]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/bfin/bfin.h
mov.md ("extendhipsi2"): New.
[thirdparty/gcc.git] / gcc / config / bfin / bfin.h
CommitLineData
0d4a78eb 1/* Definitions for the Blackfin port.
64882649 2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
0d4a78eb
BS
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
0d4a78eb
BS
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
2f83c7d6
NC
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
0d4a78eb
BS
20
21#ifndef _BFIN_CONFIG
22#define _BFIN_CONFIG
23
24#define OBJECT_FORMAT_ELF
25
26#define BRT 1
27#define BRF 0
28
29/* Print subsidiary information on the compiler version in use. */
30#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
31
32/* Run-time compilation parameters selecting different hardware subsets. */
33
34extern int target_flags;
35
36/* Predefinition in the preprocessor for this target machine */
37#ifndef TARGET_CPU_CPP_BUILTINS
ea2382be
JZ
38#define TARGET_CPU_CPP_BUILTINS() \
39 do \
40 { \
41 builtin_define_std ("bfin"); \
42 builtin_define_std ("BFIN"); \
42da70b7 43 builtin_define ("__ADSPBLACKFIN__"); \
9d3f9aa3
BS
44 builtin_define ("__ADSPLPBLACKFIN__"); \
45 \
46 switch (bfin_cpu_type) \
47 { \
318b3009
BS
48 case BFIN_CPU_BF512: \
49 builtin_define ("__ADSPBF512__"); \
50 builtin_define ("__ADSPBF51x__"); \
51 break; \
52 case BFIN_CPU_BF514: \
53 builtin_define ("__ADSPBF514__"); \
54 builtin_define ("__ADSPBF51x__"); \
55 break; \
56 case BFIN_CPU_BF516: \
57 builtin_define ("__ADSPBF516__"); \
58 builtin_define ("__ADSPBF51x__"); \
59 break; \
60 case BFIN_CPU_BF518: \
61 builtin_define ("__ADSPBF518__"); \
62 builtin_define ("__ADSPBF51x__"); \
63 break; \
ea2382be
JZ
64 case BFIN_CPU_BF522: \
65 builtin_define ("__ADSPBF522__"); \
66 builtin_define ("__ADSPBF52x__"); \
67 break; \
64882649
BS
68 case BFIN_CPU_BF523: \
69 builtin_define ("__ADSPBF523__"); \
70 builtin_define ("__ADSPBF52x__"); \
71 break; \
72 case BFIN_CPU_BF524: \
73 builtin_define ("__ADSPBF524__"); \
74 builtin_define ("__ADSPBF52x__"); \
75 break; \
ea2382be
JZ
76 case BFIN_CPU_BF525: \
77 builtin_define ("__ADSPBF525__"); \
78 builtin_define ("__ADSPBF52x__"); \
79 break; \
64882649
BS
80 case BFIN_CPU_BF526: \
81 builtin_define ("__ADSPBF526__"); \
82 builtin_define ("__ADSPBF52x__"); \
83 break; \
ea2382be
JZ
84 case BFIN_CPU_BF527: \
85 builtin_define ("__ADSPBF527__"); \
86 builtin_define ("__ADSPBF52x__"); \
87 break; \
9d3f9aa3
BS
88 case BFIN_CPU_BF531: \
89 builtin_define ("__ADSPBF531__"); \
90 break; \
91 case BFIN_CPU_BF532: \
92 builtin_define ("__ADSPBF532__"); \
93 break; \
94 case BFIN_CPU_BF533: \
95 builtin_define ("__ADSPBF533__"); \
96 break; \
28f601ff
JZ
97 case BFIN_CPU_BF534: \
98 builtin_define ("__ADSPBF534__"); \
99 break; \
100 case BFIN_CPU_BF536: \
101 builtin_define ("__ADSPBF536__"); \
102 break; \
9d3f9aa3
BS
103 case BFIN_CPU_BF537: \
104 builtin_define ("__ADSPBF537__"); \
105 break; \
ea2382be
JZ
106 case BFIN_CPU_BF538: \
107 builtin_define ("__ADSPBF538__"); \
108 break; \
109 case BFIN_CPU_BF539: \
110 builtin_define ("__ADSPBF539__"); \
111 break; \
112 case BFIN_CPU_BF542: \
113 builtin_define ("__ADSPBF542__"); \
114 builtin_define ("__ADSPBF54x__"); \
115 break; \
116 case BFIN_CPU_BF544: \
117 builtin_define ("__ADSPBF544__"); \
118 builtin_define ("__ADSPBF54x__"); \
119 break; \
120 case BFIN_CPU_BF548: \
121 builtin_define ("__ADSPBF548__"); \
122 builtin_define ("__ADSPBF54x__"); \
123 break; \
64882649
BS
124 case BFIN_CPU_BF547: \
125 builtin_define ("__ADSPBF547__"); \
126 builtin_define ("__ADSPBF54x__"); \
127 break; \
ea2382be
JZ
128 case BFIN_CPU_BF549: \
129 builtin_define ("__ADSPBF549__"); \
130 builtin_define ("__ADSPBF54x__"); \
131 break; \
28f601ff
JZ
132 case BFIN_CPU_BF561: \
133 builtin_define ("__ADSPBF561__"); \
134 break; \
9d3f9aa3
BS
135 } \
136 \
ea2382be
JZ
137 if (bfin_si_revision != -1) \
138 { \
139 /* space of 0xnnnn and a NUL */ \
5ead67f6 140 char *buf = XALLOCAVEC (char, 7); \
ea2382be
JZ
141 \
142 sprintf (buf, "0x%04x", bfin_si_revision); \
143 builtin_define_with_value ("__SILICON_REVISION__", buf, 0); \
144 } \
145 \
146 if (bfin_workarounds) \
147 builtin_define ("__WORKAROUNDS_ENABLED"); \
148 if (ENABLE_WA_SPECULATIVE_LOADS) \
149 builtin_define ("__WORKAROUND_SPECULATIVE_LOADS"); \
150 if (ENABLE_WA_SPECULATIVE_SYNCS) \
151 builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS"); \
2643f14e
BS
152 if (ENABLE_WA_RETS) \
153 builtin_define ("__WORKAROUND_RETS"); \
ea2382be 154 \
6614f9f5 155 if (TARGET_FDPIC) \
f13488c0
BS
156 { \
157 builtin_define ("__BFIN_FDPIC__"); \
158 builtin_define ("__FDPIC__"); \
159 } \
ea2382be
JZ
160 if (TARGET_ID_SHARED_LIBRARY \
161 && !TARGET_SEP_DATA) \
4af990cd 162 builtin_define ("__ID_SHARED_LIB__"); \
ae80f469
JZ
163 if (flag_no_builtin) \
164 builtin_define ("__NO_BUILTIN"); \
16869606
BS
165 if (TARGET_MULTICORE) \
166 builtin_define ("__BFIN_MULTICORE"); \
167 if (TARGET_COREA) \
168 builtin_define ("__BFIN_COREA"); \
169 if (TARGET_COREB) \
170 builtin_define ("__BFIN_COREB"); \
171 if (TARGET_SDRAM) \
172 builtin_define ("__BFIN_SDRAM"); \
ea2382be 173 } \
0d4a78eb
BS
174 while (0)
175#endif
176
6614f9f5 177#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
