]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/alpha/alpha.h
combine.c (simplify_and_const_int): Simplify (AND (PLUS X Y) C) if C has only low...
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
9ddd9abd 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
cf011243 3 2000, 2001 Free Software Foundation, Inc.
1e6c6f11 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
1a94ca49
RK
22
23
887af1f2
RO
24/* For C++ we need to ensure that __LANGUAGE_C_PLUS_PLUS is defined independent
25 of the source file extension. */
26#define CPLUSPLUS_CPP_SPEC "\
27-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus \
28%(cpp) \
29"
30
21798cd8
RK
31/* Write out the correct language type definition for the header files.
32 Unless we have assembler language, write out the symbols for C. */
1a94ca49 33#define CPP_SPEC "\
952fc2ed
RH
34%{!undef:\
35%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
952fc2ed 36%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
887af1f2 37%{!.S:%{!.cc:%{!.cxx:%{!.cpp:%{!.cp:%{!.c++:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}}}}\
952fc2ed
RH
38%{mieee:-D_IEEE_FP }\
39%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
40%(cpp_cpu) %(cpp_subtarget)"
41
42#ifndef CPP_SUBTARGET_SPEC
43#define CPP_SUBTARGET_SPEC ""
44#endif
1a94ca49
RK
45
46/* Set the spec to use for signed char. The default tests the above macro
47 but DEC's compiler can't handle the conditional in a "constant"
48 operand. */
49
50#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
51
b890f297 52#define WORD_SWITCH_TAKES_ARG(STR) \
2efe55c1 53 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
8877eb00 54
1a94ca49
RK
55/* Print subsidiary information on the compiler version in use. */
56#define TARGET_VERSION
57
1a94ca49
RK
58/* Run-time compilation parameters selecting different hardware subsets. */
59
f6f6a13c
RK
60/* Which processor to schedule for. The cpu attribute defines a list that
61 mirrors this list, so changes to alpha.md must be made at the same time. */
62
63enum processor_type
64 {PROCESSOR_EV4, /* 2106[46]{a,} */
e9a25f70
JL
65 PROCESSOR_EV5, /* 21164{a,pc,} */
66 PROCESSOR_EV6}; /* 21264 */
f6f6a13c
RK
67
68extern enum processor_type alpha_cpu;
69
2bf6230d
RK
70enum alpha_trap_precision
71{
72 ALPHA_TP_PROG, /* No precision (default). */
73 ALPHA_TP_FUNC, /* Trap contained within originating function. */
285a5742 74 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
2bf6230d
RK
75};
76
77enum alpha_fp_rounding_mode
78{
79 ALPHA_FPRM_NORM, /* Normal rounding mode. */
80 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
285a5742 81 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
2bf6230d
RK
82 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
83};
84
85enum alpha_fp_trap_mode
86{
285a5742 87 ALPHA_FPTM_N, /* Normal trap mode. */
2bf6230d
RK
88 ALPHA_FPTM_U, /* Underflow traps enabled. */
89 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
90 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
91};
92
1a94ca49
RK
93extern int target_flags;
94
2bf6230d
RK
95extern enum alpha_trap_precision alpha_tp;
96extern enum alpha_fp_rounding_mode alpha_fprm;
97extern enum alpha_fp_trap_mode alpha_fptm;
98
1a94ca49
RK
99/* This means that floating-point support exists in the target implementation
100 of the Alpha architecture. This is usually the default. */
de4abb91 101#define MASK_FP (1 << 0)
2bf6230d 102#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
103
104/* This means that floating-point registers are allowed to be used. Note
105 that Alpha implementations without FP operations are required to
106 provide the FP registers. */
107
de4abb91 108#define MASK_FPREGS (1 << 1)
2bf6230d 109#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
110
111/* This means that gas is used to process the assembler file. */
112
de4abb91 113#define MASK_GAS (1 << 2)
03f8c4cc 114#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 115
285a5742 116/* This means that we should mark procedures as IEEE conformant. */
2bf6230d 117
de4abb91 118#define MASK_IEEE_CONFORMANT (1 << 3)
2bf6230d
RK
119#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
120
121/* This means we should be IEEE-compliant except for inexact. */
122
de4abb91 123#define MASK_IEEE (1 << 4)
2bf6230d
RK
124#define TARGET_IEEE (target_flags & MASK_IEEE)
125
126/* This means we should be fully IEEE-compliant. */
127
de4abb91 128#define MASK_IEEE_WITH_INEXACT (1 << 5)
2bf6230d
RK
129#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
130
803fee69
RK
131/* This means we must construct all constants rather than emitting
132 them as literal data. */
133
de4abb91 134#define MASK_BUILD_CONSTANTS (1 << 6)
803fee69
RK
135#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
136
e5958492
RK
137/* This means we handle floating points in VAX F- (float)
138 or G- (double) Format. */
139
de4abb91 140#define MASK_FLOAT_VAX (1 << 7)
e5958492
RK
141#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
142
e9a25f70
JL
143/* This means that the processor has byte and half word loads and stores
144 (the BWX extension). */
025f3281 145
de4abb91 146#define MASK_BWX (1 << 8)
e9a25f70 147#define TARGET_BWX (target_flags & MASK_BWX)
025f3281 148
e9a25f70 149/* This means that the processor has the MAX extension. */
de4abb91 150#define MASK_MAX (1 << 9)
e9a25f70
JL
151#define TARGET_MAX (target_flags & MASK_MAX)
152
de4abb91
RH
153/* This means that the processor has the FIX extension. */
154#define MASK_FIX (1 << 10)
155#define TARGET_FIX (target_flags & MASK_FIX)
156
157/* This means that the processor has the CIX extension. */
158#define MASK_CIX (1 << 11)
159#define TARGET_CIX (target_flags & MASK_CIX)
160
1eb356b9
RH
161/* This means use !literal style explicit relocations. */
162#define MASK_EXPLICIT_RELOCS (1 << 12)
163#define TARGET_EXPLICIT_RELOCS (target_flags & MASK_EXPLICIT_RELOCS)
164
133d3133
RH
165/* This means use 16-bit relocations to .sdata/.sbss. */
166#define MASK_SMALL_DATA (1 << 13)
167#define TARGET_SMALL_DATA (target_flags & MASK_SMALL_DATA)
168
a3b815cb
JJ
169/* This means that the processor is an EV5, EV56, or PCA56.
170 Unlike alpha_cpu this is not affected by -mtune= setting. */
a76c0119 171#define MASK_CPU_EV5 (1 << 28)
a3b815cb 172#define TARGET_CPU_EV5 (target_flags & MASK_CPU_EV5)
e9a25f70
JL
173
174/* Likewise for EV6. */
a76c0119 175#define MASK_CPU_EV6 (1 << 29)
a3b815cb 176#define TARGET_CPU_EV6 (target_flags & MASK_CPU_EV6)
e9a25f70
JL
177
178/* This means we support the .arch directive in the assembler. Only
179 defined in TARGET_CPU_DEFAULT. */
a76c0119 180#define MASK_SUPPORT_ARCH (1 << 30)
e9a25f70 181#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
8f87939b 182
9ba3994a 183/* These are for target os support and cannot be changed at runtime. */
be7b80f4
RH
184#define TARGET_ABI_WINDOWS_NT 0
185#define TARGET_ABI_OPEN_VMS 0
30102605
RH
186#define TARGET_ABI_UNICOSMK 0
187#define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT \
188 && !TARGET_ABI_OPEN_VMS \
189 && !TARGET_ABI_UNICOSMK)
9ba3994a
RH
190
191#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
192#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
193#endif
30102605
RH
194#ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
195#define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
196#endif
9c0e94a5
RH
197#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
198#define TARGET_CAN_FAULT_IN_PROLOGUE 0
199#endif
5495cc55
RH
200#ifndef TARGET_HAS_XFLOATING_LIBS
201#define TARGET_HAS_XFLOATING_LIBS 0
202#endif
4f1c5cce
RH
203#ifndef TARGET_PROFILING_NEEDS_GP
204#define TARGET_PROFILING_NEEDS_GP 0
205#endif
ccb83cbc
RH
206#ifndef TARGET_LD_BUGGY_LDGP
207#define TARGET_LD_BUGGY_LDGP 0
208#endif
9ba3994a 209
1a94ca49
RK
210/* Macro to define tables used to set the flags.
211 This is a list in braces of pairs in braces,
212 each pair being { "NAME", VALUE }
213 where VALUE is the bits to set or minus the bits to clear.
214 An empty string NAME is used to identify the default VALUE. */
215
f8e52397 216#define TARGET_SWITCHES \
047142d3
PT
217 { {"no-soft-float", MASK_FP, N_("Use hardware fp")}, \
218 {"soft-float", - MASK_FP, N_("Do not use hardware fp")}, \
219 {"fp-regs", MASK_FPREGS, N_("Use fp registers")}, \
220 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), \
221 N_("Do not use fp registers")}, \
222 {"alpha-as", -MASK_GAS, N_("Do not assume GAS")}, \
223 {"gas", MASK_GAS, N_("Assume GAS")}, \
f8e52397 224 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
047142d3 225 N_("Request IEEE-conformant math library routines (OSF/1)")}, \
f8e52397 226 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
047142d3 227 N_("Emit IEEE-conformant code, without inexact exceptions")}, \
f8e52397 228 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
047142d3 229 N_("Emit IEEE-conformant code, with inexact exceptions")}, \
f8e52397 230 {"build-constants", MASK_BUILD_CONSTANTS, \
047142d3
PT
231 N_("Do not emit complex integer constants to read-only memory")}, \
232 {"float-vax", MASK_FLOAT_VAX, N_("Use VAX fp")}, \
233 {"float-ieee", -MASK_FLOAT_VAX, N_("Do not use VAX fp")}, \
234 {"bwx", MASK_BWX, N_("Emit code for the byte/word ISA extension")}, \
f8e52397 235 {"no-bwx", -MASK_BWX, ""}, \
047142d3
PT
236 {"max", MASK_MAX, \
237 N_("Emit code for the motion video ISA extension")}, \
f8e52397 238 {"no-max", -MASK_MAX, ""}, \
047142d3
PT
239 {"fix", MASK_FIX, \
240 N_("Emit code for the fp move and sqrt ISA extension")}, \
de4abb91 241 {"no-fix", -MASK_FIX, ""}, \
047142d3 242 {"cix", MASK_CIX, N_("Emit code for the counting ISA extension")}, \
de4abb91 243 {"no-cix", -MASK_CIX, ""}, \
1eb356b9
RH
244 {"explicit-relocs", MASK_EXPLICIT_RELOCS, \
245 N_("Emit code using explicit relocation directives")}, \
246 {"no-explicit-relocs", -MASK_EXPLICIT_RELOCS, ""}, \
133d3133
RH
247 {"small-data", MASK_SMALL_DATA, \
248 N_("Emit 16-bit relocations to the small data areas")}, \
249 {"large-data", -MASK_SMALL_DATA, \
250 N_("Emit 32-bit relocations to the small data areas")}, \
f8e52397 251 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }
1a94ca49 252
c01b5470 253#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 254
88681624
ILT
255#ifndef TARGET_CPU_DEFAULT
256#define TARGET_CPU_DEFAULT 0
257#endif
258
2bf6230d
RK
259/* This macro is similar to `TARGET_SWITCHES' but defines names of
260 command options that have values. Its definition is an initializer
261 with a subgrouping for each command option.
