]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/arm/arm1026ejs.md
host-hpux.c: Change copyright header to refer to version 3 of the GNU General Public...
[thirdparty/gcc.git] / gcc / config / arm / arm1026ejs.md
CommitLineData
9b66ebb1 1;; ARM 1026EJ-S Pipeline Description
2f83c7d6 2;; Copyright (C) 2003, 2007 Free Software Foundation, Inc.
9b66ebb1
PB
3;; Written by CodeSourcery, LLC.
4;;
5;; This file is part of GCC.
6;;
7;; GCC is free software; you can redistribute it and/or modify it
8;; under the terms of the GNU General Public License as published by
2f83c7d6 9;; the Free Software Foundation; either version 3, or (at your option)
9b66ebb1
PB
10;; any later version.
11;;
12;; GCC is distributed in the hope that it will be useful, but
13;; WITHOUT ANY WARRANTY; without even the implied warranty of
14;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15;; General Public License for more details.
16;;
17;; You should have received a copy of the GNU General Public License
2f83c7d6
NC
18;; along with GCC; see the file COPYING3. If not see
19;; <http://www.gnu.org/licenses/>. */
9b66ebb1
PB
20
21;; These descriptions are based on the information contained in the
22;; ARM1026EJ-S Technical Reference Manual, Copyright (c) 2003 ARM
23;; Limited.
24;;
25
26;; This automaton provides a pipeline description for the ARM
27;; 1026EJ-S core.
28;;
29;; The model given here assumes that the condition for all conditional
30;; instructions is "true", i.e., that all of the instructions are
31;; actually executed.
32
33(define_automaton "arm1026ejs")
34
35;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36;; Pipelines
37;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38
39;; There are two pipelines:
40;;
41;; - An Arithmetic Logic Unit (ALU) pipeline.
42;;
43;; The ALU pipeline has fetch, issue, decode, execute, memory, and
44;; write stages. We only need to model the execute, memory and write
45;; stages.
46;;
47;; - A Load-Store Unit (LSU) pipeline.
48;;
49;; The LSU pipeline has decode, execute, memory, and write stages.
50;; We only model the execute, memory and write stages.
51
52(define_cpu_unit "a_e,a_m,a_w" "arm1026ejs")
53(define_cpu_unit "l_e,l_m,l_w" "arm1026ejs")
54
55;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
56;; ALU Instructions
57;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
58
59;; ALU instructions require three cycles to execute, and use the ALU
60;; pipeline in each of the three stages. The results are available
61;; after the execute stage stage has finished.
62;;
63;; If the destination register is the PC, the pipelines are stalled
64;; for several cycles. That case is not modeled here.
65
66;; ALU operations with no shifted operand
67(define_insn_reservation "alu_op" 1
68 (and (eq_attr "tune" "arm1026ejs")
69 (eq_attr "type" "alu"))
70 "a_e,a_m,a_w")
71
72;; ALU operations with a shift-by-constant operand
73(define_insn_reservation "alu_shift_op" 1
74 (and (eq_attr "tune" "arm1026ejs")
75 (eq_attr "type" "alu_shift"))
76 "a_e,a_m,a_w")
77
78;; ALU operations with a shift-by-register operand
79;; These really stall in the decoder, in order to read
80;; the shift value in a second cycle. Pretend we take two cycles in
81;; the execute stage.
82(define_insn_reservation "alu_shift_reg_op" 2
83 (and (eq_attr "tune" "arm1026ejs")
84 (eq_attr "type" "alu_shift_reg"))
85 "a_e*2,a_m,a_w")
86
87;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
88;; Multiplication Instructions
89;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
90
91;; Multiplication instructions loop in the execute stage until the
92;; instruction has been passed through the multiplier array enough
93;; times.
94
95;; The result of the "smul" and "smulw" instructions is not available
96;; until after the memory stage.
97(define_insn_reservation "mult1" 2
98 (and (eq_attr "tune" "arm1026ejs")
99 (eq_attr "insn" "smulxy,smulwy"))
100 "a_e,a_m,a_w")
101
102;; The "smlaxy" and "smlawx" instructions require two iterations through
103;; the execute stage; the result is available immediately following
104;; the execute stage.
105(define_insn_reservation "mult2" 2
106 (and (eq_attr "tune" "arm1026ejs")
107 (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
108 "a_e*2,a_m,a_w")
109
110;; The "smlalxy", "mul", and "mla" instructions require two iterations
111;; through the execute stage; the result is not available until after
112;; the memory stage.
113(define_insn_reservation "mult3" 3
114 (and (eq_attr "tune" "arm1026ejs")
115 (eq_attr "insn" "smlalxy,mul,mla"))
116 "a_e*2,a_m,a_w")
117
118;; The "muls" and "mlas" instructions loop in the execute stage for
119;; four iterations in order to set the flags. The value result is
120;; available after three iterations.
