]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/alpha/alpha.h
(RETURN_ADDRESS_OFFSET): Correct previous change.
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
8b109b37 2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
23/* Names to predefine in the preprocessor for this target machine. */
24
25#define CPP_PREDEFINES "\
26-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 27-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 28
21798cd8
RK
29/* Write out the correct language type definition for the header files.
30 Unless we have assembler language, write out the symbols for C. */
1a94ca49 31#define CPP_SPEC "\
21798cd8 32%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 33%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
34%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
36%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
1a94ca49
RK
37%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
38
39/* Set the spec to use for signed char. The default tests the above macro
40 but DEC's compiler can't handle the conditional in a "constant"
41 operand. */
42
43#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
44
7981384f 45/* No point in running CPP on our assembler output. */
e0fb9029 46#define ASM_SPEC "-nocpp %{pg}"
7981384f 47
1c6c2b05 48/* Under OSF/1, -p and -pg require -lprof1. */
1a94ca49 49
1c6c2b05 50#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
1a94ca49 51
f987462f
JM
52/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
53 optimizing, -O1 if we are not. Pass -shared, -non_shared or
1c6c2b05 54 -call_shared as appropriate. Also pass -pg. */
8877eb00 55#define LINK_SPEC \
d37df6cc 56 "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} \
b890f297
JM
57 %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg} %{taso} \
58 %{rpath*}"
59
60#define WORD_SWITCH_TAKES_ARG(STR) \
61 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
62 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
63 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
64 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
65 || !strcmp (STR, "isystem"))
8877eb00 66
85d159a3 67#define STARTFILE_SPEC \
1c6c2b05 68 "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
85d159a3 69
1a94ca49
RK
70/* Print subsidiary information on the compiler version in use. */
71#define TARGET_VERSION
72
0076aa6b
RK
73/* Default this to not be compiling for Windows/NT. */
74#ifndef WINDOWS_NT
75#define WINDOWS_NT 0
76#endif
77
1a94ca49
RK
78/* Define the location for the startup file on OSF/1 for Alpha. */
79
80#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
81
82/* Run-time compilation parameters selecting different hardware subsets. */
83
84extern int target_flags;
85
86/* This means that floating-point support exists in the target implementation
87 of the Alpha architecture. This is usually the default. */
88
89#define TARGET_FP (target_flags & 1)
90
91/* This means that floating-point registers are allowed to be used. Note
92 that Alpha implementations without FP operations are required to
93 provide the FP registers. */
94
03f8c4cc
RK
95#define TARGET_FPREGS (target_flags & 2)
96
97/* This means that gas is used to process the assembler file. */
98
99#define MASK_GAS 4
100#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49
RK
101
102/* Macro to define tables used to set the flags.
103 This is a list in braces of pairs in braces,
104 each pair being { "NAME", VALUE }
105 where VALUE is the bits to set or minus the bits to clear.
106 An empty string NAME is used to identify the default VALUE. */
107
108#define TARGET_SWITCHES \
109 { {"no-soft-float", 1}, \
110 {"soft-float", -1}, \
111 {"fp-regs", 2}, \
112 {"no-fp-regs", -3}, \
03f8c4cc
RK
113 {"alpha-as", -MASK_GAS}, \
114 {"gas", MASK_GAS}, \
88681624 115 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49
RK
116
117#define TARGET_DEFAULT 3
118
88681624
ILT
119#ifndef TARGET_CPU_DEFAULT
120#define TARGET_CPU_DEFAULT 0
121#endif
122
1a94ca49
RK
123/* Define this macro to change register usage conditional on target flags.
124
125 On the Alpha, we use this to disable the floating-point registers when
126 they don't exist. */
127
128#define CONDITIONAL_REGISTER_USAGE \
129 if (! TARGET_FPREGS) \
52a69200 130 for (i = 32; i < 63; i++) \
1a94ca49
RK
131 fixed_regs[i] = call_used_regs[i] = 1;
132
4f074454
RK
133/* Show we can debug even without a frame pointer. */
134#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
135\f
136/* target machine storage layout */
137
2700ac93
RS
138/* Define to enable software floating point emulation. */
139#define REAL_ARITHMETIC
140
1a94ca49
RK
141/* Define the size of `int'. The default is the same as the word size. */
142#define INT_TYPE_SIZE 32
143
144/* Define the size of `long long'. The default is the twice the word size. */
145#define LONG_LONG_TYPE_SIZE 64
146
147/* The two floating-point formats we support are S-floating, which is
148 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
149 and `long double' are T. */
150
151#define FLOAT_TYPE_SIZE 32
152#define DOUBLE_TYPE_SIZE 64
153#define LONG_DOUBLE_TYPE_SIZE 64
154
155#define WCHAR_TYPE "short unsigned int"
156#define WCHAR_TYPE_SIZE 16
157
13d39dbc 158/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
159 in a wider mode than that declared by the program. In such cases,
160 the value is constrained to be within the bounds of the declared
161 type, but kept valid in the wider mode. The signedness of the
162 extension may differ from that of the type.
163
164 For Alpha, we always store objects in a full register. 32-bit objects
165 are always sign-extended, but smaller objects retain their signedness. */
166
167#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
168 if (GET_MODE_CLASS (MODE) == MODE_INT \
169 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
170 { \
171 if ((MODE) == SImode) \
172 (UNSIGNEDP) = 0; \
173 (MODE) = DImode; \
174 }
175
176/* Define this if function arguments should also be promoted using the above
177 procedure. */
178
179#define PROMOTE_FUNCTION_ARGS
180
181/* Likewise, if the function return value is promoted. */
182
183#define PROMOTE_FUNCTION_RETURN
184
185/* Define this if most significant bit is lowest numbered
186 in instructions that operate on numbered bit-fields.
187
188 There are no such instructions on the Alpha, but the documentation
189 is little endian. */
190#define BITS_BIG_ENDIAN 0
191
192/* Define this if most significant byte of a word is the lowest numbered.
193 This is false on the Alpha. */
194#define BYTES_BIG_ENDIAN 0
195
196/* Define this if most significant word of a multiword number is lowest
197 numbered.
198
199 For Alpha we can decide arbitrarily since there are no machine instructions
200 for them. Might as well be consistent with bytes. */
201#define WORDS_BIG_ENDIAN 0
202
203/* number of bits in an addressable storage unit */
204#define BITS_PER_UNIT 8
205
206/* Width in bits of a "word", which is the contents of a machine register.
207 Note that this is not necessarily the width of data type `int';
208 if using 16-bit ints on a 68000, this would still be 32.
209 But on a machine with 16-bit registers, this would be 16. */
210#define BITS_PER_WORD 64
211
212/* Width of a word, in units (bytes). */
213#define UNITS_PER_WORD 8
214
215/* Width in bits of a pointer.
216 See also the macro `Pmode' defined below. */
217#define POINTER_SIZE 64
218
219/* Allocation boundary (in *bits*) for storing arguments in argument list. */
220#define PARM_BOUNDARY 64
221
222/* Boundary (in *bits*) on which stack pointer should be aligned. */
223#define STACK_BOUNDARY 64
224
225/* Allocation boundary (in *bits*) for the code of a function. */
226#define FUNCTION_BOUNDARY 64
227
228/* Alignment of field after `int : 0' in a structure. */
229#define EMPTY_FIELD_BOUNDARY 64
230
231/* Every structure's size must be a multiple of this. */
232#define STRUCTURE_SIZE_BOUNDARY 8
233
234/* A bitfield declared as `int' forces `int' alignment for the struct. */
235#define PCC_BITFIELD_TYPE_MATTERS 1
236
65823178
RK
237/* Align loop starts for optimal branching.
238
239 ??? Kludge this and the next macro for the moment by not doing anything if
240 we don't optimize and also if we are writing ECOFF symbols to work around
241 a bug in DEC's assembler. */
1a94ca49 242
130d2d72 243#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
244 if (optimize > 0 && write_symbols != SDB_DEBUG) \
245 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
246
247/* This is how to align an instruction for optimal branching.
248 On Alpha we'll get better performance by aligning on a quadword
249 boundary. */
130d2d72 250
1a94ca49 251#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
252 if (optimize > 0 && write_symbols != SDB_DEBUG) \
253 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
254
255/* No data type wants to be aligned rounder than this. */
256#define BIGGEST_ALIGNMENT 64
257
258/* Make strings word-aligned so strcpy from constants will be faster. */
259#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
260 (TREE_CODE (EXP) == STRING_CST \
261 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
262
263/* Make arrays of chars word-aligned for the same reasons. */
264#define DATA_ALIGNMENT(TYPE, ALIGN) \
265 (TREE_CODE (TYPE) == ARRAY_TYPE \
266 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
267 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
268
269/* Set this non-zero if move instructions will actually fail to work
270 when given unaligned data.
