]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/bfin/bfin.h
svr4.h: Remove.
[thirdparty/gcc.git] / gcc / config / bfin / bfin.h
CommitLineData
0d4a78eb 1/* Definitions for the Blackfin port.
1890bccc 2 Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
0d4a78eb
BS
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
0d4a78eb
BS
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
2f83c7d6
NC
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
0d4a78eb
BS
20
21#ifndef _BFIN_CONFIG
22#define _BFIN_CONFIG
23
24#define OBJECT_FORMAT_ELF
25
26#define BRT 1
27#define BRF 0
28
4dce27df
BS
29/* CPU type. */
30typedef enum bfin_cpu_type
31{
32 BFIN_CPU_UNKNOWN,
33 BFIN_CPU_BF512,
34 BFIN_CPU_BF514,
35 BFIN_CPU_BF516,
36 BFIN_CPU_BF518,
37 BFIN_CPU_BF522,
38 BFIN_CPU_BF523,
39 BFIN_CPU_BF524,
40 BFIN_CPU_BF525,
41 BFIN_CPU_BF526,
42 BFIN_CPU_BF527,
43 BFIN_CPU_BF531,
44 BFIN_CPU_BF532,
45 BFIN_CPU_BF533,
46 BFIN_CPU_BF534,
47 BFIN_CPU_BF536,
48 BFIN_CPU_BF537,
49 BFIN_CPU_BF538,
50 BFIN_CPU_BF539,
51 BFIN_CPU_BF542,
5254cd50 52 BFIN_CPU_BF542M,
4dce27df 53 BFIN_CPU_BF544,
5254cd50 54 BFIN_CPU_BF544M,
4dce27df 55 BFIN_CPU_BF547,
5254cd50 56 BFIN_CPU_BF547M,
4dce27df 57 BFIN_CPU_BF548,
5254cd50 58 BFIN_CPU_BF548M,
4dce27df 59 BFIN_CPU_BF549,
5254cd50 60 BFIN_CPU_BF549M,
4dce27df
BS
61 BFIN_CPU_BF561
62} bfin_cpu_t;
63
64/* Value of -mcpu= */
65extern bfin_cpu_t bfin_cpu_type;
66
67/* Value of -msi-revision= */
68extern int bfin_si_revision;
69
70extern unsigned int bfin_workarounds;
71
0d4a78eb
BS
72/* Print subsidiary information on the compiler version in use. */
73#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
74
0d4a78eb
BS
75/* Predefinition in the preprocessor for this target machine */
76#ifndef TARGET_CPU_CPP_BUILTINS
ea2382be
JZ
77#define TARGET_CPU_CPP_BUILTINS() \
78 do \
79 { \
80 builtin_define_std ("bfin"); \
81 builtin_define_std ("BFIN"); \
42da70b7 82 builtin_define ("__ADSPBLACKFIN__"); \
9d3f9aa3
BS
83 builtin_define ("__ADSPLPBLACKFIN__"); \
84 \
85 switch (bfin_cpu_type) \
86 { \
318b3009
BS
87 case BFIN_CPU_BF512: \
88 builtin_define ("__ADSPBF512__"); \
89 builtin_define ("__ADSPBF51x__"); \
90 break; \
91 case BFIN_CPU_BF514: \
92 builtin_define ("__ADSPBF514__"); \
93 builtin_define ("__ADSPBF51x__"); \
94 break; \
95 case BFIN_CPU_BF516: \
96 builtin_define ("__ADSPBF516__"); \
97 builtin_define ("__ADSPBF51x__"); \
98 break; \
99 case BFIN_CPU_BF518: \
100 builtin_define ("__ADSPBF518__"); \
101 builtin_define ("__ADSPBF51x__"); \
102 break; \
ea2382be
JZ
103 case BFIN_CPU_BF522: \
104 builtin_define ("__ADSPBF522__"); \
105 builtin_define ("__ADSPBF52x__"); \
106 break; \
64882649
BS
107 case BFIN_CPU_BF523: \
108 builtin_define ("__ADSPBF523__"); \
109 builtin_define ("__ADSPBF52x__"); \
110 break; \
111 case BFIN_CPU_BF524: \
112 builtin_define ("__ADSPBF524__"); \
113 builtin_define ("__ADSPBF52x__"); \
114 break; \
ea2382be
JZ
115 case BFIN_CPU_BF525: \
116 builtin_define ("__ADSPBF525__"); \
117 builtin_define ("__ADSPBF52x__"); \
118 break; \
64882649
BS
119 case BFIN_CPU_BF526: \
120 builtin_define ("__ADSPBF526__"); \
121 builtin_define ("__ADSPBF52x__"); \
122 break; \
ea2382be
JZ
123 case BFIN_CPU_BF527: \
124 builtin_define ("__ADSPBF527__"); \
125 builtin_define ("__ADSPBF52x__"); \
126 break; \
9d3f9aa3
BS
127 case BFIN_CPU_BF531: \
128 builtin_define ("__ADSPBF531__"); \
129 break; \
130 case BFIN_CPU_BF532: \
131 builtin_define ("__ADSPBF532__"); \
132 break; \
133 case BFIN_CPU_BF533: \
134 builtin_define ("__ADSPBF533__"); \
135 break; \
28f601ff
JZ
136 case BFIN_CPU_BF534: \
137 builtin_define ("__ADSPBF534__"); \
138 break; \
139 case BFIN_CPU_BF536: \
140 builtin_define ("__ADSPBF536__"); \
141 break; \
9d3f9aa3
BS
142 case BFIN_CPU_BF537: \
143 builtin_define ("__ADSPBF537__"); \
144 break; \
ea2382be
JZ
145 case BFIN_CPU_BF538: \
146 builtin_define ("__ADSPBF538__"); \
147 break; \
148 case BFIN_CPU_BF539: \
149 builtin_define ("__ADSPBF539__"); \
150 break; \
5254cd50
BS
151 case BFIN_CPU_BF542M: \
152 builtin_define ("__ADSPBF542M__"); \
ea2382be
JZ
153 case BFIN_CPU_BF542: \
154 builtin_define ("__ADSPBF542__"); \
155 builtin_define ("__ADSPBF54x__"); \
156 break; \
5254cd50
BS
157 case BFIN_CPU_BF544M: \
158 builtin_define ("__ADSPBF544M__"); \
ea2382be
JZ
159 case BFIN_CPU_BF544: \