93147119 178 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
6614f9f5
BS
179 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
180 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
181"
182#ifndef SUBTARGET_DRIVER_SELF_SPECS
183# define SUBTARGET_DRIVER_SELF_SPECS
184#endif
185
2c117a21
JZ
186#define LINK_GCC_C_SEQUENCE_SPEC "\
187 %{mfast-fp:-lbffastfp} %G %L %{mfast-fp:-lbffastfp} %G \
188"
6614f9f5
BS
189
190/* A C string constant that tells the GCC driver program options to pass to
191 the assembler. It can also specify how to translate options you give to GNU
192 CC into options for GCC to pass to the assembler. See the file `sun3.h'
193 for an example of this.
194
195 Do not define this macro if it does not need to do anything.
196
197 Defined in svr4.h. */
198#undef ASM_SPEC
199#define ASM_SPEC "\
200%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
201 %{mno-fdpic:-mnopic} %{mfdpic}"
202
203#define LINK_SPEC "\
204%{h*} %{v:-V} \
205%{b} \
206%{mfdpic:-melf32bfinfd -z text} \
207%{static:-dn -Bstatic} \
208%{shared:-G -Bdynamic} \
209%{symbolic:-Bsymbolic} \
210%{G*} \
211%{YP,*} \
212%{Qy:} %{!Qn:-Qy} \
213-init __init -fini __fini "
214
0d4a78eb
BS
215/* Generate DSP instructions, like DSP halfword loads */
216#define TARGET_DSP (1)
217
ea2382be 218#define TARGET_DEFAULT 0
0d4a78eb 219
0d4a78eb
BS
220/* Maximum number of library ids we permit */
221#define MAX_LIBRARY_ID 255
222
223extern const char *bfin_library_id_string;
224
225/* Sometimes certain combinations of command options do not make
226 sense on a particular target machine. You can define a macro
227 `OVERRIDE_OPTIONS' to take account of this. This macro, if
228 defined, is executed once just after all the command options have
229 been parsed.
230
231 Don't use this macro to turn on various extra optimizations for
232 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
233
234#define OVERRIDE_OPTIONS override_options ()
235
236#define FUNCTION_MODE SImode
237#define Pmode SImode
238
239/* store-condition-codes instructions store 0 for false
240 This is the value stored for true. */
241#define STORE_FLAG_VALUE 1
242
243/* Define this if pushing a word on the stack
244 makes the stack pointer a smaller address. */
245#define STACK_GROWS_DOWNWARD
246
247#define STACK_PUSH_CODE PRE_DEC
248
a4d05547 249/* Define this to nonzero if the nominal address of the stack frame
0d4a78eb
BS
250 is at the high-address end of the local variables;
251 that is, each additional local variable allocated
252 goes at a more negative offset in the frame. */
f62c8a5c 253#define FRAME_GROWS_DOWNWARD 1
0d4a78eb
BS
254
255/* We define a dummy ARGP register; the parameters start at offset 0 from
256 it. */
257#define FIRST_PARM_OFFSET(DECL) 0
258
259/* Offset within stack frame to start allocating local variables at.
260 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
261 first local allocated. Otherwise, it is the offset to the BEGINNING
262 of the first local allocated. */
263#define STARTING_FRAME_OFFSET 0
264
265/* Register to use for pushing function arguments. */
266#define STACK_POINTER_REGNUM REG_P6
267
268/* Base register for access to local variables of the function. */
269#define FRAME_POINTER_REGNUM REG_P7
270
271/* A dummy register that will be eliminated to either FP or SP. */
272#define ARG_POINTER_REGNUM REG_ARGP
273
274/* `PIC_OFFSET_TABLE_REGNUM'
275 The register number of the register used to address a table of
276 static data addresses in memory. In some cases this register is
277 defined by a processor's "application binary interface" (ABI).
278 When this macro is defined, RTL is generated for this register
279 once, as with the stack pointer and frame pointer registers. If
280 this macro is not defined, it is up to the machine-dependent files
281 to allocate such a register (if necessary). */
282#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
283
6614f9f5
BS
284#define FDPIC_FPTR_REGNO REG_P1
285#define FDPIC_REGNO REG_P3
286#define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
287
0d4a78eb
BS
288/* A static chain register for nested functions. We need to use a
289 call-clobbered register for this. */
290#define STATIC_CHAIN_REGNUM REG_P2
291
292/* Define this if functions should assume that stack space has been
293 allocated for arguments even when their values are passed in
294 registers.
295
296 The value of this macro is the size, in bytes, of the area reserved for
297 arguments passed in registers.
298
299 This space can either be allocated by the caller or be a part of the
300 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
301 says which. */
302#define FIXED_STACK_AREA 12
303#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
304
305/* Define this if the above stack space is to be considered part of the
306 * space allocated by the caller. */
81464b2c 307#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
0d4a78eb
BS
308
309/* Define this if the maximum size of all the outgoing args is to be
310 accumulated and pushed during the prologue. The amount can be
38173d38 311 found in the variable crtl->outgoing_args_size. */
0d4a78eb
BS
312#define ACCUMULATE_OUTGOING_ARGS 1
313
314/* Value should be nonzero if functions must have frame pointers.
