]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/alpha/alpha.h
(override_options): Allow processor of ev56 or 21164a.
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
CommitLineData
1a94ca49 1/* Definitions of target machine for GNU compiler, for DEC Alpha.
d16fe557 2 Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
1e6c6f11 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
1a94ca49
RK
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
38ead7f3
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
1a94ca49
RK
21
22
23/* Names to predefine in the preprocessor for this target machine. */
24
25#define CPP_PREDEFINES "\
26-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
65c42379 27-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
1a94ca49 28
21798cd8
RK
29/* Write out the correct language type definition for the header files.
30 Unless we have assembler language, write out the symbols for C. */
1a94ca49 31#define CPP_SPEC "\
21798cd8 32%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
1a94ca49 33%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
21798cd8
RK
34%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
36%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
2bf6230d
RK
37%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C} \
38%{mieee:-D_IEEE_FP} \
39%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT}"
1a94ca49
RK
40
41/* Set the spec to use for signed char. The default tests the above macro
42 but DEC's compiler can't handle the conditional in a "constant"
43 operand. */
44
45#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
46
2d5ff2a7 47/* Under OSF4, -p and -pg require -lprof1, and -lprof1 requires -lpdf. */
1a94ca49 48
2d5ff2a7 49#define LIB_SPEC "%{p:-lprof1 -lpdf} %{pg:-lprof1 -lpdf} %{a:-lprof2} -lc"
1a94ca49 50
f987462f
JM
51/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
52 optimizing, -O1 if we are not. Pass -shared, -non_shared or
1c6c2b05 53 -call_shared as appropriate. Also pass -pg. */
8877eb00 54#define LINK_SPEC \
d37df6cc 55 "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} \
b890f297
JM
56 %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg} %{taso} \
57 %{rpath*}"
58
59#define WORD_SWITCH_TAKES_ARG(STR) \
60 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
61 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
62 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
63 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
64 || !strcmp (STR, "isystem"))
8877eb00 65
85d159a3 66#define STARTFILE_SPEC \
1c6c2b05 67 "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
85d159a3 68
1a94ca49
RK
69/* Print subsidiary information on the compiler version in use. */
70#define TARGET_VERSION
71
72/* Define the location for the startup file on OSF/1 for Alpha. */
73
74#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
75
76/* Run-time compilation parameters selecting different hardware subsets. */
77
f6f6a13c
RK
78/* Which processor to schedule for. The cpu attribute defines a list that
79 mirrors this list, so changes to alpha.md must be made at the same time. */
80
81enum processor_type
82 {PROCESSOR_EV4, /* 2106[46]{a,} */
83 PROCESSOR_EV5}; /* 21164{a,} */
84
85extern enum processor_type alpha_cpu;
86
2bf6230d
RK
87enum alpha_trap_precision
88{
89 ALPHA_TP_PROG, /* No precision (default). */
90 ALPHA_TP_FUNC, /* Trap contained within originating function. */
91 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
92};
93
94enum alpha_fp_rounding_mode
95{
96 ALPHA_FPRM_NORM, /* Normal rounding mode. */
97 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
98 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
99 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
100};
101
102enum alpha_fp_trap_mode
103{
104 ALPHA_FPTM_N, /* Normal trap mode. */
105 ALPHA_FPTM_U, /* Underflow traps enabled. */
106 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
107 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
108};
109
1a94ca49
RK
110extern int target_flags;
111
2bf6230d
RK
112extern enum alpha_trap_precision alpha_tp;
113extern enum alpha_fp_rounding_mode alpha_fprm;
114extern enum alpha_fp_trap_mode alpha_fptm;
115
1a94ca49
RK
116/* This means that floating-point support exists in the target implementation
117 of the Alpha architecture. This is usually the default. */
118
2bf6230d
RK
119#define MASK_FP 1
120#define TARGET_FP (target_flags & MASK_FP)
1a94ca49
RK
121
122/* This means that floating-point registers are allowed to be used. Note
123 that Alpha implementations without FP operations are required to
124 provide the FP registers. */
125
2bf6230d
RK
126#define MASK_FPREGS 2
127#define TARGET_FPREGS (target_flags & MASK_FPREGS)
03f8c4cc
RK
128
129/* This means that gas is used to process the assembler file. */
130
131#define MASK_GAS 4
132#define TARGET_GAS (target_flags & MASK_GAS)
1a94ca49 133
2bf6230d
RK
134/* This means that we should mark procedures as IEEE conformant. */
135
136#define MASK_IEEE_CONFORMANT 8
137#define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
138
139/* This means we should be IEEE-compliant except for inexact. */
140
141#define MASK_IEEE 16
142#define TARGET_IEEE (target_flags & MASK_IEEE)
143
144/* This means we should be fully IEEE-compliant. */
145
146#define MASK_IEEE_WITH_INEXACT 32
147#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
148
e7a2eff8 149/* This means we are compiling for Windows NT. */
803fee69 150
e7a2eff8
RK
151#define MASK_WINDOWS_NT 64
152#define TARGET_WINDOWS_NT (target_flags & MASK_WINDOWS_NT)
153
803fee69
RK
154/* This means we must construct all constants rather than emitting
155 them as literal data. */
156
157#define MASK_BUILD_CONSTANTS 128
158#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
159
e5958492
RK
160/* This means we are compiling for openVMS. */
161
162#define MASK_OPEN_VMS 256
163#define TARGET_OPEN_VMS (target_flags & MASK_OPEN_VMS)
164
165/* This means we handle floating points in VAX F- (float)
166 or G- (double) Format. */
167
168#define MASK_FLOAT_VAX 512
169#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
170
025f3281
RK
171/* This means that the processor has byte and half word loads and stores. */
172
173#define MASK_BYTE_OPS 1024
174#define TARGET_BYTE_OPS (target_flags & MASK_BYTE_OPS)
175
1a94ca49
RK
176/* Macro to define tables used to set the flags.
177 This is a list in braces of pairs in braces,
178 each pair being { "NAME", VALUE }
179 where VALUE is the bits to set or minus the bits to clear.
180 An empty string NAME is used to identify the default VALUE. */
181
2bf6230d
RK
182#define TARGET_SWITCHES \
183 { {"no-soft-float", MASK_FP}, \
184 {"soft-float", - MASK_FP}, \
185 {"fp-regs", MASK_FPREGS}, \
186 {"no-fp-regs", - (MASK_FP|MASK_FPREGS)}, \
187 {"alpha-as", -MASK_GAS}, \
188 {"gas", MASK_GAS}, \
189 {"ieee-conformant", MASK_IEEE_CONFORMANT}, \
c01b5470
RK
190 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT}, \
191 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT}, \
803fee69 192 {"build-constants", MASK_BUILD_CONSTANTS}, \
e5958492
RK
193 {"float-vax", MASK_FLOAT_VAX}, \
194 {"float-ieee", -MASK_FLOAT_VAX}, \
b7747781 195 {"byte", MASK_BYTE_OPS}, \
88681624 196 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
1a94ca49 197
c01b5470 198#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
1a94ca49 199
88681624
ILT
200#ifndef TARGET_CPU_DEFAULT
201#define TARGET_CPU_DEFAULT 0
202#endif
203
2bf6230d
RK
204/* This macro is similar to `TARGET_SWITCHES' but defines names of
205 command options that have values. Its definition is an initializer
206 with a subgrouping for each command option.
207
208 Each subgrouping contains a string constant, that defines the fixed
209 part of the option name, and the address of a variable. The
210 variable, type `char *', is set to the variable part of the given
211 option if the fixed part matches. The actual option name is made
212 by appending `-m' to the specified name.
213
214 Here is an example which defines `-mshort-data-NUMBER'. If the
215 given option is `-mshort-data-512', the variable `m88k_short_data'
216 will be set to the string `"512"'.
217
218 extern char *m88k_short_data;
219 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
220
f6f6a13c 221extern char *alpha_cpu_string; /* For -mcpu=ev[4|5] */
2bf6230d
RK
222extern char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
223extern char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
224extern char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
225
226#define TARGET_OPTIONS \
227{ \
f6f6a13c 228 {"cpu=", &alpha_cpu_string}, \
2bf6230d
RK
229 {"fp-rounding-mode=", &alpha_fprm_string}, \
230 {"fp-trap-mode=", &alpha_fptm_string}, \
231 {"trap-precision=", &alpha_tp_string}, \
232}
233
234/* Sometimes certain combinations of command options do not make sense
235 on a particular target machine. You can define a macro
236 `OVERRIDE_OPTIONS' to take account of this. This macro, if
237 defined, is executed once just after all the command options have
238 been parsed.
239
240 On the Alpha, it is used to translate target-option strings into
241 numeric values. */
242
243extern void override_options ();
244#define OVERRIDE_OPTIONS override_options ()
245
246
1a94ca49
RK
247/* Define this macro to change register usage conditional on target flags.
248
249 On the Alpha, we use this to disable the floating-point registers when
250 they don't exist. */
251
252#define CONDITIONAL_REGISTER_USAGE \
253 if (! TARGET_FPREGS) \
52a69200 254 for (i = 32; i < 63; i++) \
1a94ca49
RK
255 fixed_regs[i] = call_used_regs[i] = 1;
256
4f074454
RK
257/* Show we can debug even without a frame pointer. */
258#define CAN_DEBUG_WITHOUT_FP
1a94ca49
RK
259\f
260/* target machine storage layout */
261
2700ac93
RS
262/* Define to enable software floating point emulation. */
263#define REAL_ARITHMETIC
264
1a94ca49
RK
265/* Define the size of `int'. The default is the same as the word size. */
266#define INT_TYPE_SIZE 32
267
268/* Define the size of `long long'. The default is the twice the word size. */
269#define LONG_LONG_TYPE_SIZE 64
270
271/* The two floating-point formats we support are S-floating, which is
272 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
273 and `long double' are T. */
274
275#define FLOAT_TYPE_SIZE 32
276#define DOUBLE_TYPE_SIZE 64
277#define LONG_DOUBLE_TYPE_SIZE 64
278
5258d7ae
RK
279#define WCHAR_TYPE "unsigned int"
280#define WCHAR_TYPE_SIZE 32
1a94ca49 281
13d39dbc 282/* Define this macro if it is advisable to hold scalars in registers
1a94ca49
RK
283 in a wider mode than that declared by the program. In such cases,
284 the value is constrained to be within the bounds of the declared
285 type, but kept valid in the wider mode. The signedness of the
286 extension may differ from that of the type.
