]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/bfin/bfin.h
config.gcc: Recognize fido.
[thirdparty/gcc.git] / gcc / config / bfin / bfin.h
CommitLineData
0d4a78eb 1/* Definitions for the Blackfin port.
6614f9f5 2 Copyright (C) 2005 Free Software Foundation, Inc.
0d4a78eb
BS
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
39d14dda
KC
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
0d4a78eb
BS
21
22#ifndef _BFIN_CONFIG
23#define _BFIN_CONFIG
24
25#define OBJECT_FORMAT_ELF
26
27#define BRT 1
28#define BRF 0
29
30/* Print subsidiary information on the compiler version in use. */
31#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
32
33/* Run-time compilation parameters selecting different hardware subsets. */
34
35extern int target_flags;
36
9d3f9aa3
BS
37#ifndef DEFAULT_CPU_TYPE
38#define DEFAULT_CPU_TYPE BFIN_CPU_BF532
39#endif
40
0d4a78eb
BS
41/* Predefinition in the preprocessor for this target machine */
42#ifndef TARGET_CPU_CPP_BUILTINS
43#define TARGET_CPU_CPP_BUILTINS() \
44 do \
45 { \
a607b34f
JZ
46 builtin_define_std ("bfin"); \
47 builtin_define_std ("BFIN"); \
42da70b7 48 builtin_define ("__ADSPBLACKFIN__"); \
9d3f9aa3
BS
49 builtin_define ("__ADSPLPBLACKFIN__"); \
50 \
51 switch (bfin_cpu_type) \
52 { \
53 case BFIN_CPU_BF531: \
54 builtin_define ("__ADSPBF531__"); \
55 break; \
56 case BFIN_CPU_BF532: \
57 builtin_define ("__ADSPBF532__"); \
58 break; \
59 case BFIN_CPU_BF533: \
60 builtin_define ("__ADSPBF533__"); \
61 break; \
62 case BFIN_CPU_BF537: \
63 builtin_define ("__ADSPBF537__"); \
64 break; \
65 } \
66 \
6614f9f5
BS
67 if (TARGET_FDPIC) \
68 builtin_define ("__BFIN_FDPIC__"); \
4af990cd
BS
69 if (TARGET_ID_SHARED_LIBRARY) \
70 builtin_define ("__ID_SHARED_LIB__"); \
0d4a78eb
BS
71 } \
72 while (0)
73#endif
74
6614f9f5 75#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
93147119 76 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
6614f9f5
BS
77 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
78 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
79"
80#ifndef SUBTARGET_DRIVER_SELF_SPECS
81# define SUBTARGET_DRIVER_SELF_SPECS
82#endif
83
84#define LINK_GCC_C_SEQUENCE_SPEC \
85 "%{mfdpic:%{!static: %L} %{static: %G %L %G}} \
86 %{!mfdpic:%G %L %G}"
87
88/* A C string constant that tells the GCC driver program options to pass to
89 the assembler. It can also specify how to translate options you give to GNU
90 CC into options for GCC to pass to the assembler. See the file `sun3.h'
91 for an example of this.
92
93 Do not define this macro if it does not need to do anything.
94
95 Defined in svr4.h. */
96#undef ASM_SPEC
97#define ASM_SPEC "\
98%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
99 %{mno-fdpic:-mnopic} %{mfdpic}"
100
101#define LINK_SPEC "\
102%{h*} %{v:-V} \
103%{b} \
104%{mfdpic:-melf32bfinfd -z text} \
105%{static:-dn -Bstatic} \
106%{shared:-G -Bdynamic} \
107%{symbolic:-Bsymbolic} \
108%{G*} \
109%{YP,*} \
110%{Qy:} %{!Qn:-Qy} \
111-init __init -fini __fini "
112
0d4a78eb
BS
113/* Generate DSP instructions, like DSP halfword loads */
114#define TARGET_DSP (1)
115
3fb192d2 116#define TARGET_DEFAULT (MASK_SPECLD_ANOMALY | MASK_CSYNC_ANOMALY)
0d4a78eb 117
0d4a78eb
BS
118/* Maximum number of library ids we permit */
119#define MAX_LIBRARY_ID 255
120
121extern const char *bfin_library_id_string;
122
123/* Sometimes certain combinations of command options do not make
124 sense on a particular target machine. You can define a macro
125 `OVERRIDE_OPTIONS' to take account of this. This macro, if
126 defined, is executed once just after all the command options have
127 been parsed.
128
129 Don't use this macro to turn on various extra optimizations for
130 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
131
132#define OVERRIDE_OPTIONS override_options ()
133
134#define FUNCTION_MODE SImode
135#define Pmode SImode
136
137/* store-condition-codes instructions store 0 for false
138 This is the value stored for true. */
139#define STORE_FLAG_VALUE 1
140
141/* Define this if pushing a word on the stack
142 makes the stack pointer a smaller address. */
143#define STACK_GROWS_DOWNWARD
144
145#define STACK_PUSH_CODE PRE_DEC
146
a4d05547 147/* Define this to nonzero if the nominal address of the stack frame
0d4a78eb
BS
148 is at the high-address end of the local variables;
149 that is, each additional local variable allocated
150 goes at a more negative offset in the frame. */
f62c8a5c 151#define FRAME_GROWS_DOWNWARD 1
0d4a78eb
BS
152
153/* We define a dummy ARGP register; the parameters start at offset 0 from
154 it. */
155#define FIRST_PARM_OFFSET(DECL) 0
156
157/* Offset within stack frame to start allocating local variables at.
158 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
159 first local allocated. Otherwise, it is the offset to the BEGINNING
160 of the first local allocated. */
161#define STARTING_FRAME_OFFSET 0
162
163/* Register to use for pushing function arguments. */
164#define STACK_POINTER_REGNUM REG_P6
165
166/* Base register for access to local variables of the function. */
167#define FRAME_POINTER_REGNUM REG_P7
168
169/* A dummy register that will be eliminated to either FP or SP. */
170#define ARG_POINTER_REGNUM REG_ARGP
171
172/* `PIC_OFFSET_TABLE_REGNUM'
173 The register number of the register used to address a table of
174 static data addresses in memory. In some cases this register is
175 defined by a processor's "application binary interface" (ABI).