315 Zero means the frame pointer need not be set up (and parms
316 may be accessed via the stack pointer) in functions that seem suitable.
317 This is computed in `reload', in reload1.c.
318*/
319#define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
320
0d4a78eb
BS
321/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
322
520c62ad
BS
323/* If defined, a C expression to compute the alignment for a local
324 variable. TYPE is the data type, and ALIGN is the alignment that
325 the object would ordinarily have. The value of this macro is used
326 instead of that alignment to align the object.
327
328 If this macro is not defined, then ALIGN is used.
329
330 One use of this macro is to increase alignment of medium-size
331 data to make it all fit in fewer cache lines. */
332
333#define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
334
0d4a78eb
BS
335/* Make strings word-aligned so strcpy from constants will be faster. */
336#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
337 (TREE_CODE (EXP) == STRING_CST \
338 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
339
6614f9f5 340#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
0d4a78eb 341#define TRAMPOLINE_TEMPLATE(FILE) \
6614f9f5
BS
342 if (TARGET_FDPIC) \
343 { \
344 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
345 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
346 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
347 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
348 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
349 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
350 fprintf(FILE, "\t.dw\t0xac4b\n"); /* p3 = [p1 + 4] */ \
351 fprintf(FILE, "\t.dw\t0x9149\n"); /* p1 = [p1] */ \
352 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
353 } \
354 else \
355 { \
356 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
357 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
358 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
359 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
360 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
361 }
0d4a78eb
BS
362
363#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
364 initialize_trampoline (TRAMP, FNADDR, CXT)
365\f
366/* Definitions for register eliminations.
367
368 This is an array of structures. Each structure initializes one pair
369 of eliminable registers. The "from" register number is given first,
370 followed by "to". Eliminations of the same "from" register are listed
371 in order of preference.
372
373 There are two registers that can always be eliminated on the i386.
374 The frame pointer and the arg pointer can be replaced by either the
375 hard frame pointer or to the stack pointer, depending upon the
376 circumstances. The hard frame pointer is not used before reload and
377 so it is not eligible for elimination. */
378
379#define ELIMINABLE_REGS \
380{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
381 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
382 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
383
384/* Given FROM and TO register numbers, say whether this elimination is
385 allowed. Frame pointer elimination is automatically handled.
386
387 All other eliminations are valid. */
388
389#define CAN_ELIMINATE(FROM, TO) \
390 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
391
392/* Define the offset between two registers, one to be eliminated, and the other
393 its replacement, at the start of a routine. */
394
395#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
396 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
397\f
398/* This processor has
399 8 data register for doing arithmetic
400 8 pointer register for doing addressing, including
401 1 stack pointer P6
402 1 frame pointer P7
403 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
404 1 condition code flag register CC
405 5 return address registers RETS/I/X/N/E
406 1 arithmetic status register (ASTAT). */
407
b03149e1 408#define FIRST_PSEUDO_REGISTER 50
0d4a78eb 409
0d4a78eb 410#define D_REGNO_P(X) ((X) <= REG_R7)
c4963a0a 411#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
b03149e1
JZ
412#define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
413#define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
414#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
415#define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
416#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
417#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
418#define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
0d4a78eb
BS
419
420#define REGISTER_NAMES { \
421 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
422 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
df259245
JZ
423 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
424 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
0d4a78eb
BS
425 "A0", "A1", \
426 "CC", \
427 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
b03149e1
JZ
428 "ARGP", \
429 "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
0d4a78eb
BS
430}
431
432#define SHORT_REGISTER_NAMES { \
433 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
434 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
df259245
JZ
435 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
436 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
0d4a78eb
BS
437
438#define HIGH_REGISTER_NAMES { \
439 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
440 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
df259245
JZ
441 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
442 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
0d4a78eb
BS
443
444#define DREGS_PAIR_NAMES { \
445 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
446
447#define BYTE_REGISTER_NAMES { \
448 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
449
450
451/* 1 for registers that have pervasive standard uses
452 and are not available for the register allocator. */
453
454#define FIXED_REGISTERS \
455/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
456{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
df259245
JZ
457/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
458 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
b03149e1
JZ
459/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
460 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
461/*lb0/1 */ \
462 1, 1 \
0d4a78eb
BS
463}
464
465/* 1 for registers not available across function calls.
466 These must include the FIXED_REGISTERS and also any
467 registers that can be used without being saved.
468 The latter must include the registers where values are returned
469 and the register where structure-value addresses are passed.
470 Aside from that, you can include as many other registers as you like. */
471
472#define CALL_USED_REGISTERS \
473/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
474{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
df259245 475/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
0d4a78eb 476 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b03149e1
JZ
477/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
478 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
479/*lb0/1 */ \
480 1, 1 \
0d4a78eb
BS
481}
482
483/* Order in which to allocate registers. Each register must be
484 listed once, even those in FIXED_REGISTERS. List frame pointer
485 late and fixed registers last. Note that, in general, we prefer
486 registers listed in CALL_USED_REGISTERS, keeping the others
487 available for storage of persistent values. */
488
489#define REG_ALLOC_ORDER \
490{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
491 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
492 REG_A0, REG_A1, \
df259245
JZ
493 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
494 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
0d4a78eb
BS
495 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
496 REG_ASTAT, REG_SEQSTAT, REG_USP, \
b03149e1
JZ
497 REG_CC, REG_ARGP, \
498 REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
0d4a78eb
BS
499}
500
501/* Macro to conditionally modify fixed_regs/call_used_regs. */
502#define CONDITIONAL_REGISTER_USAGE \
503 { \
504 conditional_register_usage(); \
6614f9f5
BS
505 if (TARGET_FDPIC) \
506 call_used_regs[FDPIC_REGNO] = 1; \
507 if (!TARGET_FDPIC && flag_pic) \
0d4a78eb
BS
508 { \
509 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
510 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
511 } \
512 }
513
514/* Define the classes of registers for register constraints in the
515 machine description. Also define ranges of constants.
