]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/bfin/bfin.h
tree-flow.h: Remove the prototype for add_type_alias.
[thirdparty/gcc.git] / gcc / config / bfin / bfin.h
CommitLineData
0d4a78eb 1/* Definitions for the Blackfin port.
4729dc92 2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
0d4a78eb
BS
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
39d14dda
KC
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
0d4a78eb
BS
21
22#ifndef _BFIN_CONFIG
23#define _BFIN_CONFIG
24
25#define OBJECT_FORMAT_ELF
26
27#define BRT 1
28#define BRF 0
29
30/* Print subsidiary information on the compiler version in use. */
31#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
32
33/* Run-time compilation parameters selecting different hardware subsets. */
34
35extern int target_flags;
36
37/* Predefinition in the preprocessor for this target machine */
38#ifndef TARGET_CPU_CPP_BUILTINS
39#define TARGET_CPU_CPP_BUILTINS() \
40 do \
41 { \
42 builtin_define ("bfin"); \
43 builtin_define ("BFIN"); \
42da70b7 44 builtin_define ("__ADSPBLACKFIN__"); \
4af990cd
BS
45 if (TARGET_ID_SHARED_LIBRARY) \
46 builtin_define ("__ID_SHARED_LIB__"); \
0d4a78eb
BS
47 } \
48 while (0)
49#endif
50
51/* Generate DSP instructions, like DSP halfword loads */
52#define TARGET_DSP (1)
53
3fb192d2 54#define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
0d4a78eb 55
0d4a78eb
BS
56/* Maximum number of library ids we permit */
57#define MAX_LIBRARY_ID 255
58
59extern const char *bfin_library_id_string;
60
61/* Sometimes certain combinations of command options do not make
62 sense on a particular target machine. You can define a macro
63 `OVERRIDE_OPTIONS' to take account of this. This macro, if
64 defined, is executed once just after all the command options have
65 been parsed.
66
67 Don't use this macro to turn on various extra optimizations for
68 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
69
70#define OVERRIDE_OPTIONS override_options ()
71
72#define FUNCTION_MODE SImode
73#define Pmode SImode
74
75/* store-condition-codes instructions store 0 for false
76 This is the value stored for true. */
77#define STORE_FLAG_VALUE 1
78
79/* Define this if pushing a word on the stack
80 makes the stack pointer a smaller address. */
81#define STACK_GROWS_DOWNWARD
82
83#define STACK_PUSH_CODE PRE_DEC
84
a4d05547 85/* Define this to nonzero if the nominal address of the stack frame
0d4a78eb
BS
86 is at the high-address end of the local variables;
87 that is, each additional local variable allocated
88 goes at a more negative offset in the frame. */
f62c8a5c 89#define FRAME_GROWS_DOWNWARD 1
0d4a78eb
BS
90
91/* We define a dummy ARGP register; the parameters start at offset 0 from
92 it. */
93#define FIRST_PARM_OFFSET(DECL) 0
94
95/* Offset within stack frame to start allocating local variables at.
96 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
97 first local allocated. Otherwise, it is the offset to the BEGINNING
98 of the first local allocated. */
99#define STARTING_FRAME_OFFSET 0
100
101/* Register to use for pushing function arguments. */
102#define STACK_POINTER_REGNUM REG_P6
103
104/* Base register for access to local variables of the function. */
105#define FRAME_POINTER_REGNUM REG_P7
106
107/* A dummy register that will be eliminated to either FP or SP. */
108#define ARG_POINTER_REGNUM REG_ARGP
109
110/* `PIC_OFFSET_TABLE_REGNUM'
111 The register number of the register used to address a table of
112 static data addresses in memory. In some cases this register is
113 defined by a processor's "application binary interface" (ABI).
114 When this macro is defined, RTL is generated for this register
115 once, as with the stack pointer and frame pointer registers. If
116 this macro is not defined, it is up to the machine-dependent files
117 to allocate such a register (if necessary). */
118#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
119
120/* A static chain register for nested functions. We need to use a
121 call-clobbered register for this. */
122#define STATIC_CHAIN_REGNUM REG_P2
123
124/* Define this if functions should assume that stack space has been
125 allocated for arguments even when their values are passed in
126 registers.
127
128 The value of this macro is the size, in bytes, of the area reserved for
129 arguments passed in registers.
130
131 This space can either be allocated by the caller or be a part of the
132 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
133 says which. */
134#define FIXED_STACK_AREA 12
135#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
136
137/* Define this if the above stack space is to be considered part of the
138 * space allocated by the caller. */
139#define OUTGOING_REG_PARM_STACK_SPACE
140
141/* Define this if the maximum size of all the outgoing args is to be
142 accumulated and pushed during the prologue. The amount can be
143 found in the variable current_function_outgoing_args_size. */
144#define ACCUMULATE_OUTGOING_ARGS 1
145
146/* Value should be nonzero if functions must have frame pointers.