262
263 Each subgrouping contains a string constant, that defines the fixed
264 part of the option name, and the address of a variable. The
265 variable, type `char *', is set to the variable part of the given
266 option if the fixed part matches. The actual option name is made
267 by appending `-m' to the specified name.
268
269 Here is an example which defines `-mshort-data-NUMBER'. If the
270 given option is `-mshort-data-512', the variable `m88k_short_data'
271 will be set to the string `"512"'.
272
273 extern char *m88k_short_data;
274 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
275
df45c7ea 276extern const char *alpha_cpu_string; /* For -mcpu= */
a3b815cb 277extern const char *alpha_tune_string; /* For -mtune= */
df45c7ea
KG
278extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
279extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
280extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
281extern const char *alpha_mlat_string; /* For -mmemory-latency= */
2bf6230d 282
f8e52397
RH
283#define TARGET_OPTIONS \
284{ \
285 {"cpu=", &alpha_cpu_string, \
a3b815cb
JJ
286 N_("Use features of and schedule given CPU")}, \
287 {"tune=", &alpha_tune_string, \
288 N_("Schedule given CPU")}, \
f8e52397 289 {"fp-rounding-mode=", &alpha_fprm_string, \
047142d3 290 N_("Control the generated fp rounding mode")}, \
f8e52397 291 {"fp-trap-mode=", &alpha_fptm_string, \
047142d3 292 N_("Control the IEEE trap mode")}, \
f8e52397 293 {"trap-precision=", &alpha_tp_string, \
047142d3 294 N_("Control the precision given to fp exceptions")}, \
f8e52397 295 {"memory-latency=", &alpha_mlat_string, \
047142d3 296 N_("Tune expected memory latency")}, \
2bf6230d
RK
297}
298
952fc2ed
RH
299/* Attempt to describe CPU characteristics to the preprocessor. */
300
285a5742 301/* Corresponding to amask... */
2b57e919
NB
302#define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu=bwx"
303#define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu=max"
304#define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu=fix"
305#define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu=cix"
952fc2ed 306
285a5742 307/* Corresponding to implver... */
2b57e919
NB
308#define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu=ev4"
309#define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu=ev5"
310#define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu=ev6"
952fc2ed
RH
311
312/* Common combinations. */
313#define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
314#define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
315#define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
316#define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
d8ee3e20
RH
317#define CPP_CPU_EV6_SPEC \
318 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"
319#define CPP_CPU_EV67_SPEC \
320 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix) %(cpp_am_cix)"
952fc2ed
RH
321
322#ifndef CPP_CPU_DEFAULT_SPEC
323# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
8f4773ea 324# if TARGET_CPU_DEFAULT & MASK_CIX
d8ee3e20
RH
325# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV67_SPEC
326# else
327# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
328# endif
952fc2ed
RH
329# else
330# if TARGET_CPU_DEFAULT & MASK_CPU_EV5
331# if TARGET_CPU_DEFAULT & MASK_MAX
332# define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
333# else
334# if TARGET_CPU_DEFAULT & MASK_BWX
335# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
336# else
337# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
338# endif
339# endif
340# else
341# define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
342# endif
343# endif
344#endif /* CPP_CPU_DEFAULT_SPEC */
345
346#ifndef CPP_CPU_SPEC
347#define CPP_CPU_SPEC "\
2b57e919 348%{!undef:-Acpu=alpha -Amachine=alpha -D__alpha -D__alpha__ \
952fc2ed
RH
349%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
350%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
351%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
352%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
353%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
d8ee3e20 354%{mcpu=ev67|mcpu=21264a:%(cpp_cpu_ev67) }\
952fc2ed
RH
355%{!mcpu*:%(cpp_cpu_default) }}"
356#endif
357
358/* This macro defines names of additional specifications to put in the
359 specs that can be used in various specifications like CC1_SPEC. Its
360 definition is an initializer with a subgrouping for each command option.
361
362 Each subgrouping contains a string constant, that defines the
363 specification name, and a string constant that used by the GNU CC driver
364 program.
365
366 Do not define this macro if it does not need to do anything. */
367
368#ifndef SUBTARGET_EXTRA_SPECS
369#define SUBTARGET_EXTRA_SPECS
370#endif
371
829245be
KG
372#define EXTRA_SPECS \
373 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
374 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
de4abb91 375 { "cpp_am_fix", CPP_AM_FIX_SPEC }, \
829245be
KG
376 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
377 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
378 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
379 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
380 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
381 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
382 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
383 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
384 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
d8ee3e20 385 { "cpp_cpu_ev67", CPP_CPU_EV67_SPEC }, \
829245be
KG
386 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
387 { "cpp_cpu", CPP_CPU_SPEC }, \
388 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
952fc2ed
RH
389 SUBTARGET_EXTRA_SPECS
390
391
2bf6230d
RK
392/* Sometimes certain combinations of command options do not make sense
393 on a particular target machine. You can define a macro
394 `OVERRIDE_OPTIONS' to take account of this. This macro, if
395 defined, is executed once just after all the command options have
396 been parsed.
397
398 On the Alpha, it is used to translate target-option strings into
399 numeric values. */
400
2bf6230d
RK
401#define OVERRIDE_OPTIONS override_options ()
402
403
1a94ca49
RK
404/* Define this macro to change register usage conditional on target flags.
405
406 On the Alpha, we use this to disable the floating-point registers when
407 they don't exist. */
408
e9e4208a
WC
409#define CONDITIONAL_REGISTER_USAGE \
410{ \
411 int i; \
412 if (! TARGET_FPREGS) \
413 for (i = 32; i < 63; i++) \
414 fixed_regs[i] = call_used_regs[i] = 1; \
415}
416
1a94ca49 417
4f074454
RK
418/* Show we can debug even without a frame pointer. */
419#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
420\f
421/* target machine storage layout */
422
285a5742 423/* Define to enable software floating point emulation. */
2700ac93
RS
424#define REAL_ARITHMETIC
425
1a94ca49
RK
426/* Define the size of `int'. The default is the same as the word size. */
427#define INT_TYPE_SIZE 32
428
429/* Define the size of `long long'. The default is the twice the word size. */
430#define LONG_LONG_TYPE_SIZE 64
431
432/* The two floating-point formats we support are S-floating, which is
433 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
434 and `long double' are T. */
435
436#define FLOAT_TYPE_SIZE 32
437#define DOUBLE_TYPE_SIZE 64
438#define LONG_DOUBLE_TYPE_SIZE 64
439
5258d7ae
RK
440#define WCHAR_TYPE "unsigned int"
441#define WCHAR_TYPE_SIZE 32
1a94ca49 442
13d39dbc 443/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
444 in a wider mode than that declared by the program. In such cases,
445 the value is constrained to be within the bounds of the declared
446 type, but kept valid in the wider mode. The signedness of the
447 extension may differ from that of the type.
448
449 For Alpha, we always store objects in a full register. 32-bit objects
450 are always sign-extended, but smaller objects retain their signedness. */
451
452#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
453 if (GET_MODE_CLASS (MODE) == MODE_INT \
454 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
455 { \
456 if ((MODE) == SImode) \
457 (UNSIGNEDP) = 0; \
458 (MODE) = DImode; \
459 }
460
461/* Define this if function arguments should also be promoted using the above
462 procedure. */
463
464#define PROMOTE_FUNCTION_ARGS
465
466/* Likewise, if the function return value is promoted. */
467
468#define PROMOTE_FUNCTION_RETURN
469
470/* Define this if most significant bit is lowest numbered
471 in instructions that operate on numbered bit-fields.
472
473 There are no such instructions on the Alpha, but the documentation
474 is little endian. */
475#define BITS_BIG_ENDIAN 0
476
477/* Define this if most significant byte of a word is the lowest numbered.
478 This is false on the Alpha. */
479#define BYTES_BIG_ENDIAN 0
480
481/* Define this if most significant word of a multiword number is lowest
482 numbered.
483
484 For Alpha we can decide arbitrarily since there are no machine instructions
285a5742 485 for them. Might as well be consistent with bytes. */
1a94ca49
RK
486#define WORDS_BIG_ENDIAN 0
487
488/* number of bits in an addressable storage unit */
489#define BITS_PER_UNIT 8
490
491/* Width in bits of a "word", which is the contents of a machine register.
492 Note that this is not necessarily the width of data type `int';
493 if using 16-bit ints on a 68000, this would still be 32.
494 But on a machine with 16-bit registers, this would be 16. */
495#define BITS_PER_WORD 64
496
497/* Width of a word, in units (bytes). */
498#define UNITS_PER_WORD 8
499
500/* Width in bits of a pointer.
501 See also the macro `Pmode' defined below. */
502#define POINTER_SIZE 64
503
504/* Allocation boundary (in *bits*) for storing arguments in argument list. */
505#define PARM_BOUNDARY 64
506
507/* Boundary (in *bits*) on which stack pointer should be aligned. */
508#define STACK_BOUNDARY 64
509
510/* Allocation boundary (in *bits*) for the code of a function. */
c176c051 511#define FUNCTION_BOUNDARY 32
1a94ca49
RK
512
513/* Alignment of field after `int : 0' in a structure. */
514#define EMPTY_FIELD_BOUNDARY 64
515
516/* Every structure's size must be a multiple of this. */
517#define STRUCTURE_SIZE_BOUNDARY 8
518
519/* A bitfield declared as `int' forces `int' alignment for the struct. */
520#define PCC_BITFIELD_TYPE_MATTERS 1
521
1a94ca49 522/* No data type wants to be aligned rounder than this. */
5495cc55 523#define BIGGEST_ALIGNMENT 128
1a94ca49 524
d16fe557
RK
525/* For atomic access to objects, must have at least 32-bit alignment
526 unless the machine has byte operations. */
13eb1f7f 527#define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
d16fe557 528
442b1685
RK
529/* Align all constants and variables to at least a word boundary so
530 we can pick up pieces of them faster. */
6c174fc0
RH
531/* ??? Only if block-move stuff knows about different source/destination
532 alignment. */
533#if 0
442b1685
RK
534#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
535#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
6c174fc0 536#endif
1a94ca49
RK
537
538/* Set this non-zero if move instructions will actually fail to work
539 when given unaligned data.
540
541 Since we get an error message when we do one, call them invalid. */
542
543#define STRICT_ALIGNMENT 1
544
545/* Set this non-zero if unaligned move instructions are extremely slow.
546
547 On the Alpha, they trap. */
130d2d72 548
e1565e65 549#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1a94ca49
RK
550\f
551/* Standard register usage. */
552
553/* Number of actual hardware registers.
554 The hardware registers are assigned numbers for the compiler
555 from 0 to just below FIRST_PSEUDO_REGISTER.
556 All registers that the compiler knows about must be given numbers,
557 even those that are not normally considered general registers.
558
559 We define all 32 integer registers, even though $31 is always zero,
560 and all 32 floating-point registers, even though $f31 is also
561 always zero. We do not bother defining the FP status register and
130d2d72
RK
562 there are no other registers.
