]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/bfin/bfin.h
parent_ltd_with-child_full_view.adb: New test.
[thirdparty/gcc.git] / gcc / config / bfin / bfin.h
CommitLineData
0d4a78eb 1/* Definitions for the Blackfin port.
64882649 2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
0d4a78eb
BS
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
0d4a78eb
BS
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
2f83c7d6
NC
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
0d4a78eb
BS
20
21#ifndef _BFIN_CONFIG
22#define _BFIN_CONFIG
23
24#define OBJECT_FORMAT_ELF
25
26#define BRT 1
27#define BRF 0
28
29/* Print subsidiary information on the compiler version in use. */
30#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
31
32/* Run-time compilation parameters selecting different hardware subsets. */
33
34extern int target_flags;
35
9d3f9aa3
BS
36#ifndef DEFAULT_CPU_TYPE
37#define DEFAULT_CPU_TYPE BFIN_CPU_BF532
38#endif
39
0d4a78eb
BS
40/* Predefinition in the preprocessor for this target machine */
41#ifndef TARGET_CPU_CPP_BUILTINS
ea2382be
JZ
42#define TARGET_CPU_CPP_BUILTINS() \
43 do \
44 { \
45 builtin_define_std ("bfin"); \
46 builtin_define_std ("BFIN"); \
42da70b7 47 builtin_define ("__ADSPBLACKFIN__"); \
9d3f9aa3
BS
48 builtin_define ("__ADSPLPBLACKFIN__"); \
49 \
50 switch (bfin_cpu_type) \
51 { \
ea2382be
JZ
52 case BFIN_CPU_BF522: \
53 builtin_define ("__ADSPBF522__"); \
54 builtin_define ("__ADSPBF52x__"); \
55 break; \
64882649
BS
56 case BFIN_CPU_BF523: \
57 builtin_define ("__ADSPBF523__"); \
58 builtin_define ("__ADSPBF52x__"); \
59 break; \
60 case BFIN_CPU_BF524: \
61 builtin_define ("__ADSPBF524__"); \
62 builtin_define ("__ADSPBF52x__"); \
63 break; \
ea2382be
JZ
64 case BFIN_CPU_BF525: \
65 builtin_define ("__ADSPBF525__"); \
66 builtin_define ("__ADSPBF52x__"); \
67 break; \
64882649
BS
68 case BFIN_CPU_BF526: \
69 builtin_define ("__ADSPBF526__"); \
70 builtin_define ("__ADSPBF52x__"); \
71 break; \
ea2382be
JZ
72 case BFIN_CPU_BF527: \
73 builtin_define ("__ADSPBF527__"); \
74 builtin_define ("__ADSPBF52x__"); \
75 break; \
9d3f9aa3
BS
76 case BFIN_CPU_BF531: \
77 builtin_define ("__ADSPBF531__"); \
78 break; \
79 case BFIN_CPU_BF532: \
80 builtin_define ("__ADSPBF532__"); \
81 break; \
82 case BFIN_CPU_BF533: \
83 builtin_define ("__ADSPBF533__"); \
84 break; \
28f601ff
JZ
85 case BFIN_CPU_BF534: \
86 builtin_define ("__ADSPBF534__"); \
87 break; \
88 case BFIN_CPU_BF536: \
89 builtin_define ("__ADSPBF536__"); \
90 break; \
9d3f9aa3
BS
91 case BFIN_CPU_BF537: \
92 builtin_define ("__ADSPBF537__"); \
93 break; \
ea2382be
JZ
94 case BFIN_CPU_BF538: \
95 builtin_define ("__ADSPBF538__"); \
96 break; \
97 case BFIN_CPU_BF539: \
98 builtin_define ("__ADSPBF539__"); \
99 break; \
100 case BFIN_CPU_BF542: \
101 builtin_define ("__ADSPBF542__"); \
102 builtin_define ("__ADSPBF54x__"); \
103 break; \
104 case BFIN_CPU_BF544: \
105 builtin_define ("__ADSPBF544__"); \
106 builtin_define ("__ADSPBF54x__"); \
107 break; \
108 case BFIN_CPU_BF548: \
109 builtin_define ("__ADSPBF548__"); \
110 builtin_define ("__ADSPBF54x__"); \
111 break; \
64882649
BS
112 case BFIN_CPU_BF547: \
113 builtin_define ("__ADSPBF547__"); \
114 builtin_define ("__ADSPBF54x__"); \
115 break; \
ea2382be
JZ
116 case BFIN_CPU_BF549: \
117 builtin_define ("__ADSPBF549__"); \
118 builtin_define ("__ADSPBF54x__"); \
119 break; \
28f601ff
JZ
120 case BFIN_CPU_BF561: \
121 builtin_define ("__ADSPBF561__"); \
122 break; \
9d3f9aa3
BS
123 } \
124 \
ea2382be
JZ
125 if (bfin_si_revision != -1) \
126 { \
127 /* space of 0xnnnn and a NUL */ \
128 char *buf = alloca (7); \
129 \
130 sprintf (buf, "0x%04x", bfin_si_revision); \
131 builtin_define_with_value ("__SILICON_REVISION__", buf, 0); \
132 } \
133 \
134 if (bfin_workarounds) \
135 builtin_define ("__WORKAROUNDS_ENABLED"); \
136 if (ENABLE_WA_SPECULATIVE_LOADS) \
137 builtin_define ("__WORKAROUND_SPECULATIVE_LOADS"); \
138 if (ENABLE_WA_SPECULATIVE_SYNCS) \
139 builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS"); \
140 \
6614f9f5 141 if (TARGET_FDPIC) \
f13488c0
BS
142 { \
143 builtin_define ("__BFIN_FDPIC__"); \
144 builtin_define ("__FDPIC__"); \
145 } \
ea2382be
JZ
146 if (TARGET_ID_SHARED_LIBRARY \
147 && !TARGET_SEP_DATA) \
4af990cd 148 builtin_define ("__ID_SHARED_LIB__"); \
ae80f469
JZ
149 if (flag_no_builtin) \
150 builtin_define ("__NO_BUILTIN"); \
ea2382be 151 } \
0d4a78eb
BS
152 while (0)
153#endif
154
6614f9f5 155#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
ea2382be 156 %{!mcpu=*:-mcpu=bf532} \
93147119 157 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
6614f9f5
BS
158 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
159 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
160"
161#ifndef SUBTARGET_DRIVER_SELF_SPECS
162# define SUBTARGET_DRIVER_SELF_SPECS
163#endif
164
2c117a21
JZ
165#define LINK_GCC_C_SEQUENCE_SPEC "\
166 %{mfast-fp:-lbffastfp} %G %L %{mfast-fp:-lbffastfp} %G \
167"
6614f9f5
BS
168
169/* A C string constant that tells the GCC driver program options to pass to
170 the assembler. It can also specify how to translate options you give to GNU
171 CC into options for GCC to pass to the assembler. See the file `sun3.h'
172 for an example of this.
