;
9563 }
9564
9565 /* NEG commutes with ASHIFT since it is multiplication. Move the
9566 NEG outside to allow shifts to combine. */
9567 if (code == ASHIFT
5f4f0e22
CH
9568 && merge_outer_ops (&outer_op, &outer_const, NEG,
9569 (HOST_WIDE_INT) 0, result_mode,
9570 &complement_p))
230d793d
RS
9571 {
9572 varop = XEXP (varop, 0);
9573 continue;
9574 }
9575 break;
9576
9577 case PLUS:
d0ab8cd3
RK
9578 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9579 is one less than the number of bits in the mode is
9580 equivalent to (xor A 1). */
26c34780
RS
9581 if (code == LSHIFTRT
9582 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
230d793d 9583 && XEXP (varop, 1) == constm1_rtx
951553af 9584 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
5f4f0e22
CH
9585 && merge_outer_ops (&outer_op, &outer_const, XOR,
9586 (HOST_WIDE_INT) 1, result_mode,
9587 &complement_p))
230d793d
RS
9588 {
9589 count = 0;
9590 varop = XEXP (varop, 0);
9591 continue;
9592 }
9593
3f508eca 9594 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
951553af 9595 that might be nonzero in BAR are those being shifted out and those
3f508eca
RK
9596 bits are known zero in FOO, we can replace the PLUS with FOO.
9597 Similarly in the other operand order. This code occurs when
9598 we are computing the size of a variable-size array. */
9599
9600 if ((code == ASHIFTRT || code == LSHIFTRT)
5f4f0e22 9601 && count < HOST_BITS_PER_WIDE_INT
951553af
RK
9602 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9603 && (nonzero_bits (XEXP (varop, 1), result_mode)
9604 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
3f508eca
RK
9605 {
9606 varop = XEXP (varop, 0);
9607 continue;
9608 }
9609 else if ((code == ASHIFTRT || code == LSHIFTRT)
5f4f0e22 9610 && count < HOST_BITS_PER_WIDE_INT
ac49a949 9611 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
951553af 9612 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
3f508eca 9613 >> count)
951553af
RK
9614 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9615 & nonzero_bits (XEXP (varop, 1),
3f508eca
RK
9616 result_mode)))
9617 {
9618 varop = XEXP (varop, 1);
9619 continue;
9620 }
9621
230d793d
RS
9622 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9623 if (code == ASHIFT
9624 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9625 && (new = simplify_binary_operation (ASHIFT, result_mode,
9626 XEXP (varop, 1),
5f4f0e22 9627 GEN_INT (count))) != 0
770ae6cc 9628 && GET_CODE (new) == CONST_INT
230d793d
RS
9629 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9630 INTVAL (new), result_mode, &complement_p))
9631 {
9632 varop = XEXP (varop, 0);
9633 continue;
9634 }
9635 break;
9636
9637 case MINUS:
9638 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9639 with C the size of VAROP - 1 and the shift is logical if
9640 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9641 we have a (gt X 0) operation. If the shift is arithmetic with
9642 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9643 we have a (neg (gt X 0)) operation. */
9644
0802d516
RK
9645 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9646 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
26c34780
RS
9647 && count == (unsigned int)
9648 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
230d793d
RS
9649 && (code == LSHIFTRT || code == ASHIFTRT)
9650 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
26c34780
RS
9651 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9652 == count
230d793d
RS
9653 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9654 {
9655 count = 0;
f1c6ba8b
RK
9656 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9657 const0_rtx);
230d793d
RS
9658
9659 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
f1c6ba8b 9660 varop = gen_rtx_NEG (GET_MODE (varop), varop);
230d793d
RS
9661
9662 continue;
9663 }
9664 break;
6e0ef100
JC
9665
9666 case TRUNCATE:
9667 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9668 if the truncate does not affect the value. */
9669 if (code == LSHIFTRT
9670 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9671 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9672 && (INTVAL (XEXP (XEXP (varop, 0), 1))
b577a8ff
JL
9673 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9674 - GET_MODE_BITSIZE (GET_MODE (varop)))))
6e0ef100
JC
9675 {
9676 rtx varop_inner = XEXP (varop, 0);
9677
770ae6cc 9678 varop_inner
f1c6ba8b
RK
9679 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9680 XEXP (varop_inner, 0),
9681 GEN_INT
9682 (count + INTVAL (XEXP (varop_inner, 1))));
9683 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
6e0ef100
JC
9684 count = 0;
9685 continue;
9686 }
9687 break;
663522cb 9688
e9a25f70
JL
9689 default:
9690 break;
230d793d
RS
9691 }
9692
9693 break;
9694 }
9695
9696 /* We need to determine what mode to do the shift in. If the shift is
f6789c77
RK
9697 a right shift or ROTATE, we must always do it in the mode it was
9698 originally done in. Otherwise, we can do it in MODE, the widest mode
9699 encountered. The code we care about is that of the shift that will
9700 actually be done, not the shift that was originally requested. */
9701 shift_mode
9702 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9703 ? result_mode : mode);
230d793d
RS
9704
9705 /* We have now finished analyzing the shift. The result should be
9706 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9707 OUTER_OP is non-NIL, it is an operation that needs to be applied
9708 to the result of the shift. OUTER_CONST is the relevant constant,
9709 but we must turn off all bits turned off in the shift.
9710
9711 If we were passed a value for X, see if we can use any pieces of
9712 it. If not, make new rtx. */
9713
9714 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9715 && GET_CODE (XEXP (x, 1)) == CONST_INT
26c34780 9716 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
230d793d
RS
9717 const_rtx = XEXP (x, 1);
9718 else
5f4f0e22 9719 const_rtx = GEN_INT (count);
230d793d
RS
9720
9721 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9722 && GET_MODE (XEXP (x, 0)) == shift_mode
9723 && SUBREG_REG (XEXP (x, 0)) == varop)
9724 varop = XEXP (x, 0);
9725 else if (GET_MODE (varop) != shift_mode)
9726 varop = gen_lowpart_for_combine (shift_mode, varop);
9727
0f41302f 9728 /* If we can't make the SUBREG, try to return what we were given. */
230d793d
RS
9729 if (GET_CODE (varop) == CLOBBER)
9730 return x ? x : varop;
9731
9732 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9733 if (new != 0)
9734 x = new;
9735 else
6c2d03d0 9736 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
230d793d 9737
224eeff2
RK
9738 /* If we have an outer operation and we just made a shift, it is
9739 possible that we could have simplified the shift were it not
9740 for the outer operation. So try to do the simplification
9741 recursively. */
9742
9743 if (outer_op != NIL && GET_CODE (x) == code
9744 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9745 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9746 INTVAL (XEXP (x, 1)));
9747
e0a2f705 9748 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
230d793d
RS
9749 turn off all the bits that the shift would have turned off. */
9750 if (orig_code == LSHIFTRT && result_mode != shift_mode)
5f4f0e22 9751 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
230d793d 9752 GET_MODE_MASK (result_mode) >> orig_count);
663522cb 9753
230d793d
RS
9754 /* Do the remainder of the processing in RESULT_MODE. */
9755 x = gen_lowpart_for_combine (result_mode, x);
9756
9757 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9758 operation. */
9759 if (complement_p)
f1c6ba8b 9760 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
230d793d
RS
9761
9762 if (outer_op != NIL)
9763 {
5f4f0e22 9764 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
7e4ce834 9765 outer_const = trunc_int_for_mode (outer_const, result_mode);
230d793d
RS
9766
9767 if (outer_op == AND)
5f4f0e22 9768 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
230d793d
RS
9769 else if (outer_op == SET)
9770 /* This means that we have determined that the result is
9771 equivalent to a constant. This should be rare. */
5f4f0e22 9772 x = GEN_INT (outer_const);
230d793d 9773 else if (GET_RTX_CLASS (outer_op) == '1')
f1c6ba8b 9774 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
230d793d 9775 else
5f4f0e22 9776 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
230d793d
RS
9777 }
9778
9779 return x;
663522cb 9780}
230d793d
RS
9781\f
9782/* Like recog, but we receive the address of a pointer to a new pattern.
9783 We try to match the rtx that the pointer points to.
9784 If that fails, we may try to modify or replace the pattern,
9785 storing the replacement into the same pointer object.
9786
9787 Modifications include deletion or addition of CLOBBERs.
9788
9789 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9790 the CLOBBERs are placed.
9791
9792 The value is the final insn code from the pattern ultimately matched,
9793 or -1. */
9794
9795static int
8e2f6e35 9796recog_for_combine (pnewpat, insn, pnotes)
230d793d
RS
9797 rtx *pnewpat;
9798 rtx insn;
9799 rtx *pnotes;
9800{
b3694847 9801 rtx pat = *pnewpat;
230d793d
RS
9802 int insn_code_number;
9803 int num_clobbers_to_add = 0;
9804 int i;
9805 rtx notes = 0;
fa852403 9806 rtx dummy_insn;
230d793d 9807
974f4146
RK
9808 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9809 we use to indicate that something didn't match. If we find such a
9810 thing, force rejection. */
d96023cf 9811 if (GET_CODE (pat) == PARALLEL)
974f4146 9812 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
d96023cf
RK
9813 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9814 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
974f4146
RK
9815 return -1;
9816
fa852403
JJ
9817 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9818 instruction for pattern recognition. */
9819 dummy_insn = shallow_copy_rtx (insn);
9820 PATTERN (dummy_insn) = pat;
9821 REG_NOTES (dummy_insn) = 0;
c1194d74 9822
fa852403 9823 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
230d793d
RS
9824
9825 /* If it isn't, there is the possibility that we previously had an insn
9826 that clobbered some register as a side effect, but the combined
9827 insn doesn't need to do that. So try once more without the clobbers
9828 unless this represents an ASM insn. */
9829
9830 if (insn_code_number < 0 && ! check_asm_operands (pat)
9831 && GET_CODE (pat) == PARALLEL)
9832 {
9833 int pos;
9834
9835 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9836 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9837 {
9838 if (i != pos)
9839 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9840 pos++;
9841 }
9842
9843 SUBST_INT (XVECLEN (pat, 0), pos);
9844
9845 if (pos == 1)
9846 pat = XVECEXP (pat, 0, 0);
9847
fa852403
JJ
9848 PATTERN (dummy_insn) = pat;
9849 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
230d793d
RS
9850 }
9851
b5832b43
JH
9852 /* Recognize all noop sets, these will be killed by followup pass. */
9853 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9854 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9855
230d793d
RS
9856 /* If we had any clobbers to add, make a new pattern than contains
9857 them. Then check to make sure that all of them are dead. */
9858 if (num_clobbers_to_add)
9859 {
38a448ca 9860 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
bf103ec2
R
9861 rtvec_alloc (GET_CODE (pat) == PARALLEL
9862 ? (XVECLEN (pat, 0)
9863 + num_clobbers_to_add)
9864 : num_clobbers_to_add + 1));
230d793d
RS
9865
9866 if (GET_CODE (pat) == PARALLEL)
9867 for (i = 0; i < XVECLEN (pat, 0); i++)
9868 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9869 else
9870 XVECEXP (newpat, 0, 0) = pat;
9871
9872 add_clobbers (newpat, insn_code_number);
9873
9874 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9875 i < XVECLEN (newpat, 0); i++)
9876 {
9877 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9878 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9879 return -1;
38a448ca
RH
9880 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9881 XEXP (XVECEXP (newpat, 0, i), 0), notes);
230d793d
RS
9882 }
9883 pat = newpat;
9884 }
9885
9886 *pnewpat = pat;
9887 *pnotes = notes;
9888
9889 return insn_code_number;
9890}
9891\f
9892/* Like gen_lowpart but for use by combine. In combine it is not possible
9893 to create any new pseudoregs. However, it is safe to create
9894 invalid memory addresses, because combine will try to recognize
9895 them and all they will do is make the combine attempt fail.
9896
9897 If for some reason this cannot do its job, an rtx
9898 (clobber (const_int 0)) is returned.
9899 An insn containing that will not be recognized. */
9900
9901#undef gen_lowpart
9902
9903static rtx
9904gen_lowpart_for_combine (mode, x)
9905 enum machine_mode mode;
b3694847 9906 rtx x;
230d793d
RS
9907{
9908 rtx result;
9909
9910 if (GET_MODE (x) == mode)
9911 return x;
9912
eae957a8
RK
9913 /* We can only support MODE being wider than a word if X is a
9914 constant integer or has a mode the same size. */
9915
9916 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9917 && ! ((GET_MODE (x) == VOIDmode
9918 && (GET_CODE (x) == CONST_INT
9919 || GET_CODE (x) == CONST_DOUBLE))
9920 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
38a448ca 9921 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
230d793d
RS
9922
9923 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9924 won't know what to do. So we will strip off the SUBREG here and
9925 process normally. */
9926 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9927 {
9928 x = SUBREG_REG (x);
9929 if (GET_MODE (x) == mode)
9930 return x;
9931 }
9932
9933 result = gen_lowpart_common (mode, x);
02188693 9934#ifdef CLASS_CANNOT_CHANGE_MODE
64bf47a2
RK
9935 if (result != 0
9936 && GET_CODE (result) == SUBREG
9937 && GET_CODE (SUBREG_REG (result)) == REG
9938 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
02188693
RH
9939 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9940 GET_MODE (SUBREG_REG (result))))
9941 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9942#endif
64bf47a2 9943
230d793d
RS
9944 if (result)
9945 return result;
9946
9947 if (GET_CODE (x) == MEM)
9948 {
b3694847 9949 int offset = 0;
230d793d
RS
9950
9951 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9952 address. */
9953 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
38a448ca 9954 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
230d793d
RS
9955
9956 /* If we want to refer to something bigger than the original memref,
9957 generate a perverse subreg instead. That will force a reload
9958 of the original memref X. */
9959 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
38a448ca 9960 return gen_rtx_SUBREG (mode, x, 0);
230d793d 9961
f76b9db2
ILT
9962 if (WORDS_BIG_ENDIAN)
9963 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9964 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
c5c76735 9965
f76b9db2
ILT
9966 if (BYTES_BIG_ENDIAN)
9967 {
9968 /* Adjust the address so that the address-after-the-data is
9969 unchanged. */
9970 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9971 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9972 }
f1ec5147
RK
9973
9974 return adjust_address_nv (x, mode, offset);
230d793d
RS
9975 }
9976
9977 /* If X is a comparison operator, rewrite it in a new mode. This
9978 probably won't match, but may allow further simplifications. */
9979 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
f1c6ba8b 9980 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
230d793d
RS
9981
9982 /* If we couldn't simplify X any other way, just enclose it in a
9983 SUBREG. Normally, this SUBREG won't match, but some patterns may
a7c99304 9984 include an explicit SUBREG or we may simplify it further in combine. */
230d793d 9985 else
dfbe1b2f 9986 {
ddef6bc7 9987 int offset = 0;
e0e08ac2 9988 rtx res;
80ba02b1 9989 enum machine_mode sub_mode = GET_MODE (x);
dfbe1b2f 9990
80ba02b1
R
9991 offset = subreg_lowpart_offset (mode, sub_mode);
9992 if (sub_mode == VOIDmode)
9993 {
9994 sub_mode = int_mode_for_mode (mode);
9995 x = gen_lowpart_common (sub_mode, x);
9996 }
9997 res = simplify_gen_subreg (mode, x, sub_mode, offset);
e0e08ac2
JH
9998 if (res)
9999 return res;
10000 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
dfbe1b2f 10001 }
230d793d
RS
10002}
10003\f
230d793d
RS
10004/* These routines make binary and unary operations by first seeing if they
10005 fold; if not, a new expression is allocated. */
10006
10007static rtx
10008gen_binary (code, mode, op0, op1)
10009 enum rtx_code code;
10010 enum machine_mode mode;
10011 rtx op0, op1;
10012{
10013 rtx result;
1a26b032
RK
10014 rtx tem;
10015
10016 if (GET_RTX_CLASS (code) == 'c'
8c9864f3 10017 && swap_commutative_operands_p (op0, op1))
1a26b032 10018 tem = op0, op0 = op1, op1 = tem;
230d793d 10019
663522cb 10020 if (GET_RTX_CLASS (code) == '<')
230d793d
RS
10021 {
10022 enum machine_mode op_mode = GET_MODE (op0);
9210df58 10023
663522cb 10024 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
0f41302f 10025 just (REL_OP X Y). */
9210df58
RK
10026 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10027 {
10028 op1 = XEXP (op0, 1);
10029 op0 = XEXP (op0, 0);
10030 op_mode = GET_MODE (op0);
10031 }
10032
230d793d
RS
10033 if (op_mode == VOIDmode)
10034 op_mode = GET_MODE (op1);
10035 result = simplify_relational_operation (code, op_mode, op0, op1);
10036 }
10037 else
10038 result = simplify_binary_operation (code, mode, op0, op1);
10039
10040 if (result)
10041 return result;
10042
10043 /* Put complex operands first and constants second. */
10044 if (GET_RTX_CLASS (code) == 'c'
e5c56fd9 10045 && swap_commutative_operands_p (op0, op1))
f1c6ba8b 10046 return gen_rtx_fmt_ee (code, mode, op1, op0);
230d793d 10047
e5e809f4
JL
10048 /* If we are turning off bits already known off in OP0, we need not do
10049 an AND. */
10050 else if (code == AND && GET_CODE (op1) == CONST_INT
10051 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
663522cb 10052 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
e5e809f4
JL
10053 return op0;
10054
f1c6ba8b 10055 return gen_rtx_fmt_ee (code, mode, op0, op1);
230d793d
RS
10056}
10057\f
10058/* Simplify a comparison between *POP0 and *POP1 where CODE is the
10059 comparison code that will be tested.