271
272 Since we get an error message when we do one, call them invalid. */
273
274#define STRICT_ALIGNMENT 1
275
276/* Set this non-zero if unaligned move instructions are extremely slow.
277
278 On the Alpha, they trap. */
130d2d72
RK
279
280#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
281\f
282/* Standard register usage. */
283
284/* Number of actual hardware registers.
285 The hardware registers are assigned numbers for the compiler
286 from 0 to just below FIRST_PSEUDO_REGISTER.
287 All registers that the compiler knows about must be given numbers,
288 even those that are not normally considered general registers.
289
290 We define all 32 integer registers, even though $31 is always zero,
291 and all 32 floating-point registers, even though $f31 is also
292 always zero. We do not bother defining the FP status register and
130d2d72
RK
293 there are no other registers.
294
295 Since $31 is always zero, we will use register number 31 as the
296 argument pointer. It will never appear in the generated code
297 because we will always be eliminating it in favor of the stack
52a69200
RK
298 pointer or hardware frame pointer.
299
300 Likewise, we use $f31 for the frame pointer, which will always
301 be eliminated in favor of the hardware frame pointer or the
302 stack pointer. */
1a94ca49
RK
303
304#define FIRST_PSEUDO_REGISTER 64
305
306/* 1 for registers that have pervasive standard uses
307 and are not available for the register allocator. */
308
309#define FIXED_REGISTERS \
310 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
311 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
312 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
313 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
314
315/* 1 for registers not available across function calls.
316 These must include the FIXED_REGISTERS and also any
317 registers that can be used without being saved.
318 The latter must include the registers where values are returned
319 and the register where structure-value addresses are passed.
320 Aside from that, you can include as many other registers as you like. */
321#define CALL_USED_REGISTERS \
322 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
323 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
324 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
325 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
326
327/* List the order in which to allocate registers. Each register must be
328 listed once, even those in FIXED_REGISTERS.
329
330 We allocate in the following order:
331 $f1 (nonsaved floating-point register)
332 $f10-$f15 (likewise)
333 $f22-$f30 (likewise)
334 $f21-$f16 (likewise, but input args)
335 $f0 (nonsaved, but return value)
336 $f2-$f9 (saved floating-point registers)
337 $1-$8 (nonsaved integer registers)
338 $22-$25 (likewise)
339 $28 (likewise)
340 $0 (likewise, but return value)
341 $21-$16 (likewise, but input args)
0076aa6b 342 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
343 $9-$14 (saved integer registers)
344 $26 (return PC)
345 $15 (frame pointer)
346 $29 (global pointer)
52a69200 347 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
348
349#define REG_ALLOC_ORDER \
350 {33, \
da01bc2c 351 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
352 54, 55, 56, 57, 58, 59, 60, 61, 62, \
353 53, 52, 51, 50, 49, 48, \
354 32, \
355 34, 35, 36, 37, 38, 39, 40, 41, \
356 1, 2, 3, 4, 5, 6, 7, 8, \
357 22, 23, 24, 25, \
358 28, \
359 0, \
360 21, 20, 19, 18, 17, 16, \
361 27, \
362 9, 10, 11, 12, 13, 14, \
363 26, \
364 15, \
365 29, \
366 30, 31, 63 }
367
368/* Return number of consecutive hard regs needed starting at reg REGNO
369 to hold something of mode MODE.
370 This is ordinarily the length in words of a value of mode MODE
371 but can be less for certain modes in special long registers. */
372
373#define HARD_REGNO_NREGS(REGNO, MODE) \
374 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
375
376/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
377 On Alpha, the integer registers can hold any mode. The floating-point
378 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
379 or 8-bit values. If we only allowed the larger integers into FP registers,
380 we'd have to say that QImode and SImode aren't tiable, which is a
381 pain. So say all registers can hold everything and see how that works. */
382
383#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
384
385/* Value is 1 if it is a good idea to tie two pseudo registers
386 when one has mode MODE1 and one has mode MODE2.
387 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
388 for any hard reg, then this must be 0 for correct output. */
389
390#define MODES_TIEABLE_P(MODE1, MODE2) 1
391
392/* Specify the registers used for certain standard purposes.
393 The values of these macros are register numbers. */
394
395/* Alpha pc isn't overloaded on a register that the compiler knows about. */
396/* #define PC_REGNUM */
397
398/* Register to use for pushing function arguments. */
399#define STACK_POINTER_REGNUM 30
400
401/* Base register for access to local variables of the function. */
52a69200 402#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
403
404/* Value should be nonzero if functions must have frame pointers.
405 Zero means the frame pointer need not be set up (and parms
406 may be accessed via the stack pointer) in functions that seem suitable.
407 This is computed in `reload', in reload1.c. */
408#define FRAME_POINTER_REQUIRED 0
409
410/* Base register for access to arguments of the function. */
130d2d72 411#define ARG_POINTER_REGNUM 31
1a94ca49 412
52a69200
RK
413/* Base register for access to local variables of function. */
414#define FRAME_POINTER_REGNUM 63
415
1a94ca49
RK
416/* Register in which static-chain is passed to a function.
417
418 For the Alpha, this is based on an example; the calling sequence
419 doesn't seem to specify this. */
420#define STATIC_CHAIN_REGNUM 1
421
422/* Register in which address to store a structure value
423 arrives in the function. On the Alpha, the address is passed
424 as a hidden argument. */
425#define STRUCT_VALUE 0
426\f
427/* Define the classes of registers for register constraints in the
428 machine description. Also define ranges of constants.
429
430 One of the classes must always be named ALL_REGS and include all hard regs.
431 If there is more than one class, another class must be named NO_REGS
432 and contain no registers.
433
434 The name GENERAL_REGS must be the name of a class (or an alias for
435 another name such as ALL_REGS). This is the class of registers
436 that is allowed by "g" or "r" in a register constraint.
437 Also, registers outside this class are allocated only when
438 instructions express preferences for them.
439
440 The classes must be numbered in nondecreasing order; that is,
441 a larger-numbered class must never be contained completely
442 in a smaller-numbered class.
443
444 For any two classes, it is very desirable that there be another
445 class that represents their union. */
446
447enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
448 LIM_REG_CLASSES };
449
450#define N_REG_CLASSES (int) LIM_REG_CLASSES
451
452/* Give names of register classes as strings for dump file. */
453
454#define REG_CLASS_NAMES \
455 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
456
457/* Define which registers fit in which classes.
458 This is an initializer for a vector of HARD_REG_SET
459 of length N_REG_CLASSES. */
460
461#define REG_CLASS_CONTENTS \
52a69200 462 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
463
464/* The same information, inverted:
465 Return the class number of the smallest class containing
466 reg number REGNO. This could be a conditional expression
467 or could index an array. */
468
52a69200
RK
469#define REGNO_REG_CLASS(REGNO) \
470 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
471
472/* The class value for index registers, and the one for base regs. */
473#define INDEX_REG_CLASS NO_REGS
474#define BASE_REG_CLASS GENERAL_REGS
475
476/* Get reg_class from a letter such as appears in the machine description. */
477
478#define REG_CLASS_FROM_LETTER(C) \
479 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
480
481/* Define this macro to change register usage conditional on target flags. */
482/* #define CONDITIONAL_REGISTER_USAGE */
483
484/* The letters I, J, K, L, M, N, O, and P in a register constraint string
485 can be used to stand for particular ranges of immediate operands.
486 This macro defines what the ranges are.
487 C is the letter, and VALUE is a constant value.
488 Return 1 if VALUE is in the range specified by C.
489
490 For Alpha:
491 `I' is used for the range of constants most insns can contain.
492 `J' is the constant zero.
493 `K' is used for the constant in an LDA insn.
494 `L' is used for the constant in a LDAH insn.
495 `M' is used for the constants that can be AND'ed with using a ZAP insn.
496 `N' is used for complemented 8-bit constants.
497 `O' is used for negated 8-bit constants.