516
517 One of the classes must always be named ALL_REGS and include all hard regs.
518 If there is more than one class, another class must be named NO_REGS
519 and contain no registers.
520
521 The name GENERAL_REGS must be the name of a class (or an alias for
522 another name such as ALL_REGS). This is the class of registers
523 that is allowed by "g" or "r" in a register constraint.
524 Also, registers outside this class are allocated only when
525 instructions express preferences for them.
526
527 The classes must be numbered in nondecreasing order; that is,
528 a larger-numbered class must never be contained completely
529 in a smaller-numbered class.
530
531 For any two classes, it is very desirable that there be another
532 class that represents their union. */
533
534
535enum reg_class
536{
537 NO_REGS,
538 IREGS,
539 BREGS,
540 LREGS,
541 MREGS,
f652d14b 542 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
0d4a78eb
BS
543 DAGREGS,
544 EVEN_AREGS,
545 ODD_AREGS,
546 AREGS,
547 CCREGS,
548 EVEN_DREGS,
549 ODD_DREGS,
2889abed
BS
550 D0REGS,
551 D1REGS,
552 D2REGS,
553 D3REGS,
554 D4REGS,
555 D5REGS,
556 D6REGS,
557 D7REGS,
0d4a78eb 558 DREGS,
03848bd0 559 P0REGS,
6614f9f5
BS
560 FDPIC_REGS,
561 FDPIC_FPTR_REGS,
0d4a78eb
BS
562 PREGS_CLOBBERED,
563 PREGS,
c4963a0a 564 IPREGS,
0d4a78eb
BS
565 DPREGS,
566 MOST_REGS,
b03149e1
JZ
567 LT_REGS,
568 LC_REGS,
569 LB_REGS,
0d4a78eb
BS
570 PROLOGUE_REGS,
571 NON_A_CC_REGS,
572 ALL_REGS, LIM_REG_CLASSES
573};
574
575#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
576
577#define GENERAL_REGS DPREGS
578
579/* Give names of register classes as strings for dump file. */
580
581#define REG_CLASS_NAMES \
582{ "NO_REGS", \
583 "IREGS", \
584 "BREGS", \
585 "LREGS", \
586 "MREGS", \
587 "CIRCREGS", \
588 "DAGREGS", \
589 "EVEN_AREGS", \
590 "ODD_AREGS", \
591 "AREGS", \
592 "CCREGS", \
593 "EVEN_DREGS", \
594 "ODD_DREGS", \
2889abed
BS
595 "D0REGS", \
596 "D1REGS", \
597 "D2REGS", \
598 "D3REGS", \
599 "D4REGS", \
600 "D5REGS", \
601 "D6REGS", \
602 "D7REGS", \
0d4a78eb 603 "DREGS", \
03848bd0 604 "P0REGS", \
6614f9f5
BS
605 "FDPIC_REGS", \
606 "FDPIC_FPTR_REGS", \
0d4a78eb
BS
607 "PREGS_CLOBBERED", \
608 "PREGS", \
c4963a0a 609 "IPREGS", \
0d4a78eb
BS
610 "DPREGS", \
611 "MOST_REGS", \
b03149e1
JZ
612 "LT_REGS", \
613 "LC_REGS", \
614 "LB_REGS", \
0d4a78eb
BS
615 "PROLOGUE_REGS", \
616 "NON_A_CC_REGS", \
617 "ALL_REGS" }
618
619/* An initializer containing the contents of the register classes, as integers
620 which are bit masks. The Nth integer specifies the contents of class N.
621 The way the integer MASK is interpreted is that register R is in the class
622 if `MASK & (1 << R)' is 1.
623
624 When the machine has more than 32 registers, an integer does not suffice.
625 Then the integers are replaced by sub-initializers, braced groupings
626 containing several integers. Each sub-initializer must be suitable as an
627 initializer for the type `HARD_REG_SET' which is defined in
628 `hard-reg-set.h'. */
629
630/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
631 MOST_REGS as the union of DPREGS and DAGREGS. */
632
633#define REG_CLASS_CONTENTS \
634 /* 31 - 0 63-32 */ \
635{ { 0x00000000, 0 }, /* NO_REGS */ \
df259245
JZ
636 { 0x000f0000, 0 }, /* IREGS */ \
637 { 0x00f00000, 0 }, /* BREGS */ \
638 { 0x0f000000, 0 }, /* LREGS */ \
0d4a78eb
BS
639 { 0xf0000000, 0 }, /* MREGS */ \
640 { 0x0fff0000, 0 }, /* CIRCREGS */ \
641 { 0xffff0000, 0 }, /* DAGREGS */ \
642 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
643 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
644 { 0x00000000, 0x3 }, /* AREGS */ \
645 { 0x00000000, 0x4 }, /* CCREGS */ \
646 { 0x00000055, 0 }, /* EVEN_DREGS */ \
647 { 0x000000aa, 0 }, /* ODD_DREGS */ \
2889abed
BS
648 { 0x00000001, 0 }, /* D0REGS */ \
649 { 0x00000002, 0 }, /* D1REGS */ \
650 { 0x00000004, 0 }, /* D2REGS */ \
651 { 0x00000008, 0 }, /* D3REGS */ \
652 { 0x00000010, 0 }, /* D4REGS */ \
653 { 0x00000020, 0 }, /* D5REGS */ \
654 { 0x00000040, 0 }, /* D6REGS */ \
655 { 0x00000080, 0 }, /* D7REGS */ \
0d4a78eb 656 { 0x000000ff, 0 }, /* DREGS */ \
03848bd0 657 { 0x00000100, 0x000 }, /* P0REGS */ \
6614f9f5
BS
658 { 0x00000800, 0x000 }, /* FDPIC_REGS */ \
659 { 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
0d4a78eb
BS
660 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
661 { 0x0000ff00, 0x800 }, /* PREGS */ \
c4963a0a 662 { 0x000fff00, 0x800 }, /* IPREGS */ \
0d4a78eb
BS
663 { 0x0000ffff, 0x800 }, /* DPREGS */ \
664 { 0xffffffff, 0x800 }, /* MOST_REGS */\
b03149e1
JZ
665 { 0x00000000, 0x3000 }, /* LT_REGS */\
666 { 0x00000000, 0xc000 }, /* LC_REGS */\
667 { 0x00000000, 0x30000 }, /* LB_REGS */\
668 { 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
669 { 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
670 { 0xffffffff, 0x3ffff }} /* ALL_REGS */
0d4a78eb 671
c4963a0a
BS
672#define IREG_POSSIBLE_P(OUTER) \
673 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
674 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
675 || (OUTER) == MEM || (OUTER) == ADDRESS)
676
677#define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
678 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
679
0d4a78eb
BS
680#define INDEX_REG_CLASS PREGS
681
c4963a0a
BS
682#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
683 (P_REGNO_P (X) || (X) == REG_ARGP \
684 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
685 && I_REGNO_P (X)))
686
687#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
688 ((X) >= FIRST_PSEUDO_REGISTER \
689 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
0d4a78eb
BS
690
691#ifdef REG_OK_STRICT
c4963a0a
BS
692#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