173
174 Do not define this macro if it does not need to do anything.
175
176 Defined in svr4.h. */
177#undef ASM_SPEC
178#define ASM_SPEC "\
179%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
180 %{mno-fdpic:-mnopic} %{mfdpic}"
181
182#define LINK_SPEC "\
183%{h*} %{v:-V} \
184%{b} \
185%{mfdpic:-melf32bfinfd -z text} \
186%{static:-dn -Bstatic} \
187%{shared:-G -Bdynamic} \
188%{symbolic:-Bsymbolic} \
189%{G*} \
190%{YP,*} \
191%{Qy:} %{!Qn:-Qy} \
192-init __init -fini __fini "
193
0d4a78eb
BS
194/* Generate DSP instructions, like DSP halfword loads */
195#define TARGET_DSP (1)
196
ea2382be 197#define TARGET_DEFAULT 0
0d4a78eb 198
0d4a78eb
BS
199/* Maximum number of library ids we permit */
200#define MAX_LIBRARY_ID 255
201
202extern const char *bfin_library_id_string;
203
204/* Sometimes certain combinations of command options do not make
205 sense on a particular target machine. You can define a macro
206 `OVERRIDE_OPTIONS' to take account of this. This macro, if
207 defined, is executed once just after all the command options have
208 been parsed.
209
210 Don't use this macro to turn on various extra optimizations for
211 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
212
213#define OVERRIDE_OPTIONS override_options ()
214
215#define FUNCTION_MODE SImode
216#define Pmode SImode
217
218/* store-condition-codes instructions store 0 for false
219 This is the value stored for true. */
220#define STORE_FLAG_VALUE 1
221
222/* Define this if pushing a word on the stack
223 makes the stack pointer a smaller address. */
224#define STACK_GROWS_DOWNWARD
225
226#define STACK_PUSH_CODE PRE_DEC
227
a4d05547 228/* Define this to nonzero if the nominal address of the stack frame
0d4a78eb
BS
229 is at the high-address end of the local variables;
230 that is, each additional local variable allocated
231 goes at a more negative offset in the frame. */
f62c8a5c 232#define FRAME_GROWS_DOWNWARD 1
0d4a78eb
BS
233
234/* We define a dummy ARGP register; the parameters start at offset 0 from
235 it. */
236#define FIRST_PARM_OFFSET(DECL) 0
237
238/* Offset within stack frame to start allocating local variables at.
239 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
240 first local allocated. Otherwise, it is the offset to the BEGINNING
241 of the first local allocated. */
242#define STARTING_FRAME_OFFSET 0
243
244/* Register to use for pushing function arguments. */
245#define STACK_POINTER_REGNUM REG_P6
246
247/* Base register for access to local variables of the function. */
248#define FRAME_POINTER_REGNUM REG_P7
249
250/* A dummy register that will be eliminated to either FP or SP. */
251#define ARG_POINTER_REGNUM REG_ARGP
252
253/* `PIC_OFFSET_TABLE_REGNUM'
254 The register number of the register used to address a table of
255 static data addresses in memory. In some cases this register is
256 defined by a processor's "application binary interface" (ABI).
257 When this macro is defined, RTL is generated for this register
258 once, as with the stack pointer and frame pointer registers. If
259 this macro is not defined, it is up to the machine-dependent files
260 to allocate such a register (if necessary). */
261#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
262
6614f9f5
BS
263#define FDPIC_FPTR_REGNO REG_P1
264#define FDPIC_REGNO REG_P3
265#define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
266
0d4a78eb
BS
267/* A static chain register for nested functions. We need to use a
268 call-clobbered register for this. */
269#define STATIC_CHAIN_REGNUM REG_P2
270
271/* Define this if functions should assume that stack space has been
272 allocated for arguments even when their values are passed in
273 registers.
274
275 The value of this macro is the size, in bytes, of the area reserved for
276 arguments passed in registers.
277
278 This space can either be allocated by the caller or be a part of the
279 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
280 says which. */
281#define FIXED_STACK_AREA 12
282#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
283
284/* Define this if the above stack space is to be considered part of the
285 * space allocated by the caller. */
ac294f0b 286#define OUTGOING_REG_PARM_STACK_SPACE 1
0d4a78eb
BS
287
288/* Define this if the maximum size of all the outgoing args is to be
289 accumulated and pushed during the prologue. The amount can be
290 found in the variable current_function_outgoing_args_size. */
291#define ACCUMULATE_OUTGOING_ARGS 1
292
293/* Value should be nonzero if functions must have frame pointers.
294 Zero means the frame pointer need not be set up (and parms
295 may be accessed via the stack pointer) in functions that seem suitable.
296 This is computed in `reload', in reload1.c.
297*/
298#define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
299
0d4a78eb
BS
300/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
301
520c62ad
BS
302/* If defined, a C expression to compute the alignment for a local
303 variable. TYPE is the data type, and ALIGN is the alignment that
304 the object would ordinarily have. The value of this macro is used
305 instead of that alignment to align the object.
306
307 If this macro is not defined, then ALIGN is used.
308
309 One use of this macro is to increase alignment of medium-size
310 data to make it all fit in fewer cache lines. */
311
312#define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
313
0d4a78eb
BS
314/* Make strings word-aligned so strcpy from constants will be faster. */
315#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
316 (TREE_CODE (EXP) == STRING_CST \
317 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
318
6614f9f5 319#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
0d4a78eb 320#define TRAMPOLINE_TEMPLATE(FILE) \
6614f9f5
BS
321 if (TARGET_FDPIC) \
322 { \
323 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
324 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
325 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
326 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
327 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
328 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
329 fprintf(FILE, "\t.dw\t0xac4b\n"); /* p3 = [p1 + 4] */ \
330 fprintf(FILE, "\t.dw\t0x9149\n"); /* p1 = [p1] */ \
331 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
332 } \
333 else \
334 { \
335 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
336 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
337 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
338 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
339 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
340 }
0d4a78eb
BS
341
342#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
343 initialize_trampoline (TRAMP, FNADDR, CXT)
344\f
345/* Definitions for register eliminations.
346
347 This is an array of structures. Each structure initializes one pair
348 of eliminable registers. The "from" register number is given first,
349 followed by "to". Eliminations of the same "from" register are listed
350 in order of preference.