160 builtin_define ("__ADSPBF544__"); \
161 builtin_define ("__ADSPBF54x__"); \
162 break; \
5254cd50
BS
163 case BFIN_CPU_BF547M: \
164 builtin_define ("__ADSPBF547M__"); \
64882649
BS
165 case BFIN_CPU_BF547: \
166 builtin_define ("__ADSPBF547__"); \
167 builtin_define ("__ADSPBF54x__"); \
168 break; \
5254cd50
BS
169 case BFIN_CPU_BF548M: \
170 builtin_define ("__ADSPBF548M__"); \
171 case BFIN_CPU_BF548: \
172 builtin_define ("__ADSPBF548__"); \
173 builtin_define ("__ADSPBF54x__"); \
174 break; \
175 case BFIN_CPU_BF549M: \
176 builtin_define ("__ADSPBF549M__"); \
ea2382be
JZ
177 case BFIN_CPU_BF549: \
178 builtin_define ("__ADSPBF549__"); \
179 builtin_define ("__ADSPBF54x__"); \
180 break; \
28f601ff
JZ
181 case BFIN_CPU_BF561: \
182 builtin_define ("__ADSPBF561__"); \
183 break; \
9d3f9aa3
BS
184 } \
185 \
ea2382be
JZ
186 if (bfin_si_revision != -1) \
187 { \
188 /* space of 0xnnnn and a NUL */ \
5ead67f6 189 char *buf = XALLOCAVEC (char, 7); \
ea2382be
JZ
190 \
191 sprintf (buf, "0x%04x", bfin_si_revision); \
192 builtin_define_with_value ("__SILICON_REVISION__", buf, 0); \
193 } \
194 \
195 if (bfin_workarounds) \
196 builtin_define ("__WORKAROUNDS_ENABLED"); \
197 if (ENABLE_WA_SPECULATIVE_LOADS) \
198 builtin_define ("__WORKAROUND_SPECULATIVE_LOADS"); \
199 if (ENABLE_WA_SPECULATIVE_SYNCS) \
200 builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS"); \
c2d54fdf 201 if (ENABLE_WA_INDIRECT_CALLS) \
bf85bc3d 202 builtin_define ("__WORKAROUND_INDIRECT_CALLS"); \
2643f14e 203 if (ENABLE_WA_RETS) \
bf85bc3d 204 builtin_define ("__WORKAROUND_RETS"); \
ea2382be 205 \
6614f9f5 206 if (TARGET_FDPIC) \
f13488c0
BS
207 { \
208 builtin_define ("__BFIN_FDPIC__"); \
209 builtin_define ("__FDPIC__"); \
210 } \
ea2382be
JZ
211 if (TARGET_ID_SHARED_LIBRARY \
212 && !TARGET_SEP_DATA) \
4af990cd 213 builtin_define ("__ID_SHARED_LIB__"); \
ae80f469
JZ
214 if (flag_no_builtin) \
215 builtin_define ("__NO_BUILTIN"); \
16869606
BS
216 if (TARGET_MULTICORE) \
217 builtin_define ("__BFIN_MULTICORE"); \
218 if (TARGET_COREA) \
219 builtin_define ("__BFIN_COREA"); \
220 if (TARGET_COREB) \
221 builtin_define ("__BFIN_COREB"); \
222 if (TARGET_SDRAM) \
223 builtin_define ("__BFIN_SDRAM"); \
ea2382be 224 } \
0d4a78eb
BS
225 while (0)
226#endif
227
6614f9f5 228#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
93147119 229 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
6614f9f5
BS
230 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
231 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
232"
233#ifndef SUBTARGET_DRIVER_SELF_SPECS
234# define SUBTARGET_DRIVER_SELF_SPECS
235#endif
236
2c117a21
JZ
237#define LINK_GCC_C_SEQUENCE_SPEC "\
238 %{mfast-fp:-lbffastfp} %G %L %{mfast-fp:-lbffastfp} %G \
239"
6614f9f5 240
6614f9f5
BS
241#undef ASM_SPEC
242#define ASM_SPEC "\
78a14252 243%{Ym,*} %{Yd,*} \
6614f9f5
BS
244 %{mno-fdpic:-mnopic} %{mfdpic}"
245
246#define LINK_SPEC "\
247%{h*} %{v:-V} \
6614f9f5
BS
248%{mfdpic:-melf32bfinfd -z text} \
249%{static:-dn -Bstatic} \
250%{shared:-G -Bdynamic} \
251%{symbolic:-Bsymbolic} \
6614f9f5
BS
252%{YP,*} \
253%{Qy:} %{!Qn:-Qy} \
254-init __init -fini __fini "
255
0d4a78eb
BS
256/* Generate DSP instructions, like DSP halfword loads */
257#define TARGET_DSP (1)
258
ea2382be 259#define TARGET_DEFAULT 0
0d4a78eb 260
0d4a78eb
BS
261/* Maximum number of library ids we permit */
262#define MAX_LIBRARY_ID 255
263
264extern const char *bfin_library_id_string;
265
0d4a78eb
BS
266#define FUNCTION_MODE SImode
267#define Pmode SImode
268
269/* store-condition-codes instructions store 0 for false
270 This is the value stored for true. */
271#define STORE_FLAG_VALUE 1
272
273/* Define this if pushing a word on the stack
274 makes the stack pointer a smaller address. */
275#define STACK_GROWS_DOWNWARD
276
277#define STACK_PUSH_CODE PRE_DEC
278
a4d05547 279/* Define this to nonzero if the nominal address of the stack frame
0d4a78eb
BS
280 is at the high-address end of the local variables;
281 that is, each additional local variable allocated
282 goes at a more negative offset in the frame. */
f62c8a5c 283#define FRAME_GROWS_DOWNWARD 1
0d4a78eb
BS
284
285/* We define a dummy ARGP register; the parameters start at offset 0 from
286 it. */
287#define FIRST_PARM_OFFSET(DECL) 0
288
289/* Offset within stack frame to start allocating local variables at.
