]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/bfin/bfin.h
re PR libstdc++/25482 (Specialize (overload) std::copy/find for streambuf iterators)
[thirdparty/gcc.git] / gcc / config / bfin / bfin.h
CommitLineData
0d4a78eb 1/* Definitions for the Blackfin port.
4729dc92 2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
0d4a78eb
BS
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
39d14dda
KC
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
0d4a78eb
BS
21
22#ifndef _BFIN_CONFIG
23#define _BFIN_CONFIG
24
25#define OBJECT_FORMAT_ELF
26
27#define BRT 1
28#define BRF 0
29
30/* Print subsidiary information on the compiler version in use. */
31#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
32
33/* Run-time compilation parameters selecting different hardware subsets. */
34
35extern int target_flags;
36
37/* Predefinition in the preprocessor for this target machine */
38#ifndef TARGET_CPU_CPP_BUILTINS
39#define TARGET_CPU_CPP_BUILTINS() \
40 do \
41 { \
42 builtin_define ("bfin"); \
43 builtin_define ("BFIN"); \
4af990cd
BS
44 if (TARGET_ID_SHARED_LIBRARY) \
45 builtin_define ("__ID_SHARED_LIB__"); \
0d4a78eb
BS
46 } \
47 while (0)
48#endif
49
50/* Generate DSP instructions, like DSP halfword loads */
51#define TARGET_DSP (1)
52
3fb192d2 53#define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
0d4a78eb 54
0d4a78eb
BS
55/* Maximum number of library ids we permit */
56#define MAX_LIBRARY_ID 255
57
58extern const char *bfin_library_id_string;
59
60/* Sometimes certain combinations of command options do not make
61 sense on a particular target machine. You can define a macro
62 `OVERRIDE_OPTIONS' to take account of this. This macro, if
63 defined, is executed once just after all the command options have
64 been parsed.
65
66 Don't use this macro to turn on various extra optimizations for
67 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
68
69#define OVERRIDE_OPTIONS override_options ()
70
71#define FUNCTION_MODE SImode
72#define Pmode SImode
73
74/* store-condition-codes instructions store 0 for false
75 This is the value stored for true. */
76#define STORE_FLAG_VALUE 1
77
78/* Define this if pushing a word on the stack
79 makes the stack pointer a smaller address. */
80#define STACK_GROWS_DOWNWARD
81
82#define STACK_PUSH_CODE PRE_DEC
83
a4d05547 84/* Define this to nonzero if the nominal address of the stack frame
0d4a78eb
BS
85 is at the high-address end of the local variables;
86 that is, each additional local variable allocated
87 goes at a more negative offset in the frame. */
f62c8a5c 88#define FRAME_GROWS_DOWNWARD 1
0d4a78eb
BS
89
90/* We define a dummy ARGP register; the parameters start at offset 0 from
91 it. */
92#define FIRST_PARM_OFFSET(DECL) 0
93
94/* Offset within stack frame to start allocating local variables at.
95 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
96 first local allocated. Otherwise, it is the offset to the BEGINNING
97 of the first local allocated. */
98#define STARTING_FRAME_OFFSET 0
99
100/* Register to use for pushing function arguments. */
101#define STACK_POINTER_REGNUM REG_P6
102
103/* Base register for access to local variables of the function. */
104#define FRAME_POINTER_REGNUM REG_P7
105
106/* A dummy register that will be eliminated to either FP or SP. */
107#define ARG_POINTER_REGNUM REG_ARGP
108
109/* `PIC_OFFSET_TABLE_REGNUM'
110 The register number of the register used to address a table of
111 static data addresses in memory. In some cases this register is
112 defined by a processor's "application binary interface" (ABI).
113 When this macro is defined, RTL is generated for this register
114 once, as with the stack pointer and frame pointer registers. If
115 this macro is not defined, it is up to the machine-dependent files
116 to allocate such a register (if necessary). */
117#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
118
119/* A static chain register for nested functions. We need to use a
120 call-clobbered register for this. */
121#define STATIC_CHAIN_REGNUM REG_P2
122
123/* Define this if functions should assume that stack space has been
124 allocated for arguments even when their values are passed in
125 registers.
126
127 The value of this macro is the size, in bytes, of the area reserved for
128 arguments passed in registers.
129
130 This space can either be allocated by the caller or be a part of the
131 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
132 says which. */
133#define FIXED_STACK_AREA 12
134#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
135
136/* Define this if the above stack space is to be considered part of the
137 * space allocated by the caller. */
138#define OUTGOING_REG_PARM_STACK_SPACE
139
140/* Define this if the maximum size of all the outgoing args is to be
141 accumulated and pushed during the prologue. The amount can be
142 found in the variable current_function_outgoing_args_size. */
143#define ACCUMULATE_OUTGOING_ARGS 1
144
145/* Value should be nonzero if functions must have frame pointers.