176 When this macro is defined, RTL is generated for this register
177 once, as with the stack pointer and frame pointer registers. If
178 this macro is not defined, it is up to the machine-dependent files
179 to allocate such a register (if necessary). */
180#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
181
6614f9f5
BS
182#define FDPIC_FPTR_REGNO REG_P1
183#define FDPIC_REGNO REG_P3
184#define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
185
0d4a78eb
BS
186/* A static chain register for nested functions. We need to use a
187 call-clobbered register for this. */
188#define STATIC_CHAIN_REGNUM REG_P2
189
190/* Define this if functions should assume that stack space has been
191 allocated for arguments even when their values are passed in
192 registers.
193
194 The value of this macro is the size, in bytes, of the area reserved for
195 arguments passed in registers.
196
197 This space can either be allocated by the caller or be a part of the
198 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
199 says which. */
200#define FIXED_STACK_AREA 12
201#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
202
203/* Define this if the above stack space is to be considered part of the
204 * space allocated by the caller. */
ac294f0b 205#define OUTGOING_REG_PARM_STACK_SPACE 1
0d4a78eb
BS
206
207/* Define this if the maximum size of all the outgoing args is to be
208 accumulated and pushed during the prologue. The amount can be
209 found in the variable current_function_outgoing_args_size. */
210#define ACCUMULATE_OUTGOING_ARGS 1
211
212/* Value should be nonzero if functions must have frame pointers.
213 Zero means the frame pointer need not be set up (and parms
214 may be accessed via the stack pointer) in functions that seem suitable.
215 This is computed in `reload', in reload1.c.
216*/
217#define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
218
0d4a78eb
BS
219/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
220
221/* Make strings word-aligned so strcpy from constants will be faster. */
222#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
223 (TREE_CODE (EXP) == STRING_CST \
224 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
225
6614f9f5 226#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
0d4a78eb 227#define TRAMPOLINE_TEMPLATE(FILE) \
6614f9f5
BS
228 if (TARGET_FDPIC) \
229 { \
230 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
231 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
232 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
233 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
234 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
235 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
236 fprintf(FILE, "\t.dw\t0xac4b\n"); /* p3 = [p1 + 4] */ \
237 fprintf(FILE, "\t.dw\t0x9149\n"); /* p1 = [p1] */ \
238 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
239 } \
240 else \
241 { \
242 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
243 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
244 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
245 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
246 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
247 }
0d4a78eb
BS
248
249#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
250 initialize_trampoline (TRAMP, FNADDR, CXT)
251\f
252/* Definitions for register eliminations.
253
254 This is an array of structures. Each structure initializes one pair
255 of eliminable registers. The "from" register number is given first,
256 followed by "to". Eliminations of the same "from" register are listed
257 in order of preference.
258
259 There are two registers that can always be eliminated on the i386.
260 The frame pointer and the arg pointer can be replaced by either the
261 hard frame pointer or to the stack pointer, depending upon the
262 circumstances. The hard frame pointer is not used before reload and
263 so it is not eligible for elimination. */
264
265#define ELIMINABLE_REGS \
266{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
267 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
268 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
269
270/* Given FROM and TO register numbers, say whether this elimination is
271 allowed. Frame pointer elimination is automatically handled.
272
273 All other eliminations are valid. */
274
275#define CAN_ELIMINATE(FROM, TO) \
276 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
277
278/* Define the offset between two registers, one to be eliminated, and the other
279 its replacement, at the start of a routine. */
280
281#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
282 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
283\f
284/* This processor has
285 8 data register for doing arithmetic
286 8 pointer register for doing addressing, including
287 1 stack pointer P6
288 1 frame pointer P7
289 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
290 1 condition code flag register CC
291 5 return address registers RETS/I/X/N/E
292 1 arithmetic status register (ASTAT). */
293
b03149e1 294#define FIRST_PSEUDO_REGISTER 50
0d4a78eb 295
0d4a78eb 296#define D_REGNO_P(X) ((X) <= REG_R7)
c4963a0a 297#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
b03149e1
JZ
298#define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
299#define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
300#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
301#define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
302#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
303#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
304#define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
0d4a78eb
BS
305
306#define REGISTER_NAMES { \
307 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
308 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
df259245
JZ
309 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
310 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
0d4a78eb
BS
311 "A0", "A1", \
312 "CC", \
313 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
b03149e1
JZ
314 "ARGP", \
315 "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
0d4a78eb
BS
316}
317
318#define SHORT_REGISTER_NAMES { \
319 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
320 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
df259245
JZ
321 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
322 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
0d4a78eb
BS
323
324#define HIGH_REGISTER_NAMES { \
325 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
326 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
df259245
JZ
327 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
328 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
0d4a78eb
BS
329
330#define DREGS_PAIR_NAMES { \
331 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
332
333#define BYTE_REGISTER_NAMES { \
334 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
335
336
337/* 1 for registers that have pervasive standard uses
338 and are not available for the register allocator. */
339
340#define FIXED_REGISTERS \
341/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
342{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
df259245
JZ
343/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
344 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
b03149e1
JZ
345/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
346 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
347/*lb0/1 */ \
348 1, 1 \
0d4a78eb
BS
349}
350
351/* 1 for registers not available across function calls.
352 These must include the FIXED_REGISTERS and also any
353 registers that can be used without being saved.
354 The latter must include the registers where values are returned
355 and the register where structure-value addresses are passed.