563
564 Since $31 is always zero, we will use register number 31 as the
565 argument pointer. It will never appear in the generated code
566 because we will always be eliminating it in favor of the stack
52a69200
RK
567 pointer or hardware frame pointer.
568
569 Likewise, we use $f31 for the frame pointer, which will always
570 be eliminated in favor of the hardware frame pointer or the
571 stack pointer. */
1a94ca49
RK
572
573#define FIRST_PSEUDO_REGISTER 64
574
575/* 1 for registers that have pervasive standard uses
576 and are not available for the register allocator. */
577
578#define FIXED_REGISTERS \
579 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
580 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
581 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
582 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
583
584/* 1 for registers not available across function calls.
585 These must include the FIXED_REGISTERS and also any
586 registers that can be used without being saved.
587 The latter must include the registers where values are returned
588 and the register where structure-value addresses are passed.
589 Aside from that, you can include as many other registers as you like. */
590#define CALL_USED_REGISTERS \
591 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
592 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
593 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
594 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
595
596/* List the order in which to allocate registers. Each register must be
597 listed once, even those in FIXED_REGISTERS.
598
599 We allocate in the following order:
2c4be73e 600 $f10-$f15 (nonsaved floating-point register)
1a94ca49
RK
601 $f22-$f30 (likewise)
602 $f21-$f16 (likewise, but input args)
603 $f0 (nonsaved, but return value)
2c4be73e 604 $f1 (nonsaved, but immediate before saved)
1a94ca49
RK
605 $f2-$f9 (saved floating-point registers)
606 $1-$8 (nonsaved integer registers)
607 $22-$25 (likewise)
608 $28 (likewise)
609 $0 (likewise, but return value)
610 $21-$16 (likewise, but input args)
0076aa6b 611 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
612 $9-$14 (saved integer registers)
613 $26 (return PC)
614 $15 (frame pointer)
615 $29 (global pointer)
52a69200 616 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
617
618#define REG_ALLOC_ORDER \
2c4be73e 619 {42, 43, 44, 45, 46, 47, \
1a94ca49
RK
620 54, 55, 56, 57, 58, 59, 60, 61, 62, \
621 53, 52, 51, 50, 49, 48, \
2c4be73e 622 32, 33, \
1a94ca49
RK
623 34, 35, 36, 37, 38, 39, 40, 41, \
624 1, 2, 3, 4, 5, 6, 7, 8, \
625 22, 23, 24, 25, \
626 28, \
627 0, \
628 21, 20, 19, 18, 17, 16, \
629 27, \
630 9, 10, 11, 12, 13, 14, \
631 26, \
632 15, \
633 29, \
634 30, 31, 63 }
635
636/* Return number of consecutive hard regs needed starting at reg REGNO
637 to hold something of mode MODE.
638 This is ordinarily the length in words of a value of mode MODE
639 but can be less for certain modes in special long registers. */
640
641#define HARD_REGNO_NREGS(REGNO, MODE) \
642 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
643
644/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
645 On Alpha, the integer registers can hold any mode. The floating-point
646 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
a7adf08e 647 or 8-bit values. */
1a94ca49 648
e6a8ebb4
RH
649#define HARD_REGNO_MODE_OK(REGNO, MODE) \
650 ((REGNO) >= 32 && (REGNO) <= 62 \
651 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
652 : 1)
653
654/* A C expression that is nonzero if a value of mode
655 MODE1 is accessible in mode MODE2 without copying.
1a94ca49 656
e6a8ebb4
RH
657 This asymmetric test is true when MODE1 could be put
658 in an FP register but MODE2 could not. */
1a94ca49 659
a7adf08e 660#define MODES_TIEABLE_P(MODE1, MODE2) \
e6a8ebb4
RH
661 (HARD_REGNO_MODE_OK (32, (MODE1)) \
662 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
a7adf08e 663 : 1)
1a94ca49
RK
664
665/* Specify the registers used for certain standard purposes.
666 The values of these macros are register numbers. */
667
668/* Alpha pc isn't overloaded on a register that the compiler knows about. */
669/* #define PC_REGNUM */
670
671/* Register to use for pushing function arguments. */
672#define STACK_POINTER_REGNUM 30
673
674/* Base register for access to local variables of the function. */
52a69200 675#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
676
677/* Value should be nonzero if functions must have frame pointers.
678 Zero means the frame pointer need not be set up (and parms
679 may be accessed via the stack pointer) in functions that seem suitable.
680 This is computed in `reload', in reload1.c. */
681#define FRAME_POINTER_REQUIRED 0
682
683/* Base register for access to arguments of the function. */
130d2d72 684#define ARG_POINTER_REGNUM 31
1a94ca49 685
52a69200
RK
686/* Base register for access to local variables of function. */
687#define FRAME_POINTER_REGNUM 63
688
1a94ca49
RK
689/* Register in which static-chain is passed to a function.
690
691 For the Alpha, this is based on an example; the calling sequence
692 doesn't seem to specify this. */
693#define STATIC_CHAIN_REGNUM 1
694
133d3133
RH
695/* The register number of the register used to address a table of
696 static data addresses in memory. */
697#define PIC_OFFSET_TABLE_REGNUM 29
698
699/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
700 is clobbered by calls. */
701/* ??? It is and it isn't. It's required to be valid for a given
702 function when the function returns. It isn't clobbered by
703 current_file functions. Moreover, we do not expose the ldgp
704 until after reload, so we're probably safe. */
705/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
706
1a94ca49
RK
707/* Register in which address to store a structure value
708 arrives in the function. On the Alpha, the address is passed
709 as a hidden argument. */
710#define STRUCT_VALUE 0
711\f
712/* Define the classes of registers for register constraints in the
713 machine description. Also define ranges of constants.
714
715 One of the classes must always be named ALL_REGS and include all hard regs.
716 If there is more than one class, another class must be named NO_REGS
717 and contain no registers.
718
719 The name GENERAL_REGS must be the name of a class (or an alias for
720 another name such as ALL_REGS). This is the class of registers
721 that is allowed by "g" or "r" in a register constraint.
722 Also, registers outside this class are allocated only when
723 instructions express preferences for them.
724
725 The classes must be numbered in nondecreasing order; that is,
726 a larger-numbered class must never be contained completely
727 in a smaller-numbered class.
728
729 For any two classes, it is very desirable that there be another
730 class that represents their union. */
731
b73c0bc8
RH
732enum reg_class {
733 NO_REGS, R24_REG, R25_REG, R27_REG,
734 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
735 LIM_REG_CLASSES
736};
1a94ca49
RK
737
738#define N_REG_CLASSES (int) LIM_REG_CLASSES
739
285a5742 740/* Give names of register classes as strings for dump file. */
1a94ca49
RK
741
742#define REG_CLASS_NAMES \
b73c0bc8
RH
743 {"NO_REGS", "R24_REG", "R25_REG", "R27_REG", \
744 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
1a94ca49
RK
745
746/* Define which registers fit in which classes.
747 This is an initializer for a vector of HARD_REG_SET
748 of length N_REG_CLASSES. */
749
b73c0bc8
RH
750#define REG_CLASS_CONTENTS \
751{ {0x00000000, 0x00000000}, /* NO_REGS */ \
752 {0x01000000, 0x00000000}, /* R24_REG */ \
753 {0x02000000, 0x00000000}, /* R25_REG */ \
754 {0x08000000, 0x00000000}, /* R27_REG */ \
755 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
756 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
757 {0xffffffff, 0xffffffff} }
1a94ca49
RK
758
759/* The same information, inverted:
760 Return the class number of the smallest class containing
761 reg number REGNO. This could be a conditional expression
762 or could index an array. */
763
93c89ab3 764#define REGNO_REG_CLASS(REGNO) \
b73c0bc8
RH
765 ((REGNO) == 24 ? R24_REG \
766 : (REGNO) == 25 ? R25_REG \
767 : (REGNO) == 27 ? R27_REG \
93c89ab3
RH
768 : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
769 : GENERAL_REGS)
1a94ca49
RK
770
771/* The class value for index registers, and the one for base regs. */
772#define INDEX_REG_CLASS NO_REGS
773#define BASE_REG_CLASS GENERAL_REGS
774
775/* Get reg_class from a letter such as appears in the machine description. */
776
777#define REG_CLASS_FROM_LETTER(C) \
b73c0bc8
RH
778 ((C) == 'a' ? R24_REG \
779 : (C) == 'b' ? R25_REG \
780 : (C) == 'c' ? R27_REG \
781 : (C) == 'f' ? FLOAT_REGS \
782 : NO_REGS)
1a94ca49
RK
783
784/* Define this macro to change register usage conditional on target flags. */
785/* #define CONDITIONAL_REGISTER_USAGE */
786
787/* The letters I, J, K, L, M, N, O, and P in a register constraint string
788 can be used to stand for particular ranges of immediate operands.
789 This macro defines what the ranges are.
790 C is the letter, and VALUE is a constant value.
791 Return 1 if VALUE is in the range specified by C.
792
793 For Alpha:
794 `I' is used for the range of constants most insns can contain.
795 `J' is the constant zero.
796 `K' is used for the constant in an LDA insn.
797 `L' is used for the constant in a LDAH insn.
798 `M' is used for the constants that can be AND'ed with using a ZAP insn.
799 `N' is used for complemented 8-bit constants.
800 `O' is used for negated 8-bit constants.
801 `P' is used for the constants 1, 2 and 3. */
802
803#define CONST_OK_FOR_LETTER_P(VALUE, C) \
804 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
805 : (C) == 'J' ? (VALUE) == 0 \
806 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
807 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c905c108 808 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1a94ca49
RK
809 : (C) == 'M' ? zap_mask (VALUE) \
810 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
811 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
812 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
813 : 0)
814
815/* Similar, but for floating or large integer constants, and defining letters
816 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
817
818 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
819 that is the operand of a ZAP insn. */
820
821#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
822 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
823 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
824 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
825 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
826 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
827 : 0)
828
e560f226
RK
829/* Optional extra constraints for this machine.
830
831 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b 832 reference to an unaligned location.
9ec36da5 833
ac030a7b 834 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
9ec36da5
JL
835 function.
836
30102605
RH
837 'S' is a 6-bit constant (valid for a shift insn).
838
839 'U' is a symbolic operand. */
e560f226
RK
840
841#define EXTRA_CONSTRAINT(OP, C) \
ab87f8c8 842 ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \
1afec8ad 843 : (C) == 'R' ? direct_call_operand (OP, Pmode) \
9ec36da5
JL
844 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
845 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
1eb356b9 846 : (C) == 'T' ? GET_CODE (OP) == HIGH \
30102605
RH
847 : (TARGET_ABI_UNICOSMK && (C) == 'U') \
848 ? symbolic_operand (OP, VOIDmode) \
e560f226
RK
849 : 0)
850
1a94ca49
RK
851/* Given an rtx X being reloaded into a reg required to be
852 in class CLASS, return the class of reg to actually use.
853 In general this is just CLASS; but on some machines
854 in some cases it is preferable to use a more restrictive class.