146 Zero means the frame pointer need not be set up (and parms
147 may be accessed via the stack pointer) in functions that seem suitable.
148 This is computed in `reload', in reload1.c.
149*/
150#define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
151
152#define PARM_BOUNDRY 32
153
154#define STACK_BOUNDRY 32
155
156/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
157
158/* Make strings word-aligned so strcpy from constants will be faster. */
159#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
160 (TREE_CODE (EXP) == STRING_CST \
161 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
162
163#define TRAMPOLINE_SIZE 18
164#define TRAMPOLINE_TEMPLATE(FILE) \
165 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
166 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */; \
167 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */; \
168 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */; \
169 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/
170
171#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
172 initialize_trampoline (TRAMP, FNADDR, CXT)
173\f
174/* Definitions for register eliminations.
175
176 This is an array of structures. Each structure initializes one pair
177 of eliminable registers. The "from" register number is given first,
178 followed by "to". Eliminations of the same "from" register are listed
179 in order of preference.
180
181 There are two registers that can always be eliminated on the i386.
182 The frame pointer and the arg pointer can be replaced by either the
183 hard frame pointer or to the stack pointer, depending upon the
184 circumstances. The hard frame pointer is not used before reload and
185 so it is not eligible for elimination. */
186
187#define ELIMINABLE_REGS \
188{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
189 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
190 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
191
192/* Given FROM and TO register numbers, say whether this elimination is
193 allowed. Frame pointer elimination is automatically handled.
194
195 All other eliminations are valid. */
196
197#define CAN_ELIMINATE(FROM, TO) \
198 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
199
200/* Define the offset between two registers, one to be eliminated, and the other
201 its replacement, at the start of a routine. */
202
203#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
204 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
205\f
206/* This processor has
207 8 data register for doing arithmetic
208 8 pointer register for doing addressing, including
209 1 stack pointer P6
210 1 frame pointer P7
211 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
212 1 condition code flag register CC
213 5 return address registers RETS/I/X/N/E
214 1 arithmetic status register (ASTAT). */
215
216#define FIRST_PSEUDO_REGISTER 44
217
218#define PREG_P(X) (REG_P (X) && REGNO (X) >= REG_P0 && REGNO (X) <= REG_P7)
219#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
220#define D_REGNO_P(X) ((X) <= REG_R7)
221
222#define REGISTER_NAMES { \
223 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
224 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
df259245
JZ
225 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
226 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
0d4a78eb
BS
227 "A0", "A1", \
228 "CC", \
229 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
230 "ARGP" \
231}
232
233#define SHORT_REGISTER_NAMES { \
234 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
235 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
df259245
JZ
236 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
237 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
0d4a78eb
BS
238
239#define HIGH_REGISTER_NAMES { \
240 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
241 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
df259245
JZ
242 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
243 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
0d4a78eb
BS
244
245#define DREGS_PAIR_NAMES { \
246 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
247
248#define BYTE_REGISTER_NAMES { \
249 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
250
251
252/* 1 for registers that have pervasive standard uses
253 and are not available for the register allocator. */
254
255#define FIXED_REGISTERS \
256/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
257{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
df259245
JZ
258/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
259 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
0d4a78eb 260/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp */ \
4729dc92 261 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0d4a78eb
BS
262}
263
264/* 1 for registers not available across function calls.
265 These must include the FIXED_REGISTERS and also any
266 registers that can be used without being saved.
267 The latter must include the registers where values are returned
268 and the register where structure-value addresses are passed.
269 Aside from that, you can include as many other registers as you like. */
270
271#define CALL_USED_REGISTERS \
272/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
273{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
df259245 274/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
0d4a78eb
BS
275 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
276/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp */ \
277 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
278}
279
280/* Order in which to allocate registers. Each register must be
281 listed once, even those in FIXED_REGISTERS. List frame pointer
282 late and fixed registers last. Note that, in general, we prefer
283 registers listed in CALL_USED_REGISTERS, keeping the others
284 available for storage of persistent values. */
285
286#define REG_ALLOC_ORDER \
287{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
288 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
289 REG_A0, REG_A1, \
df259245
JZ
290 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
291 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
0d4a78eb
BS
292 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
293 REG_ASTAT, REG_SEQSTAT, REG_USP, \
294 REG_CC, REG_ARGP \
295}
296
297/* Macro to conditionally modify fixed_regs/call_used_regs. */
298#define CONDITIONAL_REGISTER_USAGE \
299 { \
300 conditional_register_usage(); \
301 if (flag_pic) \
302 { \
303 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
304 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
305 } \
306 }
307
308/* Define the classes of registers for register constraints in the
309 machine description. Also define ranges of constants.