10060
10061 The result is a possibly different comparison code to use. *POP0 and
10062 *POP1 may be updated.
10063
10064 It is possible that we might detect that a comparison is either always
10065 true or always false. However, we do not perform general constant
5089e22e 10066 folding in combine, so this knowledge isn't useful. Such tautologies
230d793d
RS
10067 should have been detected earlier. Hence we ignore all such cases. */
10068
10069static enum rtx_code
10070simplify_comparison (code, pop0, pop1)
10071 enum rtx_code code;
10072 rtx *pop0;
10073 rtx *pop1;
10074{
10075 rtx op0 = *pop0;
10076 rtx op1 = *pop1;
10077 rtx tem, tem1;
10078 int i;
10079 enum machine_mode mode, tmode;
10080
10081 /* Try a few ways of applying the same transformation to both operands. */
10082 while (1)
10083 {
3a19aabc
RK
10084#ifndef WORD_REGISTER_OPERATIONS
10085 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10086 so check specially. */
10087 if (code != GTU && code != GEU && code != LTU && code != LEU
10088 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10089 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10090 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10091 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10092 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10093 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
ad25ba17 10094 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
3a19aabc
RK
10095 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10096 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10097 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10098 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10099 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10100 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10101 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10102 && (INTVAL (XEXP (op0, 1))
10103 == (GET_MODE_BITSIZE (GET_MODE (op0))
10104 - (GET_MODE_BITSIZE
10105 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10106 {
10107 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10108 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10109 }
10110#endif
10111
230d793d
RS
10112 /* If both operands are the same constant shift, see if we can ignore the
10113 shift. We can if the shift is a rotate or if the bits shifted out of
951553af 10114 this shift are known to be zero for both inputs and if the type of
230d793d 10115 comparison is compatible with the shift. */
67232b23
RK
10116 if (GET_CODE (op0) == GET_CODE (op1)
10117 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10118 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
45620ed4 10119 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
67232b23
RK
10120 && (code != GT && code != LT && code != GE && code != LE))
10121 || (GET_CODE (op0) == ASHIFTRT
10122 && (code != GTU && code != LTU
99dc5306 10123 && code != GEU && code != LEU)))
67232b23
RK
10124 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10125 && INTVAL (XEXP (op0, 1)) >= 0
10126 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10127 && XEXP (op0, 1) == XEXP (op1, 1))
230d793d
RS
10128 {
10129 enum machine_mode mode = GET_MODE (op0);
5f4f0e22 10130 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
230d793d
RS
10131 int shift_count = INTVAL (XEXP (op0, 1));
10132
10133 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10134 mask &= (mask >> shift_count) << shift_count;
45620ed4 10135 else if (GET_CODE (op0) == ASHIFT)
230d793d
RS
10136 mask = (mask & (mask << shift_count)) >> shift_count;
10137
663522cb
KH
10138 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10139 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
230d793d
RS
10140 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10141 else
10142 break;
10143 }
10144
10145 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10146 SUBREGs are of the same mode, and, in both cases, the AND would
10147 be redundant if the comparison was done in the narrower mode,
10148 do the comparison in the narrower mode (e.g., we are AND'ing with 1
951553af
RK
10149 and the operand's possibly nonzero bits are 0xffffff01; in that case
10150 if we only care about QImode, we don't need the AND). This case
10151 occurs if the output mode of an scc insn is not SImode and
7e4dc511
RK
10152 STORE_FLAG_VALUE == 1 (e.g., the 386).
10153
10154 Similarly, check for a case where the AND's are ZERO_EXTEND
10155 operations from some narrower mode even though a SUBREG is not
10156 present. */
230d793d 10157
663522cb
KH
10158 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10159 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10160 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
230d793d 10161 {
7e4dc511
RK
10162 rtx inner_op0 = XEXP (op0, 0);
10163 rtx inner_op1 = XEXP (op1, 0);
10164 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10165 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10166 int changed = 0;
663522cb 10167
7e4dc511
RK
10168 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10169 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10170 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10171 && (GET_MODE (SUBREG_REG (inner_op0))
10172 == GET_MODE (SUBREG_REG (inner_op1)))
729a2bc6 10173 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
7e4dc511 10174 <= HOST_BITS_PER_WIDE_INT)
01c82bbb 10175 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
729a2bc6 10176 GET_MODE (SUBREG_REG (inner_op0)))))
01c82bbb
RK
10177 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10178 GET_MODE (SUBREG_REG (inner_op1))))))
7e4dc511
RK
10179 {
10180 op0 = SUBREG_REG (inner_op0);
10181 op1 = SUBREG_REG (inner_op1);
10182
10183 /* The resulting comparison is always unsigned since we masked
0f41302f 10184 off the original sign bit. */
7e4dc511
RK
10185 code = unsigned_condition (code);
10186
10187 changed = 1;
10188 }
230d793d 10189
7e4dc511
RK
10190 else if (c0 == c1)
10191 for (tmode = GET_CLASS_NARROWEST_MODE
10192 (GET_MODE_CLASS (GET_MODE (op0)));
10193 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
e51712db 10194 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
7e4dc511
RK
10195 {
10196 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10197 op1 = gen_lowpart_for_combine (tmode, inner_op1);
66415c8b 10198 code = unsigned_condition (code);
7e4dc511
RK
10199 changed = 1;
10200 break;
10201 }
10202
10203 if (! changed)
10204 break;
230d793d 10205 }
3a19aabc 10206
ad25ba17
RK
10207 /* If both operands are NOT, we can strip off the outer operation
10208 and adjust the comparison code for swapped operands; similarly for
10209 NEG, except that this must be an equality comparison. */
10210 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10211 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10212 && (code == EQ || code == NE)))
10213 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
3a19aabc 10214
230d793d
RS
10215 else
10216 break;
10217 }
663522cb 10218
230d793d 10219 /* If the first operand is a constant, swap the operands and adjust the
3aceff0d
RK
10220 comparison code appropriately, but don't do this if the second operand
10221 is already a constant integer. */
8c9864f3 10222 if (swap_commutative_operands_p (op0, op1))
230d793d
RS
10223 {
10224 tem = op0, op0 = op1, op1 = tem;
10225 code = swap_condition (code);
10226 }
10227
10228 /* We now enter a loop during which we will try to simplify the comparison.
10229 For the most part, we only are concerned with comparisons with zero,
10230 but some things may really be comparisons with zero but not start
10231 out looking that way. */
10232
10233 while (GET_CODE (op1) == CONST_INT)
10234 {
10235 enum machine_mode mode = GET_MODE (op0);
770ae6cc 10236 unsigned int mode_width = GET_MODE_BITSIZE (mode);
5f4f0e22 10237 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
230d793d
RS
10238 int equality_comparison_p;
10239 int sign_bit_comparison_p;
10240 int unsigned_comparison_p;
5f4f0e22 10241 HOST_WIDE_INT const_op;
230d793d
RS
10242
10243 /* We only want to handle integral modes. This catches VOIDmode,
10244 CCmode, and the floating-point modes. An exception is that we
10245 can handle VOIDmode if OP0 is a COMPARE or a comparison
10246 operation. */
10247
10248 if (GET_MODE_CLASS (mode) != MODE_INT
10249 && ! (mode == VOIDmode
10250 && (GET_CODE (op0) == COMPARE
10251 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10252 break;
10253
10254 /* Get the constant we are comparing against and turn off all bits
10255 not on in our mode. */
71012d97
GK
10256 const_op = INTVAL (op1);
10257 if (mode != VOIDmode)
10258 const_op = trunc_int_for_mode (const_op, mode);
b4fbaca7 10259 op1 = GEN_INT (const_op);
230d793d
RS
10260
10261 /* If we are comparing against a constant power of two and the value
951553af 10262 being compared can only have that single bit nonzero (e.g., it was
230d793d
RS
10263 `and'ed with that bit), we can replace this with a comparison
10264 with zero. */
10265 if (const_op
10266 && (code == EQ || code == NE || code == GE || code == GEU
10267 || code == LT || code == LTU)
5f4f0e22 10268 && mode_width <= HOST_BITS_PER_WIDE_INT
230d793d 10269 && exact_log2 (const_op) >= 0
e51712db 10270 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
230d793d
RS
10271 {
10272 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10273 op1 = const0_rtx, const_op = 0;
10274 }
10275
d0ab8cd3
RK
10276 /* Similarly, if we are comparing a value known to be either -1 or
10277 0 with -1, change it to the opposite comparison against zero. */
10278
10279 if (const_op == -1
10280 && (code == EQ || code == NE || code == GT || code == LE
10281 || code == GEU || code == LTU)
10282 && num_sign_bit_copies (op0, mode) == mode_width)
10283 {
10284 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10285 op1 = const0_rtx, const_op = 0;
10286 }
10287
230d793d 10288 /* Do some canonicalizations based on the comparison code. We prefer
663522cb 10289 comparisons against zero and then prefer equality comparisons.