287
288 For Alpha, we always store objects in a full register. 32-bit objects
289 are always sign-extended, but smaller objects retain their signedness. */
290
291#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
292 if (GET_MODE_CLASS (MODE) == MODE_INT \
293 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
294 { \
295 if ((MODE) == SImode) \
296 (UNSIGNEDP) = 0; \
297 (MODE) = DImode; \
298 }
299
300/* Define this if function arguments should also be promoted using the above
301 procedure. */
302
303#define PROMOTE_FUNCTION_ARGS
304
305/* Likewise, if the function return value is promoted. */
306
307#define PROMOTE_FUNCTION_RETURN
308
309/* Define this if most significant bit is lowest numbered
310 in instructions that operate on numbered bit-fields.
311
312 There are no such instructions on the Alpha, but the documentation
313 is little endian. */
314#define BITS_BIG_ENDIAN 0
315
316/* Define this if most significant byte of a word is the lowest numbered.
317 This is false on the Alpha. */
318#define BYTES_BIG_ENDIAN 0
319
320/* Define this if most significant word of a multiword number is lowest
321 numbered.
322
323 For Alpha we can decide arbitrarily since there are no machine instructions
324 for them. Might as well be consistent with bytes. */
325#define WORDS_BIG_ENDIAN 0
326
327/* number of bits in an addressable storage unit */
328#define BITS_PER_UNIT 8
329
330/* Width in bits of a "word", which is the contents of a machine register.
331 Note that this is not necessarily the width of data type `int';
332 if using 16-bit ints on a 68000, this would still be 32.
333 But on a machine with 16-bit registers, this would be 16. */
334#define BITS_PER_WORD 64
335
336/* Width of a word, in units (bytes). */
337#define UNITS_PER_WORD 8
338
339/* Width in bits of a pointer.
340 See also the macro `Pmode' defined below. */
341#define POINTER_SIZE 64
342
343/* Allocation boundary (in *bits*) for storing arguments in argument list. */
344#define PARM_BOUNDARY 64
345
346/* Boundary (in *bits*) on which stack pointer should be aligned. */
347#define STACK_BOUNDARY 64
348
349/* Allocation boundary (in *bits*) for the code of a function. */
350#define FUNCTION_BOUNDARY 64
351
352/* Alignment of field after `int : 0' in a structure. */
353#define EMPTY_FIELD_BOUNDARY 64
354
355/* Every structure's size must be a multiple of this. */
356#define STRUCTURE_SIZE_BOUNDARY 8
357
358/* A bitfield declared as `int' forces `int' alignment for the struct. */
359#define PCC_BITFIELD_TYPE_MATTERS 1
360
65823178
RK
361/* Align loop starts for optimal branching.
362
363 ??? Kludge this and the next macro for the moment by not doing anything if
364 we don't optimize and also if we are writing ECOFF symbols to work around
365 a bug in DEC's assembler. */
1a94ca49 366
130d2d72 367#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
65823178
RK
368 if (optimize > 0 && write_symbols != SDB_DEBUG) \
369 ASM_OUTPUT_ALIGN (FILE, 5)
1a94ca49
RK
370
371/* This is how to align an instruction for optimal branching.
372 On Alpha we'll get better performance by aligning on a quadword
373 boundary. */
130d2d72 374
1a94ca49 375#define ASM_OUTPUT_ALIGN_CODE(FILE) \
65823178
RK
376 if (optimize > 0 && write_symbols != SDB_DEBUG) \
377 ASM_OUTPUT_ALIGN ((FILE), 4)
1a94ca49
RK
378
379/* No data type wants to be aligned rounder than this. */
380#define BIGGEST_ALIGNMENT 64
381
d16fe557
RK
382/* For atomic access to objects, must have at least 32-bit alignment
383 unless the machine has byte operations. */
384#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BYTE_OPS ? 8 : 32)
385
442b1685
RK
386/* Align all constants and variables to at least a word boundary so
387 we can pick up pieces of them faster. */
388#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
389#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
1a94ca49
RK
390
391/* Set this non-zero if move instructions will actually fail to work
392 when given unaligned data.
393
394 Since we get an error message when we do one, call them invalid. */
395
396#define STRICT_ALIGNMENT 1
397
398/* Set this non-zero if unaligned move instructions are extremely slow.
399
400 On the Alpha, they trap. */
130d2d72
RK
401
402#define SLOW_UNALIGNED_ACCESS 1
1a94ca49
RK
403\f
404/* Standard register usage. */
405
406/* Number of actual hardware registers.
407 The hardware registers are assigned numbers for the compiler
408 from 0 to just below FIRST_PSEUDO_REGISTER.
409 All registers that the compiler knows about must be given numbers,
410 even those that are not normally considered general registers.
411
412 We define all 32 integer registers, even though $31 is always zero,
413 and all 32 floating-point registers, even though $f31 is also
414 always zero. We do not bother defining the FP status register and
130d2d72
RK
415 there are no other registers.
416
417 Since $31 is always zero, we will use register number 31 as the
418 argument pointer. It will never appear in the generated code
419 because we will always be eliminating it in favor of the stack
52a69200
RK
420 pointer or hardware frame pointer.
421
422 Likewise, we use $f31 for the frame pointer, which will always
423 be eliminated in favor of the hardware frame pointer or the
424 stack pointer. */
1a94ca49
RK
425
426#define FIRST_PSEUDO_REGISTER 64
427
428/* 1 for registers that have pervasive standard uses
429 and are not available for the register allocator. */
430
431#define FIXED_REGISTERS \
432 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
433 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
434 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
435 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
436
437/* 1 for registers not available across function calls.
438 These must include the FIXED_REGISTERS and also any
439 registers that can be used without being saved.
440 The latter must include the registers where values are returned
441 and the register where structure-value addresses are passed.
442 Aside from that, you can include as many other registers as you like. */
443#define CALL_USED_REGISTERS \
444 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
445 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
446 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
447 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
448
449/* List the order in which to allocate registers. Each register must be
450 listed once, even those in FIXED_REGISTERS.
451
452 We allocate in the following order:
453 $f1 (nonsaved floating-point register)
454 $f10-$f15 (likewise)
455 $f22-$f30 (likewise)
456 $f21-$f16 (likewise, but input args)
457 $f0 (nonsaved, but return value)
458 $f2-$f9 (saved floating-point registers)
459 $1-$8 (nonsaved integer registers)
460 $22-$25 (likewise)
461 $28 (likewise)
462 $0 (likewise, but return value)
463 $21-$16 (likewise, but input args)
0076aa6b 464 $27 (procedure value in OSF, nonsaved in NT)
1a94ca49
RK
465 $9-$14 (saved integer registers)
466 $26 (return PC)
467 $15 (frame pointer)
468 $29 (global pointer)
52a69200 469 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
1a94ca49
RK
470
471#define REG_ALLOC_ORDER \
472 {33, \
da01bc2c 473 42, 43, 44, 45, 46, 47, \
1a94ca49
RK
474 54, 55, 56, 57, 58, 59, 60, 61, 62, \
475 53, 52, 51, 50, 49, 48, \
476 32, \
477 34, 35, 36, 37, 38, 39, 40, 41, \
478 1, 2, 3, 4, 5, 6, 7, 8, \
479 22, 23, 24, 25, \
480 28, \
481 0, \
482 21, 20, 19, 18, 17, 16, \
483 27, \
484 9, 10, 11, 12, 13, 14, \
485 26, \
486 15, \
487 29, \
488 30, 31, 63 }
489
490/* Return number of consecutive hard regs needed starting at reg REGNO
491 to hold something of mode MODE.
492 This is ordinarily the length in words of a value of mode MODE
493 but can be less for certain modes in special long registers. */
494
495#define HARD_REGNO_NREGS(REGNO, MODE) \
496 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
497
498/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
499 On Alpha, the integer registers can hold any mode. The floating-point
500 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
501 or 8-bit values. If we only allowed the larger integers into FP registers,
502 we'd have to say that QImode and SImode aren't tiable, which is a
503 pain. So say all registers can hold everything and see how that works. */
504
505#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
506
507/* Value is 1 if it is a good idea to tie two pseudo registers
508 when one has mode MODE1 and one has mode MODE2.
509 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
510 for any hard reg, then this must be 0 for correct output. */
511
512#define MODES_TIEABLE_P(MODE1, MODE2) 1
513
514/* Specify the registers used for certain standard purposes.
515 The values of these macros are register numbers. */
516
517/* Alpha pc isn't overloaded on a register that the compiler knows about. */
518/* #define PC_REGNUM */
519
520/* Register to use for pushing function arguments. */
521#define STACK_POINTER_REGNUM 30
522
523/* Base register for access to local variables of the function. */
52a69200 524#define HARD_FRAME_POINTER_REGNUM 15
1a94ca49
RK
525
526/* Value should be nonzero if functions must have frame pointers.
527 Zero means the frame pointer need not be set up (and parms
528 may be accessed via the stack pointer) in functions that seem suitable.
529 This is computed in `reload', in reload1.c. */
530#define FRAME_POINTER_REQUIRED 0
531
532/* Base register for access to arguments of the function. */
130d2d72 533#define ARG_POINTER_REGNUM 31
1a94ca49 534
52a69200
RK
535/* Base register for access to local variables of function. */
536#define FRAME_POINTER_REGNUM 63
537
1a94ca49
RK
538/* Register in which static-chain is passed to a function.
539
540 For the Alpha, this is based on an example; the calling sequence
541 doesn't seem to specify this. */
542#define STATIC_CHAIN_REGNUM 1
543
544/* Register in which address to store a structure value
545 arrives in the function. On the Alpha, the address is passed
546 as a hidden argument. */
547#define STRUCT_VALUE 0
548\f
549/* Define the classes of registers for register constraints in the
550 machine description. Also define ranges of constants.
551
552 One of the classes must always be named ALL_REGS and include all hard regs.
553 If there is more than one class, another class must be named NO_REGS
554 and contain no registers.
555
556 The name GENERAL_REGS must be the name of a class (or an alias for
557 another name such as ALL_REGS). This is the class of registers
558 that is allowed by "g" or "r" in a register constraint.
559 Also, registers outside this class are allocated only when
560 instructions express preferences for them.
561
562 The classes must be numbered in nondecreasing order; that is,
563 a larger-numbered class must never be contained completely
564 in a smaller-numbered class.
565
566 For any two classes, it is very desirable that there be another
567 class that represents their union. */
568
569enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
570 LIM_REG_CLASSES };
571
572#define N_REG_CLASSES (int) LIM_REG_CLASSES
573
574/* Give names of register classes as strings for dump file. */
575
576#define REG_CLASS_NAMES \
577 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
578
579/* Define which registers fit in which classes.
