]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/bfin/bfin.h
i386.md (*fop_<mode>_comm_mixed): Macroize from *fop_sf_comm_mixed and *fop_df_comm_m...
[thirdparty/gcc.git] / gcc / config / bfin / bfin.h
CommitLineData
0d4a78eb 1/* Definitions for the Blackfin port.
64882649 2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
0d4a78eb
BS
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
0d4a78eb
BS
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
2f83c7d6
NC
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
0d4a78eb
BS
20
21#ifndef _BFIN_CONFIG
22#define _BFIN_CONFIG
23
24#define OBJECT_FORMAT_ELF
25
26#define BRT 1
27#define BRF 0
28
29/* Print subsidiary information on the compiler version in use. */
30#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
31
32/* Run-time compilation parameters selecting different hardware subsets. */
33
34extern int target_flags;
35
36/* Predefinition in the preprocessor for this target machine */
37#ifndef TARGET_CPU_CPP_BUILTINS
ea2382be
JZ
38#define TARGET_CPU_CPP_BUILTINS() \
39 do \
40 { \
41 builtin_define_std ("bfin"); \
42 builtin_define_std ("BFIN"); \
42da70b7 43 builtin_define ("__ADSPBLACKFIN__"); \
9d3f9aa3
BS
44 builtin_define ("__ADSPLPBLACKFIN__"); \
45 \
46 switch (bfin_cpu_type) \
47 { \
ea2382be
JZ
48 case BFIN_CPU_BF522: \
49 builtin_define ("__ADSPBF522__"); \
50 builtin_define ("__ADSPBF52x__"); \
51 break; \
64882649
BS
52 case BFIN_CPU_BF523: \
53 builtin_define ("__ADSPBF523__"); \
54 builtin_define ("__ADSPBF52x__"); \
55 break; \
56 case BFIN_CPU_BF524: \
57 builtin_define ("__ADSPBF524__"); \
58 builtin_define ("__ADSPBF52x__"); \
59 break; \
ea2382be
JZ
60 case BFIN_CPU_BF525: \
61 builtin_define ("__ADSPBF525__"); \
62 builtin_define ("__ADSPBF52x__"); \
63 break; \
64882649
BS
64 case BFIN_CPU_BF526: \
65 builtin_define ("__ADSPBF526__"); \
66 builtin_define ("__ADSPBF52x__"); \
67 break; \
ea2382be
JZ
68 case BFIN_CPU_BF527: \
69 builtin_define ("__ADSPBF527__"); \
70 builtin_define ("__ADSPBF52x__"); \
71 break; \
9d3f9aa3
BS
72 case BFIN_CPU_BF531: \
73 builtin_define ("__ADSPBF531__"); \
74 break; \
75 case BFIN_CPU_BF532: \
76 builtin_define ("__ADSPBF532__"); \
77 break; \
78 case BFIN_CPU_BF533: \
79 builtin_define ("__ADSPBF533__"); \
80 break; \
28f601ff
JZ
81 case BFIN_CPU_BF534: \
82 builtin_define ("__ADSPBF534__"); \
83 break; \
84 case BFIN_CPU_BF536: \
85 builtin_define ("__ADSPBF536__"); \
86 break; \
9d3f9aa3
BS
87 case BFIN_CPU_BF537: \
88 builtin_define ("__ADSPBF537__"); \
89 break; \
ea2382be
JZ
90 case BFIN_CPU_BF538: \
91 builtin_define ("__ADSPBF538__"); \
92 break; \
93 case BFIN_CPU_BF539: \
94 builtin_define ("__ADSPBF539__"); \
95 break; \
96 case BFIN_CPU_BF542: \
97 builtin_define ("__ADSPBF542__"); \
98 builtin_define ("__ADSPBF54x__"); \
99 break; \
100 case BFIN_CPU_BF544: \
101 builtin_define ("__ADSPBF544__"); \
102 builtin_define ("__ADSPBF54x__"); \
103 break; \
104 case BFIN_CPU_BF548: \
105 builtin_define ("__ADSPBF548__"); \
106 builtin_define ("__ADSPBF54x__"); \
107 break; \
64882649
BS
108 case BFIN_CPU_BF547: \
109 builtin_define ("__ADSPBF547__"); \
110 builtin_define ("__ADSPBF54x__"); \
111 break; \
ea2382be
JZ
112 case BFIN_CPU_BF549: \
113 builtin_define ("__ADSPBF549__"); \
114 builtin_define ("__ADSPBF54x__"); \
115 break; \
28f601ff
JZ
116 case BFIN_CPU_BF561: \
117 builtin_define ("__ADSPBF561__"); \
118 break; \
9d3f9aa3
BS
119 } \
120 \
ea2382be
JZ
121 if (bfin_si_revision != -1) \
122 { \
123 /* space of 0xnnnn and a NUL */ \
124 char *buf = alloca (7); \
125 \
126 sprintf (buf, "0x%04x", bfin_si_revision); \
127 builtin_define_with_value ("__SILICON_REVISION__", buf, 0); \
128 } \
129 \
130 if (bfin_workarounds) \
131 builtin_define ("__WORKAROUNDS_ENABLED"); \
132 if (ENABLE_WA_SPECULATIVE_LOADS) \
133 builtin_define ("__WORKAROUND_SPECULATIVE_LOADS"); \
134 if (ENABLE_WA_SPECULATIVE_SYNCS) \
135 builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS"); \
136 \
6614f9f5 137 if (TARGET_FDPIC) \
f13488c0
BS
138 { \
139 builtin_define ("__BFIN_FDPIC__"); \
140 builtin_define ("__FDPIC__"); \
141 } \
ea2382be
JZ
142 if (TARGET_ID_SHARED_LIBRARY \
143 && !TARGET_SEP_DATA) \
4af990cd 144 builtin_define ("__ID_SHARED_LIB__"); \
ae80f469
JZ
145 if (flag_no_builtin) \
146 builtin_define ("__NO_BUILTIN"); \
16869606
BS
147 if (TARGET_MULTICORE) \
148 builtin_define ("__BFIN_MULTICORE"); \
149 if (TARGET_COREA) \
150 builtin_define ("__BFIN_COREA"); \
151 if (TARGET_COREB) \
152 builtin_define ("__BFIN_COREB"); \
153 if (TARGET_SDRAM) \
154 builtin_define ("__BFIN_SDRAM"); \
ea2382be 155 } \
0d4a78eb
BS
156 while (0)
157#endif
158
6614f9f5 159#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
93147119 160 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
6614f9f5
BS
161 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
162 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
163"
164#ifndef SUBTARGET_DRIVER_SELF_SPECS
165# define SUBTARGET_DRIVER_SELF_SPECS
166#endif
167
2c117a21
JZ
168#define LINK_GCC_C_SEQUENCE_SPEC "\
169 %{mfast-fp:-lbffastfp} %G %L %{mfast-fp:-lbffastfp} %G \
170"
6614f9f5
BS
171
172/* A C string constant that tells the GCC driver program options to pass to
173 the assembler. It can also specify how to translate options you give to GNU
174 CC into options for GCC to pass to the assembler. See the file `sun3.h'
175 for an example of this.