147 Zero means the frame pointer need not be set up (and parms
148 may be accessed via the stack pointer) in functions that seem suitable.
149 This is computed in `reload', in reload1.c.
150*/
151#define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
152
0d4a78eb
BS
153/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
154
155/* Make strings word-aligned so strcpy from constants will be faster. */
156#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
157 (TREE_CODE (EXP) == STRING_CST \
158 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
159
160#define TRAMPOLINE_SIZE 18
161#define TRAMPOLINE_TEMPLATE(FILE) \
162 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
163 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */; \
164 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */; \
165 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */; \
166 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/
167
168#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
169 initialize_trampoline (TRAMP, FNADDR, CXT)
170\f
171/* Definitions for register eliminations.
172
173 This is an array of structures. Each structure initializes one pair
174 of eliminable registers. The "from" register number is given first,
175 followed by "to". Eliminations of the same "from" register are listed
176 in order of preference.
177
178 There are two registers that can always be eliminated on the i386.
179 The frame pointer and the arg pointer can be replaced by either the
180 hard frame pointer or to the stack pointer, depending upon the
181 circumstances. The hard frame pointer is not used before reload and
182 so it is not eligible for elimination. */
183
184#define ELIMINABLE_REGS \
185{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
186 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
187 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
188
189/* Given FROM and TO register numbers, say whether this elimination is
190 allowed. Frame pointer elimination is automatically handled.
191
192 All other eliminations are valid. */
193
194#define CAN_ELIMINATE(FROM, TO) \
195 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
196
197/* Define the offset between two registers, one to be eliminated, and the other
198 its replacement, at the start of a routine. */
199
200#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
201 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
202\f
203/* This processor has
204 8 data register for doing arithmetic
205 8 pointer register for doing addressing, including
206 1 stack pointer P6
207 1 frame pointer P7
208 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
209 1 condition code flag register CC
210 5 return address registers RETS/I/X/N/E
211 1 arithmetic status register (ASTAT). */
212
213#define FIRST_PSEUDO_REGISTER 44
214
c4963a0a
BS
215#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
216#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
0d4a78eb
BS
217#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
218#define D_REGNO_P(X) ((X) <= REG_R7)
c4963a0a
BS
219#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
220#define I_REGNO_P(X) \
221 ((X) == REG_I0 || (X) == REG_I1 || (X) == REG_I2 || (X) == REG_I3)
0d4a78eb
BS
222
223#define REGISTER_NAMES { \
224 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
225 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
df259245
JZ
226 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
227 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
0d4a78eb
BS
228 "A0", "A1", \
229 "CC", \
230 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
231 "ARGP" \
232}
233
234#define SHORT_REGISTER_NAMES { \
235 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
236 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
df259245
JZ
237 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
238 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
0d4a78eb
BS
239
240#define HIGH_REGISTER_NAMES { \
241 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
242 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
df259245
JZ
243 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
244 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
0d4a78eb
BS
245
246#define DREGS_PAIR_NAMES { \
247 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
248
249#define BYTE_REGISTER_NAMES { \
250 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
251
252
253/* 1 for registers that have pervasive standard uses
254 and are not available for the register allocator. */
255
256#define FIXED_REGISTERS \
257/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
258{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
df259245
JZ
259/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
260 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
0d4a78eb 261/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp */ \
4729dc92 262 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
0d4a78eb
BS
263}
264
265/* 1 for registers not available across function calls.
266 These must include the FIXED_REGISTERS and also any
267 registers that can be used without being saved.
268 The latter must include the registers where values are returned
269 and the register where structure-value addresses are passed.
270 Aside from that, you can include as many other registers as you like. */
271
272#define CALL_USED_REGISTERS \
273/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
274{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
df259245 275/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
0d4a78eb
BS
276 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
277/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp */ \
278 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
279}
280
281/* Order in which to allocate registers. Each register must be
282 listed once, even those in FIXED_REGISTERS. List frame pointer
283 late and fixed registers last. Note that, in general, we prefer
284 registers listed in CALL_USED_REGISTERS, keeping the others
285 available for storage of persistent values. */
286
287#define REG_ALLOC_ORDER \
288{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
289 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
290 REG_A0, REG_A1, \
df259245
JZ
291 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
292 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
0d4a78eb
BS
293 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
294 REG_ASTAT, REG_SEQSTAT, REG_USP, \
295 REG_CC, REG_ARGP \
296}
297
298/* Macro to conditionally modify fixed_regs/call_used_regs. */
299#define CONDITIONAL_REGISTER_USAGE \
300 { \
301 conditional_register_usage(); \
302 if (flag_pic) \
303 { \
304 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
305 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
306 } \
307 }
308
309/* Define the classes of registers for register constraints in the
310 machine description. Also define ranges of constants.
