]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/c4x/c4x.h
defaults.h (FRAME_GROWS_DOWNWARD): Define to 0 if not defined.
[thirdparty/gcc.git] / gcc / config / c4x / c4x.h
CommitLineData
cb0ca284 1/* Definitions of target machine for GNU compiler. TMS320C[34]x
c58b209a 2 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
fe9565ed 3 2003, 2004, 2005 Free Software Foundation, Inc.
cb0ca284
MH
4
5 Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
6 and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
7
4db9c756 8 This file is part of GCC.
cb0ca284 9
4db9c756 10 GCC is free software; you can redistribute it and/or modify
cb0ca284 11 it under the terms of the GNU General Public License as published by
c063dc98 12 the Free Software Foundation; either version 2, or (at your option)
cb0ca284
MH
13 any later version.
14
4db9c756 15 GCC is distributed in the hope that it will be useful,
cb0ca284
MH
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
4db9c756 21 along with GCC; see the file COPYING. If not, write to
39d14dda
KC
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
cb0ca284 24
975ab131 25/* RUN-TIME TARGET SPECIFICATION. */
cb0ca284
MH
26
27#define C4x 1
28
0d66ad57
NB
29#define TARGET_CPU_CPP_BUILTINS() \
30 do \
31 { \
c4a3da4e 32 extern int flag_inline_trees; \
0d66ad57
NB
33 if (!TARGET_SMALL) \
34 builtin_define ("_BIGMODEL"); \
35 if (!TARGET_MEMPARM) \
36 builtin_define ("_REGPARM"); \
39afeb1a 37 if (flag_inline_functions) \
0d66ad57
NB
38 builtin_define ("_INLINE"); \
39 if (TARGET_C3X) \
40 { \
41 builtin_define ("_TMS320C3x"); \
42 builtin_define ("_C3x"); \
43 if (TARGET_C30) \
44 { \
45 builtin_define ("_TMS320C30"); \
46 builtin_define ("_C30"); \
47 } \
48 else if (TARGET_C31) \
49 { \
50 builtin_define ("_TMS320C31"); \
51 builtin_define ("_C31"); \
52 } \
53 else if (TARGET_C32) \
54 { \
55 builtin_define ("_TMS320C32"); \
56 builtin_define ("_C32"); \
57 } \
58 else if (TARGET_C33) \
59 { \
60 builtin_define ("_TMS320C33"); \
61 builtin_define ("_C33"); \
62 } \
63 } \
64 else \
65 { \
66 builtin_define ("_TMS320C4x"); \
67 builtin_define ("_C4x"); \
68 if (TARGET_C40) \
69 { \
70 builtin_define ("_TMS320C40"); \
71 builtin_define ("_C40"); \
72 } \
73 else if (TARGET_C44) \
74 { \
75 builtin_define ("_TMS320C44"); \
76 builtin_define ("_C44"); \
77 } \
78 } \
79 } \
80 while (0)
81
ad69db4a 82/* Define assembler options. */
cb0ca284
MH
83
84#define ASM_SPEC "\
eda45b64 85%{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:%{!mcpu=40:%{!mcpu=44:\
cebdac46
SS
86%{!m30:%{!m31:%{!m32:%{!m33:%{!m40:%{!m44:-m40}}}}}}}}}}}} \
87%{mcpu=30} \
88%{mcpu=31} \
89%{mcpu=32} \
90%{mcpu=33} \
91%{mcpu=40} \
92%{mcpu=44} \
93%{m30} \
94%{m31} \
95%{m32} \
96%{m33} \
97%{m40} \
98%{m44} \
99%{mmemparm} %{mregparm} %{!mmemparm:%{!mregparm:-mregparm}} \
100%{mbig} %{msmall} %{!msmall:%{!mbig:-mbig}}"
cb0ca284 101
ad69db4a 102/* Define linker options. */
cb0ca284
MH
103
104#define LINK_SPEC "\
105%{m30:--architecture c3x} \
106%{m31:--architecture c3x} \
107%{m32:--architecture c3x} \
eda45b64 108%{m33:--architecture c3x} \
cb0ca284
MH
109%{mcpu=30:--architecture c3x} \
110%{mcpu=31:--architecture c3x} \
eda45b64
MH
111%{mcpu=32:--architecture c3x} \
112%{mcpu=33:--architecture c3x}"
cb0ca284 113
ad69db4a 114/* Specify the end file to link with. */
cb0ca284
MH
115
116#define ENDFILE_SPEC ""
117
cb0ca284
MH
118/* Caveats:
119 Max iteration count for RPTB/RPTS is 2^31 + 1.
120 Max iteration count for DB is 2^31 + 1 for C40, but 2^23 + 1 for C30.
121 RPTS blocks interrupts. */
122
123
d12f3c1f 124extern int c4x_cpu_version; /* Cpu version C30/31/32/33/40/44. */
cb0ca284 125
f42850b9 126#define TARGET_INLINE (! optimize_size) /* Inline MPYI. */
2e3e9ead 127#define TARGET_SMALL_REG_CLASS 0
cb0ca284 128
d12f3c1f
RS
129#define TARGET_C3X (c4x_cpu_version >= 30 \
130 && c4x_cpu_version <= 39)
131
132#define TARGET_C30 (c4x_cpu_version == 30)
133#define TARGET_C31 (c4x_cpu_version == 31)
134#define TARGET_C32 (c4x_cpu_version == 32)
135#define TARGET_C33 (c4x_cpu_version == 33)
136#define TARGET_C40 (c4x_cpu_version == 40)
137#define TARGET_C44 (c4x_cpu_version == 44)
cb0ca284 138
8f422192
MH
139/* Nonzero to use load_immed_addr pattern rather than forcing memory
140 addresses into memory. */
50c33087 141#define TARGET_LOAD_ADDRESS (1 || (! TARGET_C3X && ! TARGET_SMALL))
8f422192 142
860b3499
MH
143/* Nonzero to convert direct memory references into HIGH/LO_SUM pairs
144 during RTL generation. */
31445126 145#define TARGET_EXPOSE_LDP 0
8f422192 146
860b3499
MH
147/* Nonzero to force loading of direct memory references into a register. */
148#define TARGET_LOAD_DIRECT_MEMS 0
50c33087 149
cb0ca284
MH
150/* -mrpts allows the use of the RPTS instruction irregardless.
151 -mrpts=max-cycles will use RPTS if the number of cycles is constant
1ac7a7f5 152 and less than max-cycles. */
cb0ca284
MH
153
154#define TARGET_RPTS_CYCLES(CYCLES) (TARGET_RPTS || (CYCLES) < c4x_rpts_cycles)
155
cb0ca284
MH
156/* Sometimes certain combinations of command options do not make sense
157 on a particular target machine. You can define a macro
158 `OVERRIDE_OPTIONS' to take account of this. This macro, if
159 defined, is executed once just after all the command options have
1ac7a7f5 160 been parsed. */
cb0ca284 161
cb0ca284
MH
162#define OVERRIDE_OPTIONS c4x_override_options ()
163
d5e4ff48 164/* Define this to change the optimizations performed by default. */
798f6e6f 165
4e6de5a9 166#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) c4x_optimization_options(LEVEL, SIZE)
cb0ca284 167
975ab131 168/* Run Time Target Specification. */
cb0ca284 169
4e6de5a9 170#define TARGET_VERSION fprintf (stderr, " (TMS320C[34]x, TI syntax)");
cb0ca284 171
975ab131 172/* Storage Layout. */
cb0ca284
MH
173
174#define BITS_BIG_ENDIAN 0
175#define BYTES_BIG_ENDIAN 0
176#define WORDS_BIG_ENDIAN 0
177
178/* Technically, we are little endian, but we put the floats out as
1ac7a7f5 179 whole longs and this makes GCC put them out in the right order. */
cb0ca284
MH
180
181#define FLOAT_WORDS_BIG_ENDIAN 1
182
183/* Note the ANSI C standard requires sizeof(char) = 1. On the C[34]x
184 all integral and floating point data types are stored in memory as
185 32-bits (floating point types can be stored as 40-bits in the
186 extended precision registers), so sizeof(char) = sizeof(short) =
1ac7a7f5 187 sizeof(int) = sizeof(long) = sizeof(float) = sizeof(double) = 1. */
cb0ca284
MH
188
189#define BITS_PER_UNIT 32
cb0ca284 190#define UNITS_PER_WORD 1
cb0ca284
MH
191#define PARM_BOUNDARY 32
192#define STACK_BOUNDARY 32
193#define FUNCTION_BOUNDARY 32
194#define BIGGEST_ALIGNMENT 32
195#define EMPTY_FIELD_BOUNDARY 32
196#define STRICT_ALIGNMENT 0
197#define TARGET_FLOAT_FORMAT C4X_FLOAT_FORMAT
975ab131 198#define MAX_FIXED_MODE_SIZE 64 /* HImode. */
cb0ca284 199
7f7680a9 200/* If a structure has a floating point field then force structure
182e515e
AH
201 to have BLKMODE, unless it is the only field. */