176
177 Do not define this macro if it does not need to do anything.
178
179 Defined in svr4.h. */
180#undef ASM_SPEC
181#define ASM_SPEC "\
182%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
183 %{mno-fdpic:-mnopic} %{mfdpic}"
184
185#define LINK_SPEC "\
186%{h*} %{v:-V} \
187%{b} \
188%{mfdpic:-melf32bfinfd -z text} \
189%{static:-dn -Bstatic} \
190%{shared:-G -Bdynamic} \
191%{symbolic:-Bsymbolic} \
192%{G*} \
193%{YP,*} \
194%{Qy:} %{!Qn:-Qy} \
195-init __init -fini __fini "
196
0d4a78eb
BS
197/* Generate DSP instructions, like DSP halfword loads */
198#define TARGET_DSP (1)
199
ea2382be 200#define TARGET_DEFAULT 0
0d4a78eb 201
0d4a78eb
BS
202/* Maximum number of library ids we permit */
203#define MAX_LIBRARY_ID 255
204
205extern const char *bfin_library_id_string;
206
207/* Sometimes certain combinations of command options do not make
208 sense on a particular target machine. You can define a macro
209 `OVERRIDE_OPTIONS' to take account of this. This macro, if
210 defined, is executed once just after all the command options have
211 been parsed.
212
213 Don't use this macro to turn on various extra optimizations for
214 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
215
216#define OVERRIDE_OPTIONS override_options ()
217
218#define FUNCTION_MODE SImode
219#define Pmode SImode
220
221/* store-condition-codes instructions store 0 for false
222 This is the value stored for true. */
223#define STORE_FLAG_VALUE 1
224
225/* Define this if pushing a word on the stack
226 makes the stack pointer a smaller address. */
227#define STACK_GROWS_DOWNWARD
228
229#define STACK_PUSH_CODE PRE_DEC
230
a4d05547 231/* Define this to nonzero if the nominal address of the stack frame
0d4a78eb
BS
232 is at the high-address end of the local variables;
233 that is, each additional local variable allocated
234 goes at a more negative offset in the frame. */
f62c8a5c 235#define FRAME_GROWS_DOWNWARD 1
0d4a78eb
BS
236
237/* We define a dummy ARGP register; the parameters start at offset 0 from
238 it. */
239#define FIRST_PARM_OFFSET(DECL) 0
240
241/* Offset within stack frame to start allocating local variables at.
242 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
243 first local allocated. Otherwise, it is the offset to the BEGINNING
244 of the first local allocated. */
245#define STARTING_FRAME_OFFSET 0
246
247/* Register to use for pushing function arguments. */
248#define STACK_POINTER_REGNUM REG_P6
249
250/* Base register for access to local variables of the function. */
251#define FRAME_POINTER_REGNUM REG_P7
252
253/* A dummy register that will be eliminated to either FP or SP. */
254#define ARG_POINTER_REGNUM REG_ARGP
255
256/* `PIC_OFFSET_TABLE_REGNUM'
257 The register number of the register used to address a table of
258 static data addresses in memory. In some cases this register is
259 defined by a processor's "application binary interface" (ABI).
260 When this macro is defined, RTL is generated for this register
261 once, as with the stack pointer and frame pointer registers. If
262 this macro is not defined, it is up to the machine-dependent files
263 to allocate such a register (if necessary). */
264#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
265
6614f9f5
BS
266#define FDPIC_FPTR_REGNO REG_P1
267#define FDPIC_REGNO REG_P3
268#define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
269
0d4a78eb
BS
270/* A static chain register for nested functions. We need to use a
271 call-clobbered register for this. */
272#define STATIC_CHAIN_REGNUM REG_P2
273
274/* Define this if functions should assume that stack space has been
275 allocated for arguments even when their values are passed in
276 registers.
277
278 The value of this macro is the size, in bytes, of the area reserved for
279 arguments passed in registers.
280
281 This space can either be allocated by the caller or be a part of the
282 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
283 says which. */
284#define FIXED_STACK_AREA 12
285#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
286
287/* Define this if the above stack space is to be considered part of the
288 * space allocated by the caller. */
81464b2c 289#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
0d4a78eb
BS
290
291/* Define this if the maximum size of all the outgoing args is to be
292 accumulated and pushed during the prologue. The amount can be
38173d38 293 found in the variable crtl->outgoing_args_size. */
0d4a78eb
BS
294#define ACCUMULATE_OUTGOING_ARGS 1
295
296/* Value should be nonzero if functions must have frame pointers.
297 Zero means the frame pointer need not be set up (and parms
298 may be accessed via the stack pointer) in functions that seem suitable.
299 This is computed in `reload', in reload1.c.
300*/
301#define FRAME_POINTER_REQUIRED (bfin_frame_pointer_required ())
302
0d4a78eb
BS
303/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
304
520c62ad
BS
305/* If defined, a C expression to compute the alignment for a local
306 variable. TYPE is the data type, and ALIGN is the alignment that
307 the object would ordinarily have. The value of this macro is used
308 instead of that alignment to align the object.