351
352 There are two registers that can always be eliminated on the i386.
353 The frame pointer and the arg pointer can be replaced by either the
354 hard frame pointer or to the stack pointer, depending upon the
355 circumstances. The hard frame pointer is not used before reload and
356 so it is not eligible for elimination. */
357
358#define ELIMINABLE_REGS \
359{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
360 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
361 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
362
363/* Given FROM and TO register numbers, say whether this elimination is
364 allowed. Frame pointer elimination is automatically handled.
365
366 All other eliminations are valid. */
367
368#define CAN_ELIMINATE(FROM, TO) \
369 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
370
371/* Define the offset between two registers, one to be eliminated, and the other
372 its replacement, at the start of a routine. */
373
374#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
375 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
376\f
377/* This processor has
378 8 data register for doing arithmetic
379 8 pointer register for doing addressing, including
380 1 stack pointer P6
381 1 frame pointer P7
382 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
383 1 condition code flag register CC
384 5 return address registers RETS/I/X/N/E
385 1 arithmetic status register (ASTAT). */
386
b03149e1 387#define FIRST_PSEUDO_REGISTER 50
0d4a78eb 388
0d4a78eb 389#define D_REGNO_P(X) ((X) <= REG_R7)
c4963a0a 390#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
b03149e1
JZ
391#define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
392#define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
393#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
394#define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
395#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
396#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
397#define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
0d4a78eb
BS
398
399#define REGISTER_NAMES { \
400 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
401 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
df259245
JZ
402 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
403 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
0d4a78eb
BS
404 "A0", "A1", \
405 "CC", \
406 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
b03149e1
JZ
407 "ARGP", \
408 "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
0d4a78eb
BS
409}
410
411#define SHORT_REGISTER_NAMES { \
412 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
413 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
df259245
JZ
414 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
415 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
0d4a78eb
BS
416
417#define HIGH_REGISTER_NAMES { \
418 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
419 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
df259245
JZ
420 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
421 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
0d4a78eb
BS
422
423#define DREGS_PAIR_NAMES { \
424 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
425
426#define BYTE_REGISTER_NAMES { \
427 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
428
429
430/* 1 for registers that have pervasive standard uses
431 and are not available for the register allocator. */
432
433#define FIXED_REGISTERS \
434/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
435{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
df259245
JZ
436/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
437 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
b03149e1
JZ
438/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
439 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
440/*lb0/1 */ \
441 1, 1 \
0d4a78eb
BS
442}
443
444/* 1 for registers not available across function calls.
445 These must include the FIXED_REGISTERS and also any
446 registers that can be used without being saved.
447 The latter must include the registers where values are returned
448 and the register where structure-value addresses are passed.
449 Aside from that, you can include as many other registers as you like. */
450
451#define CALL_USED_REGISTERS \
452/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
453{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
df259245 454/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
0d4a78eb 455 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b03149e1
JZ
456/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
457 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
458/*lb0/1 */ \
459 1, 1 \
0d4a78eb
BS
460}
461
462/* Order in which to allocate registers. Each register must be
463 listed once, even those in FIXED_REGISTERS. List frame pointer
464 late and fixed registers last. Note that, in general, we prefer
465 registers listed in CALL_USED_REGISTERS, keeping the others
466 available for storage of persistent values. */
467
468#define REG_ALLOC_ORDER \
469{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
470 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
471 REG_A0, REG_A1, \
df259245
JZ
472 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
473 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
0d4a78eb
BS
474 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
475 REG_ASTAT, REG_SEQSTAT, REG_USP, \
b03149e1
JZ
476 REG_CC, REG_ARGP, \
477 REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
0d4a78eb
BS
478}
479
480/* Macro to conditionally modify fixed_regs/call_used_regs. */
481#define CONDITIONAL_REGISTER_USAGE \
482 { \
483 conditional_register_usage(); \
6614f9f5
BS
484 if (TARGET_FDPIC) \
485 call_used_regs[FDPIC_REGNO] = 1; \
486 if (!TARGET_FDPIC && flag_pic) \
0d4a78eb
BS
487 { \
488 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
489 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
490 } \
491 }
492
493/* Define the classes of registers for register constraints in the
494 machine description. Also define ranges of constants.
495
496 One of the classes must always be named ALL_REGS and include all hard regs.
497 If there is more than one class, another class must be named NO_REGS
498 and contain no registers.
499
500 The name GENERAL_REGS must be the name of a class (or an alias for
501 another name such as ALL_REGS). This is the class of registers
502 that is allowed by "g" or "r" in a register constraint.
503 Also, registers outside this class are allocated only when
504 instructions express preferences for them.
505
506 The classes must be numbered in nondecreasing order; that is,
507 a larger-numbered class must never be contained completely
508 in a smaller-numbered class.
509
510 For any two classes, it is very desirable that there be another
511 class that represents their union. */
512
513
514enum reg_class
515{
516 NO_REGS,
517 IREGS,
518 BREGS,
519 LREGS,
520 MREGS,
f652d14b 521 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
0d4a78eb
BS
522 DAGREGS,
523 EVEN_AREGS,
524 ODD_AREGS,
525 AREGS,
526 CCREGS,
527 EVEN_DREGS,
528 ODD_DREGS,
2889abed
BS
529 D0REGS,
530 D1REGS,
531 D2REGS,
532 D3REGS,
533 D4REGS,
534 D5REGS,
535 D6REGS,
536 D7REGS,
0d4a78eb 537 DREGS,
03848bd0 538 P0REGS,
6614f9f5
BS
539 FDPIC_REGS,
540 FDPIC_FPTR_REGS,
0d4a78eb
BS
541 PREGS_CLOBBERED,
542 PREGS,
c4963a0a 543 IPREGS,
0d4a78eb
BS
544 DPREGS,
545 MOST_REGS,
b03149e1
JZ
546 LT_REGS,
547 LC_REGS,
548 LB_REGS,
0d4a78eb
BS
549 PROLOGUE_REGS,
550 NON_A_CC_REGS,
551 ALL_REGS, LIM_REG_CLASSES
552};
553
554#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
555
556#define GENERAL_REGS DPREGS
557
558/* Give names of register classes as strings for dump file. */
559
560#define REG_CLASS_NAMES \
561{ "NO_REGS", \
562 "IREGS", \
563 "BREGS", \
564 "LREGS", \
565 "MREGS", \
566 "CIRCREGS", \
567 "DAGREGS", \
568 "EVEN_AREGS", \
569 "ODD_AREGS", \
570 "AREGS", \
571 "CCREGS", \
572 "EVEN_DREGS", \
573 "ODD_DREGS", \
2889abed
BS
574 "D0REGS", \
575 "D1REGS", \
576 "D2REGS", \
577 "D3REGS", \
578 "D4REGS", \
579 "D5REGS", \
580 "D6REGS", \
581 "D7REGS", \
0d4a78eb 582 "DREGS", \
03848bd0 583 "P0REGS", \
6614f9f5
BS
584 "FDPIC_REGS", \
585 "FDPIC_FPTR_REGS", \
0d4a78eb
BS
586 "PREGS_CLOBBERED", \
587 "PREGS", \
c4963a0a 588 "IPREGS", \
0d4a78eb
BS
589 "DPREGS", \
590 "MOST_REGS", \
b03149e1
JZ
591 "LT_REGS", \
592 "LC_REGS", \
593 "LB_REGS", \
0d4a78eb
BS
594 "PROLOGUE_REGS", \
595 "NON_A_CC_REGS", \
596 "ALL_REGS" }
597
598/* An initializer containing the contents of the register classes, as integers
599 which are bit masks. The Nth integer specifies the contents of class N.