121(define_insn_reservation "mult4" 3
122 (and (eq_attr "tune" "arm1026ejs")
123 (eq_attr "insn" "muls,mlas"))
124 "a_e*4,a_m,a_w")
125
126;; Long multiply instructions that produce two registers of
127;; output (such as umull) make their results available in two cycles;
128;; the least significant word is available before the most significant
129;; word. That fact is not modeled; instead, the instructions are
130;; described.as if the entire result was available at the end of the
131;; cycle in which both words are available.
132
133;; The "umull", "umlal", "smull", and "smlal" instructions all take
134;; three iterations through the execute cycle, and make their results
135;; available after the memory cycle.
136(define_insn_reservation "mult5" 4
137 (and (eq_attr "tune" "arm1026ejs")
138 (eq_attr "insn" "umull,umlal,smull,smlal"))
139 "a_e*3,a_m,a_w")
140
141;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
142;; the execute stage for five iterations in order to set the flags.
59b9a953 143;; The value result is available after four iterations.
9b66ebb1
PB
144(define_insn_reservation "mult6" 4
145 (and (eq_attr "tune" "arm1026ejs")
146 (eq_attr "insn" "umulls,umlals,smulls,smlals"))
147 "a_e*5,a_m,a_w")
148
149;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
150;; Load/Store Instructions
151;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
152
153;; The models for load/store instructions do not accurately describe
154;; the difference between operations with a base register writeback
155;; (such as "ldm!"). These models assume that all memory references
156;; hit in dcache.
157
158;; LSU instructions require six cycles to execute. They use the ALU
159;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
160;; three through six.
161;; Loads and stores which use a scaled register offset or scaled
162;; register pre-indexed addressing mode take three cycles EXCEPT for
163;; those that are base + offset with LSL of 0 or 2, or base - offset
164;; with LSL of zero. The remainder take 1 cycle to execute.
165;; For 4byte loads there is a bypass from the load stage
166
167(define_insn_reservation "load1_op" 2
168 (and (eq_attr "tune" "arm1026ejs")
169 (eq_attr "type" "load_byte,load1"))
170 "a_e+l_e,l_m,a_w+l_w")
171
172(define_insn_reservation "store1_op" 0
173 (and (eq_attr "tune" "arm1026ejs")
174 (eq_attr "type" "store1"))
175 "a_e+l_e,l_m,a_w+l_w")
176
177;; A load's result can be stored by an immediately following store
178(define_bypass 1 "load1_op" "store1_op" "arm_no_early_store_addr_dep")
179
180;; On a LDM/STM operation, the LSU pipeline iterates until all of the
181;; registers have been processed.
182;;
183;; The time it takes to load the data depends on whether or not the
184;; base address is 64-bit aligned; if it is not, an additional cycle
185;; is required. This model assumes that the address is always 64-bit
186;; aligned. Because the processor can load two registers per cycle,
59b9a953 187;; that assumption means that we use the same instruction reservations
9b66ebb1
PB
188;; for loading 2k and 2k - 1 registers.
189;;
190;; The ALU pipeline is stalled until the completion of the last memory
191;; stage in the LSU pipeline. That is modeled by keeping the ALU
192;; execute stage busy until that point.
193;;
194;; As with ALU operations, if one of the destination registers is the
195;; PC, there are additional stalls; that is not modeled.
196
197(define_insn_reservation "load2_op" 2
198 (and (eq_attr "tune" "arm1026ejs")
199 (eq_attr "type" "load2"))
200 "a_e+l_e,l_m,a_w+l_w")
201
202(define_insn_reservation "store2_op" 0
203 (and (eq_attr "tune" "arm1026ejs")
204 (eq_attr "type" "store2"))
205 "a_e+l_e,l_m,a_w+l_w")
206
207(define_insn_reservation "load34_op" 3
208 (and (eq_attr "tune" "arm1026ejs")
209 (eq_attr "type" "load3,load4"))
210 "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
211
212(define_insn_reservation "store34_op" 0
213 (and (eq_attr "tune" "arm1026ejs")
214 (eq_attr "type" "store3,store4"))
215 "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
216
217;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
218;; Branch and Call Instructions
219;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
220
221;; Branch instructions are difficult to model accurately. The ARM
222;; core can predict most branches. If the branch is predicted
223;; correctly, and predicted early enough, the branch can be completely
224;; eliminated from the instruction stream. Some branches can
225;; therefore appear to require zero cycles to execute. We assume that
226;; all branches are predicted correctly, and that the latency is
227;; therefore the minimum value.
228
229(define_insn_reservation "branch_op" 0
230 (and (eq_attr "tune" "arm1026ejs")
231 (eq_attr "type" "branch"))
232 "nothing")
233
234;; The latency for a call is not predictable. Therefore, we use 32 as
59b9a953 235;; roughly equivalent to positive infinity.
9b66ebb1
PB
236
237(define_insn_reservation "call_op" 32
238 (and (eq_attr "tune" "arm1026ejs")
239 (eq_attr "type" "call"))
240 "nothing")