309
310 If this macro is not defined, then ALIGN is used.
311
312 One use of this macro is to increase alignment of medium-size
313 data to make it all fit in fewer cache lines. */
314
315#define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
316
0d4a78eb
BS
317/* Make strings word-aligned so strcpy from constants will be faster. */
318#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
319 (TREE_CODE (EXP) == STRING_CST \
320 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
321
6614f9f5 322#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
0d4a78eb 323#define TRAMPOLINE_TEMPLATE(FILE) \
6614f9f5
BS
324 if (TARGET_FDPIC) \
325 { \
326 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
327 fprintf(FILE, "\t.dd\t0x00000000\n"); /* 0 */ \
328 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
329 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
330 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
331 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
332 fprintf(FILE, "\t.dw\t0xac4b\n"); /* p3 = [p1 + 4] */ \
333 fprintf(FILE, "\t.dw\t0x9149\n"); /* p1 = [p1] */ \
334 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
335 } \
336 else \
337 { \
338 fprintf(FILE, "\t.dd\t0x0000e109\n"); /* p1.l = fn low */ \
339 fprintf(FILE, "\t.dd\t0x0000e149\n"); /* p1.h = fn high */ \
340 fprintf(FILE, "\t.dd\t0x0000e10a\n"); /* p2.l = sc low */ \
341 fprintf(FILE, "\t.dd\t0x0000e14a\n"); /* p2.h = sc high */ \
342 fprintf(FILE, "\t.dw\t0x0051\n"); /* jump (p1)*/ \
343 }
0d4a78eb
BS
344
345#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
346 initialize_trampoline (TRAMP, FNADDR, CXT)
347\f
348/* Definitions for register eliminations.
349
350 This is an array of structures. Each structure initializes one pair
351 of eliminable registers. The "from" register number is given first,
352 followed by "to". Eliminations of the same "from" register are listed
353 in order of preference.
354
355 There are two registers that can always be eliminated on the i386.
356 The frame pointer and the arg pointer can be replaced by either the
357 hard frame pointer or to the stack pointer, depending upon the
358 circumstances. The hard frame pointer is not used before reload and
359 so it is not eligible for elimination. */
360
361#define ELIMINABLE_REGS \
362{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
363 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
364 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
365
366/* Given FROM and TO register numbers, say whether this elimination is
367 allowed. Frame pointer elimination is automatically handled.
368
369 All other eliminations are valid. */
370
371#define CAN_ELIMINATE(FROM, TO) \
372 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
373
374/* Define the offset between two registers, one to be eliminated, and the other
375 its replacement, at the start of a routine. */
376
377#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
378 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
379\f
380/* This processor has
381 8 data register for doing arithmetic
382 8 pointer register for doing addressing, including
383 1 stack pointer P6
384 1 frame pointer P7
385 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
386 1 condition code flag register CC
387 5 return address registers RETS/I/X/N/E
388 1 arithmetic status register (ASTAT). */
389
b03149e1 390#define FIRST_PSEUDO_REGISTER 50
0d4a78eb 391
0d4a78eb 392#define D_REGNO_P(X) ((X) <= REG_R7)
c4963a0a 393#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
b03149e1
JZ
394#define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
395#define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
396#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
397#define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
398#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
399#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
400#define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
0d4a78eb
BS
401
402#define REGISTER_NAMES { \
403 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
404 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
df259245
JZ
405 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
406 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
0d4a78eb
BS
407 "A0", "A1", \
408 "CC", \
409 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
b03149e1
JZ
410 "ARGP", \
411 "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
0d4a78eb
BS
412}
413
414#define SHORT_REGISTER_NAMES { \
415 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
416 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
df259245
JZ
417 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
418 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
0d4a78eb
BS
419
420#define HIGH_REGISTER_NAMES { \
421 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
422 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
df259245
JZ
423 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
424 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
0d4a78eb
BS
425
426#define DREGS_PAIR_NAMES { \
427 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
428
429#define BYTE_REGISTER_NAMES { \
430 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
431
432
433/* 1 for registers that have pervasive standard uses
434 and are not available for the register allocator. */
435
436#define FIXED_REGISTERS \
437/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
438{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
df259245
JZ
439/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
440 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
b03149e1
JZ
441/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
442 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
443/*lb0/1 */ \
444 1, 1 \
0d4a78eb
BS
445}
446
447/* 1 for registers not available across function calls.
448 These must include the FIXED_REGISTERS and also any
449 registers that can be used without being saved.
450 The latter must include the registers where values are returned
451 and the register where structure-value addresses are passed.
452 Aside from that, you can include as many other registers as you like. */
453
454#define CALL_USED_REGISTERS \
455/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
456{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
df259245 457/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
0d4a78eb 458 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b03149e1
JZ
459/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
460 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
461/*lb0/1 */ \
462 1, 1 \
0d4a78eb
BS
463}
464
465/* Order in which to allocate registers. Each register must be
466 listed once, even those in FIXED_REGISTERS. List frame pointer
467 late and fixed registers last. Note that, in general, we prefer
468 registers listed in CALL_USED_REGISTERS, keeping the others
469 available for storage of persistent values. */
470
471#define REG_ALLOC_ORDER \
472{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
473 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
474 REG_A0, REG_A1, \
df259245
JZ
475 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
476 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
0d4a78eb
BS
477 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
478 REG_ASTAT, REG_SEQSTAT, REG_USP, \
b03149e1
JZ
479 REG_CC, REG_ARGP, \
480 REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
0d4a78eb
BS
481}
482
483/* Macro to conditionally modify fixed_regs/call_used_regs. */
484#define CONDITIONAL_REGISTER_USAGE \
485 { \
486 conditional_register_usage(); \
6614f9f5
BS
487 if (TARGET_FDPIC) \
488 call_used_regs[FDPIC_REGNO] = 1; \
489 if (!TARGET_FDPIC && flag_pic) \
0d4a78eb
BS
490 { \
491 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
492 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
493 } \
494 }
495
496/* Define the classes of registers for register constraints in the
497 machine description. Also define ranges of constants.