356 Aside from that, you can include as many other registers as you like. */
357
358#define CALL_USED_REGISTERS \
359/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
360{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
df259245 361/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
0d4a78eb 362 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b03149e1
JZ
363/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
364 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
365/*lb0/1 */ \
366 1, 1 \
0d4a78eb
BS
367}
368
369/* Order in which to allocate registers. Each register must be
370 listed once, even those in FIXED_REGISTERS. List frame pointer
371 late and fixed registers last. Note that, in general, we prefer
372 registers listed in CALL_USED_REGISTERS, keeping the others
373 available for storage of persistent values. */
374
375#define REG_ALLOC_ORDER \
376{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
377 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
378 REG_A0, REG_A1, \
df259245
JZ
379 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
380 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
0d4a78eb
BS
381 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
382 REG_ASTAT, REG_SEQSTAT, REG_USP, \
b03149e1
JZ
383 REG_CC, REG_ARGP, \
384 REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
0d4a78eb
BS
385}
386
387/* Macro to conditionally modify fixed_regs/call_used_regs. */
388#define CONDITIONAL_REGISTER_USAGE \
389 { \
390 conditional_register_usage(); \
6614f9f5
BS
391 if (TARGET_FDPIC) \
392 call_used_regs[FDPIC_REGNO] = 1; \
393 if (!TARGET_FDPIC && flag_pic) \
0d4a78eb
BS
394 { \
395 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
396 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
397 } \
398 }
399
400/* Define the classes of registers for register constraints in the
401 machine description. Also define ranges of constants.
402
403 One of the classes must always be named ALL_REGS and include all hard regs.
404 If there is more than one class, another class must be named NO_REGS
405 and contain no registers.
406
407 The name GENERAL_REGS must be the name of a class (or an alias for
408 another name such as ALL_REGS). This is the class of registers
409 that is allowed by "g" or "r" in a register constraint.
410 Also, registers outside this class are allocated only when
411 instructions express preferences for them.
412
413 The classes must be numbered in nondecreasing order; that is,
414 a larger-numbered class must never be contained completely
415 in a smaller-numbered class.
416
417 For any two classes, it is very desirable that there be another
418 class that represents their union. */
419
420
421enum reg_class
422{
423 NO_REGS,
424 IREGS,
425 BREGS,
426 LREGS,
427 MREGS,
f652d14b 428 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
0d4a78eb
BS
429 DAGREGS,
430 EVEN_AREGS,
431 ODD_AREGS,
432 AREGS,
433 CCREGS,
434 EVEN_DREGS,
435 ODD_DREGS,
2889abed
BS
436 D0REGS,
437 D1REGS,
438 D2REGS,
439 D3REGS,
440 D4REGS,
441 D5REGS,
442 D6REGS,
443 D7REGS,
0d4a78eb 444 DREGS,
6614f9f5
BS
445 FDPIC_REGS,
446 FDPIC_FPTR_REGS,
0d4a78eb
BS
447 PREGS_CLOBBERED,
448 PREGS,
c4963a0a 449 IPREGS,
0d4a78eb
BS
450 DPREGS,
451 MOST_REGS,
b03149e1
JZ
452 LT_REGS,
453 LC_REGS,
454 LB_REGS,
0d4a78eb
BS
455 PROLOGUE_REGS,
456 NON_A_CC_REGS,
457 ALL_REGS, LIM_REG_CLASSES
458};
459
460#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
461
462#define GENERAL_REGS DPREGS
463
464/* Give names of register classes as strings for dump file. */
465
466#define REG_CLASS_NAMES \
467{ "NO_REGS", \
468 "IREGS", \
469 "BREGS", \
470 "LREGS", \
471 "MREGS", \
472 "CIRCREGS", \
473 "DAGREGS", \
474 "EVEN_AREGS", \
475 "ODD_AREGS", \
476 "AREGS", \
477 "CCREGS", \
478 "EVEN_DREGS", \
479 "ODD_DREGS", \
2889abed
BS
480 "D0REGS", \
481 "D1REGS", \
482 "D2REGS", \
483 "D3REGS", \
484 "D4REGS", \
485 "D5REGS", \
486 "D6REGS", \
487 "D7REGS", \
0d4a78eb 488 "DREGS", \
6614f9f5
BS
489 "FDPIC_REGS", \
490 "FDPIC_FPTR_REGS", \
0d4a78eb
BS
491 "PREGS_CLOBBERED", \
492 "PREGS", \
c4963a0a 493 "IPREGS", \
0d4a78eb
BS
494 "DPREGS", \
495 "MOST_REGS", \
b03149e1
JZ
496 "LT_REGS", \
497 "LC_REGS", \
498 "LB_REGS", \
0d4a78eb
BS
499 "PROLOGUE_REGS", \
500 "NON_A_CC_REGS", \
501 "ALL_REGS" }
502
503/* An initializer containing the contents of the register classes, as integers
504 which are bit masks. The Nth integer specifies the contents of class N.
505 The way the integer MASK is interpreted is that register R is in the class
506 if `MASK & (1 << R)' is 1.