290 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
291 first local allocated. Otherwise, it is the offset to the BEGINNING
292 of the first local allocated. */
293#define STARTING_FRAME_OFFSET 0
294
295/* Register to use for pushing function arguments. */
296#define STACK_POINTER_REGNUM REG_P6
297
298/* Base register for access to local variables of the function. */
299#define FRAME_POINTER_REGNUM REG_P7
300
301/* A dummy register that will be eliminated to either FP or SP. */
302#define ARG_POINTER_REGNUM REG_ARGP
303
304/* `PIC_OFFSET_TABLE_REGNUM'
305 The register number of the register used to address a table of
306 static data addresses in memory. In some cases this register is
307 defined by a processor's "application binary interface" (ABI).
308 When this macro is defined, RTL is generated for this register
309 once, as with the stack pointer and frame pointer registers. If
310 this macro is not defined, it is up to the machine-dependent files
311 to allocate such a register (if necessary). */
312#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
313
6614f9f5
BS
314#define FDPIC_FPTR_REGNO REG_P1
315#define FDPIC_REGNO REG_P3
316#define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
317
0d4a78eb
BS
318/* A static chain register for nested functions. We need to use a
319 call-clobbered register for this. */
320#define STATIC_CHAIN_REGNUM REG_P2
321
322/* Define this if functions should assume that stack space has been
323 allocated for arguments even when their values are passed in
324 registers.
325
326 The value of this macro is the size, in bytes, of the area reserved for
327 arguments passed in registers.
328
329 This space can either be allocated by the caller or be a part of the
330 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
331 says which. */
332#define FIXED_STACK_AREA 12
333#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
334
335/* Define this if the above stack space is to be considered part of the
336 * space allocated by the caller. */
81464b2c 337#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
0d4a78eb
BS
338
339/* Define this if the maximum size of all the outgoing args is to be
340 accumulated and pushed during the prologue. The amount can be
38173d38 341 found in the variable crtl->outgoing_args_size. */
0d4a78eb
BS
342#define ACCUMULATE_OUTGOING_ARGS 1
343
0d4a78eb
BS
344/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
345
520c62ad
BS
346/* If defined, a C expression to compute the alignment for a local
347 variable. TYPE is the data type, and ALIGN is the alignment that
348 the object would ordinarily have. The value of this macro is used
349 instead of that alignment to align the object.
350
351 If this macro is not defined, then ALIGN is used.
352
353 One use of this macro is to increase alignment of medium-size
354 data to make it all fit in fewer cache lines. */
355
356#define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
357
0d4a78eb
BS
358/* Make strings word-aligned so strcpy from constants will be faster. */
359#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
360 (TREE_CODE (EXP) == STRING_CST \
361 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
362
6614f9f5 363#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
0d4a78eb
BS
364\f
365/* Definitions for register eliminations.
366
367 This is an array of structures. Each structure initializes one pair
368 of eliminable registers. The "from" register number is given first,
369 followed by "to". Eliminations of the same "from" register are listed
370 in order of preference.
371
372 There are two registers that can always be eliminated on the i386.
373 The frame pointer and the arg pointer can be replaced by either the
374 hard frame pointer or to the stack pointer, depending upon the
375 circumstances. The hard frame pointer is not used before reload and
376 so it is not eligible for elimination. */
377
378#define ELIMINABLE_REGS \
379{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
380 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
381 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
382
0d4a78eb
BS
383/* Define the offset between two registers, one to be eliminated, and the other
384 its replacement, at the start of a routine. */
385
386#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
387 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
388\f
389/* This processor has
390 8 data register for doing arithmetic
391 8 pointer register for doing addressing, including
392 1 stack pointer P6
393 1 frame pointer P7
394 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
395 1 condition code flag register CC
396 5 return address registers RETS/I/X/N/E
397 1 arithmetic status register (ASTAT). */
398
b03149e1 399#define FIRST_PSEUDO_REGISTER 50
0d4a78eb 400
0d4a78eb 401#define D_REGNO_P(X) ((X) <= REG_R7)
c4963a0a 402#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
b03149e1
JZ
403#define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
404#define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
405#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
406#define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
407#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
408#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
409#define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
0d4a78eb
BS
410
411#define REGISTER_NAMES { \
412 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
413 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
df259245
JZ
414 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
415 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
0d4a78eb
BS
416 "A0", "A1", \
417 "CC", \
418 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
b03149e1
JZ
419 "ARGP", \
420 "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
0d4a78eb
BS
421}
422
423#define SHORT_REGISTER_NAMES { \
424 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
425 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
df259245
JZ
426 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
427 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
0d4a78eb
BS
428
429#define HIGH_REGISTER_NAMES { \
430 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
431 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
df259245
JZ
432 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
433 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
0d4a78eb
BS
434
435#define DREGS_PAIR_NAMES { \
436 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
437
438#define BYTE_REGISTER_NAMES { \
439 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
440
441
442/* 1 for registers that have pervasive standard uses
443 and are not available for the register allocator. */
444
445#define FIXED_REGISTERS \
446/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
447{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
df259245
JZ
448/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
449 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
b03149e1
JZ
450/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
451 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
452/*lb0/1 */ \
453 1, 1 \
0d4a78eb
BS
454}
455
456/* 1 for registers not available across function calls.
