]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/dsp16xx/dsp16xx.h
gcse.c: Fix misspelling.
[thirdparty/gcc.git] / gcc / config / dsp16xx / dsp16xx.h
CommitLineData
946730d0 1/* Definitions of target machine for GNU compiler. AT&T DSP1600.
e62b6ea1 2 Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003
cfb857f1 3 Free Software Foundation, Inc.
dff06f62 4 Contributed by Michael Collison (collison@isisinc.net).
946730d0 5
2ff8f7ac 6This file is part of GCC.
946730d0 7
2ff8f7ac 8GCC is free software; you can redistribute it and/or modify
946730d0 9it under the terms of the GNU General Public License as published by
c30b6330 10the Free Software Foundation; either version 2, or (at your option)
946730d0
RK
11any later version.
12
2ff8f7ac 13GCC is distributed in the hope that it will be useful,
946730d0
RK
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
2ff8f7ac 19along with GCC; see the file COPYING. If not, write to
97aadbb9
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
946730d0 22
69985118
KG
23extern const char *low_reg_names[];
24extern const char *text_seg_name;
25extern const char *rsect_text;
26extern const char *data_seg_name;
27extern const char *rsect_data;
28extern const char *bss_seg_name;
29extern const char *rsect_bss;
30extern const char *const_seg_name;
31extern const char *rsect_const;
32extern const char *chip_name;
33extern const char *save_chip_name;
e2500fed
GK
34extern GTY(()) rtx dsp16xx_compare_op0;
35extern GTY(()) rtx dsp16xx_compare_op1;
36extern GTY(()) rtx dsp16xx_addhf3_libcall;
37extern GTY(()) rtx dsp16xx_subhf3_libcall;
38extern GTY(()) rtx dsp16xx_mulhf3_libcall;
39extern GTY(()) rtx dsp16xx_divhf3_libcall;
40extern GTY(()) rtx dsp16xx_cmphf3_libcall;
41extern GTY(()) rtx dsp16xx_fixhfhi2_libcall;
42extern GTY(()) rtx dsp16xx_floathihf2_libcall;
43extern GTY(()) rtx dsp16xx_neghf2_libcall;
e2500fed
GK
44extern GTY(()) rtx dsp16xx_mulhi3_libcall;
45extern GTY(()) rtx dsp16xx_udivqi3_libcall;
46extern GTY(()) rtx dsp16xx_udivhi3_libcall;
47extern GTY(()) rtx dsp16xx_divqi3_libcall;
48extern GTY(()) rtx dsp16xx_divhi3_libcall;
49extern GTY(()) rtx dsp16xx_modqi3_libcall;
50extern GTY(()) rtx dsp16xx_modhi3_libcall;
51extern GTY(()) rtx dsp16xx_umodqi3_libcall;
52extern GTY(()) rtx dsp16xx_umodhi3_libcall;
53
54extern GTY(()) rtx dsp16xx_ashrhi3_libcall;
55extern GTY(()) rtx dsp16xx_ashlhi3_libcall;
56extern GTY(()) rtx dsp16xx_lshrhi3_libcall;
946730d0 57
946730d0
RK
58/* RUN-TIME TARGET SPECIFICATION */
59#define DSP16XX 1
60
61/* Name of the AT&T assembler */
62
63#define ASM_PROG "as1600"
64
65/* Name of the AT&T linker */
66
67#define LD_PROG "ld1600"
68
69/* Define which switches take word arguments */
70#define WORD_SWITCH_TAKES_ARG(STR) \
71 (!strcmp (STR, "ifile") ? 1 : \
72 0)
73
946730d0 74#undef CC1_SPEC
dff06f62
MC
75#define CC1_SPEC "%{!O*:-O}"
76
946730d0
RK
77/* Define this as a spec to call the AT&T assembler */
78
79#define CROSS_ASM_SPEC "%{!S:as1600 %a %i\n }"
80
81/* Define this as a spec to call the AT&T linker */
82
83#define CROSS_LINK_SPEC "%{!c:%{!M:%{!MM:%{!E:%{!S:ld1600 %l %X %{o*} %{m} \
84 %{r} %{s} %{t} %{u*} %{x}\
a9821774 85 %{!A:%{!nostdlib:%{!nostartfiles:%S}}} %{static:}\
a7c508fe 86 %{L*} %D %o %{!nostdlib:-le1600 %L -le1600}\
a9821774 87 %{!A:%{!nostdlib:%{!nostartfiles:%E}}}\n }}}}}"
946730d0
RK
88