855
856 On the Alpha, all constants except zero go into a floating-point
857 register via memory. */
858
b73c0bc8
RH
859#define PREFERRED_RELOAD_CLASS(X, CLASS) \
860 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
861 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS \
862 : (CLASS) == ALL_REGS ? GENERAL_REGS : (CLASS)) \
1a94ca49
RK
863 : (CLASS))
864
865/* Loading and storing HImode or QImode values to and from memory
866 usually requires a scratch register. The exceptions are loading
e008606e
RK
867 QImode and HImode from an aligned address to a general register
868 unless byte instructions are permitted.
ddd5a7c1 869 We also cannot load an unaligned address or a paradoxical SUBREG into an
285a5742 870 FP register. */
1a94ca49 871
3611aef0
RH
872#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
873 secondary_reload_class((CLASS), (MODE), (IN), 1)
874
875#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
876 secondary_reload_class((CLASS), (MODE), (OUT), 0)
1a94ca49
RK
877
878/* If we are copying between general and FP registers, we need a memory
de4abb91 879 location unless the FIX extension is available. */
1a94ca49 880
e9a25f70 881#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
bfd82dbf
RK
882 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
883 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
1a94ca49 884
acd94aaf
RK
885/* Specify the mode to be used for memory when a secondary memory
886 location is needed. If MODE is floating-point, use it. Otherwise,
887 widen to a word like the default. This is needed because we always
888 store integers in FP registers in quadword format. This whole
889 area is very tricky! */
890#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
891 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 892 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
893 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
894
1a94ca49
RK
895/* Return the maximum number of consecutive registers
896 needed to represent mode MODE in a register of class CLASS. */
897
898#define CLASS_MAX_NREGS(CLASS, MODE) \
899 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
900
c31dfe4d 901/* If defined, gives a class of registers that cannot be used as the
02188693 902 operand of a SUBREG that changes the mode of the object illegally. */
c31dfe4d 903
02188693
RH
904#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
905
906/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
907
908#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
909 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
c31dfe4d 910
1a94ca49
RK
911/* Define the cost of moving between registers of various classes. Moving
912 between FLOAT_REGS and anything else except float regs is expensive.
913 In fact, we make it quite expensive because we really don't want to
914 do these moves unless it is clearly worth it. Optimizations may
915 reduce the impact of not being able to allocate a pseudo to a
916 hard register. */
917
cf011243 918#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
71d9b493
RH
919 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
920 ? 2 \
de4abb91 921 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
1a94ca49
RK
922
923/* A C expressions returning the cost of moving data of MODE from a register to
924 or from memory.
925
926 On the Alpha, bump this up a bit. */
927
bcbbac26 928extern int alpha_memory_latency;
cbd5b9a2 929#define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
1a94ca49
RK
930
931/* Provide the cost of a branch. Exact meaning under development. */
932#define BRANCH_COST 5
1a94ca49
RK
933\f
934/* Stack layout; function entry, exit and calling. */
935
936/* Define this if pushing a word on the stack
937 makes the stack pointer a smaller address. */
938#define STACK_GROWS_DOWNWARD
939
940/* Define this if the nominal address of the stack frame
941 is at the high-address end of the local variables;
942 that is, each additional local variable allocated
943 goes at a more negative offset in the frame. */
130d2d72 944/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
945
946/* Offset within stack frame to start allocating local variables at.
947 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
948 first local allocated. Otherwise, it is the offset to the BEGINNING
949 of the first local allocated. */
950
52a69200 951#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
952
953/* If we generate an insn to push BYTES bytes,
954 this says how many the stack pointer really advances by.
955 On Alpha, don't define this because there are no push insns. */
956/* #define PUSH_ROUNDING(BYTES) */
957
e008606e
RK
958/* Define this to be nonzero if stack checking is built into the ABI. */
959#define STACK_CHECK_BUILTIN 1
960
1a94ca49
RK
961/* Define this if the maximum size of all the outgoing args is to be
962 accumulated and pushed during the prologue. The amount can be
963 found in the variable current_function_outgoing_args_size. */
f73ad30e 964#define ACCUMULATE_OUTGOING_ARGS 1
1a94ca49
RK
965
966/* Offset of first parameter from the argument pointer register value. */
967
130d2d72 968#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
969
970/* Definitions for register eliminations.
971
978e8952 972 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 973 frame pointer register can often be eliminated in favor of the stack
130d2d72 974 pointer register. Secondly, the argument pointer register can always be
285a5742 975 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
976
977/* This is an array of structures. Each structure initializes one pair
978 of eliminable registers. The "from" register number is given first,
979 followed by "to". Eliminations of the same "from" register are listed
980 in order of preference. */
981
52a69200
RK
982#define ELIMINABLE_REGS \
983{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
984 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
985 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
986 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
987
988/* Given FROM and TO register numbers, say whether this elimination is allowed.
989 Frame pointer elimination is automatically handled.
990
130d2d72 991 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
992 eliminated are already handled. */
993
130d2d72 994#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 995
52a69200
RK
996/* Round up to a multiple of 16 bytes. */
997#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
998
1a94ca49
RK
999/* Define the offset between two registers, one to be eliminated, and the other
1000 its replacement, at the start of a routine. */
1001#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
1002{ if ((FROM) == FRAME_POINTER_REGNUM) \
1003 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
1004 + alpha_sa_size ()); \
1005 else if ((FROM) == ARG_POINTER_REGNUM) \
1006 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
1007 + alpha_sa_size () \
d772039b
RK
1008 + (ALPHA_ROUND (get_frame_size () \
1009 + current_function_pretend_args_size) \
1010 - current_function_pretend_args_size)); \
c8d8ed65
RK
1011 else \
1012 abort (); \
1a94ca49
RK
1013}
1014
1015/* Define this if stack space is still allocated for a parameter passed
1016 in a register. */
1017/* #define REG_PARM_STACK_SPACE */
1018
1019/* Value is the number of bytes of arguments automatically
1020 popped when returning from a subroutine call.
8b109b37 1021 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
1022 FUNTYPE is the data type of the function (as a tree),
1023 or for a library call it is an identifier node for the subroutine name.
1024 SIZE is the number of bytes of arguments passed on the stack. */
1025
8b109b37 1026#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
1027
1028/* Define how to find the value returned by a function.
1029 VALTYPE is the data type of the value (as a tree).
1030 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1031 otherwise, FUNC is 0.
1032
1033 On Alpha the value is found in $0 for integer functions and
1034 $f0 for floating-point functions. */
1035
c5c76735 1036#define FUNCTION_VALUE(VALTYPE, FUNC) \
4c020733 1037 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
c5c76735
JL
1038 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1039 || POINTER_TYPE_P (VALTYPE)) \
4c020733
RH
1040 ? word_mode : TYPE_MODE (VALTYPE), \
1041 ((TARGET_FPREGS \
c5c76735 1042 && (TREE_CODE (VALTYPE) == REAL_TYPE \
4c020733 1043 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
c5c76735 1044 ? 32 : 0))
1a94ca49
RK
1045
1046/* Define how to find the value returned by a library function
1047 assuming the value has mode MODE. */
1048
c5c76735 1049#define LIBCALL_VALUE(MODE) \
4c020733 1050 gen_rtx_REG (MODE, \
c5c76735
JL
1051 (TARGET_FPREGS \
1052 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
4c020733 1053 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
c5c76735 1054 ? 32 : 0))
1a94ca49 1055
130d2d72
RK
1056/* The definition of this macro implies that there are cases where
1057 a scalar value cannot be returned in registers.
1058
1059 For the Alpha, any structure or union type is returned in memory, as
1060 are integers whose size is larger than 64 bits. */
1061
1062#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 1063 (TYPE_MODE (TYPE) == BLKmode \
5495cc55
RH
1064 || TYPE_MODE (TYPE) == TFmode \
1065 || TYPE_MODE (TYPE) == TCmode \
130d2d72
RK
1066 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1067
1a94ca49
RK
1068/* 1 if N is a possible register number for a function value
1069 as seen by the caller. */
1070
e5958492
RK
1071#define FUNCTION_VALUE_REGNO_P(N) \
1072 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
1073
1074/* 1 if N is a possible register number for function argument passing.
1075 On Alpha, these are $16-$21 and $f16-$f21. */
1076
1077#define FUNCTION_ARG_REGNO_P(N) \
1078 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1079\f
1080/* Define a data type for recording info about an argument list
1081 during the scan of that argument list. This data type should
1082 hold all necessary information about the function itself
1083 and about the args processed so far, enough to enable macros
1084 such as FUNCTION_ARG to determine where the next arg should go.
1085
1086 On Alpha, this is a single integer, which is a number of words
1087 of arguments scanned so far.
1088 Thus 6 or more means all following args should go on the stack. */
1089
1090#define CUMULATIVE_ARGS int
1091
1092/* Initialize a variable CUM of type CUMULATIVE_ARGS
1093 for a call to a function whose data type is FNTYPE.
1094 For a library call, FNTYPE is 0. */
1095
2c7ee1a6 1096#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
1097
1098/* Define intermediate macro to compute the size (in registers) of an argument
1099 for the Alpha. */
1100
1101#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
5495cc55
RH
1102 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
1103 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1104 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1a94ca49
RK
1105
1106/* Update the data in CUM to advance over an argument
1107 of mode MODE and data type TYPE.
1108 (TYPE is null for libcalls where that information may not be available.) */
1109
1110#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1111 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1112 (CUM) = 6; \
1113 else \
1114 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1115
1116/* Determine where to put an argument to a function.
1117 Value is zero to push the argument on the stack,
1118 or a hard register in which to store the argument.
1119
1120 MODE is the argument's machine mode.
1121 TYPE is the data type of the argument (as a tree).
1122 This is null for libcalls where that information may
1123 not be available.
1124 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1125 the preceding args and about the function being called.
1126 NAMED is nonzero if this argument is a named parameter
1127 (otherwise it is an extra parameter matching an ellipsis).
1128
1129 On Alpha the first 6 words of args are normally in registers
1130 and the rest are pushed. */
1131
1132#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
5495cc55
RH
1133 function_arg((CUM), (MODE), (TYPE), (NAMED))
1134
1135/* A C expression that indicates when an argument must be passed by
1136 reference. If nonzero for an argument, a copy of that argument is
1137 made in memory and a pointer to the argument is passed instead of
1138 the argument itself. The pointer is passed in whatever way is
285a5742 1139 appropriate for passing a pointer to that type. */
5495cc55
RH
1140
1141#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1142 ((MODE) == TFmode || (MODE) == TCmode)
1a94ca49 1143
1a94ca49
RK
1144/* Specify the padding direction of arguments.
1145
1146 On the Alpha, we must pad upwards in order to be able to pass args in
1147 registers. */
1148
1149#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1150
1151/* For an arg passed partly in registers and partly in memory,
1152 this is the number of registers used.
1153 For args passed entirely in registers or entirely in memory, zero. */
1154
1155#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1156((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1157 ? 6 - (CUM) : 0)
1158
130d2d72
RK
1159/* Perform any needed actions needed for a function that is receiving a
1160 variable number of arguments.
1161
1162 CUM is as above.
1163
1164 MODE and TYPE are the mode and type of the current parameter.
1165
1166 PRETEND_SIZE is a variable that should be set to the amount of stack
1167 that must be pushed by the prolog to pretend that our caller pushed
1168 it.