457 These must include the FIXED_REGISTERS and also any
458 registers that can be used without being saved.
459 The latter must include the registers where values are returned
460 and the register where structure-value addresses are passed.
461 Aside from that, you can include as many other registers as you like. */
462
463#define CALL_USED_REGISTERS \
464/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
465{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
df259245 466/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
0d4a78eb 467 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b03149e1
JZ
468/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
469 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
470/*lb0/1 */ \
471 1, 1 \
0d4a78eb
BS
472}
473
474/* Order in which to allocate registers. Each register must be
475 listed once, even those in FIXED_REGISTERS. List frame pointer
476 late and fixed registers last. Note that, in general, we prefer
477 registers listed in CALL_USED_REGISTERS, keeping the others
478 available for storage of persistent values. */
479
480#define REG_ALLOC_ORDER \
481{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
482 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
483 REG_A0, REG_A1, \
df259245
JZ
484 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
485 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
0d4a78eb
BS
486 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
487 REG_ASTAT, REG_SEQSTAT, REG_USP, \
b03149e1
JZ
488 REG_CC, REG_ARGP, \
489 REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
0d4a78eb
BS
490}
491
0d4a78eb
BS
492/* Define the classes of registers for register constraints in the
493 machine description. Also define ranges of constants.
494
495 One of the classes must always be named ALL_REGS and include all hard regs.
496 If there is more than one class, another class must be named NO_REGS
497 and contain no registers.
498
499 The name GENERAL_REGS must be the name of a class (or an alias for
500 another name such as ALL_REGS). This is the class of registers
501 that is allowed by "g" or "r" in a register constraint.
502 Also, registers outside this class are allocated only when
503 instructions express preferences for them.
504
505 The classes must be numbered in nondecreasing order; that is,
506 a larger-numbered class must never be contained completely
507 in a smaller-numbered class.
508
509 For any two classes, it is very desirable that there be another
510 class that represents their union. */
511
512
513enum reg_class
514{
515 NO_REGS,
516 IREGS,
517 BREGS,
518 LREGS,
519 MREGS,
f652d14b 520 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
0d4a78eb
BS
521 DAGREGS,
522 EVEN_AREGS,
523 ODD_AREGS,
524 AREGS,
525 CCREGS,
526 EVEN_DREGS,
527 ODD_DREGS,
2889abed
BS
528 D0REGS,
529 D1REGS,
530 D2REGS,
531 D3REGS,
532 D4REGS,
533 D5REGS,
534 D6REGS,
535 D7REGS,
0d4a78eb 536 DREGS,
03848bd0 537 P0REGS,
6614f9f5
BS
538 FDPIC_REGS,
539 FDPIC_FPTR_REGS,
0d4a78eb
BS
540 PREGS_CLOBBERED,
541 PREGS,
c4963a0a 542 IPREGS,
0d4a78eb
BS
543 DPREGS,
544 MOST_REGS,
b03149e1
JZ
545 LT_REGS,
546 LC_REGS,
547 LB_REGS,
0d4a78eb
BS
548 PROLOGUE_REGS,
549 NON_A_CC_REGS,
550 ALL_REGS, LIM_REG_CLASSES
551};
552
553#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
554
555#define GENERAL_REGS DPREGS
556
557/* Give names of register classes as strings for dump file. */
558
559#define REG_CLASS_NAMES \
560{ "NO_REGS", \
561 "IREGS", \
562 "BREGS", \
563 "LREGS", \
564 "MREGS", \
565 "CIRCREGS", \
566 "DAGREGS", \
567 "EVEN_AREGS", \
568 "ODD_AREGS", \
569 "AREGS", \
570 "CCREGS", \
571 "EVEN_DREGS", \
572 "ODD_DREGS", \
2889abed
BS
573 "D0REGS", \
574 "D1REGS", \
575 "D2REGS", \
576 "D3REGS", \
577 "D4REGS", \
578 "D5REGS", \
579 "D6REGS", \
580 "D7REGS", \
0d4a78eb 581 "DREGS", \
03848bd0 582 "P0REGS", \
6614f9f5
BS
583 "FDPIC_REGS", \
584 "FDPIC_FPTR_REGS", \
0d4a78eb
BS
585 "PREGS_CLOBBERED", \
586 "PREGS", \
c4963a0a 587 "IPREGS", \
0d4a78eb
BS
588 "DPREGS", \
589 "MOST_REGS", \
b03149e1
JZ
590 "LT_REGS", \
591 "LC_REGS", \
592 "LB_REGS", \
0d4a78eb
BS
593 "PROLOGUE_REGS", \
594 "NON_A_CC_REGS", \
595 "ALL_REGS" }
596
597/* An initializer containing the contents of the register classes, as integers
598 which are bit masks. The Nth integer specifies the contents of class N.
599 The way the integer MASK is interpreted is that register R is in the class
600 if `MASK & (1 << R)' is 1.