310
311 One of the classes must always be named ALL_REGS and include all hard regs.
312 If there is more than one class, another class must be named NO_REGS
313 and contain no registers.
314
315 The name GENERAL_REGS must be the name of a class (or an alias for
316 another name such as ALL_REGS). This is the class of registers
317 that is allowed by "g" or "r" in a register constraint.
318 Also, registers outside this class are allocated only when
319 instructions express preferences for them.
320
321 The classes must be numbered in nondecreasing order; that is,
322 a larger-numbered class must never be contained completely
323 in a smaller-numbered class.
324
325 For any two classes, it is very desirable that there be another
326 class that represents their union. */
327
328
329enum reg_class
330{
331 NO_REGS,
332 IREGS,
333 BREGS,
334 LREGS,
335 MREGS,
f652d14b 336 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
0d4a78eb
BS
337 DAGREGS,
338 EVEN_AREGS,
339 ODD_AREGS,
340 AREGS,
341 CCREGS,
342 EVEN_DREGS,
343 ODD_DREGS,
344 DREGS,
345 PREGS_CLOBBERED,
346 PREGS,
347 DPREGS,
348 MOST_REGS,
349 PROLOGUE_REGS,
350 NON_A_CC_REGS,
351 ALL_REGS, LIM_REG_CLASSES
352};
353
354#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
355
356#define GENERAL_REGS DPREGS
357
358/* Give names of register classes as strings for dump file. */
359
360#define REG_CLASS_NAMES \
361{ "NO_REGS", \
362 "IREGS", \
363 "BREGS", \
364 "LREGS", \
365 "MREGS", \
366 "CIRCREGS", \
367 "DAGREGS", \
368 "EVEN_AREGS", \
369 "ODD_AREGS", \
370 "AREGS", \
371 "CCREGS", \
372 "EVEN_DREGS", \
373 "ODD_DREGS", \
374 "DREGS", \
375 "PREGS_CLOBBERED", \
376 "PREGS", \
377 "DPREGS", \
378 "MOST_REGS", \
379 "PROLOGUE_REGS", \
380 "NON_A_CC_REGS", \
381 "ALL_REGS" }
382
383/* An initializer containing the contents of the register classes, as integers
384 which are bit masks. The Nth integer specifies the contents of class N.
385 The way the integer MASK is interpreted is that register R is in the class
386 if `MASK & (1 << R)' is 1.
387
388 When the machine has more than 32 registers, an integer does not suffice.
389 Then the integers are replaced by sub-initializers, braced groupings
390 containing several integers. Each sub-initializer must be suitable as an
391 initializer for the type `HARD_REG_SET' which is defined in
392 `hard-reg-set.h'. */
393
394/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
395 MOST_REGS as the union of DPREGS and DAGREGS. */
396
397#define REG_CLASS_CONTENTS \
398 /* 31 - 0 63-32 */ \
399{ { 0x00000000, 0 }, /* NO_REGS */ \
df259245
JZ
400 { 0x000f0000, 0 }, /* IREGS */ \
401 { 0x00f00000, 0 }, /* BREGS */ \
402 { 0x0f000000, 0 }, /* LREGS */ \
0d4a78eb
BS
403 { 0xf0000000, 0 }, /* MREGS */ \
404 { 0x0fff0000, 0 }, /* CIRCREGS */ \
405 { 0xffff0000, 0 }, /* DAGREGS */ \
406 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
407 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
408 { 0x00000000, 0x3 }, /* AREGS */ \
409 { 0x00000000, 0x4 }, /* CCREGS */ \
410 { 0x00000055, 0 }, /* EVEN_DREGS */ \
411 { 0x000000aa, 0 }, /* ODD_DREGS */ \
412 { 0x000000ff, 0 }, /* DREGS */ \
413 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
414 { 0x0000ff00, 0x800 }, /* PREGS */ \
415 { 0x0000ffff, 0x800 }, /* DPREGS */ \
416 { 0xffffffff, 0x800 }, /* MOST_REGS */\
417 { 0x00000000, 0x7f8 }, /* PROLOGUE_REGS */\
418 { 0xffffffff, 0xff8 }, /* NON_A_CC_REGS */\
419 { 0xffffffff, 0xfff }} /* ALL_REGS */
420
421#define BASE_REG_CLASS PREGS
422#define INDEX_REG_CLASS PREGS
423
424#define REGNO_OK_FOR_BASE_STRICT_P(X) (REGNO_REG_CLASS (X) == BASE_REG_CLASS)
425#define REGNO_OK_FOR_BASE_NONSTRICT_P(X) \
426 (((X) >= FIRST_PSEUDO_REGISTER) || REGNO_REG_CLASS (X) == BASE_REG_CLASS)
427
428#ifdef REG_OK_STRICT
429#define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X)
430#else
431#define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X)
432#endif
433
434#define REG_OK_FOR_BASE_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
435#define REG_OK_FOR_INDEX_P(X) 0
436#define REGNO_OK_FOR_INDEX_P(X) 0
437
438/* Get reg_class from a letter such as appears in the machine description. */
439
440#define REG_CLASS_FROM_LETTER(LETTER) \
441 ((LETTER) == 'a' ? PREGS : \
442 (LETTER) == 'd' ? DREGS : \
443 (LETTER) == 'z' ? PREGS_CLOBBERED : \
444 (LETTER) == 'D' ? EVEN_DREGS : \
445 (LETTER) == 'W' ? ODD_DREGS : \