580 This is an initializer for a vector of HARD_REG_SET
581 of length N_REG_CLASSES. */
582
583#define REG_CLASS_CONTENTS \
52a69200 584 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
1a94ca49
RK
585
586/* The same information, inverted:
587 Return the class number of the smallest class containing
588 reg number REGNO. This could be a conditional expression
589 or could index an array. */
590
52a69200
RK
591#define REGNO_REG_CLASS(REGNO) \
592 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
1a94ca49
RK
593
594/* The class value for index registers, and the one for base regs. */
595#define INDEX_REG_CLASS NO_REGS
596#define BASE_REG_CLASS GENERAL_REGS
597
598/* Get reg_class from a letter such as appears in the machine description. */
599
600#define REG_CLASS_FROM_LETTER(C) \
601 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
602
603/* Define this macro to change register usage conditional on target flags. */
604/* #define CONDITIONAL_REGISTER_USAGE */
605
606/* The letters I, J, K, L, M, N, O, and P in a register constraint string
607 can be used to stand for particular ranges of immediate operands.
608 This macro defines what the ranges are.
609 C is the letter, and VALUE is a constant value.
610 Return 1 if VALUE is in the range specified by C.
611
612 For Alpha:
613 `I' is used for the range of constants most insns can contain.
614 `J' is the constant zero.
615 `K' is used for the constant in an LDA insn.
616 `L' is used for the constant in a LDAH insn.
617 `M' is used for the constants that can be AND'ed with using a ZAP insn.
618 `N' is used for complemented 8-bit constants.
619 `O' is used for negated 8-bit constants.
620 `P' is used for the constants 1, 2 and 3. */
621
622#define CONST_OK_FOR_LETTER_P(VALUE, C) \
623 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
624 : (C) == 'J' ? (VALUE) == 0 \
625 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
626 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
c89e8dc2
RK
627 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0) \
628 && ((HOST_BITS_PER_WIDE_INT == 64 \
23334240 629 || (unsigned) (VALUE) != 0x80000000U))) \
1a94ca49
RK
630 : (C) == 'M' ? zap_mask (VALUE) \
631 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
632 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
633 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
634 : 0)
635
636/* Similar, but for floating or large integer constants, and defining letters
637 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
638
639 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
640 that is the operand of a ZAP insn. */
641
642#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
643 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
644 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
645 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
646 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
647 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
648 : 0)
649
e560f226
RK
650/* Optional extra constraints for this machine.
651
652 For the Alpha, `Q' means that this is a memory operand but not a
ac030a7b
RK
653 reference to an unaligned location.
654 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
655 function. */
e560f226
RK
656
657#define EXTRA_CONSTRAINT(OP, C) \
658 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
ac030a7b 659 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
e560f226
RK
660 : 0)
661
1a94ca49
RK
662/* Given an rtx X being reloaded into a reg required to be
663 in class CLASS, return the class of reg to actually use.
664 In general this is just CLASS; but on some machines
665 in some cases it is preferable to use a more restrictive class.
666
667 On the Alpha, all constants except zero go into a floating-point
668 register via memory. */
669
670#define PREFERRED_RELOAD_CLASS(X, CLASS) \
671 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
672 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
673 : (CLASS))
674
675/* Loading and storing HImode or QImode values to and from memory
676 usually requires a scratch register. The exceptions are loading
e560f226 677 QImode and HImode from an aligned address to a general register.
ddd5a7c1 678 We also cannot load an unaligned address or a paradoxical SUBREG into an
e868b518 679 FP register. */
1a94ca49
RK
680
681#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
682(((GET_CODE (IN) == MEM \
683 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
684 || (GET_CODE (IN) == SUBREG \
685 && (GET_CODE (SUBREG_REG (IN)) == MEM \
686 || (GET_CODE (SUBREG_REG (IN)) == REG \
687 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
688 && (((CLASS) == FLOAT_REGS \
689 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
690 || (((MODE) == QImode || (MODE) == HImode) \
691 && unaligned_memory_operand (IN, MODE)))) \
e560f226
RK
692 ? GENERAL_REGS \
693 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
694 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
695 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
696 && (GET_MODE_SIZE (GET_MODE (IN)) \
697 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
e560f226 698 : NO_REGS)
1a94ca49
RK
699
700#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
701(((GET_CODE (OUT) == MEM \
702 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
703 || (GET_CODE (OUT) == SUBREG \
704 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
705 || (GET_CODE (SUBREG_REG (OUT)) == REG \
706 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
707 && (((MODE) == HImode || (MODE) == QImode \
708 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
e560f226
RK
709 ? GENERAL_REGS \
710 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
711 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
e868b518
RK
712 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
713 && (GET_MODE_SIZE (GET_MODE (OUT)) \
714 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
715 : NO_REGS)
1a94ca49
RK
716
717/* If we are copying between general and FP registers, we need a memory
718 location. */
719
720#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
721
acd94aaf
RK
722/* Specify the mode to be used for memory when a secondary memory
723 location is needed. If MODE is floating-point, use it. Otherwise,
724 widen to a word like the default. This is needed because we always
725 store integers in FP registers in quadword format. This whole
726 area is very tricky! */
727#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
728 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
e868b518 729 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
acd94aaf
RK
730 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
731
1a94ca49
RK
732/* Return the maximum number of consecutive registers
733 needed to represent mode MODE in a register of class CLASS. */
734
735#define CLASS_MAX_NREGS(CLASS, MODE) \
736 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
737
c31dfe4d
RK
738/* If defined, gives a class of registers that cannot be used as the
739 operand of a SUBREG that changes the size of the object. */
740
741#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
742
1a94ca49
RK
743/* Define the cost of moving between registers of various classes. Moving
744 between FLOAT_REGS and anything else except float regs is expensive.
745 In fact, we make it quite expensive because we really don't want to
746 do these moves unless it is clearly worth it. Optimizations may
747 reduce the impact of not being able to allocate a pseudo to a
748 hard register. */
749
750#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
751 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
752
753/* A C expressions returning the cost of moving data of MODE from a register to
754 or from memory.
755
756 On the Alpha, bump this up a bit. */
757
758#define MEMORY_MOVE_COST(MODE) 6
759
760/* Provide the cost of a branch. Exact meaning under development. */
761#define BRANCH_COST 5
762
763/* Adjust the cost of dependencies. */
764
765#define ADJUST_COST(INSN,LINK,DEP,COST) \
766 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
767\f
768/* Stack layout; function entry, exit and calling. */
769
770/* Define this if pushing a word on the stack
771 makes the stack pointer a smaller address. */
772#define STACK_GROWS_DOWNWARD
773
774/* Define this if the nominal address of the stack frame
775 is at the high-address end of the local variables;
776 that is, each additional local variable allocated
777 goes at a more negative offset in the frame. */
130d2d72 778/* #define FRAME_GROWS_DOWNWARD */
1a94ca49
RK
779
780/* Offset within stack frame to start allocating local variables at.
781 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
782 first local allocated. Otherwise, it is the offset to the BEGINNING
783 of the first local allocated. */
784
52a69200 785#define STARTING_FRAME_OFFSET 0
1a94ca49
RK
786
787/* If we generate an insn to push BYTES bytes,
788 this says how many the stack pointer really advances by.
789 On Alpha, don't define this because there are no push insns. */
790/* #define PUSH_ROUNDING(BYTES) */
791
792/* Define this if the maximum size of all the outgoing args is to be
793 accumulated and pushed during the prologue. The amount can be
794 found in the variable current_function_outgoing_args_size. */
795#define ACCUMULATE_OUTGOING_ARGS
796
797/* Offset of first parameter from the argument pointer register value. */
798
130d2d72 799#define FIRST_PARM_OFFSET(FNDECL) 0
1a94ca49
RK
800
801/* Definitions for register eliminations.
802
978e8952 803 We have two registers that can be eliminated on the Alpha. First, the
1a94ca49 804 frame pointer register can often be eliminated in favor of the stack
130d2d72
RK
805 pointer register. Secondly, the argument pointer register can always be
806 eliminated; it is replaced with either the stack or frame pointer. */
1a94ca49
RK
807
808/* This is an array of structures. Each structure initializes one pair
809 of eliminable registers. The "from" register number is given first,
810 followed by "to". Eliminations of the same "from" register are listed
811 in order of preference. */
812
52a69200
RK
813#define ELIMINABLE_REGS \
814{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
815 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
816 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
817 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
1a94ca49
RK
818
819/* Given FROM and TO register numbers, say whether this elimination is allowed.
820 Frame pointer elimination is automatically handled.
821
130d2d72 822 All eliminations are valid since the cases where FP can't be
1a94ca49
RK
823 eliminated are already handled. */
824
130d2d72 825#define CAN_ELIMINATE(FROM, TO) 1
1a94ca49 826
52a69200
RK
827/* Round up to a multiple of 16 bytes. */
828#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
829
1a94ca49
RK
830/* Define the offset between two registers, one to be eliminated, and the other
831 its replacement, at the start of a routine. */
832#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
52a69200
RK
833{ if ((FROM) == FRAME_POINTER_REGNUM) \
834 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
835 + alpha_sa_size ()); \
836 else if ((FROM) == ARG_POINTER_REGNUM) \
837 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
838 + alpha_sa_size () \
d772039b
RK
839 + (ALPHA_ROUND (get_frame_size () \
840 + current_function_pretend_args_size) \
841 - current_function_pretend_args_size)); \
1a94ca49
RK
842}
843
844/* Define this if stack space is still allocated for a parameter passed
845 in a register. */
846/* #define REG_PARM_STACK_SPACE */
847
848/* Value is the number of bytes of arguments automatically
849 popped when returning from a subroutine call.
8b109b37 850 FUNDECL is the declaration node of the function (as a tree),
1a94ca49
RK
851 FUNTYPE is the data type of the function (as a tree),
852 or for a library call it is an identifier node for the subroutine name.
853 SIZE is the number of bytes of arguments passed on the stack. */
854
8b109b37 855#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1a94ca49
RK
856
857/* Define how to find the value returned by a function.
858 VALTYPE is the data type of the value (as a tree).
859 If the precise function being called is known, FUNC is its FUNCTION_DECL;
860 otherwise, FUNC is 0.