1169
1170 Normally, this macro will push all remaining incoming registers on the
1171 stack and set PRETEND_SIZE to the length of the registers pushed.
1172
1173 On the Alpha, we allocate space for all 12 arg registers, but only
1174 push those that are remaining.
1175
1176 However, if NO registers need to be saved, don't allocate any space.
1177 This is not only because we won't need the space, but because AP includes
1178 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1179 ap-relative addresses already made.
1180
1181 If we are not to use the floating-point registers, save the integer
1182 registers where we would put the floating-point registers. This is
1183 not the most efficient way to implement varargs with just one register
1184 class, but it isn't worth doing anything more efficient in this rare
1185 case. */
1186
130d2d72
RK
1187#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1188{ if ((CUM) < 6) \
1189 { \
1190 if (! (NO_RTL)) \
1191 { \
63966b3b
RH
1192 rtx tmp; int set = get_varargs_alias_set (); \
1193 tmp = gen_rtx_MEM (BLKmode, \
1194 plus_constant (virtual_incoming_args_rtx, \
1195 ((CUM) + 6)* UNITS_PER_WORD)); \
6a1d250e 1196 set_mem_alias_set (tmp, set); \
130d2d72 1197 move_block_from_reg \
63966b3b 1198 (16 + CUM, tmp, \
02892e06 1199 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
63966b3b
RH
1200 \
1201 tmp = gen_rtx_MEM (BLKmode, \
1202 plus_constant (virtual_incoming_args_rtx, \
1203 (CUM) * UNITS_PER_WORD)); \
6a1d250e 1204 set_mem_alias_set (tmp, set); \
130d2d72 1205 move_block_from_reg \
63966b3b 1206 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp, \
02892e06 1207 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
1208 } \
1209 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1210 } \
1211}
1212
7d89dda5
RH
1213/* We do not allow indirect calls to be optimized into sibling calls, nor
1214 can we allow a call to a function in a different compilation unit to
1215 be optimized into a sibcall. Except if the function is known not to
1216 return, in which case our caller doesn't care what the gp is. */
1217#define FUNCTION_OK_FOR_SIBCALL(DECL) \
1218 (DECL \
1219 && ((TREE_ASM_WRITTEN (DECL) && !flag_pic) \
9a1ba437 1220 || ! TREE_PUBLIC (DECL)))
7d89dda5 1221
c8e9adec
RK
1222/* Try to output insns to set TARGET equal to the constant C if it can be
1223 done in less than N insns. Do all computations in MODE. Returns the place
1224 where the output has been placed if it can be done and the insns have been
1225 emitted. If it would take more than N insns, zero is returned and no
1226 insns and emitted. */
92e40a7a 1227
1a94ca49
RK
1228/* Define the information needed to generate branch and scc insns. This is
1229 stored from the compare operation. Note that we can't use "rtx" here
1230 since it hasn't been defined! */
1231
6db21c7f
RH
1232struct alpha_compare
1233{
1234 struct rtx_def *op0, *op1;
1235 int fp_p;
1236};
1237
1238extern struct alpha_compare alpha_compare;
1a94ca49 1239
e5958492 1240/* Make (or fake) .linkage entry for function call.
e5958492 1241 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
e5958492 1242
bcbbac26
RH
1243/* This macro defines the start of an assembly comment. */
1244
1245#define ASM_COMMENT_START " #"
1246
acd92049 1247/* This macro produces the initial definition of a function. */
1a94ca49 1248
acd92049
RH
1249#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1250 alpha_start_function(FILE,NAME,DECL);
1a94ca49 1251
acd92049 1252/* This macro closes up a function definition for the assembler. */
9c0e94a5 1253
acd92049
RH
1254#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1255 alpha_end_function(FILE,NAME,DECL)
acd92049 1256
acd92049
RH
1257/* Output any profiling code before the prologue. */
1258
1259#define PROFILE_BEFORE_PROLOGUE 1
1260
1a94ca49 1261/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1262 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1263 by simply passing -pg to the assembler and linker. */
85d159a3 1264
e0fb9029 1265#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1266
1267/* Output assembler code to FILE to initialize this source file's
1268 basic block profiling info, if that has not already been done.
285a5742 1269 This assumes that __bb_init_func doesn't garble a1-a5. */
85d159a3
RK
1270
1271#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1272 do { \
1273 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1274 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1275 fputs ("\tldq $26,0($16)\n", (FILE)); \
1276 fputs ("\tbne $26,1f\n", (FILE)); \
1277 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1278 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1279 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1280 fputs ("1:\n", (FILE)); \
85d159a3
RK
1281 ASM_OUTPUT_REG_POP (FILE, 16); \
1282 } while (0);
1283
1284/* Output assembler code to FILE to increment the entry-count for
1285 the BLOCKNO'th basic block in this source file. */
1286
1287#define BLOCK_PROFILER(FILE, BLOCKNO) \
1288 do { \
1289 int blockn = (BLOCKNO); \
a62eb16f 1290 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1291 fputs ("\tstq $26,0($30)\n", (FILE)); \
1292 fputs ("\tstq $27,8($30)\n", (FILE)); \
1293 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1294 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1295 fputs ("\taddq $27,1,$27\n", (FILE)); \
1296 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1297 fputs ("\tldq $26,0($30)\n", (FILE)); \
1298 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1299 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1300 } while (0)
1a94ca49 1301
1a94ca49
RK
1302
1303/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1304 the stack pointer does not matter. The value is tested only in
1305 functions that have frame pointers.
1306 No definition is equivalent to always zero. */
1307
1308#define EXIT_IGNORE_STACK 1
c112e233
RH
1309
1310/* Define registers used by the epilogue and return instruction. */
1311
1312#define EPILOGUE_USES(REGNO) ((REGNO) == 26)
1a94ca49
RK
1313\f
1314/* Output assembler code for a block containing the constant parts
1315 of a trampoline, leaving space for the variable parts.
1316
1317 The trampoline should set the static chain pointer to value placed
7981384f
RK
1318 into the trampoline and should branch to the specified routine.
1319 Note that $27 has been set to the address of the trampoline, so we can
30864e14 1320 use it for addressability of the two data items. */
1a94ca49
RK
1321
1322#define TRAMPOLINE_TEMPLATE(FILE) \
c714f03d 1323do { \
7981384f 1324 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1325 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1326 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1327 fprintf (FILE, "\tnop\n"); \
1a94ca49 1328 fprintf (FILE, "\t.quad 0,0\n"); \
c714f03d 1329} while (0)
1a94ca49 1330
3a523eeb
RS
1331/* Section in which to place the trampoline. On Alpha, instructions
1332 may only be placed in a text segment. */
1333
1334#define TRAMPOLINE_SECTION text_section
1335
1a94ca49
RK
1336/* Length in units of the trampoline for entering a nested function. */
1337
7981384f 1338#define TRAMPOLINE_SIZE 32
1a94ca49 1339
30864e14
RH
1340/* The alignment of a trampoline, in bits. */
1341
1342#define TRAMPOLINE_ALIGNMENT 64
1343
1a94ca49
RK
1344/* Emit RTL insns to initialize the variable parts of a trampoline.
1345 FNADDR is an RTX for the address of the function's pure code.
c714f03d 1346 CXT is an RTX for the static chain value for the function. */
1a94ca49 1347
9ec36da5 1348#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c714f03d 1349 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
675f0e7c
RK
1350
1351/* A C expression whose value is RTL representing the value of the return
1352 address for the frame COUNT steps up from the current frame.
1353 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
952fc2ed 1354 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
675f0e7c 1355
9ecc37f0 1356#define RETURN_ADDR_RTX alpha_return_addr
9ecc37f0 1357
285a5742 1358/* Before the prologue, RA lives in $26. */
6abc6f40 1359#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
8034da37 1360#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
4573b4de
RH
1361
1362/* Describe how we implement __builtin_eh_return. */
1363#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1364#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
1365#define EH_RETURN_HANDLER_RTX \
1366 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1367 current_function_outgoing_args_size))
675f0e7c 1368\f
1a94ca49
RK
1369/* Addressing modes, and classification of registers for them. */
1370
940da324
JL
1371/* #define HAVE_POST_INCREMENT 0 */
1372/* #define HAVE_POST_DECREMENT 0 */
1a94ca49 1373
940da324
JL
1374/* #define HAVE_PRE_DECREMENT 0 */
1375/* #define HAVE_PRE_INCREMENT 0 */
1a94ca49
RK
1376
1377/* Macros to check register numbers against specific register classes. */
1378
1379/* These assume that REGNO is a hard or pseudo reg number.
1380 They give nonzero only if REGNO is a hard reg of the suitable class
1381 or a pseudo reg currently allocated to a suitable hard reg.
1382 Since they use reg_renumber, they are safe only once reg_renumber
1383 has been allocated, which happens in local-alloc.c. */
1384
1385#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1386#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1387((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1388 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1389\f
1390/* Maximum number of registers that can appear in a valid memory address. */
1391#define MAX_REGS_PER_ADDRESS 1
1392
1393/* Recognize any constant value that is a valid address. For the Alpha,
1394 there are only constants none since we want to use LDA to load any
1395 symbolic addresses into registers. */
1396
1397#define CONSTANT_ADDRESS_P(X) \
1398 (GET_CODE (X) == CONST_INT \
1399 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1400
1401/* Include all constant integers and constant doubles, but not
1402 floating-point, except for floating-point zero. */
1403
1404#define LEGITIMATE_CONSTANT_P(X) \
1405 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1406 || (X) == CONST0_RTX (GET_MODE (X)))
1407
1408/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1409 and check its validity for a certain class.
1410 We have two alternate definitions for each of them.
1411 The usual definition accepts all pseudo regs; the other rejects
1412 them unless they have been allocated suitable hard regs.
1413 The symbol REG_OK_STRICT causes the latter definition to be used.
1414
1415 Most source files want to accept pseudo regs in the hope that
1416 they will get allocated to the class that the insn wants them to be in.