4803a34a 10290 If we can reduce the size of a constant, we will do that too. */
230d793d
RS
10291
10292 switch (code)
10293 {
10294 case LT:
4803a34a
RK
10295 /* < C is equivalent to <= (C - 1) */
10296 if (const_op > 0)
230d793d 10297 {
4803a34a 10298 const_op -= 1;
5f4f0e22 10299 op1 = GEN_INT (const_op);
230d793d
RS
10300 code = LE;
10301 /* ... fall through to LE case below. */
10302 }
10303 else
10304 break;
10305
10306 case LE:
4803a34a
RK
10307 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10308 if (const_op < 0)
10309 {
10310 const_op += 1;
5f4f0e22 10311 op1 = GEN_INT (const_op);
4803a34a
RK
10312 code = LT;
10313 }
230d793d
RS
10314
10315 /* If we are doing a <= 0 comparison on a value known to have
10316 a zero sign bit, we can replace this with == 0. */
10317 else if (const_op == 0
5f4f0e22 10318 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 10319 && (nonzero_bits (op0, mode)
5f4f0e22 10320 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
230d793d
RS
10321 code = EQ;
10322 break;
10323
10324 case GE:
0f41302f 10325 /* >= C is equivalent to > (C - 1). */
4803a34a 10326 if (const_op > 0)
230d793d 10327 {
4803a34a 10328 const_op -= 1;
5f4f0e22 10329 op1 = GEN_INT (const_op);
230d793d
RS
10330 code = GT;
10331 /* ... fall through to GT below. */
10332 }
10333 else
10334 break;
10335
10336 case GT:
663522cb 10337 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
4803a34a
RK
10338 if (const_op < 0)
10339 {
10340 const_op += 1;
5f4f0e22 10341 op1 = GEN_INT (const_op);
4803a34a
RK
10342 code = GE;
10343 }
230d793d
RS
10344
10345 /* If we are doing a > 0 comparison on a value known to have
10346 a zero sign bit, we can replace this with != 0. */
10347 else if (const_op == 0
5f4f0e22 10348 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 10349 && (nonzero_bits (op0, mode)
5f4f0e22 10350 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
230d793d
RS
10351 code = NE;
10352 break;
10353
230d793d 10354 case LTU:
4803a34a
RK
10355 /* < C is equivalent to <= (C - 1). */
10356 if (const_op > 0)
10357 {
10358 const_op -= 1;
5f4f0e22 10359 op1 = GEN_INT (const_op);
4803a34a 10360 code = LEU;
0f41302f 10361 /* ... fall through ... */
4803a34a 10362 }
d0ab8cd3
RK
10363
10364 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
f77aada2
JW
10365 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10366 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
d0ab8cd3
RK
10367 {
10368 const_op = 0, op1 = const0_rtx;
10369 code = GE;
10370 break;
10371 }
4803a34a
RK
10372 else
10373 break;
230d793d
RS
10374
10375 case LEU:
10376 /* unsigned <= 0 is equivalent to == 0 */
10377 if (const_op == 0)
10378 code = EQ;
d0ab8cd3 10379
0f41302f 10380 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
f77aada2
JW
10381 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10382 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
d0ab8cd3
RK
10383 {
10384 const_op = 0, op1 = const0_rtx;
10385 code = GE;
10386 }
230d793d
RS
10387 break;
10388
4803a34a
RK
10389 case GEU:
10390 /* >= C is equivalent to < (C - 1). */
10391 if (const_op > 1)
10392 {
10393 const_op -= 1;
5f4f0e22 10394 op1 = GEN_INT (const_op);
4803a34a 10395 code = GTU;
0f41302f 10396 /* ... fall through ... */
4803a34a 10397 }
d0ab8cd3
RK
10398
10399 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
f77aada2
JW
10400 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10401 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
d0ab8cd3
RK
10402 {
10403 const_op = 0, op1 = const0_rtx;
10404 code = LT;
8b2e69e1 10405 break;
d0ab8cd3 10406 }
4803a34a
RK
10407 else
10408 break;
10409
230d793d
RS
10410 case GTU:
10411 /* unsigned > 0 is equivalent to != 0 */
10412 if (const_op == 0)
10413 code = NE;
d0ab8cd3
RK
10414
10415 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
f77aada2
JW
10416 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10417 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
d0ab8cd3
RK
10418 {
10419 const_op = 0, op1 = const0_rtx;
10420 code = LT;
10421 }
230d793d 10422 break;
e9a25f70
JL
10423
10424 default:
10425 break;
230d793d
RS
10426 }
10427
10428 /* Compute some predicates to simplify code below. */
10429
10430 equality_comparison_p = (code == EQ || code == NE);
10431 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10432 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
d5010e66 10433 || code == GEU);
230d793d 10434
6139ff20
RK
10435 /* If this is a sign bit comparison and we can do arithmetic in
10436 MODE, say that we will only be needing the sign bit of OP0. */
10437 if (sign_bit_comparison_p
10438 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10439 op0 = force_to_mode (op0, mode,
10440 ((HOST_WIDE_INT) 1
10441 << (GET_MODE_BITSIZE (mode) - 1)),
e3d616e3 10442 NULL_RTX, 0);
6139ff20 10443
230d793d
RS
10444 /* Now try cases based on the opcode of OP0. If none of the cases
10445 does a "continue", we exit this loop immediately after the
10446 switch. */
10447
10448 switch (GET_CODE (op0))
10449 {
10450 case ZERO_EXTRACT:
10451 /* If we are extracting a single bit from a variable position in
10452 a constant that has only a single bit set and are comparing it
663522cb 10453 with zero, we can convert this into an equality comparison
d7cd794f 10454 between the position and the location of the single bit. */
230d793d 10455
230d793d
RS
10456 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10457 && XEXP (op0, 1) == const1_rtx
10458 && equality_comparison_p && const_op == 0
d7cd794f 10459 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
230d793d 10460 {
f76b9db2 10461 if (BITS_BIG_ENDIAN)
0d8e55d8 10462 {
da920570
ZW
10463 enum machine_mode new_mode
10464 = mode_for_extraction (EP_extzv, 1);
10465 if (new_mode == MAX_MACHINE_MODE)
10466 i = BITS_PER_WORD - 1 - i;
10467 else
10468 {
10469 mode = new_mode;
10470 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10471 }
0d8e55d8 10472 }
230d793d
RS
10473
10474 op0 = XEXP (op0, 2);
5f4f0e22 10475 op1 = GEN_INT (i);
230d793d
RS
10476 const_op = i;
10477
10478 /* Result is nonzero iff shift count is equal to I. */
10479 code = reverse_condition (code);
10480 continue;
10481 }
230d793d 10482
0f41302f 10483 /* ... fall through ... */
230d793d
RS
10484
10485 case SIGN_EXTRACT:
10486 tem = expand_compound_operation (op0);
10487 if (tem != op0)
10488 {
10489 op0 = tem;
10490 continue;
10491 }
10492 break;
10493
10494 case NOT:
10495 /* If testing for equality, we can take the NOT of the constant. */
10496 if (equality_comparison_p
10497 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10498 {
10499 op0 = XEXP (op0, 0);
10500 op1 = tem;
10501 continue;
10502 }
10503
10504 /* If just looking at the sign bit, reverse the sense of the
10505 comparison. */
10506 if (sign_bit_comparison_p)
10507 {
10508 op0 = XEXP (op0, 0);
10509 code = (code == GE ? LT : GE);
10510 continue;
10511 }
10512 break;
10513
10514 case NEG:
10515 /* If testing for equality, we can take the NEG of the constant. */
10516 if (equality_comparison_p
10517 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10518 {
10519 op0 = XEXP (op0, 0);
10520 op1 = tem;
10521 continue;
10522 }
10523
10524 /* The remaining cases only apply to comparisons with zero. */
10525 if (const_op != 0)
10526 break;
10527
10528 /* When X is ABS or is known positive,
10529 (neg X) is < 0 if and only if X != 0. */
10530
10531 if (sign_bit_comparison_p
10532 && (GET_CODE (XEXP (op0, 0)) == ABS
5f4f0e22 10533 || (mode_width <= HOST_BITS_PER_WIDE_INT
951553af 10534 && (nonzero_bits (XEXP (op0, 0), mode)
5f4f0e22 10535 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
230d793d
RS
10536 {
10537 op0 = XEXP (op0, 0);
10538 code = (code == LT ? NE : EQ);
10539 continue;
10540 }
10541
3bed8141 10542 /* If we have NEG of something whose two high-order bits are the
0f41302f 10543 same, we know that "(-a) < 0" is equivalent to "a > 0". */
3bed8141 10544 if (num_sign_bit_copies (op0, mode) >= 2)
230d793d
RS
10545 {
10546 op0 = XEXP (op0, 0);
10547 code = swap_condition (code);
10548 continue;
10549 }
10550 break;
10551
10552 case ROTATE:
10553 /* If we are testing equality and our count is a constant, we
10554 can perform the inverse operation on our RHS. */
10555 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10556 && (tem = simplify_binary_operation (ROTATERT, mode,
10557 op1, XEXP (op0, 1))) != 0)
10558 {
10559 op0 = XEXP (op0, 0);
10560 op1 = tem;
10561 continue;
10562 }
10563
10564 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10565 a particular bit. Convert it to an AND of a constant of that
10566 bit. This will be converted into a ZERO_EXTRACT. */
10567 if (const_op == 0 && sign_bit_comparison_p
10568 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5f4f0e22 10569 && mode_width <= HOST_BITS_PER_WIDE_INT)
230d793d 10570 {
5f4f0e22
CH
10571 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10572 ((HOST_WIDE_INT) 1
10573 << (mode_width - 1
10574 - INTVAL (XEXP (op0, 1)))));
230d793d
RS
10575 code = (code == LT ? NE : EQ);
10576 continue;
10577 }
10578
663522cb 10579 /* Fall through. */
230d793d
RS
10580
10581 case ABS:
10582 /* ABS is ignorable inside an equality comparison with zero. */
10583 if (const_op == 0 && equality_comparison_p)
10584 {
10585 op0 = XEXP (op0, 0);
10586 continue;
10587 }
10588 break;
230d793d
RS
10589
10590 case SIGN_EXTEND:
10591 /* Can simplify (compare (zero/sign_extend FOO) CONST)
663522cb 10592 to (compare FOO CONST) if CONST fits in FOO's mode and we
230d793d
RS
10593 are either testing inequality or have an unsigned comparison
10594 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10595 if (! unsigned_comparison_p
10596 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
5f4f0e22
CH
10597 <= HOST_BITS_PER_WIDE_INT)
10598 && ((unsigned HOST_WIDE_INT) const_op
e51712db 10599 < (((unsigned HOST_WIDE_INT) 1
5f4f0e22 10600 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
230d793d
RS
10601 {
10602 op0 = XEXP (op0, 0);
10603 continue;
10604 }
10605 break;
10606
10607 case SUBREG:
a687e897 10608 /* Check for the case where we are comparing A - C1 with C2,
abc95ed3 10609 both constants are smaller than 1/2 the maximum positive
a687e897
RK
10610 value in MODE, and the comparison is equality or unsigned.
10611 In that case, if A is either zero-extended to MODE or has
10612 sufficient sign bits so that the high-order bit in MODE
10613 is a copy of the sign in the inner mode, we can prove that it is
10614 safe to do the operation in the wider mode. This simplifies
10615 many range checks. */
10616
10617 if (mode_width <= HOST_BITS_PER_WIDE_INT
10618 && subreg_lowpart_p (op0)
10619 && GET_CODE (SUBREG_REG (op0)) == PLUS
10620 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10621 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
663522cb
KH
10622 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10623 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
adb7a1cb 10624 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
951553af
RK
10625 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10626 GET_MODE (SUBREG_REG (op0)))
663522cb 10627 & ~GET_MODE_MASK (mode))
a687e897
RK
10628 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10629 GET_MODE (SUBREG_REG (op0)))
26c34780
RS
10630 > (unsigned int)
10631 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
a687e897
RK
10632 - GET_MODE_BITSIZE (mode)))))
10633 {
10634 op0 = SUBREG_REG (op0);
10635 continue;
10636 }
10637
fe0cf571
RK
10638 /* If the inner mode is narrower and we are extracting the low part,
10639 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10640 if (subreg_lowpart_p (op0)
89f1c7f2
RS
10641 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10642 /* Fall through */ ;
10643 else
230d793d
RS
10644 break;
10645
0f41302f 10646 /* ... fall through ... */
230d793d
RS
10647
10648 case ZERO_EXTEND:
10649 if ((unsigned_comparison_p || equality_comparison_p)
10650 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
5f4f0e22
CH
10651 <= HOST_BITS_PER_WIDE_INT)
10652 && ((unsigned HOST_WIDE_INT) const_op
230d793d
RS
10653 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10654 {
10655 op0 = XEXP (op0, 0);
10656 continue;
10657 }
10658 break;
10659
10660 case PLUS:
20fdd649 10661 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
5089e22e 10662 this for equality comparisons due to pathological cases involving
230d793d 10663 overflows. */
20fdd649
RK
10664 if (equality_comparison_p
10665 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10666 op1, XEXP (op0, 1))))
230d793d
RS
10667 {
10668 op0 = XEXP (op0, 0);
10669 op1 = tem;
10670 continue;
10671 }
10672
10673 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10674 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10675 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10676 {
10677 op0 = XEXP (XEXP (op0, 0), 0);
10678 code = (code == LT ? EQ : NE);
10679 continue;
10680 }
10681 break;
10682
10683 case MINUS:
65945ec1
HPN
10684 /* We used to optimize signed comparisons against zero, but that
10685 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10686 arrive here as equality comparisons, or (GEU, LTU) are
10687 optimized away. No need to special-case them. */
0bd4b461 10688
20fdd649
RK
10689 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10690 (eq B (minus A C)), whichever simplifies. We can only do
10691 this for equality comparisons due to pathological cases involving
10692 overflows. */
10693 if (equality_comparison_p
10694 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10695 XEXP (op0, 1), op1)))
10696 {
10697 op0 = XEXP (op0, 0);
10698 op1 = tem;
10699 continue;
10700 }
10701
10702 if (equality_comparison_p
10703 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10704 XEXP (op0, 0), op1)))
10705 {
10706 op0 = XEXP (op0, 1);
10707 op1 = tem;
10708 continue;
10709 }
10710
230d793d
RS
10711 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10712 of bits in X minus 1, is one iff X > 0. */
10713 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10714 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
26c34780
RS
10715 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10716 == mode_width - 1
230d793d
RS
10717 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10718 {
10719 op0 = XEXP (op0, 1);
10720 code = (code == GE ? LE : GT);
10721 continue;
10722 }
10723 break;
10724
10725 case XOR:
10726 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10727 if C is zero or B is a constant. */
10728 if (equality_comparison_p
10729 && 0 != (tem = simplify_binary_operation (XOR, mode,
10730 XEXP (op0, 1), op1)))
10731 {
10732 op0 = XEXP (op0, 0);
10733 op1 = tem;
10734 continue;
10735 }
10736 break;
10737
10738 case EQ: case NE:
69bc0a1f
JH
10739 case UNEQ: case LTGT:
10740 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10741 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10742 case UNORDERED: case ORDERED:
230d793d
RS
10743 /* We can't do anything if OP0 is a condition code value, rather
10744 than an actual data value. */
10745 if (const_op != 0
10746#ifdef HAVE_cc0
10747 || XEXP (op0, 0) == cc0_rtx
10748#endif
10749 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10750 break;
10751
10752 /* Get the two operands being compared. */
10753 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10754 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10755 else
10756 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10757
10758 /* Check for the cases where we simply want the result of the
10759 earlier test or the opposite of that result. */
9a915772 10760 if (code == NE || code == EQ
5f4f0e22 10761 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
3f508eca 10762 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
230d793d 10763 && (STORE_FLAG_VALUE
5f4f0e22
CH
10764 & (((HOST_WIDE_INT) 1
10765 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
aa6683f7 10766 && (code == LT || code == GE)))
230d793d 10767 {
aa6683f7
GK
10768 enum rtx_code new_code;
10769 if (code == LT || code == NE)
10770 new_code = GET_CODE (op0);
10771 else
10772 new_code = combine_reversed_comparison_code (op0);
23190837 10773
aa6683f7 10774 if (new_code != UNKNOWN)
9a915772 10775 {
aa6683f7
GK
10776 code = new_code;
10777 op0 = tem;
10778 op1 = tem1;
9a915772
JH
10779 continue;
10780 }
230d793d
RS
10781 }
10782 break;
10783
10784 case IOR:
da7d8304 10785 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
230d793d
RS
10786 iff X <= 0. */
10787 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10788 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10789 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10790 {
10791 op0 = XEXP (op0, 1);
10792 code = (code == GE ? GT : LE);
10793 continue;
10794 }
10795 break;
10796
10797 case AND:
10798 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10799 will be converted to a ZERO_EXTRACT later. */
10800 if (const_op == 0 && equality_comparison_p
45620ed4 10801 && GET_CODE (XEXP (op0, 0)) == ASHIFT
230d793d
RS
10802 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10803 {
10804 op0 = simplify_and_const_int
f1c6ba8b
RK
10805 (op0, mode, gen_rtx_LSHIFTRT (mode,
10806 XEXP (op0, 1),
10807 XEXP (XEXP (op0, 0), 1)),
5f4f0e22 10808 (HOST_WIDE_INT) 1);
230d793d
RS
10809 continue;
10810 }
10811
10812 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10813 zero and X is a comparison and C1 and C2 describe only bits set
10814 in STORE_FLAG_VALUE, we can compare with X. */
10815 if (const_op == 0 && equality_comparison_p
5f4f0e22 10816 && mode_width <= HOST_BITS_PER_WIDE_INT