861
862 On Alpha the value is found in $0 for integer functions and
863 $f0 for floating-point functions. */
864
865#define FUNCTION_VALUE(VALTYPE, FUNC) \
e5958492
RK
866 gen_rtx (REG, \
867 (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
868 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
869 ? word_mode : TYPE_MODE (VALTYPE), \
870 ((TARGET_FPREGS \
871 && (TREE_CODE (VALTYPE) == REAL_TYPE \
872 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
873 ? 32 : 0))
1a94ca49
RK
874
875/* Define how to find the value returned by a library function
876 assuming the value has mode MODE. */
877
878#define LIBCALL_VALUE(MODE) \
e5958492
RK
879 gen_rtx (REG, MODE, \
880 (TARGET_FPREGS \
881 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
882 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
883 ? 32 : 0))
1a94ca49 884
130d2d72
RK
885/* The definition of this macro implies that there are cases where
886 a scalar value cannot be returned in registers.
887
888 For the Alpha, any structure or union type is returned in memory, as
889 are integers whose size is larger than 64 bits. */
890
891#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 892 (TYPE_MODE (TYPE) == BLKmode \
130d2d72
RK
893 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
894
1a94ca49
RK
895/* 1 if N is a possible register number for a function value
896 as seen by the caller. */
897
e5958492
RK
898#define FUNCTION_VALUE_REGNO_P(N) \
899 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1a94ca49
RK
900
901/* 1 if N is a possible register number for function argument passing.
902 On Alpha, these are $16-$21 and $f16-$f21. */
903
904#define FUNCTION_ARG_REGNO_P(N) \
905 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
906\f
907/* Define a data type for recording info about an argument list
908 during the scan of that argument list. This data type should
909 hold all necessary information about the function itself
910 and about the args processed so far, enough to enable macros
911 such as FUNCTION_ARG to determine where the next arg should go.
912
913 On Alpha, this is a single integer, which is a number of words
914 of arguments scanned so far.
915 Thus 6 or more means all following args should go on the stack. */
916
917#define CUMULATIVE_ARGS int
918
919/* Initialize a variable CUM of type CUMULATIVE_ARGS
920 for a call to a function whose data type is FNTYPE.
921 For a library call, FNTYPE is 0. */
922
2c7ee1a6 923#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1a94ca49
RK
924
925/* Define intermediate macro to compute the size (in registers) of an argument
926 for the Alpha. */
927
928#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
929((MODE) != BLKmode \
930 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
931 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
932
933/* Update the data in CUM to advance over an argument
934 of mode MODE and data type TYPE.
935 (TYPE is null for libcalls where that information may not be available.) */
936
937#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
938 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
939 (CUM) = 6; \
940 else \
941 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
942
943/* Determine where to put an argument to a function.
944 Value is zero to push the argument on the stack,
945 or a hard register in which to store the argument.
946
947 MODE is the argument's machine mode.
948 TYPE is the data type of the argument (as a tree).
949 This is null for libcalls where that information may
950 not be available.
951 CUM is a variable of type CUMULATIVE_ARGS which gives info about
952 the preceding args and about the function being called.
953 NAMED is nonzero if this argument is a named parameter
954 (otherwise it is an extra parameter matching an ellipsis).
955
956 On Alpha the first 6 words of args are normally in registers
957 and the rest are pushed. */
958
959#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
960((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
961 ? gen_rtx(REG, (MODE), \
14d4a67a
RK
962 (CUM) + 16 + ((TARGET_FPREGS \
963 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
964 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
965 * 32)) \
966 : 0)
1a94ca49 967
1a94ca49
RK
968/* Specify the padding direction of arguments.
969
970 On the Alpha, we must pad upwards in order to be able to pass args in
971 registers. */
972
973#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
974
975/* For an arg passed partly in registers and partly in memory,
976 this is the number of registers used.
977 For args passed entirely in registers or entirely in memory, zero. */
978
979#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
980((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
981 ? 6 - (CUM) : 0)
982
130d2d72
RK
983/* Perform any needed actions needed for a function that is receiving a
984 variable number of arguments.
985
986 CUM is as above.
987
988 MODE and TYPE are the mode and type of the current parameter.
989
990 PRETEND_SIZE is a variable that should be set to the amount of stack
991 that must be pushed by the prolog to pretend that our caller pushed
992 it.
993
994 Normally, this macro will push all remaining incoming registers on the
995 stack and set PRETEND_SIZE to the length of the registers pushed.
996
997 On the Alpha, we allocate space for all 12 arg registers, but only
998 push those that are remaining.
999
1000 However, if NO registers need to be saved, don't allocate any space.
1001 This is not only because we won't need the space, but because AP includes
1002 the current_pretend_args_size and we don't want to mess up any
7a92339b
RK
1003 ap-relative addresses already made.
1004
1005 If we are not to use the floating-point registers, save the integer
1006 registers where we would put the floating-point registers. This is
1007 not the most efficient way to implement varargs with just one register
1008 class, but it isn't worth doing anything more efficient in this rare
1009 case. */
1010
130d2d72
RK
1011
1012#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1013{ if ((CUM) < 6) \
1014 { \
1015 if (! (NO_RTL)) \
1016 { \
1017 move_block_from_reg \
1018 (16 + CUM, \
1019 gen_rtx (MEM, BLKmode, \
1020 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1021 ((CUM) + 6)* UNITS_PER_WORD)), \
02892e06 1022 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72 1023 move_block_from_reg \
7a92339b 1024 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
130d2d72
RK
1025 gen_rtx (MEM, BLKmode, \
1026 plus_constant (virtual_incoming_args_rtx, \
7f5bd4ff 1027 (CUM) * UNITS_PER_WORD)), \
02892e06 1028 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
130d2d72
RK
1029 } \
1030 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1031 } \
1032}
1033
c8e9adec
RK
1034/* Try to output insns to set TARGET equal to the constant C if it can be
1035 done in less than N insns. Do all computations in MODE. Returns the place
1036 where the output has been placed if it can be done and the insns have been
1037 emitted. If it would take more than N insns, zero is returned and no
1038 insns and emitted. */
1039extern struct rtx_def *alpha_emit_set_const ();
803fee69 1040extern struct rtx_def *alpha_emit_set_long_const ();
92e40a7a
RK
1041extern struct rtx_def *alpha_emit_conditional_move ();
1042
1a94ca49
RK
1043/* Generate necessary RTL for __builtin_saveregs().
1044 ARGLIST is the argument list; see expr.c. */
1045extern struct rtx_def *alpha_builtin_saveregs ();
1046#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
1047
1048/* Define the information needed to generate branch and scc insns. This is
1049 stored from the compare operation. Note that we can't use "rtx" here
1050 since it hasn't been defined! */
1051
1052extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1053extern int alpha_compare_fp_p;
1054
e5958492
RK
1055/* Make (or fake) .linkage entry for function call.
1056
1057 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1058extern void alpha_need_linkage ();
1059
1a94ca49 1060/* This macro produces the initial definition of a function name. On the
03f8c4cc 1061 Alpha, we need to save the function name for the prologue and epilogue. */
1a94ca49
RK
1062
1063extern char *alpha_function_name;
1064
1065#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
03f8c4cc 1066{ \
1a94ca49
RK
1067 alpha_function_name = NAME; \
1068}
1069
1070/* This macro generates the assembly code for function entry.
1071 FILE is a stdio stream to output the code to.
1072 SIZE is an int: how many units of temporary storage to allocate.
1073 Refer to the array `regs_ever_live' to determine which registers
1074 to save; `regs_ever_live[I]' is nonzero if register number I
1075 is ever used in the function. This macro is responsible for
1076 knowing which registers should not be saved even if used. */
1077
1078#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1079
1080/* Output assembler code to FILE to increment profiler label # LABELNO
e0fb9029 1081 for profiling a function entry. Under OSF/1, profiling is enabled
ddd5a7c1 1082 by simply passing -pg to the assembler and linker. */
85d159a3 1083
e0fb9029 1084#define FUNCTION_PROFILER(FILE, LABELNO)
85d159a3
RK
1085
1086/* Output assembler code to FILE to initialize this source file's
1087 basic block profiling info, if that has not already been done.
1088 This assumes that __bb_init_func doesn't garble a1-a5. */
1089
1090#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1091 do { \
1092 ASM_OUTPUT_REG_PUSH (FILE, 16); \
a62eb16f
JW
1093 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1094 fputs ("\tldq $26,0($16)\n", (FILE)); \
1095 fputs ("\tbne $26,1f\n", (FILE)); \
1096 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1097 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1098 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1099 fputs ("1:\n", (FILE)); \
85d159a3
RK
1100 ASM_OUTPUT_REG_POP (FILE, 16); \
1101 } while (0);
1102
1103/* Output assembler code to FILE to increment the entry-count for
1104 the BLOCKNO'th basic block in this source file. */
1105
1106#define BLOCK_PROFILER(FILE, BLOCKNO) \
1107 do { \
1108 int blockn = (BLOCKNO); \
a62eb16f 1109 fputs ("\tsubq $30,16,$30\n", (FILE)); \
70a76f06
RK
1110 fputs ("\tstq $26,0($30)\n", (FILE)); \
1111 fputs ("\tstq $27,8($30)\n", (FILE)); \
1112 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1113 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1114 fputs ("\taddq $27,1,$27\n", (FILE)); \
1115 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1116 fputs ("\tldq $26,0($30)\n", (FILE)); \
1117 fputs ("\tldq $27,8($30)\n", (FILE)); \
a62eb16f 1118 fputs ("\taddq $30,16,$30\n", (FILE)); \
85d159a3 1119 } while (0)
1a94ca49 1120
1a94ca49
RK
1121
1122/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1123 the stack pointer does not matter. The value is tested only in
1124 functions that have frame pointers.
1125 No definition is equivalent to always zero. */
1126
1127#define EXIT_IGNORE_STACK 1
1128
1129/* This macro generates the assembly code for function exit,
1130 on machines that need it. If FUNCTION_EPILOGUE is not defined
1131 then individual return instructions are generated for each
1132 return statement. Args are same as for FUNCTION_PROLOGUE.
1133
1134 The function epilogue should not depend on the current stack pointer!
1135 It should use the frame pointer only. This is mandatory because
1136 of alloca; we also take advantage of it to omit stack adjustments
1137 before returning. */
1138
1139#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1140
1141\f
1142/* Output assembler code for a block containing the constant parts
1143 of a trampoline, leaving space for the variable parts.
1144
1145 The trampoline should set the static chain pointer to value placed
7981384f
RK
1146 into the trampoline and should branch to the specified routine.