693 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb 694#else
c4963a0a
BS
695#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
696 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb
BS
697#endif
698
0d4a78eb
BS
699#define REGNO_OK_FOR_INDEX_P(X) 0
700
0d4a78eb
BS
701/* The same information, inverted:
702 Return the class number of the smallest class containing
703 reg number REGNO. This could be a conditional expression
704 or could index an array. */
705
706#define REGNO_REG_CLASS(REGNO) \
2889abed
BS
707((REGNO) == REG_R0 ? D0REGS \
708 : (REGNO) == REG_R1 ? D1REGS \
709 : (REGNO) == REG_R2 ? D2REGS \
710 : (REGNO) == REG_R3 ? D3REGS \
711 : (REGNO) == REG_R4 ? D4REGS \
712 : (REGNO) == REG_R5 ? D5REGS \
713 : (REGNO) == REG_R6 ? D6REGS \
714 : (REGNO) == REG_R7 ? D7REGS \
03848bd0 715 : (REGNO) == REG_P0 ? P0REGS \
0d4a78eb 716 : (REGNO) < REG_I0 ? PREGS \
c4963a0a 717 : (REGNO) == REG_ARGP ? PREGS \
0d4a78eb
BS
718 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
719 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
720 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
721 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
722 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
b03149e1
JZ
723 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
724 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
725 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
0d4a78eb
BS
726 : (REGNO) == REG_CC ? CCREGS \
727 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
728 : NO_REGS)
729
058e97ec
VM
730/* The following macro defines cover classes for Integrated Register
731 Allocator. Cover classes is a set of non-intersected register
732 classes covering all hard registers used for register allocation
733 purpose. Any move between two registers of a cover class should be
734 cheaper than load or store of the registers. The macro value is
735 array of register classes with LIM_REG_CLASSES used as the end
736 marker. */
737
738#define IRA_COVER_CLASSES \
739{ \
740 MOST_REGS, AREGS, CCREGS, LIM_REG_CLASSES \
741}
742
0d4a78eb
BS
743/* When defined, the compiler allows registers explicitly used in the
744 rtl to be used as spill registers but prevents the compiler from
745 extending the lifetime of these registers. */
746#define SMALL_REGISTER_CLASSES 1
747
748#define CLASS_LIKELY_SPILLED_P(CLASS) \
749 ((CLASS) == PREGS_CLOBBERED \
750 || (CLASS) == PROLOGUE_REGS \
03848bd0 751 || (CLASS) == P0REGS \
2889abed
BS
752 || (CLASS) == D0REGS \
753 || (CLASS) == D1REGS \
754 || (CLASS) == D2REGS \
0d4a78eb
BS
755 || (CLASS) == CCREGS)
756
757/* Do not allow to store a value in REG_CC for any mode */
758/* Do not allow to store value in pregs if mode is not SI*/
759#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
760
761/* Return the maximum number of consecutive registers
762 needed to represent mode MODE in a register of class CLASS. */
75d8b2d0
BS
763#define CLASS_MAX_NREGS(CLASS, MODE) \
764 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
765 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0d4a78eb
BS
766
767#define HARD_REGNO_NREGS(REGNO, MODE) \
75d8b2d0
BS
768 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
769 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
770 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
0d4a78eb
BS
771
772/* A C expression that is nonzero if hard register TO can be
773 considered for use as a rename register for FROM register */
774#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
775
776/* A C expression that is nonzero if it is desirable to choose
777 register allocation so as to avoid move instructions between a
778 value of mode MODE1 and a value of mode MODE2.
779
780 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
781 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
782 MODE2)' must be zero. */
4d4f2837
BS
783#define MODES_TIEABLE_P(MODE1, MODE2) \
784 ((MODE1) == (MODE2) \
785 || ((GET_MODE_CLASS (MODE1) == MODE_INT \
786 || GET_MODE_CLASS (MODE1) == MODE_FLOAT) \
787 && (GET_MODE_CLASS (MODE2) == MODE_INT \
788 || GET_MODE_CLASS (MODE2) == MODE_FLOAT) \
789 && (MODE1) != BImode && (MODE2) != BImode \
790 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
791 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD))
0d4a78eb
BS
792
793/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
794 A C expression that places additional restrictions on the register
795 class to use when it is necessary to copy value X into a register
796 in class CLASS. The value is a register class; perhaps CLASS, or
797 perhaps another, smaller class. */
aeffb4b5
BS
798#define PREFERRED_RELOAD_CLASS(X, CLASS) \
799 (GET_CODE (X) == POST_INC \
800 || GET_CODE (X) == POST_DEC \
801 || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
0d4a78eb 802
0d4a78eb
BS
803/* Function Calling Conventions. */
804
805/* The type of the current function; normal functions are of type
806 SUBROUTINE. */
807typedef enum {
808 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
809} e_funkind;
810
811#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
812
6d459e2b
BS
813/* Flags for the call/call_value rtl operations set up by function_arg */
814#define CALL_NORMAL 0x00000000 /* no special processing */
815#define CALL_LONG 0x00000001 /* always call indirect */
816#define CALL_SHORT 0x00000002 /* always call by symbol */
817
0d4a78eb
BS
818typedef struct {
819 int words; /* # words passed so far */
820 int nregs; /* # registers available for passing */
821 int *arg_regs; /* array of register -1 terminated */
6d459e2b 822 int call_cookie; /* Do special things for this call */
0d4a78eb
BS
823} CUMULATIVE_ARGS;
824
825/* Define where to put the arguments to a function.