446 (LETTER) == 'e' ? AREGS : \
447 (LETTER) == 'A' ? EVEN_AREGS : \
448 (LETTER) == 'B' ? ODD_AREGS : \
449 (LETTER) == 'b' ? IREGS : \
450 (LETTER) == 'B' ? BREGS : \
451 (LETTER) == 'f' ? MREGS : \
452 (LETTER) == 'c' ? CIRCREGS : \
453 (LETTER) == 'C' ? CCREGS : \
454 (LETTER) == 'x' ? MOST_REGS : \
455 (LETTER) == 'y' ? PROLOGUE_REGS : \
456 (LETTER) == 'w' ? NON_A_CC_REGS : \
457 NO_REGS)
458
459/* The same information, inverted:
460 Return the class number of the smallest class containing
461 reg number REGNO. This could be a conditional expression
462 or could index an array. */
463
464#define REGNO_REG_CLASS(REGNO) \
465 ((REGNO) < REG_P0 ? DREGS \
466 : (REGNO) < REG_I0 ? PREGS \
467 : (REGNO) == REG_ARGP ? BASE_REG_CLASS \
468 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
469 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
470 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
471 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
472 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
473 : (REGNO) == REG_CC ? CCREGS \
474 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
475 : NO_REGS)
476
477/* When defined, the compiler allows registers explicitly used in the
478 rtl to be used as spill registers but prevents the compiler from
479 extending the lifetime of these registers. */
480#define SMALL_REGISTER_CLASSES 1
481
482#define CLASS_LIKELY_SPILLED_P(CLASS) \
483 ((CLASS) == PREGS_CLOBBERED \
484 || (CLASS) == PROLOGUE_REGS \
485 || (CLASS) == CCREGS)
486
487/* Do not allow to store a value in REG_CC for any mode */
488/* Do not allow to store value in pregs if mode is not SI*/
489#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
490
491/* Return the maximum number of consecutive registers
492 needed to represent mode MODE in a register of class CLASS. */
493#define CLASS_MAX_NREGS(CLASS, MODE) \
494 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
495
496#define HARD_REGNO_NREGS(REGNO, MODE) \
497((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) \
498 ? 1 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
499
500/* A C expression that is nonzero if hard register TO can be
501 considered for use as a rename register for FROM register */
502#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
503
504/* A C expression that is nonzero if it is desirable to choose
505 register allocation so as to avoid move instructions between a
506 value of mode MODE1 and a value of mode MODE2.
507
508 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
509 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
510 MODE2)' must be zero. */
511#define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
512
513/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
514 A C expression that places additional restrictions on the register
515 class to use when it is necessary to copy value X into a register
516 in class CLASS. The value is a register class; perhaps CLASS, or
517 perhaps another, smaller class. */
518#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
519
0d4a78eb
BS
520/* Function Calling Conventions. */
521
522/* The type of the current function; normal functions are of type
523 SUBROUTINE. */
524typedef enum {
525 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
526} e_funkind;
527
528#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
529
6d459e2b
BS
530/* Flags for the call/call_value rtl operations set up by function_arg */
531#define CALL_NORMAL 0x00000000 /* no special processing */
532#define CALL_LONG 0x00000001 /* always call indirect */
533#define CALL_SHORT 0x00000002 /* always call by symbol */
534
0d4a78eb
BS
535typedef struct {
536 int words; /* # words passed so far */
537 int nregs; /* # registers available for passing */
538 int *arg_regs; /* array of register -1 terminated */
6d459e2b 539 int call_cookie; /* Do special things for this call */
0d4a78eb
BS
540} CUMULATIVE_ARGS;
541
542/* Define where to put the arguments to a function.
543 Value is zero to push the argument on the stack,
544 or a hard register in which to store the argument.
545
546 MODE is the argument's machine mode.
547 TYPE is the data type of the argument (as a tree).
548 This is null for libcalls where that information may
549 not be available.
550 CUM is a variable of type CUMULATIVE_ARGS which gives info about
551 the preceding args and about the function being called.