202#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
203 (TREE_CODE (TREE_TYPE (FIELD)) == REAL_TYPE && (MODE) == VOIDmode)
7f7680a9 204
55310df7
MH
205/* Number of bits in the high and low parts of a two stage
206 load of an immediate constant. */
207#define BITS_PER_HIGH 16
208#define BITS_PER_LO_SUM 16
209
bc46716b 210/* Define register numbers. */
cb0ca284 211
bc46716b 212/* Extended-precision registers. */
cb0ca284
MH
213
214#define R0_REGNO 0
215#define R1_REGNO 1
216#define R2_REGNO 2
217#define R3_REGNO 3
218#define R4_REGNO 4
219#define R5_REGNO 5
220#define R6_REGNO 6
221#define R7_REGNO 7
222
bc46716b 223/* Auxiliary (address) registers. */
cb0ca284
MH
224
225#define AR0_REGNO 8
226#define AR1_REGNO 9
227#define AR2_REGNO 10
228#define AR3_REGNO 11
229#define AR4_REGNO 12
230#define AR5_REGNO 13
231#define AR6_REGNO 14
232#define AR7_REGNO 15
233
bc46716b 234/* Data page register. */
cb0ca284
MH
235
236#define DP_REGNO 16
237
bc46716b 238/* Index registers. */
cb0ca284
MH
239
240#define IR0_REGNO 17
241#define IR1_REGNO 18
242
bc46716b 243/* Block size register. */
cb0ca284
MH
244
245#define BK_REGNO 19
246
bc46716b 247/* Stack pointer. */
cb0ca284
MH
248
249#define SP_REGNO 20
250
bc46716b 251/* Status register. */
cb0ca284
MH
252
253#define ST_REGNO 21
254
bc46716b 255/* Misc. interrupt registers. */
cb0ca284 256
bc46716b
MH
257#define DIE_REGNO 22 /* C4x only. */
258#define IE_REGNO 22 /* C3x only. */
259#define IIE_REGNO 23 /* C4x only. */
260#define IF_REGNO 23 /* C3x only. */
261#define IIF_REGNO 24 /* C4x only. */
262#define IOF_REGNO 24 /* C3x only. */
cb0ca284 263
bc46716b 264/* Repeat block registers. */
cb0ca284
MH
265
266#define RS_REGNO 25
267#define RE_REGNO 26
268#define RC_REGNO 27
269
bc46716b 270/* Additional extended-precision registers. */
cb0ca284 271
bc46716b
MH
272#define R8_REGNO 28 /* C4x only. */
273#define R9_REGNO 29 /* C4x only. */
274#define R10_REGNO 30 /* C4x only. */
275#define R11_REGNO 31 /* C4x only. */
cb0ca284
MH
276
277#define FIRST_PSEUDO_REGISTER 32
278
bc46716b 279/* Extended precision registers (low set). */
cb0ca284 280
25cd0db1
MH
281#define IS_R0R1_REGNO(r) \
282 ((unsigned int)((r) - R0_REGNO) <= (R1_REGNO - R0_REGNO))
283#define IS_R2R3_REGNO(r) \
284 ((unsigned int)((r) - R2_REGNO) <= (R3_REGNO - R2_REGNO))
285#define IS_EXT_LOW_REGNO(r) \
286 ((unsigned int)((r) - R0_REGNO) <= (R7_REGNO - R0_REGNO))
cb0ca284 287
bc46716b 288/* Extended precision registers (high set). */
cb0ca284 289
25cd0db1
MH
290#define IS_EXT_HIGH_REGNO(r) \
291(! TARGET_C3X \
292 && ((unsigned int) ((r) - R8_REGNO) <= (R11_REGNO - R8_REGNO)))
293
bc46716b
MH
294/* Address registers. */
295
25cd0db1
MH
296#define IS_AUX_REGNO(r) \
297 ((unsigned int)((r) - AR0_REGNO) <= (AR7_REGNO - AR0_REGNO))
bc46716b
MH
298#define IS_ADDR_REGNO(r) IS_AUX_REGNO(r)
299#define IS_DP_REGNO(r) ((r) == DP_REGNO)
300#define IS_INDEX_REGNO(r) (((r) == IR0_REGNO) || ((r) == IR1_REGNO))
301#define IS_SP_REGNO(r) ((r) == SP_REGNO)
302#define IS_BK_REGNO(r) (TARGET_BK && (r) == BK_REGNO)
303
304/* Misc registers. */
305
306#define IS_ST_REGNO(r) ((r) == ST_REGNO)
307#define IS_RC_REGNO(r) ((r) == RC_REGNO)
308#define IS_REPEAT_REGNO(r) (((r) >= RS_REGNO) && ((r) <= RC_REGNO))
309
310/* Composite register sets. */
311
312#define IS_ADDR_OR_INDEX_REGNO(r) (IS_ADDR_REGNO(r) || IS_INDEX_REGNO(r))
313#define IS_EXT_REGNO(r) (IS_EXT_LOW_REGNO(r) || IS_EXT_HIGH_REGNO(r))
314#define IS_STD_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) \
315 || IS_REPEAT_REGNO(r) \
316 || IS_SP_REGNO(r) \
317 || IS_BK_REGNO(r))
318#define IS_INT_REGNO(r) (IS_EXT_REGNO(r) || IS_STD_REGNO(r))
319#define IS_GROUP1_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) || IS_BK_REGNO(r))
0b53f039
MH
320#define IS_INT_CALL_SAVED_REGNO(r) (((r) == R4_REGNO) || ((r) == R5_REGNO) \
321 || ((r) == R8_REGNO))
322#define IS_FLOAT_CALL_SAVED_REGNO(r) (((r) == R6_REGNO) || ((r) == R7_REGNO))
bc46716b
MH
323
324#define IS_PSEUDO_REGNO(r) ((r) >= FIRST_PSEUDO_REGISTER)
325#define IS_R0R1_OR_PSEUDO_REGNO(r) (IS_R0R1_REGNO(r) || IS_PSEUDO_REGNO(r))
326#define IS_R2R3_OR_PSEUDO_REGNO(r) (IS_R2R3_REGNO(r) || IS_PSEUDO_REGNO(r))
327#define IS_EXT_OR_PSEUDO_REGNO(r) (IS_EXT_REGNO(r) || IS_PSEUDO_REGNO(r))
328#define IS_STD_OR_PSEUDO_REGNO(r) (IS_STD_REGNO(r) || IS_PSEUDO_REGNO(r))
329#define IS_INT_OR_PSEUDO_REGNO(r) (IS_INT_REGNO(r) || IS_PSEUDO_REGNO(r))
330#define IS_ADDR_OR_PSEUDO_REGNO(r) (IS_ADDR_REGNO(r) || IS_PSEUDO_REGNO(r))
331#define IS_INDEX_OR_PSEUDO_REGNO(r) (IS_INDEX_REGNO(r) || IS_PSEUDO_REGNO(r))
332#define IS_EXT_LOW_OR_PSEUDO_REGNO(r) (IS_EXT_LOW_REGNO(r) \
333 || IS_PSEUDO_REGNO(r))
334#define IS_DP_OR_PSEUDO_REGNO(r) (IS_DP_REGNO(r) || IS_PSEUDO_REGNO(r))
335#define IS_SP_OR_PSEUDO_REGNO(r) (IS_SP_REGNO(r) || IS_PSEUDO_REGNO(r))
336#define IS_ST_OR_PSEUDO_REGNO(r) (IS_ST_REGNO(r) || IS_PSEUDO_REGNO(r))
337#define IS_RC_OR_PSEUDO_REGNO(r) (IS_RC_REGNO(r) || IS_PSEUDO_REGNO(r))
338
339#define IS_PSEUDO_REG(op) (IS_PSEUDO_REGNO(REGNO(op)))
340#define IS_ADDR_REG(op) (IS_ADDR_REGNO(REGNO(op)))
341#define IS_INDEX_REG(op) (IS_INDEX_REGNO(REGNO(op)))
342#define IS_GROUP1_REG(r) (IS_GROUP1_REGNO(REGNO(op)))
343#define IS_SP_REG(op) (IS_SP_REGNO(REGNO(op)))
344#define IS_STD_REG(op) (IS_STD_REGNO(REGNO(op)))
345#define IS_EXT_REG(op) (IS_EXT_REGNO(REGNO(op)))
346
347#define IS_R0R1_OR_PSEUDO_REG(op) (IS_R0R1_OR_PSEUDO_REGNO(REGNO(op)))
348#define IS_R2R3_OR_PSEUDO_REG(op) (IS_R2R3_OR_PSEUDO_REGNO(REGNO(op)))
349#define IS_EXT_OR_PSEUDO_REG(op) (IS_EXT_OR_PSEUDO_REGNO(REGNO(op)))
350#define IS_STD_OR_PSEUDO_REG(op) (IS_STD_OR_PSEUDO_REGNO(REGNO(op)))
351#define IS_EXT_LOW_OR_PSEUDO_REG(op) (IS_EXT_LOW_OR_PSEUDO_REGNO(REGNO(op)))
352#define IS_INT_OR_PSEUDO_REG(op) (IS_INT_OR_PSEUDO_REGNO(REGNO(op)))
353
354#define IS_ADDR_OR_PSEUDO_REG(op) (IS_ADDR_OR_PSEUDO_REGNO(REGNO(op)))
355#define IS_INDEX_OR_PSEUDO_REG(op) (IS_INDEX_OR_PSEUDO_REGNO(REGNO(op)))
356#define IS_DP_OR_PSEUDO_REG(op) (IS_DP_OR_PSEUDO_REGNO(REGNO(op)))
357#define IS_SP_OR_PSEUDO_REG(op) (IS_SP_OR_PSEUDO_REGNO(REGNO(op)))
358#define IS_ST_OR_PSEUDO_REG(op) (IS_ST_OR_PSEUDO_REGNO(REGNO(op)))
359#define IS_RC_OR_PSEUDO_REG(op) (IS_RC_OR_PSEUDO_REGNO(REGNO(op)))
cb0ca284
MH
360
361/* 1 for registers that have pervasive standard uses
1ac7a7f5 362 and are not available for the register allocator. */
cb0ca284
MH
363
364#define FIXED_REGISTERS \
365{ \
975ab131 366/* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
cb0ca284 367 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
975ab131 368/* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
cb0ca284
MH
369 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 \
370}
371
372/* 1 for registers not available across function calls.
373 These must include the FIXED_REGISTERS and also any
374 registers that can be used without being saved.
375 The latter must include the registers where values are returned
376 and the register where structure-value addresses are passed.