311
312 One of the classes must always be named ALL_REGS and include all hard regs.
313 If there is more than one class, another class must be named NO_REGS
314 and contain no registers.
315
316 The name GENERAL_REGS must be the name of a class (or an alias for
317 another name such as ALL_REGS). This is the class of registers
318 that is allowed by "g" or "r" in a register constraint.
319 Also, registers outside this class are allocated only when
320 instructions express preferences for them.
321
322 The classes must be numbered in nondecreasing order; that is,
323 a larger-numbered class must never be contained completely
324 in a smaller-numbered class.
325
326 For any two classes, it is very desirable that there be another
327 class that represents their union. */
328
329
330enum reg_class
331{
332 NO_REGS,
333 IREGS,
334 BREGS,
335 LREGS,
336 MREGS,
f652d14b 337 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
0d4a78eb
BS
338 DAGREGS,
339 EVEN_AREGS,
340 ODD_AREGS,
341 AREGS,
342 CCREGS,
343 EVEN_DREGS,
344 ODD_DREGS,
345 DREGS,
346 PREGS_CLOBBERED,
347 PREGS,
c4963a0a 348 IPREGS,
0d4a78eb
BS
349 DPREGS,
350 MOST_REGS,
351 PROLOGUE_REGS,
352 NON_A_CC_REGS,
353 ALL_REGS, LIM_REG_CLASSES
354};
355
356#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
357
358#define GENERAL_REGS DPREGS
359
360/* Give names of register classes as strings for dump file. */
361
362#define REG_CLASS_NAMES \
363{ "NO_REGS", \
364 "IREGS", \
365 "BREGS", \
366 "LREGS", \
367 "MREGS", \
368 "CIRCREGS", \
369 "DAGREGS", \
370 "EVEN_AREGS", \
371 "ODD_AREGS", \
372 "AREGS", \
373 "CCREGS", \
374 "EVEN_DREGS", \
375 "ODD_DREGS", \
376 "DREGS", \
377 "PREGS_CLOBBERED", \
378 "PREGS", \
c4963a0a 379 "IPREGS", \
0d4a78eb
BS
380 "DPREGS", \
381 "MOST_REGS", \
382 "PROLOGUE_REGS", \
383 "NON_A_CC_REGS", \
384 "ALL_REGS" }
385
386/* An initializer containing the contents of the register classes, as integers
387 which are bit masks. The Nth integer specifies the contents of class N.
388 The way the integer MASK is interpreted is that register R is in the class
389 if `MASK & (1 << R)' is 1.
390
391 When the machine has more than 32 registers, an integer does not suffice.
392 Then the integers are replaced by sub-initializers, braced groupings
393 containing several integers. Each sub-initializer must be suitable as an
394 initializer for the type `HARD_REG_SET' which is defined in
395 `hard-reg-set.h'. */
396
397/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
398 MOST_REGS as the union of DPREGS and DAGREGS. */
399
400#define REG_CLASS_CONTENTS \
401 /* 31 - 0 63-32 */ \
402{ { 0x00000000, 0 }, /* NO_REGS */ \
df259245
JZ
403 { 0x000f0000, 0 }, /* IREGS */ \
404 { 0x00f00000, 0 }, /* BREGS */ \
405 { 0x0f000000, 0 }, /* LREGS */ \
0d4a78eb
BS
406 { 0xf0000000, 0 }, /* MREGS */ \
407 { 0x0fff0000, 0 }, /* CIRCREGS */ \
408 { 0xffff0000, 0 }, /* DAGREGS */ \
409 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
410 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
411 { 0x00000000, 0x3 }, /* AREGS */ \
412 { 0x00000000, 0x4 }, /* CCREGS */ \
413 { 0x00000055, 0 }, /* EVEN_DREGS */ \
414 { 0x000000aa, 0 }, /* ODD_DREGS */ \
415 { 0x000000ff, 0 }, /* DREGS */ \
416 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
417 { 0x0000ff00, 0x800 }, /* PREGS */ \
c4963a0a 418 { 0x000fff00, 0x800 }, /* IPREGS */ \
0d4a78eb
BS
419 { 0x0000ffff, 0x800 }, /* DPREGS */ \
420 { 0xffffffff, 0x800 }, /* MOST_REGS */\
421 { 0x00000000, 0x7f8 }, /* PROLOGUE_REGS */\
422 { 0xffffffff, 0xff8 }, /* NON_A_CC_REGS */\
423 { 0xffffffff, 0xfff }} /* ALL_REGS */
424
c4963a0a
BS
425#define IREG_POSSIBLE_P(OUTER) \
426 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
427 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
428 || (OUTER) == MEM || (OUTER) == ADDRESS)
429
430#define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
431 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
432
0d4a78eb
BS
433#define INDEX_REG_CLASS PREGS
434
c4963a0a
BS
435#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
436 (P_REGNO_P (X) || (X) == REG_ARGP \
437 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
438 && I_REGNO_P (X)))
439
440#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
441 ((X) >= FIRST_PSEUDO_REGISTER \
442 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
0d4a78eb
BS
443
444#ifdef REG_OK_STRICT
c4963a0a
BS
445#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
446 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb 447#else
c4963a0a
BS
448#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