498 `P' is used for the constants 1, 2 and 3. */
499
500#define CONST_OK_FOR_LETTER_P(VALUE, C) \
501 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
502 : (C) == 'J' ? (VALUE) == 0 \
503 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
504 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c89e8dc2
RK
505 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0) \
506 && ((HOST_BITS_PER_WIDE_INT == 64 \
507 || (unsigned) (VALUE) != 0x80000000u))) \
1a94ca49
RK
508 : (C) == 'M' ? zap_mask (VALUE) \
509 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
510 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
511 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
512 : 0)
513
514/* Similar, but for floating or large integer constants, and defining letters
515 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
516
517 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
518 that is the operand of a ZAP insn. */
519
520#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
521 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
522 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
523 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
524 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
525 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
526 : 0)
527
e560f226
RK
528/* Optional extra constraints for this machine.
529
530 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
531 reference to an unaligned location.
532 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
533 function. */
e560f226
RK
534
535#define EXTRA_CONSTRAINT(OP, C) \
536 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 537 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
538 : 0)
539
1a94ca49
RK
540/* Given an rtx X being reloaded into a reg required to be
541 in class CLASS, return the class of reg to actually use.
542 In general this is just CLASS; but on some machines
543 in some cases it is preferable to use a more restrictive class.
544
545 On the Alpha, all constants except zero go into a floating-point
546 register via memory. */
547
548#define PREFERRED_RELOAD_CLASS(X, CLASS) \
549 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
550 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
551 : (CLASS))
552
553/* Loading and storing HImode or QImode values to and from memory
554 usually requires a scratch register. The exceptions are loading
e560f226 555 QImode and HImode from an aligned address to a general register.
ddd5a7c1 556 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 557 FP register. */
1a94ca49
RK
558
559#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
560(((GET_CODE (IN) == MEM \
561 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
562 || (GET_CODE (IN) == SUBREG \
563 && (GET_CODE (SUBREG_REG (IN)) == MEM \
564 || (GET_CODE (SUBREG_REG (IN)) == REG \
565 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
566 && (((CLASS) == FLOAT_REGS \
567 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
568 || (((MODE) == QImode || (MODE) == HImode) \
569 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
570 ? GENERAL_REGS \
571 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
572 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
573 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
574 && (GET_MODE_SIZE (GET_MODE (IN)) \
575 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 576 : NO_REGS)
1a94ca49
RK
577
578#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
579(((GET_CODE (OUT) == MEM \
580 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
581 || (GET_CODE (OUT) == SUBREG \
582 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
583 || (GET_CODE (SUBREG_REG (OUT)) == REG \
584 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
585 && (((MODE) == HImode || (MODE) == QImode \
586 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
587 ? GENERAL_REGS \
588 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
589 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
590 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
591 && (GET_MODE_SIZE (GET_MODE (OUT)) \
592 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
593 : NO_REGS)
1a94ca49
RK
594
595/* If we are copying between general and FP registers, we need a memory
596 location. */
597
598#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
599
acd94aaf
RK
600/* Specify the mode to be used for memory when a secondary memory
601 location is needed. If MODE is floating-point, use it. Otherwise,
602 widen to a word like the default. This is needed because we always
603 store integers in FP registers in quadword format. This whole
604 area is very tricky! */
605#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
606 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 607 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
608 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
609
1a94ca49
RK
610/* Return the maximum number of consecutive registers
611 needed to represent mode MODE in a register of class CLASS. */
612
613#define CLASS_MAX_NREGS(CLASS, MODE) \
614 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
615
c31dfe4d
RK
616/* If defined, gives a class of registers that cannot be used as the
617 operand of a SUBREG that changes the size of the object. */
618
619#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
620
1a94ca49
RK
621/* Define the cost of moving between registers of various classes. Moving
622 between FLOAT_REGS and anything else except float regs is expensive.
623 In fact, we make it quite expensive because we really don't want to
624 do these moves unless it is clearly worth it. Optimizations may
625 reduce the impact of not being able to allocate a pseudo to a
626 hard register. */
627
628#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
629 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
630
631/* A C expressions returning the cost of moving data of MODE from a register to
632 or from memory.
633
634 On the Alpha, bump this up a bit. */
635
636#define MEMORY_MOVE_COST(MODE) 6
637
638/* Provide the cost of a branch. Exact meaning under development. */
639#define BRANCH_COST 5
640
641/* Adjust the cost of dependencies. */
642
643#define ADJUST_COST(INSN,LINK,DEP,COST) \
644 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
645\f
646/* Stack layout; function entry, exit and calling. */
647
648/* Define this if pushing a word on the stack
649 makes the stack pointer a smaller address. */
650#define STACK_GROWS_DOWNWARD
651
652/* Define this if the nominal address of the stack frame
653 is at the high-address end of the local variables;
654 that is, each additional local variable allocated
655 goes at a more negative offset in the frame. */
130d2d72 656/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
657
658/* Offset within stack frame to start allocating local variables at.
659 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
660 first local allocated. Otherwise, it is the offset to the BEGINNING
661 of the first local allocated. */
662
52a69200 663#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
664
665/* If we generate an insn to push BYTES bytes,
666 this says how many the stack pointer really advances by.
667 On Alpha, don't define this because there are no push insns. */
668/* #define PUSH_ROUNDING(BYTES) */
669
670/* Define this if the maximum size of all the outgoing args is to be
671 accumulated and pushed during the prologue. The amount can be
672 found in the variable current_function_outgoing_args_size. */
673#define ACCUMULATE_OUTGOING_ARGS
674
675/* Offset of first parameter from the argument pointer register value. */
676
130d2d72 677#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
678
679/* Definitions for register eliminations.
680
978e8952 681 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 682 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
683 pointer register. Secondly, the argument pointer register can always be
684 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
685
686/* This is an array of structures. Each structure initializes one pair
687 of eliminable registers. The "from" register number is given first,
688 followed by "to". Eliminations of the same "from" register are listed
689 in order of preference. */
690
52a69200
RK
691#define ELIMINABLE_REGS \
692{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
693 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
694 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
695 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
696
697/* Given FROM and TO register numbers, say whether this elimination is allowed.
698 Frame pointer elimination is automatically handled.
699
130d2d72 700 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
701 eliminated are already handled. */
702
130d2d72 703#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 704
52a69200
RK
705/* Round up to a multiple of 16 bytes. */
706#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
707
1a94ca49
RK
708/* Define the offset between two registers, one to be eliminated, and the other
709 its replacement, at the start of a routine. */
710#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
711{ if ((FROM) == FRAME_POINTER_REGNUM) \
712 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
713 + alpha_sa_size ()); \
714 else if ((FROM) == ARG_POINTER_REGNUM) \
715 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
716 + alpha_sa_size () \
d772039b
RK
717 + (ALPHA_ROUND (get_frame_size () \
718 + current_function_pretend_args_size) \
719 - current_function_pretend_args_size)); \
1a94ca49
RK
720}
721
722/* Define this if stack space is still allocated for a parameter passed
723 in a register. */
724/* #define REG_PARM_STACK_SPACE */
725
726/* Value is the number of bytes of arguments automatically
727 popped when returning from a subroutine call.
8b109b37 728 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
729 FUNTYPE is the data type of the function (as a tree),
730 or for a library call it is an identifier node for the subroutine name.
731 SIZE is the number of bytes of arguments passed on the stack. */
732
8b109b37 733#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
734
735/* Define how to find the value returned by a function.
736 VALTYPE is the data type of the value (as a tree).
737 If the precise function being called is known, FUNC is its FUNCTION_DECL;
738 otherwise, FUNC is 0.
739
740 On Alpha the value is found in $0 for integer functions and
741 $f0 for floating-point functions. */
742
743#define FUNCTION_VALUE(VALTYPE, FUNC) \
744 gen_rtx (REG, \
20e76cb9 745 (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
1a94ca49
RK
746 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
747 ? word_mode : TYPE_MODE (VALTYPE), \
748 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
749
750/* Define how to find the value returned by a library function
751 assuming the value has mode MODE. */
752
753#define LIBCALL_VALUE(MODE) \
754 gen_rtx (REG, MODE, \
755 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
756
130d2d72
RK
757/* The definition of this macro implies that there are cases where
758 a scalar value cannot be returned in registers.
759
760 For the Alpha, any structure or union type is returned in memory, as
761 are integers whose size is larger than 64 bits. */
762
763#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 764 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
765 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
766
1a94ca49
RK
767/* 1 if N is a possible register number for a function value
768 as seen by the caller. */
769
770#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
771
772/* 1 if N is a possible register number for function argument passing.