552 NAMED is nonzero if this argument is a named parameter
553 (otherwise it is an extra parameter matching an ellipsis). */
554
555#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
556 (function_arg (&CUM, MODE, TYPE, NAMED))
557
558#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
559
560
561/* Initialize a variable CUM of type CUMULATIVE_ARGS
562 for a call to a function whose data type is FNTYPE.
563 For a library call, FNTYPE is 0. */
564#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
565 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
566
567/* Update the data in CUM to advance over an argument
568 of mode MODE and data type TYPE.
569 (TYPE is null for libcalls where that information may not be available.) */
570#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
571 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
572
573#define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
574
575/* Define how to find the value returned by a function.
576 VALTYPE is the data type of the value (as a tree).
577 If the precise function being called is known, FUNC is its FUNCTION_DECL;
578 otherwise, FUNC is 0.
579*/
580
581#define VALUE_REGNO(MODE) (REG_R0)
582
583#define FUNCTION_VALUE(VALTYPE, FUNC) \
584 gen_rtx_REG (TYPE_MODE (VALTYPE), \
585 VALUE_REGNO(TYPE_MODE(VALTYPE)))
586
587/* Define how to find the value returned by a library function
588 assuming the value has mode MODE. */
589
590#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
591
592#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
593
594#define DEFAULT_PCC_STRUCT_RETURN 0
595#define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
596
597/* Before the prologue, the return address is in the RETS register. */
598#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
599
600#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
601
602#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
603
604/* Call instructions don't modify the stack pointer on the Blackfin. */
605#define INCOMING_FRAME_SP_OFFSET 0
606
607/* Describe how we implement __builtin_eh_return. */
608#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
609#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
610#define EH_RETURN_HANDLER_RTX \
611 gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
612
613/* Addressing Modes */
614
615/* Recognize any constant value that is a valid address. */
616#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
617
618/* Nonzero if the constant value X is a legitimate general operand.
619 symbol_ref are not legitimate and will be put into constant pool.
620 See force_const_mem().
621 If -mno-pool, all constants are legitimate.
622 */
623#define LEGITIMATE_CONSTANT_P(x) 1
624
625/* A number, the maximum number of registers that can appear in a
626 valid memory address. Note that it is up to you to specify a
627 value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
628 would ever accept. */
629#define MAX_REGS_PER_ADDRESS 1
630
631/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
632 that is a valid memory address for an instruction.
633 The MODE argument is the machine mode for the MEM expression
634 that wants to use this address.
635
636 Blackfin addressing modes are as follows:
637
638 [preg]
639 [preg + imm16]
640
641 B [ Preg + uimm15 ]
642 W [ Preg + uimm16m2 ]
643 [ Preg + uimm17m4 ]
644
645 [preg++]
646 [preg--]
647 [--sp]
648*/
649
650#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
651 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
652
653#ifdef REG_OK_STRICT
654#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
655 do { \
656 if (bfin_legitimate_address_p (MODE, X, 1)) \
657 goto WIN; \
658 } while (0);
659#else
660#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
661 do { \
662 if (bfin_legitimate_address_p (MODE, X, 0)) \
663 goto WIN; \
664 } while (0);
665#endif
666
667/* Try machine-dependent ways of modifying an illegitimate address
668 to be legitimate. If we find one, return the new, valid address.
669 This macro is used in only one place: `memory_address' in explow.c.
670
671 OLDX is the address as it was before break_out_memory_refs was called.
672 In some cases it is useful to look at this to decide what needs to be done.
673
674 MODE and WIN are passed so that this macro can use
675 GO_IF_LEGITIMATE_ADDRESS.
676
677 It is always safe for this macro to do nothing. It exists to recognize
678 opportunities to optimize the output.
679 */
680#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
681do { \
682 rtx _q = legitimize_address(X, OLDX, MODE); \
683 if (_q) { X = _q; goto WIN; } \
684} while (0)
685
686#define HAVE_POST_INCREMENT 1
687#define HAVE_POST_DECREMENT 1
688#define HAVE_PRE_DECREMENT 1
689
690/* `LEGITIMATE_PIC_OPERAND_P (X)'
691 A C expression that is nonzero if X is a legitimate immediate
692 operand on the target machine when generating position independent
693 code. You can assume that X satisfies `CONSTANT_P', so you need
694 not check this. You can also assume FLAG_PIC is true, so you need
695 not check it either. You need not define this macro if all
696 constants (including `SYMBOL_REF') can be immediate operands when
697 generating position independent code. */
698#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
699
700#define SYMBOLIC_CONST(X) \
701(GET_CODE (X) == SYMBOL_REF \
702 || GET_CODE (X) == LABEL_REF \
703 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
704
705/*
706 A C statement or compound statement with a conditional `goto
707 LABEL;' executed if memory address X (an RTX) can have different
708 meanings depending on the machine mode of the memory reference it
709 is used for or if the address is valid for some modes but not
710 others.