449 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb
BS
450#endif
451
0d4a78eb
BS
452#define REGNO_OK_FOR_INDEX_P(X) 0
453
454/* Get reg_class from a letter such as appears in the machine description. */
455
456#define REG_CLASS_FROM_LETTER(LETTER) \
457 ((LETTER) == 'a' ? PREGS : \
458 (LETTER) == 'd' ? DREGS : \
459 (LETTER) == 'z' ? PREGS_CLOBBERED : \
460 (LETTER) == 'D' ? EVEN_DREGS : \
461 (LETTER) == 'W' ? ODD_DREGS : \
462 (LETTER) == 'e' ? AREGS : \
463 (LETTER) == 'A' ? EVEN_AREGS : \
464 (LETTER) == 'B' ? ODD_AREGS : \
465 (LETTER) == 'b' ? IREGS : \
466 (LETTER) == 'B' ? BREGS : \
467 (LETTER) == 'f' ? MREGS : \
468 (LETTER) == 'c' ? CIRCREGS : \
469 (LETTER) == 'C' ? CCREGS : \
470 (LETTER) == 'x' ? MOST_REGS : \
471 (LETTER) == 'y' ? PROLOGUE_REGS : \
472 (LETTER) == 'w' ? NON_A_CC_REGS : \
473 NO_REGS)
474
475/* The same information, inverted:
476 Return the class number of the smallest class containing
477 reg number REGNO. This could be a conditional expression
478 or could index an array. */
479
480#define REGNO_REG_CLASS(REGNO) \
481 ((REGNO) < REG_P0 ? DREGS \
482 : (REGNO) < REG_I0 ? PREGS \
c4963a0a 483 : (REGNO) == REG_ARGP ? PREGS \
0d4a78eb
BS
484 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
485 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
486 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
487 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
488 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
489 : (REGNO) == REG_CC ? CCREGS \
490 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
491 : NO_REGS)
492
493/* When defined, the compiler allows registers explicitly used in the
494 rtl to be used as spill registers but prevents the compiler from
495 extending the lifetime of these registers. */
496#define SMALL_REGISTER_CLASSES 1
497
498#define CLASS_LIKELY_SPILLED_P(CLASS) \
499 ((CLASS) == PREGS_CLOBBERED \
500 || (CLASS) == PROLOGUE_REGS \
501 || (CLASS) == CCREGS)
502
503/* Do not allow to store a value in REG_CC for any mode */
504/* Do not allow to store value in pregs if mode is not SI*/
505#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
506
507/* Return the maximum number of consecutive registers
508 needed to represent mode MODE in a register of class CLASS. */
75d8b2d0
BS
509#define CLASS_MAX_NREGS(CLASS, MODE) \
510 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
511 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0d4a78eb
BS
512
513#define HARD_REGNO_NREGS(REGNO, MODE) \
75d8b2d0
BS
514 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
515 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
516 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
0d4a78eb
BS
517
518/* A C expression that is nonzero if hard register TO can be
519 considered for use as a rename register for FROM register */
520#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
521
522/* A C expression that is nonzero if it is desirable to choose
523 register allocation so as to avoid move instructions between a
524 value of mode MODE1 and a value of mode MODE2.
525
526 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
527 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
528 MODE2)' must be zero. */
529#define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
530
531/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
532 A C expression that places additional restrictions on the register
533 class to use when it is necessary to copy value X into a register
534 in class CLASS. The value is a register class; perhaps CLASS, or
535 perhaps another, smaller class. */
536#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
537
0d4a78eb
BS
538/* Function Calling Conventions. */
539
540/* The type of the current function; normal functions are of type
541 SUBROUTINE. */
542typedef enum {
543 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
544} e_funkind;
545
546#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
547
6d459e2b
BS
548/* Flags for the call/call_value rtl operations set up by function_arg */
549#define CALL_NORMAL 0x00000000 /* no special processing */
550#define CALL_LONG 0x00000001 /* always call indirect */
551#define CALL_SHORT 0x00000002 /* always call by symbol */
552
0d4a78eb
BS
553typedef struct {
554 int words; /* # words passed so far */
555 int nregs; /* # registers available for passing */
556 int *arg_regs; /* array of register -1 terminated */
6d459e2b 557 int call_cookie; /* Do special things for this call */
0d4a78eb
BS
558} CUMULATIVE_ARGS;
559
560/* Define where to put the arguments to a function.