601
602 When the machine has more than 32 registers, an integer does not suffice.
603 Then the integers are replaced by sub-initializers, braced groupings
604 containing several integers. Each sub-initializer must be suitable as an
605 initializer for the type `HARD_REG_SET' which is defined in
606 `hard-reg-set.h'. */
607
608/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
609 MOST_REGS as the union of DPREGS and DAGREGS. */
610
611#define REG_CLASS_CONTENTS \
612 /* 31 - 0 63-32 */ \
613{ { 0x00000000, 0 }, /* NO_REGS */ \
df259245
JZ
614 { 0x000f0000, 0 }, /* IREGS */ \
615 { 0x00f00000, 0 }, /* BREGS */ \
616 { 0x0f000000, 0 }, /* LREGS */ \
0d4a78eb
BS
617 { 0xf0000000, 0 }, /* MREGS */ \
618 { 0x0fff0000, 0 }, /* CIRCREGS */ \
619 { 0xffff0000, 0 }, /* DAGREGS */ \
620 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
621 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
622 { 0x00000000, 0x3 }, /* AREGS */ \
623 { 0x00000000, 0x4 }, /* CCREGS */ \
624 { 0x00000055, 0 }, /* EVEN_DREGS */ \
625 { 0x000000aa, 0 }, /* ODD_DREGS */ \
2889abed
BS
626 { 0x00000001, 0 }, /* D0REGS */ \
627 { 0x00000002, 0 }, /* D1REGS */ \
628 { 0x00000004, 0 }, /* D2REGS */ \
629 { 0x00000008, 0 }, /* D3REGS */ \
630 { 0x00000010, 0 }, /* D4REGS */ \
631 { 0x00000020, 0 }, /* D5REGS */ \
632 { 0x00000040, 0 }, /* D6REGS */ \
633 { 0x00000080, 0 }, /* D7REGS */ \
0d4a78eb 634 { 0x000000ff, 0 }, /* DREGS */ \
03848bd0 635 { 0x00000100, 0x000 }, /* P0REGS */ \
6614f9f5
BS
636 { 0x00000800, 0x000 }, /* FDPIC_REGS */ \
637 { 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
0d4a78eb
BS
638 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
639 { 0x0000ff00, 0x800 }, /* PREGS */ \
c4963a0a 640 { 0x000fff00, 0x800 }, /* IPREGS */ \
0d4a78eb
BS
641 { 0x0000ffff, 0x800 }, /* DPREGS */ \
642 { 0xffffffff, 0x800 }, /* MOST_REGS */\
b03149e1
JZ
643 { 0x00000000, 0x3000 }, /* LT_REGS */\
644 { 0x00000000, 0xc000 }, /* LC_REGS */\
645 { 0x00000000, 0x30000 }, /* LB_REGS */\
646 { 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
647 { 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
648 { 0xffffffff, 0x3ffff }} /* ALL_REGS */
0d4a78eb 649
c4963a0a
BS
650#define IREG_POSSIBLE_P(OUTER) \
651 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
652 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
653 || (OUTER) == MEM || (OUTER) == ADDRESS)
654
655#define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
656 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
657
0d4a78eb
BS
658#define INDEX_REG_CLASS PREGS
659
c4963a0a
BS
660#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
661 (P_REGNO_P (X) || (X) == REG_ARGP \
662 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
663 && I_REGNO_P (X)))
664
665#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
666 ((X) >= FIRST_PSEUDO_REGISTER \
667 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
0d4a78eb
BS
668
669#ifdef REG_OK_STRICT
c4963a0a
BS
670#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
671 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb 672#else
c4963a0a
BS
673#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
674 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb
BS
675#endif
676
0d4a78eb
BS
677#define REGNO_OK_FOR_INDEX_P(X) 0
678
0d4a78eb
BS
679/* The same information, inverted:
680 Return the class number of the smallest class containing
681 reg number REGNO. This could be a conditional expression
682 or could index an array. */
683
684#define REGNO_REG_CLASS(REGNO) \
2889abed
BS
685((REGNO) == REG_R0 ? D0REGS \
686 : (REGNO) == REG_R1 ? D1REGS \
687 : (REGNO) == REG_R2 ? D2REGS \
688 : (REGNO) == REG_R3 ? D3REGS \
689 : (REGNO) == REG_R4 ? D4REGS \
690 : (REGNO) == REG_R5 ? D5REGS \
691 : (REGNO) == REG_R6 ? D6REGS \
692 : (REGNO) == REG_R7 ? D7REGS \
03848bd0 693 : (REGNO) == REG_P0 ? P0REGS \
0d4a78eb 694 : (REGNO) < REG_I0 ? PREGS \
c4963a0a 695 : (REGNO) == REG_ARGP ? PREGS \
0d4a78eb
BS
696 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
697 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
698 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
699 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
700 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
b03149e1
JZ
701 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
702 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
703 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
0d4a78eb
BS
704 : (REGNO) == REG_CC ? CCREGS \
705 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
706 : NO_REGS)
707
058e97ec
VM
708/* The following macro defines cover classes for Integrated Register
709 Allocator. Cover classes is a set of non-intersected register
710 classes covering all hard registers used for register allocation
711 purpose. Any move between two registers of a cover class should be
712 cheaper than load or store of the registers. The macro value is
713 array of register classes with LIM_REG_CLASSES used as the end
714 marker. */
715
716#define IRA_COVER_CLASSES \
717{ \
718 MOST_REGS, AREGS, CCREGS, LIM_REG_CLASSES \
719}
720
42db504c
SB
721/* When this hook returns true for MODE, the compiler allows
722 registers explicitly used in the rtl to be used as spill registers
723 but prevents the compiler from extending the lifetime of these
724 registers. */
725#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
0d4a78eb 726
0d4a78eb
BS
727/* Do not allow to store a value in REG_CC for any mode */
728/* Do not allow to store value in pregs if mode is not SI*/
729#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
730
731/* Return the maximum number of consecutive registers
732 needed to represent mode MODE in a register of class CLASS. */
75d8b2d0
BS
733#define CLASS_MAX_NREGS(CLASS, MODE) \
734 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
735 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0d4a78eb
BS
736
737#define HARD_REGNO_NREGS(REGNO, MODE) \
75d8b2d0
BS
738 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
739 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
740 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
0d4a78eb
BS
741
742/* A C expression that is nonzero if hard register TO can be
743 considered for use as a rename register for FROM register */
744#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
745
746/* A C expression that is nonzero if it is desirable to choose
747 register allocation so as to avoid move instructions between a
748 value of mode MODE1 and a value of mode MODE2.