1147 Note that $27 has been set to the address of the trampoline, so we can
1148 use it for addressability of the two data items. Trampolines are always
1149 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1a94ca49
RK
1150
1151#define TRAMPOLINE_TEMPLATE(FILE) \
1152{ \
7981384f 1153 fprintf (FILE, "\tldq $1,24($27)\n"); \
1a94ca49 1154 fprintf (FILE, "\tldq $27,16($27)\n"); \
7981384f
RK
1155 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1156 fprintf (FILE, "\tnop\n"); \
1a94ca49
RK
1157 fprintf (FILE, "\t.quad 0,0\n"); \
1158}
1159
3a523eeb
RS
1160/* Section in which to place the trampoline. On Alpha, instructions
1161 may only be placed in a text segment. */
1162
1163#define TRAMPOLINE_SECTION text_section
1164
1a94ca49
RK
1165/* Length in units of the trampoline for entering a nested function. */
1166
7981384f 1167#define TRAMPOLINE_SIZE 32
1a94ca49
RK
1168
1169/* Emit RTL insns to initialize the variable parts of a trampoline.
1170 FNADDR is an RTX for the address of the function's pure code.
1171 CXT is an RTX for the static chain value for the function. We assume
1172 here that a function will be called many more times than its address
1173 is taken (e.g., it might be passed to qsort), so we take the trouble
7981384f
RK
1174 to initialize the "hint" field in the JMP insn. Note that the hint
1175 field is PC (new) + 4 * bits 13:0. */
1a94ca49
RK
1176
1177#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1178{ \
1179 rtx _temp, _temp1, _addr; \
1180 \
1181 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1182 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
7981384f 1183 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1a94ca49
RK
1184 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1185 \
7981384f
RK
1186 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1187 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1188 OPTAB_WIDEN); \
1189 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1a94ca49 1190 build_int_2 (2, 0), NULL_RTX, 1); \
7981384f
RK
1191 _temp = expand_and (gen_lowpart (SImode, _temp), \
1192 GEN_INT (0x3fff), 0); \
1a94ca49 1193 \
7981384f 1194 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1a94ca49 1195 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
7981384f 1196 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1a94ca49
RK
1197 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1198 OPTAB_WIDEN); \
1199 \
1200 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
7981384f
RK
1201 \
1202 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1203 "__enable_execute_stack"), \
1204 0, VOIDmode, 1,_addr, Pmode); \
1205 \
1206 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1207 gen_rtvec (1, const0_rtx), 0)); \
1208}
1209
1210/* Attempt to turn on access permissions for the stack. */
1211
1212#define TRANSFER_FROM_TRAMPOLINE \
1213 \
1214void \
1215__enable_execute_stack (addr) \
1216 void *addr; \
1217{ \
1218 long size = getpagesize (); \
1219 long mask = ~(size-1); \
1220 char *page = (char *) (((long) addr) & mask); \
1221 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1222 \
1223 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1224 if (mprotect (page, end - page, 7) < 0) \
1225 perror ("mprotect of trampoline code"); \
1a94ca49 1226}
675f0e7c
RK
1227
1228/* A C expression whose value is RTL representing the value of the return
1229 address for the frame COUNT steps up from the current frame.
1230 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1231 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
1232
1233 This definition for Alpha is broken, but is put in at the request of
1234 Mike Stump. */
1235
1236#define RETURN_ADDR_RTX(COUNT, FRAME) \
1237((COUNT == 0 && alpha_sa_size () == 0 && 0 /* not right. */) \
6ea0cab3
RK
1238 ? gen_rtx (REG, Pmode, 26) \
1239 : gen_rtx (MEM, Pmode, \
675f0e7c
RK
1240 memory_address (Pmode, FRAME)))
1241\f
1a94ca49
RK
1242/* Addressing modes, and classification of registers for them. */
1243
1244/* #define HAVE_POST_INCREMENT */
1245/* #define HAVE_POST_DECREMENT */
1246
1247/* #define HAVE_PRE_DECREMENT */
1248/* #define HAVE_PRE_INCREMENT */
1249
1250/* Macros to check register numbers against specific register classes. */
1251
1252/* These assume that REGNO is a hard or pseudo reg number.
1253 They give nonzero only if REGNO is a hard reg of the suitable class
1254 or a pseudo reg currently allocated to a suitable hard reg.
1255 Since they use reg_renumber, they are safe only once reg_renumber
1256 has been allocated, which happens in local-alloc.c. */
1257
1258#define REGNO_OK_FOR_INDEX_P(REGNO) 0
1259#define REGNO_OK_FOR_BASE_P(REGNO) \
52a69200
RK
1260((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1261 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1a94ca49
RK
1262\f
1263/* Maximum number of registers that can appear in a valid memory address. */
1264#define MAX_REGS_PER_ADDRESS 1
1265
1266/* Recognize any constant value that is a valid address. For the Alpha,
1267 there are only constants none since we want to use LDA to load any
1268 symbolic addresses into registers. */
1269
1270#define CONSTANT_ADDRESS_P(X) \
1271 (GET_CODE (X) == CONST_INT \
1272 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1273
1274/* Include all constant integers and constant doubles, but not
1275 floating-point, except for floating-point zero. */
1276
1277#define LEGITIMATE_CONSTANT_P(X) \
1278 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1279 || (X) == CONST0_RTX (GET_MODE (X)))
1280
1281/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1282 and check its validity for a certain class.
1283 We have two alternate definitions for each of them.
1284 The usual definition accepts all pseudo regs; the other rejects
1285 them unless they have been allocated suitable hard regs.
1286 The symbol REG_OK_STRICT causes the latter definition to be used.
1287
1288 Most source files want to accept pseudo regs in the hope that
1289 they will get allocated to the class that the insn wants them to be in.
1290 Source files for reload pass need to be strict.
1291 After reload, it makes no difference, since pseudo regs have
1292 been eliminated by then. */
1293
1294#ifndef REG_OK_STRICT
1295
1296/* Nonzero if X is a hard reg that can be used as an index
1297 or if it is a pseudo reg. */
1298#define REG_OK_FOR_INDEX_P(X) 0
1299/* Nonzero if X is a hard reg that can be used as a base reg
1300 or if it is a pseudo reg. */
1301#define REG_OK_FOR_BASE_P(X) \
52a69200 1302 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1a94ca49
RK
1303
1304#else
1305
1306/* Nonzero if X is a hard reg that can be used as an index. */
1307#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1308/* Nonzero if X is a hard reg that can be used as a base reg. */
1309#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1310
1311#endif
1312\f
1313/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1314 that is a valid memory address for an instruction.
1315 The MODE argument is the machine mode for the MEM expression
1316 that wants to use this address.
1317
1318 For Alpha, we have either a constant address or the sum of a register
1319 and a constant address, or just a register. For DImode, any of those
1320 forms can be surrounded with an AND that clear the low-order three bits;
1321 this is an "unaligned" access.
1322
1a94ca49
RK
1323 First define the basic valid address. */
1324
1325#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1326{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1327 goto ADDR; \
1328 if (CONSTANT_ADDRESS_P (X)) \
1329 goto ADDR; \
1330 if (GET_CODE (X) == PLUS \
1331 && REG_P (XEXP (X, 0)) \
1332 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1333 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1334 goto ADDR; \
1335}
1336
1337/* Now accept the simple address, or, for DImode only, an AND of a simple
1338 address that turns off the low three bits. */
1339
1a94ca49
RK
1340#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1341{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1342 if ((MODE) == DImode \
1343 && GET_CODE (X) == AND \
1344 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1345 && INTVAL (XEXP (X, 1)) == -8) \
1346 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1a94ca49
RK
1347}
1348
1349/* Try machine-dependent ways of modifying an illegitimate address
1350 to be legitimate. If we find one, return the new, valid address.
1351 This macro is used in only one place: `memory_address' in explow.c.
1352
1353 OLDX is the address as it was before break_out_memory_refs was called.
1354 In some cases it is useful to look at this to decide what needs to be done.
1355
1356 MODE and WIN are passed so that this macro can use
1357 GO_IF_LEGITIMATE_ADDRESS.
1358
1359 It is always safe for this macro to do nothing. It exists to recognize
1360 opportunities to optimize the output.
1361
1362 For the Alpha, there are three cases we handle:
1363
1364 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1365 valid offset, compute the high part of the constant and add it to the
1366 register. Then our address is (plus temp low-part-const).
1367 (2) If the address is (const (plus FOO const_int)), find the low-order
1368 part of the CONST_INT. Then load FOO plus any high-order part of the
1369 CONST_INT into a register. Our address is (plus reg low-part-const).
1370 This is done to reduce the number of GOT entries.
1371 (3) If we have a (plus reg const), emit the load as in (2), then add
1372 the two registers, and finally generate (plus reg low-part-const) as
1373 our address. */
1374
1375#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1376{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1377 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1378 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1379 { \
1380 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1381 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1382 HOST_WIDE_INT highpart = val - lowpart; \
1383 rtx high = GEN_INT (highpart); \
1384 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
80f251fe 1385 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1386 \
1387 (X) = plus_constant (temp, lowpart); \
1388 goto WIN; \
1389 } \
1390 else if (GET_CODE (X) == CONST \
1391 && GET_CODE (XEXP (X, 0)) == PLUS \
1392 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1393 { \
1394 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1395 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1396 HOST_WIDE_INT highpart = val - lowpart; \
1397 rtx high = XEXP (XEXP (X, 0), 0); \
1398 \
1399 if (highpart) \
1400 high = plus_constant (high, highpart); \
1401 \
1402 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1403 goto WIN; \
1404 } \
1405 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1406 && GET_CODE (XEXP (X, 1)) == CONST \
1407 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1408 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1409 { \
1410 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1411 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1412 HOST_WIDE_INT highpart = val - lowpart; \
1413 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1414 \
1415 if (highpart) \
1416 high = plus_constant (high, highpart); \
1417 \
1418 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1419 force_reg (Pmode, high), \
80f251fe 1420 high, 1, OPTAB_LIB_WIDEN); \
1a94ca49
RK
1421 (X) = plus_constant (high, lowpart); \
1422 goto WIN; \
1423 } \
1424}
1425
1426/* Go to LABEL if ADDR (a legitimate address expression)
1427 has an effect that depends on the machine mode it is used for.