89/* Nothing complicated here, just link with libc.a under normal
90 circumstances */
91#define LIB_SPEC "-lc"
92
bf0e974b 93/* Specify the startup file to link with. */
946730d0
RK
94#define STARTFILE_SPEC "%{mmap1:m1_crt0.o%s} \
95%{mmap2:m2_crt0.o%s} \
96%{mmap3:m3_crt0.o%s} \
97%{mmap4:m4_crt0.o%s} \
98%{!mmap*: %{!ifile*: m4_crt0.o%s} %{ifile*: \
c725bd79 99%ea -ifile option requires a -map option}}"
946730d0
RK
100
101/* Specify the end file to link with */
102
103#define ENDFILE_SPEC "%{mmap1:m1_crtn.o%s} \
104%{mmap2:m2_crtn.o%s} \
105%{mmap3:m3_crtn.o%s} \
106%{mmap4:m4_crtn.o%s} \
107%{!mmap*: %{!ifile*: m4_crtn.o%s} %{ifile*: \
c725bd79 108%ea -ifile option requires a -map option}}"
946730d0
RK
109
110
111/* Tell gcc where to look for the startfile */
dff06f62 112/*#define STANDARD_STARTFILE_PREFIX "/d1600/lib"*/
946730d0 113
dff06f62
MC
114/* Tell gcc where to look for it's executables */
115/*#define STANDARD_EXEC_PREFIX "/d1600/bin"*/
946730d0
RK
116
117/* Command line options to the AT&T assembler */
dff06f62 118#define ASM_SPEC "%{V} %{v:%{!V:-V}} %{g*:-g}"
946730d0
RK
119
120/* Command line options for the AT&T linker */
dff06f62
MC
121
122#define LINK_SPEC "%{V} %{v:%{!V:-V}} %{minit:-i} \
123%{!ifile*:%{mmap1:m1_deflt.if%s} \
124 %{mmap2:m2_deflt.if%s} \
125 %{mmap3:m3_deflt.if%s} \
126 %{mmap4:m4_deflt.if%s} \
127 %{!mmap*:m4_deflt.if%s}} \
128%{ifile*:%*} %{r}"
129
130/* Include path is determined from the environment variable */
131#define INCLUDE_DEFAULTS \
132{ \
5f1ed3b2 133 { 0, 0, 0, 0, 0 } \
dff06f62 134}
946730d0
RK
135
136/* Names to predefine in the preprocessor for this target machine. */
be3a1d46
NB
137#define TARGET_CPU_CPP_BUILTINS() \
138 do \
139 { \
140 builtin_define_std ("dsp1600"); \
141 builtin_define_std ("DSP1600"); \
142 } \
143 while (0)
144
946730d0 145#ifdef __MSDOS__
be3a1d46
NB
146# define TARGET_OS_CPP_BUILTINS() \
147 do \
148 { \
149 builtin_define_std ("MSDOS"); \
150 } \
151 while (0)
946730d0 152#else
be3a1d46
NB
153# define TARGET_OS_CPP_BUILTINS() \
154 do \
155 { \
156 builtin_define_std ("dsp1610"); \
157 builtin_define_std ("DSP1610"); \
158 } \
159 while (0)
946730d0
RK
160#endif
161
162/* Run-time compilation parameters selecting different hardware subsets. */
163
164extern int target_flags;
165
166/* Macros used in the machine description to test the flags. */
167
168#define MASK_REGPARM 0x00000001 /* Pass parameters in registers */
169#define MASK_NEAR_CALL 0x00000002 /* The call is on the same 4k page */
170#define MASK_NEAR_JUMP 0x00000004 /* The jump is on the same 4k page */
171#define MASK_BMU 0x00000008 /* Use the 'bmu' shift instructions */
946730d0
RK
172#define MASK_MAP1 0x00000040 /* Link with map1 */
173#define MASK_MAP2 0x00000080 /* Link with map2 */
174#define MASK_MAP3 0x00000100 /* Link with map3 */
175#define MASK_MAP4 0x00000200 /* Link with map4 */
176#define MASK_YBASE_HIGH 0x00000400 /* The ybase register window starts high */
177#define MASK_INIT 0x00000800 /* Have the linker generate tables to
178 initialize data at startup */
946730d0 179#define MASK_RESERVE_YBASE 0x00002000 /* Reserved the ybase registers */
dff06f62
MC
180#define MASK_DEBUG 0x00004000 /* Debugging turned on*/
181#define MASK_SAVE_TEMPS 0x00008000 /* Save temps. option seen */
946730d0
RK
182
183/* Compile passing first two args in regs 0 and 1.
