]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/arm/cortex-a5.md
[AArch64] Fix types of second parameter to qtbl/qtbx intrinsics
[thirdparty/gcc.git] / gcc / config / arm / cortex-a5.md
CommitLineData
d8099dd8 1;; ARM Cortex-A5 pipeline description
d1e082c2 2;; Copyright (C) 2010-2013 Free Software Foundation, Inc.
d8099dd8
JB
3;; Contributed by CodeSourcery.
4;;
5;; This file is part of GCC.
6;;
7;; GCC is free software; you can redistribute it and/or modify it
8;; under the terms of the GNU General Public License as published by
9;; the Free Software Foundation; either version 3, or (at your option)
10;; any later version.
11;;
12;; GCC is distributed in the hope that it will be useful, but
13;; WITHOUT ANY WARRANTY; without even the implied warranty of
14;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15;; General Public License for more details.
16;;
17;; You should have received a copy of the GNU General Public License
18;; along with GCC; see the file COPYING3. If not see
19;; <http://www.gnu.org/licenses/>.
20
21(define_automaton "cortex_a5")
22
23;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
24;; Functional units.
25;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
26
27;; The integer (ALU) pipeline. There are five DPU pipeline
28;; stages. However the decode/issue stages operate the same for all
29;; instructions, so do not model them. We only need to model the
30;; first execute stage because instructions always advance one stage
31;; per cycle in order. Only branch instructions may dual-issue, so a
32;; single unit covers all of the LS, ALU, MAC and FPU pipelines.
33
34(define_cpu_unit "cortex_a5_ex1" "cortex_a5")
35
36;; The branch pipeline. Branches can dual-issue with other instructions
37;; (except when those instructions take multiple cycles to issue).
38
39(define_cpu_unit "cortex_a5_branch" "cortex_a5")
40
41;; Pseudo-unit for blocking the multiply pipeline when a double-precision
42;; multiply is in progress.
43
44(define_cpu_unit "cortex_a5_fpmul_pipe" "cortex_a5")
45
46;; The floating-point add pipeline (ex1/f1 stage), used to model the usage
47;; of the add pipeline by fmac instructions, etc.
48
49(define_cpu_unit "cortex_a5_fpadd_pipe" "cortex_a5")
50
51;; Floating-point div/sqrt (long latency, out-of-order completion).
52
53(define_cpu_unit "cortex_a5_fp_div_sqrt" "cortex_a5")
54
55;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
56;; ALU instructions.
57;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
58
59(define_insn_reservation "cortex_a5_alu" 2
60 (and (eq_attr "tune" "cortexa5")
6e4150e1
JG
61 (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
62 alu_reg,alus_reg,logic_reg,logics_reg,\
63 adc_imm,adcs_imm,adc_reg,adcs_reg,\
64 adr,bfm,rev,\
65 shift_imm,shift_reg,\
594726e4
JG
66 mov_imm,mov_reg,mvn_imm,mvn_reg,\
67 multiple,no_insn"))
d8099dd8
JB
68 "cortex_a5_ex1")
69
70(define_insn_reservation "cortex_a5_alu_shift" 2
71 (and (eq_attr "tune" "cortexa5")
6e4150e1
JG
72 (eq_attr "type" "extend,\
73 alu_shift_imm,alus_shift_imm,\
74 logic_shift_imm,logics_shift_imm,\
75 alu_shift_reg,alus_shift_reg,\
76 logic_shift_reg,logics_shift_reg,\
859abddd
SN
77 mov_shift,mov_shift_reg,\
78 mvn_shift,mvn_shift_reg"))
d8099dd8
JB
79 "cortex_a5_ex1")
80
81;; Forwarding path for unshifted operands.
82
83(define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
84 "cortex_a5_alu")
85
86(define_bypass 1 "cortex_a5_alu,cortex_a5_alu_shift"
87 "cortex_a5_alu_shift"
88 "arm_no_early_alu_shift_dep")
89
90;; The multiplier pipeline can forward results from wr stage only so
91;; there's no need to specify bypasses).
92
93(define_insn_reservation "cortex_a5_mul" 2
94 (and (eq_attr "tune" "cortexa5")
09485a08
SN
95 (ior (eq_attr "mul32" "yes")
96 (eq_attr "mul64" "yes")))
d8099dd8
JB
97 "cortex_a5_ex1")
98
99;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
100;; Load/store instructions.