1417 Source files for reload pass need to be strict.
1418 After reload, it makes no difference, since pseudo regs have
1419 been eliminated by then. */
1420
1a94ca49
RK
1421/* Nonzero if X is a hard reg that can be used as an index
1422 or if it is a pseudo reg. */
1423#define REG_OK_FOR_INDEX_P(X) 0
5d02b6c2 1424
1a94ca49
RK
1425/* Nonzero if X is a hard reg that can be used as a base reg
1426 or if it is a pseudo reg. */
a39bdefc 1427#define NONSTRICT_REG_OK_FOR_BASE_P(X) \
52a69200 1428 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49 1429
5d02b6c2
RH
1430/* ??? Nonzero if X is the frame pointer, or some virtual register
1431 that may eliminate to the frame pointer. These will be allowed to
1432 have offsets greater than 32K. This is done because register
1433 elimination offsets will change the hi/lo split, and if we split
285a5742 1434 before reload, we will require additional instructions. */
a39bdefc 1435#define NONSTRICT_REG_OK_FP_BASE_P(X) \
5d02b6c2
RH
1436 (REGNO (X) == 31 || REGNO (X) == 63 \
1437 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1438 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1439
1a94ca49 1440/* Nonzero if X is a hard reg that can be used as a base reg. */
a39bdefc 1441#define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
5d02b6c2 1442
a39bdefc
RH
1443#ifdef REG_OK_STRICT
1444#define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
1445#else
1446#define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
1a94ca49
RK
1447#endif
1448\f
a39bdefc
RH
1449/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1450 valid memory address for an instruction. */
1a94ca49 1451
a39bdefc
RH
1452#ifdef REG_OK_STRICT
1453#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1454do { \
1455 if (alpha_legitimate_address_p (MODE, X, 1)) \
1456 goto WIN; \
1457} while (0)
1458#else
1459#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1460do { \
1461 if (alpha_legitimate_address_p (MODE, X, 0)) \
1462 goto WIN; \
1463} while (0)
1464#endif
1a94ca49
RK
1465
1466/* Try machine-dependent ways of modifying an illegitimate address
1467 to be legitimate. If we find one, return the new, valid address.
a39bdefc 1468 This macro is used in only one place: `memory_address' in explow.c. */
aead1ca3
RH
1469
1470#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1471do { \
1472 rtx new_x = alpha_legitimize_address (X, OLDX, MODE); \
1473 if (new_x) \
1474 { \
1475 X = new_x; \
1476 goto WIN; \
1477 } \
1478} while (0)
1a94ca49 1479
a9a2595b
JR
1480/* Try a machine-dependent way of reloading an illegitimate address
1481 operand. If we find one, push the reload and jump to WIN. This
aead1ca3 1482 macro is used in only one place: `find_reloads_address' in reload.c. */
a9a2595b 1483
aead1ca3
RH
1484#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
1485do { \
1486 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1487 if (new_x) \
1488 { \
1489 X = new_x; \
1490 goto WIN; \
1491 } \
a9a2595b
JR
1492} while (0)
1493
1a94ca49
RK
1494/* Go to LABEL if ADDR (a legitimate address expression)
1495 has an effect that depends on the machine mode it is used for.
1496 On the Alpha this is true only for the unaligned modes. We can
1497 simplify this test since we know that the address must be valid. */
1498
1499#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1500{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1501
1502/* Compute the cost of an address. For the Alpha, all valid addresses are
1503 the same cost. */
1504
1505#define ADDRESS_COST(X) 0
1506
285a5742 1507/* Machine-dependent reorg pass. */
2ea844d3 1508#define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1a94ca49
RK
1509\f
1510/* Specify the machine mode that this machine uses
1511 for the index in the tablejump instruction. */
1512#define CASE_VECTOR_MODE SImode
1513
18543a22
ILT
1514/* Define as C expression which evaluates to nonzero if the tablejump
1515 instruction expects the table to contain offsets from the address of the
3aa9d5b6 1516 table.
b0435cf4 1517
3aa9d5b6 1518 Do not define this if the table should contain absolute addresses.
260ced47
RK
1519 On the Alpha, the table is really GP-relative, not relative to the PC
1520 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1521 but we should try to find some better way sometime. */
18543a22 1522#define CASE_VECTOR_PC_RELATIVE 1
1a94ca49
RK
1523
1524/* Specify the tree operation to be used to convert reals to integers. */
1525#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1526
1527/* This is the kind of divide that is easiest to do in the general case. */
1528#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1529
1530/* Define this as 1 if `char' should by default be signed; else as 0. */
1531#define DEFAULT_SIGNED_CHAR 1
1532
1533/* This flag, if defined, says the same insns that convert to a signed fixnum
1534 also convert validly to an unsigned one.
1535
1536 We actually lie a bit here as overflow conditions are different. But
1537 they aren't being checked anyway. */
1538
1539#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1540
1541/* Max number of bytes we can move to or from memory
1542 in one reasonably fast instruction. */
1543
1544#define MOVE_MAX 8
1545
7e24ffc9
HPN
1546/* If a memory-to-memory move would take MOVE_RATIO or more simple
1547 move-instruction pairs, we will do a movstr or libcall instead.
1548
1549 Without byte/word accesses, we want no more than four instructions;
285a5742 1550 with, several single byte accesses are better. */
6c174fc0
RH
1551
1552#define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1553
1a94ca49
RK
1554/* Largest number of bytes of an object that can be placed in a register.
1555 On the Alpha we have plenty of registers, so use TImode. */
1556#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1557
1558/* Nonzero if access to memory by bytes is no faster than for words.
1559 Also non-zero if doing byte operations (specifically shifts) in registers
1560 is undesirable.
1561
1562 On the Alpha, we want to not use the byte operation and instead use
1563 masking operations to access fields; these will save instructions. */
1564
1565#define SLOW_BYTE_ACCESS 1
1566
9a63901f
RK
1567/* Define if operations between registers always perform the operation
1568 on the full register even if a narrower mode is specified. */
1569#define WORD_REGISTER_OPERATIONS
1570
1571/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1572 will either zero-extend or sign-extend. The value of this macro should
1573 be the code that says which one of the two operations is implicitly
1574 done, NIL if none. */
b7747781 1575#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1576
225211e2
RK
1577/* Define if loading short immediate values into registers sign extends. */
1578#define SHORT_IMMEDIATES_SIGN_EXTEND
1579
1a94ca49
RK
1580/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1581 is done just by pretending it is already truncated. */
1582#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1583
1584/* We assume that the store-condition-codes instructions store 0 for false
1585 and some other value for true. This is the value stored for true. */
1586
1587#define STORE_FLAG_VALUE 1
1588
1589/* Define the value returned by a floating-point comparison instruction. */
1590
12530dbe
RH
1591#define FLOAT_STORE_FLAG_VALUE(MODE) \
1592 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1a94ca49 1593
35bb77fd
RK
1594/* Canonicalize a comparison from one we don't have to one we do have. */
1595
1596#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1597 do { \
1598 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1599 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1600 { \
1601 rtx tem = (OP0); \
1602 (OP0) = (OP1); \
1603 (OP1) = tem; \
1604 (CODE) = swap_condition (CODE); \
1605 } \
1606 if (((CODE) == LT || (CODE) == LTU) \
1607 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1608 { \
1609 (CODE) = (CODE) == LT ? LE : LEU; \
1610 (OP1) = GEN_INT (255); \
1611 } \
1612 } while (0)
1613
1a94ca49
RK
1614/* Specify the machine mode that pointers have.
1615 After generation of rtl, the compiler makes no further distinction
1616 between pointers and any other objects of this machine mode. */
1617#define Pmode DImode
1618
285a5742 1619/* Mode of a function address in a call instruction (for indexing purposes). */
1a94ca49
RK
1620
1621#define FUNCTION_MODE Pmode
1622
1623/* Define this if addresses of constant functions
1624 shouldn't be put through pseudo regs where they can be cse'd.
1625 Desirable on machines where ordinary constants are expensive
1626 but a CALL with constant address is cheap.
1627
1628 We define this on the Alpha so that gen_call and gen_call_value
1629 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1630 then copy it into a register, thus actually letting the address be
1631 cse'ed. */
1632
1633#define NO_FUNCTION_CSE
1634
d969caf8 1635/* Define this to be nonzero if shift instructions ignore all but the low-order
285a5742 1636 few bits. */
d969caf8 1637#define SHIFT_COUNT_TRUNCATED 1
1a94ca49
RK
1638
1639/* Compute the cost of computing a constant rtl expression RTX
1640 whose rtx-code is CODE. The body of this macro is a portion
1641 of a switch statement. If the code is computed here,
1642 return it with a return statement. Otherwise, break from the switch.
1643
8b7b2e36
RK
1644 If this is an 8-bit constant, return zero since it can be used
1645 nearly anywhere with no cost. If it is a valid operand for an
1646 ADD or AND, likewise return 0 if we know it will be used in that
1647 context. Otherwise, return 2 since it might be used there later.
1648 All other constants take at least two insns. */
1a94ca49
RK
1649
1650#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1651 case CONST_INT: \
06eb8e92 1652 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1653 return 0; \
1a94ca49 1654 case CONST_DOUBLE: \
5d02ee66
RH
1655 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1656 return 0; \
1657 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
8b7b2e36
RK
1658 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1659 return 0; \
1660 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1661 return 2; \
1662 else \
1663 return COSTS_N_INSNS (2); \
1a94ca49
RK
1664 case CONST: \
1665 case SYMBOL_REF: \
1666 case LABEL_REF: \
f6f6a13c
RK
1667 switch (alpha_cpu) \
1668 { \
1669 case PROCESSOR_EV4: \
1670 return COSTS_N_INSNS (3); \
1671 case PROCESSOR_EV5: \
5d02ee66 1672 case PROCESSOR_EV6: \
f6f6a13c 1673 return COSTS_N_INSNS (2); \
5d02ee66 1674 default: abort(); \
f6f6a13c 1675 }
1a94ca49
RK
1676
1677/* Provide the costs of a rtl expression. This is in the body of a
1678 switch on CODE. */
1679
1680#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1681 case PLUS: case MINUS: \
1682 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1683 switch (alpha_cpu) \
1684 { \
1685 case PROCESSOR_EV4: \
1686 return COSTS_N_INSNS (6); \
1687 case PROCESSOR_EV5: \
5d02ee66 1688 case PROCESSOR_EV6: \
f6f6a13c 1689 return COSTS_N_INSNS (4); \
5d02ee66 1690 default: abort(); \
f6f6a13c 1691 } \
b49e978e
RK
1692 else if (GET_CODE (XEXP (X, 0)) == MULT \
1693 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1694 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1695 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1696 break; \
1697 case MULT: \
f6f6a13c
RK
1698 switch (alpha_cpu) \
1699 { \
1700 case PROCESSOR_EV4: \
1701 if (FLOAT_MODE_P (GET_MODE (X))) \
1702 return COSTS_N_INSNS (6); \
1703 return COSTS_N_INSNS (23); \
1704 case PROCESSOR_EV5: \
1705 if (FLOAT_MODE_P (GET_MODE (X))) \
1706 return COSTS_N_INSNS (4); \
1707 else if (GET_MODE (X) == DImode) \
1708 return COSTS_N_INSNS (12); \
1709 else \
1710 return COSTS_N_INSNS (8); \
5d02ee66
RH
1711 case PROCESSOR_EV6: \
1712 if (FLOAT_MODE_P (GET_MODE (X))) \
1713 return COSTS_N_INSNS (4); \
1714 else \
1715 return COSTS_N_INSNS (7); \
1716 default: abort(); \
f6f6a13c 1717 } \
b49e978e
RK
1718 case ASHIFT: \
1719 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1720 && INTVAL (XEXP (X, 1)) <= 3) \
1721 break; \
285a5742 1722 /* ... fall through ... */ \
5d02ee66 1723 case ASHIFTRT: case LSHIFTRT: \
f6f6a13c
RK
1724 switch (alpha_cpu) \
1725 { \
1726 case PROCESSOR_EV4: \
1727 return COSTS_N_INSNS (2); \
1728 case PROCESSOR_EV5: \
5d02ee66 1729 case PROCESSOR_EV6: \
f6f6a13c 1730 return COSTS_N_INSNS (1); \
5d02ee66
RH
1731 default: abort(); \
1732 } \
1733 case IF_THEN_ELSE: \
1734 switch (alpha_cpu) \
1735 { \
1736 case PROCESSOR_EV4: \
1737 case PROCESSOR_EV6: \
1738 return COSTS_N_INSNS (2); \
1739 case PROCESSOR_EV5: \
1740 return COSTS_N_INSNS (1); \
1741 default: abort(); \
f6f6a13c 1742 } \
3bda6d11 1743 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1744 switch (alpha_cpu) \
1745 { \
1746 case PROCESSOR_EV4: \
1747 if (GET_MODE (X) == SFmode) \
1748 return COSTS_N_INSNS (34); \
1749 else if (GET_MODE (X) == DFmode) \
1750 return COSTS_N_INSNS (63); \
1751 else \
1752 return COSTS_N_INSNS (70); \
1753 case PROCESSOR_EV5: \
1754 if (GET_MODE (X) == SFmode) \
1755 return COSTS_N_INSNS (15); \
1756 else if (GET_MODE (X) == DFmode) \
1757 return COSTS_N_INSNS (22); \
1758 else \
5d02ee66
RH
1759 return COSTS_N_INSNS (70); /* ??? */ \
1760 case PROCESSOR_EV6: \
1761 if (GET_MODE (X) == SFmode) \
1762 return COSTS_N_INSNS (12); \
1763 else if (GET_MODE (X) == DFmode) \
1764 return COSTS_N_INSNS (15); \
1765 else \
1766 return COSTS_N_INSNS (70); /* ??? */ \
1767 default: abort(); \
f6f6a13c 1768 } \
1a94ca49 1769 case MEM: \
f6f6a13c
RK
1770 switch (alpha_cpu) \
1771 { \
1772 case PROCESSOR_EV4: \
5d02ee66 1773 case PROCESSOR_EV6: \
f6f6a13c
RK
1774 return COSTS_N_INSNS (3); \
1775 case PROCESSOR_EV5: \
1776 return COSTS_N_INSNS (2); \
5d02ee66 1777 default: abort(); \
f6f6a13c
RK
1778 } \
1779 case NEG: case ABS: \
1780 if (! FLOAT_MODE_P (GET_MODE (X))) \
1781 break; \
285a5742 1782 /* ... fall through ... */ \
3bda6d11
RK
1783 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1784 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1785 switch (alpha_cpu) \
1786 { \
1787 case PROCESSOR_EV4: \
1788 return COSTS_N_INSNS (6); \
1789 case PROCESSOR_EV5: \
5d02ee66 1790 case PROCESSOR_EV6: \
f6f6a13c 1791 return COSTS_N_INSNS (4); \
5d02ee66 1792 default: abort(); \
f6f6a13c 1793 }
1a94ca49
RK
1794\f
1795/* Control the assembler format that we output. */
1796
1a94ca49
RK
1797/* Output to assembler file text saying following lines
1798 may contain character constants, extra white space, comments, etc. */
1eb356b9 1799#define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1a94ca49
RK
1800
1801/* Output to assembler file text saying following lines
1802 no longer contain unusual constructs. */
1eb356b9 1803#define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1a94ca49 1804
93de6f51 1805#define TEXT_SECTION_ASM_OP "\t.text"
1a94ca49
RK
1806
1807/* Output before read-only data. */
1808
93de6f51 1809#define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1a94ca49
RK
1810
1811/* Output before writable data. */
1812
93de6f51 1813#define DATA_SECTION_ASM_OP "\t.data"
1a94ca49
RK
1814
1815/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1816 indicate that it is for read-only data.