230d793d
RS
10817 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10818 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10819 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10820 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
5f4f0e22 10821 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
230d793d
RS
10822 {
10823 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10824 << INTVAL (XEXP (XEXP (op0, 0), 1)));
663522cb 10825 if ((~STORE_FLAG_VALUE & mask) == 0
230d793d
RS
10826 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10827 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10828 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10829 {
10830 op0 = XEXP (XEXP (op0, 0), 0);
10831 continue;
10832 }
10833 }
10834
10835 /* If we are doing an equality comparison of an AND of a bit equal
10836 to the sign bit, replace this with a LT or GE comparison of
10837 the underlying value. */
10838 if (equality_comparison_p
10839 && const_op == 0
10840 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5f4f0e22 10841 && mode_width <= HOST_BITS_PER_WIDE_INT
230d793d 10842 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
e51712db 10843 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
230d793d
RS
10844 {
10845 op0 = XEXP (op0, 0);
10846 code = (code == EQ ? GE : LT);
10847 continue;
10848 }
10849
10850 /* If this AND operation is really a ZERO_EXTEND from a narrower
10851 mode, the constant fits within that mode, and this is either an
10852 equality or unsigned comparison, try to do this comparison in
10853 the narrower mode. */
10854 if ((equality_comparison_p || unsigned_comparison_p)
10855 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10856 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10857 & GET_MODE_MASK (mode))
10858 + 1)) >= 0
10859 && const_op >> i == 0
10860 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10861 {
10862 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10863 continue;
10864 }
e5e809f4
JL
10865
10866 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10867 in both M1 and M2 and the SUBREG is either paradoxical or
10868 represents the low part, permute the SUBREG and the AND and
10869 try again. */
10870 if (GET_CODE (XEXP (op0, 0)) == SUBREG
c5c76735 10871 && (0
9ec36da5 10872#ifdef WORD_REGISTER_OPERATIONS
c5c76735
JL
10873 || ((mode_width
10874 > (GET_MODE_BITSIZE
10875 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10876 && mode_width <= BITS_PER_WORD)
9ec36da5 10877#endif
c5c76735
JL
10878 || ((mode_width
10879 <= (GET_MODE_BITSIZE
10880 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10881 && subreg_lowpart_p (XEXP (op0, 0))))
adc05e6c
JL
10882#ifndef WORD_REGISTER_OPERATIONS
10883 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10884 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10885 As originally written the upper bits have a defined value
10886 due to the AND operation. However, if we commute the AND
10887 inside the SUBREG then they no longer have defined values
10888 and the meaning of the code has been changed. */
10889 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10890 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10891#endif
e5e809f4
JL
10892 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10893 && mode_width <= HOST_BITS_PER_WIDE_INT
10894 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10895 <= HOST_BITS_PER_WIDE_INT)
663522cb
KH
10896 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10897 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
9ec36da5 10898 & INTVAL (XEXP (op0, 1)))
e51712db
KG
10899 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10900 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
9ec36da5 10901 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
663522cb 10902
e5e809f4
JL
10903 {
10904 op0
10905 = gen_lowpart_for_combine
10906 (mode,
10907 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10908 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10909 continue;
10910 }
10911
9f8e169e
RH
10912 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10913 (eq (and (lshiftrt X) 1) 0). */
10914 if (const_op == 0 && equality_comparison_p
10915 && XEXP (op0, 1) == const1_rtx
10916 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10917 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10918 {
10919 op0 = simplify_and_const_int
f1c6ba8b
RK
10920 (op0, mode,
10921 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10922 XEXP (XEXP (op0, 0), 1)),
9f8e169e
RH
10923 (HOST_WIDE_INT) 1);
10924 code = (code == NE ? EQ : NE);
10925 continue;
10926 }
230d793d
RS
10927 break;
10928
10929 case ASHIFT:
45620ed4 10930 /* If we have (compare (ashift FOO N) (const_int C)) and
230d793d 10931 the high order N bits of FOO (N+1 if an inequality comparison)
951553af 10932 are known to be zero, we can do this by comparing FOO with C
230d793d
RS
10933 shifted right N bits so long as the low-order N bits of C are
10934 zero. */
10935 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10936 && INTVAL (XEXP (op0, 1)) >= 0
10937 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
5f4f0e22
CH
10938 < HOST_BITS_PER_WIDE_INT)
10939 && ((const_op
34785d05 10940 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
5f4f0e22 10941 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 10942 && (nonzero_bits (XEXP (op0, 0), mode)
663522cb
KH
10943 & ~(mask >> (INTVAL (XEXP (op0, 1))
10944 + ! equality_comparison_p))) == 0)
230d793d 10945 {
7ce787fe
NC
10946 /* We must perform a logical shift, not an arithmetic one,
10947 as we want the top N bits of C to be zero. */
aaaec114 10948 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
663522cb 10949
7ce787fe 10950 temp >>= INTVAL (XEXP (op0, 1));
2496c7bd 10951 op1 = gen_int_mode (temp, mode);
230d793d
RS
10952 op0 = XEXP (op0, 0);
10953 continue;
10954 }
10955
dfbe1b2f 10956 /* If we are doing a sign bit comparison, it means we are testing
230d793d 10957 a particular bit. Convert it to the appropriate AND. */
dfbe1b2f 10958 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
5f4f0e22 10959 && mode_width <= HOST_BITS_PER_WIDE_INT)
230d793d 10960 {
5f4f0e22
CH
10961 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10962 ((HOST_WIDE_INT) 1
10963 << (mode_width - 1
10964 - INTVAL (XEXP (op0, 1)))));
230d793d
RS
10965 code = (code == LT ? NE : EQ);
10966 continue;
10967 }
dfbe1b2f
RK
10968
10969 /* If this an equality comparison with zero and we are shifting
10970 the low bit to the sign bit, we can convert this to an AND of the
10971 low-order bit. */
10972 if (const_op == 0 && equality_comparison_p
10973 && GET_CODE (XEXP (op0, 1)) == CONST_INT
26c34780
RS
10974 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10975 == mode_width - 1)
dfbe1b2f 10976 {
5f4f0e22
CH
10977 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10978 (HOST_WIDE_INT) 1);
dfbe1b2f
RK
10979 continue;
10980 }
230d793d
RS
10981 break;
10982
10983 case ASHIFTRT:
d0ab8cd3
RK
10984 /* If this is an equality comparison with zero, we can do this
10985 as a logical shift, which might be much simpler. */
10986 if (equality_comparison_p && const_op == 0
10987 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10988 {
10989 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10990 XEXP (op0, 0),
10991 INTVAL (XEXP (op0, 1)));
10992 continue;
10993 }
10994
230d793d
RS
10995 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10996 do the comparison in a narrower mode. */
10997 if (! unsigned_comparison_p
10998 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10999 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11000 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11001 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
22331794 11002 MODE_INT, 1)) != BLKmode
67e469d7
AM
11003 && (((unsigned HOST_WIDE_INT) const_op
11004 + (GET_MODE_MASK (tmode) >> 1) + 1)
11005 <= GET_MODE_MASK (tmode)))
230d793d
RS
11006 {
11007 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11008 continue;
11009 }
11010
14a774a9
RK
11011 /* Likewise if OP0 is a PLUS of a sign extension with a
11012 constant, which is usually represented with the PLUS
11013 between the shifts. */
11014 if (! unsigned_comparison_p
11015 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11016 && GET_CODE (XEXP (op0, 0)) == PLUS
11017 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11018 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11019 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11020 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11021 MODE_INT, 1)) != BLKmode
67e469d7
AM
11022 && (((unsigned HOST_WIDE_INT) const_op
11023 + (GET_MODE_MASK (tmode) >> 1) + 1)
11024 <= GET_MODE_MASK (tmode)))
14a774a9
RK
11025 {
11026 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11027 rtx add_const = XEXP (XEXP (op0, 0), 1);
11028 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11029 XEXP (op0, 1));
11030
11031 op0 = gen_binary (PLUS, tmode,
11032 gen_lowpart_for_combine (tmode, inner),
11033 new_const);
11034 continue;
11035 }
11036
0f41302f 11037 /* ... fall through ... */
230d793d
RS
11038 case LSHIFTRT:
11039 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
951553af 11040 the low order N bits of FOO are known to be zero, we can do this
230d793d
RS
11041 by comparing FOO with C shifted left N bits so long as no
11042 overflow occurs. */
11043 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11044 && INTVAL (XEXP (op0, 1)) >= 0
5f4f0e22
CH
11045 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11046 && mode_width <= HOST_BITS_PER_WIDE_INT
951553af 11047 && (nonzero_bits (XEXP (op0, 0), mode)
5f4f0e22 11048 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
67e469d7
AM
11049 && (((unsigned HOST_WIDE_INT) const_op
11050 + (GET_CODE (op0) != LSHIFTRT
11051 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11052 + 1)
11053 : 0))
11054 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
230d793d 11055 {
145d3bf2
RE
11056 /* If the shift was logical, then we must make the condition
11057 unsigned. */
11058 if (GET_CODE (op0) == LSHIFTRT)
11059 code = unsigned_condition (code);
11060
230d793d 11061 const_op <<= INTVAL (XEXP (op0, 1));
5f4f0e22 11062 op1 = GEN_INT (const_op);
230d793d
RS
11063 op0 = XEXP (op0, 0);
11064 continue;
11065 }
11066
11067 /* If we are using this shift to extract just the sign bit, we
11068 can replace this with an LT or GE comparison. */
11069 if (const_op == 0
11070 && (equality_comparison_p || sign_bit_comparison_p)
11071 && GET_CODE (XEXP (op0, 1)) == CONST_INT
26c34780
RS
11072 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11073 == mode_width - 1)
230d793d
RS
11074 {
11075 op0 = XEXP (op0, 0);
11076 code = (code == NE || code == GT ? LT : GE);
11077 continue;
11078 }
11079 break;
663522cb 11080
e9a25f70
JL
11081 default:
11082 break;
230d793d
RS
11083 }
11084
11085 break;
11086 }
11087
11088 /* Now make any compound operations involved in this comparison. Then,
76d31c63 11089 check for an outmost SUBREG on OP0 that is not doing anything or is
5add6d1a
JL
11090 paradoxical. The latter transformation must only be performed when
11091 it is known that the "extra" bits will be the same in op0 and op1 or
11092 that they don't matter. There are three cases to consider:
11093
11094 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11095 care bits and we can assume they have any convenient value. So
11096 making the transformation is safe.
11097
11098 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11099 In this case the upper bits of op0 are undefined. We should not make
11100 the simplification in that case as we do not know the contents of
11101 those bits.
11102
11103 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11104 NIL. In that case we know those bits are zeros or ones. We must
11105 also be sure that they are the same as the upper bits of op1.
11106
11107 We can never remove a SUBREG for a non-equality comparison because
11108 the sign bit is in a different place in the underlying object. */
230d793d
RS
11109
11110 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11111 op1 = make_compound_operation (op1, SET);
11112
11113 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
5add6d1a
JL
11114 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11115 implemented. */
11116 && GET_CODE (SUBREG_REG (op0)) == REG
230d793d 11117 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
fa4e13e0 11118 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
5add6d1a 11119 && (code == NE || code == EQ))
230d793d 11120 {
5add6d1a
JL
11121 if (GET_MODE_SIZE (GET_MODE (op0))
11122 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11123 {
11124 op0 = SUBREG_REG (op0);
11125 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11126 }
11127 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11128 <= HOST_BITS_PER_WIDE_INT)
11129 && (nonzero_bits (SUBREG_REG (op0),
11130 GET_MODE (SUBREG_REG (op0)))
11131 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11132 {
11133 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
230d793d 11134
5add6d1a
JL
11135 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11136 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11137 op0 = SUBREG_REG (op0), op1 = tem;
11138 }
11139 }
230d793d
RS
11140
11141 /* We now do the opposite procedure: Some machines don't have compare
11142 insns in all modes. If OP0's mode is an integer mode smaller than a
11143 word and we can't do a compare in that mode, see if there is a larger
a687e897
RK
11144 mode for which we can do the compare. There are a number of cases in
11145 which we can use the wider mode. */
230d793d
RS
11146
11147 mode = GET_MODE (op0);
11148 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11149 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
ef89d648 11150 && ! have_insn_for (COMPARE, mode))
230d793d 11151 for (tmode = GET_MODE_WIDER_MODE (mode);
5f4f0e22
CH
11152 (tmode != VOIDmode
11153 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
230d793d 11154 tmode = GET_MODE_WIDER_MODE (tmode))
ef89d648 11155 if (have_insn_for (COMPARE, tmode))
230d793d 11156 {
d4c5ac1f
AM
11157 int zero_extended;
11158
951553af 11159 /* If the only nonzero bits in OP0 and OP1 are those in the
a687e897
RK
11160 narrower mode and this is an equality or unsigned comparison,
11161 we can use the wider mode. Similarly for sign-extended
7e4dc511 11162 values, in which case it is true for all comparisons. */
d4c5ac1f
AM
11163 zero_extended = ((code == EQ || code == NE
11164 || code == GEU || code == GTU
11165 || code == LEU || code == LTU)
11166 && (nonzero_bits (op0, tmode)
11167 & ~GET_MODE_MASK (mode)) == 0
11168 && ((GET_CODE (op1) == CONST_INT
11169 || (nonzero_bits (op1, tmode)
11170 & ~GET_MODE_MASK (mode)) == 0)));
11171
11172 if (zero_extended
7e4dc511 11173 || ((num_sign_bit_copies (op0, tmode)
26c34780
RS
11174 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11175 - GET_MODE_BITSIZE (mode)))
a687e897 11176 && (num_sign_bit_copies (op1, tmode)
26c34780
RS
11177 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11178 - GET_MODE_BITSIZE (mode)))))
a687e897 11179 {
14a774a9
RK
11180 /* If OP0 is an AND and we don't have an AND in MODE either,
11181 make a new AND in the proper mode. */
11182 if (GET_CODE (op0) == AND
ef89d648 11183 && !have_insn_for (AND, mode))
14a774a9
RK
11184 op0 = gen_binary (AND, tmode,
11185 gen_lowpart_for_combine (tmode,
11186 XEXP (op0, 0)),
11187 gen_lowpart_for_combine (tmode,
11188 XEXP (op0, 1)));
11189
a687e897 11190 op0 = gen_lowpart_for_combine (tmode, op0);
d4c5ac1f
AM
11191 if (zero_extended && GET_CODE (op1) == CONST_INT)
11192 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
a687e897
RK
11193 op1 = gen_lowpart_for_combine (tmode, op1);
11194 break;
11195 }
230d793d 11196
a687e897
RK
11197 /* If this is a test for negative, we can make an explicit
11198 test of the sign bit. */
11199
11200 if (op1 == const0_rtx && (code == LT || code == GE)
11201 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
230d793d 11202 {
a687e897
RK
11203 op0 = gen_binary (AND, tmode,
11204 gen_lowpart_for_combine (tmode, op0),
5f4f0e22
CH
11205 GEN_INT ((HOST_WIDE_INT) 1
11206 << (GET_MODE_BITSIZE (mode) - 1)));
230d793d 11207 code = (code == LT) ? NE : EQ;
a687e897 11208 break;
230d793d 11209 }
230d793d
RS
11210 }
11211
b7a775b2
RK
11212#ifdef CANONICALIZE_COMPARISON
11213 /* If this machine only supports a subset of valid comparisons, see if we
11214 can convert an unsupported one into a supported one. */
11215 CANONICALIZE_COMPARISON (code, op0, op1);
11216#endif
11217
230d793d
RS
11218 *pop0 = op0;
11219 *pop1 = op1;
11220
11221 return code;
11222}
11223\f
9a915772
JH
11224/* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11225 searching backward. */
c3ffea50 11226static enum rtx_code
9a915772
JH
11227combine_reversed_comparison_code (exp)
11228 rtx exp;
230d793d 11229{
cf0d9408
KH
11230 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11231 rtx x;
11232
11233 if (code1 != UNKNOWN
11234 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11235 return code1;
11236 /* Otherwise try and find where the condition codes were last set and
11237 use that. */
11238 x = get_last_value (XEXP (exp, 0));
11239 if (!x || GET_CODE (x) != COMPARE)
11240 return UNKNOWN;
11241 return reversed_comparison_code_parts (GET_CODE (exp),
11242 XEXP (x, 0), XEXP (x, 1), NULL);
9a915772
JH
11243}
11244/* Return comparison with reversed code of EXP and operands OP0 and OP1.