749
750 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
751 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
752 MODE2)' must be zero. */
4d4f2837
BS
753#define MODES_TIEABLE_P(MODE1, MODE2) \
754 ((MODE1) == (MODE2) \
755 || ((GET_MODE_CLASS (MODE1) == MODE_INT \
756 || GET_MODE_CLASS (MODE1) == MODE_FLOAT) \
757 && (GET_MODE_CLASS (MODE2) == MODE_INT \
758 || GET_MODE_CLASS (MODE2) == MODE_FLOAT) \
759 && (MODE1) != BImode && (MODE2) != BImode \
760 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
761 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD))
0d4a78eb
BS
762
763/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
764 A C expression that places additional restrictions on the register
765 class to use when it is necessary to copy value X into a register
766 in class CLASS. The value is a register class; perhaps CLASS, or
767 perhaps another, smaller class. */
aeffb4b5
BS
768#define PREFERRED_RELOAD_CLASS(X, CLASS) \
769 (GET_CODE (X) == POST_INC \
770 || GET_CODE (X) == POST_DEC \
771 || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
0d4a78eb 772
0d4a78eb
BS
773/* Function Calling Conventions. */
774
775/* The type of the current function; normal functions are of type
776 SUBROUTINE. */
777typedef enum {
778 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
779} e_funkind;
9840d30a 780#define FUNCTION_RETURN_REGISTERS { REG_RETS, REG_RETI, REG_RETX, REG_RETN }
0d4a78eb
BS
781
782#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
783
6d459e2b
BS
784/* Flags for the call/call_value rtl operations set up by function_arg */
785#define CALL_NORMAL 0x00000000 /* no special processing */
786#define CALL_LONG 0x00000001 /* always call indirect */
787#define CALL_SHORT 0x00000002 /* always call by symbol */
788
0d4a78eb
BS
789typedef struct {
790 int words; /* # words passed so far */
791 int nregs; /* # registers available for passing */
792 int *arg_regs; /* array of register -1 terminated */
6d459e2b 793 int call_cookie; /* Do special things for this call */
0d4a78eb
BS
794} CUMULATIVE_ARGS;
795
0d4a78eb
BS
796#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
797
798
799/* Initialize a variable CUM of type CUMULATIVE_ARGS
800 for a call to a function whose data type is FNTYPE.
801 For a library call, FNTYPE is 0. */
802#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
803 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
804
0d4a78eb
BS
805/* Define how to find the value returned by a function.
806 VALTYPE is the data type of the value (as a tree).
807 If the precise function being called is known, FUNC is its FUNCTION_DECL;
808 otherwise, FUNC is 0.
809*/
810
811#define VALUE_REGNO(MODE) (REG_R0)
812
813#define FUNCTION_VALUE(VALTYPE, FUNC) \
814 gen_rtx_REG (TYPE_MODE (VALTYPE), \
815 VALUE_REGNO(TYPE_MODE(VALTYPE)))
816
817/* Define how to find the value returned by a library function
818 assuming the value has mode MODE. */
819
820#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
821
822#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
823
824#define DEFAULT_PCC_STRUCT_RETURN 0
0d4a78eb
BS
825
826/* Before the prologue, the return address is in the RETS register. */
827#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
828
829#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
830
831#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
832
833/* Call instructions don't modify the stack pointer on the Blackfin. */
834#define INCOMING_FRAME_SP_OFFSET 0
835
836/* Describe how we implement __builtin_eh_return. */
837#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
838#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
839#define EH_RETURN_HANDLER_RTX \
1ca950ca 840 gen_frame_mem (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
0d4a78eb
BS
841
842/* Addressing Modes */
843
0d4a78eb
BS
844/* Nonzero if the constant value X is a legitimate general operand.
845 symbol_ref are not legitimate and will be put into constant pool.
846 See force_const_mem().
847 If -mno-pool, all constants are legitimate.
848 */
d6f6753e 849#define LEGITIMATE_CONSTANT_P(X) bfin_legitimate_constant_p (X)
0d4a78eb
BS
850
851/* A number, the maximum number of registers that can appear in a
852 valid memory address. Note that it is up to you to specify a
331d9186 853 value equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P'
0d4a78eb
BS
854 would ever accept. */
855#define MAX_REGS_PER_ADDRESS 1
856
0d4a78eb
BS
857#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
858 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
859
0d4a78eb
BS
860#define HAVE_POST_INCREMENT 1
861#define HAVE_POST_DECREMENT 1
862#define HAVE_PRE_DECREMENT 1
863
864/* `LEGITIMATE_PIC_OPERAND_P (X)'
865 A C expression that is nonzero if X is a legitimate immediate
866 operand on the target machine when generating position independent
867 code. You can assume that X satisfies `CONSTANT_P', so you need
868 not check this. You can also assume FLAG_PIC is true, so you need
869 not check it either. You need not define this macro if all
870 constants (including `SYMBOL_REF') can be immediate operands when
871 generating position independent code. */
872#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
873
874#define SYMBOLIC_CONST(X) \
875(GET_CODE (X) == SYMBOL_REF \
876 || GET_CODE (X) == LABEL_REF \
877 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
878
0d4a78eb
BS
879#define NOTICE_UPDATE_CC(EXPR, INSN) 0
880
881/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
882 is done just by pretending it is already truncated. */
883#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
884
885/* Max number of bytes we can move from memory to memory
886 in one reasonably fast instruction. */
887#define MOVE_MAX UNITS_PER_WORD
888
b548a9c2
BS
889/* If a memory-to-memory move would take MOVE_RATIO or more simple
890 move-instruction pairs, we will do a movmem or libcall instead. */
891
e04ad03d 892#define MOVE_RATIO(speed) 5
0d4a78eb
BS
893
894/* STORAGE LAYOUT: target machine storage layout
895 Define this macro as a C expression which is nonzero if accessing
896 less than a word of memory (i.e. a `char' or a `short') is no
897 faster than accessing a word of memory, i.e., if such access
898 require more than one instruction or if there is no difference in
899 cost between byte and (aligned) word loads.