377 Aside from that, you can include as many other registers as you like.
378
379 Note that the extended precision registers are only saved in some
380 modes. The macro HARD_REGNO_CALL_CLOBBERED specifies which modes
381 get clobbered for a given regno. */
382
383#define CALL_USED_REGISTERS \
384{ \
975ab131 385/* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
cb0ca284 386 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, \
975ab131 387/* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
cb0ca284
MH
388 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1 \
389}
390
1ac7a7f5 391/* Macro to conditionally modify fixed_regs/call_used_regs. */
cb0ca284
MH
392
393#define CONDITIONAL_REGISTER_USAGE \
394 { \
4ddb3ea6 395 if (! TARGET_BK) \
cb0ca284
MH
396 { \
397 fixed_regs[BK_REGNO] = 1; \
398 call_used_regs[BK_REGNO] = 1; \
399 c4x_regclass_map[BK_REGNO] = NO_REGS; \
400 } \
401 if (TARGET_C3X) \
402 { \
403 int i; \
404 \
975ab131
MH
405 reg_names[DIE_REGNO] = "ie"; /* Clobber die. */ \
406 reg_names[IF_REGNO] = "if"; /* Clobber iie. */ \
407 reg_names[IOF_REGNO] = "iof"; /* Clobber iif. */ \
cb0ca284
MH
408 \
409 for (i = R8_REGNO; i <= R11_REGNO; i++) \
410 { \
411 fixed_regs[i] = call_used_regs[i] = 1; \
412 c4x_regclass_map[i] = NO_REGS; \
413 } \
414 } \
2e3e9ead
MH
415 if (TARGET_PRESERVE_FLOAT) \
416 { \
417 c4x_caller_save_map[R6_REGNO] = HFmode; \
418 c4x_caller_save_map[R7_REGNO] = HFmode; \
419 } \
cb0ca284
MH
420 }
421
975ab131 422/* Order of Allocation of Registers. */
cb0ca284
MH
423
424/* List the order in which to allocate registers. Each register must be
425 listed once, even those in FIXED_REGISTERS.
426
427 First allocate registers that don't need preservation across calls,
428 except index and address registers. Then allocate data registers
429 that require preservation across calls (even though this invokes an
430 extra overhead of having to save/restore these registers). Next
431 allocate the address and index registers, since using these
432 registers for arithmetic can cause pipeline stalls. Finally
433 allocated the fixed registers which won't be allocated anyhow. */
434
435#define REG_ALLOC_ORDER \
436{R0_REGNO, R1_REGNO, R2_REGNO, R3_REGNO, \
437 R9_REGNO, R10_REGNO, R11_REGNO, \
438 RS_REGNO, RE_REGNO, RC_REGNO, BK_REGNO, \
439 R4_REGNO, R5_REGNO, R6_REGNO, R7_REGNO, R8_REGNO, \
440 AR0_REGNO, AR1_REGNO, AR2_REGNO, AR3_REGNO, \
441 AR4_REGNO, AR5_REGNO, AR6_REGNO, AR7_REGNO, \
442 IR0_REGNO, IR1_REGNO, \
443 SP_REGNO, DP_REGNO, ST_REGNO, IE_REGNO, IF_REGNO, IOF_REGNO}
444
40eef757
HB
445/* A C expression that is nonzero if hard register number REGNO2 can be
446 considered for use as a rename register for REGNO1 */
447
448#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
449 c4x_hard_regno_rename_ok((REGNO1), (REGNO2))
cb0ca284
MH
450
451/* Determine which register classes are very likely used by spill registers.
452 local-alloc.c won't allocate pseudos that have these classes as their
453 preferred class unless they are "preferred or nothing". */
454
4e6de5a9 455#define CLASS_LIKELY_SPILLED_P(CLASS) ((CLASS) == INDEX_REGS)
cb0ca284 456
d0550d07
HB
457/* CCmode is wrongly defined in machmode.def. It should have a size
458 of UNITS_PER_WORD. HFmode is 40-bits and thus fits within a single
459 extended precision register. Similarly, HCmode fits within two
460 extended precision registers. */
cb0ca284
MH
461
462#define HARD_REGNO_NREGS(REGNO, MODE) \
d0550d07
HB
463(((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : \
464 ((MODE) == HFmode) ? 1 : \
465 ((MODE) == HCmode) ? 2 : \
466 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
cb0ca284
MH
467
468
469/* A C expression that is nonzero if the hard register REGNO is preserved
470 across a call in mode MODE. This does not have to include the call used
471 registers. */
472
2e3e9ead 473#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
0b53f039 474 ((IS_FLOAT_CALL_SAVED_REGNO (REGNO) && ! ((MODE) == QFmode)) \
c98f0cdb 475 || (IS_INT_CALL_SAVED_REGNO (REGNO) \
2e3e9ead 476 && ! ((MODE) == QImode || (MODE) == HImode || (MODE) == Pmode)))
cb0ca284
MH
477
478/* Specify the modes required to caller save a given hard regno. */
479
787dc842 480#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) (c4x_caller_save_map[REGNO])
cb0ca284 481
4e6de5a9 482#define HARD_REGNO_MODE_OK(REGNO, MODE) c4x_hard_regno_mode_ok(REGNO, MODE)
cb0ca284
MH
483
484/* A C expression that is nonzero if it is desirable to choose
485 register allocation so as to avoid move instructions between a
486 value of mode MODE1 and a value of mode MODE2.
487
488 Value is 1 if it is a good idea to tie two pseudo registers
489 when one has mode MODE1 and one has mode MODE2.
490 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
491 for any hard reg, then this must be 0 for correct output. */
492
4e6de5a9 493#define MODES_TIEABLE_P(MODE1, MODE2) 0
cb0ca284
MH
494
495
496/* Define the classes of registers for register constraints in the
497 machine description. Also define ranges of constants.
498
499 One of the classes must always be named ALL_REGS and include all hard regs.
500 If there is more than one class, another class must be named NO_REGS
501 and contain no registers.
502
503 The name GENERAL_REGS must be the name of a class (or an alias for
504 another name such as ALL_REGS). This is the class of registers
505 that is allowed by "g" or "r" in a register constraint.
506 Also, registers outside this class are allocated only when
507 instructions express preferences for them.
508
509 The classes must be numbered in nondecreasing order; that is,
510 a larger-numbered class must never be contained completely
511 in a smaller-numbered class.
512
513 For any two classes, it is very desirable that there be another
514 class that represents their union. */
515
516enum reg_class
517 {
518 NO_REGS,
975ab131
MH
519 R0R1_REGS, /* 't'. */
520 R2R3_REGS, /* 'u'. */
521 EXT_LOW_REGS, /* 'q'. */
522 EXT_REGS, /* 'f'. */
523 ADDR_REGS, /* 'a'. */
524 INDEX_REGS, /* 'x'. */
525 BK_REG, /* 'k'. */
526 SP_REG, /* 'b'. */
527 RC_REG, /* 'v'. */
4a6330ac 528 COUNTER_REGS, /* */
975ab131
MH
529 INT_REGS, /* 'c'. */
530 GENERAL_REGS, /* 'r'. */
531 DP_REG, /* 'z'. */
532 ST_REG, /* 'y'. */
cb0ca284
MH
533 ALL_REGS,
534 LIM_REG_CLASSES
535 };
536
537#define N_REG_CLASSES (int) LIM_REG_CLASSES
538
539#define REG_CLASS_NAMES \
540{ \
541 "NO_REGS", \
542 "R0R1_REGS", \
543 "R2R3_REGS", \
544 "EXT_LOW_REGS", \
545 "EXT_REGS", \
546 "ADDR_REGS", \
547 "INDEX_REGS", \
cb0ca284 548 "BK_REG", \
d5e4ff48
MH
549 "SP_REG", \
550 "RC_REG", \
4a6330ac 551 "COUNTER_REGS", \
cb0ca284
MH
552 "INT_REGS", \
553 "GENERAL_REGS", \
554 "DP_REG", \
555 "ST_REG", \
556 "ALL_REGS" \
d5e4ff48 557}
cb0ca284
MH
558
559/* Define which registers fit in which classes.
560 This is an initializer for a vector of HARD_REG_SET
2e3e9ead
MH
561 of length N_REG_CLASSES. RC is not included in GENERAL_REGS
562 since the register allocator will often choose a general register
563 in preference to RC for the decrement_and_branch_on_count pattern. */
cb0ca284
MH
564
565#define REG_CLASS_CONTENTS \
566{ \
975ab131
MH
567 {0x00000000}, /* No registers. */ \
568 {0x00000003}, /* 't' R0-R1 . */ \
569 {0x0000000c}, /* 'u' R2-R3 . */ \
570 {0x000000ff}, /* 'q' R0-R7 . */ \
2e3e9ead 571 {0xf00000ff}, /* 'f' R0-R11 */ \
975ab131
MH
572 {0x0000ff00}, /* 'a' AR0-AR7. */ \
573 {0x00060000}, /* 'x' IR0-IR1. */ \
574 {0x00080000}, /* 'k' BK. */ \
575 {0x00100000}, /* 'b' SP. */ \
576 {0x08000000}, /* 'v' RC. */ \
577 {0x0800ff00}, /* RC,AR0-AR7. */ \
578 {0x0e1eff00}, /* 'c' AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */ \
579 {0xfe1effff}, /* 'r' R0-R11, AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */\
580 {0x00010000}, /* 'z' DP. */ \
581 {0x00200000}, /* 'y' ST. */ \
582 {0xffffffff}, /* All registers. */ \
cb0ca284
MH
583}
584
585/* The same information, inverted:
586 Return the class number of the smallest class containing
587 reg number REGNO. This could be a conditional expression
588 or could index an array. */
589
590#define REGNO_REG_CLASS(REGNO) (c4x_regclass_map[REGNO])
591
2e3e9ead
MH
592/* When SMALL_REGISTER_CLASSES is defined, the lifetime of registers
593 explicitly used in the rtl is kept as short as possible.