1817
abc95ed3 1818 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1819 eight bytes of zero. This works around a bug in DEC's assembler in
1820 some versions of OSF/1 V3.x. */
1a94ca49
RK
1821
1822#define EXTRA_SECTIONS readonly_data
1823
1824#define EXTRA_SECTION_FUNCTIONS \
1825void \
1826literal_section () \
1827{ \
1828 if (in_section != readonly_data) \
1829 { \
c0388f29
RK
1830 static int firsttime = 1; \
1831 \
1a94ca49 1832 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1833 if (firsttime) \
1834 { \
1835 firsttime = 0; \
1836 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1837 } \
1838 \
1a94ca49
RK
1839 in_section = readonly_data; \
1840 } \
1841} \
1842
1843#define READONLY_DATA_SECTION literal_section
1844
1eb356b9
RH
1845/* Define this macro if references to a symbol must be treated differently
1846 depending on something about the variable or function named by the symbol
1847 (such as what section it is in). */
1848
1849#define ENCODE_SECTION_INFO(DECL) alpha_encode_section_info (DECL)
1850
1851/* If a variable is weakened, made one only or moved into a different
1852 section, it may be necessary to redo the section info to move the
285a5742 1853 variable out of sdata. */
1eb356b9
RH
1854
1855#define REDO_SECTION_INFO_P(DECL) \
1856 ((TREE_CODE (DECL) == VAR_DECL) \
1857 && (DECL_ONE_ONLY (DECL) || DECL_WEAK (DECL) || DECL_COMMON (DECL) \
1858 || DECL_SECTION_NAME (DECL) != 0))
130d2d72 1859
1eb356b9
RH
1860#define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
1861do { \
1862 (VAR) = (SYMBOL_NAME); \
1863 if ((VAR)[0] == '@') \
1864 (VAR) += 2; \
1865 if ((VAR)[0] == '*') \
1866 (VAR)++; \
1867} while (0)
130d2d72 1868
1a94ca49
RK
1869/* How to refer to registers in assembler output.
1870 This sequence is indexed by compiler's hard-register-number (see above). */
1871
1872#define REGISTER_NAMES \
1873{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1874 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1875 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1876 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1877 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1878 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1879 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1880 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49 1881
1eb356b9
RH
1882/* Strip name encoding when emitting labels. */
1883
1884#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1885do { \
1886 const char *name_ = NAME; \
1887 if (*name_ == '@') \
1888 name_ += 2; \
1889 if (*name_ == '*') \
1890 name_++; \
1891 else \
1892 fputs (user_label_prefix, STREAM); \
1893 fputs (name_, STREAM); \
1894} while (0)
1895
1a94ca49
RK
1896/* This is how to output the definition of a user-level label named NAME,
1897 such as the label on a static function or variable NAME. */
1898
1899#define ASM_OUTPUT_LABEL(FILE,NAME) \
1900 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1901
1902/* This is how to output a command to make the user-level label named NAME
1903 defined for reference from other files. */
1904
1905#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1906 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1907
285a5742 1908/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1909
4e0c8ad2 1910#define USER_LABEL_PREFIX ""
1a94ca49
RK
1911
1912/* This is how to output an internal numbered label where
1913 PREFIX is the class of label and NUM is the number within the class. */
1914
1915#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
531ea24e 1916 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1a94ca49
RK
1917
1918/* This is how to output a label for a jump table. Arguments are the same as
1919 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
285a5742 1920 passed. */
1a94ca49
RK
1921
1922#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1923{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1924
1925/* This is how to store into the string LABEL
1926 the symbol_ref name of an internal numbered label where
1927 PREFIX is the class of label and NUM is the number within the class.
1928 This is suitable for output with `assemble_name'. */
1929
1930#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
d1e6b55b 1931 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1a94ca49 1932
e247ca2a
RK
1933/* Check a floating-point value for validity for a particular machine mode. */
1934
1935#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1936 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1937
5495cc55
RH
1938/* This is how to output an assembler line defining a `long double'
1939 constant. */
1940
1941#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1942 do { \
1943 long t[4]; \
1944 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
1945 fprintf (FILE, "\t.quad 0x%lx%08lx,0x%lx%08lx\n", \
1946 t[1] & 0xffffffff, t[0] & 0xffffffff, \
1947 t[3] & 0xffffffff, t[2] & 0xffffffff); \
1948 } while (0)
1949
1a94ca49
RK
1950/* This is how to output an assembler line defining a `double' constant. */
1951
e99300f1 1952#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
5495cc55
RH
1953 do { \
1954 long t[2]; \
1955 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1956 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1957 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1958 } while (0)
1a94ca49
RK
1959
1960/* This is how to output an assembler line defining a `float' constant. */
1961
e247ca2a
RK
1962#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1963 do { \
1964 long t; \
1965 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1966 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
5495cc55 1967 } while (0)
2700ac93 1968
1a94ca49
RK
1969/* This is how to output an assembler line defining an `int' constant. */
1970
1971#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1972( fprintf (FILE, "\t.long "), \
1973 output_addr_const (FILE, (VALUE)), \
1974 fprintf (FILE, "\n"))
1a94ca49
RK
1975
1976/* This is how to output an assembler line defining a `long' constant. */
1977
1978#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1979( fprintf (FILE, "\t.quad "), \
1980 output_addr_const (FILE, (VALUE)), \
1981 fprintf (FILE, "\n"))
1982
1983/* Likewise for `char' and `short' constants. */
1984
1985#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1986 fprintf (FILE, "\t.word %d\n", \
3c303f52 1987 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 1988 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1989
1990#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79 1991 fprintf (FILE, "\t.byte %d\n", \
3c303f52 1992 (int)(GET_CODE (VALUE) == CONST_INT \
45c45e79 1993 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1994
1995/* We use the default ASCII-output routine, except that we don't write more
1996 than 50 characters since the assembler doesn't support very long lines. */
1997
1998#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1999 do { \
2000 FILE *_hide_asm_out_file = (MYFILE); \
e03c5670 2001 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1a94ca49
RK
2002 int _hide_thissize = (MYLENGTH); \
2003 int _size_so_far = 0; \
2004 { \
2005 FILE *asm_out_file = _hide_asm_out_file; \
e03c5670 2006 const unsigned char *p = _hide_p; \
1a94ca49
RK
2007 int thissize = _hide_thissize; \
2008 int i; \
2009 fprintf (asm_out_file, "\t.ascii \""); \
2010 \
2011 for (i = 0; i < thissize; i++) \
2012 { \
2013 register int c = p[i]; \
2014 \
2015 if (_size_so_far ++ > 50 && i < thissize - 4) \
2016 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2017 \
2018 if (c == '\"' || c == '\\') \
2019 putc ('\\', asm_out_file); \
2020 if (c >= ' ' && c < 0177) \
2021 putc (c, asm_out_file); \
2022 else \
2023 { \
2024 fprintf (asm_out_file, "\\%o", c); \
2025 /* After an octal-escape, if a digit follows, \
2026 terminate one string constant and start another. \
8aeea6e6 2027 The VAX assembler fails to stop reading the escape \
1a94ca49
RK
2028 after three digits, so this is the only way we \
2029 can get it to parse the data properly. */ \
0df6c2c7 2030 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
b2d5e311 2031 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
2032 } \
2033 } \
2034 fprintf (asm_out_file, "\"\n"); \
2035 } \
2036 } \
2037 while (0)
52a69200 2038
6690d24c 2039/* To get unaligned data, we have to turn off auto alignment. */
93de6f51
HPN
2040#define UNALIGNED_SHORT_ASM_OP "\t.align 0\n\t.word\t"
2041#define UNALIGNED_INT_ASM_OP "\t.align 0\n\t.long\t"
2042#define UNALIGNED_DOUBLE_INT_ASM_OP "\t.align 0\n\t.quad\t"
6690d24c 2043
1a94ca49
RK
2044/* This is how to output an insn to push a register on the stack.