101;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
102
103;; Address-generation happens in the issue stage, which is one stage behind
104;; the ex1 stage (the first stage we care about for scheduling purposes). The
105;; dc1 stage is parallel with ex1, dc2 with ex2 and rot with wr.
106
107(define_insn_reservation "cortex_a5_load1" 2
108 (and (eq_attr "tune" "cortexa5")
109 (eq_attr "type" "load_byte,load1"))
110 "cortex_a5_ex1")
111
112(define_insn_reservation "cortex_a5_store1" 0
113 (and (eq_attr "tune" "cortexa5")
114 (eq_attr "type" "store1"))
115 "cortex_a5_ex1")
116
117(define_insn_reservation "cortex_a5_load2" 3
118 (and (eq_attr "tune" "cortexa5")
119 (eq_attr "type" "load2"))
120 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
121
122(define_insn_reservation "cortex_a5_store2" 0
123 (and (eq_attr "tune" "cortexa5")
124 (eq_attr "type" "store2"))
125 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
126
127(define_insn_reservation "cortex_a5_load3" 4
128 (and (eq_attr "tune" "cortexa5")
129 (eq_attr "type" "load3"))
130 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
131 cortex_a5_ex1")
132
133(define_insn_reservation "cortex_a5_store3" 0
134 (and (eq_attr "tune" "cortexa5")
135 (eq_attr "type" "store3"))
136 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
137 cortex_a5_ex1")
138
139(define_insn_reservation "cortex_a5_load4" 5
140 (and (eq_attr "tune" "cortexa5")
141 (eq_attr "type" "load3"))
142 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
143 cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
144
145(define_insn_reservation "cortex_a5_store4" 0
146 (and (eq_attr "tune" "cortexa5")
147 (eq_attr "type" "store3"))
148 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,\
149 cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
150
151;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
152;; Branches.
153;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
154
155;; Direct branches are the only instructions we can dual-issue (also IT and
156;; nop, but those aren't very interesting for scheduling). (The latency here
157;; is meant to represent when the branch actually takes place, but may not be
158;; entirely correct.)
159
160(define_insn_reservation "cortex_a5_branch" 3
161 (and (eq_attr "tune" "cortexa5")
162 (eq_attr "type" "branch,call"))
163 "cortex_a5_branch")
164
165;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
166;; Floating-point arithmetic.
167;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
168
169(define_insn_reservation "cortex_a5_fpalu" 4
170 (and (eq_attr "tune" "cortexa5")
171 (eq_attr "type" "ffariths, fadds, ffarithd, faddd, fcpys, fmuls, f_cvt,\
172 fcmps, fcmpd"))
173 "cortex_a5_ex1+cortex_a5_fpadd_pipe")
174
175;; For fconsts and fconstd, 8-bit immediate data is passed directly from
176;; f1 to f3 (which I think reduces the latency by one cycle).
177
178(define_insn_reservation "cortex_a5_fconst" 3
179 (and (eq_attr "tune" "cortexa5")
180 (eq_attr "type" "fconsts,fconstd"))
181 "cortex_a5_ex1+cortex_a5_fpadd_pipe")
182
183;; We should try not to attempt to issue a single-precision multiplication in
184;; the middle of a double-precision multiplication operation (the usage of
185;; cortex_a5_fpmul_pipe).
186
187(define_insn_reservation "cortex_a5_fpmuls" 4
188 (and (eq_attr "tune" "cortexa5")
189 (eq_attr "type" "fmuls"))
190 "cortex_a5_ex1+cortex_a5_fpmul_pipe")
191
192;; For single-precision multiply-accumulate, the add (accumulate) is issued
193;; whilst the multiply is in F4. The multiply result can then be forwarded
194;; from F5 to F1. The issue unit is only used once (when we first start
195;; processing the instruction), but the usage of the FP add pipeline could
196;; block other instructions attempting to use it simultaneously. We try to
197;; avoid that using cortex_a5_fpadd_pipe.