561 Value is zero to push the argument on the stack,
562 or a hard register in which to store the argument.
563
564 MODE is the argument's machine mode.
565 TYPE is the data type of the argument (as a tree).
566 This is null for libcalls where that information may
567 not be available.
568 CUM is a variable of type CUMULATIVE_ARGS which gives info about
569 the preceding args and about the function being called.
570 NAMED is nonzero if this argument is a named parameter
571 (otherwise it is an extra parameter matching an ellipsis). */
572
573#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
574 (function_arg (&CUM, MODE, TYPE, NAMED))
575
576#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
577
578
579/* Initialize a variable CUM of type CUMULATIVE_ARGS
580 for a call to a function whose data type is FNTYPE.
581 For a library call, FNTYPE is 0. */
582#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
583 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
584
585/* Update the data in CUM to advance over an argument
586 of mode MODE and data type TYPE.
587 (TYPE is null for libcalls where that information may not be available.) */
588#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
589 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
590
591#define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
592
593/* Define how to find the value returned by a function.
594 VALTYPE is the data type of the value (as a tree).
595 If the precise function being called is known, FUNC is its FUNCTION_DECL;
596 otherwise, FUNC is 0.
597*/
598
599#define VALUE_REGNO(MODE) (REG_R0)
600
601#define FUNCTION_VALUE(VALTYPE, FUNC) \
602 gen_rtx_REG (TYPE_MODE (VALTYPE), \
603 VALUE_REGNO(TYPE_MODE(VALTYPE)))
604
605/* Define how to find the value returned by a library function
606 assuming the value has mode MODE. */
607
608#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
609
610#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
611
612#define DEFAULT_PCC_STRUCT_RETURN 0
613#define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
614
615/* Before the prologue, the return address is in the RETS register. */
616#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
617
618#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
619
620#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
621
622/* Call instructions don't modify the stack pointer on the Blackfin. */
623#define INCOMING_FRAME_SP_OFFSET 0
624
625/* Describe how we implement __builtin_eh_return. */
626#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
627#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
628#define EH_RETURN_HANDLER_RTX \
629 gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
630
631/* Addressing Modes */
632
633/* Recognize any constant value that is a valid address. */
634#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
635
636/* Nonzero if the constant value X is a legitimate general operand.
637 symbol_ref are not legitimate and will be put into constant pool.
638 See force_const_mem().
639 If -mno-pool, all constants are legitimate.
640 */
641#define LEGITIMATE_CONSTANT_P(x) 1
642
643/* A number, the maximum number of registers that can appear in a
644 valid memory address. Note that it is up to you to specify a
645 value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
646 would ever accept. */
647#define MAX_REGS_PER_ADDRESS 1
648
649/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
650 that is a valid memory address for an instruction.
651 The MODE argument is the machine mode for the MEM expression
652 that wants to use this address.
653
654 Blackfin addressing modes are as follows:
655
656 [preg]
657 [preg + imm16]
658
659 B [ Preg + uimm15 ]
660 W [ Preg + uimm16m2 ]
661 [ Preg + uimm17m4 ]
662
663 [preg++]
664 [preg--]
665 [--sp]
666*/
667
668#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
669 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
670
671#ifdef REG_OK_STRICT
672#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
673 do { \
674 if (bfin_legitimate_address_p (MODE, X, 1)) \
675 goto WIN; \
676 } while (0);
677#else
678#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
679 do { \
680 if (bfin_legitimate_address_p (MODE, X, 0)) \
681 goto WIN; \
682 } while (0);
683#endif
684
685/* Try machine-dependent ways of modifying an illegitimate address
686 to be legitimate. If we find one, return the new, valid address.
687 This macro is used in only one place: `memory_address' in explow.c.
688
689 OLDX is the address as it was before break_out_memory_refs was called.
690 In some cases it is useful to look at this to decide what needs to be done.
691
692 MODE and WIN are passed so that this macro can use
693 GO_IF_LEGITIMATE_ADDRESS.
694
695 It is always safe for this macro to do nothing. It exists to recognize
696 opportunities to optimize the output.
697 */
698#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
699do { \
700 rtx _q = legitimize_address(X, OLDX, MODE); \
701 if (_q) { X = _q; goto WIN; } \
702} while (0)
703
704#define HAVE_POST_INCREMENT 1
705#define HAVE_POST_DECREMENT 1
706#define HAVE_PRE_DECREMENT 1
707
708/* `LEGITIMATE_PIC_OPERAND_P (X)'
709 A C expression that is nonzero if X is a legitimate immediate
710 operand on the target machine when generating position independent
711 code. You can assume that X satisfies `CONSTANT_P', so you need
712 not check this. You can also assume FLAG_PIC is true, so you need
713 not check it either. You need not define this macro if all
714 constants (including `SYMBOL_REF') can be immediate operands when
715 generating position independent code. */
716#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
717
718#define SYMBOLIC_CONST(X) \
719(GET_CODE (X) == SYMBOL_REF \
720 || GET_CODE (X) == LABEL_REF \
721 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
722
723/*
724 A C statement or compound statement with a conditional `goto
725 LABEL;' executed if memory address X (an RTX) can have different
726 meanings depending on the machine mode of the memory reference it
727 is used for or if the address is valid for some modes but not
728 others.