594
595 We only need to define SMALL_REGISTER_CLASSES if TARGET_PARALLEL_MPY
596 is defined since the MPY|ADD insns require the classes R0R1_REGS and
597 R2R3_REGS which are used by the function return registers (R0,R1) and
598 the register arguments (R2,R3), respectively. I'm reluctant to define
f1ba665b 599 this macro since it stomps on many potential optimizations. Ideally
2e3e9ead 600 it should have a register class argument so that not all the register
368ebcd6 601 classes gets penalized for the sake of a naughty few... For long
2e3e9ead
MH
602 double arithmetic we need two additional registers that we can use as
603 spill registers. */
cb0ca284
MH
604
605#define SMALL_REGISTER_CLASSES (TARGET_SMALL_REG_CLASS && TARGET_PARALLEL_MPY)
606
607#define BASE_REG_CLASS ADDR_REGS
608#define INDEX_REG_CLASS INDEX_REGS
609
610/*
2e3e9ead 611 Register constraints for the C4x
cb0ca284
MH
612
613 a - address reg (ar0-ar7)
614 b - stack reg (sp)
615 c - other gp int-only reg
616 d - data/int reg (equiv. to f)
617 f - data/float reg
618 h - data/long double reg (equiv. to f)
619 k - block count (bk)
620 q - r0-r7
621 t - r0-r1
622 u - r2-r3
d5e4ff48 623 v - repeat count (rc)
cb0ca284
MH
624 x - index register (ir0-ir1)
625 y - status register (st)
626 z - dp reg (dp)
627
2e3e9ead
MH
628 Memory/constant constraints for the C4x
629
cb0ca284
MH
630 G - short float 16-bit
631 I - signed 16-bit constant (sign extended)
632 J - signed 8-bit constant (sign extended) (C4x only)
633 K - signed 5-bit constant (sign extended) (C4x only for stik)
634 L - unsigned 16-bit constant
635 M - unsigned 8-bit constant (C4x only)
636 N - ones complement of unsigned 16-bit constant
637 Q - indirect arx + 9-bit signed displacement
638 (a *-arx(n) or *+arx(n) is used to account for the sign bit)
639 R - indirect arx + 5-bit unsigned displacement (C4x only)
640 S - indirect arx + 0, 1, or irn displacement
641 T - direct symbol ref
642 > - indirect with autoincrement
643 < - indirect with autodecrement
644 } - indirect with post-modify
645 { - indirect with pre-modify
646 */
647
648#define REG_CLASS_FROM_LETTER(CC) \
649 ( ((CC) == 'a') ? ADDR_REGS \
650 : ((CC) == 'b') ? SP_REG \
651 : ((CC) == 'c') ? INT_REGS \
652 : ((CC) == 'd') ? EXT_REGS \
653 : ((CC) == 'f') ? EXT_REGS \
654 : ((CC) == 'h') ? EXT_REGS \
655 : ((CC) == 'k') ? BK_REG \
656 : ((CC) == 'q') ? EXT_LOW_REGS \
657 : ((CC) == 't') ? R0R1_REGS \
658 : ((CC) == 'u') ? R2R3_REGS \
d5e4ff48 659 : ((CC) == 'v') ? RC_REG \
cb0ca284
MH
660 : ((CC) == 'x') ? INDEX_REGS \
661 : ((CC) == 'y') ? ST_REG \
662 : ((CC) == 'z') ? DP_REG \
663 : NO_REGS )
664
665/* These assume that REGNO is a hard or pseudo reg number.
666 They give nonzero only if REGNO is a hard reg of the suitable class
667 or a pseudo reg currently allocated to a suitable hard reg.
668 Since they use reg_renumber, they are safe only once reg_renumber
669 has been allocated, which happens in local-alloc.c. */
670
671#define REGNO_OK_FOR_BASE_P(REGNO) \
bc46716b 672 (IS_ADDR_REGNO(REGNO) || IS_ADDR_REGNO((unsigned)reg_renumber[REGNO]))
cb0ca284
MH
673
674#define REGNO_OK_FOR_INDEX_P(REGNO) \
bc46716b 675 (IS_INDEX_REGNO(REGNO) || IS_INDEX_REGNO((unsigned)reg_renumber[REGNO]))
cb0ca284 676
ed3614cd 677/* If we have to generate framepointer + constant prefer an ADDR_REGS
31113446 678 register. This avoids using EXT_REGS in addqi3_noclobber_reload. */
ed3614cd
HB
679
680#define PREFERRED_RELOAD_CLASS(X, CLASS) \
681 (GET_CODE (X) == PLUS \
682 && GET_MODE (X) == Pmode \
683 && GET_CODE (XEXP ((X), 0)) == REG \
684 && GET_MODE (XEXP ((X), 0)) == Pmode \
685 && REGNO (XEXP ((X), 0)) == FRAME_POINTER_REGNUM \
686 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
687 ? ADDR_REGS : (CLASS))
cb0ca284 688
798f6e6f 689#define LIMIT_RELOAD_CLASS(X, CLASS) (CLASS)
cb0ca284 690
798f6e6f 691#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) 0
cb0ca284
MH
692
693#define CLASS_MAX_NREGS(CLASS, MODE) \
694(((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : ((MODE) == HFmode) ? 1 : \
695((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
696
975ab131 697#define IS_INT5_CONST(VAL) (((VAL) <= 15) && ((VAL) >= -16)) /* 'K'. */
cb0ca284 698
975ab131 699#define IS_UINT5_CONST(VAL) (((VAL) <= 31) && ((VAL) >= 0)) /* 'R'. */
cb0ca284 700
975ab131 701#define IS_INT8_CONST(VAL) (((VAL) <= 127) && ((VAL) >= -128)) /* 'J'. */
cb0ca284 702
975ab131 703#define IS_UINT8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= 0)) /* 'M'. */
cb0ca284 704
975ab131 705#define IS_INT16_CONST(VAL) (((VAL) <= 32767) && ((VAL) >= -32768)) /* 'I'. */
cb0ca284 706
975ab131 707#define IS_UINT16_CONST(VAL) (((VAL) <= 65535) && ((VAL) >= 0)) /* 'L'. */
cb0ca284 708
975ab131 709#define IS_NOT_UINT16_CONST(VAL) IS_UINT16_CONST(~(VAL)) /* 'N'. */
cb0ca284 710
975ab131
MH
711#define IS_HIGH_CONST(VAL) \
712(! TARGET_C3X && (((VAL) & 0xffff) == 0)) /* 'O'. */
cb0ca284
MH
713
714
975ab131 715#define IS_DISP1_CONST(VAL) (((VAL) <= 1) && ((VAL) >= -1)) /* 'S'. */
cb0ca284 716
975ab131 717#define IS_DISP8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= -255)) /* 'Q'. */
cb0ca284
MH
718
719#define IS_DISP1_OFF_CONST(VAL) (IS_DISP1_CONST (VAL) \
720 && IS_DISP1_CONST (VAL + 1))
721
722#define IS_DISP8_OFF_CONST(VAL) (IS_DISP8_CONST (VAL) \
723 && IS_DISP8_CONST (VAL + 1))
724
725#define CONST_OK_FOR_LETTER_P(VAL, C) \
726 ( ((C) == 'I') ? (IS_INT16_CONST (VAL)) \
4ddb3ea6
MH
727 : ((C) == 'J') ? (! TARGET_C3X && IS_INT8_CONST (VAL)) \
728 : ((C) == 'K') ? (! TARGET_C3X && IS_INT5_CONST (VAL)) \
cb0ca284 729 : ((C) == 'L') ? (IS_UINT16_CONST (VAL)) \
4ddb3ea6 730 : ((C) == 'M') ? (! TARGET_C3X && IS_UINT8_CONST (VAL)) \
cb0ca284
MH
731 : ((C) == 'N') ? (IS_NOT_UINT16_CONST (VAL)) \
732 : ((C) == 'O') ? (IS_HIGH_CONST (VAL)) \
733 : 0 )
734
50c33087 735#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
798f6e6f 736 ( ((C) == 'G') ? (fp_zero_operand (OP, QFmode)) \
50c33087 737 : ((C) == 'H') ? (c4x_H_constant (OP)) \
cb0ca284
MH
738 : 0 )
739
50c33087
MH
740#define EXTRA_CONSTRAINT(OP, C) \
741 ( ((C) == 'Q') ? (c4x_Q_constraint (OP)) \
742 : ((C) == 'R') ? (c4x_R_constraint (OP)) \
743 : ((C) == 'S') ? (c4x_S_constraint (OP)) \
744 : ((C) == 'T') ? (c4x_T_constraint (OP)) \
745 : ((C) == 'U') ? (c4x_U_constraint (OP)) \
cb0ca284
MH
746 : 0 )
747
748#define SMALL_CONST(VAL, insn) \
749 ( ((insn == NULL_RTX) || (get_attr_data (insn) == DATA_INT16)) \
750 ? IS_INT16_CONST (VAL) \
751 : ( (get_attr_data (insn) == DATA_NOT_UINT16) \
752 ? IS_NOT_UINT16_CONST (VAL) \
753 : ( (get_attr_data (insn) == DATA_HIGH_16) \
754 ? IS_HIGH_CONST (VAL) \
755 : IS_UINT16_CONST (VAL) \
756 ) \
757 ) \
758 )
759
760/*
761 I. Routine calling with arguments in registers
762 ----------------------------------------------
763
764 The TI C3x compiler has a rather unusual register passing algorithm.
765 Data is passed in the following registers (in order):
766
767 AR2, R2, R3, RC, RS, RE
768
769 However, the first and second floating point values are always in R2
770 and R3 (and all other floats are on the stack). Structs are always
771 passed on the stack. If the last argument is an ellipsis, the
772 previous argument is passed on the stack so that its address can be
773 taken for the stdargs macros.
774
775 Because of this, we have to pre-scan the list of arguments to figure
776 out what goes where in the list.
777
778 II. Routine calling with arguments on stack
779 -------------------------------------------
780
781 Let the subroutine declared as "foo(arg0, arg1, arg2);" have local
782 variables loc0, loc1, and loc2. After the function prologue has
783 been executed, the stack frame will look like:
784
785 [stack grows towards increasing addresses]
786 I-------------I
787 5 I saved reg1 I <= SP points here
788 I-------------I
789 4 I saved reg0 I
790 I-------------I
791 3 I loc2 I
792 I-------------I
793 2 I loc1 I
794 I-------------I
795 1 I loc0 I
796 I-------------I
797 0 I old FP I <= FP (AR3) points here
798 I-------------I
799 -1 I return PC I
800 I-------------I
801 -2 I arg0 I
802 I-------------I
803 -3 I arg1 I
804 I-------------I
805 -4 I arg2 I
806 I-------------I
807
808 All local variables (locn) are accessible by means of +FP(n+1)
809 addressing, where n is the local variable number.
810
811 All stack arguments (argn) are accessible by means of -FP(n-2).
812
813 The stack pointer (SP) points to the last register saved in the
814 prologue (regn).
815
816 Note that a push instruction performs a preincrement of the stack
817 pointer. (STACK_PUSH_CODE == PRE_INC)
818
819 III. Registers used in function calling convention
820 --------------------------------------------------
821
822 Preserved across calls: R4...R5 (only by PUSH, i.e. lower 32 bits)
823 R6...R7 (only by PUSHF, i.e. upper 32 bits)
824 AR3...AR7
825
826 (Because of this model, we only assign FP values in R6, R7 and
827 only assign integer values in R4, R5.)