711
712 Autoincrement and autodecrement addresses typically have
713 mode-dependent effects because the amount of the increment or
714 decrement is the size of the operand being addressed. Some
715 machines have other mode-dependent addresses. Many RISC machines
716 have no mode-dependent addresses.
717
718 You may assume that ADDR is a valid address for the machine.
719*/
720#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
721do { \
722 if (GET_CODE (ADDR) == POST_INC \
723 || GET_CODE (ADDR) == POST_DEC \
724 || GET_CODE (ADDR) == PRE_DEC) \
725 goto LABEL; \
726} while (0)
727
728#define NOTICE_UPDATE_CC(EXPR, INSN) 0
729
730/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
731 is done just by pretending it is already truncated. */
732#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
733
734/* Max number of bytes we can move from memory to memory
735 in one reasonably fast instruction. */
736#define MOVE_MAX UNITS_PER_WORD
737
738
739/* STORAGE LAYOUT: target machine storage layout
740 Define this macro as a C expression which is nonzero if accessing
741 less than a word of memory (i.e. a `char' or a `short') is no
742 faster than accessing a word of memory, i.e., if such access
743 require more than one instruction or if there is no difference in
744 cost between byte and (aligned) word loads.
745
746 When this macro is not defined, the compiler will access a field by
747 finding the smallest containing object; when it is defined, a
748 fullword load will be used if alignment permits. Unless bytes
749 accesses are faster than word accesses, using word accesses is
750 preferable since it may eliminate subsequent memory access if
751 subsequent accesses occur to other fields in the same word of the
752 structure, but to different bytes. */
753#define SLOW_BYTE_ACCESS 0
754#define SLOW_SHORT_ACCESS 0
755
756/* Define this if most significant bit is lowest numbered
757 in instructions that operate on numbered bit-fields. */
758#define BITS_BIG_ENDIAN 0
759
760/* Define this if most significant byte of a word is the lowest numbered.
761 We can't access bytes but if we could we would in the Big Endian order. */
762#define BYTES_BIG_ENDIAN 0
763
764/* Define this if most significant word of a multiword number is numbered. */
765#define WORDS_BIG_ENDIAN 0
766
767/* number of bits in an addressable storage unit */
768#define BITS_PER_UNIT 8
769
770/* Width in bits of a "word", which is the contents of a machine register.
771 Note that this is not necessarily the width of data type `int';
772 if using 16-bit ints on a 68000, this would still be 32.
773 But on a machine with 16-bit registers, this would be 16. */
774#define BITS_PER_WORD 32
775
776/* Width of a word, in units (bytes). */
777#define UNITS_PER_WORD 4
778
0d4a78eb
BS
779/* Width in bits of a pointer.
780 See also the macro `Pmode1' defined below. */
781#define POINTER_SIZE 32
782
783/* Allocation boundary (in *bits*) for storing pointers in memory. */
784#define POINTER_BOUNDARY 32
785
786/* Allocation boundary (in *bits*) for storing arguments in argument list. */
787#define PARM_BOUNDARY 32
788
789/* Boundary (in *bits*) on which stack pointer should be aligned. */
790#define STACK_BOUNDARY 32
791
792/* Allocation boundary (in *bits*) for the code of a function. */
793#define FUNCTION_BOUNDARY 32
794
795/* Alignment of field after `int : 0' in a structure. */
796#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
797
798/* No data type wants to be aligned rounder than this. */
799#define BIGGEST_ALIGNMENT 32
800
801/* Define this if move instructions will actually fail to work
802 when given unaligned data. */
803#define STRICT_ALIGNMENT 1
804
805/* (shell-command "rm c-decl.o stor-layout.o")
806 * never define PCC_BITFIELD_TYPE_MATTERS
807 * really cause some alignment problem
808 */
809
810#define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
811 BITS_PER_UNIT)
812
813#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
814 BITS_PER_UNIT)
815
816
817/* what is the 'type' of size_t */
818#define SIZE_TYPE "long unsigned int"
819
820/* Define this as 1 if `char' should by default be signed; else as 0. */
821#define DEFAULT_SIGNED_CHAR 1
822#define FLOAT_TYPE_SIZE BITS_PER_WORD
823#define SHORT_TYPE_SIZE 16
824#define CHAR_TYPE_SIZE 8
825#define INT_TYPE_SIZE 32
826#define LONG_TYPE_SIZE 32
827#define LONG_LONG_TYPE_SIZE 64
828
829/* Note: Fix this to depend on target switch. -- lev */
830
831/* Note: Try to implement double and force long double. -- tonyko
832 * #define __DOUBLES_ARE_FLOATS__
833 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
834 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
835 * #define DOUBLES_ARE_FLOATS 1
836 */
837
838#define DOUBLE_TYPE_SIZE 64
839#define LONG_DOUBLE_TYPE_SIZE 64
840
841/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
842 A macro to update M and UNSIGNEDP when an object whose type is
843 TYPE and which has the specified mode and signedness is to be
844 stored in a register. This macro is only called when TYPE is a
845 scalar type.