507
508 When the machine has more than 32 registers, an integer does not suffice.
509 Then the integers are replaced by sub-initializers, braced groupings
510 containing several integers. Each sub-initializer must be suitable as an
511 initializer for the type `HARD_REG_SET' which is defined in
512 `hard-reg-set.h'. */
513
514/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
515 MOST_REGS as the union of DPREGS and DAGREGS. */
516
517#define REG_CLASS_CONTENTS \
518 /* 31 - 0 63-32 */ \
519{ { 0x00000000, 0 }, /* NO_REGS */ \
df259245
JZ
520 { 0x000f0000, 0 }, /* IREGS */ \
521 { 0x00f00000, 0 }, /* BREGS */ \
522 { 0x0f000000, 0 }, /* LREGS */ \
0d4a78eb
BS
523 { 0xf0000000, 0 }, /* MREGS */ \
524 { 0x0fff0000, 0 }, /* CIRCREGS */ \
525 { 0xffff0000, 0 }, /* DAGREGS */ \
526 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
527 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
528 { 0x00000000, 0x3 }, /* AREGS */ \
529 { 0x00000000, 0x4 }, /* CCREGS */ \
530 { 0x00000055, 0 }, /* EVEN_DREGS */ \
531 { 0x000000aa, 0 }, /* ODD_DREGS */ \
2889abed
BS
532 { 0x00000001, 0 }, /* D0REGS */ \
533 { 0x00000002, 0 }, /* D1REGS */ \
534 { 0x00000004, 0 }, /* D2REGS */ \
535 { 0x00000008, 0 }, /* D3REGS */ \
536 { 0x00000010, 0 }, /* D4REGS */ \
537 { 0x00000020, 0 }, /* D5REGS */ \
538 { 0x00000040, 0 }, /* D6REGS */ \
539 { 0x00000080, 0 }, /* D7REGS */ \
0d4a78eb 540 { 0x000000ff, 0 }, /* DREGS */ \
6614f9f5
BS
541 { 0x00000800, 0x000 }, /* FDPIC_REGS */ \
542 { 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
0d4a78eb
BS
543 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
544 { 0x0000ff00, 0x800 }, /* PREGS */ \
c4963a0a 545 { 0x000fff00, 0x800 }, /* IPREGS */ \
0d4a78eb
BS
546 { 0x0000ffff, 0x800 }, /* DPREGS */ \
547 { 0xffffffff, 0x800 }, /* MOST_REGS */\
b03149e1
JZ
548 { 0x00000000, 0x3000 }, /* LT_REGS */\
549 { 0x00000000, 0xc000 }, /* LC_REGS */\
550 { 0x00000000, 0x30000 }, /* LB_REGS */\
551 { 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
552 { 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
553 { 0xffffffff, 0x3ffff }} /* ALL_REGS */
0d4a78eb 554
c4963a0a
BS
555#define IREG_POSSIBLE_P(OUTER) \
556 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
557 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
558 || (OUTER) == MEM || (OUTER) == ADDRESS)
559
560#define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
561 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
562
0d4a78eb
BS
563#define INDEX_REG_CLASS PREGS
564
c4963a0a
BS
565#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
566 (P_REGNO_P (X) || (X) == REG_ARGP \
567 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
568 && I_REGNO_P (X)))
569
570#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
571 ((X) >= FIRST_PSEUDO_REGISTER \
572 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
0d4a78eb
BS
573
574#ifdef REG_OK_STRICT
c4963a0a
BS
575#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
576 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb 577#else
c4963a0a
BS
578#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
579 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb
BS
580#endif
581
0d4a78eb
BS
582#define REGNO_OK_FOR_INDEX_P(X) 0
583
584/* Get reg_class from a letter such as appears in the machine description. */
585
2889abed 586#define REG_CLASS_FROM_CONSTRAINT(LETTER, STR) \
0d4a78eb 587 ((LETTER) == 'a' ? PREGS : \
6614f9f5
BS
588 (LETTER) == 'Z' ? FDPIC_REGS : \
589 (LETTER) == 'Y' ? FDPIC_FPTR_REGS : \
0d4a78eb
BS
590 (LETTER) == 'd' ? DREGS : \
591 (LETTER) == 'z' ? PREGS_CLOBBERED : \
592 (LETTER) == 'D' ? EVEN_DREGS : \
593 (LETTER) == 'W' ? ODD_DREGS : \
594 (LETTER) == 'e' ? AREGS : \
595 (LETTER) == 'A' ? EVEN_AREGS : \
596 (LETTER) == 'B' ? ODD_AREGS : \
597 (LETTER) == 'b' ? IREGS : \
a9c46998 598 (LETTER) == 'v' ? BREGS : \
0d4a78eb
BS
599 (LETTER) == 'f' ? MREGS : \
600 (LETTER) == 'c' ? CIRCREGS : \
601 (LETTER) == 'C' ? CCREGS : \
b03149e1
JZ
602 (LETTER) == 't' ? LT_REGS : \
603 (LETTER) == 'k' ? LC_REGS : \
a9c46998 604 (LETTER) == 'u' ? LB_REGS : \
0d4a78eb
BS
605 (LETTER) == 'x' ? MOST_REGS : \
606 (LETTER) == 'y' ? PROLOGUE_REGS : \
607 (LETTER) == 'w' ? NON_A_CC_REGS : \
2889abed
BS
608 (LETTER) == 'q' \
609 ? ((STR)[1] == '0' ? D0REGS \
610 : (STR)[1] == '1' ? D1REGS \
611 : (STR)[1] == '2' ? D2REGS \
612 : (STR)[1] == '3' ? D3REGS \
613 : (STR)[1] == '4' ? D4REGS \
614 : (STR)[1] == '5' ? D5REGS \
615 : (STR)[1] == '6' ? D6REGS \
616 : (STR)[1] == '7' ? D7REGS \
617 : NO_REGS) : \
0d4a78eb
BS
618 NO_REGS)
619
620/* The same information, inverted:
621 Return the class number of the smallest class containing
622 reg number REGNO. This could be a conditional expression
623 or could index an array. */
624
625#define REGNO_REG_CLASS(REGNO) \
2889abed
BS
626((REGNO) == REG_R0 ? D0REGS \
627 : (REGNO) == REG_R1 ? D1REGS \
628 : (REGNO) == REG_R2 ? D2REGS \
629 : (REGNO) == REG_R3 ? D3REGS \
630 : (REGNO) == REG_R4 ? D4REGS \
631 : (REGNO) == REG_R5 ? D5REGS \
632 : (REGNO) == REG_R6 ? D6REGS \
633 : (REGNO) == REG_R7 ? D7REGS \
0d4a78eb 634 : (REGNO) < REG_I0 ? PREGS \
c4963a0a 635 : (REGNO) == REG_ARGP ? PREGS \
0d4a78eb
BS
636 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
637 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
638 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
639 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
640 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
b03149e1
JZ
641 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
642 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
643 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
0d4a78eb
BS
644 : (REGNO) == REG_CC ? CCREGS \
645 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
646 : NO_REGS)
647
648/* When defined, the compiler allows registers explicitly used in the
649 rtl to be used as spill registers but prevents the compiler from
650 extending the lifetime of these registers. */
651#define SMALL_REGISTER_CLASSES 1
652
653#define CLASS_LIKELY_SPILLED_P(CLASS) \
654 ((CLASS) == PREGS_CLOBBERED \
655 || (CLASS) == PROLOGUE_REGS \
2889abed
BS
656 || (CLASS) == D0REGS \
657 || (CLASS) == D1REGS \
658 || (CLASS) == D2REGS \
0d4a78eb
BS
659 || (CLASS) == CCREGS)
660
661/* Do not allow to store a value in REG_CC for any mode */
662/* Do not allow to store value in pregs if mode is not SI*/
663#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
664
665/* Return the maximum number of consecutive registers
666 needed to represent mode MODE in a register of class CLASS. */
75d8b2d0
BS
667#define CLASS_MAX_NREGS(CLASS, MODE) \
668 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
669 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0d4a78eb
BS
670
671#define HARD_REGNO_NREGS(REGNO, MODE) \
75d8b2d0
BS
672 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
673 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
674 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
0d4a78eb
BS
675
676/* A C expression that is nonzero if hard register TO can be
677 considered for use as a rename register for FROM register */
678#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
679
680/* A C expression that is nonzero if it is desirable to choose
681 register allocation so as to avoid move instructions between a
682 value of mode MODE1 and a value of mode MODE2.