729
730 Autoincrement and autodecrement addresses typically have
731 mode-dependent effects because the amount of the increment or
732 decrement is the size of the operand being addressed. Some
733 machines have other mode-dependent addresses. Many RISC machines
734 have no mode-dependent addresses.
735
736 You may assume that ADDR is a valid address for the machine.
737*/
738#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
739do { \
740 if (GET_CODE (ADDR) == POST_INC \
741 || GET_CODE (ADDR) == POST_DEC \
742 || GET_CODE (ADDR) == PRE_DEC) \
743 goto LABEL; \
744} while (0)
745
746#define NOTICE_UPDATE_CC(EXPR, INSN) 0
747
748/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
749 is done just by pretending it is already truncated. */
750#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
751
752/* Max number of bytes we can move from memory to memory
753 in one reasonably fast instruction. */
754#define MOVE_MAX UNITS_PER_WORD
755
756
757/* STORAGE LAYOUT: target machine storage layout
758 Define this macro as a C expression which is nonzero if accessing
759 less than a word of memory (i.e. a `char' or a `short') is no
760 faster than accessing a word of memory, i.e., if such access
761 require more than one instruction or if there is no difference in
762 cost between byte and (aligned) word loads.
763
764 When this macro is not defined, the compiler will access a field by
765 finding the smallest containing object; when it is defined, a
766 fullword load will be used if alignment permits. Unless bytes
767 accesses are faster than word accesses, using word accesses is
768 preferable since it may eliminate subsequent memory access if
769 subsequent accesses occur to other fields in the same word of the
770 structure, but to different bytes. */
771#define SLOW_BYTE_ACCESS 0
772#define SLOW_SHORT_ACCESS 0
773
774/* Define this if most significant bit is lowest numbered
775 in instructions that operate on numbered bit-fields. */
776#define BITS_BIG_ENDIAN 0
777
778/* Define this if most significant byte of a word is the lowest numbered.
779 We can't access bytes but if we could we would in the Big Endian order. */
780#define BYTES_BIG_ENDIAN 0
781
782/* Define this if most significant word of a multiword number is numbered. */
783#define WORDS_BIG_ENDIAN 0
784
785/* number of bits in an addressable storage unit */
786#define BITS_PER_UNIT 8
787
788/* Width in bits of a "word", which is the contents of a machine register.
789 Note that this is not necessarily the width of data type `int';
790 if using 16-bit ints on a 68000, this would still be 32.
791 But on a machine with 16-bit registers, this would be 16. */
792#define BITS_PER_WORD 32
793
794/* Width of a word, in units (bytes). */
795#define UNITS_PER_WORD 4
796
0d4a78eb
BS
797/* Width in bits of a pointer.
798 See also the macro `Pmode1' defined below. */
799#define POINTER_SIZE 32
800
801/* Allocation boundary (in *bits*) for storing pointers in memory. */
802#define POINTER_BOUNDARY 32
803
804/* Allocation boundary (in *bits*) for storing arguments in argument list. */
805#define PARM_BOUNDARY 32
806
807/* Boundary (in *bits*) on which stack pointer should be aligned. */
808#define STACK_BOUNDARY 32
809
810/* Allocation boundary (in *bits*) for the code of a function. */
811#define FUNCTION_BOUNDARY 32
812
813/* Alignment of field after `int : 0' in a structure. */
814#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
815
816/* No data type wants to be aligned rounder than this. */
817#define BIGGEST_ALIGNMENT 32
818
819/* Define this if move instructions will actually fail to work
820 when given unaligned data. */
821#define STRICT_ALIGNMENT 1
822
823/* (shell-command "rm c-decl.o stor-layout.o")
824 * never define PCC_BITFIELD_TYPE_MATTERS
825 * really cause some alignment problem
826 */
827
828#define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
829 BITS_PER_UNIT)
830
831#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
832 BITS_PER_UNIT)
833
834
835/* what is the 'type' of size_t */
836#define SIZE_TYPE "long unsigned int"
837
838/* Define this as 1 if `char' should by default be signed; else as 0. */
839#define DEFAULT_SIGNED_CHAR 1
840#define FLOAT_TYPE_SIZE BITS_PER_WORD
841#define SHORT_TYPE_SIZE 16
842#define CHAR_TYPE_SIZE 8
843#define INT_TYPE_SIZE 32
844#define LONG_TYPE_SIZE 32
845#define LONG_LONG_TYPE_SIZE 64
846
847/* Note: Fix this to depend on target switch. -- lev */
848
849/* Note: Try to implement double and force long double. -- tonyko
850 * #define __DOUBLES_ARE_FLOATS__
851 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
852 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
853 * #define DOUBLES_ARE_FLOATS 1
854 */
855
856#define DOUBLE_TYPE_SIZE 64
857#define LONG_DOUBLE_TYPE_SIZE 64
858
859/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
860 A macro to update M and UNSIGNEDP when an object whose type is
861 TYPE and which has the specified mode and signedness is to be
862 stored in a register. This macro is only called when TYPE is a
863 scalar type.