498
499 One of the classes must always be named ALL_REGS and include all hard regs.
500 If there is more than one class, another class must be named NO_REGS
501 and contain no registers.
502
503 The name GENERAL_REGS must be the name of a class (or an alias for
504 another name such as ALL_REGS). This is the class of registers
505 that is allowed by "g" or "r" in a register constraint.
506 Also, registers outside this class are allocated only when
507 instructions express preferences for them.
508
509 The classes must be numbered in nondecreasing order; that is,
510 a larger-numbered class must never be contained completely
511 in a smaller-numbered class.
512
513 For any two classes, it is very desirable that there be another
514 class that represents their union. */
515
516
517enum reg_class
518{
519 NO_REGS,
520 IREGS,
521 BREGS,
522 LREGS,
523 MREGS,
f652d14b 524 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
0d4a78eb
BS
525 DAGREGS,
526 EVEN_AREGS,
527 ODD_AREGS,
528 AREGS,
529 CCREGS,
530 EVEN_DREGS,
531 ODD_DREGS,
2889abed
BS
532 D0REGS,
533 D1REGS,
534 D2REGS,
535 D3REGS,
536 D4REGS,
537 D5REGS,
538 D6REGS,
539 D7REGS,
0d4a78eb 540 DREGS,
03848bd0 541 P0REGS,
6614f9f5
BS
542 FDPIC_REGS,
543 FDPIC_FPTR_REGS,
0d4a78eb
BS
544 PREGS_CLOBBERED,
545 PREGS,
c4963a0a 546 IPREGS,
0d4a78eb
BS
547 DPREGS,
548 MOST_REGS,
b03149e1
JZ
549 LT_REGS,
550 LC_REGS,
551 LB_REGS,
0d4a78eb
BS
552 PROLOGUE_REGS,
553 NON_A_CC_REGS,
554 ALL_REGS, LIM_REG_CLASSES
555};
556
557#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
558
559#define GENERAL_REGS DPREGS
560
561/* Give names of register classes as strings for dump file. */
562
563#define REG_CLASS_NAMES \
564{ "NO_REGS", \
565 "IREGS", \
566 "BREGS", \
567 "LREGS", \
568 "MREGS", \
569 "CIRCREGS", \
570 "DAGREGS", \
571 "EVEN_AREGS", \
572 "ODD_AREGS", \
573 "AREGS", \
574 "CCREGS", \
575 "EVEN_DREGS", \
576 "ODD_DREGS", \
2889abed
BS
577 "D0REGS", \
578 "D1REGS", \
579 "D2REGS", \
580 "D3REGS", \
581 "D4REGS", \
582 "D5REGS", \
583 "D6REGS", \
584 "D7REGS", \
0d4a78eb 585 "DREGS", \
03848bd0 586 "P0REGS", \
6614f9f5
BS
587 "FDPIC_REGS", \
588 "FDPIC_FPTR_REGS", \
0d4a78eb
BS
589 "PREGS_CLOBBERED", \
590 "PREGS", \
c4963a0a 591 "IPREGS", \
0d4a78eb
BS
592 "DPREGS", \
593 "MOST_REGS", \
b03149e1
JZ
594 "LT_REGS", \
595 "LC_REGS", \
596 "LB_REGS", \
0d4a78eb
BS
597 "PROLOGUE_REGS", \
598 "NON_A_CC_REGS", \
599 "ALL_REGS" }
600
601/* An initializer containing the contents of the register classes, as integers
602 which are bit masks. The Nth integer specifies the contents of class N.
603 The way the integer MASK is interpreted is that register R is in the class
604 if `MASK & (1 << R)' is 1.
605
606 When the machine has more than 32 registers, an integer does not suffice.
607 Then the integers are replaced by sub-initializers, braced groupings
608 containing several integers. Each sub-initializer must be suitable as an
609 initializer for the type `HARD_REG_SET' which is defined in
610 `hard-reg-set.h'. */
611
612/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
613 MOST_REGS as the union of DPREGS and DAGREGS. */
614
615#define REG_CLASS_CONTENTS \
616 /* 31 - 0 63-32 */ \
617{ { 0x00000000, 0 }, /* NO_REGS */ \
df259245
JZ
618 { 0x000f0000, 0 }, /* IREGS */ \
619 { 0x00f00000, 0 }, /* BREGS */ \
620 { 0x0f000000, 0 }, /* LREGS */ \
0d4a78eb
BS
621 { 0xf0000000, 0 }, /* MREGS */ \
622 { 0x0fff0000, 0 }, /* CIRCREGS */ \
623 { 0xffff0000, 0 }, /* DAGREGS */ \
624 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
625 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
626 { 0x00000000, 0x3 }, /* AREGS */ \
627 { 0x00000000, 0x4 }, /* CCREGS */ \
628 { 0x00000055, 0 }, /* EVEN_DREGS */ \
629 { 0x000000aa, 0 }, /* ODD_DREGS */ \
2889abed
BS
630 { 0x00000001, 0 }, /* D0REGS */ \
631 { 0x00000002, 0 }, /* D1REGS */ \
632 { 0x00000004, 0 }, /* D2REGS */ \
633 { 0x00000008, 0 }, /* D3REGS */ \
634 { 0x00000010, 0 }, /* D4REGS */ \
635 { 0x00000020, 0 }, /* D5REGS */ \
636 { 0x00000040, 0 }, /* D6REGS */ \
637 { 0x00000080, 0 }, /* D7REGS */ \
0d4a78eb 638 { 0x000000ff, 0 }, /* DREGS */ \
03848bd0 639 { 0x00000100, 0x000 }, /* P0REGS */ \
6614f9f5
BS
640 { 0x00000800, 0x000 }, /* FDPIC_REGS */ \
641 { 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
0d4a78eb
BS
642 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
643 { 0x0000ff00, 0x800 }, /* PREGS */ \
c4963a0a 644 { 0x000fff00, 0x800 }, /* IPREGS */ \
0d4a78eb
BS
645 { 0x0000ffff, 0x800 }, /* DPREGS */ \
646 { 0xffffffff, 0x800 }, /* MOST_REGS */\
b03149e1
JZ
647 { 0x00000000, 0x3000 }, /* LT_REGS */\
648 { 0x00000000, 0xc000 }, /* LC_REGS */\
649 { 0x00000000, 0x30000 }, /* LB_REGS */\
650 { 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
651 { 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
652 { 0xffffffff, 0x3ffff }} /* ALL_REGS */
0d4a78eb 653
c4963a0a
BS
654#define IREG_POSSIBLE_P(OUTER) \
655 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
656 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
657 || (OUTER) == MEM || (OUTER) == ADDRESS)
658
659#define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
660 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
661
0d4a78eb
BS
662#define INDEX_REG_CLASS PREGS
663
c4963a0a
BS
664#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
665 (P_REGNO_P (X) || (X) == REG_ARGP \
666 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
667 && I_REGNO_P (X)))
668