600 The way the integer MASK is interpreted is that register R is in the class
601 if `MASK & (1 << R)' is 1.
602
603 When the machine has more than 32 registers, an integer does not suffice.
604 Then the integers are replaced by sub-initializers, braced groupings
605 containing several integers. Each sub-initializer must be suitable as an
606 initializer for the type `HARD_REG_SET' which is defined in
607 `hard-reg-set.h'. */
608
609/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
610 MOST_REGS as the union of DPREGS and DAGREGS. */
611
612#define REG_CLASS_CONTENTS \
613 /* 31 - 0 63-32 */ \
614{ { 0x00000000, 0 }, /* NO_REGS */ \
df259245
JZ
615 { 0x000f0000, 0 }, /* IREGS */ \
616 { 0x00f00000, 0 }, /* BREGS */ \
617 { 0x0f000000, 0 }, /* LREGS */ \
0d4a78eb
BS
618 { 0xf0000000, 0 }, /* MREGS */ \
619 { 0x0fff0000, 0 }, /* CIRCREGS */ \
620 { 0xffff0000, 0 }, /* DAGREGS */ \
621 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
622 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
623 { 0x00000000, 0x3 }, /* AREGS */ \
624 { 0x00000000, 0x4 }, /* CCREGS */ \
625 { 0x00000055, 0 }, /* EVEN_DREGS */ \
626 { 0x000000aa, 0 }, /* ODD_DREGS */ \
2889abed
BS
627 { 0x00000001, 0 }, /* D0REGS */ \
628 { 0x00000002, 0 }, /* D1REGS */ \
629 { 0x00000004, 0 }, /* D2REGS */ \
630 { 0x00000008, 0 }, /* D3REGS */ \
631 { 0x00000010, 0 }, /* D4REGS */ \
632 { 0x00000020, 0 }, /* D5REGS */ \
633 { 0x00000040, 0 }, /* D6REGS */ \
634 { 0x00000080, 0 }, /* D7REGS */ \
0d4a78eb 635 { 0x000000ff, 0 }, /* DREGS */ \
03848bd0 636 { 0x00000100, 0x000 }, /* P0REGS */ \
6614f9f5
BS
637 { 0x00000800, 0x000 }, /* FDPIC_REGS */ \
638 { 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
0d4a78eb
BS
639 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
640 { 0x0000ff00, 0x800 }, /* PREGS */ \
c4963a0a 641 { 0x000fff00, 0x800 }, /* IPREGS */ \
0d4a78eb
BS
642 { 0x0000ffff, 0x800 }, /* DPREGS */ \
643 { 0xffffffff, 0x800 }, /* MOST_REGS */\
b03149e1
JZ
644 { 0x00000000, 0x3000 }, /* LT_REGS */\
645 { 0x00000000, 0xc000 }, /* LC_REGS */\
646 { 0x00000000, 0x30000 }, /* LB_REGS */\
647 { 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
648 { 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
649 { 0xffffffff, 0x3ffff }} /* ALL_REGS */
0d4a78eb 650
c4963a0a
BS
651#define IREG_POSSIBLE_P(OUTER) \
652 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
653 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
654 || (OUTER) == MEM || (OUTER) == ADDRESS)
655
656#define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
657 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
658
0d4a78eb
BS
659#define INDEX_REG_CLASS PREGS
660
c4963a0a
BS
661#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
662 (P_REGNO_P (X) || (X) == REG_ARGP \
663 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
664 && I_REGNO_P (X)))
665
666#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
667 ((X) >= FIRST_PSEUDO_REGISTER \
668 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
0d4a78eb
BS
669
670#ifdef REG_OK_STRICT
c4963a0a
BS
671#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
672 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb 673#else
c4963a0a
BS
674#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
675 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb
BS
676#endif
677
0d4a78eb
BS
678#define REGNO_OK_FOR_INDEX_P(X) 0
679
680/* Get reg_class from a letter such as appears in the machine description. */
681
2889abed 682#define REG_CLASS_FROM_CONSTRAINT(LETTER, STR) \
0d4a78eb 683 ((LETTER) == 'a' ? PREGS : \
6614f9f5
BS
684 (LETTER) == 'Z' ? FDPIC_REGS : \
685 (LETTER) == 'Y' ? FDPIC_FPTR_REGS : \
0d4a78eb
BS
686 (LETTER) == 'd' ? DREGS : \
687 (LETTER) == 'z' ? PREGS_CLOBBERED : \
688 (LETTER) == 'D' ? EVEN_DREGS : \
689 (LETTER) == 'W' ? ODD_DREGS : \
690 (LETTER) == 'e' ? AREGS : \
691 (LETTER) == 'A' ? EVEN_AREGS : \
692 (LETTER) == 'B' ? ODD_AREGS : \
693 (LETTER) == 'b' ? IREGS : \
a9c46998 694 (LETTER) == 'v' ? BREGS : \
0d4a78eb
BS
695 (LETTER) == 'f' ? MREGS : \
696 (LETTER) == 'c' ? CIRCREGS : \
697 (LETTER) == 'C' ? CCREGS : \
b03149e1
JZ
698 (LETTER) == 't' ? LT_REGS : \
699 (LETTER) == 'k' ? LC_REGS : \
a9c46998 700 (LETTER) == 'u' ? LB_REGS : \
0d4a78eb
BS
701 (LETTER) == 'x' ? MOST_REGS : \
702 (LETTER) == 'y' ? PROLOGUE_REGS : \
703 (LETTER) == 'w' ? NON_A_CC_REGS : \
2889abed
BS
704 (LETTER) == 'q' \
705 ? ((STR)[1] == '0' ? D0REGS \
706 : (STR)[1] == '1' ? D1REGS \
707 : (STR)[1] == '2' ? D2REGS \
708 : (STR)[1] == '3' ? D3REGS \
709 : (STR)[1] == '4' ? D4REGS \
710 : (STR)[1] == '5' ? D5REGS \
711 : (STR)[1] == '6' ? D6REGS \
712 : (STR)[1] == '7' ? D7REGS \
03848bd0 713 : (STR)[1] == 'A' ? P0REGS \
2889abed 714 : NO_REGS) : \
0d4a78eb
BS
715 NO_REGS)
716
717/* The same information, inverted:
718 Return the class number of the smallest class containing
719 reg number REGNO. This could be a conditional expression
720 or could index an array. */
721
722#define REGNO_REG_CLASS(REGNO) \
2889abed
BS
723((REGNO) == REG_R0 ? D0REGS \
724 : (REGNO) == REG_R1 ? D1REGS \
725 : (REGNO) == REG_R2 ? D2REGS \
726 : (REGNO) == REG_R3 ? D3REGS \
727 : (REGNO) == REG_R4 ? D4REGS \
728 : (REGNO) == REG_R5 ? D5REGS \
729 : (REGNO) == REG_R6 ? D6REGS \
730 : (REGNO) == REG_R7 ? D7REGS \
03848bd0 731 : (REGNO) == REG_P0 ? P0REGS \
0d4a78eb 732 : (REGNO) < REG_I0 ? PREGS \
c4963a0a 733 : (REGNO) == REG_ARGP ? PREGS \
0d4a78eb
BS
734 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
735 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
736 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