184 This exists only to test compiler features that will
185 be needed for RISC chips. It is not usable
186 and is not intended to be usable on this cpu. */
187#define TARGET_REGPARM (target_flags & MASK_REGPARM)
188
189/* The call is on the same 4k page, so instead of loading
190 the 'pt' register and branching, we can branch directly */
191
192#define TARGET_NEAR_CALL (target_flags & MASK_NEAR_CALL)
193
194/* The jump is on the same 4k page, so instead of loading
195 the 'pt' register and branching, we can branch directly */
196
197#define TARGET_NEAR_JUMP (target_flags & MASK_NEAR_JUMP)
198
199/* Generate shift instructions to use the 1610 Bit Manipulation
bf0e974b 200 Unit. */
946730d0
RK
201#define TARGET_BMU (target_flags & MASK_BMU)
202
946730d0
RK
203#define TARGET_YBASE_HIGH (target_flags & MASK_YBASE_HIGH)
204
205/* Direct the linker to output extra info for initialized data */
206#define TARGET_MASK_INIT (target_flags & MASK_INIT)
207
208#define TARGET_INLINE_MULT (target_flags & MASK_INLINE_MULT)
209
210/* Reserve the ybase registers *(0) - *(31) */
211#define TARGET_RESERVE_YBASE (target_flags & MASK_RESERVE_YBASE)
212
dff06f62
MC
213/* We turn this option on internally after seeing "-g" */
214#define TARGET_DEBUG (target_flags & MASK_DEBUG)
215
216/* We turn this option on internally after seeing "-save-temps */
217#define TARGET_SAVE_TEMPS (target_flags & MASK_SAVE_TEMPS)
218
219
946730d0
RK
220/* Macro to define tables used to set the flags.
221 This is a list in braces of pairs in braces,
222 each pair being { "NAME", VALUE }
223 where VALUE is the bits to set or minus the bits to clear.
224 An empty string NAME is used to identify the default VALUE. */
225
226
dff06f62
MC
227#define TARGET_SWITCHES \
228 { \
229 { "regparm", MASK_REGPARM, \
230 N_("Pass parameters in registers (default)") }, \
231 { "no-regparm", -MASK_REGPARM, \
232 N_("Don't pass parameters in registers") }, \
233 { "near-call", MASK_NEAR_JUMP, \
234 N_("Generate code for near calls") }, \
235 { "no-near-call", -MASK_NEAR_CALL, \
236 N_("Don't generate code for near calls") }, \
237 { "near-jump", MASK_NEAR_JUMP, \
238 N_("Generate code for near jumps") }, \
239 { "no-near-jump", -MASK_NEAR_JUMP, \
240 N_("Don't generate code for near jumps") }, \
241 { "bmu", MASK_BMU, \
242 N_("Generate code for a bit-manipulation unit") }, \
243 { "no-bmu", -MASK_BMU, \
244 N_("Don't generate code for a bit-manipulation unit") }, \
245 { "map1", MASK_MAP1, \
246 N_("Generate code for memory map1") }, \
247 { "map2", MASK_MAP2, \
248 N_("Generate code for memory map2") }, \
249 { "map3", MASK_MAP3, \
250 N_("Generate code for memory map3") }, \
251 { "map4", MASK_MAP4, \
252 N_("Generate code for memory map4") }, \
253 { "init", MASK_INIT, \
254 N_("Ouput extra code for initialized data") }, \
255 { "reserve-ybase", MASK_RESERVE_YBASE, \
256 N_("Don't let reg. allocator use ybase registers") }, \
257 { "debug", MASK_DEBUG, \
258 N_("Output extra debug info in Luxworks environment") }, \
259 { "save-temporaries", MASK_SAVE_TEMPS, \
260 N_("Save temp. files in Luxworks environment") }, \
261 { "", TARGET_DEFAULT, ""} \
946730d0
RK
262 }
263
264/* Default target_flags if no switches are specified */
265#ifndef TARGET_DEFAULT
dff06f62 266#define TARGET_DEFAULT MASK_REGPARM|MASK_YBASE_HIGH
946730d0
RK
267#endif
268
946730d0
RK
269#define TARGET_OPTIONS \
270{ \
dff06f62 271 { "text=", &text_seg_name, \
c409ea0d 272 N_("Specify alternate name for text section"), 0}, \
dff06f62 273 { "data=", &data_seg_name, \
c409ea0d 274 N_("Specify alternate name for data section"), 0}, \
dff06f62 275 { "bss=", &bss_seg_name, \
c409ea0d 276 N_("Specify alternate name for bss section"), 0}, \
dff06f62 277 { "const=", &const_seg_name, \
c409ea0d 278 N_("Specify alternate name for constant section"), 0}, \
dff06f62 279 { "chip=", &chip_name, \
c409ea0d 280 N_("Specify alternate name for dsp16xx chip"), 0}, \
946730d0
RK
281}
282
283/* Sometimes certain combinations of command options do not make sense
284 on a particular target machine. You can define a macro
285 `OVERRIDE_OPTIONS' to take account of this. This macro, if
286 defined, is executed once just after all the command options have
a596f4d7
CW
287 been parsed.