669#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
670 ((X) >= FIRST_PSEUDO_REGISTER \
671 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
0d4a78eb
BS
672
673#ifdef REG_OK_STRICT
c4963a0a
BS
674#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
675 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb 676#else
c4963a0a
BS
677#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
678 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
0d4a78eb
BS
679#endif
680
0d4a78eb
BS
681#define REGNO_OK_FOR_INDEX_P(X) 0
682
0d4a78eb
BS
683/* The same information, inverted:
684 Return the class number of the smallest class containing
685 reg number REGNO. This could be a conditional expression
686 or could index an array. */
687
688#define REGNO_REG_CLASS(REGNO) \
2889abed
BS
689((REGNO) == REG_R0 ? D0REGS \
690 : (REGNO) == REG_R1 ? D1REGS \
691 : (REGNO) == REG_R2 ? D2REGS \
692 : (REGNO) == REG_R3 ? D3REGS \
693 : (REGNO) == REG_R4 ? D4REGS \
694 : (REGNO) == REG_R5 ? D5REGS \
695 : (REGNO) == REG_R6 ? D6REGS \
696 : (REGNO) == REG_R7 ? D7REGS \
03848bd0 697 : (REGNO) == REG_P0 ? P0REGS \
0d4a78eb 698 : (REGNO) < REG_I0 ? PREGS \
c4963a0a 699 : (REGNO) == REG_ARGP ? PREGS \
0d4a78eb
BS
700 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
701 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
702 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
703 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
704 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
b03149e1
JZ
705 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
706 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
707 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
0d4a78eb
BS
708 : (REGNO) == REG_CC ? CCREGS \
709 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
710 : NO_REGS)
711
712/* When defined, the compiler allows registers explicitly used in the
713 rtl to be used as spill registers but prevents the compiler from
714 extending the lifetime of these registers. */
715#define SMALL_REGISTER_CLASSES 1
716
717#define CLASS_LIKELY_SPILLED_P(CLASS) \
718 ((CLASS) == PREGS_CLOBBERED \
719 || (CLASS) == PROLOGUE_REGS \
03848bd0 720 || (CLASS) == P0REGS \
2889abed
BS
721 || (CLASS) == D0REGS \
722 || (CLASS) == D1REGS \
723 || (CLASS) == D2REGS \
0d4a78eb
BS
724 || (CLASS) == CCREGS)
725
726/* Do not allow to store a value in REG_CC for any mode */
727/* Do not allow to store value in pregs if mode is not SI*/
728#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
729
730/* Return the maximum number of consecutive registers
731 needed to represent mode MODE in a register of class CLASS. */
75d8b2d0
BS
732#define CLASS_MAX_NREGS(CLASS, MODE) \
733 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
734 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0d4a78eb
BS
735
736#define HARD_REGNO_NREGS(REGNO, MODE) \
75d8b2d0
BS
737 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
738 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
739 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
0d4a78eb
BS
740
741/* A C expression that is nonzero if hard register TO can be
742 considered for use as a rename register for FROM register */
743#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
744
745/* A C expression that is nonzero if it is desirable to choose
746 register allocation so as to avoid move instructions between a
747 value of mode MODE1 and a value of mode MODE2.
748
749 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
750 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
751 MODE2)' must be zero. */
4d4f2837
BS
752#define MODES_TIEABLE_P(MODE1, MODE2) \
753 ((MODE1) == (MODE2) \
754 || ((GET_MODE_CLASS (MODE1) == MODE_INT \
755 || GET_MODE_CLASS (MODE1) == MODE_FLOAT) \
756 && (GET_MODE_CLASS (MODE2) == MODE_INT \
757 || GET_MODE_CLASS (MODE2) == MODE_FLOAT) \
758 && (MODE1) != BImode && (MODE2) != BImode \
759 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
760 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD))
0d4a78eb
BS
761
762/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
763 A C expression that places additional restrictions on the register
764 class to use when it is necessary to copy value X into a register
765 in class CLASS. The value is a register class; perhaps CLASS, or
766 perhaps another, smaller class. */
aeffb4b5
BS
767#define PREFERRED_RELOAD_CLASS(X, CLASS) \
768 (GET_CODE (X) == POST_INC \
769 || GET_CODE (X) == POST_DEC \
770 || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
0d4a78eb 771
0d4a78eb
BS
772/* Function Calling Conventions. */
773
774/* The type of the current function; normal functions are of type
775 SUBROUTINE. */
776typedef enum {
777 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
778} e_funkind;
779
780#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
781
6d459e2b
BS
782/* Flags for the call/call_value rtl operations set up by function_arg */
783#define CALL_NORMAL 0x00000000 /* no special processing */
784#define CALL_LONG 0x00000001 /* always call indirect */
785#define CALL_SHORT 0x00000002 /* always call by symbol */
786
0d4a78eb
BS
787typedef struct {
788 int words; /* # words passed so far */
789 int nregs; /* # registers available for passing */
790 int *arg_regs; /* array of register -1 terminated */
6d459e2b 791 int call_cookie; /* Do special things for this call */
0d4a78eb
BS
792} CUMULATIVE_ARGS;
793
794/* Define where to put the arguments to a function.