773 On Alpha, these are $16-$21 and $f16-$f21. */
774
775#define FUNCTION_ARG_REGNO_P(N) \
776 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
777\f
778/* Define a data type for recording info about an argument list
779 during the scan of that argument list. This data type should
780 hold all necessary information about the function itself
781 and about the args processed so far, enough to enable macros
782 such as FUNCTION_ARG to determine where the next arg should go.
783
784 On Alpha, this is a single integer, which is a number of words
785 of arguments scanned so far.
786 Thus 6 or more means all following args should go on the stack. */
787
788#define CUMULATIVE_ARGS int
789
790/* Initialize a variable CUM of type CUMULATIVE_ARGS
791 for a call to a function whose data type is FNTYPE.
792 For a library call, FNTYPE is 0. */
793
794#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
795
796/* Define intermediate macro to compute the size (in registers) of an argument
797 for the Alpha. */
798
799#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
800((MODE) != BLKmode \
801 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
802 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
803
804/* Update the data in CUM to advance over an argument
805 of mode MODE and data type TYPE.
806 (TYPE is null for libcalls where that information may not be available.) */
807
808#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
809 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
810 (CUM) = 6; \
811 else \
812 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
813
814/* Determine where to put an argument to a function.
815 Value is zero to push the argument on the stack,
816 or a hard register in which to store the argument.
817
818 MODE is the argument's machine mode.
819 TYPE is the data type of the argument (as a tree).
820 This is null for libcalls where that information may
821 not be available.
822 CUM is a variable of type CUMULATIVE_ARGS which gives info about
823 the preceding args and about the function being called.
824 NAMED is nonzero if this argument is a named parameter
825 (otherwise it is an extra parameter matching an ellipsis).
826
827 On Alpha the first 6 words of args are normally in registers
828 and the rest are pushed. */
829
830#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
831((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
832 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
833 (CUM) + 16 + ((TARGET_FPREGS \
834 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
835 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
836 * 32)) \
837 : 0)
1a94ca49 838
1a94ca49
RK
839/* Specify the padding direction of arguments.
840
841 On the Alpha, we must pad upwards in order to be able to pass args in
842 registers. */
843
844#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
845
846/* For an arg passed partly in registers and partly in memory,
847 this is the number of registers used.
848 For args passed entirely in registers or entirely in memory, zero. */
849
850#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
851((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
852 ? 6 - (CUM) : 0)
853
130d2d72
RK
854/* Perform any needed actions needed for a function that is receiving a
855 variable number of arguments.
856
857 CUM is as above.
858
859 MODE and TYPE are the mode and type of the current parameter.
860
861 PRETEND_SIZE is a variable that should be set to the amount of stack
862 that must be pushed by the prolog to pretend that our caller pushed
863 it.
864
865 Normally, this macro will push all remaining incoming registers on the
866 stack and set PRETEND_SIZE to the length of the registers pushed.
867
868 On the Alpha, we allocate space for all 12 arg registers, but only
869 push those that are remaining.
870
871 However, if NO registers need to be saved, don't allocate any space.
872 This is not only because we won't need the space, but because AP includes
873 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
874 ap-relative addresses already made.
875
876 If we are not to use the floating-point registers, save the integer
877 registers where we would put the floating-point registers. This is
878 not the most efficient way to implement varargs with just one register
879 class, but it isn't worth doing anything more efficient in this rare
880 case. */
881
130d2d72
RK
882
883#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
884{ if ((CUM) < 6) \
885 { \
886 if (! (NO_RTL)) \
887 { \
888 move_block_from_reg \
889 (16 + CUM, \
890 gen_rtx (MEM, BLKmode, \
891 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 892 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 893 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 894 move_block_from_reg \
7a92339b 895 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
896 gen_rtx (MEM, BLKmode, \
897 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 898 (CUM) * UNITS_PER_WORD)), \
02892e06 899 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
900 } \
901 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
902 } \
903}
904
c8e9adec
RK
905/* Try to output insns to set TARGET equal to the constant C if it can be
906 done in less than N insns. Do all computations in MODE. Returns the place
907 where the output has been placed if it can be done and the insns have been
908 emitted. If it would take more than N insns, zero is returned and no
909 insns and emitted. */
910extern struct rtx_def *alpha_emit_set_const ();
911
1a94ca49
RK
912/* Generate necessary RTL for __builtin_saveregs().
913 ARGLIST is the argument list; see expr.c. */
914extern struct rtx_def *alpha_builtin_saveregs ();
915#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
916
917/* Define the information needed to generate branch and scc insns. This is
918 stored from the compare operation. Note that we can't use "rtx" here
919 since it hasn't been defined! */
920
921extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
922extern int alpha_compare_fp_p;
923
924/* This macro produces the initial definition of a function name. On the
03f8c4cc 925 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
926
927extern char *alpha_function_name;
928
929#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 930{ \
1a94ca49
RK
931 alpha_function_name = NAME; \
932}
933
934/* This macro generates the assembly code for function entry.
935 FILE is a stdio stream to output the code to.
936 SIZE is an int: how many units of temporary storage to allocate.
937 Refer to the array `regs_ever_live' to determine which registers
938 to save; `regs_ever_live[I]' is nonzero if register number I
939 is ever used in the function. This macro is responsible for
940 knowing which registers should not be saved even if used. */
941
942#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
943
944/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 945 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 946 by simply passing -pg to the assembler and linker. */
85d159a3 947
e0fb9029 948#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
949
950/* Output assembler code to FILE to initialize this source file's
951 basic block profiling info, if that has not already been done.
952 This assumes that __bb_init_func doesn't garble a1-a5. */
953
954#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
955 do { \
956 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
957 fputs ("\tlda $16,$PBX32\n", (FILE)); \
958 fputs ("\tldq $26,0($16)\n", (FILE)); \
959 fputs ("\tbne $26,1f\n", (FILE)); \
960 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
961 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
962 fputs ("\tldgp $29,0($26)\n", (FILE)); \
963 fputs ("1:\n", (FILE)); \
85d159a3
RK
964 ASM_OUTPUT_REG_POP (FILE, 16); \
965 } while (0);
966
967/* Output assembler code to FILE to increment the entry-count for
968 the BLOCKNO'th basic block in this source file. */
969
970#define BLOCK_PROFILER(FILE, BLOCKNO) \
971 do { \
972 int blockn = (BLOCKNO); \
a62eb16f 973 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
974 fputs ("\tstq $26,0($30)\n", (FILE)); \
975 fputs ("\tstq $27,8($30)\n", (FILE)); \
976 fputs ("\tlda $26,$PBX34\n", (FILE)); \
977 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
978 fputs ("\taddq $27,1,$27\n", (FILE)); \
979 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
980 fputs ("\tldq $26,0($30)\n", (FILE)); \
981 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 982 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 983 } while (0)
1a94ca49 984
1a94ca49
RK
985
986/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
987 the stack pointer does not matter. The value is tested only in
988 functions that have frame pointers.
989 No definition is equivalent to always zero. */
990
991#define EXIT_IGNORE_STACK 1
992
993/* This macro generates the assembly code for function exit,
994 on machines that need it. If FUNCTION_EPILOGUE is not defined
995 then individual return instructions are generated for each
996 return statement. Args are same as for FUNCTION_PROLOGUE.
997
998 The function epilogue should not depend on the current stack pointer!
999 It should use the frame pointer only. This is mandatory because
1000 of alloca; we also take advantage of it to omit stack adjustments
1001 before returning. */
1002
1003#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1004
1005\f
1006/* Output assembler code for a block containing the constant parts
1007 of a trampoline, leaving space for the variable parts.
1008
1009 The trampoline should set the static chain pointer to value placed
7981384f
RK
1010 into the trampoline and should branch to the specified routine.
1011 Note that $27 has been set to the address of the trampoline, so we can
1012 use it for addressability of the two data items. Trampolines are always
1013 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1014
1015#define TRAMPOLINE_TEMPLATE(FILE) \
1016{ \
7981384f 1017 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1018 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1019 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1020 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1021 fprintf (FILE, "\t.quad 0,0\n"); \
1022}
1023
3a523eeb
RS
1024/* Section in which to place the trampoline. On Alpha, instructions
1025 may only be placed in a text segment. */
1026
1027#define TRAMPOLINE_SECTION text_section
1028
1a94ca49
RK
1029/* Length in units of the trampoline for entering a nested function. */
1030
7981384f 1031#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1032
1033/* Emit RTL insns to initialize the variable parts of a trampoline.