288
289 Don't use this macro to turn on various extra optimizations for
290 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
946730d0
RK
291
292#define OVERRIDE_OPTIONS override_options ()
293
dff06f62
MC
294#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
295{ \
296 flag_gnu_linker = FALSE; \
297 \
298 if (LEVEL >= 2) \
299 { \
300 /* The dsp16xx family has so few registers \
301 * that running the first instruction \
302 * scheduling is bad for reg. allocation \
303 * since it increases lifetimes of pseudos. \
304 * So turn of first scheduling pass. \
305 */ \
306 flag_schedule_insns = FALSE; \
307 } \
308}
946730d0
RK
309\f
310/* STORAGE LAYOUT */
311
946730d0
RK
312/* Define this if most significant bit is lowest numbered
313 in instructions that operate on numbered bit-fields.
314 */
dff06f62 315#define BITS_BIG_ENDIAN 0
946730d0
RK
316
317/* Define this if most significant byte of a word is the lowest numbered.
318 We define big-endian, but since the 1600 series cannot address bytes
bf0e974b 319 it does not matter. */
946730d0
RK
320#define BYTES_BIG_ENDIAN 1
321
322/* Define this if most significant word of a multiword number is numbered.
bf0e974b 323 For the 1600 we can decide arbitrarily since there are no machine instructions for them. */
946730d0
RK
324#define WORDS_BIG_ENDIAN 1
325
ddd5a7c1 326/* number of bits in an addressable storage unit */
946730d0
RK
327#define BITS_PER_UNIT 16
328
bf0e974b 329/* Maximum number of bits in a word. */
946730d0
RK
330#define MAX_BITS_PER_WORD 16
331
332/* Width of a word, in units (bytes). */
333#define UNITS_PER_WORD 1
334
946730d0
RK
335/* Allocation boundary (in *bits*) for storing pointers in memory. */
336#define POINTER_BOUNDARY 16
337
338/* Allocation boundary (in *bits*) for storing arguments in argument list. */
339#define PARM_BOUNDARY 16
340
341/* Boundary (in *bits*) on which stack pointer should be aligned. */
342#define STACK_BOUNDARY 16
343
344/* Allocation boundary (in *bits*) for the code of a function. */
345#define FUNCTION_BOUNDARY 16
346
347/* Biggest alignment that any data type can require on this machine, in bits. */
348#define BIGGEST_ALIGNMENT 16
349
350/* Biggest alignment that any structure field can require on this machine, in bits */
351#define BIGGEST_FIELD_ALIGNMENT 16
352
353/* Alignment of field after `int : 0' in a structure. */
354#define EMPTY_FIELD_BOUNDARY 16
355
356/* Number of bits which any structure or union's size must be a multiple of. Each structure
357 or union's size is rounded up to a multiple of this */
358#define STRUCTURE_SIZE_BOUNDARY 16
359
360/* Define this if move instructions will actually fail to work
361 when given unaligned data. */
362#define STRICT_ALIGNMENT 1
363
364/* An integer expression for the size in bits of the largest integer machine mode that
365 should actually be used. All integer machine modes of this size or smaller can be
bf0e974b 366 used for structures and unions with the appropriate sizes. */
946730d0
RK
367#define MAX_FIXED_MODE_SIZE 32
368\f
369/* LAYOUT OF SOURCE LANGUAGE DATA TYPES */
370
946730d0
RK
371#define SHORT_TYPE_SIZE 16
372#define INT_TYPE_SIZE 16
373#define LONG_TYPE_SIZE 32
374#define LONG_LONG_TYPE_SIZE 32
375#define FLOAT_TYPE_SIZE 32
376#define DOUBLE_TYPE_SIZE 32
377#define LONG_DOUBLE_TYPE_SIZE 32
378
379/* An expression whose value is 1 or 0, according to whether the type char should be
bf0e974b 380 signed or unsigned by default. */
946730d0
RK
381