864
865 On most RISC machines, which only have operations that operate on
866 a full register, define this macro to set M to `word_mode' if M is
867 an integer mode narrower than `BITS_PER_WORD'. In most cases,
868 only integer modes should be widened because wider-precision
869 floating-point operations are usually more expensive than their
870 narrower counterparts.
871
872 For most machines, the macro definition does not change UNSIGNEDP.
873 However, some machines, have instructions that preferentially
874 handle either signed or unsigned quantities of certain modes. For
875 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
876 instructions sign-extend the result to 64 bits. On such machines,
877 set UNSIGNEDP according to which kind of extension is more
878 efficient.
879
880 Do not define this macro if it would never modify M.*/
881
882#define BFIN_PROMOTE_MODE_P(MODE) \
883 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
884 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
885
886#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
887 if (BFIN_PROMOTE_MODE_P(MODE)) \
888 { \
889 if (MODE == QImode) \
890 UNSIGNEDP = 1; \
891 else if (MODE == HImode) \
892 UNSIGNEDP = 0; \
893 (MODE) = SImode; \
894 }
895
896/* Describing Relative Costs of Operations */
897
898/* Do not put function addr into constant pool */
899#define NO_FUNCTION_CSE 1
900
901/* A C expression for the cost of moving data from a register in class FROM to
902 one in class TO. The classes are expressed using the enumeration values
903 such as `GENERAL_REGS'. A value of 2 is the default; other values are
904 interpreted relative to that.
905
906 It is not required that the cost always equal 2 when FROM is the same as TO;
907 on some machines it is expensive to move between registers if they are not
908 general registers. */
909
910#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
911 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
912
913/* A C expression for the cost of moving data of mode M between a
914 register and memory. A value of 2 is the default; this cost is
915 relative to those in `REGISTER_MOVE_COST'.
916
917 If moving between registers and memory is more expensive than
918 between two registers, you should define this macro to express the
919 relative cost. */
920
921#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
922 bfin_memory_move_cost ((MODE), (CLASS), (IN))
923
924/* Specify the machine mode that this machine uses
925 for the index in the tablejump instruction. */
926#define CASE_VECTOR_MODE SImode
927
928#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
929
930/* Define if operations between registers always perform the operation
931 on the full register even if a narrower mode is specified.
932#define WORD_REGISTER_OPERATIONS
933*/
934
935#define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
936#define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
937#define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
938#define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
939#define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
940#define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
941#define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
942#define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
943#define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
944#define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
945
946#define CONSTRAINT_LEN(C, STR) \
947 ((C) == 'P' || (C) == 'M' || (C) == 'N' ? 2 \
948 : (C) == 'K' ? 3 \
949 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
950
951#define CONST_OK_FOR_P(VALUE, STR) \
952 ((STR)[1] == '0' ? (VALUE) == 0 \
953 : (STR)[1] == '1' ? (VALUE) == 1 \
954 : (STR)[1] == '2' ? (VALUE) == 2 \
955 : (STR)[1] == '3' ? (VALUE) == 3 \
956 : (STR)[1] == '4' ? (VALUE) == 4 \
957 : 0)
958
959#define CONST_OK_FOR_K(VALUE, STR) \
960 ((STR)[1] == 'u' \
961 ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE) \
962 : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE) \
963 : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE) \
964 : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE) \
965 : 0) \
966 : (STR)[1] == 's' \
967 ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE) \
968 : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE) \
969 : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE) \
970 : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE) \
971 : 0) \
972 : (STR)[1] == 'n' \
973 ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE) \
974 : 0) \
975 : 0)
976
977#define CONST_OK_FOR_M(VALUE, STR) \
978 ((STR)[1] == '1' ? (VALUE) == 255 \
979 : (STR)[1] == '2' ? (VALUE) == 65535 \
980 : 0)
981
982/* The letters I, J, K, L and M in a register constraint string
983 can be used to stand for particular ranges of immediate operands.