737 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
738 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
b03149e1
JZ
739 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
740 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
741 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
0d4a78eb
BS
742 : (REGNO) == REG_CC ? CCREGS \
743 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
744 : NO_REGS)
745
746/* When defined, the compiler allows registers explicitly used in the
747 rtl to be used as spill registers but prevents the compiler from
748 extending the lifetime of these registers. */
749#define SMALL_REGISTER_CLASSES 1
750
751#define CLASS_LIKELY_SPILLED_P(CLASS) \
752 ((CLASS) == PREGS_CLOBBERED \
753 || (CLASS) == PROLOGUE_REGS \
03848bd0 754 || (CLASS) == P0REGS \
2889abed
BS
755 || (CLASS) == D0REGS \
756 || (CLASS) == D1REGS \
757 || (CLASS) == D2REGS \
0d4a78eb
BS
758 || (CLASS) == CCREGS)
759
760/* Do not allow to store a value in REG_CC for any mode */
761/* Do not allow to store value in pregs if mode is not SI*/
762#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
763
764/* Return the maximum number of consecutive registers
765 needed to represent mode MODE in a register of class CLASS. */
75d8b2d0
BS
766#define CLASS_MAX_NREGS(CLASS, MODE) \
767 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
768 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0d4a78eb
BS
769
770#define HARD_REGNO_NREGS(REGNO, MODE) \
75d8b2d0
BS
771 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
772 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
773 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
0d4a78eb
BS
774
775/* A C expression that is nonzero if hard register TO can be
776 considered for use as a rename register for FROM register */
777#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
778
779/* A C expression that is nonzero if it is desirable to choose
780 register allocation so as to avoid move instructions between a
781 value of mode MODE1 and a value of mode MODE2.
782
783 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
784 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
785 MODE2)' must be zero. */
4d4f2837
BS
786#define MODES_TIEABLE_P(MODE1, MODE2) \
787 ((MODE1) == (MODE2) \
788 || ((GET_MODE_CLASS (MODE1) == MODE_INT \
789 || GET_MODE_CLASS (MODE1) == MODE_FLOAT) \
790 && (GET_MODE_CLASS (MODE2) == MODE_INT \
791 || GET_MODE_CLASS (MODE2) == MODE_FLOAT) \
792 && (MODE1) != BImode && (MODE2) != BImode \
793 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
794 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD))
0d4a78eb
BS
795
796/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
797 A C expression that places additional restrictions on the register
798 class to use when it is necessary to copy value X into a register
799 in class CLASS. The value is a register class; perhaps CLASS, or
800 perhaps another, smaller class. */
aeffb4b5
BS
801#define PREFERRED_RELOAD_CLASS(X, CLASS) \
802 (GET_CODE (X) == POST_INC \
803 || GET_CODE (X) == POST_DEC \
804 || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
0d4a78eb 805
0d4a78eb
BS
806/* Function Calling Conventions. */
807
808/* The type of the current function; normal functions are of type
809 SUBROUTINE. */
810typedef enum {
811 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
812} e_funkind;
813
814#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
815
6d459e2b
BS
816/* Flags for the call/call_value rtl operations set up by function_arg */
817#define CALL_NORMAL 0x00000000 /* no special processing */
818#define CALL_LONG 0x00000001 /* always call indirect */
819#define CALL_SHORT 0x00000002 /* always call by symbol */
820
0d4a78eb
BS
821typedef struct {
822 int words; /* # words passed so far */
823 int nregs; /* # registers available for passing */
824 int *arg_regs; /* array of register -1 terminated */
6d459e2b 825 int call_cookie; /* Do special things for this call */
0d4a78eb
BS
826} CUMULATIVE_ARGS;
827
828/* Define where to put the arguments to a function.
829 Value is zero to push the argument on the stack,
830 or a hard register in which to store the argument.
831
832 MODE is the argument's machine mode.
833 TYPE is the data type of the argument (as a tree).
834 This is null for libcalls where that information may
835 not be available.
836 CUM is a variable of type CUMULATIVE_ARGS which gives info about
837 the preceding args and about the function being called.
838 NAMED is nonzero if this argument is a named parameter
839 (otherwise it is an extra parameter matching an ellipsis). */
840
841#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
842 (function_arg (&CUM, MODE, TYPE, NAMED))
843
844#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
845
846
847/* Initialize a variable CUM of type CUMULATIVE_ARGS
848 for a call to a function whose data type is FNTYPE.
849 For a library call, FNTYPE is 0. */
850#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
851 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
852
853/* Update the data in CUM to advance over an argument
854 of mode MODE and data type TYPE.
855 (TYPE is null for libcalls where that information may not be available.) */
856#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
857 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
858
859#define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
860
861/* Define how to find the value returned by a function.
862 VALTYPE is the data type of the value (as a tree).
863 If the precise function being called is known, FUNC is its FUNCTION_DECL;
864 otherwise, FUNC is 0.