382#define DEFAULT_SIGNED_CHAR 1
383
384/* A C expression to determine whether to give an enum type only as many bytes
385 as it takes to represent the range of possible values of that type. A nonzero
386 value means to do that; a zero value means all enum types should be allocated
bf0e974b 387 like int. */
946730d0
RK
388
389#define DEFAULT_SHORT_ENUMS 0
390
391/* A C expression for a string describing the name of the data type to use for
bf0e974b 392 size values. */
946730d0 393
dff06f62 394#define SIZE_TYPE "unsigned int"
946730d0 395
dff06f62 396/* A C expression for a string describing the name of the data type to use for the
946730d0
RK
397 result of subtracting two pointers */
398
dff06f62
MC
399#define PTRDIFF_TYPE "int"
400
946730d0
RK
401\f
402/* REGISTER USAGE. */
403
404#define ALL_16_BIT_REGISTERS 1
405
406/* Number of actual hardware registers.
407 The hardware registers are assigned numbers for the compiler
408 from 0 to FIRST_PSEUDO_REGISTER-1 */
409
d2a0c2ee 410#define FIRST_PSEUDO_REGISTER (REG_YBASE31 + 1)
946730d0
RK
411
412/* 1 for registers that have pervasive standard uses
413 and are not available for the register allocator.
414
18543a22 415 The registers are laid out as follows:
946730d0
RK
416
417 {a0,a0l,a1,a1l,x,y,yl,p,pl} - Data Arithmetic Unit
418 {r0,r1,r2,r3,j,k,ybase} - Y Space Address Arithmetic Unit
419 {pt} - X Space Address Arithmetic Unit
420 {ar0,ar1,ar2,ar3} - Bit Manipulation UNit
421 {pr} - Return Address Register
422
423 We reserve r2 for the Stack Pointer.
424 We specify r3 for the Frame Pointer but allow the compiler
bf0e974b 425 to omit it when possible since we have so few pointer registers. */
946730d0
RK
426
427#define REG_A0 0
428#define REG_A0L 1
429#define REG_A1 2
430#define REG_A1L 3
431#define REG_X 4
432#define REG_Y 5
433#define REG_YL 6
434#define REG_PROD 7
435#define REG_PRODL 8
436#define REG_R0 9
437#define REG_R1 10
438#define REG_R2 11
439#define REG_R3 12
440#define REG_J 13
441#define REG_K 14
442#define REG_YBASE 15
443#define REG_PT 16
444#define REG_AR0 17
445#define REG_AR1 18
446#define REG_AR2 19
447#define REG_AR3 20
448#define REG_C0 21
449#define REG_C1 22
450#define REG_C2 23
451#define REG_PR 24
452#define REG_RB 25
453#define REG_YBASE0 26
454#define REG_YBASE1 27
455#define REG_YBASE2 28
456#define REG_YBASE3 29
457#define REG_YBASE4 30
458#define REG_YBASE5 31
459#define REG_YBASE6 32
460#define REG_YBASE7 33
461#define REG_YBASE8 34
462#define REG_YBASE9 35
463#define REG_YBASE10 36
464#define REG_YBASE11 37
465#define REG_YBASE12 38
466#define REG_YBASE13 39
467#define REG_YBASE14 40
468#define REG_YBASE15 41
469#define REG_YBASE16 42
470#define REG_YBASE17 43
471#define REG_YBASE18 44
472#define REG_YBASE19 45
473#define REG_YBASE20 46
474#define REG_YBASE21 47
475#define REG_YBASE22 48
476#define REG_YBASE23 49
477#define REG_YBASE24 50
478#define REG_YBASE25 51
479#define REG_YBASE26 52
480#define REG_YBASE27 53
481#define REG_YBASE28 54
482#define REG_YBASE29 55
483#define REG_YBASE30 56
484#define REG_YBASE31 57
485
e03f5d43 486/* Do we have an accumulator register? */
55710451 487#define IS_ACCUM_REG(REGNO) IN_RANGE ((REGNO), REG_A0, REG_A1L)
946730d0
RK
488#define IS_ACCUM_LOW_REG(REGNO) ((REGNO) == REG_A0L || (REGNO) == REG_A1L)
489
490/* Do we have a virtual ybase register */
491#define IS_YBASE_REGISTER_WINDOW(REGNO) ((REGNO) >= REG_YBASE0 && (REGNO) <= REG_YBASE31)
492
dff06f62
MC