11245 Return NULL_RTX in case we fail to do the reversal. */
11246static rtx
11247reversed_comparison (exp, mode, op0, op1)
11248 rtx exp, op0, op1;
11249 enum machine_mode mode;
11250{
11251 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11252 if (reversed_code == UNKNOWN)
11253 return NULL_RTX;
11254 else
11255 return gen_binary (reversed_code, mode, op0, op1);
230d793d
RS
11256}
11257\f
11258/* Utility function for following routine. Called when X is part of a value
11259 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11260 for each register mentioned. Similar to mention_regs in cse.c */
11261
11262static void
11263update_table_tick (x)
11264 rtx x;
11265{
b3694847
SS
11266 enum rtx_code code = GET_CODE (x);
11267 const char *fmt = GET_RTX_FORMAT (code);
11268 int i;
230d793d
RS
11269
11270 if (code == REG)
11271 {
770ae6cc
RK
11272 unsigned int regno = REGNO (x);
11273 unsigned int endregno
11274 = regno + (regno < FIRST_PSEUDO_REGISTER
11275 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11276 unsigned int r;
230d793d 11277
770ae6cc
RK
11278 for (r = regno; r < endregno; r++)
11279 reg_last_set_table_tick[r] = label_tick;
230d793d
RS
11280
11281 return;
11282 }
663522cb 11283
230d793d
RS
11284 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11285 /* Note that we can't have an "E" in values stored; see
11286 get_last_value_validate. */
11287 if (fmt[i] == 'e')
11288 update_table_tick (XEXP (x, i));
11289}
11290
11291/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11292 are saying that the register is clobbered and we no longer know its
7988fd36
RK
11293 value. If INSN is zero, don't update reg_last_set; this is only permitted
11294 with VALUE also zero and is used to invalidate the register. */
230d793d
RS
11295
11296static void
11297record_value_for_reg (reg, insn, value)
11298 rtx reg;
11299 rtx insn;
11300 rtx value;
11301{
770ae6cc
RK
11302 unsigned int regno = REGNO (reg);
11303 unsigned int endregno
11304 = regno + (regno < FIRST_PSEUDO_REGISTER
11305 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11306 unsigned int i;
230d793d
RS
11307
11308 /* If VALUE contains REG and we have a previous value for REG, substitute
11309 the previous value. */
11310 if (value && insn && reg_overlap_mentioned_p (reg, value))
11311 {
11312 rtx tem;
11313
11314 /* Set things up so get_last_value is allowed to see anything set up to
11315 our insn. */
11316 subst_low_cuid = INSN_CUID (insn);
663522cb 11317 tem = get_last_value (reg);
230d793d 11318
14a774a9
RK
11319 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11320 it isn't going to be useful and will take a lot of time to process,
11321 so just use the CLOBBER. */
11322
230d793d 11323 if (tem)
14a774a9
RK
11324 {
11325 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11326 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11327 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11328 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11329 tem = XEXP (tem, 0);
11330
11331 value = replace_rtx (copy_rtx (value), reg, tem);
11332 }
230d793d
RS
11333 }
11334
11335 /* For each register modified, show we don't know its value, that
ef026f91
RS
11336 we don't know about its bitwise content, that its value has been
11337 updated, and that we don't know the location of the death of the
11338 register. */
770ae6cc 11339 for (i = regno; i < endregno; i++)
230d793d
RS
11340 {
11341 if (insn)
11342 reg_last_set[i] = insn;
770ae6cc 11343
230d793d 11344 reg_last_set_value[i] = 0;
ef026f91
RS
11345 reg_last_set_mode[i] = 0;
11346 reg_last_set_nonzero_bits[i] = 0;
11347 reg_last_set_sign_bit_copies[i] = 0;
230d793d
RS
11348 reg_last_death[i] = 0;
11349 }
11350
11351 /* Mark registers that are being referenced in this value. */
11352 if (value)
11353 update_table_tick (value);
11354
11355 /* Now update the status of each register being set.
11356 If someone is using this register in this block, set this register
11357 to invalid since we will get confused between the two lives in this
11358 basic block. This makes using this register always invalid. In cse, we
11359 scan the table to invalidate all entries using this register, but this
11360 is too much work for us. */
11361
11362 for (i = regno; i < endregno; i++)
11363 {
11364 reg_last_set_label[i] = label_tick;
11365 if (value && reg_last_set_table_tick[i] == label_tick)
11366 reg_last_set_invalid[i] = 1;
11367 else
11368 reg_last_set_invalid[i] = 0;
11369 }
11370
11371 /* The value being assigned might refer to X (like in "x++;"). In that
11372 case, we must replace it with (clobber (const_int 0)) to prevent
11373 infinite loops. */
9a893315 11374 if (value && ! get_last_value_validate (&value, insn,
230d793d
RS
11375 reg_last_set_label[regno], 0))
11376 {
11377 value = copy_rtx (value);
9a893315
JW
11378 if (! get_last_value_validate (&value, insn,
11379 reg_last_set_label[regno], 1))
230d793d
RS
11380 value = 0;
11381 }
11382
55310dad
RK
11383 /* For the main register being modified, update the value, the mode, the
11384 nonzero bits, and the number of sign bit copies. */
11385
230d793d
RS
11386 reg_last_set_value[regno] = value;
11387
55310dad
RK
11388 if (value)
11389 {
0a0440c9 11390 enum machine_mode mode = GET_MODE (reg);
2afabb48 11391 subst_low_cuid = INSN_CUID (insn);
0a0440c9
JJ
11392 reg_last_set_mode[regno] = mode;
11393 if (GET_MODE_CLASS (mode) == MODE_INT
11394 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11395 mode = nonzero_bits_mode;
11396 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
55310dad
RK
11397 reg_last_set_sign_bit_copies[regno]
11398 = num_sign_bit_copies (value, GET_MODE (reg));
11399 }
230d793d
RS
11400}
11401
230d793d 11402/* Called via note_stores from record_dead_and_set_regs to handle one
84832317
MM
11403 SET or CLOBBER in an insn. DATA is the instruction in which the
11404 set is occurring. */
230d793d
RS
11405
11406static void
84832317 11407record_dead_and_set_regs_1 (dest, setter, data)
230d793d 11408 rtx dest, setter;
84832317 11409 void *data;
230d793d 11410{
84832317
MM
11411 rtx record_dead_insn = (rtx) data;
11412
ca89d290
RK
11413 if (GET_CODE (dest) == SUBREG)
11414 dest = SUBREG_REG (dest);
11415
230d793d
RS
11416 if (GET_CODE (dest) == REG)
11417 {
11418 /* If we are setting the whole register, we know its value. Otherwise
11419 show that we don't know the value. We can handle SUBREG in
11420 some cases. */
11421 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11422 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11423 else if (GET_CODE (setter) == SET
11424 && GET_CODE (SET_DEST (setter)) == SUBREG
11425 && SUBREG_REG (SET_DEST (setter)) == dest
90bf8081 11426 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
230d793d 11427 && subreg_lowpart_p (SET_DEST (setter)))
d0ab8cd3
RK
11428 record_value_for_reg (dest, record_dead_insn,
11429 gen_lowpart_for_combine (GET_MODE (dest),
11430 SET_SRC (setter)));
230d793d 11431 else
5f4f0e22 11432 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
230d793d
RS
11433 }
11434 else if (GET_CODE (dest) == MEM
11435 /* Ignore pushes, they clobber nothing. */
11436 && ! push_operand (dest, GET_MODE (dest)))
11437 mem_last_set = INSN_CUID (record_dead_insn);
11438}
11439
11440/* Update the records of when each REG was most recently set or killed
11441 for the things done by INSN. This is the last thing done in processing
11442 INSN in the combiner loop.
11443
ef026f91
RS
11444 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11445 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11446 and also the similar information mem_last_set (which insn most recently
11447 modified memory) and last_call_cuid (which insn was the most recent
11448 subroutine call). */
230d793d
RS
11449
11450static void
11451record_dead_and_set_regs (insn)
11452 rtx insn;
11453{
b3694847 11454 rtx link;
770ae6cc 11455 unsigned int i;
55310dad 11456
230d793d
RS
11457 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11458 {
dbc131f3
RK
11459 if (REG_NOTE_KIND (link) == REG_DEAD
11460 && GET_CODE (XEXP (link, 0)) == REG)
11461 {
770ae6cc
RK
11462 unsigned int regno = REGNO (XEXP (link, 0));
11463 unsigned int endregno
dbc131f3
RK
11464 = regno + (regno < FIRST_PSEUDO_REGISTER
11465 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11466 : 1);
dbc131f3
RK
11467
11468 for (i = regno; i < endregno; i++)
11469 reg_last_death[i] = insn;
11470 }
230d793d 11471 else if (REG_NOTE_KIND (link) == REG_INC)
5f4f0e22 11472 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
230d793d
RS
11473 }
11474
11475 if (GET_CODE (insn) == CALL_INSN)
55310dad
RK
11476 {
11477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
29655d3d 11478 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
55310dad
RK
11479 {
11480 reg_last_set_value[i] = 0;
ef026f91
RS
11481 reg_last_set_mode[i] = 0;
11482 reg_last_set_nonzero_bits[i] = 0;
11483 reg_last_set_sign_bit_copies[i] = 0;
55310dad
RK
11484 reg_last_death[i] = 0;
11485 }
11486
11487 last_call_cuid = mem_last_set = INSN_CUID (insn);
29655d3d
ZW
11488
11489 /* Don't bother recording what this insn does. It might set the
11490 return value register, but we can't combine into a call
11491 pattern anyway, so there's no point trying (and it may cause
11492 a crash, if e.g. we wind up asking for last_set_value of a
11493 SUBREG of the return value register). */
11494 return;
55310dad 11495 }
230d793d 11496
84832317 11497 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
230d793d 11498}
732f2ac9 11499
732f2ac9
JJ
11500/* If a SUBREG has the promoted bit set, it is in fact a property of the
11501 register present in the SUBREG, so for each such SUBREG go back and
11502 adjust nonzero and sign bit information of the registers that are
11503 known to have some zero/sign bits set.
11504
11505 This is needed because when combine blows the SUBREGs away, the
11506 information on zero/sign bits is lost and further combines can be
11507 missed because of that. */
11508
11509static void
11510record_promoted_value (insn, subreg)
663522cb
KH
11511 rtx insn;
11512 rtx subreg;
732f2ac9 11513{
4a71b24f 11514 rtx links, set;
770ae6cc 11515 unsigned int regno = REGNO (SUBREG_REG (subreg));
732f2ac9
JJ
11516 enum machine_mode mode = GET_MODE (subreg);
11517
25af74a0 11518 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
732f2ac9
JJ
11519 return;
11520
663522cb 11521 for (links = LOG_LINKS (insn); links;)
732f2ac9
JJ
11522 {
11523 insn = XEXP (links, 0);
11524 set = single_set (insn);
11525
11526 if (! set || GET_CODE (SET_DEST (set)) != REG
11527 || REGNO (SET_DEST (set)) != regno
11528 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11529 {
11530 links = XEXP (links, 1);
11531 continue;
11532 }
11533
663522cb
KH
11534 if (reg_last_set[regno] == insn)
11535 {
7879b81e 11536 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
663522cb
KH
11537 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11538 }
732f2ac9
JJ
11539
11540 if (GET_CODE (SET_SRC (set)) == REG)
11541 {
11542 regno = REGNO (SET_SRC (set));
11543 links = LOG_LINKS (insn);
11544 }
11545 else
11546 break;
11547 }
11548}
11549
11550/* Scan X for promoted SUBREGs. For each one found,
11551 note what it implies to the registers used in it. */
11552
11553static void
11554check_promoted_subreg (insn, x)
663522cb
KH
11555 rtx insn;
11556 rtx x;
732f2ac9
JJ
11557{
11558 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11559 && GET_CODE (SUBREG_REG (x)) == REG)
11560 record_promoted_value (insn, x);
11561 else
11562 {
11563 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11564 int i, j;
11565
11566 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
663522cb 11567 switch (format[i])
732f2ac9
JJ
11568 {
11569 case 'e':
11570 check_promoted_subreg (insn, XEXP (x, i));
11571 break;
11572 case 'V':
11573 case 'E':
11574 if (XVEC (x, i) != 0)
11575 for (j = 0; j < XVECLEN (x, i); j++)
11576 check_promoted_subreg (insn, XVECEXP (x, i, j));
11577 break;
11578 }
11579 }
11580}
230d793d
RS
11581\f
11582/* Utility routine for the following function. Verify that all the registers
11583 mentioned in *LOC are valid when *LOC was part of a value set when
11584 label_tick == TICK. Return 0 if some are not.
11585
da7d8304 11586 If REPLACE is nonzero, replace the invalid reference with
230d793d
RS
11587 (clobber (const_int 0)) and return 1. This replacement is useful because
11588 we often can get useful information about the form of a value (e.g., if
11589 it was produced by a shift that always produces -1 or 0) even though
11590 we don't know exactly what registers it was produced from. */
11591
11592static int
9a893315 11593get_last_value_validate (loc, insn, tick, replace)
230d793d 11594 rtx *loc;
9a893315 11595 rtx insn;
230d793d
RS
11596 int tick;
11597 int replace;
11598{
11599 rtx x = *loc;
6f7d635c 11600 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
230d793d
RS
11601 int len = GET_RTX_LENGTH (GET_CODE (x));
11602 int i;
11603
11604 if (GET_CODE (x) == REG)
11605 {
770ae6cc
RK
11606 unsigned int regno = REGNO (x);
11607 unsigned int endregno
11608 = regno + (regno < FIRST_PSEUDO_REGISTER
11609 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11610 unsigned int j;
230d793d
RS
11611
11612 for (j = regno; j < endregno; j++)
11613 if (reg_last_set_invalid[j]
57cf50a4
GRK
11614 /* If this is a pseudo-register that was only set once and not
11615 live at the beginning of the function, it is always valid. */
663522cb 11616 || (! (regno >= FIRST_PSEUDO_REGISTER
57cf50a4 11617 && REG_N_SETS (regno) == 1
770ae6cc 11618 && (! REGNO_REG_SET_P
f6366fc7 11619 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
230d793d
RS
11620 && reg_last_set_label[j] > tick))
11621 {
11622 if (replace)
38a448ca 11623 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
230d793d
RS
11624 return replace;
11625 }
11626
11627 return 1;
11628 }
9a893315
JW
11629 /* If this is a memory reference, make sure that there were
11630 no stores after it that might have clobbered the value. We don't
11631 have alias info, so we assume any store invalidates it. */
11632 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11633 && INSN_CUID (insn) <= mem_last_set)
11634 {
11635 if (replace)
38a448ca 11636 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9a893315
JW
11637 return replace;
11638 }
230d793d
RS
11639
11640 for (i = 0; i < len; i++)
11641 if ((fmt[i] == 'e'
9a893315 11642 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
230d793d
RS
11643 /* Don't bother with these. They shouldn't occur anyway. */
11644 || fmt[i] == 'E')
11645 return 0;
11646
11647 /* If we haven't found a reason for it to be invalid, it is valid. */
11648 return 1;
11649}
11650
11651/* Get the last value assigned to X, if known. Some registers
11652 in the value may be replaced with (clobber (const_int 0)) if their value
11653 is known longer known reliably. */
11654
11655static rtx
11656get_last_value (x)
11657 rtx x;
11658{
770ae6cc 11659 unsigned int regno;
230d793d
RS
11660 rtx value;
11661
11662 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11663 then convert it to the desired mode. If this is a paradoxical SUBREG,
0f41302f 11664 we cannot predict what values the "extra" bits might have. */
230d793d
RS
11665 if (GET_CODE (x) == SUBREG
11666 && subreg_lowpart_p (x)
11667 && (GET_MODE_SIZE (GET_MODE (x))
11668 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11669 && (value = get_last_value (SUBREG_REG (x))) != 0)
11670 return gen_lowpart_for_combine (GET_MODE (x), value);
11671
11672 if (GET_CODE (x) != REG)
11673 return 0;
11674
11675 regno = REGNO (x);
11676 value = reg_last_set_value[regno];
11677
57cf50a4
GRK
11678 /* If we don't have a value, or if it isn't for this basic block and
11679 it's either a hard register, set more than once, or it's a live
663522cb 11680 at the beginning of the function, return 0.