828
829 These registers are saved at each function entry and restored at
830 the exit. Also it is expected any of these not affected by any
831 call to user-defined (not service) functions.
832
833 Not preserved across calls: R0...R3
834 R4...R5 (upper 8 bits)
835 R6...R7 (lower 8 bits)
836 AR0...AR2, IR0, IR1, BK, ST, RS, RE, RC
837
838 These registers are used arbitrary in a function without being preserved.
839 It is also expected that any of these can be clobbered by any call.
840
841 Not used by GCC (except for in user "asm" statements):
842 IE (DIE), IF (IIE), IOF (IIF)
843
844 These registers are never used by GCC for any data, but can be used
845 with "asm" statements. */
846
847#define C4X_ARG0 -2
848#define C4X_LOC0 1
849
975ab131 850/* Basic Stack Layout. */
cb0ca284
MH
851
852/* The stack grows upward, stack frame grows upward, and args grow
1ac7a7f5 853 downward. */
cb0ca284
MH
854
855#define STARTING_FRAME_OFFSET C4X_LOC0
856#define FIRST_PARM_OFFSET(FNDECL) (C4X_ARG0 + 1)
857#define ARGS_GROW_DOWNWARD
858#define STACK_POINTER_OFFSET 1
859
860/* Define this if pushing a word on the stack
861 makes the stack pointer a smaller address. */
862
975ab131
MH
863/* #define STACK_GROWS_DOWNWARD. */
864/* Like the dsp16xx, i370, i960, and we32k ports. */
cb0ca284 865
f62c8a5c 866/* Define this to non-zero if the nominal address of the stack frame
cb0ca284
MH
867 is at the high-address end of the local variables;
868 that is, each additional local variable allocated
869 goes at a more negative offset in the frame. */
870
f62c8a5c 871#define FRAME_GROWS_DOWNWARD 0
cb0ca284
MH
872
873
975ab131 874/* Registers That Address the Stack Frame. */
cb0ca284 875
975ab131
MH
876#define STACK_POINTER_REGNUM SP_REGNO /* SP. */
877#define FRAME_POINTER_REGNUM AR3_REGNO /* AR3. */
878#define ARG_POINTER_REGNUM AR3_REGNO /* AR3. */
879#define STATIC_CHAIN_REGNUM AR0_REGNO /* AR0. */
cb0ca284 880
975ab131 881/* Eliminating Frame Pointer and Arg Pointer. */
cb0ca284
MH
882
883#define FRAME_POINTER_REQUIRED 0
884
885#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
886{ \
887 int regno; \
888 int offset = 0; \
889 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
4ddb3ea6 890 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
cb0ca284 891 offset += TARGET_PRESERVE_FLOAT \
0b53f039 892 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
cb0ca284
MH
893 (DEPTH) = -(offset + get_frame_size ()); \
894}
895
975ab131 896/* This is a hack... We need to specify a register. */
cb0ca284
MH
897#define ELIMINABLE_REGS \
898 {{ FRAME_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
899
900#define CAN_ELIMINATE(FROM, TO) \
4ddb3ea6 901 (! (((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
cb0ca284
MH
902 || ((FROM) == FRAME_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)))
903
904#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
905{ \
906 int regno; \
907 int offset = 0; \
908 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
4ddb3ea6 909 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
cb0ca284 910 offset += TARGET_PRESERVE_FLOAT \
0b53f039 911 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
cb0ca284
MH
912 (OFFSET) = -(offset + get_frame_size ()); \
913}
914
915
975ab131 916/* Passing Function Arguments on the Stack. */
cb0ca284 917
fcd8fa8b 918#define PUSH_ARGS 1
cb0ca284 919#define PUSH_ROUNDING(BYTES) (BYTES)
cb0ca284
MH
920#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
921
975ab131 922/* The following structure is used by calls.c, function.c, c4x.c. */
cb0ca284
MH
923
924typedef struct c4x_args
925{
926 int floats;
927 int ints;
928 int maxfloats;
929 int maxints;
930 int init;
931 int var;
932 int prototype;
933 int args;
934}
935CUMULATIVE_ARGS;
936
0f6937fe 937#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
cb0ca284
MH
938 (c4x_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
939
cb0ca284
MH
940#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
941 (c4x_function_arg_advance (&CUM, MODE, TYPE, NAMED))
942
cb0ca284
MH
943#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
944 (c4x_function_arg(&CUM, MODE, TYPE, NAMED))
945
946/* Define the profitability of saving registers around calls.
ad3781e1
MH
947 We disable caller save to avoid a bug in flow.c (this also affects
948 other targets such as m68k). Since we must use stf/sti,
949 the profitability is marginal anyway. */
cb0ca284 950
6ee96de6 951#define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
cb0ca284 952
1ac7a7f5 953/* 1 if N is a possible register number for function argument passing. */
cb0ca284
MH
954
955#define FUNCTION_ARG_REGNO_P(REGNO) \
975ab131
MH
956 ( ( ((REGNO) == AR2_REGNO) /* AR2. */ \
957 || ((REGNO) == R2_REGNO) /* R2. */ \
958 || ((REGNO) == R3_REGNO) /* R3. */ \
959 || ((REGNO) == RC_REGNO) /* RC. */ \
960 || ((REGNO) == RS_REGNO) /* RS. */ \
961 || ((REGNO) == RE_REGNO)) /* RE. */ \
cb0ca284
MH
962 ? 1 \
963 : 0)
964
975ab131 965/* How Scalar Function Values Are Returned. */
cb0ca284
MH
966
967#define FUNCTION_VALUE(VALTYPE, FUNC) \
a7a2225a 968 gen_rtx_REG (TYPE_MODE(VALTYPE), R0_REGNO) /* Return in R0. */
cb0ca284
MH
969
970#define LIBCALL_VALUE(MODE) \
a7a2225a 971 gen_rtx_REG (MODE, R0_REGNO) /* Return in R0. */
cb0ca284
MH
972
973#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == R0_REGNO)
974
975ab131 975/* How Large Values Are Returned. */
cb0ca284
MH
976
977#define DEFAULT_PCC_STRUCT_RETURN 0
cb0ca284 978
975ab131 979/* Generating Code for Profiling. */
cb0ca284
MH
980
981/* Note that the generated assembly uses the ^ operator to load the 16
ce577467
MH
982 MSBs of the address. This is not supported by the TI assembler.
983 The FUNCTION profiler needs a function mcount which gets passed
984 a pointer to the LABELNO. */
cb0ca284
MH
985
986#define FUNCTION_PROFILER(FILE, LABELNO) \
4ddb3ea6 987 if (! TARGET_C3X) \
cb0ca284
MH
988 { \
989 fprintf (FILE, "\tpush\tar2\n"); \
990 fprintf (FILE, "\tldhi\t^LP%d,ar2\n", (LABELNO)); \
991 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
992 fprintf (FILE, "\tcall\tmcount\n"); \
993 fprintf (FILE, "\tpop\tar2\n"); \
994 } \
995 else \
996 { \
997 fprintf (FILE, "\tpush\tar2\n"); \
998 fprintf (FILE, "\tldiu\t^LP%d,ar2\n", (LABELNO)); \
999 fprintf (FILE, "\tlsh\t16,ar2\n"); \
1000 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
1001 fprintf (FILE, "\tcall\tmcount\n"); \
1002 fprintf (FILE, "\tpop\tar2\n"); \
1003 }
1004
cb0ca284
MH
1005/* CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG
1006 or MULT.
1ac7a7f5 1007 CCmode should be used when no special processing is needed. */
cb0ca284
MH
1008#define SELECT_CC_MODE(OP,X,Y) \
1009 ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
1010 || GET_CODE (X) == NEG || GET_CODE (X) == MULT \
1011 || GET_MODE (X) == ABS \
1012 || GET_CODE (Y) == PLUS || GET_CODE (Y) == MINUS \
1013 || GET_CODE (Y) == NEG || GET_CODE (Y) == MULT \
1014 || GET_MODE (Y) == ABS) \
1015 ? CC_NOOVmode : CCmode)
1016
975ab131 1017/* Addressing Modes. */
cb0ca284 1018
940da324
JL
1019#define HAVE_POST_INCREMENT 1
1020#define HAVE_PRE_INCREMENT 1
1021#define HAVE_POST_DECREMENT 1
1022#define HAVE_PRE_DECREMENT 1
1023#define HAVE_PRE_MODIFY_REG 1
1024#define HAVE_POST_MODIFY_REG 1
1025#define HAVE_PRE_MODIFY_DISP 1
1026#define HAVE_POST_MODIFY_DISP 1
cb0ca284 1027
4adf744b 1028/* The number of insns that can be packed into a single opcode. */
ce577467 1029#define PACK_INSNS 2
4adf744b
MH
1030
1031/* Recognize any constant value that is a valid address.
1032 We could allow arbitrary constant addresses in the large memory
1033 model but for the small memory model we can only accept addresses
1034 within the data page. I suppose we could also allow
1035 CONST PLUS SYMBOL_REF. */
cb0ca284
MH
1036#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == SYMBOL_REF)
1037
4adf744b
MH
1038/* Maximum number of registers that can appear in a valid memory
1039 address. */
cb0ca284
MH
1040#define MAX_REGS_PER_ADDRESS 2
1041
1042/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1043 and check its validity for a certain class.
1044 We have two alternate definitions for each of them.
1045 The usual definition accepts all pseudo regs; the other rejects
1046 them unless they have been allocated suitable hard regs.
1047 The symbol REG_OK_STRICT causes the latter definition to be used.
1048
1049 Most source files want to accept pseudo regs in the hope that
1050 they will get allocated to the class that the insn wants them to be in.