865*/
866
867#define VALUE_REGNO(MODE) (REG_R0)
868
869#define FUNCTION_VALUE(VALTYPE, FUNC) \
870 gen_rtx_REG (TYPE_MODE (VALTYPE), \
871 VALUE_REGNO(TYPE_MODE(VALTYPE)))
872
873/* Define how to find the value returned by a library function
874 assuming the value has mode MODE. */
875
876#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
877
878#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
879
880#define DEFAULT_PCC_STRUCT_RETURN 0
881#define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
882
883/* Before the prologue, the return address is in the RETS register. */
884#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
885
886#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
887
888#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
889
890/* Call instructions don't modify the stack pointer on the Blackfin. */
891#define INCOMING_FRAME_SP_OFFSET 0
892
893/* Describe how we implement __builtin_eh_return. */
894#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
895#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
896#define EH_RETURN_HANDLER_RTX \
1ca950ca 897 gen_frame_mem (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
0d4a78eb
BS
898
899/* Addressing Modes */
900
901/* Recognize any constant value that is a valid address. */
902#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
903
904/* Nonzero if the constant value X is a legitimate general operand.
905 symbol_ref are not legitimate and will be put into constant pool.
906 See force_const_mem().
907 If -mno-pool, all constants are legitimate.
908 */
d6f6753e 909#define LEGITIMATE_CONSTANT_P(X) bfin_legitimate_constant_p (X)
0d4a78eb
BS
910
911/* A number, the maximum number of registers that can appear in a
912 valid memory address. Note that it is up to you to specify a
913 value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
914 would ever accept. */
915#define MAX_REGS_PER_ADDRESS 1
916
917/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
918 that is a valid memory address for an instruction.
919 The MODE argument is the machine mode for the MEM expression
920 that wants to use this address.
921
922 Blackfin addressing modes are as follows:
923
924 [preg]
925 [preg + imm16]
926
927 B [ Preg + uimm15 ]
928 W [ Preg + uimm16m2 ]
929 [ Preg + uimm17m4 ]
930
931 [preg++]
932 [preg--]
933 [--sp]
934*/
935
936#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
937 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
938
939#ifdef REG_OK_STRICT
940#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
941 do { \
942 if (bfin_legitimate_address_p (MODE, X, 1)) \
943 goto WIN; \
944 } while (0);
945#else
946#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
947 do { \
948 if (bfin_legitimate_address_p (MODE, X, 0)) \
949 goto WIN; \
950 } while (0);
951#endif
952
953/* Try machine-dependent ways of modifying an illegitimate address
954 to be legitimate. If we find one, return the new, valid address.
955 This macro is used in only one place: `memory_address' in explow.c.
956
957 OLDX is the address as it was before break_out_memory_refs was called.
958 In some cases it is useful to look at this to decide what needs to be done.
959
960 MODE and WIN are passed so that this macro can use
961 GO_IF_LEGITIMATE_ADDRESS.
962
963 It is always safe for this macro to do nothing. It exists to recognize
964 opportunities to optimize the output.
965 */
966#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
967do { \
968 rtx _q = legitimize_address(X, OLDX, MODE); \
969 if (_q) { X = _q; goto WIN; } \
970} while (0)
971
972#define HAVE_POST_INCREMENT 1
973#define HAVE_POST_DECREMENT 1
974#define HAVE_PRE_DECREMENT 1
975
976/* `LEGITIMATE_PIC_OPERAND_P (X)'
977 A C expression that is nonzero if X is a legitimate immediate
978 operand on the target machine when generating position independent
979 code. You can assume that X satisfies `CONSTANT_P', so you need
980 not check this. You can also assume FLAG_PIC is true, so you need
981 not check it either. You need not define this macro if all
982 constants (including `SYMBOL_REF') can be immediate operands when
983 generating position independent code. */
984#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
985
986#define SYMBOLIC_CONST(X) \
987(GET_CODE (X) == SYMBOL_REF \
988 || GET_CODE (X) == LABEL_REF \
989 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
990
991/*
992 A C statement or compound statement with a conditional `goto
993 LABEL;' executed if memory address X (an RTX) can have different
994 meanings depending on the machine mode of the memory reference it
995 is used for or if the address is valid for some modes but not
996 others.
997
998 Autoincrement and autodecrement addresses typically have
999 mode-dependent effects because the amount of the increment or
1000 decrement is the size of the operand being addressed. Some
1001 machines have other mode-dependent addresses. Many RISC machines
1002 have no mode-dependent addresses.
1003
1004 You may assume that ADDR is a valid address for the machine.
1005*/
b9a76028 1006#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
0d4a78eb
BS
1007
1008#define NOTICE_UPDATE_CC(EXPR, INSN) 0
1009
1010/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1011 is done just by pretending it is already truncated. */
1012#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1013
1014/* Max number of bytes we can move from memory to memory
1015 in one reasonably fast instruction. */
1016#define MOVE_MAX UNITS_PER_WORD
1017
b548a9c2
BS
1018/* If a memory-to-memory move would take MOVE_RATIO or more simple
1019 move-instruction pairs, we will do a movmem or libcall instead. */
1020
1021#define MOVE_RATIO 5
0d4a78eb
BS
1022
1023/* STORAGE LAYOUT: target machine storage layout
1024 Define this macro as a C expression which is nonzero if accessing
1025 less than a word of memory (i.e. a `char' or a `short') is no
1026 faster than accessing a word of memory, i.e., if such access
1027 require more than one instruction or if there is no difference in
1028 cost between byte and (aligned) word loads.
1029
1030 When this macro is not defined, the compiler will access a field by
1031 finding the smallest containing object; when it is defined, a
1032 fullword load will be used if alignment permits. Unless bytes
1033 accesses are faster than word accesses, using word accesses is
1034 preferable since it may eliminate subsequent memory access if
1035 subsequent accesses occur to other fields in the same word of the
1036 structure, but to different bytes. */
1037#define SLOW_BYTE_ACCESS 0
1038#define SLOW_SHORT_ACCESS 0
1039
1040/* Define this if most significant bit is lowest numbered
1041 in instructions that operate on numbered bit-fields. */
1042#define BITS_BIG_ENDIAN 0
1043
1044/* Define this if most significant byte of a word is the lowest numbered.
1045 We can't access bytes but if we could we would in the Big Endian order. */
1046#define BYTES_BIG_ENDIAN 0
1047
1048/* Define this if most significant word of a multiword number is numbered. */
1049#define WORDS_BIG_ENDIAN 0
1050
1051/* number of bits in an addressable storage unit */
1052#define BITS_PER_UNIT 8
1053
1054/* Width in bits of a "word", which is the contents of a machine register.