57cf50a4 11681
eaec9b3d 11682 Because if it's not live at the beginning of the function then the reg
57cf50a4
GRK
11683 is always set before being used (is never used without being set).
11684 And, if it's set only once, and it's always set before use, then all
11685 uses must have the same last value, even if it's not from this basic
11686 block. */
230d793d
RS
11687
11688 if (value == 0
57cf50a4
GRK
11689 || (reg_last_set_label[regno] != label_tick
11690 && (regno < FIRST_PSEUDO_REGISTER
11691 || REG_N_SETS (regno) != 1
770ae6cc 11692 || (REGNO_REG_SET_P
f6366fc7 11693 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
230d793d
RS
11694 return 0;
11695
4255220d 11696 /* If the value was set in a later insn than the ones we are processing,
ca4cd906 11697 we can't use it even if the register was only set once. */
bcd49eb7 11698 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
ca4cd906 11699 return 0;
d0ab8cd3
RK
11700
11701 /* If the value has all its registers valid, return it. */
9a893315
JW
11702 if (get_last_value_validate (&value, reg_last_set[regno],
11703 reg_last_set_label[regno], 0))
230d793d
RS
11704 return value;
11705
11706 /* Otherwise, make a copy and replace any invalid register with
11707 (clobber (const_int 0)). If that fails for some reason, return 0. */
11708
11709 value = copy_rtx (value);
9a893315
JW
11710 if (get_last_value_validate (&value, reg_last_set[regno],
11711 reg_last_set_label[regno], 1))
230d793d
RS
11712 return value;
11713
11714 return 0;
11715}
11716\f
11717/* Return nonzero if expression X refers to a REG or to memory
11718 that is set in an instruction more recent than FROM_CUID. */
11719
11720static int
11721use_crosses_set_p (x, from_cuid)
b3694847 11722 rtx x;
230d793d
RS
11723 int from_cuid;
11724{
b3694847
SS
11725 const char *fmt;
11726 int i;
11727 enum rtx_code code = GET_CODE (x);
230d793d
RS
11728
11729 if (code == REG)
11730 {
770ae6cc
RK
11731 unsigned int regno = REGNO (x);
11732 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
663522cb
KH
11733 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11734
230d793d
RS
11735#ifdef PUSH_ROUNDING
11736 /* Don't allow uses of the stack pointer to be moved,
11737 because we don't know whether the move crosses a push insn. */
f73ad30e 11738 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
230d793d
RS
11739 return 1;
11740#endif
770ae6cc 11741 for (; regno < endreg; regno++)
e28f5732
RK
11742 if (reg_last_set[regno]
11743 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11744 return 1;
11745 return 0;
230d793d
RS
11746 }
11747
11748 if (code == MEM && mem_last_set > from_cuid)
11749 return 1;
11750
11751 fmt = GET_RTX_FORMAT (code);
11752
11753 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11754 {
11755 if (fmt[i] == 'E')
11756 {
b3694847 11757 int j;
230d793d
RS
11758 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11759 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11760 return 1;
11761 }
11762 else if (fmt[i] == 'e'
11763 && use_crosses_set_p (XEXP (x, i), from_cuid))
11764 return 1;
11765 }
11766 return 0;
11767}
11768\f
11769/* Define three variables used for communication between the following
11770 routines. */
11771
770ae6cc 11772static unsigned int reg_dead_regno, reg_dead_endregno;
230d793d
RS
11773static int reg_dead_flag;
11774
11775/* Function called via note_stores from reg_dead_at_p.
11776
663522cb 11777 If DEST is within [reg_dead_regno, reg_dead_endregno), set
230d793d
RS
11778 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11779
11780static void
84832317 11781reg_dead_at_p_1 (dest, x, data)
230d793d
RS
11782 rtx dest;
11783 rtx x;
84832317 11784 void *data ATTRIBUTE_UNUSED;
230d793d 11785{
770ae6cc 11786 unsigned int regno, endregno;
230d793d
RS
11787
11788 if (GET_CODE (dest) != REG)
11789 return;
11790
11791 regno = REGNO (dest);
663522cb 11792 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
230d793d
RS
11793 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11794
11795 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11796 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11797}
11798
da7d8304 11799/* Return nonzero if REG is known to be dead at INSN.
230d793d
RS
11800
11801 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11802 referencing REG, it is dead. If we hit a SET referencing REG, it is
11803 live. Otherwise, see if it is live or dead at the start of the basic
6e25d159
RK
11804 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11805 must be assumed to be always live. */
230d793d
RS
11806
11807static int
11808reg_dead_at_p (reg, insn)
11809 rtx reg;
11810 rtx insn;
11811{
e0082a72 11812 basic_block block;
770ae6cc 11813 unsigned int i;
230d793d
RS
11814
11815 /* Set variables for reg_dead_at_p_1. */
11816 reg_dead_regno = REGNO (reg);
11817 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11818 ? HARD_REGNO_NREGS (reg_dead_regno,
11819 GET_MODE (reg))
11820 : 1);
11821
11822 reg_dead_flag = 0;
11823
6e25d159
RK
11824 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11825 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11826 {
11827 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11828 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11829 return 0;
11830 }
11831
230d793d
RS
11832 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11833 beginning of function. */
60715d0b 11834 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
230d793d
RS
11835 insn = prev_nonnote_insn (insn))
11836 {
84832317 11837 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
230d793d
RS
11838 if (reg_dead_flag)
11839 return reg_dead_flag == 1 ? 1 : 0;
11840
11841 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11842 return 1;
11843 }
11844
e0082a72 11845 /* Get the basic block that we were in. */
230d793d 11846 if (insn == 0)
e0082a72 11847 block = ENTRY_BLOCK_PTR->next_bb;
230d793d
RS
11848 else
11849 {
e0082a72
ZD
11850 FOR_EACH_BB (block)
11851 if (insn == block->head)
230d793d
RS
11852 break;
11853
e0082a72 11854 if (block == EXIT_BLOCK_PTR)
230d793d
RS
11855 return 0;
11856 }
11857
11858 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
e0082a72 11859 if (REGNO_REG_SET_P (block->global_live_at_start, i))
230d793d
RS
11860 return 0;
11861
11862 return 1;
11863}
6e25d159
RK
11864\f
11865/* Note hard registers in X that are used. This code is similar to
11866 that in flow.c, but much simpler since we don't care about pseudos. */
11867
11868static void
11869mark_used_regs_combine (x)
11870 rtx x;
11871{
770ae6cc
RK
11872 RTX_CODE code = GET_CODE (x);
11873 unsigned int regno;
6e25d159
RK
11874 int i;
11875
11876 switch (code)
11877 {
11878 case LABEL_REF:
11879 case SYMBOL_REF:
11880 case CONST_INT:
11881 case CONST:
11882 case CONST_DOUBLE:
69ef87e2 11883 case CONST_VECTOR:
6e25d159
RK
11884 case PC:
11885 case ADDR_VEC:
11886 case ADDR_DIFF_VEC:
11887 case ASM_INPUT:
11888#ifdef HAVE_cc0
11889 /* CC0 must die in the insn after it is set, so we don't need to take
11890 special note of it here. */
11891 case CC0:
11892#endif
11893 return;
11894
11895 case CLOBBER:
11896 /* If we are clobbering a MEM, mark any hard registers inside the
11897 address as used. */
11898 if (GET_CODE (XEXP (x, 0)) == MEM)
11899 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11900 return;
11901
11902 case REG:
11903 regno = REGNO (x);
11904 /* A hard reg in a wide mode may really be multiple registers.
11905 If so, mark all of them just like the first. */
11906 if (regno < FIRST_PSEUDO_REGISTER)
11907 {
770ae6cc
RK
11908 unsigned int endregno, r;
11909
6e25d159
RK
11910 /* None of this applies to the stack, frame or arg pointers */
11911 if (regno == STACK_POINTER_REGNUM
11912#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11913 || regno == HARD_FRAME_POINTER_REGNUM
11914#endif
11915#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11916 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11917#endif
11918 || regno == FRAME_POINTER_REGNUM)
11919 return;
11920
770ae6cc
RK
11921 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11922 for (r = regno; r < endregno; r++)
11923 SET_HARD_REG_BIT (newpat_used_regs, r);
6e25d159
RK
11924 }
11925 return;
11926
11927 case SET:
11928 {
11929 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11930 the address. */
b3694847 11931 rtx testreg = SET_DEST (x);
6e25d159 11932
e048778f
RK
11933 while (GET_CODE (testreg) == SUBREG
11934 || GET_CODE (testreg) == ZERO_EXTRACT
11935 || GET_CODE (testreg) == SIGN_EXTRACT
11936 || GET_CODE (testreg) == STRICT_LOW_PART)
6e25d159
RK
11937 testreg = XEXP (testreg, 0);
11938
11939 if (GET_CODE (testreg) == MEM)
11940 mark_used_regs_combine (XEXP (testreg, 0));
11941
11942 mark_used_regs_combine (SET_SRC (x));
6e25d159 11943 }
e9a25f70
JL
11944 return;
11945
11946 default:
11947 break;
6e25d159
RK
11948 }
11949
11950 /* Recursively scan the operands of this expression. */
11951
11952 {
b3694847 11953 const char *fmt = GET_RTX_FORMAT (code);
6e25d159
RK
11954
11955 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11956 {
663522cb 11957 if (fmt[i] == 'e')
6e25d159 11958 mark_used_regs_combine (XEXP (x, i));
663522cb
KH
11959 else if (fmt[i] == 'E')
11960 {
b3694847 11961 int j;
6e25d159 11962
663522cb
KH
11963 for (j = 0; j < XVECLEN (x, i); j++)
11964 mark_used_regs_combine (XVECEXP (x, i, j));
11965 }
6e25d159
RK
11966 }
11967 }
11968}
230d793d
RS
11969\f
11970/* Remove register number REGNO from the dead registers list of INSN.
11971
11972 Return the note used to record the death, if there was one. */
11973
11974rtx
11975remove_death (regno, insn)
770ae6cc 11976 unsigned int regno;
230d793d
RS
11977 rtx insn;
11978{
b3694847 11979 rtx note = find_regno_note (insn, REG_DEAD, regno);
230d793d
RS
11980
11981 if (note)
1a26b032 11982 {
b1f21e0a 11983 REG_N_DEATHS (regno)--;
1a26b032
RK
11984 remove_note (insn, note);
11985 }
230d793d
RS
11986
11987 return note;
11988}
11989
11990/* For each register (hardware or pseudo) used within expression X, if its
11991 death is in an instruction with cuid between FROM_CUID (inclusive) and
11992 TO_INSN (exclusive), put a REG_DEAD note for that register in the
663522cb 11993 list headed by PNOTES.
230d793d 11994
6eb12cef
RK
11995 That said, don't move registers killed by maybe_kill_insn.
11996
230d793d
RS
11997 This is done when X is being merged by combination into TO_INSN. These
11998 notes will then be distributed as needed. */
11999
12000static void
6eb12cef 12001move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
230d793d 12002 rtx x;
6eb12cef 12003 rtx maybe_kill_insn;
230d793d
RS
12004 int from_cuid;
12005 rtx to_insn;
12006 rtx *pnotes;
12007{
b3694847
SS
12008 const char *fmt;
12009 int len, i;
12010 enum rtx_code code = GET_CODE (x);
230d793d
RS
12011
12012 if (code == REG)
12013 {
770ae6cc 12014 unsigned int regno = REGNO (x);
b3694847
SS
12015 rtx where_dead = reg_last_death[regno];
12016 rtx before_dead, after_dead;
e340018d 12017
6eb12cef
RK
12018 /* Don't move the register if it gets killed in between from and to */
12019 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
770ae6cc 12020 && ! reg_referenced_p (x, maybe_kill_insn))
6eb12cef
RK
12021 return;
12022
e340018d
JW
12023 /* WHERE_DEAD could be a USE insn made by combine, so first we
12024 make sure that we have insns with valid INSN_CUID values. */
12025 before_dead = where_dead;
12026 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12027 before_dead = PREV_INSN (before_dead);
770ae6cc 12028
e340018d
JW
12029 after_dead = where_dead;
12030 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12031 after_dead = NEXT_INSN (after_dead);
12032
12033 if (before_dead && after_dead
12034 && INSN_CUID (before_dead) >= from_cuid
12035 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12036 || (where_dead != after_dead
12037 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
230d793d 12038 {
dbc131f3 12039 rtx note = remove_death (regno, where_dead);
230d793d
RS
12040
12041 /* It is possible for the call above to return 0. This can occur
12042 when reg_last_death points to I2 or I1 that we combined with.