493#define IS_YBASE_ELIGIBLE_REG(REGNO) (IS_ACCUM_REG (REGNO) || IS_ADDRESS_REGISTER(REGNO) \
494 || REGNO == REG_X || REGNO == REG_Y || REGNO == REG_YL \
495 || REGNO == REG_PROD || REGNO == REG_PRODL)
496
946730d0
RK
497#define IS_ADDRESS_REGISTER(REGNO) ((REGNO) >= REG_R0 && (REGNO) <= REG_R3)
498
499#define FIXED_REGISTERS \
500{0, 0, 0, 0, 0, 0, 0, 0, 0, \
501 0, 0, 0, 1, 0, 0, 1, \
502 1, \
503 0, 0, 0, 0, \
504 1, 1, 1, \
dff06f62 505 1, 0, \
946730d0
RK
506 0, 0, 0, 0, 0, 0, 0, 0, \
507 0, 0, 0, 0, 0, 0, 0, 0, \
508 0, 0, 0, 0, 0, 0, 0, 0, \
509 0, 0, 0, 0, 0, 0, 0, 0}
510
511/* 1 for registers not available across function calls.
512 These must include the FIXED_REGISTERS and also any
513 registers that can be used without being saved.
514 The latter must include the registers where values are returned
515 and the register where structure-value addresses are passed.
516 On the 1610 'a0' holds return values from functions. 'r0' holds
517 structure-value addresses.
518
519 In addition we don't save either j, k, ybase or any of the
520 bit manipulation registers. */
521
522
dff06f62
MC
523#define CALL_USED_REGISTERS \
524{1, 1, 1, 1, 0, 1, 1, 1, 1, /* 0-8 */ \
525 1, 0, 0, 1, 1, 1, 1, /* 9-15 */ \
526 1, /* 16 */ \
527 0, 0, 1, 1, /* 17-20 */ \
528 1, 1, 1, /* 21-23 */ \
529 1, 1, /* 24-25 */ \
530 0, 0, 0, 0, 0, 0, 0, 0, /* 26-33 */ \
531 0, 0, 0, 0, 0, 0, 0, 0, /* 34-41 */ \
532 0, 0, 0, 0, 0, 0, 0, 0, /* 42-49 */ \
533 0, 0, 0, 0, 0, 0, 0, 0} /* 50-57 */
946730d0
RK
534
535/* List the order in which to allocate registers. Each register must be
536 listed once, even those in FIXED_REGISTERS.
537
538 We allocate in the following order:
539 */
540
dff06f62 541#if 0
946730d0
RK
542#define REG_ALLOC_ORDER \
543{ REG_R0, REG_R1, REG_R2, REG_PROD, REG_Y, REG_X, \
544 REG_PRODL, REG_YL, REG_AR0, REG_AR1, \
545 REG_RB, REG_A0, REG_A1, REG_A0L, \
546 REG_A1L, REG_AR2, REG_AR3, \
547 REG_YBASE, REG_J, REG_K, REG_PR, REG_PT, REG_C0, \
548 REG_C1, REG_C2, REG_R3, \
549 REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
550 REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
551 REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
552 REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
553 REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
554 REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
555 REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
556 REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31 }
dff06f62
MC
557#else
558#define REG_ALLOC_ORDER \
559{ \
560 REG_A0, REG_A0L, REG_A1, REG_A1L, REG_Y, REG_YL, \
561 REG_PROD, \
562 REG_PRODL, REG_R0, REG_J, REG_K, REG_AR2, REG_AR3, \
563 REG_X, REG_R1, REG_R2, REG_RB, REG_AR0, REG_AR1, \
564 REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
565 REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
566 REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
567 REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
568 REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
569 REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
570 REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
571 REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31, \
572 REG_R3, REG_YBASE, REG_PT, REG_C0, REG_C1, REG_C2, \
573 REG_PR }
574#endif
946730d0
RK
575/* Zero or more C statements that may conditionally modify two
576 variables `fixed_regs' and `call_used_regs' (both of type `char
577 []') after they have been initialized from the two preceding
578 macros.