1055 Note that this is not necessarily the width of data type `int';
1056 if using 16-bit ints on a 68000, this would still be 32.
1057 But on a machine with 16-bit registers, this would be 16. */
1058#define BITS_PER_WORD 32
1059
1060/* Width of a word, in units (bytes). */
1061#define UNITS_PER_WORD 4
1062
0d4a78eb
BS
1063/* Width in bits of a pointer.
1064 See also the macro `Pmode1' defined below. */
1065#define POINTER_SIZE 32
1066
1067/* Allocation boundary (in *bits*) for storing pointers in memory. */
1068#define POINTER_BOUNDARY 32
1069
1070/* Allocation boundary (in *bits*) for storing arguments in argument list. */
1071#define PARM_BOUNDARY 32
1072
1073/* Boundary (in *bits*) on which stack pointer should be aligned. */
1074#define STACK_BOUNDARY 32
1075
1076/* Allocation boundary (in *bits*) for the code of a function. */
1077#define FUNCTION_BOUNDARY 32
1078
1079/* Alignment of field after `int : 0' in a structure. */
1080#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
1081
1082/* No data type wants to be aligned rounder than this. */
1083#define BIGGEST_ALIGNMENT 32
1084
1085/* Define this if move instructions will actually fail to work
1086 when given unaligned data. */
1087#define STRICT_ALIGNMENT 1
1088
1089/* (shell-command "rm c-decl.o stor-layout.o")
1090 * never define PCC_BITFIELD_TYPE_MATTERS
1091 * really cause some alignment problem
1092 */
1093
1094#define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
1095 BITS_PER_UNIT)
1096
1097#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
1098 BITS_PER_UNIT)
1099
1100
1101/* what is the 'type' of size_t */
1102#define SIZE_TYPE "long unsigned int"
1103
1104/* Define this as 1 if `char' should by default be signed; else as 0. */
1105#define DEFAULT_SIGNED_CHAR 1
1106#define FLOAT_TYPE_SIZE BITS_PER_WORD
1107#define SHORT_TYPE_SIZE 16
1108#define CHAR_TYPE_SIZE 8
1109#define INT_TYPE_SIZE 32
1110#define LONG_TYPE_SIZE 32
1111#define LONG_LONG_TYPE_SIZE 64
1112
1113/* Note: Fix this to depend on target switch. -- lev */
1114
1115/* Note: Try to implement double and force long double. -- tonyko
1116 * #define __DOUBLES_ARE_FLOATS__
1117 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
1118 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
1119 * #define DOUBLES_ARE_FLOATS 1
1120 */
1121
1122#define DOUBLE_TYPE_SIZE 64
1123#define LONG_DOUBLE_TYPE_SIZE 64
1124
1125/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
1126 A macro to update M and UNSIGNEDP when an object whose type is
1127 TYPE and which has the specified mode and signedness is to be
1128 stored in a register. This macro is only called when TYPE is a
1129 scalar type.
1130
1131 On most RISC machines, which only have operations that operate on
1132 a full register, define this macro to set M to `word_mode' if M is
1133 an integer mode narrower than `BITS_PER_WORD'. In most cases,
1134 only integer modes should be widened because wider-precision
1135 floating-point operations are usually more expensive than their
1136 narrower counterparts.
1137
1138 For most machines, the macro definition does not change UNSIGNEDP.
1139 However, some machines, have instructions that preferentially
1140 handle either signed or unsigned quantities of certain modes. For
1141 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
1142 instructions sign-extend the result to 64 bits. On such machines,
1143 set UNSIGNEDP according to which kind of extension is more
1144 efficient.
1145
1146 Do not define this macro if it would never modify M.*/
1147
1148#define BFIN_PROMOTE_MODE_P(MODE) \
1149 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
1150 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
1151
1152#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1153 if (BFIN_PROMOTE_MODE_P(MODE)) \
1154 { \
1155 if (MODE == QImode) \
1156 UNSIGNEDP = 1; \
1157 else if (MODE == HImode) \
1158 UNSIGNEDP = 0; \
1159 (MODE) = SImode; \
1160 }
1161
1162/* Describing Relative Costs of Operations */
1163
1164/* Do not put function addr into constant pool */
1165#define NO_FUNCTION_CSE 1
1166
1167/* A C expression for the cost of moving data from a register in class FROM to
1168 one in class TO. The classes are expressed using the enumeration values
1169 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1170 interpreted relative to that.
1171
1172 It is not required that the cost always equal 2 when FROM is the same as TO;
1173 on some machines it is expensive to move between registers if they are not
1174 general registers. */
1175
1176#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1177 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1178
1179/* A C expression for the cost of moving data of mode M between a
1180 register and memory. A value of 2 is the default; this cost is
1181 relative to those in `REGISTER_MOVE_COST'.
1182
1183 If moving between registers and memory is more expensive than
1184 between two registers, you should define this macro to express the
1185 relative cost. */
1186
1187#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1188 bfin_memory_move_cost ((MODE), (CLASS), (IN))
1189
1190/* Specify the machine mode that this machine uses
1191 for the index in the tablejump instruction. */
1192#define CASE_VECTOR_MODE SImode
1193
1194#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1195
1196/* Define if operations between registers always perform the operation
1197 on the full register even if a narrower mode is specified.
1198#define WORD_REGISTER_OPERATIONS
1199*/
1200
1201#define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
1202#define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
1203#define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
1204#define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
1205#define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
1206#define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
1207#define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
1208#define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
1209#define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
1210#define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
1211
1212#define CONSTRAINT_LEN(C, STR) \
2889abed 1213 ((C) == 'P' || (C) == 'M' || (C) == 'N' || (C) == 'q' ? 2 \
0d4a78eb
BS
1214 : (C) == 'K' ? 3 \
1215 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1216
1217#define CONST_OK_FOR_P(VALUE, STR) \
1218 ((STR)[1] == '0' ? (VALUE) == 0 \
1219 : (STR)[1] == '1' ? (VALUE) == 1 \
1220 : (STR)[1] == '2' ? (VALUE) == 2 \
1221 : (STR)[1] == '3' ? (VALUE) == 3 \
1222 : (STR)[1] == '4' ? (VALUE) == 4 \
3efd5670
BS
1223 : (STR)[1] == 'A' ? (VALUE) != MACFLAG_M && (VALUE) != MACFLAG_IS_M \
1224 : (STR)[1] == 'B' ? (VALUE) == MACFLAG_M || (VALUE) == MACFLAG_IS_M \
0d4a78eb
BS
1225 : 0)
1226
1227#define CONST_OK_FOR_K(VALUE, STR) \
1228 ((STR)[1] == 'u' \
1229 ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE) \
1230 : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE) \
1231 : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE) \
1232 : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE) \
1233 : 0) \
1234 : (STR)[1] == 's' \
1235 ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE) \
1236 : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE) \
1237 : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE) \
1238 : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE) \
1239 : 0) \
1240 : (STR)[1] == 'n' \
1241 ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE) \
1242 : 0) \
d4e85050
BS
1243 : (STR)[1] == 'N' \
1244 ? ((STR)[2] == '7' ? CONST_7BIT_IMM_P (-(VALUE)) \
1245 : 0) \
0d4a78eb
BS
1246 : 0)
1247
1248#define CONST_OK_FOR_M(VALUE, STR) \
1249 ((STR)[1] == '1' ? (VALUE) == 255 \
1250 : (STR)[1] == '2' ? (VALUE) == 65535 \
1251 : 0)
1252
1253/* The letters I, J, K, L and M in a register constraint string
1254 can be used to stand for particular ranges of immediate operands.