826 Value is zero to push the argument on the stack,
827 or a hard register in which to store the argument.
828
829 MODE is the argument's machine mode.
830 TYPE is the data type of the argument (as a tree).
831 This is null for libcalls where that information may
832 not be available.
833 CUM is a variable of type CUMULATIVE_ARGS which gives info about
834 the preceding args and about the function being called.
835 NAMED is nonzero if this argument is a named parameter
836 (otherwise it is an extra parameter matching an ellipsis). */
837
838#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
839 (function_arg (&CUM, MODE, TYPE, NAMED))
840
841#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
842
843
844/* Initialize a variable CUM of type CUMULATIVE_ARGS
845 for a call to a function whose data type is FNTYPE.
846 For a library call, FNTYPE is 0. */
847#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
848 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
849
850/* Update the data in CUM to advance over an argument
851 of mode MODE and data type TYPE.
852 (TYPE is null for libcalls where that information may not be available.) */
853#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
854 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
855
856#define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
857
858/* Define how to find the value returned by a function.
859 VALTYPE is the data type of the value (as a tree).
860 If the precise function being called is known, FUNC is its FUNCTION_DECL;
861 otherwise, FUNC is 0.
862*/
863
864#define VALUE_REGNO(MODE) (REG_R0)
865
866#define FUNCTION_VALUE(VALTYPE, FUNC) \
867 gen_rtx_REG (TYPE_MODE (VALTYPE), \
868 VALUE_REGNO(TYPE_MODE(VALTYPE)))
869
870/* Define how to find the value returned by a library function
871 assuming the value has mode MODE. */
872
873#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
874
875#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
876
877#define DEFAULT_PCC_STRUCT_RETURN 0
0d4a78eb
BS
878
879/* Before the prologue, the return address is in the RETS register. */
880#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
881
882#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
883
884#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
885
886/* Call instructions don't modify the stack pointer on the Blackfin. */
887#define INCOMING_FRAME_SP_OFFSET 0
888
889/* Describe how we implement __builtin_eh_return. */
890#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
891#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
892#define EH_RETURN_HANDLER_RTX \
1ca950ca 893 gen_frame_mem (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
0d4a78eb
BS
894
895/* Addressing Modes */
896
897/* Recognize any constant value that is a valid address. */
898#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
899
900/* Nonzero if the constant value X is a legitimate general operand.
901 symbol_ref are not legitimate and will be put into constant pool.
902 See force_const_mem().
903 If -mno-pool, all constants are legitimate.
904 */
d6f6753e 905#define LEGITIMATE_CONSTANT_P(X) bfin_legitimate_constant_p (X)
0d4a78eb
BS
906
907/* A number, the maximum number of registers that can appear in a
908 valid memory address. Note that it is up to you to specify a
909 value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
910 would ever accept. */
911#define MAX_REGS_PER_ADDRESS 1
912
913/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
914 that is a valid memory address for an instruction.
915 The MODE argument is the machine mode for the MEM expression
916 that wants to use this address.
917
918 Blackfin addressing modes are as follows:
919
920 [preg]
921 [preg + imm16]
922
923 B [ Preg + uimm15 ]
924 W [ Preg + uimm16m2 ]
925 [ Preg + uimm17m4 ]
926
927 [preg++]
928 [preg--]
929 [--sp]
930*/
931
932#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
933 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
934
935#ifdef REG_OK_STRICT
936#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
937 do { \
938 if (bfin_legitimate_address_p (MODE, X, 1)) \
939 goto WIN; \
940 } while (0);
941#else
942#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
943 do { \
944 if (bfin_legitimate_address_p (MODE, X, 0)) \
945 goto WIN; \
946 } while (0);
947#endif
948
949/* Try machine-dependent ways of modifying an illegitimate address
950 to be legitimate. If we find one, return the new, valid address.
951 This macro is used in only one place: `memory_address' in explow.c.
952
953 OLDX is the address as it was before break_out_memory_refs was called.
954 In some cases it is useful to look at this to decide what needs to be done.
955
956 MODE and WIN are passed so that this macro can use
957 GO_IF_LEGITIMATE_ADDRESS.
958
959 It is always safe for this macro to do nothing. It exists to recognize
960 opportunities to optimize the output.
961 */
962#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
963do { \
964 rtx _q = legitimize_address(X, OLDX, MODE); \
965 if (_q) { X = _q; goto WIN; } \
966} while (0)
967
968#define HAVE_POST_INCREMENT 1
969#define HAVE_POST_DECREMENT 1
970#define HAVE_PRE_DECREMENT 1
971
972/* `LEGITIMATE_PIC_OPERAND_P (X)'
973 A C expression that is nonzero if X is a legitimate immediate
974 operand on the target machine when generating position independent
975 code. You can assume that X satisfies `CONSTANT_P', so you need
976 not check this. You can also assume FLAG_PIC is true, so you need
977 not check it either. You need not define this macro if all
978 constants (including `SYMBOL_REF') can be immediate operands when
979 generating position independent code. */
980#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
981
982#define SYMBOLIC_CONST(X) \
983(GET_CODE (X) == SYMBOL_REF \
984 || GET_CODE (X) == LABEL_REF \
985 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
986
987/*
988 A C statement or compound statement with a conditional `goto
989 LABEL;' executed if memory address X (an RTX) can have different
990 meanings depending on the machine mode of the memory reference it
991 is used for or if the address is valid for some modes but not
992 others.
993
994 Autoincrement and autodecrement addresses typically have
995 mode-dependent effects because the amount of the increment or
996 decrement is the size of the operand being addressed. Some
997 machines have other mode-dependent addresses. Many RISC machines
998 have no mode-dependent addresses.