795 Value is zero to push the argument on the stack,
796 or a hard register in which to store the argument.
797
798 MODE is the argument's machine mode.
799 TYPE is the data type of the argument (as a tree).
800 This is null for libcalls where that information may
801 not be available.
802 CUM is a variable of type CUMULATIVE_ARGS which gives info about
803 the preceding args and about the function being called.
804 NAMED is nonzero if this argument is a named parameter
805 (otherwise it is an extra parameter matching an ellipsis). */
806
807#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
808 (function_arg (&CUM, MODE, TYPE, NAMED))
809
810#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
811
812
813/* Initialize a variable CUM of type CUMULATIVE_ARGS
814 for a call to a function whose data type is FNTYPE.
815 For a library call, FNTYPE is 0. */
816#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
817 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
818
819/* Update the data in CUM to advance over an argument
820 of mode MODE and data type TYPE.
821 (TYPE is null for libcalls where that information may not be available.) */
822#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
823 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
824
825#define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
826
827/* Define how to find the value returned by a function.
828 VALTYPE is the data type of the value (as a tree).
829 If the precise function being called is known, FUNC is its FUNCTION_DECL;
830 otherwise, FUNC is 0.
831*/
832
833#define VALUE_REGNO(MODE) (REG_R0)
834
835#define FUNCTION_VALUE(VALTYPE, FUNC) \
836 gen_rtx_REG (TYPE_MODE (VALTYPE), \
837 VALUE_REGNO(TYPE_MODE(VALTYPE)))
838
839/* Define how to find the value returned by a library function
840 assuming the value has mode MODE. */
841
842#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
843
844#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
845
846#define DEFAULT_PCC_STRUCT_RETURN 0
0d4a78eb
BS
847
848/* Before the prologue, the return address is in the RETS register. */
849#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
850
851#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
852
853#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
854
855/* Call instructions don't modify the stack pointer on the Blackfin. */
856#define INCOMING_FRAME_SP_OFFSET 0
857
858/* Describe how we implement __builtin_eh_return. */
859#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
860#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
861#define EH_RETURN_HANDLER_RTX \
1ca950ca 862 gen_frame_mem (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
0d4a78eb
BS
863
864/* Addressing Modes */
865
866/* Recognize any constant value that is a valid address. */
867#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
868
869/* Nonzero if the constant value X is a legitimate general operand.
870 symbol_ref are not legitimate and will be put into constant pool.
871 See force_const_mem().
872 If -mno-pool, all constants are legitimate.
873 */
d6f6753e 874#define LEGITIMATE_CONSTANT_P(X) bfin_legitimate_constant_p (X)
0d4a78eb
BS
875
876/* A number, the maximum number of registers that can appear in a
877 valid memory address. Note that it is up to you to specify a
878 value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
879 would ever accept. */
880#define MAX_REGS_PER_ADDRESS 1
881
882/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
883 that is a valid memory address for an instruction.
884 The MODE argument is the machine mode for the MEM expression
885 that wants to use this address.
886
887 Blackfin addressing modes are as follows:
888
889 [preg]
890 [preg + imm16]
891
892 B [ Preg + uimm15 ]
893 W [ Preg + uimm16m2 ]
894 [ Preg + uimm17m4 ]
895
896 [preg++]
897 [preg--]
898 [--sp]
899*/
900
901#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
902 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
903
904#ifdef REG_OK_STRICT
905#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
906 do { \
907 if (bfin_legitimate_address_p (MODE, X, 1)) \
908 goto WIN; \
909 } while (0);
910#else
911#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
912 do { \
913 if (bfin_legitimate_address_p (MODE, X, 0)) \
914 goto WIN; \
915 } while (0);
916#endif
917
918/* Try machine-dependent ways of modifying an illegitimate address
919 to be legitimate. If we find one, return the new, valid address.
920 This macro is used in only one place: `memory_address' in explow.c.
921
922 OLDX is the address as it was before break_out_memory_refs was called.
923 In some cases it is useful to look at this to decide what needs to be done.
924
925 MODE and WIN are passed so that this macro can use
926 GO_IF_LEGITIMATE_ADDRESS.
927
928 It is always safe for this macro to do nothing. It exists to recognize
929 opportunities to optimize the output.
930 */
931#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
932do { \
933 rtx _q = legitimize_address(X, OLDX, MODE); \
934 if (_q) { X = _q; goto WIN; } \
935} while (0)
936
937#define HAVE_POST_INCREMENT 1
938#define HAVE_POST_DECREMENT 1
939#define HAVE_PRE_DECREMENT 1
940
941/* `LEGITIMATE_PIC_OPERAND_P (X)'
942 A C expression that is nonzero if X is a legitimate immediate
943 operand on the target machine when generating position independent
944 code. You can assume that X satisfies `CONSTANT_P', so you need
945 not check this. You can also assume FLAG_PIC is true, so you need
946 not check it either. You need not define this macro if all
947 constants (including `SYMBOL_REF') can be immediate operands when
948 generating position independent code. */
949#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
950
951#define SYMBOLIC_CONST(X) \
952(GET_CODE (X) == SYMBOL_REF \
953 || GET_CODE (X) == LABEL_REF \
954 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
955
956/*
957 A C statement or compound statement with a conditional `goto
958 LABEL;' executed if memory address X (an RTX) can have different
959 meanings depending on the machine mode of the memory reference it
960 is used for or if the address is valid for some modes but not
961 others.
962
963 Autoincrement and autodecrement addresses typically have
964 mode-dependent effects because the amount of the increment or
965 decrement is the size of the operand being addressed. Some
966 machines have other mode-dependent addresses. Many RISC machines
967 have no mode-dependent addresses.