1034 FNADDR is an RTX for the address of the function's pure code.
1035 CXT is an RTX for the static chain value for the function. We assume
1036 here that a function will be called many more times than its address
1037 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1038 to initialize the "hint" field in the JMP insn. Note that the hint
1039 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1040
1041#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1042{ \
1043 rtx _temp, _temp1, _addr; \
1044 \
1045 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1046 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1047 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1048 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1049 \
7981384f
RK
1050 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1051 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1052 OPTAB_WIDEN); \
1053 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1054 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1055 _temp = expand_and (gen_lowpart (SImode, _temp), \
1056 GEN_INT (0x3fff), 0); \
1a94ca49 1057 \
7981384f 1058 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1059 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1060 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1061 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1062 OPTAB_WIDEN); \
1063 \
1064 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1065 \
1066 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1067 "__enable_execute_stack"), \
1068 0, VOIDmode, 1,_addr, Pmode); \
1069 \
1070 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1071 gen_rtvec (1, const0_rtx), 0)); \
1072}
1073
1074/* Attempt to turn on access permissions for the stack. */
1075
1076#define TRANSFER_FROM_TRAMPOLINE \
1077 \
1078void \
1079__enable_execute_stack (addr) \
1080 void *addr; \
1081{ \
1082 long size = getpagesize (); \
1083 long mask = ~(size-1); \
1084 char *page = (char *) (((long) addr) & mask); \
1085 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1086 \
1087 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1088 if (mprotect (page, end - page, 7) < 0) \
1089 perror ("mprotect of trampoline code"); \
1a94ca49 1090}
675f0e7c
RK
1091
1092/* A C expression whose value is RTL representing the value of the return
1093 address for the frame COUNT steps up from the current frame.
1094 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1095 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
1096
1097 This definition for Alpha is broken, but is put in at the request of
1098 Mike Stump. */
1099
1100#define RETURN_ADDR_RTX(COUNT, FRAME) \
1101((COUNT == 0 && alpha_sa_size () == 0 && 0 /* not right. */) \
6ea0cab3
RK
1102 ? gen_rtx (REG, Pmode, 26) \
1103 : gen_rtx (MEM, Pmode, \
675f0e7c
RK
1104 memory_address (Pmode, FRAME)))
1105\f
1a94ca49
RK
1106/* Addressing modes, and classification of registers for them. */
1107
1108/* #define HAVE_POST_INCREMENT */
1109/* #define HAVE_POST_DECREMENT */
1110
1111/* #define HAVE_PRE_DECREMENT */
1112/* #define HAVE_PRE_INCREMENT */
1113
1114/* Macros to check register numbers against specific register classes. */
1115
1116/* These assume that REGNO is a hard or pseudo reg number.
1117 They give nonzero only if REGNO is a hard reg of the suitable class
1118 or a pseudo reg currently allocated to a suitable hard reg.
1119 Since they use reg_renumber, they are safe only once reg_renumber
1120 has been allocated, which happens in local-alloc.c. */
1121
1122#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1123#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1124((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1125 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1126\f
1127/* Maximum number of registers that can appear in a valid memory address. */
1128#define MAX_REGS_PER_ADDRESS 1
1129
1130/* Recognize any constant value that is a valid address. For the Alpha,
1131 there are only constants none since we want to use LDA to load any
1132 symbolic addresses into registers. */
1133
1134#define CONSTANT_ADDRESS_P(X) \
1135 (GET_CODE (X) == CONST_INT \
1136 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1137
1138/* Include all constant integers and constant doubles, but not
1139 floating-point, except for floating-point zero. */
1140
1141#define LEGITIMATE_CONSTANT_P(X) \
1142 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1143 || (X) == CONST0_RTX (GET_MODE (X)))
1144
1145/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1146 and check its validity for a certain class.
1147 We have two alternate definitions for each of them.
1148 The usual definition accepts all pseudo regs; the other rejects
1149 them unless they have been allocated suitable hard regs.
1150 The symbol REG_OK_STRICT causes the latter definition to be used.
1151
1152 Most source files want to accept pseudo regs in the hope that
1153 they will get allocated to the class that the insn wants them to be in.
1154 Source files for reload pass need to be strict.
1155 After reload, it makes no difference, since pseudo regs have
1156 been eliminated by then. */
1157
1158#ifndef REG_OK_STRICT
1159
1160/* Nonzero if X is a hard reg that can be used as an index
1161 or if it is a pseudo reg. */
1162#define REG_OK_FOR_INDEX_P(X) 0
1163/* Nonzero if X is a hard reg that can be used as a base reg
1164 or if it is a pseudo reg. */
1165#define REG_OK_FOR_BASE_P(X) \
52a69200 1166 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1167
1168#else
1169
1170/* Nonzero if X is a hard reg that can be used as an index. */
1171#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1172/* Nonzero if X is a hard reg that can be used as a base reg. */
1173#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1174
1175#endif
1176\f
1177/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1178 that is a valid memory address for an instruction.
1179 The MODE argument is the machine mode for the MEM expression
1180 that wants to use this address.
1181
1182 For Alpha, we have either a constant address or the sum of a register
1183 and a constant address, or just a register. For DImode, any of those
1184 forms can be surrounded with an AND that clear the low-order three bits;
1185 this is an "unaligned" access.
1186
1a94ca49
RK
1187 First define the basic valid address. */
1188
1189#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1190{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1191 goto ADDR; \
1192 if (CONSTANT_ADDRESS_P (X)) \
1193 goto ADDR; \
1194 if (GET_CODE (X) == PLUS \
1195 && REG_P (XEXP (X, 0)) \
1196 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1197 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1198 goto ADDR; \
1199}
1200
1201/* Now accept the simple address, or, for DImode only, an AND of a simple
1202 address that turns off the low three bits. */
1203
1a94ca49
RK
1204#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1205{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1206 if ((MODE) == DImode \
1207 && GET_CODE (X) == AND \
1208 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1209 && INTVAL (XEXP (X, 1)) == -8) \
1210 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1211}
1212
1213/* Try machine-dependent ways of modifying an illegitimate address
1214 to be legitimate. If we find one, return the new, valid address.
1215 This macro is used in only one place: `memory_address' in explow.c.
1216
1217 OLDX is the address as it was before break_out_memory_refs was called.
1218 In some cases it is useful to look at this to decide what needs to be done.
1219
1220 MODE and WIN are passed so that this macro can use
1221 GO_IF_LEGITIMATE_ADDRESS.
1222
1223 It is always safe for this macro to do nothing. It exists to recognize
1224 opportunities to optimize the output.
1225
1226 For the Alpha, there are three cases we handle:
1227
1228 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1229 valid offset, compute the high part of the constant and add it to the
1230 register. Then our address is (plus temp low-part-const).
1231 (2) If the address is (const (plus FOO const_int)), find the low-order
1232 part of the CONST_INT. Then load FOO plus any high-order part of the
1233 CONST_INT into a register. Our address is (plus reg low-part-const).
1234 This is done to reduce the number of GOT entries.
1235 (3) If we have a (plus reg const), emit the load as in (2), then add
1236 the two registers, and finally generate (plus reg low-part-const) as
1237 our address. */
1238
1239#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1240{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1241 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1242 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1243 { \
1244 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1245 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1246 HOST_WIDE_INT highpart = val - lowpart; \
1247 rtx high = GEN_INT (highpart); \
1248 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1249 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1250 \
1251 (X) = plus_constant (temp, lowpart); \
1252 goto WIN; \
1253 } \
1254 else if (GET_CODE (X) == CONST \
1255 && GET_CODE (XEXP (X, 0)) == PLUS \
1256 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1257 { \
1258 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1259 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1260 HOST_WIDE_INT highpart = val - lowpart; \
1261 rtx high = XEXP (XEXP (X, 0), 0); \
1262 \
1263 if (highpart) \
1264 high = plus_constant (high, highpart); \
1265 \
1266 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1267 goto WIN; \
1268 } \
1269 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1270 && GET_CODE (XEXP (X, 1)) == CONST \
1271 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1272 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1273 { \
1274 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1275 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1276 HOST_WIDE_INT highpart = val - lowpart; \
1277 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1278 \
1279 if (highpart) \
1280 high = plus_constant (high, highpart); \
1281 \
1282 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1283 force_reg (Pmode, high), \
80f251fe 1284 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1285 (X) = plus_constant (high, lowpart); \
1286 goto WIN; \
1287 } \
1288}
1289
1290/* Go to LABEL if ADDR (a legitimate address expression)
1291 has an effect that depends on the machine mode it is used for.