1428 On the Alpha this is true only for the unaligned modes. We can
1429 simplify this test since we know that the address must be valid. */
1430
1431#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1432{ if (GET_CODE (ADDR) == AND) goto LABEL; }
1433
1434/* Compute the cost of an address. For the Alpha, all valid addresses are
1435 the same cost. */
1436
1437#define ADDRESS_COST(X) 0
1438
1439/* Define this if some processing needs to be done immediately before
1440 emitting code for an insn. */
1441
2bf6230d
RK
1442extern void final_prescan_insn ();
1443#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1444 final_prescan_insn ((INSN), (OPERANDS), (NOPERANDS))
1445
1446/* Define this if FINAL_PRESCAN_INSN should be called for a CODE_LABEL. */
1447#define FINAL_PRESCAN_LABEL
1a94ca49
RK
1448\f
1449/* Specify the machine mode that this machine uses
1450 for the index in the tablejump instruction. */
1451#define CASE_VECTOR_MODE SImode
1452
1453/* Define this if the tablejump instruction expects the table
1454 to contain offsets from the address of the table.
260ced47
RK
1455 Do not define this if the table should contain absolute addresses.
1456 On the Alpha, the table is really GP-relative, not relative to the PC
1457 of the table, but we pretend that it is PC-relative; this should be OK,
0076aa6b 1458 but we should try to find some better way sometime. */
260ced47 1459#define CASE_VECTOR_PC_RELATIVE
1a94ca49
RK
1460
1461/* Specify the tree operation to be used to convert reals to integers. */
1462#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1463
1464/* This is the kind of divide that is easiest to do in the general case. */
1465#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1466
1467/* Define this as 1 if `char' should by default be signed; else as 0. */
1468#define DEFAULT_SIGNED_CHAR 1
1469
1470/* This flag, if defined, says the same insns that convert to a signed fixnum
1471 also convert validly to an unsigned one.
1472
1473 We actually lie a bit here as overflow conditions are different. But
1474 they aren't being checked anyway. */
1475
1476#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1477
1478/* Max number of bytes we can move to or from memory
1479 in one reasonably fast instruction. */
1480
1481#define MOVE_MAX 8
1482
1483/* Largest number of bytes of an object that can be placed in a register.
1484 On the Alpha we have plenty of registers, so use TImode. */
1485#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1486
1487/* Nonzero if access to memory by bytes is no faster than for words.
1488 Also non-zero if doing byte operations (specifically shifts) in registers
1489 is undesirable.
1490
1491 On the Alpha, we want to not use the byte operation and instead use
1492 masking operations to access fields; these will save instructions. */
1493
1494#define SLOW_BYTE_ACCESS 1
1495
9a63901f
RK
1496/* Define if operations between registers always perform the operation
1497 on the full register even if a narrower mode is specified. */
1498#define WORD_REGISTER_OPERATIONS
1499
1500/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1501 will either zero-extend or sign-extend. The value of this macro should
1502 be the code that says which one of the two operations is implicitly
1503 done, NIL if none. */
b7747781 1504#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1a94ca49 1505
225211e2
RK
1506/* Define if loading short immediate values into registers sign extends. */
1507#define SHORT_IMMEDIATES_SIGN_EXTEND
1508
1a94ca49
RK
1509/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1510 is done just by pretending it is already truncated. */
1511#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1512
1513/* We assume that the store-condition-codes instructions store 0 for false
1514 and some other value for true. This is the value stored for true. */
1515
1516#define STORE_FLAG_VALUE 1
1517
1518/* Define the value returned by a floating-point comparison instruction. */
1519
1520#define FLOAT_STORE_FLAG_VALUE 0.5
1521
35bb77fd
RK
1522/* Canonicalize a comparison from one we don't have to one we do have. */
1523
1524#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1525 do { \
1526 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1527 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1528 { \
1529 rtx tem = (OP0); \
1530 (OP0) = (OP1); \
1531 (OP1) = tem; \
1532 (CODE) = swap_condition (CODE); \
1533 } \
1534 if (((CODE) == LT || (CODE) == LTU) \
1535 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1536 { \
1537 (CODE) = (CODE) == LT ? LE : LEU; \
1538 (OP1) = GEN_INT (255); \
1539 } \
1540 } while (0)
1541
1a94ca49
RK
1542/* Specify the machine mode that pointers have.
1543 After generation of rtl, the compiler makes no further distinction
1544 between pointers and any other objects of this machine mode. */
1545#define Pmode DImode
1546
1547/* Mode of a function address in a call instruction (for indexing purposes). */
1548
1549#define FUNCTION_MODE Pmode
1550
1551/* Define this if addresses of constant functions
1552 shouldn't be put through pseudo regs where they can be cse'd.
1553 Desirable on machines where ordinary constants are expensive
1554 but a CALL with constant address is cheap.
1555
1556 We define this on the Alpha so that gen_call and gen_call_value
1557 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1558 then copy it into a register, thus actually letting the address be
1559 cse'ed. */
1560
1561#define NO_FUNCTION_CSE
1562
d969caf8 1563/* Define this to be nonzero if shift instructions ignore all but the low-order
1a94ca49 1564 few bits. */
d969caf8 1565#define SHIFT_COUNT_TRUNCATED 1
1a94ca49 1566
d721b776
RK
1567/* Use atexit for static constructors/destructors, instead of defining
1568 our own exit function. */
1569#define HAVE_ATEXIT
1570
1a94ca49
RK
1571/* Compute the cost of computing a constant rtl expression RTX
1572 whose rtx-code is CODE. The body of this macro is a portion
1573 of a switch statement. If the code is computed here,
1574 return it with a return statement. Otherwise, break from the switch.
1575
8b7b2e36
RK
1576 If this is an 8-bit constant, return zero since it can be used
1577 nearly anywhere with no cost. If it is a valid operand for an
1578 ADD or AND, likewise return 0 if we know it will be used in that
1579 context. Otherwise, return 2 since it might be used there later.
1580 All other constants take at least two insns. */
1a94ca49
RK
1581
1582#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1583 case CONST_INT: \
06eb8e92 1584 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
8b7b2e36 1585 return 0; \
1a94ca49 1586 case CONST_DOUBLE: \
8b7b2e36
RK
1587 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1588 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1589 return 0; \
1590 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1591 return 2; \
1592 else \
1593 return COSTS_N_INSNS (2); \
1a94ca49
RK
1594 case CONST: \
1595 case SYMBOL_REF: \
1596 case LABEL_REF: \
f6f6a13c
RK
1597 switch (alpha_cpu) \
1598 { \
1599 case PROCESSOR_EV4: \
1600 return COSTS_N_INSNS (3); \
1601 case PROCESSOR_EV5: \
1602 return COSTS_N_INSNS (2); \
1603 }
1a94ca49
RK
1604
1605/* Provide the costs of a rtl expression. This is in the body of a
1606 switch on CODE. */
1607
1608#define RTX_COSTS(X,CODE,OUTER_CODE) \
3bda6d11
RK
1609 case PLUS: case MINUS: \
1610 if (FLOAT_MODE_P (GET_MODE (X))) \
f6f6a13c
RK
1611 switch (alpha_cpu) \
1612 { \
1613 case PROCESSOR_EV4: \
1614 return COSTS_N_INSNS (6); \
1615 case PROCESSOR_EV5: \
1616 return COSTS_N_INSNS (4); \
1617 } \
b49e978e
RK
1618 else if (GET_CODE (XEXP (X, 0)) == MULT \
1619 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
a5da0afe
RK
1620 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1621 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1a94ca49
RK
1622 break; \
1623 case MULT: \
f6f6a13c
RK
1624 switch (alpha_cpu) \
1625 { \
1626 case PROCESSOR_EV4: \
1627 if (FLOAT_MODE_P (GET_MODE (X))) \
1628 return COSTS_N_INSNS (6); \
1629 return COSTS_N_INSNS (23); \
1630 case PROCESSOR_EV5: \
1631 if (FLOAT_MODE_P (GET_MODE (X))) \
1632 return COSTS_N_INSNS (4); \
1633 else if (GET_MODE (X) == DImode) \
1634 return COSTS_N_INSNS (12); \
1635 else \
1636 return COSTS_N_INSNS (8); \
1637 } \
b49e978e
RK
1638 case ASHIFT: \
1639 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1640 && INTVAL (XEXP (X, 1)) <= 3) \
1641 break; \
1642 /* ... fall through ... */ \
1643 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
f6f6a13c
RK
1644 switch (alpha_cpu) \
1645 { \
1646 case PROCESSOR_EV4: \
1647 return COSTS_N_INSNS (2); \
1648 case PROCESSOR_EV5: \
1649 return COSTS_N_INSNS (1); \
1650 } \
3bda6d11 1651 case DIV: case UDIV: case MOD: case UMOD: \
f6f6a13c
RK
1652 switch (alpha_cpu) \
1653 { \
1654 case PROCESSOR_EV4: \
1655 if (GET_MODE (X) == SFmode) \
1656 return COSTS_N_INSNS (34); \
1657 else if (GET_MODE (X) == DFmode) \
1658 return COSTS_N_INSNS (63); \
1659 else \
1660 return COSTS_N_INSNS (70); \
1661 case PROCESSOR_EV5: \
1662 if (GET_MODE (X) == SFmode) \
1663 return COSTS_N_INSNS (15); \
1664 else if (GET_MODE (X) == DFmode) \
1665 return COSTS_N_INSNS (22); \
1666 else \
1667 return COSTS_N_INSNS (70); /* EV5 ??? */ \
1668 } \
1a94ca49 1669 case MEM: \
f6f6a13c
RK
1670 switch (alpha_cpu) \
1671 { \
1672 case PROCESSOR_EV4: \
1673 return COSTS_N_INSNS (3); \
1674 case PROCESSOR_EV5: \
1675 return COSTS_N_INSNS (2); \
1676 } \
1677 case NEG: case ABS: \
1678 if (! FLOAT_MODE_P (GET_MODE (X))) \
1679 break; \
1680 /* ... fall through ... */ \
3bda6d11
RK
1681 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1682 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
f6f6a13c
RK
1683 switch (alpha_cpu) \
1684 { \
1685 case PROCESSOR_EV4: \
1686 return COSTS_N_INSNS (6); \
1687 case PROCESSOR_EV5: \
1688 return COSTS_N_INSNS (4); \
1689 }
1a94ca49
RK
1690\f
1691/* Control the assembler format that we output. */
1692
1693/* Output at beginning of assembler file. */
1694
1695#define ASM_FILE_START(FILE) \
03f8c4cc 1696{ \
130d2d72
RK
1697 alpha_write_verstamp (FILE); \
1698 fprintf (FILE, "\t.set noreorder\n"); \
fee3a4a8 1699 fprintf (FILE, "\t.set volatile\n"); \
1a94ca49 1700 fprintf (FILE, "\t.set noat\n"); \
03f8c4cc 1701 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1a94ca49
RK
1702}
1703
1704/* Output to assembler file text saying following lines
1705 may contain character constants, extra white space, comments, etc. */
1706
1707#define ASM_APP_ON ""
1708
1709/* Output to assembler file text saying following lines
1710 no longer contain unusual constructs. */
1711
1712#define ASM_APP_OFF ""
1713
1714#define TEXT_SECTION_ASM_OP ".text"
1715
1716/* Output before read-only data. */
1717
1718#define READONLY_DATA_SECTION_ASM_OP ".rdata"
1719
1720/* Output before writable data. */
1721
1722#define DATA_SECTION_ASM_OP ".data"
1723
1724/* Define an extra section for read-only data, a routine to enter it, and
c0388f29
RK
1725 indicate that it is for read-only data.