846
847 On most RISC machines, which only have operations that operate on
848 a full register, define this macro to set M to `word_mode' if M is
849 an integer mode narrower than `BITS_PER_WORD'. In most cases,
850 only integer modes should be widened because wider-precision
851 floating-point operations are usually more expensive than their
852 narrower counterparts.
853
854 For most machines, the macro definition does not change UNSIGNEDP.
855 However, some machines, have instructions that preferentially
856 handle either signed or unsigned quantities of certain modes. For
857 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
858 instructions sign-extend the result to 64 bits. On such machines,
859 set UNSIGNEDP according to which kind of extension is more
860 efficient.
861
862 Do not define this macro if it would never modify M.*/
863
864#define BFIN_PROMOTE_MODE_P(MODE) \
865 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
866 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
867
868#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
869 if (BFIN_PROMOTE_MODE_P(MODE)) \
870 { \
871 if (MODE == QImode) \
872 UNSIGNEDP = 1; \
873 else if (MODE == HImode) \
874 UNSIGNEDP = 0; \
875 (MODE) = SImode; \
876 }
877
878/* Describing Relative Costs of Operations */
879
880/* Do not put function addr into constant pool */
881#define NO_FUNCTION_CSE 1
882
883/* A C expression for the cost of moving data from a register in class FROM to
884 one in class TO. The classes are expressed using the enumeration values
885 such as `GENERAL_REGS'. A value of 2 is the default; other values are
886 interpreted relative to that.
887
888 It is not required that the cost always equal 2 when FROM is the same as TO;
889 on some machines it is expensive to move between registers if they are not
890 general registers. */
891
892#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
893 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
894
895/* A C expression for the cost of moving data of mode M between a
896 register and memory. A value of 2 is the default; this cost is
897 relative to those in `REGISTER_MOVE_COST'.
898
899 If moving between registers and memory is more expensive than
900 between two registers, you should define this macro to express the
901 relative cost. */
902
903#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
904 bfin_memory_move_cost ((MODE), (CLASS), (IN))
905
906/* Specify the machine mode that this machine uses
907 for the index in the tablejump instruction. */
908#define CASE_VECTOR_MODE SImode
909
910#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
911
912/* Define if operations between registers always perform the operation
913 on the full register even if a narrower mode is specified.
914#define WORD_REGISTER_OPERATIONS
915*/
916
917#define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
918#define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
919#define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
920#define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
921#define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
922#define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
923#define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
924#define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
925#define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
926#define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
927
928#define CONSTRAINT_LEN(C, STR) \
929 ((C) == 'P' || (C) == 'M' || (C) == 'N' ? 2 \
930 : (C) == 'K' ? 3 \
931 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
932
933#define CONST_OK_FOR_P(VALUE, STR) \
934 ((STR)[1] == '0' ? (VALUE) == 0 \
935 : (STR)[1] == '1' ? (VALUE) == 1 \
936 : (STR)[1] == '2' ? (VALUE) == 2 \
937 : (STR)[1] == '3' ? (VALUE) == 3 \
938 : (STR)[1] == '4' ? (VALUE) == 4 \
939 : 0)
940
941#define CONST_OK_FOR_K(VALUE, STR) \
942 ((STR)[1] == 'u' \
943 ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE) \
944 : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE) \
945 : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE) \
946 : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE) \
947 : 0) \
948 : (STR)[1] == 's' \
949 ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE) \
950 : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE) \
951 : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE) \
952 : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE) \
953 : 0) \
954 : (STR)[1] == 'n' \
955 ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE) \
956 : 0) \
957 : 0)
958
959#define CONST_OK_FOR_M(VALUE, STR) \
960 ((STR)[1] == '1' ? (VALUE) == 255 \
961 : (STR)[1] == '2' ? (VALUE) == 65535 \
962 : 0)
963
964/* The letters I, J, K, L and M in a register constraint string
965 can be used to stand for particular ranges of immediate operands.