683
684 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
685 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
686 MODE2)' must be zero. */
687#define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
688
689/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
690 A C expression that places additional restrictions on the register
691 class to use when it is necessary to copy value X into a register
692 in class CLASS. The value is a register class; perhaps CLASS, or
693 perhaps another, smaller class. */
694#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
695
0d4a78eb
BS
696/* Function Calling Conventions. */
697
698/* The type of the current function; normal functions are of type
699 SUBROUTINE. */
700typedef enum {
701 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
702} e_funkind;
703
704#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
705
6d459e2b
BS
706/* Flags for the call/call_value rtl operations set up by function_arg */
707#define CALL_NORMAL 0x00000000 /* no special processing */
708#define CALL_LONG 0x00000001 /* always call indirect */
709#define CALL_SHORT 0x00000002 /* always call by symbol */
710
0d4a78eb
BS
711typedef struct {
712 int words; /* # words passed so far */
713 int nregs; /* # registers available for passing */
714 int *arg_regs; /* array of register -1 terminated */
6d459e2b 715 int call_cookie; /* Do special things for this call */
0d4a78eb
BS
716} CUMULATIVE_ARGS;
717
718/* Define where to put the arguments to a function.
719 Value is zero to push the argument on the stack,
720 or a hard register in which to store the argument.
721
722 MODE is the argument's machine mode.
723 TYPE is the data type of the argument (as a tree).
724 This is null for libcalls where that information may
725 not be available.
726 CUM is a variable of type CUMULATIVE_ARGS which gives info about
727 the preceding args and about the function being called.
728 NAMED is nonzero if this argument is a named parameter
729 (otherwise it is an extra parameter matching an ellipsis). */
730
731#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
732 (function_arg (&CUM, MODE, TYPE, NAMED))
733
734#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
735
736
737/* Initialize a variable CUM of type CUMULATIVE_ARGS
738 for a call to a function whose data type is FNTYPE.
739 For a library call, FNTYPE is 0. */
740#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
741 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
742
743/* Update the data in CUM to advance over an argument
744 of mode MODE and data type TYPE.
745 (TYPE is null for libcalls where that information may not be available.) */
746#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
747 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
748
749#define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
750
751/* Define how to find the value returned by a function.
752 VALTYPE is the data type of the value (as a tree).
753 If the precise function being called is known, FUNC is its FUNCTION_DECL;
754 otherwise, FUNC is 0.
755*/
756
757#define VALUE_REGNO(MODE) (REG_R0)
758
759#define FUNCTION_VALUE(VALTYPE, FUNC) \
760 gen_rtx_REG (TYPE_MODE (VALTYPE), \
761 VALUE_REGNO(TYPE_MODE(VALTYPE)))
762
763/* Define how to find the value returned by a library function
764 assuming the value has mode MODE. */
765
766#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
767
768#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
769
770#define DEFAULT_PCC_STRUCT_RETURN 0
771#define RETURN_IN_MEMORY(TYPE) bfin_return_in_memory(TYPE)
772
773/* Before the prologue, the return address is in the RETS register. */
774#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
775
776#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
777
778#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
779
780/* Call instructions don't modify the stack pointer on the Blackfin. */
781#define INCOMING_FRAME_SP_OFFSET 0
782
783/* Describe how we implement __builtin_eh_return. */
784#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
785#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
786#define EH_RETURN_HANDLER_RTX \
787 gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
788
789/* Addressing Modes */
790
791/* Recognize any constant value that is a valid address. */
792#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
793
794/* Nonzero if the constant value X is a legitimate general operand.
795 symbol_ref are not legitimate and will be put into constant pool.
796 See force_const_mem().
797 If -mno-pool, all constants are legitimate.
798 */
d6f6753e 799#define LEGITIMATE_CONSTANT_P(X) bfin_legitimate_constant_p (X)
0d4a78eb
BS
800
801/* A number, the maximum number of registers that can appear in a
802 valid memory address. Note that it is up to you to specify a
803 value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
804 would ever accept. */
805#define MAX_REGS_PER_ADDRESS 1
806
807/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
808 that is a valid memory address for an instruction.
809 The MODE argument is the machine mode for the MEM expression
810 that wants to use this address.
811
812 Blackfin addressing modes are as follows:
813
814 [preg]
815 [preg + imm16]
816
817 B [ Preg + uimm15 ]
818 W [ Preg + uimm16m2 ]
819 [ Preg + uimm17m4 ]
820
821 [preg++]
822 [preg--]
823 [--sp]
824*/
825
826#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
827 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
828
829#ifdef REG_OK_STRICT
830#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
831 do { \
832 if (bfin_legitimate_address_p (MODE, X, 1)) \
833 goto WIN; \
834 } while (0);
835#else
836#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
837 do { \
838 if (bfin_legitimate_address_p (MODE, X, 0)) \
839 goto WIN; \
840 } while (0);
841#endif
842
843/* Try machine-dependent ways of modifying an illegitimate address
844 to be legitimate. If we find one, return the new, valid address.