1726
abc95ed3 1727 The first time we enter the readonly data section for a file, we write
c0388f29
RK
1728 eight bytes of zero. This works around a bug in DEC's assembler in
1729 some versions of OSF/1 V3.x. */
1a94ca49
RK
1730
1731#define EXTRA_SECTIONS readonly_data
1732
1733#define EXTRA_SECTION_FUNCTIONS \
1734void \
1735literal_section () \
1736{ \
1737 if (in_section != readonly_data) \
1738 { \
c0388f29
RK
1739 static int firsttime = 1; \
1740 \
1a94ca49 1741 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
c0388f29
RK
1742 if (firsttime) \
1743 { \
1744 firsttime = 0; \
1745 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1746 } \
1747 \
1a94ca49
RK
1748 in_section = readonly_data; \
1749 } \
1750} \
1751
1752#define READONLY_DATA_SECTION literal_section
1753
ac030a7b
RK
1754/* If we are referencing a function that is static, make the SYMBOL_REF
1755 special. We use this to see indicate we can branch to this function
1756 without setting PV or restoring GP. */
130d2d72
RK
1757
1758#define ENCODE_SECTION_INFO(DECL) \
ac030a7b 1759 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
130d2d72
RK
1760 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1761
1a94ca49
RK
1762/* How to refer to registers in assembler output.
1763 This sequence is indexed by compiler's hard-register-number (see above). */
1764
1765#define REGISTER_NAMES \
1766{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1767 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1768 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
130d2d72 1769 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1a94ca49
RK
1770 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1771 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1772 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
52a69200 1773 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1a94ca49
RK
1774
1775/* How to renumber registers for dbx and gdb. */
1776
1777#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1778
1779/* This is how to output the definition of a user-level label named NAME,
1780 such as the label on a static function or variable NAME. */
1781
1782#define ASM_OUTPUT_LABEL(FILE,NAME) \
1783 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1784
1785/* This is how to output a command to make the user-level label named NAME
1786 defined for reference from other files. */
1787
1788#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1789 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1790
4e0c8ad2 1791/* The prefix to add to user-visible assembler symbols. */
1a94ca49 1792
4e0c8ad2 1793#define USER_LABEL_PREFIX ""
1a94ca49
RK
1794
1795/* This is how to output an internal numbered label where
1796 PREFIX is the class of label and NUM is the number within the class. */
1797
1798#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1799 if ((PREFIX)[0] == 'L') \
1800 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1801 else \
1802 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1803
1804/* This is how to output a label for a jump table. Arguments are the same as
1805 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1806 passed. */
1807
1808#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1809{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1810
1811/* This is how to store into the string LABEL
1812 the symbol_ref name of an internal numbered label where
1813 PREFIX is the class of label and NUM is the number within the class.
1814 This is suitable for output with `assemble_name'. */
1815
1816#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1817 if ((PREFIX)[0] == 'L') \
1818 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1819 else \
1820 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1821
e247ca2a
RK
1822/* Check a floating-point value for validity for a particular machine mode. */
1823
1824#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1825 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1826
1a94ca49
RK
1827/* This is how to output an assembler line defining a `double' constant. */
1828
e99300f1
RS
1829#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1830 { \
1831 if (REAL_VALUE_ISINF (VALUE) \
1832 || REAL_VALUE_ISNAN (VALUE) \
1833 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1834 { \
1835 long t[2]; \
1836 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1837 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1838 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1839 } \
1840 else \
1841 { \
1842 char str[30]; \
1843 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
e5958492 1844 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
e99300f1
RS
1845 } \
1846 }
1a94ca49
RK
1847
1848/* This is how to output an assembler line defining a `float' constant. */
1849
e247ca2a
RK
1850#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1851 do { \
1852 long t; \
1853 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1854 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1855} while (0)
2700ac93 1856
1a94ca49
RK
1857/* This is how to output an assembler line defining an `int' constant. */
1858
1859#define ASM_OUTPUT_INT(FILE,VALUE) \
0076aa6b
RK
1860( fprintf (FILE, "\t.long "), \
1861 output_addr_const (FILE, (VALUE)), \
1862 fprintf (FILE, "\n"))
1a94ca49
RK
1863
1864/* This is how to output an assembler line defining a `long' constant. */
1865
1866#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1867( fprintf (FILE, "\t.quad "), \
1868 output_addr_const (FILE, (VALUE)), \
1869 fprintf (FILE, "\n"))
1870
1871/* Likewise for `char' and `short' constants. */
1872
1873#define ASM_OUTPUT_SHORT(FILE,VALUE) \
690ef02f 1874 fprintf (FILE, "\t.word %d\n", \
45c45e79
RK
1875 (GET_CODE (VALUE) == CONST_INT \
1876 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1a94ca49
RK
1877
1878#define ASM_OUTPUT_CHAR(FILE,VALUE) \
45c45e79
RK
1879 fprintf (FILE, "\t.byte %d\n", \
1880 (GET_CODE (VALUE) == CONST_INT \
1881 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1a94ca49
RK
1882
1883/* We use the default ASCII-output routine, except that we don't write more
1884 than 50 characters since the assembler doesn't support very long lines. */
1885
1886#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1887 do { \
1888 FILE *_hide_asm_out_file = (MYFILE); \
1889 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1890 int _hide_thissize = (MYLENGTH); \
1891 int _size_so_far = 0; \
1892 { \
1893 FILE *asm_out_file = _hide_asm_out_file; \
1894 unsigned char *p = _hide_p; \
1895 int thissize = _hide_thissize; \
1896 int i; \
1897 fprintf (asm_out_file, "\t.ascii \""); \
1898 \
1899 for (i = 0; i < thissize; i++) \
1900 { \
1901 register int c = p[i]; \
1902 \
1903 if (_size_so_far ++ > 50 && i < thissize - 4) \
1904 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1905 \
1906 if (c == '\"' || c == '\\') \
1907 putc ('\\', asm_out_file); \
1908 if (c >= ' ' && c < 0177) \
1909 putc (c, asm_out_file); \
1910 else \
1911 { \
1912 fprintf (asm_out_file, "\\%o", c); \
1913 /* After an octal-escape, if a digit follows, \
1914 terminate one string constant and start another. \
1915 The Vax assembler fails to stop reading the escape \
1916 after three digits, so this is the only way we \
1917 can get it to parse the data properly. */ \
1918 if (i < thissize - 1 \
1919 && p[i + 1] >= '0' && p[i + 1] <= '9') \
b2d5e311 1920 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1a94ca49
RK
1921 } \
1922 } \
1923 fprintf (asm_out_file, "\"\n"); \
1924 } \
1925 } \
1926 while (0)
52a69200 1927
1a94ca49
RK
1928/* This is how to output an insn to push a register on the stack.
1929 It need not be very fast code. */
1930
1931#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1932 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1933 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1934 (REGNO) & 31);
1935
1936/* This is how to output an insn to pop a register from the stack.
1937 It need not be very fast code. */
1938
1939#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1940 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1941 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1942 (REGNO) & 31);
1943
1944/* This is how to output an assembler line for a numeric constant byte. */
1945
1946#define ASM_OUTPUT_BYTE(FILE,VALUE) \
45c45e79 1947 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1a94ca49 1948
260ced47
RK
1949/* This is how to output an element of a case-vector that is absolute.
1950 (Alpha does not use such vectors, but we must define this macro anyway.) */
1a94ca49 1951
260ced47 1952#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1a94ca49 1953
260ced47 1954/* This is how to output an element of a case-vector that is relative. */
1a94ca49 1955
0076aa6b 1956#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
e7a2eff8
RK
1957 fprintf (FILE, "\t.%s $%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
1958 (VALUE) + 32)
1a94ca49
RK
1959
1960/* This is how to output an assembler line
1961 that says to advance the location counter
1962 to a multiple of 2**LOG bytes. */
1963
1964#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1965 if ((LOG) != 0) \
1966 fprintf (FILE, "\t.align %d\n", LOG);
1967
1968/* This is how to advance the location counter by SIZE bytes. */
1969
1970#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1971 fprintf (FILE, "\t.space %d\n", (SIZE))
1972
1973/* This says how to output an assembler line
1974 to define a global common symbol. */
1975
1976#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1977( fputs ("\t.comm ", (FILE)), \
1978 assemble_name ((FILE), (NAME)), \
1979 fprintf ((FILE), ",%d\n", (SIZE)))
1980
1981/* This says how to output an assembler line
1982 to define a local common symbol. */
1983
1984#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1985( fputs ("\t.lcomm ", (FILE)), \
1986 assemble_name ((FILE), (NAME)), \
1987 fprintf ((FILE), ",%d\n", (SIZE)))
1988
1989/* Store in OUTPUT a string (made with alloca) containing
1990 an assembler-name for a local static variable named NAME.
1991 LABELNO is an integer which is different for each call. */
1992
1993#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1994( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1995 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1996
1997/* Define the parentheses used to group arithmetic operations
1998 in assembler code. */
1999
2000#define ASM_OPEN_PAREN "("
2001#define ASM_CLOSE_PAREN ")"
2002
2003/* Define results of standard character escape sequences. */
2004#define TARGET_BELL 007
2005#define TARGET_BS 010
2006#define TARGET_TAB 011
2007#define TARGET_NEWLINE 012
2008#define TARGET_VT 013
2009#define TARGET_FF 014
2010#define TARGET_CR 015
2011
2012/* Print operand X (an rtx) in assembler syntax to file FILE.
2013 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2014 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2015
2016#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2017
2018/* Determine which codes are valid without a following integer. These must
2bf6230d
RK
2019 not be alphabetic (the characters are chosen so that
2020 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2021 using ASCII).