1255 This macro defines what the ranges are.
1256 C is the letter, and VALUE is a constant value.
1257 Return 1 if VALUE is in the range specified by C.
1258
1259 bfin constant operands are as follows
1260
1261 J 2**N 5bit imm scaled
1262 Ks7 -64 .. 63 signed 7bit imm
1263 Ku5 0..31 unsigned 5bit imm
1264 Ks4 -8 .. 7 signed 4bit imm
1265 Ks3 -4 .. 3 signed 3bit imm
1266 Ku3 0 .. 7 unsigned 3bit imm
1267 Pn 0, 1, 2 constants 0, 1 or 2, corresponding to n
1268*/
1269#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
1270 ((C) == 'J' ? (log2constp (VALUE)) \
1271 : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR) \
1272 : (C) == 'L' ? log2constp (~(VALUE)) \
1273 : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR) \
1274 : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR) \
1275 : 0)
1276
1277 /*Constant Output Formats */
1278#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1279 ((C) == 'H' ? 1 : 0)
1280
1281#define EXTRA_CONSTRAINT(VALUE, D) \
1282 ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
1283
3efd5670
BS
1284/* Evaluates to true if A and B are mac flags that can be used
1285 together in a single multiply insn. That is the case if they are
1286 both the same flag not involving M, or if one is a combination of
1287 the other with M. */
1288#define MACFLAGS_MATCH_P(A, B) \
1289 ((A) == (B) \
1290 || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
1291 || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
1292 || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
1293 || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
1294
0d4a78eb
BS
1295/* Switch into a generic section. */
1296#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1297
1298#define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1299#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1300
1301typedef enum sections {
1302 CODE_DIR,
1303 DATA_DIR,
1304 LAST_SECT_NM
1305} SECT_ENUM_T;
1306
1307typedef enum directives {
1308 LONG_CONST_DIR,
1309 SHORT_CONST_DIR,
1310 BYTE_CONST_DIR,
1311 SPACE_DIR,
1312 INIT_DIR,
1313 LAST_DIR_NM
1314} DIR_ENUM_T;
1315
980d8882
BS
1316#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) \
1317 ((C) == ';' \
1318 || ((C) == '|' && (STR)[1] == '|'))
1319
0d4a78eb
BS
1320#define TEXT_SECTION_ASM_OP ".text;"
1321#define DATA_SECTION_ASM_OP ".data;"
1322
1323#define ASM_APP_ON ""
1324#define ASM_APP_OFF ""
1325
1326#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1327 do { fputs (".global ", FILE); \
1328 assemble_name (FILE, NAME); \
1329 fputc (';',FILE); \
1330 fputc ('\n',FILE); \
1331 } while (0)
1332
1333#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1334 do { \
1335 fputs (".type ", FILE); \
1336 assemble_name (FILE, NAME); \
1337 fputs (", STT_FUNC", FILE); \
1338 fputc (';',FILE); \
1339 fputc ('\n',FILE); \
1340 ASM_OUTPUT_LABEL(FILE, NAME); \
1341 } while (0)
1342
1343#define ASM_OUTPUT_LABEL(FILE, NAME) \
1344 do { assemble_name (FILE, NAME); \
1345 fputs (":\n",FILE); \
1346 } while (0)
1347
1348#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1349 do { fprintf (FILE, "_%s", NAME); \
1350 } while (0)
1351
0d4a78eb
BS
1352#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1353do { char __buf[256]; \
1354 fprintf (FILE, "\t.dd\t"); \
1355 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1356 assemble_name (FILE, __buf); \
1357 fputc (';', FILE); \
1358 fputc ('\n', FILE); \
1359 } while (0)
1360
1361#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1362 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1363
1364#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1365 do { \
1366 char __buf[256]; \
1367 fprintf (FILE, "\t.dd\t"); \
1368 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1369 assemble_name (FILE, __buf); \
1370 fputs (" - ", FILE); \
1371 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1372 assemble_name (FILE, __buf); \
1373 fputc (';', FILE); \
1374 fputc ('\n', FILE); \
1375 } while (0)
1376
1377#define ASM_OUTPUT_ALIGN(FILE,LOG) \
21956c07
BS
1378 do { \
1379 if ((LOG) != 0) \
1380 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
0d4a78eb
BS
1381 } while (0)
1382
1383#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1384 do { \
1385 asm_output_skip (FILE, SIZE); \
1386 } while (0)
1387
1388#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1389do { \
d6b5193b 1390 switch_to_section (data_section); \
0d4a78eb
BS
1391 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1392 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1393 ASM_OUTPUT_LABEL (FILE, NAME); \
1394 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1395 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1396} while (0)
1397
1398#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1399 do { \
1400 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1401 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1402
1403#define ASM_COMMENT_START "//"
1404
56014148
JZ
1405#define FUNCTION_PROFILER(FILE, LABELNO) \
1406 do { \
1407 fprintf (FILE, "\tCALL __mcount;\n"); \
0d4a78eb
BS
1408 } while(0)
1409
56014148
JZ
1410#undef NO_PROFILE_COUNTERS
1411#define NO_PROFILE_COUNTERS 1
1412
0d4a78eb
BS
1413#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1414#define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1415
1416extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1417extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1418
1419/* This works for GAS and some other assemblers. */
1420#define SET_ASM_OP ".set "
1421
0d4a78eb
BS
1422/* DBX register number for a given compiler register number */
1423#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1424
1425#define SIZE_ASM_OP "\t.size\t"
1426
bbbc206e
BS
1427extern int splitting_for_sched;
1428
1429#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1430
0d4a78eb 1431#endif /* _BFIN_CONFIG */