1292 On the Alpha this is true only for the unaligned modes. We can
1293 simplify this test since we know that the address must be valid. */
1294
1295#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1296{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1297
1298/* Compute the cost of an address. For the Alpha, all valid addresses are
1299 the same cost. */
1300
1301#define ADDRESS_COST(X) 0
1302
1303/* Define this if some processing needs to be done immediately before
1304 emitting code for an insn. */
1305
1306/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1307\f
1308/* Specify the machine mode that this machine uses
1309 for the index in the tablejump instruction. */
1310#define CASE_VECTOR_MODE SImode
1311
1312/* Define this if the tablejump instruction expects the table
1313 to contain offsets from the address of the table.
260ced47
RK
1314 Do not define this if the table should contain absolute addresses.
1315 On the Alpha, the table is really GP-relative, not relative to the PC
1316 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1317 but we should try to find some better way sometime. */
260ced47 1318#define CASE_VECTOR_PC_RELATIVE
1a94ca49
RK
1319
1320/* Specify the tree operation to be used to convert reals to integers. */
1321#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1322
1323/* This is the kind of divide that is easiest to do in the general case. */
1324#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1325
1326/* Define this as 1 if `char' should by default be signed; else as 0. */
1327#define DEFAULT_SIGNED_CHAR 1
1328
1329/* This flag, if defined, says the same insns that convert to a signed fixnum
1330 also convert validly to an unsigned one.
1331
1332 We actually lie a bit here as overflow conditions are different. But
1333 they aren't being checked anyway. */
1334
1335#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1336
1337/* Max number of bytes we can move to or from memory
1338 in one reasonably fast instruction. */
1339
1340#define MOVE_MAX 8
1341
1342/* Largest number of bytes of an object that can be placed in a register.
1343 On the Alpha we have plenty of registers, so use TImode. */
1344#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1345
1346/* Nonzero if access to memory by bytes is no faster than for words.
1347 Also non-zero if doing byte operations (specifically shifts) in registers
1348 is undesirable.
1349
1350 On the Alpha, we want to not use the byte operation and instead use
1351 masking operations to access fields; these will save instructions. */
1352
1353#define SLOW_BYTE_ACCESS 1
1354
9a63901f
RK
1355/* Define if operations between registers always perform the operation
1356 on the full register even if a narrower mode is specified. */
1357#define WORD_REGISTER_OPERATIONS
1358
1359/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1360 will either zero-extend or sign-extend. The value of this macro should
1361 be the code that says which one of the two operations is implicitly
1362 done, NIL if none. */
1363#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1a94ca49 1364
225211e2
RK
1365/* Define if loading short immediate values into registers sign extends. */
1366#define SHORT_IMMEDIATES_SIGN_EXTEND
1367
1a94ca49
RK
1368/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1369 is done just by pretending it is already truncated. */
1370#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1371
1372/* We assume that the store-condition-codes instructions store 0 for false
1373 and some other value for true. This is the value stored for true. */
1374
1375#define STORE_FLAG_VALUE 1
1376
1377/* Define the value returned by a floating-point comparison instruction. */
1378
1379#define FLOAT_STORE_FLAG_VALUE 0.5
1380
35bb77fd
RK
1381/* Canonicalize a comparison from one we don't have to one we do have. */
1382
1383#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1384 do { \
1385 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1386 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1387 { \
1388 rtx tem = (OP0); \
1389 (OP0) = (OP1); \
1390 (OP1) = tem; \
1391 (CODE) = swap_condition (CODE); \
1392 } \
1393 if (((CODE) == LT || (CODE) == LTU) \
1394 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1395 { \
1396 (CODE) = (CODE) == LT ? LE : LEU; \
1397 (OP1) = GEN_INT (255); \
1398 } \
1399 } while (0)
1400
1a94ca49
RK
1401/* Specify the machine mode that pointers have.
1402 After generation of rtl, the compiler makes no further distinction
1403 between pointers and any other objects of this machine mode. */
1404#define Pmode DImode
1405
1406/* Mode of a function address in a call instruction (for indexing purposes). */
1407
1408#define FUNCTION_MODE Pmode
1409
1410/* Define this if addresses of constant functions
1411 shouldn't be put through pseudo regs where they can be cse'd.
1412 Desirable on machines where ordinary constants are expensive
1413 but a CALL with constant address is cheap.
1414
1415 We define this on the Alpha so that gen_call and gen_call_value
1416 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1417 then copy it into a register, thus actually letting the address be
1418 cse'ed. */
1419
1420#define NO_FUNCTION_CSE
1421
d969caf8 1422/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1423 few bits. */
d969caf8 1424#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1425
d721b776
RK
1426/* Use atexit for static constructors/destructors, instead of defining
1427 our own exit function. */
1428#define HAVE_ATEXIT
1429
1a94ca49
RK
1430/* Compute the cost of computing a constant rtl expression RTX
1431 whose rtx-code is CODE. The body of this macro is a portion
1432 of a switch statement. If the code is computed here,
1433 return it with a return statement. Otherwise, break from the switch.
1434
8b7b2e36
RK
1435 If this is an 8-bit constant, return zero since it can be used
1436 nearly anywhere with no cost. If it is a valid operand for an
1437 ADD or AND, likewise return 0 if we know it will be used in that
1438 context. Otherwise, return 2 since it might be used there later.
1439 All other constants take at least two insns. */
1a94ca49
RK
1440
1441#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1442 case CONST_INT: \
06eb8e92 1443 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1444 return 0; \
1a94ca49 1445 case CONST_DOUBLE: \
8b7b2e36
RK
1446 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1447 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1448 return 0; \
1449 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1450 return 2; \
1451 else \
1452 return COSTS_N_INSNS (2); \
1a94ca49
RK
1453 case CONST: \
1454 case SYMBOL_REF: \
1455 case LABEL_REF: \
8b7b2e36 1456 return COSTS_N_INSNS (3);
1a94ca49
RK
1457
1458/* Provide the costs of a rtl expression. This is in the body of a
1459 switch on CODE. */
1460
1461#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1462 case PLUS: case MINUS: \
1463 if (FLOAT_MODE_P (GET_MODE (X))) \
1a94ca49 1464 return COSTS_N_INSNS (6); \
b49e978e
RK
1465 else if (GET_CODE (XEXP (X, 0)) == MULT \
1466 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1467 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1468 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1469 break; \
1470 case MULT: \
3bda6d11 1471 if (FLOAT_MODE_P (GET_MODE (X))) \
1a94ca49 1472 return COSTS_N_INSNS (6); \
919ea6a5 1473 return COSTS_N_INSNS (23); \
b49e978e
RK
1474 case ASHIFT: \
1475 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1476 && INTVAL (XEXP (X, 1)) <= 3) \
1477 break; \
1478 /* ... fall through ... */ \
1479 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1480 return COSTS_N_INSNS (2); \
3bda6d11 1481 case DIV: case UDIV: case MOD: case UMOD: \
1a94ca49
RK
1482 if (GET_MODE (X) == SFmode) \
1483 return COSTS_N_INSNS (34); \
1484 else if (GET_MODE (X) == DFmode) \
1485 return COSTS_N_INSNS (63); \
1486 else \
1487 return COSTS_N_INSNS (70); \
1488 case MEM: \
3bda6d11
RK
1489 return COSTS_N_INSNS (3); \
1490 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1491 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
1492 return COSTS_N_INSNS (6); \
1493 case NEG: case ABS: \
1494 if (FLOAT_MODE_P (GET_MODE (X))) \
1495 return COSTS_N_INSNS (6); \
1496 break;
1a94ca49
RK
1497\f
1498/* Control the assembler format that we output. */
1499
1500/* Output at beginning of assembler file. */
1501
1502#define ASM_FILE_START(FILE) \
03f8c4cc 1503{ \
130d2d72
RK
1504 alpha_write_verstamp (FILE); \
1505 fprintf (FILE, "\t.set noreorder\n"); \
fee3a4a8 1506 fprintf (FILE, "\t.set volatile\n"); \
1a94ca49 1507 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1508 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1509}
1510
1511/* Output to assembler file text saying following lines
1512 may contain character constants, extra white space, comments, etc. */
1513
1514#define ASM_APP_ON ""
1515
1516/* Output to assembler file text saying following lines
1517 no longer contain unusual constructs. */
1518
1519#define ASM_APP_OFF ""
1520
1521#define TEXT_SECTION_ASM_OP ".text"
1522
1523/* Output before read-only data. */
1524
1525#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1526
1527/* Output before writable data. */
1528
1529#define DATA_SECTION_ASM_OP ".data"
1530
1531/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1532 indicate that it is for read-only data.