1051 Source files for reload pass need to be strict.
1052 After reload, it makes no difference, since pseudo regs have
1053 been eliminated by then. */
1054
cb0ca284
MH
1055#ifndef REG_OK_STRICT
1056
5bdc5878 1057/* Nonzero if X is a hard or pseudo reg that can be used as a base. */
cb0ca284 1058
bc46716b 1059#define REG_OK_FOR_BASE_P(X) IS_ADDR_OR_PSEUDO_REG(X)
cb0ca284
MH
1060
1061/* Nonzero if X is a hard or pseudo reg that can be used as an index. */
1062
bc46716b 1063#define REG_OK_FOR_INDEX_P(X) IS_INDEX_OR_PSEUDO_REG(X)
cb0ca284
MH
1064
1065#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1066{ \
1e903c61 1067 if (c4x_legitimate_address_p (MODE, X, 0)) \
cb0ca284
MH
1068 goto ADDR; \
1069}
1070
1071#else
1072
1073/* Nonzero if X is a hard reg that can be used as an index. */
1074
1075#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1076
1077/* Nonzero if X is a hard reg that can be used as a base reg. */
1078
1079#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1080
1081#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1082{ \
1e903c61 1083 if (c4x_legitimate_address_p (MODE, X, 1)) \
cb0ca284
MH
1084 goto ADDR; \
1085}
1086
1087#endif
1088
cb0ca284
MH
1089#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1090{ \
1091 rtx new; \
8f422192 1092 \
cb0ca284
MH
1093 new = c4x_legitimize_address (X, MODE); \
1094 if (new != NULL_RTX) \
1095 { \
1096 (X) = new; \
1097 goto WIN; \
1098 } \
1099}
1100
31445126
MH
1101#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1102{ \
eb253d90
HB
1103 if (MODE != HImode \
1104 && MODE != HFmode \
1105 && GET_MODE (X) != HImode \
1106 && GET_MODE (X) != HFmode \
1107 && (GET_CODE (X) == CONST \
1108 || GET_CODE (X) == SYMBOL_REF \
1109 || GET_CODE (X) == LABEL_REF)) \
1110 { \
1111 if (! TARGET_SMALL) \
1112 { \
1113 int i; \
12fb52cf 1114 (X) = gen_rtx_LO_SUM (GET_MODE (X), \
eb253d90
HB
1115 gen_rtx_HIGH (GET_MODE (X), X), X); \
1116 i = push_reload (XEXP (X, 0), NULL_RTX, \
df4ae160 1117 &XEXP (X, 0), NULL, \
eb253d90
HB
1118 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1119 OPNUM, TYPE); \
1120 /* The only valid reg is DP. This is a fixed reg and will \
1121 normally not be used so force it. */ \
1122 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1123 rld[i].nocombine = 1; \
1124 } \
12fb52cf
MH
1125 else \
1126 { \
1127 /* make_memloc in reload will substitute invalid memory \
1128 references. We need to fix them up. */ \
1129 (X) = gen_rtx_LO_SUM (Pmode, gen_rtx_REG (Pmode, DP_REGNO), (X)); \
1130 } \
eb253d90
HB
1131 goto WIN; \
1132 } \
1133 else if (MODE != HImode \
1134 && MODE != HFmode \
1135 && GET_MODE (X) != HImode \
1136 && GET_MODE (X) != HFmode \
1137 && GET_CODE (X) == LO_SUM \
1138 && GET_CODE (XEXP (X,0)) == HIGH \
1139 && (GET_CODE (XEXP (XEXP (X,0),0)) == CONST \
1140 || GET_CODE (XEXP (XEXP (X,0),0)) == SYMBOL_REF \
1141 || GET_CODE (XEXP (XEXP (X,0),0)) == LABEL_REF)) \
1142 { \
1143 if (! TARGET_SMALL) \
1144 { \
1145 int i = push_reload (XEXP (X, 0), NULL_RTX, \
df4ae160 1146 &XEXP (X, 0), NULL, \
eb253d90
HB
1147 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1148 OPNUM, TYPE); \
1149 /* The only valid reg is DP. This is a fixed reg and will \
1150 normally not be used so force it. */ \
1151 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1152 rld[i].nocombine = 1; \
1153 } \
1154 goto WIN; \
1155 } \
31445126
MH
1156}
1157
cb0ca284
MH
1158/* No mode-dependent addresses on the C4x are autoincrements. */
1159
1160#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1161 if (GET_CODE (ADDR) == PRE_DEC \
1162 || GET_CODE (ADDR) == POST_DEC \
1163 || GET_CODE (ADDR) == PRE_INC \
1164 || GET_CODE (ADDR) == POST_INC \
1165 || GET_CODE (ADDR) == POST_MODIFY \
1166 || GET_CODE (ADDR) == PRE_MODIFY) \
1167 goto LABEL
1168
1169
1170/* Nonzero if the constant value X is a legitimate general operand.
1171 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1172
50c33087
MH
1173 The C4x can only load 16-bit immediate values, so we only allow a
1174 restricted subset of CONST_INT and CONST_DOUBLE. Disallow
1175 LABEL_REF and SYMBOL_REF (except on the C40 with the big memory
1176 model) so that the symbols will be forced into the constant pool.
31445126
MH
1177 On second thoughts, let's do this with the move expanders since
1178 the alias analysis has trouble if we force constant addresses
1179 into memory.
50c33087 1180*/
cb0ca284
MH
1181
1182#define LEGITIMATE_CONSTANT_P(X) \
d5e4ff48 1183 ((GET_CODE (X) == CONST_DOUBLE && c4x_H_constant (X)) \
483dd5be 1184 || (GET_CODE (X) == CONST_INT) \
50c33087
MH
1185 || (GET_CODE (X) == SYMBOL_REF) \
1186 || (GET_CODE (X) == LABEL_REF) \
1187 || (GET_CODE (X) == CONST) \
1188 || (GET_CODE (X) == HIGH && ! TARGET_C3X) \
1189 || (GET_CODE (X) == LO_SUM && ! TARGET_C3X))
cb0ca284
MH
1190
1191#define LEGITIMATE_DISPLACEMENT_P(X) IS_DISP8_CONST (INTVAL (X))
1192
112cdef5 1193/* Describing Relative Cost of Operations. */
cb0ca284 1194
cb0ca284
MH
1195#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
1196if (REG_P (OP1) && ! REG_P (OP0)) \
1197{ \
1198 rtx tmp = OP0; OP0 = OP1 ; OP1 = tmp; \
1199 CODE = swap_condition (CODE); \
1200}
1201
1202#define EXT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, EXT_REGS))
1203#define ADDR_CLASS_P(CLASS) (reg_class_subset_p (CLASS, ADDR_REGS))
1204#define INDEX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, INDEX_REGS))
1205#define EXPENSIVE_CLASS_P(CLASS) (ADDR_CLASS_P(CLASS) \
1206 || INDEX_CLASS_P(CLASS) || (CLASS) == SP_REG)
1207
5e6a42d9
MH
1208/* Compute extra cost of moving data between one register class
1209 and another. */
cb0ca284 1210
cf011243 1211#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
cb0ca284
MH
1212
1213/* Memory move cost is same as fast register move. Maybe this should
975ab131 1214 be bumped up?. */
cb0ca284
MH
1215
1216#define MEMORY_MOVE_COST(M,C,I) 4
1217
1218/* Branches are kind of expensive (even with delayed branching) so
1219 make their cost higher. */
1220
1221#define BRANCH_COST 8
1222
cb0ca284
MH
1223#define WORD_REGISTER_OPERATIONS
1224
1ac7a7f5 1225/* Dividing the Output into Sections. */
cb0ca284
MH
1226
1227#define TEXT_SECTION_ASM_OP "\t.text"
1228
1229#define DATA_SECTION_ASM_OP "\t.data"
1230
d48bc59a 1231#define READONLY_DATA_SECTION_ASM_OP "\t.sect\t\".const\""
cb0ca284
MH
1232
1233/* Do not use .init section so __main will be called on startup. This will
1ac7a7f5 1234 call __do_global_ctors and prepare for __do_global_dtors on exit. */
cb0ca284
MH
1235
1236#if 0
1237#define INIT_SECTION_ASM_OP "\t.sect\t\".init\""
1238#endif
1239
1240#define FINI_SECTION_ASM_OP "\t.sect\t\".fini\""
1241
cb0ca284 1242#undef EXTRA_SECTIONS
d48bc59a 1243#define EXTRA_SECTIONS in_init, in_fini
cb0ca284
MH
1244
1245#undef EXTRA_SECTION_FUNCTIONS
1246#define EXTRA_SECTION_FUNCTIONS \
cb0ca284 1247 INIT_SECTION_FUNCTION \
2cc07db4 1248 FINI_SECTION_FUNCTION
cb0ca284
MH
1249
1250#define INIT_SECTION_FUNCTION \
f12b3fc8 1251extern void init_section (void); \
cb0ca284 1252void \
f12b3fc8 1253init_section (void) \
cb0ca284
MH
1254{ \
1255 if (in_section != in_init) \
1256 { \
1257 fprintf (asm_out_file, ";\t.init\n"); \
1258 in_section = in_init; \
1259 } \
1260}
1261
1262#define FINI_SECTION_FUNCTION \
1263void \
1264fini_section () \
1265{ \
1266 if (in_section != in_fini) \
1267 { \
8802136f 1268 fprintf (asm_out_file, "%s\n", FINI_SECTION_ASM_OP); \
cb0ca284
MH
1269 in_section = in_fini; \
1270 } \
1271}
1272
7c262518
RH
1273/* Switch into a generic section. */
1274#define TARGET_ASM_NAMED_SECTION c4x_asm_named_section
cb0ca284 1275
dfafcb4d 1276
975ab131 1277/* Overall Framework of an Assembler File. */
cb0ca284 1278
31445126 1279#define ASM_COMMENT_START ";"
cb0ca284
MH
1280
1281#define ASM_APP_ON ""
1282#define ASM_APP_OFF ""
1283
cb0ca284
MH
1284#define ASM_OUTPUT_ASCII(FILE, PTR, LEN) c4x_output_ascii (FILE, PTR, LEN)
1285
975ab131 1286/* Output and Generation of Labels. */
cb0ca284 1287
975ab131 1288#define NO_DOT_IN_LABEL /* Only required for TI format. */
cb0ca284 1289
5eb99654
KG
1290/* Globalizing directive for a label. */
1291#define GLOBAL_ASM_OP "\t.global\t"
cb0ca284 1292
eff784fe
MH
1293#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1294c4x_external_ref (NAME)
cb0ca284 1295
cb0ca284
MH
1296/* The prefix to add to user-visible assembler symbols. */
1297
1298#define USER_LABEL_PREFIX "_"