845 This macro is used in only one place: `memory_address' in explow.c.
846
847 OLDX is the address as it was before break_out_memory_refs was called.
848 In some cases it is useful to look at this to decide what needs to be done.
849
850 MODE and WIN are passed so that this macro can use
851 GO_IF_LEGITIMATE_ADDRESS.
852
853 It is always safe for this macro to do nothing. It exists to recognize
854 opportunities to optimize the output.
855 */
856#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
857do { \
858 rtx _q = legitimize_address(X, OLDX, MODE); \
859 if (_q) { X = _q; goto WIN; } \
860} while (0)
861
862#define HAVE_POST_INCREMENT 1
863#define HAVE_POST_DECREMENT 1
864#define HAVE_PRE_DECREMENT 1
865
866/* `LEGITIMATE_PIC_OPERAND_P (X)'
867 A C expression that is nonzero if X is a legitimate immediate
868 operand on the target machine when generating position independent
869 code. You can assume that X satisfies `CONSTANT_P', so you need
870 not check this. You can also assume FLAG_PIC is true, so you need
871 not check it either. You need not define this macro if all
872 constants (including `SYMBOL_REF') can be immediate operands when
873 generating position independent code. */
874#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
875
876#define SYMBOLIC_CONST(X) \
877(GET_CODE (X) == SYMBOL_REF \
878 || GET_CODE (X) == LABEL_REF \
879 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
880
881/*
882 A C statement or compound statement with a conditional `goto
883 LABEL;' executed if memory address X (an RTX) can have different
884 meanings depending on the machine mode of the memory reference it
885 is used for or if the address is valid for some modes but not
886 others.
887
888 Autoincrement and autodecrement addresses typically have
889 mode-dependent effects because the amount of the increment or
890 decrement is the size of the operand being addressed. Some
891 machines have other mode-dependent addresses. Many RISC machines
892 have no mode-dependent addresses.
893
894 You may assume that ADDR is a valid address for the machine.
895*/
b9a76028 896#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
0d4a78eb
BS
897
898#define NOTICE_UPDATE_CC(EXPR, INSN) 0
899
900/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
901 is done just by pretending it is already truncated. */
902#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
903
904/* Max number of bytes we can move from memory to memory
905 in one reasonably fast instruction. */
906#define MOVE_MAX UNITS_PER_WORD
907
908
909/* STORAGE LAYOUT: target machine storage layout
910 Define this macro as a C expression which is nonzero if accessing
911 less than a word of memory (i.e. a `char' or a `short') is no
912 faster than accessing a word of memory, i.e., if such access
913 require more than one instruction or if there is no difference in
914 cost between byte and (aligned) word loads.
915
916 When this macro is not defined, the compiler will access a field by
917 finding the smallest containing object; when it is defined, a
918 fullword load will be used if alignment permits. Unless bytes
919 accesses are faster than word accesses, using word accesses is
920 preferable since it may eliminate subsequent memory access if
921 subsequent accesses occur to other fields in the same word of the
922 structure, but to different bytes. */
923#define SLOW_BYTE_ACCESS 0
924#define SLOW_SHORT_ACCESS 0
925
926/* Define this if most significant bit is lowest numbered
927 in instructions that operate on numbered bit-fields. */
928#define BITS_BIG_ENDIAN 0
929
930/* Define this if most significant byte of a word is the lowest numbered.
931 We can't access bytes but if we could we would in the Big Endian order. */
932#define BYTES_BIG_ENDIAN 0
933
934/* Define this if most significant word of a multiword number is numbered. */
935#define WORDS_BIG_ENDIAN 0
936
937/* number of bits in an addressable storage unit */
938#define BITS_PER_UNIT 8
939
940/* Width in bits of a "word", which is the contents of a machine register.
941 Note that this is not necessarily the width of data type `int';
942 if using 16-bit ints on a 68000, this would still be 32.
943 But on a machine with 16-bit registers, this would be 16. */
944#define BITS_PER_WORD 32
945
946/* Width of a word, in units (bytes). */
947#define UNITS_PER_WORD 4
948
0d4a78eb
BS
949/* Width in bits of a pointer.
950 See also the macro `Pmode1' defined below. */
951#define POINTER_SIZE 32
952
953/* Allocation boundary (in *bits*) for storing pointers in memory. */
954#define POINTER_BOUNDARY 32
955
956/* Allocation boundary (in *bits*) for storing arguments in argument list. */
957#define PARM_BOUNDARY 32
958
959/* Boundary (in *bits*) on which stack pointer should be aligned. */
960#define STACK_BOUNDARY 32
961
962/* Allocation boundary (in *bits*) for the code of a function. */
963#define FUNCTION_BOUNDARY 32
964
965/* Alignment of field after `int : 0' in a structure. */
966#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
967
968/* No data type wants to be aligned rounder than this. */
969#define BIGGEST_ALIGNMENT 32
970
971/* Define this if move instructions will actually fail to work
972 when given unaligned data. */
973#define STRICT_ALIGNMENT 1
974
975/* (shell-command "rm c-decl.o stor-layout.o")
976 * never define PCC_BITFIELD_TYPE_MATTERS
977 * really cause some alignment problem
978 */
979
980#define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
981 BITS_PER_UNIT)
982
983#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
984 BITS_PER_UNIT)
985
986
987/* what is the 'type' of size_t */
988#define SIZE_TYPE "long unsigned int"
989
990/* Define this as 1 if `char' should by default be signed; else as 0. */
991#define DEFAULT_SIGNED_CHAR 1
992#define FLOAT_TYPE_SIZE BITS_PER_WORD
993#define SHORT_TYPE_SIZE 16
994#define CHAR_TYPE_SIZE 8
995#define INT_TYPE_SIZE 32
996#define LONG_TYPE_SIZE 32
997#define LONG_LONG_TYPE_SIZE 64
998
999/* Note: Fix this to depend on target switch. -- lev */
1000
1001/* Note: Try to implement double and force long double. -- tonyko
1002 * #define __DOUBLES_ARE_FLOATS__
1003 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
1004 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
1005 * #define DOUBLES_ARE_FLOATS 1
1006 */
1007
1008#define DOUBLE_TYPE_SIZE 64
1009#define LONG_DOUBLE_TYPE_SIZE 64
1010
1011/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
1012 A macro to update M and UNSIGNEDP when an object whose type is
1013 TYPE and which has the specified mode and signedness is to be
1014 stored in a register. This macro is only called when TYPE is a
1015 scalar type.