999
1000 You may assume that ADDR is a valid address for the machine.
1001*/
b9a76028 1002#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
0d4a78eb
BS
1003
1004#define NOTICE_UPDATE_CC(EXPR, INSN) 0
1005
1006/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1007 is done just by pretending it is already truncated. */
1008#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1009
1010/* Max number of bytes we can move from memory to memory
1011 in one reasonably fast instruction. */
1012#define MOVE_MAX UNITS_PER_WORD
1013
b548a9c2
BS
1014/* If a memory-to-memory move would take MOVE_RATIO or more simple
1015 move-instruction pairs, we will do a movmem or libcall instead. */
1016
e04ad03d 1017#define MOVE_RATIO(speed) 5
0d4a78eb
BS
1018
1019/* STORAGE LAYOUT: target machine storage layout
1020 Define this macro as a C expression which is nonzero if accessing
1021 less than a word of memory (i.e. a `char' or a `short') is no
1022 faster than accessing a word of memory, i.e., if such access
1023 require more than one instruction or if there is no difference in
1024 cost between byte and (aligned) word loads.
1025
1026 When this macro is not defined, the compiler will access a field by
1027 finding the smallest containing object; when it is defined, a
1028 fullword load will be used if alignment permits. Unless bytes
1029 accesses are faster than word accesses, using word accesses is
1030 preferable since it may eliminate subsequent memory access if
1031 subsequent accesses occur to other fields in the same word of the
1032 structure, but to different bytes. */
1033#define SLOW_BYTE_ACCESS 0
1034#define SLOW_SHORT_ACCESS 0
1035
1036/* Define this if most significant bit is lowest numbered
1037 in instructions that operate on numbered bit-fields. */
1038#define BITS_BIG_ENDIAN 0
1039
1040/* Define this if most significant byte of a word is the lowest numbered.
1041 We can't access bytes but if we could we would in the Big Endian order. */
1042#define BYTES_BIG_ENDIAN 0
1043
1044/* Define this if most significant word of a multiword number is numbered. */
1045#define WORDS_BIG_ENDIAN 0
1046
1047/* number of bits in an addressable storage unit */
1048#define BITS_PER_UNIT 8
1049
1050/* Width in bits of a "word", which is the contents of a machine register.
1051 Note that this is not necessarily the width of data type `int';
1052 if using 16-bit ints on a 68000, this would still be 32.
1053 But on a machine with 16-bit registers, this would be 16. */
1054#define BITS_PER_WORD 32
1055
1056/* Width of a word, in units (bytes). */
1057#define UNITS_PER_WORD 4
1058
0d4a78eb
BS
1059/* Width in bits of a pointer.
1060 See also the macro `Pmode1' defined below. */
1061#define POINTER_SIZE 32
1062
1063/* Allocation boundary (in *bits*) for storing pointers in memory. */
1064#define POINTER_BOUNDARY 32
1065
1066/* Allocation boundary (in *bits*) for storing arguments in argument list. */
1067#define PARM_BOUNDARY 32
1068
1069/* Boundary (in *bits*) on which stack pointer should be aligned. */
1070#define STACK_BOUNDARY 32
1071
1072/* Allocation boundary (in *bits*) for the code of a function. */
1073#define FUNCTION_BOUNDARY 32
1074
1075/* Alignment of field after `int : 0' in a structure. */
1076#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
1077
1078/* No data type wants to be aligned rounder than this. */
1079#define BIGGEST_ALIGNMENT 32
1080
1081/* Define this if move instructions will actually fail to work
1082 when given unaligned data. */
1083#define STRICT_ALIGNMENT 1
1084
1085/* (shell-command "rm c-decl.o stor-layout.o")
1086 * never define PCC_BITFIELD_TYPE_MATTERS
1087 * really cause some alignment problem
1088 */
1089
1090#define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
1091 BITS_PER_UNIT)
1092
1093#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
1094 BITS_PER_UNIT)
1095
1096
1097/* what is the 'type' of size_t */
1098#define SIZE_TYPE "long unsigned int"
1099
1100/* Define this as 1 if `char' should by default be signed; else as 0. */
1101#define DEFAULT_SIGNED_CHAR 1
1102#define FLOAT_TYPE_SIZE BITS_PER_WORD
1103#define SHORT_TYPE_SIZE 16
1104#define CHAR_TYPE_SIZE 8
1105#define INT_TYPE_SIZE 32
1106#define LONG_TYPE_SIZE 32
1107#define LONG_LONG_TYPE_SIZE 64
1108
1109/* Note: Fix this to depend on target switch. -- lev */
1110
1111/* Note: Try to implement double and force long double. -- tonyko
1112 * #define __DOUBLES_ARE_FLOATS__
1113 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
1114 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
1115 * #define DOUBLES_ARE_FLOATS 1
1116 */
1117
1118#define DOUBLE_TYPE_SIZE 64
1119#define LONG_DOUBLE_TYPE_SIZE 64
1120
1121/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
1122 A macro to update M and UNSIGNEDP when an object whose type is
1123 TYPE and which has the specified mode and signedness is to be
1124 stored in a register. This macro is only called when TYPE is a
1125 scalar type.
1126
1127 On most RISC machines, which only have operations that operate on
1128 a full register, define this macro to set M to `word_mode' if M is
1129 an integer mode narrower than `BITS_PER_WORD'. In most cases,
1130 only integer modes should be widened because wider-precision
1131 floating-point operations are usually more expensive than their
1132 narrower counterparts.
1133
1134 For most machines, the macro definition does not change UNSIGNEDP.
1135 However, some machines, have instructions that preferentially
1136 handle either signed or unsigned quantities of certain modes. For
1137 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
1138 instructions sign-extend the result to 64 bits. On such machines,
1139 set UNSIGNEDP according to which kind of extension is more
1140 efficient.