1299
cb0ca284
MH
1300/* This is how to store into the string LABEL
1301 the symbol_ref name of an internal numbered label where
1302 PREFIX is the class of label and NUM is the number within the class.
1303 This is suitable for output with `assemble_name'. */
1304
1305#define ASM_GENERATE_INTERNAL_LABEL(BUFFER, PREFIX, NUM) \
74eda121 1306 sprintf (BUFFER, "*%s%lu", PREFIX, (unsigned long)(NUM))
cb0ca284 1307
8e0ed3b5
HB
1308/* A C statement to output to the stdio stream STREAM assembler code which
1309 defines (equates) the symbol NAME to have the value VALUE. */
1310
1311#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1312do { \
1313 assemble_name (STREAM, NAME); \
1314 fprintf (STREAM, "\t.set\t%s\n", VALUE); \
1315} while (0)
cb0ca284 1316
975ab131 1317/* Output of Dispatch Tables. */
cb0ca284
MH
1318
1319/* This is how to output an element of a case-vector that is absolute. */
1320
1321#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1322 fprintf (FILE, "\t.long\tL%d\n", VALUE);
1323
1324/* This is how to output an element of a case-vector that is relative. */
1325
1326#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1327 fprintf (FILE, "\t.long\tL%d-L%d\n", VALUE, REL);
1328
1329#undef SIZE_TYPE
1330#define SIZE_TYPE "unsigned int"
1331
1332#undef PTRDIFF_TYPE
1333#define PTRDIFF_TYPE "int"
1334
1335#undef WCHAR_TYPE
1336#define WCHAR_TYPE "long int"
1337
1338#undef WCHAR_TYPE_SIZE
1339#define WCHAR_TYPE_SIZE 32
1340
1341#define INT_TYPE_SIZE 32
1342#define LONG_LONG_TYPE_SIZE 64
1343#define FLOAT_TYPE_SIZE 32
1344#define DOUBLE_TYPE_SIZE 32
975ab131 1345#define LONG_DOUBLE_TYPE_SIZE 64 /* Actually only 40. */
cb0ca284 1346
cb0ca284
MH
1347/* Output #ident as a .ident. */
1348
1349#define ASM_OUTPUT_IDENT(FILE, NAME) \
1350 fprintf (FILE, "\t.ident \"%s\"\n", NAME);
1351
975ab131 1352/* Output of Uninitialized Variables. */
31445126
MH
1353
1354/* This says how to output an assembler line to define a local
1355 uninitialized variable. */
cb0ca284
MH
1356
1357#undef ASM_OUTPUT_LOCAL
1358#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1359( fputs ("\t.bss\t", FILE), \
1360 assemble_name (FILE, (NAME)), \
58e15542 1361 fprintf (FILE, ",%u\n", (int)(ROUNDED)))
cb0ca284 1362
31445126
MH
1363/* This says how to output an assembler line to define a global
1364 uninitialized variable. */
cb0ca284
MH
1365
1366#undef ASM_OUTPUT_COMMON
1367#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1368( fputs ("\t.globl\t", FILE), \
1369 assemble_name (FILE, (NAME)), \
1370 fputs ("\n\t.bss\t", FILE), \
1371 assemble_name (FILE, (NAME)), \
58e15542 1372 fprintf (FILE, ",%u\n", (int)(ROUNDED)))
cb0ca284 1373
7bea4e7a
MH
1374#undef ASM_OUTPUT_BSS
1375#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1376( fputs ("\t.globl\t", FILE), \
1377 assemble_name (FILE, (NAME)), \
1378 fputs ("\n\t.bss\t", FILE), \
1379 assemble_name (FILE, (NAME)), \
58e15542 1380 fprintf (FILE, ",%u\n", (int)(SIZE)))
7bea4e7a 1381
975ab131 1382/* Macros Controlling Initialization Routines. */
cb0ca284
MH
1383
1384#define OBJECT_FORMAT_COFF
1385#define REAL_NM_FILE_NAME "c4x-nm"
1386
975ab131 1387/* Output of Assembler Instructions. */
cb0ca284
MH
1388
1389/* Register names when used for integer modes. */
1390
1391#define REGISTER_NAMES \
1392{ \
1393 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1394 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
1395 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
1396 "iif", "rs", "re", "rc", "r8", "r9", "r10", "r11" \
1397}
1398
1399/* Alternate register names when used for floating point modes. */
1400
1401#define FLOAT_REGISTER_NAMES \
1402{ \
1403 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1404 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
1405 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
1406 "iif", "rs", "re", "rc", "f8", "f9", "f10", "f11" \
1407}
1408
cb0ca284
MH
1409#define PRINT_OPERAND(FILE, X, CODE) c4x_print_operand(FILE, X, CODE)
1410
1411/* Determine which codes are valid without a following integer. These must
1ac7a7f5 1412 not be alphabetic. */
cb0ca284
MH
1413
1414#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#')
1415
cb0ca284
MH
1416#define PRINT_OPERAND_ADDRESS(FILE, X) c4x_print_operand_address(FILE, X)
1417
8b97c5f8 1418/* C4x specific pragmas. */
c58b209a
NB
1419#define REGISTER_TARGET_PRAGMAS() do { \
1420 c_register_pragma (0, "CODE_SECTION", c4x_pr_CODE_SECTION); \
1421 c_register_pragma (0, "DATA_SECTION", c4x_pr_DATA_SECTION); \
1422 c_register_pragma (0, "FUNC_CANNOT_INLINE", c4x_pr_ignored); \
1423 c_register_pragma (0, "FUNC_EXT_CALLED", c4x_pr_ignored); \
1424 c_register_pragma (0, "FUNC_IS_PURE", c4x_pr_FUNC_IS_PURE); \
1425 c_register_pragma (0, "FUNC_IS_SYSTEM", c4x_pr_ignored); \
1426 c_register_pragma (0, "FUNC_NEVER_RETURNS", c4x_pr_FUNC_NEVER_RETURNS); \
1427 c_register_pragma (0, "FUNC_NO_GLOBAL_ASG", c4x_pr_ignored); \
1428 c_register_pragma (0, "FUNC_NO_IND_ASG", c4x_pr_ignored); \
1429 c_register_pragma (0, "INTERRUPT", c4x_pr_INTERRUPT); \
8b97c5f8 1430} while (0)
cb0ca284 1431
975ab131 1432/* Assembler Commands for Alignment. */
cb0ca284
MH
1433
1434#define ASM_OUTPUT_SKIP(FILE, SIZE) \
1435{ int c = SIZE; \
1436 for (; c > 0; --c) \
1437 fprintf (FILE,"\t.word\t0\n"); \
1438}
1439
1440#define ASM_NO_SKIP_IN_TEXT 1
1441
1ac7a7f5 1442/* I'm not sure about this one. FIXME. */
cb0ca284
MH
1443
1444#define ASM_OUTPUT_ALIGN(FILE, LOG) \
1445 if ((LOG) != 0) \
1446 fprintf (FILE, "\t.align\t%d\n", (1 << (LOG)))
1447
1448
1449/* Macros for SDB and DWARF Output (use .sdef instead of .def
975ab131 1450 to avoid conflict with TI's use of .def). */
cb0ca284
MH
1451
1452#define SDB_DELIM "\n"
23532de9 1453#define SDB_DEBUGGING_INFO 1
cb0ca284 1454
db14c6a0
MH
1455/* Don't use octal since this can confuse gas for the c4x. */
1456#define PUT_SDB_TYPE(a) fprintf(asm_out_file, "\t.type\t0x%x%s", a, SDB_DELIM)
1457
cb0ca284
MH
1458#define PUT_SDB_DEF(A) \
1459do { fprintf (asm_out_file, "\t.sdef\t"); \
1460 ASM_OUTPUT_LABELREF (asm_out_file, A); \
1461 fprintf (asm_out_file, SDB_DELIM); } while (0)
1462
1463#define PUT_SDB_PLAIN_DEF(A) \
1464 fprintf (asm_out_file,"\t.sdef\t.%s%s", A, SDB_DELIM)
1465
1466#define PUT_SDB_BLOCK_START(LINE) \
1467 fprintf (asm_out_file, \
1468 "\t.sdef\t.bb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1469 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1470
1471#define PUT_SDB_BLOCK_END(LINE) \
1472 fprintf (asm_out_file, \
1473 "\t.sdef\t.eb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1474 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1475
1476#define PUT_SDB_FUNCTION_START(LINE) \
1477 fprintf (asm_out_file, \
1478 "\t.sdef\t.bf%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
1479 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1480
01dc05dd
MH
1481/* Note we output relative line numbers for .ef which gas converts
1482 to absolute line numbers. The TI compiler outputs absolute line numbers
1483 in the .sym directive which gas does not support. */
cb0ca284
MH
1484#define PUT_SDB_FUNCTION_END(LINE) \
1485 fprintf (asm_out_file, \
1486 "\t.sdef\t.ef%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
01dc05dd
MH
1487 SDB_DELIM, SDB_DELIM, SDB_DELIM, \
1488 (LINE), SDB_DELIM)
cb0ca284
MH
1489
1490#define PUT_SDB_EPILOGUE_END(NAME) \
1491do { fprintf (asm_out_file, "\t.sdef\t"); \
1492 ASM_OUTPUT_LABELREF (asm_out_file, NAME); \
1493 fprintf (asm_out_file, \
1494 "%s\t.val\t.%s\t.scl\t-1%s\t.endef\n", \
1495 SDB_DELIM, SDB_DELIM, SDB_DELIM); } while (0)
1496
cb0ca284
MH
1497/* Define this as 1 if `char' should by default be signed; else as 0. */
1498
1499#define DEFAULT_SIGNED_CHAR 1
1500
1501/* A function address in a call instruction is a byte address (for
1502 indexing purposes) so give the MEM rtx a byte's mode. */
1503
1504#define FUNCTION_MODE QImode
1505
1506#define SLOW_BYTE_ACCESS 0
1507
1508/* Specify the machine mode that pointers have. After generation of
1509 RTL, the compiler makes no further distinction between pointers and
1510 any other objects of this machine mode. */
1511
1512#define Pmode QImode
1513
1514/* On the C4x we can write the following code. We have to clear the cache
1515 every time we execute it because the data in the stack could change.