1533
abc95ed3 1534 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1535 eight bytes of zero. This works around a bug in DEC's assembler in
1536 some versions of OSF/1 V3.x. */
1a94ca49
RK
1537
1538#define EXTRA_SECTIONS readonly_data
1539
1540#define EXTRA_SECTION_FUNCTIONS \
1541void \
1542literal_section () \
1543{ \
1544 if (in_section != readonly_data) \
1545 { \
c0388f29
RK
1546 static int firsttime = 1; \
1547 \
1a94ca49 1548 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1549 if (firsttime) \
1550 { \
1551 firsttime = 0; \
1552 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1553 } \
1554 \
1a94ca49
RK
1555 in_section = readonly_data; \
1556 } \
1557} \
1558
1559#define READONLY_DATA_SECTION literal_section
1560
ac030a7b
RK
1561/* If we are referencing a function that is static, make the SYMBOL_REF
1562 special. We use this to see indicate we can branch to this function
1563 without setting PV or restoring GP. */
130d2d72
RK
1564
1565#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1566 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1567 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1568
1a94ca49
RK
1569/* How to refer to registers in assembler output.
1570 This sequence is indexed by compiler's hard-register-number (see above). */
1571
1572#define REGISTER_NAMES \
1573{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1574 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1575 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1576 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1577 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1578 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1579 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1580 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1581
1582/* How to renumber registers for dbx and gdb. */
1583
1584#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1585
1586/* This is how to output the definition of a user-level label named NAME,
1587 such as the label on a static function or variable NAME. */
1588
1589#define ASM_OUTPUT_LABEL(FILE,NAME) \
1590 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1591
1592/* This is how to output a command to make the user-level label named NAME
1593 defined for reference from other files. */
1594
1595#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1596 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1597
1598/* This is how to output a reference to a user-level label named NAME.
1599 `assemble_name' uses this. */
1600
1601#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1602 fprintf (FILE, "%s", NAME)
1603
1604/* This is how to output an internal numbered label where
1605 PREFIX is the class of label and NUM is the number within the class. */
1606
1607#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1608 if ((PREFIX)[0] == 'L') \
1609 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1610 else \
1611 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1612
1613/* This is how to output a label for a jump table. Arguments are the same as
1614 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1615 passed. */
1616
1617#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1618{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1619
1620/* This is how to store into the string LABEL
1621 the symbol_ref name of an internal numbered label where
1622 PREFIX is the class of label and NUM is the number within the class.
1623 This is suitable for output with `assemble_name'. */
1624
1625#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1626 if ((PREFIX)[0] == 'L') \
1627 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1628 else \
1629 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1630
1631/* This is how to output an assembler line defining a `double' constant. */
1632
e99300f1
RS
1633#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1634 { \
1635 if (REAL_VALUE_ISINF (VALUE) \
1636 || REAL_VALUE_ISNAN (VALUE) \
1637 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1638 { \
1639 long t[2]; \
1640 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1641 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1642 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1643 } \
1644 else \
1645 { \
1646 char str[30]; \
1647 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1648 fprintf (FILE, "\t.t_floating %s\n", str); \
1649 } \
1650 }
1a94ca49
RK
1651
1652/* This is how to output an assembler line defining a `float' constant. */
1653
e99300f1
RS
1654#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1655 { \
1656 if (REAL_VALUE_ISINF (VALUE) \
1657 || REAL_VALUE_ISNAN (VALUE) \
1658 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1659 { \
1660 long t; \
1661 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1662 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1663 } \
1664 else \
1665 { \
1666 char str[30]; \
1667 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1668 fprintf (FILE, "\t.s_floating %s\n", str); \
1669 } \
1670 }
2700ac93 1671
1a94ca49
RK
1672/* This is how to output an assembler line defining an `int' constant. */
1673
1674#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1675( fprintf (FILE, "\t.long "), \
1676 output_addr_const (FILE, (VALUE)), \
1677 fprintf (FILE, "\n"))
1a94ca49
RK
1678
1679/* This is how to output an assembler line defining a `long' constant. */
1680
1681#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1682( fprintf (FILE, "\t.quad "), \
1683 output_addr_const (FILE, (VALUE)), \
1684 fprintf (FILE, "\n"))
1685
1686/* Likewise for `char' and `short' constants. */
1687
1688#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1689 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1690 (GET_CODE (VALUE) == CONST_INT \
1691 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1692
1693#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1694 fprintf (FILE, "\t.byte %d\n", \
1695 (GET_CODE (VALUE) == CONST_INT \
1696 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1697
1698/* We use the default ASCII-output routine, except that we don't write more
1699 than 50 characters since the assembler doesn't support very long lines. */
1700
1701#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1702 do { \
1703 FILE *_hide_asm_out_file = (MYFILE); \
1704 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1705 int _hide_thissize = (MYLENGTH); \
1706 int _size_so_far = 0; \
1707 { \
1708 FILE *asm_out_file = _hide_asm_out_file; \
1709 unsigned char *p = _hide_p; \
1710 int thissize = _hide_thissize; \
1711 int i; \
1712 fprintf (asm_out_file, "\t.ascii \""); \
1713 \
1714 for (i = 0; i < thissize; i++) \
1715 { \
1716 register int c = p[i]; \
1717 \
1718 if (_size_so_far ++ > 50 && i < thissize - 4) \
1719 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1720 \
1721 if (c == '\"' || c == '\\') \
1722 putc ('\\', asm_out_file); \
1723 if (c >= ' ' && c < 0177) \
1724 putc (c, asm_out_file); \
1725 else \
1726 { \
1727 fprintf (asm_out_file, "\\%o", c); \
1728 /* After an octal-escape, if a digit follows, \
1729 terminate one string constant and start another. \
1730 The Vax assembler fails to stop reading the escape \
1731 after three digits, so this is the only way we \
1732 can get it to parse the data properly. */ \
1733 if (i < thissize - 1 \
1734 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 1735 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
1736 } \
1737 } \
1738 fprintf (asm_out_file, "\"\n"); \
1739 } \
1740 } \
1741 while (0)
52a69200 1742
1a94ca49
RK
1743/* This is how to output an insn to push a register on the stack.
1744 It need not be very fast code. */
1745
1746#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1747 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1748 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1749 (REGNO) & 31);
1750
1751/* This is how to output an insn to pop a register from the stack.
1752 It need not be very fast code. */
1753
1754#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1755 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1756 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1757 (REGNO) & 31);
1758
1759/* This is how to output an assembler line for a numeric constant byte. */
1760
1761#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1762 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 1763
260ced47
RK
1764/* This is how to output an element of a case-vector that is absolute.
1765 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 1766
260ced47 1767#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 1768
260ced47 1769/* This is how to output an element of a case-vector that is relative. */
1a94ca49 1770
0076aa6b
RK
1771#if WINDOWS_NT
1772#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1773 fprintf (FILE, "\t.long $%d\n", (VALUE) + 32)
1774#else
260ced47
RK
1775#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1776 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
0076aa6b 1777#endif
1a94ca49
RK
1778
1779/* This is how to output an assembler line
1780 that says to advance the location counter
1781 to a multiple of 2**LOG bytes. */
1782
1783#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1784 if ((LOG) != 0) \
1785 fprintf (FILE, "\t.align %d\n", LOG);
1786
1787/* This is how to advance the location counter by SIZE bytes. */
1788
1789#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1790 fprintf (FILE, "\t.space %d\n", (SIZE))
1791
1792/* This says how to output an assembler line
1793 to define a global common symbol. */
1794
1795#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1796( fputs ("\t.comm ", (FILE)), \
1797 assemble_name ((FILE), (NAME)), \
1798 fprintf ((FILE), ",%d\n", (SIZE)))
1799
1800/* This says how to output an assembler line
1801 to define a local common symbol. */
1802
1803#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1804( fputs ("\t.lcomm ", (FILE)), \
1805 assemble_name ((FILE), (NAME)), \
1806 fprintf ((FILE), ",%d\n", (SIZE)))
1807
1808/* Store in OUTPUT a string (made with alloca) containing
1809 an assembler-name for a local static variable named NAME.