1141
1142 Do not define this macro if it would never modify M.*/
1143
1144#define BFIN_PROMOTE_MODE_P(MODE) \
1145 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
1146 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
1147
1148#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1149 if (BFIN_PROMOTE_MODE_P(MODE)) \
1150 { \
1151 if (MODE == QImode) \
1152 UNSIGNEDP = 1; \
1153 else if (MODE == HImode) \
1154 UNSIGNEDP = 0; \
1155 (MODE) = SImode; \
1156 }
1157
1158/* Describing Relative Costs of Operations */
1159
1160/* Do not put function addr into constant pool */
1161#define NO_FUNCTION_CSE 1
1162
1163/* A C expression for the cost of moving data from a register in class FROM to
1164 one in class TO. The classes are expressed using the enumeration values
1165 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1166 interpreted relative to that.
1167
1168 It is not required that the cost always equal 2 when FROM is the same as TO;
1169 on some machines it is expensive to move between registers if they are not
1170 general registers. */
1171
1172#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1173 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1174
1175/* A C expression for the cost of moving data of mode M between a
1176 register and memory. A value of 2 is the default; this cost is
1177 relative to those in `REGISTER_MOVE_COST'.
1178
1179 If moving between registers and memory is more expensive than
1180 between two registers, you should define this macro to express the
1181 relative cost. */
1182
1183#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1184 bfin_memory_move_cost ((MODE), (CLASS), (IN))
1185
1186/* Specify the machine mode that this machine uses
1187 for the index in the tablejump instruction. */
1188#define CASE_VECTOR_MODE SImode
1189
1190#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1191
1192/* Define if operations between registers always perform the operation
1193 on the full register even if a narrower mode is specified.
1194#define WORD_REGISTER_OPERATIONS
1195*/
1196
3efd5670
BS
1197/* Evaluates to true if A and B are mac flags that can be used
1198 together in a single multiply insn. That is the case if they are
1199 both the same flag not involving M, or if one is a combination of
1200 the other with M. */
1201#define MACFLAGS_MATCH_P(A, B) \
1202 ((A) == (B) \
1203 || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
1204 || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
1205 || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
1206 || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
1207
0d4a78eb
BS
1208/* Switch into a generic section. */
1209#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1210
1211#define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1212#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1213
1214typedef enum sections {
1215 CODE_DIR,
1216 DATA_DIR,
1217 LAST_SECT_NM
1218} SECT_ENUM_T;
1219
1220typedef enum directives {
1221 LONG_CONST_DIR,
1222 SHORT_CONST_DIR,
1223 BYTE_CONST_DIR,
1224 SPACE_DIR,
1225 INIT_DIR,
1226 LAST_DIR_NM
1227} DIR_ENUM_T;
1228
980d8882
BS
1229#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) \
1230 ((C) == ';' \
1231 || ((C) == '|' && (STR)[1] == '|'))
1232
0d4a78eb
BS
1233#define TEXT_SECTION_ASM_OP ".text;"
1234#define DATA_SECTION_ASM_OP ".data;"
1235
1236#define ASM_APP_ON ""
1237#define ASM_APP_OFF ""
1238
1239#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1240 do { fputs (".global ", FILE); \
1241 assemble_name (FILE, NAME); \
1242 fputc (';',FILE); \
1243 fputc ('\n',FILE); \
1244 } while (0)
1245
1246#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1247 do { \
1248 fputs (".type ", FILE); \
1249 assemble_name (FILE, NAME); \
1250 fputs (", STT_FUNC", FILE); \
1251 fputc (';',FILE); \
1252 fputc ('\n',FILE); \
1253 ASM_OUTPUT_LABEL(FILE, NAME); \
1254 } while (0)
1255
1256#define ASM_OUTPUT_LABEL(FILE, NAME) \
1257 do { assemble_name (FILE, NAME); \
1258 fputs (":\n",FILE); \
1259 } while (0)
1260
1261#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1262 do { fprintf (FILE, "_%s", NAME); \
1263 } while (0)
1264
0d4a78eb
BS
1265#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1266do { char __buf[256]; \
1267 fprintf (FILE, "\t.dd\t"); \
1268 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1269 assemble_name (FILE, __buf); \
1270 fputc (';', FILE); \
1271 fputc ('\n', FILE); \
1272 } while (0)
1273
1274#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1275 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1276
1277#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1278 do { \
1279 char __buf[256]; \
1280 fprintf (FILE, "\t.dd\t"); \
1281 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1282 assemble_name (FILE, __buf); \
1283 fputs (" - ", FILE); \
1284 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1285 assemble_name (FILE, __buf); \
1286 fputc (';', FILE); \
1287 fputc ('\n', FILE); \
1288 } while (0)
1289
1290#define ASM_OUTPUT_ALIGN(FILE,LOG) \
21956c07
BS
1291 do { \
1292 if ((LOG) != 0) \
1293 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
0d4a78eb
BS
1294 } while (0)
1295
1296#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1297 do { \
1298 asm_output_skip (FILE, SIZE); \
1299 } while (0)
1300
1301#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1302do { \
d6b5193b 1303 switch_to_section (data_section); \
0d4a78eb
BS
1304 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1305 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1306 ASM_OUTPUT_LABEL (FILE, NAME); \
1307 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1308 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1309} while (0)
1310
1311#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1312 do { \
1313 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1314 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1315
1316#define ASM_COMMENT_START "//"
1317
56014148
JZ
1318#define FUNCTION_PROFILER(FILE, LABELNO) \
1319 do { \
1320 fprintf (FILE, "\tCALL __mcount;\n"); \
0d4a78eb
BS
1321 } while(0)
1322
56014148
JZ
1323#undef NO_PROFILE_COUNTERS
1324#define NO_PROFILE_COUNTERS 1
1325
0d4a78eb
BS
1326#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1327#define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1328
1329extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1330extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1331
1332/* This works for GAS and some other assemblers. */
1333#define SET_ASM_OP ".set "
1334
0d4a78eb
BS
1335/* DBX register number for a given compiler register number */
1336#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1337
1338#define SIZE_ASM_OP "\t.size\t"
1339
bbbc206e
BS
1340extern int splitting_for_sched;
1341
1342#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1343
0d4a78eb 1344#endif /* _BFIN_CONFIG */