1016
1017 On most RISC machines, which only have operations that operate on
1018 a full register, define this macro to set M to `word_mode' if M is
1019 an integer mode narrower than `BITS_PER_WORD'. In most cases,
1020 only integer modes should be widened because wider-precision
1021 floating-point operations are usually more expensive than their
1022 narrower counterparts.
1023
1024 For most machines, the macro definition does not change UNSIGNEDP.
1025 However, some machines, have instructions that preferentially
1026 handle either signed or unsigned quantities of certain modes. For
1027 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
1028 instructions sign-extend the result to 64 bits. On such machines,
1029 set UNSIGNEDP according to which kind of extension is more
1030 efficient.
1031
1032 Do not define this macro if it would never modify M.*/
1033
1034#define BFIN_PROMOTE_MODE_P(MODE) \
1035 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
1036 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
1037
1038#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1039 if (BFIN_PROMOTE_MODE_P(MODE)) \
1040 { \
1041 if (MODE == QImode) \
1042 UNSIGNEDP = 1; \
1043 else if (MODE == HImode) \
1044 UNSIGNEDP = 0; \
1045 (MODE) = SImode; \
1046 }
1047
1048/* Describing Relative Costs of Operations */
1049
1050/* Do not put function addr into constant pool */
1051#define NO_FUNCTION_CSE 1
1052
1053/* A C expression for the cost of moving data from a register in class FROM to
1054 one in class TO. The classes are expressed using the enumeration values
1055 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1056 interpreted relative to that.
1057
1058 It is not required that the cost always equal 2 when FROM is the same as TO;
1059 on some machines it is expensive to move between registers if they are not
1060 general registers. */
1061
1062#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1063 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1064
1065/* A C expression for the cost of moving data of mode M between a
1066 register and memory. A value of 2 is the default; this cost is
1067 relative to those in `REGISTER_MOVE_COST'.
1068
1069 If moving between registers and memory is more expensive than
1070 between two registers, you should define this macro to express the
1071 relative cost. */
1072
1073#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1074 bfin_memory_move_cost ((MODE), (CLASS), (IN))
1075
1076/* Specify the machine mode that this machine uses
1077 for the index in the tablejump instruction. */
1078#define CASE_VECTOR_MODE SImode
1079
1080#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1081
1082/* Define if operations between registers always perform the operation
1083 on the full register even if a narrower mode is specified.
1084#define WORD_REGISTER_OPERATIONS
1085*/
1086
1087#define CONST_18UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 262140)
1088#define CONST_16BIT_IMM_P(VALUE) ((VALUE) >= -32768 && (VALUE) <= 32767)
1089#define CONST_16UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 65535)
1090#define CONST_7BIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 63)
1091#define CONST_7NBIT_IMM_P(VALUE) ((VALUE) >= -64 && (VALUE) <= 0)
1092#define CONST_5UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 31)
1093#define CONST_4BIT_IMM_P(VALUE) ((VALUE) >= -8 && (VALUE) <= 7)
1094#define CONST_4UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 15)
1095#define CONST_3BIT_IMM_P(VALUE) ((VALUE) >= -4 && (VALUE) <= 3)
1096#define CONST_3UBIT_IMM_P(VALUE) ((VALUE) >= 0 && (VALUE) <= 7)
1097
1098#define CONSTRAINT_LEN(C, STR) \
2889abed 1099 ((C) == 'P' || (C) == 'M' || (C) == 'N' || (C) == 'q' ? 2 \
0d4a78eb
BS
1100 : (C) == 'K' ? 3 \
1101 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1102
1103#define CONST_OK_FOR_P(VALUE, STR) \
1104 ((STR)[1] == '0' ? (VALUE) == 0 \
1105 : (STR)[1] == '1' ? (VALUE) == 1 \
1106 : (STR)[1] == '2' ? (VALUE) == 2 \
1107 : (STR)[1] == '3' ? (VALUE) == 3 \
1108 : (STR)[1] == '4' ? (VALUE) == 4 \
3efd5670
BS
1109 : (STR)[1] == 'A' ? (VALUE) != MACFLAG_M && (VALUE) != MACFLAG_IS_M \
1110 : (STR)[1] == 'B' ? (VALUE) == MACFLAG_M || (VALUE) == MACFLAG_IS_M \
0d4a78eb
BS
1111 : 0)
1112
1113#define CONST_OK_FOR_K(VALUE, STR) \
1114 ((STR)[1] == 'u' \
1115 ? ((STR)[2] == '3' ? CONST_3UBIT_IMM_P (VALUE) \
1116 : (STR)[2] == '4' ? CONST_4UBIT_IMM_P (VALUE) \
1117 : (STR)[2] == '5' ? CONST_5UBIT_IMM_P (VALUE) \
1118 : (STR)[2] == 'h' ? CONST_16UBIT_IMM_P (VALUE) \
1119 : 0) \
1120 : (STR)[1] == 's' \
1121 ? ((STR)[2] == '3' ? CONST_3BIT_IMM_P (VALUE) \
1122 : (STR)[2] == '4' ? CONST_4BIT_IMM_P (VALUE) \
1123 : (STR)[2] == '7' ? CONST_7BIT_IMM_P (VALUE) \
1124 : (STR)[2] == 'h' ? CONST_16BIT_IMM_P (VALUE) \
1125 : 0) \
1126 : (STR)[1] == 'n' \
1127 ? ((STR)[2] == '7' ? CONST_7NBIT_IMM_P (VALUE) \
1128 : 0) \
d4e85050
BS
1129 : (STR)[1] == 'N' \
1130 ? ((STR)[2] == '7' ? CONST_7BIT_IMM_P (-(VALUE)) \
1131 : 0) \
0d4a78eb
BS
1132 : 0)
1133
1134#define CONST_OK_FOR_M(VALUE, STR) \
1135 ((STR)[1] == '1' ? (VALUE) == 255 \
1136 : (STR)[1] == '2' ? (VALUE) == 65535 \
1137 : 0)
1138
1139/* The letters I, J, K, L and M in a register constraint string
1140 can be used to stand for particular ranges of immediate operands.