1810 LABELNO is an integer which is different for each call. */
1811
1812#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1813( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1814 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1815
1816/* Define the parentheses used to group arithmetic operations
1817 in assembler code. */
1818
1819#define ASM_OPEN_PAREN "("
1820#define ASM_CLOSE_PAREN ")"
1821
1822/* Define results of standard character escape sequences. */
1823#define TARGET_BELL 007
1824#define TARGET_BS 010
1825#define TARGET_TAB 011
1826#define TARGET_NEWLINE 012
1827#define TARGET_VT 013
1828#define TARGET_FF 014
1829#define TARGET_CR 015
1830
1831/* Print operand X (an rtx) in assembler syntax to file FILE.
1832 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1833 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1834
1835#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1836
1837/* Determine which codes are valid without a following integer. These must
1838 not be alphabetic. */
1839
1840#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1841\f
1842/* Print a memory address as an operand to reference that memory location. */
1843
1844#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1845{ rtx addr = (ADDR); \
1846 int basereg = 31; \
1847 HOST_WIDE_INT offset = 0; \
1848 \
1849 if (GET_CODE (addr) == AND) \
1850 addr = XEXP (addr, 0); \
1851 \
1852 if (GET_CODE (addr) == REG) \
1853 basereg = REGNO (addr); \
1854 else if (GET_CODE (addr) == CONST_INT) \
1855 offset = INTVAL (addr); \
1856 else if (GET_CODE (addr) == PLUS \
1857 && GET_CODE (XEXP (addr, 0)) == REG \
1858 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1859 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1860 else \
1861 abort (); \
1862 \
1863 fprintf (FILE, "%d($%d)", offset, basereg); \
1864}
1865/* Define the codes that are matched by predicates in alpha.c. */
1866
1867#define PREDICATE_CODES \
1868 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 1869 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 1870 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 1871 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
1872 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1873 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1874 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1875 {"const48_operand", {CONST_INT}}, \
1876 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 1877 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
1878 {"mode_mask_operand", {CONST_INT}}, \
1879 {"mul8_operand", {CONST_INT}}, \
1880 {"mode_width_operand", {CONST_INT}}, \
1881 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1882 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1883 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 1884 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 1885 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 1886 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 1887 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
1888 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1889 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
1890 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1891 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
1892 {"aligned_memory_operand", {MEM}}, \
1893 {"unaligned_memory_operand", {MEM}}, \
1894 {"any_memory_operand", {MEM}},
03f8c4cc 1895\f
34fa88ab
RK
1896/* Tell collect that the object format is ECOFF. */
1897#define OBJECT_FORMAT_COFF
1898#define EXTENDED_COFF
1899
1900/* If we use NM, pass -g to it so it only lists globals. */
1901#define NM_FLAGS "-pg"
1902
03f8c4cc
RK
1903/* Definitions for debugging. */
1904
1905#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1906#define DBX_DEBUGGING_INFO /* generate embedded stabs */
1907#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1908
1909#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
52a69200
RK
1910#define PREFERRED_DEBUGGING_TYPE \
1911 ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
03f8c4cc
RK
1912#endif
1913
1914
1915/* Correct the offset of automatic variables and arguments. Note that
1916 the Alpha debug format wants all automatic variables and arguments
1917 to be in terms of two different offsets from the virtual frame pointer,
1918 which is the stack pointer before any adjustment in the function.
1919 The offset for the argument pointer is fixed for the native compiler,
1920 it is either zero (for the no arguments case) or large enough to hold
1921 all argument registers.
1922 The offset for the auto pointer is the fourth argument to the .frame
1923 directive (local_offset).
1924 To stay compatible with the native tools we use the same offsets
1925 from the virtual frame pointer and adjust the debugger arg/auto offsets
1926 accordingly. These debugger offsets are set up in output_prolog. */
1927
1928long alpha_arg_offset;
1929long alpha_auto_offset;
1930#define DEBUGGER_AUTO_OFFSET(X) \
1931 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1932#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1933
1934
1935#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1936 alpha_output_lineno (STREAM, LINE)
1937extern void alpha_output_lineno ();
1938
1939#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1940 alpha_output_filename (STREAM, NAME)
1941extern void alpha_output_filename ();
1942
1943
ab8b8941
RK
1944/* mips-tfile.c limits us to strings of one page. */
1945#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
1946
1947/* By default, turn on GDB extensions. */
1948#define DEFAULT_GDB_EXTENSIONS 1
1949
1950/* If we are smuggling stabs through the ALPHA ECOFF object
1951 format, put a comment in front of the .stab<x> operation so
1952 that the ALPHA assembler does not choke. The mips-tfile program
1953 will correctly put the stab into the object file. */
1954
1955#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
1956#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
1957#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
1958
1959/* Forward references to tags are allowed. */
1960#define SDB_ALLOW_FORWARD_REFERENCES
1961
1962/* Unknown tags are also allowed. */
1963#define SDB_ALLOW_UNKNOWN_REFERENCES
1964
1965#define PUT_SDB_DEF(a) \
1966do { \
1967 fprintf (asm_out_file, "\t%s.def\t", \
1968 (TARGET_GAS) ? "" : "#"); \
1969 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1970 fputc (';', asm_out_file); \
1971} while (0)
1972
1973#define PUT_SDB_PLAIN_DEF(a) \
1974do { \
1975 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1976 (TARGET_GAS) ? "" : "#", (a)); \
1977} while (0)
1978
1979#define PUT_SDB_TYPE(a) \
1980do { \
1981 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1982} while (0)
1983
1984/* For block start and end, we create labels, so that
1985 later we can figure out where the correct offset is.
1986 The normal .ent/.end serve well enough for functions,
1987 so those are just commented out. */
1988
1989extern int sdb_label_count; /* block start/end next label # */
1990
1991#define PUT_SDB_BLOCK_START(LINE) \
1992do { \
1993 fprintf (asm_out_file, \
1994 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1995 sdb_label_count, \
1996 (TARGET_GAS) ? "" : "#", \
1997 sdb_label_count, \
1998 (LINE)); \
1999 sdb_label_count++; \
2000} while (0)
2001
2002#define PUT_SDB_BLOCK_END(LINE) \
2003do { \
2004 fprintf (asm_out_file, \
2005 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2006 sdb_label_count, \
2007 (TARGET_GAS) ? "" : "#", \
2008 sdb_label_count, \
2009 (LINE)); \
2010 sdb_label_count++; \
2011} while (0)
2012
2013#define PUT_SDB_FUNCTION_START(LINE)
2014
2015#define PUT_SDB_FUNCTION_END(LINE)
2016
2017#define PUT_SDB_EPILOGUE_END(NAME)
2018
2019/* Specify to run a post-processor, mips-tfile after the assembler
2020 has run to stuff the ecoff debug information into the object file.
2021 This is needed because the Alpha assembler provides no way
2022 of specifying such information in the assembly file. */
2023
88681624 2024#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
03f8c4cc
RK
2025
2026#define ASM_FINAL_SPEC "\
2027%{malpha-as: %{!mno-mips-tfile: \
2028 \n mips-tfile %{v*: -v} \
2029 %{K: -I %b.o~} \
2030 %{!K: %{save-temps: -I %b.o~}} \
2031 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2032 %{.s:%i} %{!.s:%g.s}}}"
2033
2034#else
2035#define ASM_FINAL_SPEC "\
2036%{!mgas: %{!mno-mips-tfile: \
2037 \n mips-tfile %{v*: -v} \
2038 %{K: -I %b.o~} \
2039 %{!K: %{save-temps: -I %b.o~}} \
2040 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2041 %{.s:%i} %{!.s:%g.s}}}"
2042
2043#endif
2044
2045/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2046 mips-tdump.c to print them out.
2047
2048 These must match the corresponding definitions in gdb/mipsread.c.
2049 Unfortunately, gcc and gdb do not currently share any directories. */
2050
2051#define CODE_MASK 0x8F300
2052#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2053#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2054#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2055
2056/* Override some mips-tfile definitions. */
2057
2058#define SHASH_SIZE 511
2059#define THASH_SIZE 55
1e6c6f11
RK
2060
2061/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2062
2063#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b
JM
2064
2065/* The system headers under OSF/1 are C++-aware. */
2066#define NO_IMPLICIT_EXTERN_C
54190234
JM
2067
2068/* The linker will stick __main into the .init section. */
2069#define HAS_INIT_SECTION
68d69835
JM
2070#define LD_INIT_SWITCH "-init"
2071#define LD_FINI_SWITCH "-fini"
2072
2073/* We do want to link in libgcc when building shared libraries under OSF/1. */
2074#define LIBGCC_SPEC "-lgcc"