966 This macro defines what the ranges are.
967 C is the letter, and VALUE is a constant value.
968 Return 1 if VALUE is in the range specified by C.
969
970 bfin constant operands are as follows
971
972 J 2**N 5bit imm scaled
973 Ks7 -64 .. 63 signed 7bit imm
974 Ku5 0..31 unsigned 5bit imm
975 Ks4 -8 .. 7 signed 4bit imm
976 Ks3 -4 .. 3 signed 3bit imm
977 Ku3 0 .. 7 unsigned 3bit imm
978 Pn 0, 1, 2 constants 0, 1 or 2, corresponding to n
979*/
980#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
981 ((C) == 'J' ? (log2constp (VALUE)) \
982 : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR) \
983 : (C) == 'L' ? log2constp (~(VALUE)) \
984 : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR) \
985 : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR) \
986 : 0)
987
988 /*Constant Output Formats */
989#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
990 ((C) == 'H' ? 1 : 0)
991
992#define EXTRA_CONSTRAINT(VALUE, D) \
993 ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
994
0d4a78eb
BS
995/* Switch into a generic section. */
996#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
997
998#define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
999#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1000
1001typedef enum sections {
1002 CODE_DIR,
1003 DATA_DIR,
1004 LAST_SECT_NM
1005} SECT_ENUM_T;
1006
1007typedef enum directives {
1008 LONG_CONST_DIR,
1009 SHORT_CONST_DIR,
1010 BYTE_CONST_DIR,
1011 SPACE_DIR,
1012 INIT_DIR,
1013 LAST_DIR_NM
1014} DIR_ENUM_T;
1015
1016#define TEXT_SECTION_ASM_OP ".text;"
1017#define DATA_SECTION_ASM_OP ".data;"
1018
1019#define ASM_APP_ON ""
1020#define ASM_APP_OFF ""
1021
1022#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1023 do { fputs (".global ", FILE); \
1024 assemble_name (FILE, NAME); \
1025 fputc (';',FILE); \
1026 fputc ('\n',FILE); \
1027 } while (0)
1028
1029#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1030 do { \
1031 fputs (".type ", FILE); \
1032 assemble_name (FILE, NAME); \
1033 fputs (", STT_FUNC", FILE); \
1034 fputc (';',FILE); \
1035 fputc ('\n',FILE); \
1036 ASM_OUTPUT_LABEL(FILE, NAME); \
1037 } while (0)
1038
1039#define ASM_OUTPUT_LABEL(FILE, NAME) \
1040 do { assemble_name (FILE, NAME); \
1041 fputs (":\n",FILE); \
1042 } while (0)
1043
1044#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1045 do { fprintf (FILE, "_%s", NAME); \
1046 } while (0)
1047
1048#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1049 do { \
1050 int len = strlen (NAME); \
1051 char *temp = (char *) alloca (len + 4); \
1052 temp[0] = 'L'; \
1053 temp[1] = '_'; \
1054 strcpy (&temp[2], (NAME)); \
1055 temp[len + 2] = '_'; \
1056 temp[len + 3] = 0; \
1057 (OUTPUT) = (char *) alloca (strlen (NAME) + 13); \
1058 sprintf (OUTPUT, "_%s$%d", temp, LABELNO); \
1059 } while (0)
1060
1061#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1062do { char __buf[256]; \
1063 fprintf (FILE, "\t.dd\t"); \
1064 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1065 assemble_name (FILE, __buf); \
1066 fputc (';', FILE); \
1067 fputc ('\n', FILE); \
1068 } while (0)
1069
1070#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1071 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1072
1073#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1074 do { \
1075 char __buf[256]; \
1076 fprintf (FILE, "\t.dd\t"); \
1077 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1078 assemble_name (FILE, __buf); \
1079 fputs (" - ", FILE); \
1080 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1081 assemble_name (FILE, __buf); \
1082 fputc (';', FILE); \
1083 fputc ('\n', FILE); \
1084 } while (0)
1085
1086#define ASM_OUTPUT_ALIGN(FILE,LOG) \
21956c07
BS
1087 do { \
1088 if ((LOG) != 0) \
1089 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
0d4a78eb
BS
1090 } while (0)
1091
1092#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1093 do { \
1094 asm_output_skip (FILE, SIZE); \
1095 } while (0)
1096
1097#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1098do { \
d6b5193b 1099 switch_to_section (data_section); \
0d4a78eb
BS
1100 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1101 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1102 ASM_OUTPUT_LABEL (FILE, NAME); \
1103 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1104 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1105} while (0)
1106
1107#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1108 do { \
1109 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1110 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1111
1112#define ASM_COMMENT_START "//"
1113
1114#define FUNCTION_PROFILER(FILE, LABELNO) \
1115 do {\
1116 fprintf (FILE, "\tP1.l =LP$%d; P1.h =LP$%d; call mcount;\n", \
1117 LABELNO, LABELNO);\
1118 } while(0)
1119
1120#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1121#define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1122
1123extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1124extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1125
1126/* This works for GAS and some other assemblers. */
1127#define SET_ASM_OP ".set "
1128
0d4a78eb
BS
1129/* DBX register number for a given compiler register number */
1130#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1131
1132#define SIZE_ASM_OP "\t.size\t"
1133
1134#endif /* _BFIN_CONFIG */