1141 This macro defines what the ranges are.
1142 C is the letter, and VALUE is a constant value.
1143 Return 1 if VALUE is in the range specified by C.
1144
1145 bfin constant operands are as follows
1146
1147 J 2**N 5bit imm scaled
1148 Ks7 -64 .. 63 signed 7bit imm
1149 Ku5 0..31 unsigned 5bit imm
1150 Ks4 -8 .. 7 signed 4bit imm
1151 Ks3 -4 .. 3 signed 3bit imm
1152 Ku3 0 .. 7 unsigned 3bit imm
1153 Pn 0, 1, 2 constants 0, 1 or 2, corresponding to n
1154*/
1155#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
1156 ((C) == 'J' ? (log2constp (VALUE)) \
1157 : (C) == 'K' ? CONST_OK_FOR_K (VALUE, STR) \
1158 : (C) == 'L' ? log2constp (~(VALUE)) \
1159 : (C) == 'M' ? CONST_OK_FOR_M (VALUE, STR) \
1160 : (C) == 'P' ? CONST_OK_FOR_P (VALUE, STR) \
1161 : 0)
1162
1163 /*Constant Output Formats */
1164#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1165 ((C) == 'H' ? 1 : 0)
1166
1167#define EXTRA_CONSTRAINT(VALUE, D) \
1168 ((D) == 'Q' ? GET_CODE (VALUE) == SYMBOL_REF : 0)
1169
3efd5670
BS
1170/* Evaluates to true if A and B are mac flags that can be used
1171 together in a single multiply insn. That is the case if they are
1172 both the same flag not involving M, or if one is a combination of
1173 the other with M. */
1174#define MACFLAGS_MATCH_P(A, B) \
1175 ((A) == (B) \
1176 || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
1177 || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
1178 || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
1179 || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
1180
0d4a78eb
BS
1181/* Switch into a generic section. */
1182#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1183
1184#define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1185#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1186
1187typedef enum sections {
1188 CODE_DIR,
1189 DATA_DIR,
1190 LAST_SECT_NM
1191} SECT_ENUM_T;
1192
1193typedef enum directives {
1194 LONG_CONST_DIR,
1195 SHORT_CONST_DIR,
1196 BYTE_CONST_DIR,
1197 SPACE_DIR,
1198 INIT_DIR,
1199 LAST_DIR_NM
1200} DIR_ENUM_T;
1201
1202#define TEXT_SECTION_ASM_OP ".text;"
1203#define DATA_SECTION_ASM_OP ".data;"
1204
1205#define ASM_APP_ON ""
1206#define ASM_APP_OFF ""
1207
1208#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1209 do { fputs (".global ", FILE); \
1210 assemble_name (FILE, NAME); \
1211 fputc (';',FILE); \
1212 fputc ('\n',FILE); \
1213 } while (0)
1214
1215#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1216 do { \
1217 fputs (".type ", FILE); \
1218 assemble_name (FILE, NAME); \
1219 fputs (", STT_FUNC", FILE); \
1220 fputc (';',FILE); \
1221 fputc ('\n',FILE); \
1222 ASM_OUTPUT_LABEL(FILE, NAME); \
1223 } while (0)
1224
1225#define ASM_OUTPUT_LABEL(FILE, NAME) \
1226 do { assemble_name (FILE, NAME); \
1227 fputs (":\n",FILE); \
1228 } while (0)
1229
1230#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1231 do { fprintf (FILE, "_%s", NAME); \
1232 } while (0)
1233
0d4a78eb
BS
1234#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1235do { char __buf[256]; \
1236 fprintf (FILE, "\t.dd\t"); \
1237 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1238 assemble_name (FILE, __buf); \
1239 fputc (';', FILE); \
1240 fputc ('\n', FILE); \
1241 } while (0)
1242
1243#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1244 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1245
1246#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1247 do { \
1248 char __buf[256]; \
1249 fprintf (FILE, "\t.dd\t"); \
1250 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1251 assemble_name (FILE, __buf); \
1252 fputs (" - ", FILE); \
1253 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1254 assemble_name (FILE, __buf); \
1255 fputc (';', FILE); \
1256 fputc ('\n', FILE); \
1257 } while (0)
1258
1259#define ASM_OUTPUT_ALIGN(FILE,LOG) \
21956c07
BS
1260 do { \
1261 if ((LOG) != 0) \
1262 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
0d4a78eb
BS
1263 } while (0)
1264
1265#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1266 do { \
1267 asm_output_skip (FILE, SIZE); \
1268 } while (0)
1269
1270#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1271do { \
d6b5193b 1272 switch_to_section (data_section); \
0d4a78eb
BS
1273 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1274 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1275 ASM_OUTPUT_LABEL (FILE, NAME); \
1276 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1277 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1278} while (0)
1279
1280#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1281 do { \
1282 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1283 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1284
1285#define ASM_COMMENT_START "//"
1286
56014148
JZ
1287#define FUNCTION_PROFILER(FILE, LABELNO) \
1288 do { \
1289 fprintf (FILE, "\tCALL __mcount;\n"); \
0d4a78eb
BS
1290 } while(0)
1291
56014148
JZ
1292#undef NO_PROFILE_COUNTERS
1293#define NO_PROFILE_COUNTERS 1
1294
0d4a78eb
BS
1295#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1296#define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1297
1298extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1299extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1300
1301/* This works for GAS and some other assemblers. */
1302#define SET_ASM_OP ".set "
1303
0d4a78eb
BS
1304/* DBX register number for a given compiler register number */
1305#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1306
1307#define SIZE_ASM_OP "\t.size\t"
1308
bbbc206e
BS
1309extern int splitting_for_sched;
1310
1311#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1312
0d4a78eb 1313#endif /* _BFIN_CONFIG */