2022
2023 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2024 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2025 mode. alpha_fprm controls which suffix is generated.
2026
2027 ' Generates trap-mode suffix for instructions that accept the
2028 su suffix only (cmpt et al).
2029
2030 ) Generates trap-mode suffix for instructions that accept the
2031 u, su, and sui suffix. This is the bulk of the IEEE floating
2032 point instructions (addt et al).
2033
2034 + Generates trap-mode suffix for instructions that accept the
2035 sui suffix (cvtqt and cvtqs).
e5958492
RK
2036
2037 , Generates single precision suffix for floating point
2038 instructions (s for IEEE, f for VAX)
2039
2040 - Generates double precision suffix for floating point
2041 instructions (t for IEEE, g for VAX)
2bf6230d 2042 */
1a94ca49 2043
2bf6230d 2044#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
e5958492
RK
2045 ((CODE) == '&' || (CODE) == '\'' || (CODE) == ')' || (CODE) == '+' \
2046 || (CODE) == ',' || (CODE) == '-')
1a94ca49
RK
2047\f
2048/* Print a memory address as an operand to reference that memory location. */
2049
2050#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2051{ rtx addr = (ADDR); \
2052 int basereg = 31; \
2053 HOST_WIDE_INT offset = 0; \
2054 \
2055 if (GET_CODE (addr) == AND) \
2056 addr = XEXP (addr, 0); \
2057 \
2058 if (GET_CODE (addr) == REG) \
2059 basereg = REGNO (addr); \
2060 else if (GET_CODE (addr) == CONST_INT) \
2061 offset = INTVAL (addr); \
2062 else if (GET_CODE (addr) == PLUS \
2063 && GET_CODE (XEXP (addr, 0)) == REG \
2064 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2065 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
2066 else \
2067 abort (); \
2068 \
2069 fprintf (FILE, "%d($%d)", offset, basereg); \
2070}
2071/* Define the codes that are matched by predicates in alpha.c. */
2072
2073#define PREDICATE_CODES \
2074 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
4a1d2a46 2075 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49 2076 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
9e2befc2 2077 {"cint8_operand", {CONST_INT}}, \
1a94ca49
RK
2078 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2079 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2080 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
2081 {"const48_operand", {CONST_INT}}, \
2082 {"and_operand", {SUBREG, REG, CONST_INT}}, \
8395de26 2083 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1a94ca49
RK
2084 {"mode_mask_operand", {CONST_INT}}, \
2085 {"mul8_operand", {CONST_INT}}, \
2086 {"mode_width_operand", {CONST_INT}}, \
2087 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2088 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
d1e03f31 2089 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
1a94ca49 2090 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
f8634644 2091 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1a94ca49 2092 {"fp0_operand", {CONST_DOUBLE}}, \
f8634644 2093 {"current_file_function_operand", {SYMBOL_REF}}, \
ac030a7b 2094 {"call_operand", {REG, SYMBOL_REF}}, \
1a94ca49
RK
2095 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2096 SYMBOL_REF, CONST, LABEL_REF}}, \
4e26af5f
RK
2097 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2098 SYMBOL_REF, CONST, LABEL_REF}}, \
1a94ca49
RK
2099 {"aligned_memory_operand", {MEM}}, \
2100 {"unaligned_memory_operand", {MEM}}, \
442b1685 2101 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
1a94ca49 2102 {"any_memory_operand", {MEM}},
03f8c4cc 2103\f
34fa88ab
RK
2104/* Tell collect that the object format is ECOFF. */
2105#define OBJECT_FORMAT_COFF
2106#define EXTENDED_COFF
2107
2108/* If we use NM, pass -g to it so it only lists globals. */
2109#define NM_FLAGS "-pg"
2110
03f8c4cc
RK
2111/* Definitions for debugging. */
2112
2113#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2114#define DBX_DEBUGGING_INFO /* generate embedded stabs */
2115#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2116
2117#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 2118#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
03f8c4cc
RK
2119#endif
2120
2121
2122/* Correct the offset of automatic variables and arguments. Note that
2123 the Alpha debug format wants all automatic variables and arguments
2124 to be in terms of two different offsets from the virtual frame pointer,
2125 which is the stack pointer before any adjustment in the function.
2126 The offset for the argument pointer is fixed for the native compiler,
2127 it is either zero (for the no arguments case) or large enough to hold
2128 all argument registers.
2129 The offset for the auto pointer is the fourth argument to the .frame
2130 directive (local_offset).
2131 To stay compatible with the native tools we use the same offsets
2132 from the virtual frame pointer and adjust the debugger arg/auto offsets
2133 accordingly. These debugger offsets are set up in output_prolog. */
2134
9a0b18f2
RK
2135extern long alpha_arg_offset;
2136extern long alpha_auto_offset;
03f8c4cc
RK
2137#define DEBUGGER_AUTO_OFFSET(X) \
2138 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2139#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2140
2141
2142#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2143 alpha_output_lineno (STREAM, LINE)
2144extern void alpha_output_lineno ();
2145
2146#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2147 alpha_output_filename (STREAM, NAME)
2148extern void alpha_output_filename ();
2149
2150
ab8b8941
RK
2151/* mips-tfile.c limits us to strings of one page. */
2152#define DBX_CONTIN_LENGTH 4000
03f8c4cc
RK
2153
2154/* By default, turn on GDB extensions. */
2155#define DEFAULT_GDB_EXTENSIONS 1
2156
7aadc7c2
RK
2157/* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2158#define NO_DBX_FUNCTION_END 1
2159
03f8c4cc
RK
2160/* If we are smuggling stabs through the ALPHA ECOFF object
2161 format, put a comment in front of the .stab<x> operation so
2162 that the ALPHA assembler does not choke. The mips-tfile program
2163 will correctly put the stab into the object file. */
2164
2165#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2166#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2167#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2168
2169/* Forward references to tags are allowed. */
2170#define SDB_ALLOW_FORWARD_REFERENCES
2171
2172/* Unknown tags are also allowed. */
2173#define SDB_ALLOW_UNKNOWN_REFERENCES
2174
2175#define PUT_SDB_DEF(a) \
2176do { \
2177 fprintf (asm_out_file, "\t%s.def\t", \
2178 (TARGET_GAS) ? "" : "#"); \
2179 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2180 fputc (';', asm_out_file); \
2181} while (0)
2182
2183#define PUT_SDB_PLAIN_DEF(a) \
2184do { \
2185 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2186 (TARGET_GAS) ? "" : "#", (a)); \
2187} while (0)
2188
2189#define PUT_SDB_TYPE(a) \
2190do { \
2191 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2192} while (0)
2193
2194/* For block start and end, we create labels, so that
2195 later we can figure out where the correct offset is.
2196 The normal .ent/.end serve well enough for functions,
2197 so those are just commented out. */
2198
2199extern int sdb_label_count; /* block start/end next label # */
2200
2201#define PUT_SDB_BLOCK_START(LINE) \
2202do { \
2203 fprintf (asm_out_file, \
2204 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2205 sdb_label_count, \
2206 (TARGET_GAS) ? "" : "#", \
2207 sdb_label_count, \
2208 (LINE)); \
2209 sdb_label_count++; \
2210} while (0)
2211
2212#define PUT_SDB_BLOCK_END(LINE) \
2213do { \
2214 fprintf (asm_out_file, \
2215 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2216 sdb_label_count, \
2217 (TARGET_GAS) ? "" : "#", \
2218 sdb_label_count, \
2219 (LINE)); \
2220 sdb_label_count++; \
2221} while (0)
2222
2223#define PUT_SDB_FUNCTION_START(LINE)
2224
2225#define PUT_SDB_FUNCTION_END(LINE)
2226
2227#define PUT_SDB_EPILOGUE_END(NAME)
2228
7bd7a756
RK
2229/* No point in running CPP on our assembler output. */
2230#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
2231/* Don't pass -g to GNU as, because some versions don't accept this option. */
2232#define ASM_SPEC "%{malpha-as:-g} -nocpp %{pg}"
2233#else
2234/* In OSF/1 v3.2c, the assembler by default does not output file names which
2235 causes mips-tfile to fail. Passing -g to the assembler fixes this problem.
2236 ??? Stricly speaking, we only need -g if the user specifies -g. Passing
2237 it always means that we get slightly larger than necessary object files
2238 if the user does not specify -g. If we don't pass -g, then mips-tfile
2239 will need to be fixed to work in this case. */
2240#define ASM_SPEC "%{!mgas:-g} -nocpp %{pg}"
2241#endif
2242
03f8c4cc
RK
2243/* Specify to run a post-processor, mips-tfile after the assembler
2244 has run to stuff the ecoff debug information into the object file.
2245 This is needed because the Alpha assembler provides no way
2246 of specifying such information in the assembly file. */
2247
88681624 2248#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
03f8c4cc
RK
2249
2250#define ASM_FINAL_SPEC "\
2251%{malpha-as: %{!mno-mips-tfile: \
2252 \n mips-tfile %{v*: -v} \
2253 %{K: -I %b.o~} \
2254 %{!K: %{save-temps: -I %b.o~}} \
2255 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2256 %{.s:%i} %{!.s:%g.s}}}"
2257
2258#else
2259#define ASM_FINAL_SPEC "\
2260%{!mgas: %{!mno-mips-tfile: \
2261 \n mips-tfile %{v*: -v} \
2262 %{K: -I %b.o~} \
2263 %{!K: %{save-temps: -I %b.o~}} \
2264 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
2265 %{.s:%i} %{!.s:%g.s}}}"
2266
2267#endif
2268
2269/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2270 mips-tdump.c to print them out.
2271
2272 These must match the corresponding definitions in gdb/mipsread.c.
2273 Unfortunately, gcc and gdb do not currently share any directories. */
2274
2275#define CODE_MASK 0x8F300
2276#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2277#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2278#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2279
2280/* Override some mips-tfile definitions. */
2281
2282#define SHASH_SIZE 511
2283#define THASH_SIZE 55
1e6c6f11
RK
2284
2285/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2286
2287#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2f55b70b
JM
2288
2289/* The system headers under OSF/1 are C++-aware. */
2290#define NO_IMPLICIT_EXTERN_C
54190234
JM
2291
2292/* The linker will stick __main into the .init section. */
2293#define HAS_INIT_SECTION
68d69835
JM
2294#define LD_INIT_SWITCH "-init"
2295#define LD_FINI_SWITCH "-fini"