984 This macro defines what the ranges are.
985 C is the letter, and VALUE is a constant value.
986 Return 1 if VALUE is in the range specified by C.
987
988 bfin constant operands are as follows
989
990 J 2**N 5bit imm scaled
991 Ks7 -64 .. 63 signed 7bit imm
992 Ku5 0..31 unsigned 5bit imm
993 Ks4 -8 .. 7 signed 4bit imm
994 Ks3 -4 .. 3 signed 3bit imm
995 Ku3 0 .. 7 unsigned 3bit imm
996 Pn 0, 1, 2 constants 0, 1 or 2, corresponding to n
997*/
998#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
999 ((C) == 'J' ? (log2constp (VALUE)) \
1000 : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR) \
1001 : (C) == 'L' ? log2constp (~(VALUE)) \
1002 : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR) \
1003 : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR) \
1004 : 0)
1005
1006 /*Constant Output Formats */
1007#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1008 ((C) == 'H' ? 1 : 0)
1009
1010#define EXTRA_CONSTRAINT(VALUE, D) \
1011 ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
1012
0d4a78eb
BS
1013/* Switch into a generic section. */
1014#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1015
1016#define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1017#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1018
1019typedef enum sections {
1020 CODE_DIR,
1021 DATA_DIR,
1022 LAST_SECT_NM
1023} SECT_ENUM_T;
1024
1025typedef enum directives {
1026 LONG_CONST_DIR,
1027 SHORT_CONST_DIR,
1028 BYTE_CONST_DIR,
1029 SPACE_DIR,
1030 INIT_DIR,
1031 LAST_DIR_NM
1032} DIR_ENUM_T;
1033
1034#define TEXT_SECTION_ASM_OP ".text;"
1035#define DATA_SECTION_ASM_OP ".data;"
1036
1037#define ASM_APP_ON ""
1038#define ASM_APP_OFF ""
1039
1040#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1041 do { fputs (".global ", FILE); \
1042 assemble_name (FILE, NAME); \
1043 fputc (';',FILE); \
1044 fputc ('\n',FILE); \
1045 } while (0)
1046
1047#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1048 do { \
1049 fputs (".type ", FILE); \
1050 assemble_name (FILE, NAME); \
1051 fputs (", STT_FUNC", FILE); \
1052 fputc (';',FILE); \
1053 fputc ('\n',FILE); \
1054 ASM_OUTPUT_LABEL(FILE, NAME); \
1055 } while (0)
1056
1057#define ASM_OUTPUT_LABEL(FILE, NAME) \
1058 do { assemble_name (FILE, NAME); \
1059 fputs (":\n",FILE); \
1060 } while (0)
1061
1062#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1063 do { fprintf (FILE, "_%s", NAME); \
1064 } while (0)
1065
0d4a78eb
BS
1066#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1067do { char __buf[256]; \
1068 fprintf (FILE, "\t.dd\t"); \
1069 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1070 assemble_name (FILE, __buf); \
1071 fputc (';', FILE); \
1072 fputc ('\n', FILE); \
1073 } while (0)
1074
1075#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1076 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1077
1078#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1079 do { \
1080 char __buf[256]; \
1081 fprintf (FILE, "\t.dd\t"); \
1082 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1083 assemble_name (FILE, __buf); \
1084 fputs (" - ", FILE); \
1085 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1086 assemble_name (FILE, __buf); \
1087 fputc (';', FILE); \
1088 fputc ('\n', FILE); \
1089 } while (0)
1090
1091#define ASM_OUTPUT_ALIGN(FILE,LOG) \
21956c07
BS
1092 do { \
1093 if ((LOG) != 0) \
1094 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
0d4a78eb
BS
1095 } while (0)
1096
1097#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1098 do { \
1099 asm_output_skip (FILE, SIZE); \
1100 } while (0)
1101
1102#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1103do { \
d6b5193b 1104 switch_to_section (data_section); \
0d4a78eb
BS
1105 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1106 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1107 ASM_OUTPUT_LABEL (FILE, NAME); \
1108 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1109 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1110} while (0)
1111
1112#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1113 do { \
1114 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1115 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1116
1117#define ASM_COMMENT_START "//"
1118
1119#define FUNCTION_PROFILER(FILE, LABELNO) \
1120 do {\
1121 fprintf (FILE, "\tP1.l =LP$%d; P1.h =LP$%d; call mcount;\n", \
1122 LABELNO, LABELNO);\
1123 } while(0)
1124
1125#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1126#define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1127
1128extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1129extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1130
1131/* This works for GAS and some other assemblers. */
1132#define SET_ASM_OP ".set "
1133
0d4a78eb
BS
1134/* DBX register number for a given compiler register number */
1135#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1136
1137#define SIZE_ASM_OP "\t.size\t"
1138
1139#endif /* _BFIN_CONFIG */