2045 It need not be very fast code. */
2046
2047#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2048 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2049 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2050 (REGNO) & 31);
2051
2052/* This is how to output an insn to pop a register from the stack.
2053 It need not be very fast code. */
2054
2055#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2056 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2057 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2058 (REGNO) & 31);
2059
2060/* This is how to output an assembler line for a numeric constant byte. */
2061
2062#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3c303f52 2063 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
1a94ca49 2064
260ced47
RK
2065/* This is how to output an element of a case-vector that is absolute.
2066 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 2067
260ced47 2068#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 2069
260ced47 2070/* This is how to output an element of a case-vector that is relative. */
1a94ca49 2071
33f7f353 2072#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
be7b80f4 2073 fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
8dfe3c62 2074 (VALUE))
1a94ca49
RK
2075
2076/* This is how to output an assembler line
2077 that says to advance the location counter
2078 to a multiple of 2**LOG bytes. */
2079
2080#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2081 if ((LOG) != 0) \
2082 fprintf (FILE, "\t.align %d\n", LOG);
2083
2084/* This is how to advance the location counter by SIZE bytes. */
2085
2086#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2087 fprintf (FILE, "\t.space %d\n", (SIZE))
2088
2089/* This says how to output an assembler line
2090 to define a global common symbol. */
2091
2092#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2093( fputs ("\t.comm ", (FILE)), \
2094 assemble_name ((FILE), (NAME)), \
2095 fprintf ((FILE), ",%d\n", (SIZE)))
2096
2097/* This says how to output an assembler line
2098 to define a local common symbol. */
2099
2100#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2101( fputs ("\t.lcomm ", (FILE)), \
2102 assemble_name ((FILE), (NAME)), \
2103 fprintf ((FILE), ",%d\n", (SIZE)))
2104
2105/* Store in OUTPUT a string (made with alloca) containing
2106 an assembler-name for a local static variable named NAME.
2107 LABELNO is an integer which is different for each call. */
2108
2109#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2110( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2111 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
60593797 2112\f
9ec36da5 2113
1a94ca49
RK
2114/* Print operand X (an rtx) in assembler syntax to file FILE.
2115 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2116 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2117
2118#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2119
2120/* Determine which codes are valid without a following integer. These must
941cc05a
RK
2121 not be alphabetic.
2122
2123 ~ Generates the name of the current function.
2bf6230d 2124
be7560ea
RH
2125 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
2126 attributes are examined to determine what is appropriate.
e5958492
RK
2127
2128 , Generates single precision suffix for floating point
2129 instructions (s for IEEE, f for VAX)
2130
2131 - Generates double precision suffix for floating point
2132 instructions (t for IEEE, g for VAX)
2bf6230d 2133 */
1a94ca49 2134
be7560ea 2135#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1eb356b9
RH
2136 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
2137 || (CODE) == '#' || (CODE) == '*')
1a94ca49
RK
2138\f
2139/* Print a memory address as an operand to reference that memory location. */
2140
714b019c
RH
2141#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2142 print_operand_address((FILE), (ADDR))
2143
1a94ca49
RK
2144/* Define the codes that are matched by predicates in alpha.c. */
2145
e3208d53
RH
2146#define PREDICATE_CODES \
2147 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
eb8da868
RH
2148 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2149 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2150 {"cint8_operand", {CONST_INT}}, \
2151 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2152 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2153 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53 2154 {"const48_operand", {CONST_INT}}, \
eb8da868
RH
2155 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2156 {"or_operand", {SUBREG, REG, CONST_INT}}, \
e3208d53
RH
2157 {"mode_mask_operand", {CONST_INT}}, \
2158 {"mul8_operand", {CONST_INT}}, \
2159 {"mode_width_operand", {CONST_INT}}, \
2160 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2161 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
8f4773ea 2162 {"alpha_zero_comparison_operator", {EQ, NE, LE, LT, LEU, LTU}}, \
e3208d53
RH
2163 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2164 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1eb8759b 2165 {"alpha_fp_comparison_operator", {EQ, LE, LT, UNORDERED}}, \
e3208d53
RH
2166 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2167 {"fp0_operand", {CONST_DOUBLE}}, \
2168 {"current_file_function_operand", {SYMBOL_REF}}, \
1afec8ad 2169 {"direct_call_operand", {SYMBOL_REF}}, \
1eb356b9 2170 {"local_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
e2c9fb9b
RH
2171 {"small_symbolic_operand", {SYMBOL_REF, CONST}}, \
2172 {"global_symbolic_operand", {SYMBOL_REF, CONST}}, \
e3208d53
RH
2173 {"call_operand", {REG, SYMBOL_REF}}, \
2174 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
133d3133 2175 SYMBOL_REF, CONST, LABEL_REF}}, \
e3208d53 2176 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
133d3133 2177 SYMBOL_REF, CONST, LABEL_REF}}, \
f711a22b 2178 {"some_ni_operand", {SUBREG, REG, MEM}}, \
e3208d53
RH
2179 {"aligned_memory_operand", {MEM}}, \
2180 {"unaligned_memory_operand", {MEM}}, \
2181 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2182 {"any_memory_operand", {MEM}}, \
40b80dad 2183 {"hard_fp_register_operand", {SUBREG, REG}}, \
d2c6a1b6 2184 {"hard_int_register_operand", {SUBREG, REG}}, \
67070f5c 2185 {"reg_not_elim_operand", {SUBREG, REG}}, \
3611aef0 2186 {"reg_no_subreg_operand", {REG}}, \
30102605
RH
2187 {"addition_operation", {PLUS}}, \
2188 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},
03f8c4cc 2189\f
63966b3b
RH
2190/* Define the `__builtin_va_list' type for the ABI. */
2191#define BUILD_VA_LIST_TYPE(VALIST) \
2192 (VALIST) = alpha_build_va_list ()
2193
2194/* Implement `va_start' for varargs and stdarg. */
2195#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2196 alpha_va_start (stdarg, valist, nextarg)
2197
2198/* Implement `va_arg'. */
2199#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2200 alpha_va_arg (valist, type)
2201\f
34fa88ab
RK
2202/* Tell collect that the object format is ECOFF. */
2203#define OBJECT_FORMAT_COFF
2204#define EXTENDED_COFF
2205
2206/* If we use NM, pass -g to it so it only lists globals. */
2207#define NM_FLAGS "-pg"
2208
03f8c4cc
RK
2209/* Definitions for debugging. */
2210
2211#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2212#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2213#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2214
2215#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2216#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2217#endif
2218
2219
2220/* Correct the offset of automatic variables and arguments. Note that
2221 the Alpha debug format wants all automatic variables and arguments
2222 to be in terms of two different offsets from the virtual frame pointer,
2223 which is the stack pointer before any adjustment in the function.
2224 The offset for the argument pointer is fixed for the native compiler,
2225 it is either zero (for the no arguments case) or large enough to hold
2226 all argument registers.
2227 The offset for the auto pointer is the fourth argument to the .frame
2228 directive (local_offset).
2229 To stay compatible with the native tools we use the same offsets
2230 from the virtual frame pointer and adjust the debugger arg/auto offsets
2231 accordingly. These debugger offsets are set up in output_prolog. */
2232
9a0b18f2
RK
2233extern long alpha_arg_offset;
2234extern long alpha_auto_offset;
03f8c4cc
RK
2235#define DEBUGGER_AUTO_OFFSET(X) \
2236 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2237#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2238
2239
2240#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2241 alpha_output_lineno (STREAM, LINE)
03f8c4cc
RK
2242
2243#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2244 alpha_output_filename (STREAM, NAME)
03f8c4cc 2245
4330b0e7
JW
2246/* mips-tfile.c limits us to strings of one page. We must underestimate this
2247 number, because the real length runs past this up to the next
2248 continuation point. This is really a dbxout.c bug. */
2249#define DBX_CONTIN_LENGTH 3000
03f8c4cc
RK
2250
2251/* By default, turn on GDB extensions. */
2252#define DEFAULT_GDB_EXTENSIONS 1
2253
7aadc7c2
RK
2254/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2255#define NO_DBX_FUNCTION_END 1
2256
03f8c4cc
RK
2257/* If we are smuggling stabs through the ALPHA ECOFF object
2258 format, put a comment in front of the .stab<x> operation so
2259 that the ALPHA assembler does not choke. The mips-tfile program
2260 will correctly put the stab into the object file. */
2261
93de6f51
HPN
2262#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
2263#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
2264#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
03f8c4cc
RK
2265
2266/* Forward references to tags are allowed. */
2267#define SDB_ALLOW_FORWARD_REFERENCES
2268
2269/* Unknown tags are also allowed. */
2270#define SDB_ALLOW_UNKNOWN_REFERENCES
2271
2272#define PUT_SDB_DEF(a) \
2273do { \
2274 fprintf (asm_out_file, "\t%s.def\t", \
2275 (TARGET_GAS) ? "" : "#"); \
2276 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2277 fputc (';', asm_out_file); \
2278} while (0)
2279
2280#define PUT_SDB_PLAIN_DEF(a) \
2281do { \
2282 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2283 (TARGET_GAS) ? "" : "#", (a)); \
2284} while (0)
2285
2286#define PUT_SDB_TYPE(a) \
2287do { \
2288 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2289} while (0)
2290
2291/* For block start and end, we create labels, so that
2292 later we can figure out where the correct offset is.
2293 The normal .ent/.end serve well enough for functions,
2294 so those are just commented out. */
2295
2296extern int sdb_label_count; /* block start/end next label # */
2297
2298#define PUT_SDB_BLOCK_START(LINE) \
2299do { \
2300 fprintf (asm_out_file, \
2301 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2302 sdb_label_count, \
2303 (TARGET_GAS) ? "" : "#", \
2304 sdb_label_count, \
2305 (LINE)); \
2306 sdb_label_count++; \
2307} while (0)
2308
2309#define PUT_SDB_BLOCK_END(LINE) \
2310do { \
2311 fprintf (asm_out_file, \
2312 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2313 sdb_label_count, \
2314 (TARGET_GAS) ? "" : "#", \
2315 sdb_label_count, \
2316 (LINE)); \
2317 sdb_label_count++; \
2318} while (0)
2319
2320#define PUT_SDB_FUNCTION_START(LINE)
2321
2322#define PUT_SDB_FUNCTION_END(LINE)
2323
3c303f52 2324#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
03f8c4cc 2325
03f8c4cc
RK
2326/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2327 mips-tdump.c to print them out.
2328
2329 These must match the corresponding definitions in gdb/mipsread.c.
285a5742 2330 Unfortunately, gcc and gdb do not currently share any directories. */
03f8c4cc
RK
2331
2332#define CODE_MASK 0x8F300
2333#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2334#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2335#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2336
2337/* Override some mips-tfile definitions. */
2338
2339#define SHASH_SIZE 511
2340#define THASH_SIZE 55
1e6c6f11
RK
2341
2342/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2343
2344#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b 2345
b0435cf4
RH
2346/* The system headers under Alpha systems are generally C++-aware. */
2347#define NO_IMPLICIT_EXTERN_C
b517dcd2 2348
285a5742 2349/* Generate calls to memcpy, etc., not bcopy, etc. */
b517dcd2 2350#define TARGET_MEM_FUNCTIONS 1