968
969 You may assume that ADDR is a valid address for the machine.
970*/
b9a76028 971#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
0d4a78eb
BS
972
973#define NOTICE_UPDATE_CC(EXPR, INSN) 0
974
975/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
976 is done just by pretending it is already truncated. */
977#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
978
979/* Max number of bytes we can move from memory to memory
980 in one reasonably fast instruction. */
981#define MOVE_MAX UNITS_PER_WORD
982
b548a9c2
BS
983/* If a memory-to-memory move would take MOVE_RATIO or more simple
984 move-instruction pairs, we will do a movmem or libcall instead. */
985
986#define MOVE_RATIO 5
0d4a78eb
BS
987
988/* STORAGE LAYOUT: target machine storage layout
989 Define this macro as a C expression which is nonzero if accessing
990 less than a word of memory (i.e. a `char' or a `short') is no
991 faster than accessing a word of memory, i.e., if such access
992 require more than one instruction or if there is no difference in
993 cost between byte and (aligned) word loads.
994
995 When this macro is not defined, the compiler will access a field by
996 finding the smallest containing object; when it is defined, a
997 fullword load will be used if alignment permits. Unless bytes
998 accesses are faster than word accesses, using word accesses is
999 preferable since it may eliminate subsequent memory access if
1000 subsequent accesses occur to other fields in the same word of the
1001 structure, but to different bytes. */
1002#define SLOW_BYTE_ACCESS 0
1003#define SLOW_SHORT_ACCESS 0
1004
1005/* Define this if most significant bit is lowest numbered
1006 in instructions that operate on numbered bit-fields. */
1007#define BITS_BIG_ENDIAN 0
1008
1009/* Define this if most significant byte of a word is the lowest numbered.
1010 We can't access bytes but if we could we would in the Big Endian order. */
1011#define BYTES_BIG_ENDIAN 0
1012
1013/* Define this if most significant word of a multiword number is numbered. */
1014#define WORDS_BIG_ENDIAN 0
1015
1016/* number of bits in an addressable storage unit */
1017#define BITS_PER_UNIT 8
1018
1019/* Width in bits of a "word", which is the contents of a machine register.
1020 Note that this is not necessarily the width of data type `int';
1021 if using 16-bit ints on a 68000, this would still be 32.
1022 But on a machine with 16-bit registers, this would be 16. */
1023#define BITS_PER_WORD 32
1024
1025/* Width of a word, in units (bytes). */
1026#define UNITS_PER_WORD 4
1027
0d4a78eb
BS
1028/* Width in bits of a pointer.
1029 See also the macro `Pmode1' defined below. */
1030#define POINTER_SIZE 32
1031
1032/* Allocation boundary (in *bits*) for storing pointers in memory. */
1033#define POINTER_BOUNDARY 32
1034
1035/* Allocation boundary (in *bits*) for storing arguments in argument list. */
1036#define PARM_BOUNDARY 32
1037
1038/* Boundary (in *bits*) on which stack pointer should be aligned. */
1039#define STACK_BOUNDARY 32
1040
1041/* Allocation boundary (in *bits*) for the code of a function. */
1042#define FUNCTION_BOUNDARY 32
1043
1044/* Alignment of field after `int : 0' in a structure. */
1045#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
1046
1047/* No data type wants to be aligned rounder than this. */
1048#define BIGGEST_ALIGNMENT 32
1049
1050/* Define this if move instructions will actually fail to work
1051 when given unaligned data. */
1052#define STRICT_ALIGNMENT 1
1053
1054/* (shell-command "rm c-decl.o stor-layout.o")
1055 * never define PCC_BITFIELD_TYPE_MATTERS
1056 * really cause some alignment problem
1057 */
1058
1059#define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
1060 BITS_PER_UNIT)
1061
1062#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
1063 BITS_PER_UNIT)
1064
1065
1066/* what is the 'type' of size_t */
1067#define SIZE_TYPE "long unsigned int"
1068
1069/* Define this as 1 if `char' should by default be signed; else as 0. */
1070#define DEFAULT_SIGNED_CHAR 1
1071#define FLOAT_TYPE_SIZE BITS_PER_WORD
1072#define SHORT_TYPE_SIZE 16
1073#define CHAR_TYPE_SIZE 8
1074#define INT_TYPE_SIZE 32
1075#define LONG_TYPE_SIZE 32
1076#define LONG_LONG_TYPE_SIZE 64
1077
1078/* Note: Fix this to depend on target switch. -- lev */
1079
1080/* Note: Try to implement double and force long double. -- tonyko
1081 * #define __DOUBLES_ARE_FLOATS__
1082 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
1083 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
1084 * #define DOUBLES_ARE_FLOATS 1
1085 */
1086
1087#define DOUBLE_TYPE_SIZE 64
1088#define LONG_DOUBLE_TYPE_SIZE 64
1089
1090/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
1091 A macro to update M and UNSIGNEDP when an object whose type is
1092 TYPE and which has the specified mode and signedness is to be
1093 stored in a register. This macro is only called when TYPE is a
1094 scalar type.
1095
1096 On most RISC machines, which only have operations that operate on
1097 a full register, define this macro to set M to `word_mode' if M is
1098 an integer mode narrower than `BITS_PER_WORD'. In most cases,
1099 only integer modes should be widened because wider-precision
1100 floating-point operations are usually more expensive than their
1101 narrower counterparts.
1102
1103 For most machines, the macro definition does not change UNSIGNEDP.
1104 However, some machines, have instructions that preferentially
1105 handle either signed or unsigned quantities of certain modes. For
1106 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
1107 instructions sign-extend the result to 64 bits. On such machines,
1108 set UNSIGNEDP according to which kind of extension is more
1109 efficient.