198
199(define_insn_reservation "cortex_a5_fpmacs" 8
200 (and (eq_attr "tune" "cortexa5")
29637783 201 (eq_attr "type" "fmacs,ffmas"))
d8099dd8
JB
202 "cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
203
204;; Non-multiply instructions can issue in the middle two instructions of a
205;; double-precision multiply. Note that it isn't entirely clear when a branch
206;; can dual-issue when a multi-cycle multiplication is in progress; we ignore
207;; that for now though.
208
209(define_insn_reservation "cortex_a5_fpmuld" 7
210 (and (eq_attr "tune" "cortexa5")
211 (eq_attr "type" "fmuld"))
212 "cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
213 cortex_a5_ex1+cortex_a5_fpmul_pipe")
214
215(define_insn_reservation "cortex_a5_fpmacd" 11
216 (and (eq_attr "tune" "cortexa5")
29637783 217 (eq_attr "type" "fmacd,ffmad"))
d8099dd8
JB
218 "cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,\
219 cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe")
220
221;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
222;; Floating-point divide/square root instructions.
223;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
224
225;; ??? Not sure if the 14 cycles taken for single-precision divide to complete
226;; includes the time taken for the special instruction used to collect the
227;; result to travel down the multiply pipeline, or not. Assuming so. (If
228;; that's wrong, the latency should be increased by a few cycles.)
229
230;; fsqrt takes one cycle less, but that is not modelled, nor is the use of the
231;; multiply pipeline to collect the divide/square-root result.
232
233(define_insn_reservation "cortex_a5_fdivs" 14
234 (and (eq_attr "tune" "cortexa5")
235 (eq_attr "type" "fdivs"))
236 "cortex_a5_ex1, cortex_a5_fp_div_sqrt * 13")
237
238;; ??? Similarly for fdivd.
239
240(define_insn_reservation "cortex_a5_fdivd" 29
241 (and (eq_attr "tune" "cortexa5")
242 (eq_attr "type" "fdivd"))
243 "cortex_a5_ex1, cortex_a5_fp_div_sqrt * 28")
244
245;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
246;; VFP to/from core transfers.
247;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
248
249;; FP loads take data from wr/rot/f3.
250
251;; Core-to-VFP transfers use the multiply pipeline.
252
253(define_insn_reservation "cortex_a5_r2f" 4
254 (and (eq_attr "tune" "cortexa5")
003bb7f3 255 (eq_attr "type" "f_mcr,f_mcrr"))
d8099dd8
JB
256 "cortex_a5_ex1")
257
258(define_insn_reservation "cortex_a5_f2r" 2
259 (and (eq_attr "tune" "cortexa5")
003bb7f3 260 (eq_attr "type" "f_mrc,f_mrrc"))
d8099dd8
JB
261 "cortex_a5_ex1")
262
263;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
264;; VFP flag transfer.
265;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
266
267;; ??? The flag forwarding from fmstat to the ex2 stage of the second
268;; instruction is not modeled at present.
269
270(define_insn_reservation "cortex_a5_f_flags" 4
271 (and (eq_attr "tune" "cortexa5")
272 (eq_attr "type" "f_flag"))
273 "cortex_a5_ex1")
274
275;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
276;; VFP load/store.
277;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
278
279(define_insn_reservation "cortex_a5_f_loads" 4
280 (and (eq_attr "tune" "cortexa5")
281 (eq_attr "type" "f_loads"))
282 "cortex_a5_ex1")
283
284(define_insn_reservation "cortex_a5_f_loadd" 5
285 (and (eq_attr "tune" "cortexa5")
837b01f6 286 (eq_attr "type" "f_loadd"))
d8099dd8
JB
287 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
288
289(define_insn_reservation "cortex_a5_f_stores" 0
290 (and (eq_attr "tune" "cortexa5")
291 (eq_attr "type" "f_stores"))
292 "cortex_a5_ex1")
293
294(define_insn_reservation "cortex_a5_f_stored" 0
295 (and (eq_attr "tune" "cortexa5")
837b01f6 296 (eq_attr "type" "f_stored"))
d8099dd8
JB
297 "cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1")
298
299;; Load-to-use for floating-point values has a penalty of one cycle,
300;; i.e. a latency of two.
301
302(define_bypass 2 "cortex_a5_f_loads"
303 "cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
304 cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\
305 cortex_a5_f2r")
306
307(define_bypass 3 "cortex_a5_f_loadd"
308 "cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,\
309 cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,\
310 cortex_a5_f2r")