dbc131f3
RK
12043 In that case make a new note.
12044
12045 We must also check for the case where X is a hard register
12046 and NOTE is a death note for a range of hard registers
12047 including X. In that case, we must put REG_DEAD notes for
12048 the remaining registers in place of NOTE. */
12049
12050 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12051 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
24e46fc4 12052 > GET_MODE_SIZE (GET_MODE (x))))
dbc131f3 12053 {
770ae6cc
RK
12054 unsigned int deadregno = REGNO (XEXP (note, 0));
12055 unsigned int deadend
dbc131f3
RK
12056 = (deadregno + HARD_REGNO_NREGS (deadregno,
12057 GET_MODE (XEXP (note, 0))));
770ae6cc
RK
12058 unsigned int ourend
12059 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12060 unsigned int i;
dbc131f3
RK
12061
12062 for (i = deadregno; i < deadend; i++)
12063 if (i < regno || i >= ourend)
12064 REG_NOTES (where_dead)
38a448ca 12065 = gen_rtx_EXPR_LIST (REG_DEAD,
e50126e8 12066 regno_reg_rtx[i],
38a448ca 12067 REG_NOTES (where_dead));
dbc131f3 12068 }
770ae6cc 12069
24e46fc4
JW
12070 /* If we didn't find any note, or if we found a REG_DEAD note that
12071 covers only part of the given reg, and we have a multi-reg hard
fabd69e8
RK
12072 register, then to be safe we must check for REG_DEAD notes
12073 for each register other than the first. They could have
12074 their own REG_DEAD notes lying around. */
24e46fc4
JW
12075 else if ((note == 0
12076 || (note != 0
12077 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12078 < GET_MODE_SIZE (GET_MODE (x)))))
12079 && regno < FIRST_PSEUDO_REGISTER
fabd69e8
RK
12080 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12081 {
770ae6cc
RK
12082 unsigned int ourend
12083 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12084 unsigned int i, offset;
fabd69e8
RK
12085 rtx oldnotes = 0;
12086
24e46fc4
JW
12087 if (note)
12088 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12089 else
12090 offset = 1;
12091
12092 for (i = regno + offset; i < ourend; i++)
e50126e8 12093 move_deaths (regno_reg_rtx[i],
6eb12cef 12094 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
fabd69e8 12095 }
230d793d 12096
dbc131f3 12097 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
230d793d
RS
12098 {
12099 XEXP (note, 1) = *pnotes;
12100 *pnotes = note;
12101 }
12102 else
38a448ca 12103 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
1a26b032 12104
b1f21e0a 12105 REG_N_DEATHS (regno)++;
230d793d
RS
12106 }
12107
12108 return;
12109 }
12110
12111 else if (GET_CODE (x) == SET)
12112 {
12113 rtx dest = SET_DEST (x);
12114
6eb12cef 12115 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
230d793d 12116
a7c99304
RK
12117 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12118 that accesses one word of a multi-word item, some
12119 piece of everything register in the expression is used by
12120 this insn, so remove any old death. */
ddef6bc7 12121 /* ??? So why do we test for equality of the sizes? */
a7c99304
RK
12122
12123 if (GET_CODE (dest) == ZERO_EXTRACT
12124 || GET_CODE (dest) == STRICT_LOW_PART
12125 || (GET_CODE (dest) == SUBREG
12126 && (((GET_MODE_SIZE (GET_MODE (dest))
12127 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12128 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12129 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
230d793d 12130 {
6eb12cef 12131 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
a7c99304 12132 return;
230d793d
RS
12133 }
12134
a7c99304
RK
12135 /* If this is some other SUBREG, we know it replaces the entire
12136 value, so use that as the destination. */
12137 if (GET_CODE (dest) == SUBREG)
12138 dest = SUBREG_REG (dest);
12139
12140 /* If this is a MEM, adjust deaths of anything used in the address.
12141 For a REG (the only other possibility), the entire value is
12142 being replaced so the old value is not used in this insn. */
230d793d
RS
12143
12144 if (GET_CODE (dest) == MEM)
6eb12cef
RK
12145 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12146 to_insn, pnotes);
230d793d
RS
12147 return;
12148 }
12149
12150 else if (GET_CODE (x) == CLOBBER)
12151 return;
12152
12153 len = GET_RTX_LENGTH (code);
12154 fmt = GET_RTX_FORMAT (code);
12155
12156 for (i = 0; i < len; i++)
12157 {
12158 if (fmt[i] == 'E')
12159 {
b3694847 12160 int j;
230d793d 12161 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6eb12cef
RK
12162 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12163 to_insn, pnotes);
230d793d
RS
12164 }
12165 else if (fmt[i] == 'e')
6eb12cef 12166 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
230d793d
RS
12167 }
12168}
12169\f
a7c99304
RK
12170/* Return 1 if X is the target of a bit-field assignment in BODY, the
12171 pattern of an insn. X must be a REG. */
230d793d
RS
12172
12173static int
a7c99304
RK
12174reg_bitfield_target_p (x, body)
12175 rtx x;
230d793d
RS
12176 rtx body;
12177{
12178 int i;
12179
12180 if (GET_CODE (body) == SET)
a7c99304
RK
12181 {
12182 rtx dest = SET_DEST (body);
12183 rtx target;
770ae6cc 12184 unsigned int regno, tregno, endregno, endtregno;
a7c99304
RK
12185
12186 if (GET_CODE (dest) == ZERO_EXTRACT)
12187 target = XEXP (dest, 0);
12188 else if (GET_CODE (dest) == STRICT_LOW_PART)
12189 target = SUBREG_REG (XEXP (dest, 0));
12190 else
12191 return 0;
12192
12193 if (GET_CODE (target) == SUBREG)
12194 target = SUBREG_REG (target);
12195
12196 if (GET_CODE (target) != REG)
12197 return 0;
12198
12199 tregno = REGNO (target), regno = REGNO (x);
12200 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12201 return target == x;
12202
12203 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12204 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12205
12206 return endregno > tregno && regno < endtregno;
12207 }
230d793d
RS
12208
12209 else if (GET_CODE (body) == PARALLEL)
12210 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
a7c99304 12211 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
230d793d
RS
12212 return 1;
12213
12214 return 0;
663522cb 12215}
230d793d
RS
12216\f
12217/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12218 as appropriate. I3 and I2 are the insns resulting from the combination
12219 insns including FROM (I2 may be zero).
12220
12221 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12222 not need REG_DEAD notes because they are being substituted for. This
12223 saves searching in the most common cases.
12224
12225 Each note in the list is either ignored or placed on some insns, depending
12226 on the type of note. */
12227
12228static void
12229distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12230 rtx notes;
12231 rtx from_insn;
12232 rtx i3, i2;
12233 rtx elim_i2, elim_i1;
12234{
12235 rtx note, next_note;
12236 rtx tem;
12237
12238 for (note = notes; note; note = next_note)
12239 {
12240 rtx place = 0, place2 = 0;
12241
12242 /* If this NOTE references a pseudo register, ensure it references
12243 the latest copy of that register. */
12244 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12245 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12246 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12247
12248 next_note = XEXP (note, 1);
12249 switch (REG_NOTE_KIND (note))
12250 {
c9903b44 12251 case REG_BR_PROB:
4db384c9 12252 case REG_BR_PRED:
c9903b44
DE
12253 case REG_EXEC_COUNT:
12254 /* Doesn't matter much where we put this, as long as it's somewhere.
12255 It is preferable to keep these notes on branches, which is most
12256 likely to be i3. */
4a8d0c9c
RH
12257 place = i3;
12258 break;
12259
12260 case REG_VTABLE_REF:
12261 /* ??? Should remain with *a particular* memory load. Given the
12262 nature of vtable data, the last insn seems relatively safe. */
c9903b44
DE
12263 place = i3;
12264 break;
12265
f7cfa78d
GS
12266 case REG_NON_LOCAL_GOTO:
12267 if (GET_CODE (i3) == JUMP_INSN)
12268 place = i3;
12269 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12270 place = i2;
12271 else
505ddab6 12272 abort ();
f7cfa78d
GS
12273 break;
12274
4b7c585f 12275 case REG_EH_REGION:
662795a8
RH
12276 /* These notes must remain with the call or trapping instruction. */
12277 if (GET_CODE (i3) == CALL_INSN)
12278 place = i3;
12279 else if (i2 && GET_CODE (i2) == CALL_INSN)
12280 place = i2;
12281 else if (flag_non_call_exceptions)
12282 {
12283 if (may_trap_p (i3))
12284 place = i3;
12285 else if (i2 && may_trap_p (i2))
12286 place = i2;
12287 /* ??? Otherwise assume we've combined things such that we
12288 can now prove that the instructions can't trap. Drop the
12289 note in this case. */
12290 }
12291 else
12292 abort ();
12293 break;
12294
ca3920ad 12295 case REG_NORETURN:
ab61c93f 12296 case REG_SETJMP:
0e403ec3
AS
12297 /* These notes must remain with the call. It should not be
12298 possible for both I2 and I3 to be a call. */
663522cb 12299 if (GET_CODE (i3) == CALL_INSN)
4b7c585f
JL
12300 place = i3;
12301 else if (i2 && GET_CODE (i2) == CALL_INSN)
12302 place = i2;
12303 else
12304 abort ();
12305 break;
12306
230d793d 12307 case REG_UNUSED:
07d0cbdd 12308 /* Any clobbers for i3 may still exist, and so we must process
176c9e6b
JW
12309 REG_UNUSED notes from that insn.
12310
12311 Any clobbers from i2 or i1 can only exist if they were added by
12312 recog_for_combine. In that case, recog_for_combine created the
12313 necessary REG_UNUSED notes. Trying to keep any original
12314 REG_UNUSED notes from these insns can cause incorrect output
12315 if it is for the same register as the original i3 dest.
12316 In that case, we will notice that the register is set in i3,
12317 and then add a REG_UNUSED note for the destination of i3, which
07d0cbdd
JW
12318 is wrong. However, it is possible to have REG_UNUSED notes from
12319 i2 or i1 for register which were both used and clobbered, so
12320 we keep notes from i2 or i1 if they will turn into REG_DEAD
12321 notes. */
176c9e6b 12322
230d793d
RS
12323 /* If this register is set or clobbered in I3, put the note there
12324 unless there is one already. */
07d0cbdd 12325 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
230d793d 12326 {
07d0cbdd
JW
12327 if (from_insn != i3)
12328 break;
12329
230d793d
RS
12330 if (! (GET_CODE (XEXP (note, 0)) == REG
12331 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12332 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12333 place = i3;
12334 }
12335 /* Otherwise, if this register is used by I3, then this register
12336 now dies here, so we must put a REG_DEAD note here unless there
12337 is one already. */
12338 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12339 && ! (GET_CODE (XEXP (note, 0)) == REG
770ae6cc
RK
12340 ? find_regno_note (i3, REG_DEAD,
12341 REGNO (XEXP (note, 0)))
230d793d
RS
12342 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12343 {
12344 PUT_REG_NOTE_KIND (note, REG_DEAD);
12345 place = i3;
12346 }
12347 break;
12348
12349 case REG_EQUAL:
12350 case REG_EQUIV:
9ae8ffe7 12351 case REG_NOALIAS:
230d793d
RS
12352 /* These notes say something about results of an insn. We can
12353 only support them if they used to be on I3 in which case they
a687e897
RK
12354 remain on I3. Otherwise they are ignored.
12355
12356 If the note refers to an expression that is not a constant, we
12357 must also ignore the note since we cannot tell whether the
12358 equivalence is still true. It might be possible to do
12359 slightly better than this (we only have a problem if I2DEST
12360 or I1DEST is present in the expression), but it doesn't
12361 seem worth the trouble. */
12362
12363 if (from_insn == i3
12364 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
230d793d
RS
12365 place = i3;
12366 break;
12367
12368 case REG_INC:
12369 case REG_NO_CONFLICT:
230d793d
RS
12370 /* These notes say something about how a register is used. They must
12371 be present on any use of the register in I2 or I3. */
12372 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12373 place = i3;
12374
12375 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12376 {
12377 if (place)
12378 place2 = i2;
12379 else
12380 place = i2;
12381 }
12382 break;
12383
e55b4486
RH
12384 case REG_LABEL:
12385 /* This can show up in several ways -- either directly in the
12386 pattern, or hidden off in the constant pool with (or without?)
12387 a REG_EQUAL note. */
12388 /* ??? Ignore the without-reg_equal-note problem for now. */
12389 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12390 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12391 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12392 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12393 place = i3;
12394
12395 if (i2
12396 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
663522cb 12397 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
e55b4486
RH
12398 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12399 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12400 {
12401 if (place)
12402 place2 = i2;
12403 else
12404 place = i2;
12405 }
2a3b43b6
JJ
12406
12407 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12408 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12409 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12410 {
12411 if (JUMP_LABEL (place) != XEXP (note, 0))
12412 abort ();
12413 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12414 LABEL_NUSES (JUMP_LABEL (place))--;
12415 place = 0;
12416 }
12417 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12418 {
12419 if (JUMP_LABEL (place2) != XEXP (note, 0))
12420 abort ();
12421 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12422 LABEL_NUSES (JUMP_LABEL (place2))--;
12423 place2 = 0;
12424 }
e55b4486
RH
12425 break;
12426
c1194d74 12427 case REG_NONNEG:
230d793d 12428 case REG_WAS_0:
c1194d74
JW
12429 /* These notes say something about the value of a register prior
12430 to the execution of an insn. It is too much trouble to see
12431 if the note is still correct in all situations. It is better
12432 to simply delete it. */
230d793d
RS
12433 break;
12434
12435 case REG_RETVAL:
12436 /* If the insn previously containing this note still exists,
12437 put it back where it was. Otherwise move it to the previous
12438 insn. Adjust the corresponding REG_LIBCALL note. */
12439 if (GET_CODE (from_insn) != NOTE)
12440 place = from_insn;
12441 else
12442 {
5f4f0e22 12443 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
230d793d
RS
12444 place = prev_real_insn (from_insn);
12445 if (tem && place)
12446 XEXP (tem, 0) = place;
c71e1201
AO
12447 /* If we're deleting the last remaining instruction of a
12448 libcall sequence, don't add the notes. */
12449 else if (XEXP (note, 0) == from_insn)
12450 tem = place = 0;
230d793d
RS
12451 }
12452 break;
12453
12454 case REG_LIBCALL:
12455 /* This is handled similarly to REG_RETVAL. */
12456 if (GET_CODE (from_insn) != NOTE)
12457 place = from_insn;
12458 else
12459 {
5f4f0e22 12460 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
230d793d
RS
12461 place = next_real_insn (from_insn);
12462 if (tem && place)
12463 XEXP (tem, 0) = place;
c71e1201
AO
12464 /* If we're deleting the last remaining instruction of a
12465 libcall sequence, don't add the notes. */
12466 else if (XEXP (note, 0) == from_insn)
12467 tem = place = 0;
230d793d
RS
12468 }
12469 break;
12470
12471 case REG_DEAD:
12472 /* If the register is used as an input in I3, it dies there.
da7d8304 12473 Similarly for I2, if it is nonzero and adjacent to I3.
230d793d
RS
12474
12475 If the register is not used as an input in either I3 or I2
12476 and it is not one of the registers we were supposed to eliminate,
12477 there are two possibilities. We might have a non-adjacent I2
12478 or we might have somehow eliminated an additional register
12479 from a computation. For example, we might have had A & B where
12480 we discover that B will always be zero. In this case we will
12481 eliminate the reference to A.