900
901 When this macro is not defined, the compiler will access a field by
902 finding the smallest containing object; when it is defined, a
903 fullword load will be used if alignment permits. Unless bytes
904 accesses are faster than word accesses, using word accesses is
905 preferable since it may eliminate subsequent memory access if
906 subsequent accesses occur to other fields in the same word of the
907 structure, but to different bytes. */
908#define SLOW_BYTE_ACCESS 0
909#define SLOW_SHORT_ACCESS 0
910
911/* Define this if most significant bit is lowest numbered
912 in instructions that operate on numbered bit-fields. */
913#define BITS_BIG_ENDIAN 0
914
915/* Define this if most significant byte of a word is the lowest numbered.
916 We can't access bytes but if we could we would in the Big Endian order. */
917#define BYTES_BIG_ENDIAN 0
918
919/* Define this if most significant word of a multiword number is numbered. */
920#define WORDS_BIG_ENDIAN 0
921
922/* number of bits in an addressable storage unit */
923#define BITS_PER_UNIT 8
924
925/* Width in bits of a "word", which is the contents of a machine register.
926 Note that this is not necessarily the width of data type `int';
927 if using 16-bit ints on a 68000, this would still be 32.
928 But on a machine with 16-bit registers, this would be 16. */
929#define BITS_PER_WORD 32
930
931/* Width of a word, in units (bytes). */
932#define UNITS_PER_WORD 4
933
0d4a78eb
BS
934/* Width in bits of a pointer.
935 See also the macro `Pmode1' defined below. */
936#define POINTER_SIZE 32
937
938/* Allocation boundary (in *bits*) for storing pointers in memory. */
939#define POINTER_BOUNDARY 32
940
941/* Allocation boundary (in *bits*) for storing arguments in argument list. */
942#define PARM_BOUNDARY 32
943
944/* Boundary (in *bits*) on which stack pointer should be aligned. */
945#define STACK_BOUNDARY 32
946
947/* Allocation boundary (in *bits*) for the code of a function. */
948#define FUNCTION_BOUNDARY 32
949
950/* Alignment of field after `int : 0' in a structure. */
951#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
952
953/* No data type wants to be aligned rounder than this. */
954#define BIGGEST_ALIGNMENT 32
955
956/* Define this if move instructions will actually fail to work
957 when given unaligned data. */
958#define STRICT_ALIGNMENT 1
959
960/* (shell-command "rm c-decl.o stor-layout.o")
961 * never define PCC_BITFIELD_TYPE_MATTERS
962 * really cause some alignment problem
963 */
964
965#define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
966 BITS_PER_UNIT)
967
968#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
969 BITS_PER_UNIT)
970
971
972/* what is the 'type' of size_t */
973#define SIZE_TYPE "long unsigned int"
974
975/* Define this as 1 if `char' should by default be signed; else as 0. */
976#define DEFAULT_SIGNED_CHAR 1
977#define FLOAT_TYPE_SIZE BITS_PER_WORD
978#define SHORT_TYPE_SIZE 16
979#define CHAR_TYPE_SIZE 8
980#define INT_TYPE_SIZE 32
981#define LONG_TYPE_SIZE 32
982#define LONG_LONG_TYPE_SIZE 64
983
984/* Note: Fix this to depend on target switch. -- lev */
985
986/* Note: Try to implement double and force long double. -- tonyko
987 * #define __DOUBLES_ARE_FLOATS__
988 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
989 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
990 * #define DOUBLES_ARE_FLOATS 1
991 */
992
993#define DOUBLE_TYPE_SIZE 64
994#define LONG_DOUBLE_TYPE_SIZE 64
995
996/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
997 A macro to update M and UNSIGNEDP when an object whose type is
998 TYPE and which has the specified mode and signedness is to be
999 stored in a register. This macro is only called when TYPE is a
1000 scalar type.
1001
1002 On most RISC machines, which only have operations that operate on
1003 a full register, define this macro to set M to `word_mode' if M is
1004 an integer mode narrower than `BITS_PER_WORD'. In most cases,
1005 only integer modes should be widened because wider-precision
1006 floating-point operations are usually more expensive than their
1007 narrower counterparts.
1008
1009 For most machines, the macro definition does not change UNSIGNEDP.
1010 However, some machines, have instructions that preferentially
1011 handle either signed or unsigned quantities of certain modes. For
1012 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
1013 instructions sign-extend the result to 64 bits. On such machines,
1014 set UNSIGNEDP according to which kind of extension is more
1015 efficient.
1016
1017 Do not define this macro if it would never modify M.*/
1018
1019#define BFIN_PROMOTE_MODE_P(MODE) \
1020 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
1021 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
1022
1023#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1024 if (BFIN_PROMOTE_MODE_P(MODE)) \
1025 { \
1026 if (MODE == QImode) \
1027 UNSIGNEDP = 1; \
1028 else if (MODE == HImode) \
1029 UNSIGNEDP = 0; \
1030 (MODE) = SImode; \
1031 }
1032
1033/* Describing Relative Costs of Operations */
1034
1035/* Do not put function addr into constant pool */
1036#define NO_FUNCTION_CSE 1
1037
1038/* A C expression for the cost of moving data from a register in class FROM to
1039 one in class TO. The classes are expressed using the enumeration values
1040 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1041 interpreted relative to that.