1516
1517 laj $+4
1518 addi3 4,r11,ar0
1519 lda *ar0,ar1
1520 lda *+ar0(1),ar0
1521 bud ar1
1522 nop
1523 nop
1524 or 1000h,st
1525 .word FNADDR
1526 .word CXT
1527
1528 On the c3x this is a bit more difficult. We have to write self
1529 modifying code here. So we have to clear the cache every time
1530 we execute it because the data in the stack could change.
1531
1532 ldiu TOP_OF_FUNCTION,ar1
1533 lsh 16,ar1
1534 or BOTTOM_OF_FUNCTION,ar1
1535 ldiu TOP_OF_STATIC,ar0
1536 bud ar1
1537 lsh 16,ar0
1538 or BOTTOM_OF_STATIC,ar0
1539 or 1000h,st
1540
1541 */
1542
1543#define TRAMPOLINE_SIZE (TARGET_C3X ? 8 : 10)
1544
1545#define TRAMPOLINE_TEMPLATE(FILE) \
1546{ \
1547 if (TARGET_C3X) \
1548 { \
761c70aa
KG
1549 fprintf (FILE, "\tldiu\t0,ar1\n"); \
1550 fprintf (FILE, "\tlsh\t16,ar1\n"); \
1551 fprintf (FILE, "\tor\t0,ar1\n"); \
1552 fprintf (FILE, "\tldiu\t0,ar0\n"); \
1553 fprintf (FILE, "\tbud\tar1\n"); \
1554 fprintf (FILE, "\tlsh\t16,ar0\n"); \
1555 fprintf (FILE, "\tor\t0,ar0\n"); \
1556 fprintf (FILE, "\tor\t1000h,st\n"); \
cb0ca284
MH
1557 } \
1558 else \
1559 { \
761c70aa
KG
1560 fprintf (FILE, "\tlaj\t$+4\n"); \
1561 fprintf (FILE, "\taddi3\t4,r11,ar0\n"); \
1562 fprintf (FILE, "\tlda\t*ar0,ar1\n"); \
1563 fprintf (FILE, "\tlda\t*+ar0(1),ar0\n"); \
1564 fprintf (FILE, "\tbud\tar1\n"); \
1565 fprintf (FILE, "\tnop\n"); \
1566 fprintf (FILE, "\tnop\n"); \
1567 fprintf (FILE, "\tor\t1000h,st\n"); \
1568 fprintf (FILE, "\t.word\t0\n"); \
1569 fprintf (FILE, "\t.word\t0\n"); \
cb0ca284
MH
1570 } \
1571}
1572
1573#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1574{ \
1575 if (TARGET_C3X) \
1576 { \
1577 rtx tmp1, tmp2; \
1578 tmp1 = expand_shift (RSHIFT_EXPR, QImode, FNADDR, \
1579 size_int (16), 0, 1); \
1580 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
22273300 1581 GEN_INT (0x5069), size_int (16), 0, 1); \
cb0ca284 1582 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
f1c25d3b 1583 emit_move_insn (gen_rtx_MEM (QImode, \
db7b4701 1584 plus_constant (TRAMP, 0)), tmp1); \
22273300 1585 tmp1 = expand_and (QImode, FNADDR, GEN_INT (0xffff), 0); \
cb0ca284 1586 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
22273300 1587 GEN_INT (0x1069), size_int (16), 0, 1); \
cb0ca284 1588 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
f1c25d3b 1589 emit_move_insn (gen_rtx_MEM (QImode, \
db7b4701 1590 plus_constant (TRAMP, 2)), tmp1); \
cb0ca284
MH
1591 tmp1 = expand_shift (RSHIFT_EXPR, QImode, CXT, \
1592 size_int (16), 0, 1); \
1593 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
22273300 1594 GEN_INT (0x5068), size_int (16), 0, 1); \
cb0ca284 1595 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
f1c25d3b 1596 emit_move_insn (gen_rtx_MEM (QImode, \
db7b4701 1597 plus_constant (TRAMP, 3)), tmp1); \
22273300 1598 tmp1 = expand_and (QImode, CXT, GEN_INT (0xffff), 0); \
cb0ca284 1599 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
22273300 1600 GEN_INT (0x1068), size_int (16), 0, 1); \
cb0ca284 1601 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
f1c25d3b 1602 emit_move_insn (gen_rtx_MEM (QImode, \
db7b4701 1603 plus_constant (TRAMP, 6)), tmp1); \
cb0ca284
MH
1604 } \
1605 else \
1606 { \
f1c25d3b 1607 emit_move_insn (gen_rtx_MEM (QImode, \
cb0ca284 1608 plus_constant (TRAMP, 8)), FNADDR); \
f1c25d3b 1609 emit_move_insn (gen_rtx_MEM (QImode, \
cb0ca284
MH
1610 plus_constant (TRAMP, 9)), CXT); \
1611 } \
1612}
1613
1614/* Specify the machine mode that this machine uses for the index in
1615 the tablejump instruction. */
1616
1617#define CASE_VECTOR_MODE Pmode
1618
1619/* Max number of (32-bit) bytes we can move from memory to memory
1620 in one reasonably fast instruction. */
1621
1622#define MOVE_MAX 1
1623
1624/* MOVE_RATIO is the number of move instructions that is better than a
1ac7a7f5 1625 block move. */
cb0ca284 1626
8a119a7d 1627#define MOVE_RATIO 3
cb0ca284 1628
4e8aa65c 1629#define BSS_SECTION_ASM_OP "\t.bss"
cb0ca284
MH
1630
1631#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
761c70aa 1632 fprintf (FILE, "\tpush\t%s\n", reg_names[REGNO])
cb0ca284
MH
1633
1634/* This is how to output an insn to pop a register from the stack.
1635 It need not be very fast code. */
1636
1637#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
761c70aa 1638 fprintf (FILE, "\tpop\t%s\n", reg_names[REGNO])
cb0ca284
MH
1639
1640/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1641 is done just by pretending it is already truncated. */
1642
1643#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1644
8a119a7d
MH
1645#define DBR_OUTPUT_SEQEND(FILE) \
1646if (final_sequence != NULL_RTX) \
1647{ \
1648 int count; \
1649 rtx insn = XVECEXP (final_sequence, 0, 0); \
1650 int laj = GET_CODE (insn) == CALL_INSN \
1651 || (GET_CODE (insn) == INSN \
1652 && GET_CODE (PATTERN (insn)) == TRAP_IF);\
1653 \
1654 count = dbr_sequence_length(); \
1655 while (count < (laj ? 2 : 3)) \
1656 { \
1657 fputs("\tnop\n", FILE); \
1658 count++; \
1659 } \
1660 if (laj) \
1661 fputs("\tpush\tr11\n", FILE); \
cb0ca284
MH
1662}
1663
1664#define NO_FUNCTION_CSE
1665
cb0ca284
MH
1666/* We don't want a leading tab. */
1667
1668#define ASM_OUTPUT_ASM(FILE, STRING) fprintf (FILE, "%s\n", STRING)
1669
1670/* Define the codes that are matched by predicates in c4x.c. */
1671
1672#define PREDICATE_CODES \
1673 {"fp_zero_operand", {CONST_DOUBLE}}, \
1674 {"const_operand", {CONST_INT, CONST_DOUBLE}}, \
1675 {"stik_const_operand", {CONST_INT}}, \
1676 {"not_const_operand", {CONST_INT}}, \
1677 {"reg_operand", {REG, SUBREG}}, \
1678 {"reg_or_const_operand", {REG, SUBREG, CONST_INT, CONST_DOUBLE}},\
1679 {"r0r1_reg_operand", {REG, SUBREG}}, \
1680 {"r2r3_reg_operand", {REG, SUBREG}}, \
1681 {"ext_low_reg_operand", {REG, SUBREG}}, \
1682 {"ext_reg_operand", {REG, SUBREG}}, \
1683 {"std_reg_operand", {REG, SUBREG}}, \
ed3614cd 1684 {"std_or_reg_operand", {REG, SUBREG}}, \
cb0ca284
MH
1685 {"addr_reg_operand", {REG, SUBREG}}, \
1686 {"index_reg_operand", {REG, SUBREG}}, \
1687 {"dp_reg_operand", {REG}}, \
1688 {"sp_reg_operand", {REG}}, \
1689 {"st_reg_operand", {REG}}, \
d5e4ff48 1690 {"rc_reg_operand", {REG}}, \
55310df7 1691 {"call_address_operand", {REG, SYMBOL_REF, LABEL_REF, CONST}}, \
f416f18c 1692 {"dst_operand", {SUBREG, REG, MEM}}, \
cb0ca284
MH
1693 {"src_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
1694 {"src_hi_operand", {SUBREG, REG, MEM, CONST_DOUBLE}}, \
1695 {"lsrc_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
1696 {"tsrc_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
65f2f288
HB
1697 {"nonimmediate_src_operand", {SUBREG, REG, MEM}}, \
1698 {"nonimmediate_lsrc_operand", {SUBREG, REG, MEM}}, \
cb0ca284
MH
1699 {"any_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
1700 {"par_ind_operand", {MEM}}, \
1701 {"parallel_operand", {SUBREG, REG, MEM}}, \
e79df5ce 1702 {"symbolic_address_operand", {SYMBOL_REF, LABEL_REF, CONST}},
8a119a7d
MH
1703
1704
1705/* Define the intrinsic functions for the c3x/c4x. */
1706
1707enum c4x_builtins
1708{
1709 /* intrinsic name */
8a119a7d
MH
1710 C4X_BUILTIN_FIX, /* fast_ftoi */
1711 C4X_BUILTIN_FIX_ANSI, /* ansi_ftoi */
1712 C4X_BUILTIN_MPYI, /* fast_imult (only C3x) */
1713 C4X_BUILTIN_TOIEEE, /* toieee (only C4x) */
1714 C4X_BUILTIN_FRIEEE, /* frieee (only C4x) */
1715 C4X_BUILTIN_RCPF /* fast_invf (only C4x) */
1716};
8f422192
MH
1717
1718
1719/* Hack to overcome use of libgcc2.c using auto-host.h to determine
1720 HAVE_GAS_HIDDEN. */
1721#undef HAVE_GAS_HIDDEN