12482
12483 In both cases, we must search to see if we can find a previous
12484 use of A and put the death note there. */
12485
6e2d1486
RK
12486 if (from_insn
12487 && GET_CODE (from_insn) == CALL_INSN
663522cb 12488 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
6e2d1486
RK
12489 place = from_insn;
12490 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
230d793d
RS
12491 place = i3;
12492 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12493 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12494 place = i2;
12495
03afaf36
R
12496 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12497 || rtx_equal_p (XEXP (note, 0), elim_i1))
230d793d
RS
12498 break;
12499
12500 if (place == 0)
38d8473f 12501 {
f6366fc7 12502 basic_block bb = this_basic_block;
d3a923ee
RH
12503
12504 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
38d8473f 12505 {
2c3c49de 12506 if (! INSN_P (tem))
d3a923ee
RH
12507 {
12508 if (tem == bb->head)
12509 break;
12510 continue;
12511 }
12512
38d8473f
RK
12513 /* If the register is being set at TEM, see if that is all
12514 TEM is doing. If so, delete TEM. Otherwise, make this
12515 into a REG_UNUSED note instead. */
12516 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12517 {
12518 rtx set = single_set (tem);
e5e809f4 12519 rtx inner_dest = 0;
e51712db 12520#ifdef HAVE_cc0
f5c97640 12521 rtx cc0_setter = NULL_RTX;
e51712db 12522#endif
e5e809f4
JL
12523
12524 if (set != 0)
12525 for (inner_dest = SET_DEST (set);
663522cb
KH
12526 (GET_CODE (inner_dest) == STRICT_LOW_PART
12527 || GET_CODE (inner_dest) == SUBREG
12528 || GET_CODE (inner_dest) == ZERO_EXTRACT);
e5e809f4
JL
12529 inner_dest = XEXP (inner_dest, 0))
12530 ;
38d8473f
RK
12531
12532 /* Verify that it was the set, and not a clobber that
663522cb 12533 modified the register.
f5c97640
RH
12534
12535 CC0 targets must be careful to maintain setter/user
12536 pairs. If we cannot delete the setter due to side
12537 effects, mark the user with an UNUSED note instead
12538 of deleting it. */
38d8473f
RK
12539
12540 if (set != 0 && ! side_effects_p (SET_SRC (set))
f5c97640
RH
12541 && rtx_equal_p (XEXP (note, 0), inner_dest)
12542#ifdef HAVE_cc0
12543 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12544 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12545 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12546#endif
12547 )
38d8473f
RK
12548 {
12549 /* Move the notes and links of TEM elsewhere.
663522cb 12550 This might delete other dead insns recursively.
38d8473f
RK
12551 First set the pattern to something that won't use
12552 any register. */
12553
12554 PATTERN (tem) = pc_rtx;
12555
12556 distribute_notes (REG_NOTES (tem), tem, tem,
12557 NULL_RTX, NULL_RTX, NULL_RTX);
12558 distribute_links (LOG_LINKS (tem));
12559
12560 PUT_CODE (tem, NOTE);
12561 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12562 NOTE_SOURCE_FILE (tem) = 0;
f5c97640
RH
12563
12564#ifdef HAVE_cc0
12565 /* Delete the setter too. */
12566 if (cc0_setter)
12567 {
12568 PATTERN (cc0_setter) = pc_rtx;
12569
12570 distribute_notes (REG_NOTES (cc0_setter),
12571 cc0_setter, cc0_setter,
12572 NULL_RTX, NULL_RTX, NULL_RTX);
12573 distribute_links (LOG_LINKS (cc0_setter));
12574
12575 PUT_CODE (cc0_setter, NOTE);
d3a923ee
RH
12576 NOTE_LINE_NUMBER (cc0_setter)
12577 = NOTE_INSN_DELETED;
f5c97640
RH
12578 NOTE_SOURCE_FILE (cc0_setter) = 0;
12579 }
12580#endif
38d8473f 12581 }
e5e809f4
JL
12582 /* If the register is both set and used here, put the
12583 REG_DEAD note here, but place a REG_UNUSED note
12584 here too unless there already is one. */
12585 else if (reg_referenced_p (XEXP (note, 0),
12586 PATTERN (tem)))
12587 {
12588 place = tem;
12589
12590 if (! find_regno_note (tem, REG_UNUSED,
12591 REGNO (XEXP (note, 0))))
12592 REG_NOTES (tem)
c5c76735 12593 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
9e6a5703 12594 REG_NOTES (tem));
e5e809f4 12595 }
38d8473f
RK
12596 else
12597 {
12598 PUT_REG_NOTE_KIND (note, REG_UNUSED);
663522cb 12599
38d8473f
RK
12600 /* If there isn't already a REG_UNUSED note, put one
12601 here. */
12602 if (! find_regno_note (tem, REG_UNUSED,
12603 REGNO (XEXP (note, 0))))
12604 place = tem;
12605 break;
d3a923ee
RH
12606 }
12607 }
12608 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12609 || (GET_CODE (tem) == CALL_INSN
12610 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12611 {
12612 place = tem;
12613
12614 /* If we are doing a 3->2 combination, and we have a
12615 register which formerly died in i3 and was not used
12616 by i2, which now no longer dies in i3 and is used in
12617 i2 but does not die in i2, and place is between i2
12618 and i3, then we may need to move a link from place to
12619 i2. */
12620 if (i2 && INSN_UID (place) <= max_uid_cuid
12621 && INSN_CUID (place) > INSN_CUID (i2)
663522cb
KH
12622 && from_insn
12623 && INSN_CUID (from_insn) > INSN_CUID (i2)
d3a923ee
RH
12624 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12625 {
12626 rtx links = LOG_LINKS (place);
12627 LOG_LINKS (place) = 0;
12628 distribute_links (links);
12629 }
12630 break;
12631 }
12632
12633 if (tem == bb->head)
230d793d 12634 break;
38d8473f 12635 }
663522cb 12636
d3a923ee
RH
12637 /* We haven't found an insn for the death note and it
12638 is still a REG_DEAD note, but we have hit the beginning
12639 of the block. If the existing life info says the reg
715e7fbc 12640 was dead, there's nothing left to do. Otherwise, we'll
e7139885
RH
12641 need to do a global life update after combine. */
12642 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12643 && REGNO_REG_SET_P (bb->global_live_at_start,
12644 REGNO (XEXP (note, 0))))
e2cce0cf 12645 {
f6366fc7 12646 SET_BIT (refresh_blocks, this_basic_block->index);
770ae6cc 12647 need_refresh = 1;
e2cce0cf 12648 }
38d8473f 12649 }
230d793d
RS
12650
12651 /* If the register is set or already dead at PLACE, we needn't do
e5e809f4
JL
12652 anything with this note if it is still a REG_DEAD note.
12653 We can here if it is set at all, not if is it totally replace,
12654 which is what `dead_or_set_p' checks, so also check for it being
12655 set partially. */
12656
230d793d
RS
12657 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12658 {
770ae6cc 12659 unsigned int regno = REGNO (XEXP (note, 0));
230d793d 12660
e7139885
RH
12661 /* Similarly, if the instruction on which we want to place
12662 the note is a noop, we'll need do a global live update
12663 after we remove them in delete_noop_moves. */
12664 if (noop_move_p (place))
12665 {
f6366fc7 12666 SET_BIT (refresh_blocks, this_basic_block->index);
e7139885
RH
12667 need_refresh = 1;
12668 }
12669
230d793d
RS
12670 if (dead_or_set_p (place, XEXP (note, 0))
12671 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12672 {
12673 /* Unless the register previously died in PLACE, clear
12674 reg_last_death. [I no longer understand why this is
12675 being done.] */
12676 if (reg_last_death[regno] != place)
12677 reg_last_death[regno] = 0;
12678 place = 0;
12679 }
12680 else
12681 reg_last_death[regno] = place;
12682
12683 /* If this is a death note for a hard reg that is occupying
12684 multiple registers, ensure that we are still using all
12685 parts of the object. If we find a piece of the object
03afaf36
R
12686 that is unused, we must arrange for an appropriate REG_DEAD
12687 note to be added for it. However, we can't just emit a USE
12688 and tag the note to it, since the register might actually
12689 be dead; so we recourse, and the recursive call then finds
12690 the previous insn that used this register. */
230d793d
RS
12691
12692 if (place && regno < FIRST_PSEUDO_REGISTER
12693 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12694 {
770ae6cc 12695 unsigned int endregno
230d793d
RS
12696 = regno + HARD_REGNO_NREGS (regno,
12697 GET_MODE (XEXP (note, 0)));
12698 int all_used = 1;
770ae6cc 12699 unsigned int i;
230d793d
RS
12700
12701 for (i = regno; i < endregno; i++)
03afaf36
R
12702 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12703 && ! find_regno_fusage (place, USE, i))
12704 || dead_or_set_regno_p (place, i))
12705 all_used = 0;
a394b17b 12706
230d793d
RS
12707 if (! all_used)
12708 {
12709 /* Put only REG_DEAD notes for pieces that are
03afaf36 12710 not already dead or set. */
230d793d 12711
03afaf36
R
12712 for (i = regno; i < endregno;
12713 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
230d793d 12714 {
e50126e8 12715 rtx piece = regno_reg_rtx[i];
f6366fc7 12716 basic_block bb = this_basic_block;
230d793d 12717
03afaf36 12718 if (! dead_or_set_p (place, piece)
230d793d
RS
12719 && ! reg_bitfield_target_p (piece,
12720 PATTERN (place)))
03afaf36
R
12721 {
12722 rtx new_note
12723 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12724
12725 distribute_notes (new_note, place, place,
12726 NULL_RTX, NULL_RTX, NULL_RTX);
12727 }
c762163e
R
12728 else if (! refers_to_regno_p (i, i + 1,
12729 PATTERN (place), 0)
12730 && ! find_regno_fusage (place, USE, i))
12731 for (tem = PREV_INSN (place); ;
12732 tem = PREV_INSN (tem))
12733 {
12734 if (! INSN_P (tem))
12735 {
12736 if (tem == bb->head)
12737 {
12738 SET_BIT (refresh_blocks,
f6366fc7 12739 this_basic_block->index);
c762163e
R
12740 need_refresh = 1;
12741 break;
12742 }
12743 continue;
12744 }
12745 if (dead_or_set_p (tem, piece)
12746 || reg_bitfield_target_p (piece,
12747 PATTERN (tem)))
12748 {
12749 REG_NOTES (tem)
71fd5a51 12750 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
c762163e
R
12751 REG_NOTES (tem));
12752 break;
12753 }
12754 }
12755
230d793d
RS
12756 }
12757
12758 place = 0;
12759 }
12760 }
12761 }
12762 break;
12763
12764 default:
12765 /* Any other notes should not be present at this point in the
12766 compilation. */
12767 abort ();
12768 }
12769
12770 if (place)
12771 {
12772 XEXP (note, 1) = REG_NOTES (place);
12773 REG_NOTES (place) = note;
12774 }
1a26b032
RK
12775 else if ((REG_NOTE_KIND (note) == REG_DEAD
12776 || REG_NOTE_KIND (note) == REG_UNUSED)
12777 && GET_CODE (XEXP (note, 0)) == REG)
b1f21e0a 12778 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
230d793d
RS
12779
12780 if (place2)
1a26b032
RK
12781 {
12782 if ((REG_NOTE_KIND (note) == REG_DEAD
12783 || REG_NOTE_KIND (note) == REG_UNUSED)
12784 && GET_CODE (XEXP (note, 0)) == REG)
b1f21e0a 12785 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
1a26b032 12786
38a448ca
RH
12787 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12788 REG_NOTE_KIND (note),
12789 XEXP (note, 0),
12790 REG_NOTES (place2));
1a26b032 12791 }
230d793d
RS
12792 }
12793}
12794\f
12795/* Similarly to above, distribute the LOG_LINKS that used to be present on
5089e22e
RS
12796 I3, I2, and I1 to new locations. This is also called in one case to
12797 add a link pointing at I3 when I3's destination is changed. */
230d793d
RS
12798
12799static void
12800distribute_links (links)
12801 rtx links;
12802{
12803 rtx link, next_link;
12804
12805 for (link = links; link; link = next_link)
12806 {
12807 rtx place = 0;
12808 rtx insn;
12809 rtx set, reg;
12810
12811 next_link = XEXP (link, 1);
12812
12813 /* If the insn that this link points to is a NOTE or isn't a single
12814 set, ignore it. In the latter case, it isn't clear what we
663522cb 12815 can do other than ignore the link, since we can't tell which
230d793d
RS
12816 register it was for. Such links wouldn't be used by combine
12817 anyway.
12818
12819 It is not possible for the destination of the target of the link to
12820 have been changed by combine. The only potential of this is if we
12821 replace I3, I2, and I1 by I3 and I2. But in that case the
12822 destination of I2 also remains unchanged. */
12823
12824 if (GET_CODE (XEXP (link, 0)) == NOTE
12825 || (set = single_set (XEXP (link, 0))) == 0)
12826 continue;
12827
12828 reg = SET_DEST (set);
12829 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12830 || GET_CODE (reg) == SIGN_EXTRACT
12831 || GET_CODE (reg) == STRICT_LOW_PART)
12832 reg = XEXP (reg, 0);
12833
12834 /* A LOG_LINK is defined as being placed on the first insn that uses
12835 a register and points to the insn that sets the register. Start
12836 searching at the next insn after the target of the link and stop
12837 when we reach a set of the register or the end of the basic block.
12838
12839 Note that this correctly handles the link that used to point from
5089e22e 12840 I3 to I2. Also note that not much searching is typically done here
230d793d
RS
12841 since most links don't point very far away. */
12842
12843 for (insn = NEXT_INSN (XEXP (link, 0));
f6366fc7
ZD
12844 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12845 || this_basic_block->next_bb->head != insn));
230d793d 12846 insn = NEXT_INSN (insn))
2c3c49de 12847 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
230d793d
RS
12848 {
12849 if (reg_referenced_p (reg, PATTERN (insn)))
12850 place = insn;
12851 break;
12852 }
6e2d1486 12853 else if (GET_CODE (insn) == CALL_INSN
663522cb 12854 && find_reg_fusage (insn, USE, reg))
6e2d1486
RK
12855 {
12856 place = insn;
12857 break;
12858 }
230d793d
RS
12859
12860 /* If we found a place to put the link, place it there unless there
12861 is already a link to the same insn as LINK at that point. */
12862
12863 if (place)
12864 {
12865 rtx link2;
12866
12867 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12868 if (XEXP (link2, 0) == XEXP (link, 0))
12869 break;
12870
12871 if (link2 == 0)
12872 {
12873 XEXP (link, 1) = LOG_LINKS (place);
12874 LOG_LINKS (place) = link;
abe6e52f
RK
12875
12876 /* Set added_links_insn to the earliest insn we added a
12877 link to. */
663522cb 12878 if (added_links_insn == 0
abe6e52f
RK
12879 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12880 added_links_insn = place;
230d793d
RS
12881 }
12882 }
12883 }
12884}
12885\f
1427d6d2
RK
12886/* Compute INSN_CUID for INSN, which is an insn made by combine. */
12887
12888static int
12889insn_cuid (insn)
12890 rtx insn;
12891{
12892 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12893 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12894 insn = NEXT_INSN (insn);
12895
12896 if (INSN_UID (insn) > max_uid_cuid)
12897 abort ();
12898
12899 return INSN_CUID (insn);
12900}
12901\f
230d793d
RS
12902void
12903dump_combine_stats (file)
12904 FILE *file;
12905{
ab87f8c8 12906 fnotice
230d793d
RS
12907 (file,
12908 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12909 combine_attempts, combine_merges, combine_extras, combine_successes);
12910}
12911
12912void
12913dump_combine_total_stats (file)
12914 FILE *file;
12915{
ab87f8c8 12916 fnotice
230d793d
RS
12917 (file,
12918 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12919 total_attempts, total_merges, total_extras, total_successes);
12920}