1042
1043 It is not required that the cost always equal 2 when FROM is the same as TO;
1044 on some machines it is expensive to move between registers if they are not
1045 general registers. */
1046
1047#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1048 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1049
1050/* A C expression for the cost of moving data of mode M between a
1051 register and memory. A value of 2 is the default; this cost is
1052 relative to those in `REGISTER_MOVE_COST'.
1053
1054 If moving between registers and memory is more expensive than
1055 between two registers, you should define this macro to express the
1056 relative cost. */
1057
1058#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1059 bfin_memory_move_cost ((MODE), (CLASS), (IN))
1060
1061/* Specify the machine mode that this machine uses
1062 for the index in the tablejump instruction. */
1063#define CASE_VECTOR_MODE SImode
1064
1065#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1066
1067/* Define if operations between registers always perform the operation
1068 on the full register even if a narrower mode is specified.
1069#define WORD_REGISTER_OPERATIONS
1070*/
1071
3efd5670
BS
1072/* Evaluates to true if A and B are mac flags that can be used
1073 together in a single multiply insn. That is the case if they are
1074 both the same flag not involving M, or if one is a combination of
1075 the other with M. */
1076#define MACFLAGS_MATCH_P(A, B) \
1077 ((A) == (B) \
1078 || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
1079 || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
1080 || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
1081 || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
1082
0d4a78eb
BS
1083/* Switch into a generic section. */
1084#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1085
1086#define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1087#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1088
1089typedef enum sections {
1090 CODE_DIR,
1091 DATA_DIR,
1092 LAST_SECT_NM
1093} SECT_ENUM_T;
1094
1095typedef enum directives {
1096 LONG_CONST_DIR,
1097 SHORT_CONST_DIR,
1098 BYTE_CONST_DIR,
1099 SPACE_DIR,
1100 INIT_DIR,
1101 LAST_DIR_NM
1102} DIR_ENUM_T;
1103
980d8882
BS
1104#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) \
1105 ((C) == ';' \
1106 || ((C) == '|' && (STR)[1] == '|'))
1107
0d4a78eb
BS
1108#define TEXT_SECTION_ASM_OP ".text;"
1109#define DATA_SECTION_ASM_OP ".data;"
1110
1111#define ASM_APP_ON ""
1112#define ASM_APP_OFF ""
1113
1114#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1115 do { fputs (".global ", FILE); \
1116 assemble_name (FILE, NAME); \
1117 fputc (';',FILE); \
1118 fputc ('\n',FILE); \
1119 } while (0)
1120
1121#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1122 do { \
1123 fputs (".type ", FILE); \
1124 assemble_name (FILE, NAME); \
1125 fputs (", STT_FUNC", FILE); \
1126 fputc (';',FILE); \
1127 fputc ('\n',FILE); \
1128 ASM_OUTPUT_LABEL(FILE, NAME); \
1129 } while (0)
1130
1131#define ASM_OUTPUT_LABEL(FILE, NAME) \
1132 do { assemble_name (FILE, NAME); \
1133 fputs (":\n",FILE); \
1134 } while (0)
1135
1136#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1137 do { fprintf (FILE, "_%s", NAME); \
1138 } while (0)
1139
0d4a78eb
BS
1140#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1141do { char __buf[256]; \
1142 fprintf (FILE, "\t.dd\t"); \
1143 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1144 assemble_name (FILE, __buf); \
1145 fputc (';', FILE); \
1146 fputc ('\n', FILE); \
1147 } while (0)
1148
1149#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1150 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1151
1152#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1153 do { \
1154 char __buf[256]; \
1155 fprintf (FILE, "\t.dd\t"); \
1156 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1157 assemble_name (FILE, __buf); \
1158 fputs (" - ", FILE); \
1159 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1160 assemble_name (FILE, __buf); \
1161 fputc (';', FILE); \
1162 fputc ('\n', FILE); \
1163 } while (0)
1164
1165#define ASM_OUTPUT_ALIGN(FILE,LOG) \
21956c07
BS
1166 do { \
1167 if ((LOG) != 0) \
1168 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
0d4a78eb
BS
1169 } while (0)
1170
1171#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1172 do { \
1173 asm_output_skip (FILE, SIZE); \
1174 } while (0)
1175
1176#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1177do { \
d6b5193b 1178 switch_to_section (data_section); \
0d4a78eb
BS
1179 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1180 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1181 ASM_OUTPUT_LABEL (FILE, NAME); \
1182 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1183 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1184} while (0)
1185
1186#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1187 do { \
1188 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1189 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1190
1191#define ASM_COMMENT_START "//"
1192
56014148
JZ
1193#define FUNCTION_PROFILER(FILE, LABELNO) \
1194 do { \
1195 fprintf (FILE, "\tCALL __mcount;\n"); \
0d4a78eb
BS
1196 } while(0)
1197
56014148
JZ
1198#undef NO_PROFILE_COUNTERS
1199#define NO_PROFILE_COUNTERS 1
1200
0d4a78eb
BS
1201#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1202#define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1203
0d4a78eb
BS
1204extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1205
1206/* This works for GAS and some other assemblers. */
1207#define SET_ASM_OP ".set "
1208
0d4a78eb
BS
1209/* DBX register number for a given compiler register number */
1210#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1211
1212#define SIZE_ASM_OP "\t.size\t"
1213
97a988bc 1214extern int splitting_for_sched, splitting_loops;
bbbc206e
BS
1215
1216#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1217
9840d30a
BS
1218#ifndef TARGET_SUPPORTS_SYNC_CALLS
1219#define TARGET_SUPPORTS_SYNC_CALLS 0
1220#endif
1221
0d4a78eb 1222#endif /* _BFIN_CONFIG */