1110
1111 Do not define this macro if it would never modify M.*/
1112
1113#define BFIN_PROMOTE_MODE_P(MODE) \
1114 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
1115 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
1116
1117#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1118 if (BFIN_PROMOTE_MODE_P(MODE)) \
1119 { \
1120 if (MODE == QImode) \
1121 UNSIGNEDP = 1; \
1122 else if (MODE == HImode) \
1123 UNSIGNEDP = 0; \
1124 (MODE) = SImode; \
1125 }
1126
1127/* Describing Relative Costs of Operations */
1128
1129/* Do not put function addr into constant pool */
1130#define NO_FUNCTION_CSE 1
1131
1132/* A C expression for the cost of moving data from a register in class FROM to
1133 one in class TO. The classes are expressed using the enumeration values
1134 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1135 interpreted relative to that.
1136
1137 It is not required that the cost always equal 2 when FROM is the same as TO;
1138 on some machines it is expensive to move between registers if they are not
1139 general registers. */
1140
1141#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1142 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1143
1144/* A C expression for the cost of moving data of mode M between a
1145 register and memory. A value of 2 is the default; this cost is
1146 relative to those in `REGISTER_MOVE_COST'.
1147
1148 If moving between registers and memory is more expensive than
1149 between two registers, you should define this macro to express the
1150 relative cost. */
1151
1152#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1153 bfin_memory_move_cost ((MODE), (CLASS), (IN))
1154
1155/* Specify the machine mode that this machine uses
1156 for the index in the tablejump instruction. */
1157#define CASE_VECTOR_MODE SImode
1158
1159#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1160
1161/* Define if operations between registers always perform the operation
1162 on the full register even if a narrower mode is specified.
1163#define WORD_REGISTER_OPERATIONS
1164*/
1165
3efd5670
BS
1166/* Evaluates to true if A and B are mac flags that can be used
1167 together in a single multiply insn. That is the case if they are
1168 both the same flag not involving M, or if one is a combination of
1169 the other with M. */
1170#define MACFLAGS_MATCH_P(A, B) \
1171 ((A) == (B) \
1172 || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
1173 || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
1174 || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
1175 || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
1176
0d4a78eb
BS
1177/* Switch into a generic section. */
1178#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1179
1180#define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1181#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1182
1183typedef enum sections {
1184 CODE_DIR,
1185 DATA_DIR,
1186 LAST_SECT_NM
1187} SECT_ENUM_T;
1188
1189typedef enum directives {
1190 LONG_CONST_DIR,
1191 SHORT_CONST_DIR,
1192 BYTE_CONST_DIR,
1193 SPACE_DIR,
1194 INIT_DIR,
1195 LAST_DIR_NM
1196} DIR_ENUM_T;
1197
980d8882
BS
1198#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) \
1199 ((C) == ';' \
1200 || ((C) == '|' && (STR)[1] == '|'))
1201
0d4a78eb
BS
1202#define TEXT_SECTION_ASM_OP ".text;"
1203#define DATA_SECTION_ASM_OP ".data;"
1204
1205#define ASM_APP_ON ""
1206#define ASM_APP_OFF ""
1207
1208#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1209 do { fputs (".global ", FILE); \
1210 assemble_name (FILE, NAME); \
1211 fputc (';',FILE); \
1212 fputc ('\n',FILE); \
1213 } while (0)
1214
1215#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1216 do { \
1217 fputs (".type ", FILE); \
1218 assemble_name (FILE, NAME); \
1219 fputs (", STT_FUNC", FILE); \
1220 fputc (';',FILE); \
1221 fputc ('\n',FILE); \
1222 ASM_OUTPUT_LABEL(FILE, NAME); \
1223 } while (0)
1224
1225#define ASM_OUTPUT_LABEL(FILE, NAME) \
1226 do { assemble_name (FILE, NAME); \
1227 fputs (":\n",FILE); \
1228 } while (0)
1229
1230#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1231 do { fprintf (FILE, "_%s", NAME); \
1232 } while (0)
1233
0d4a78eb
BS
1234#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1235do { char __buf[256]; \
1236 fprintf (FILE, "\t.dd\t"); \
1237 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1238 assemble_name (FILE, __buf); \
1239 fputc (';', FILE); \
1240 fputc ('\n', FILE); \
1241 } while (0)
1242
1243#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1244 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1245
1246#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1247 do { \
1248 char __buf[256]; \
1249 fprintf (FILE, "\t.dd\t"); \
1250 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1251 assemble_name (FILE, __buf); \
1252 fputs (" - ", FILE); \
1253 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1254 assemble_name (FILE, __buf); \
1255 fputc (';', FILE); \
1256 fputc ('\n', FILE); \
1257 } while (0)
1258
1259#define ASM_OUTPUT_ALIGN(FILE,LOG) \
21956c07
BS
1260 do { \
1261 if ((LOG) != 0) \
1262 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
0d4a78eb
BS
1263 } while (0)
1264
1265#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1266 do { \
1267 asm_output_skip (FILE, SIZE); \
1268 } while (0)
1269
1270#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1271do { \
d6b5193b 1272 switch_to_section (data_section); \
0d4a78eb
BS
1273 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1274 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1275 ASM_OUTPUT_LABEL (FILE, NAME); \
1276 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1277 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1278} while (0)
1279
1280#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1281 do { \
1282 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1283 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1284
1285#define ASM_COMMENT_START "//"
1286
56014148
JZ
1287#define FUNCTION_PROFILER(FILE, LABELNO) \
1288 do { \
1289 fprintf (FILE, "\tCALL __mcount;\n"); \
0d4a78eb
BS
1290 } while(0)
1291
56014148
JZ
1292#undef NO_PROFILE_COUNTERS
1293#define NO_PROFILE_COUNTERS 1
1294
0d4a78eb
BS
1295#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1296#define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1297
1298extern struct rtx_def *bfin_compare_op0, *bfin_compare_op1;
1299extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1300
1301/* This works for GAS and some other assemblers. */
1302#define SET_ASM_OP ".set "
1303
0d4a78eb
BS
1304/* DBX register number for a given compiler register number */
1305#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1306
1307#define SIZE_ASM_OP "\t.size\t"
1308
bbbc206e
BS
1309extern int splitting_for_sched;
1310
1311#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1312
0d4a78eb 1313#endif /* _BFIN_CONFIG */