579
580 This is necessary in case the fixed or call-clobbered registers
581 depend on target flags.
582
583 You need not define this macro if it has no work to do.
584
585 If the usage of an entire class of registers depends on the target
586 flags, you may indicate this to GCC by using this macro to modify
587 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
588 the classes which should not be used by GCC. Also define the macro
589 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
590 letter for a class that shouldn't be used.
591
592 (However, if this class is not included in `GENERAL_REGS' and all
593 of the insn patterns whose constraints permit this class are
594 controlled by target switches, then GCC will automatically avoid
595 using these registers when the target switches are opposed to
596 them.) If the user tells us there is no BMU, we can't use
ddd5a7c1 597 ar0-ar3 for register allocation */
946730d0
RK
598
599#define CONDITIONAL_REGISTER_USAGE \
600do \
601 { \
602 if (!TARGET_BMU) \
603 { \
604 int regno; \
605 \
606 for (regno = REG_AR0; regno <= REG_AR3; regno++) \
607 fixed_regs[regno] = call_used_regs[regno] = 1; \
608 } \
609 if (TARGET_RESERVE_YBASE) \
610 { \
611 int regno; \
612 \
613 for (regno = REG_YBASE0; regno <= REG_YBASE31; regno++) \
614 fixed_regs[regno] = call_used_regs[regno] = 1; \
615 } \
616 } \
617while (0)
618
619/* Determine which register classes are very likely used by spill registers.
620 local-alloc.c won't allocate pseudos that have these classes as their
621 preferred class unless they are "preferred or nothing". */
622
623#define CLASS_LIKELY_SPILLED_P(CLASS) \
624 ((CLASS) != ALL_REGS && (CLASS) != YBASE_VIRT_REGS)
625
626/* Return number of consecutive hard regs needed starting at reg REGNO
627 to hold something of mode MODE.
628 This is ordinarily the length in words of a value of mode MODE
bf0e974b 629 but can be less for certain modes in special long registers. */
946730d0
RK
630
631#define HARD_REGNO_NREGS(REGNO, MODE) \
632 (GET_MODE_SIZE(MODE))
633
bf0e974b 634/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
946730d0
RK
635
636#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok(REGNO, MODE)
637
638/* Value is 1 if it is a good idea to tie two pseudo registers
639 when one has mode MODE1 and one has mode MODE2.
640 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
641 for any hard reg, then this must be 0 for correct output. */
642#define MODES_TIEABLE_P(MODE1, MODE2) \
643 (((MODE1) == (MODE2)) || \
644 (GET_MODE_CLASS((MODE1)) == MODE_FLOAT) \
645 == (GET_MODE_CLASS((MODE2)) == MODE_FLOAT))
646
647/* Specify the registers used for certain standard purposes.
648 The values of these macros are register numbers. */
649
650/* DSP1600 pc isn't overloaded on a register. */
651/* #define PC_REGNUM */
652
653/* Register to use for pushing function arguments.
654 This is r3 in our case */
655#define STACK_POINTER_REGNUM REG_R3
656
657/* Base register for access to local variables of the function.
658 This is r2 in our case */
659#define FRAME_POINTER_REGNUM REG_R2
660
661/* We can debug without the frame pointer */
662#define CAN_DEBUG_WITHOUT_FP 1
663
664/* The 1610 saves the return address in this register */
665#define RETURN_ADDRESS_REGNUM REG_PR
666
667/* Base register for access to arguments of the function. */
668#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
669
670/* Register in which static-chain is passed to a function. */
671
672#define STATIC_CHAIN_REGNUM 4
673
674/* Register in which address to store a structure value
675 is passed to a function. This is 'r0' in our case */
676#define STRUCT_VALUE_REGNUM REG_R0
677\f
678/* Define the classes of registers for register constraints in the
679 machine description. Also define ranges of constants.
680
681 One of the classes must always be named ALL_REGS and include all hard regs.
682 If there is more than one class, another class must be named NO_REGS
683 and contain no registers.
684
685 The name GENERAL_REGS must be the name of a class (or an alias for
686 another name such as ALL_REGS). This is the class of registers
687 that is allowed by "g" or "r" in a register constraint.
688 Also, registers outside this class are allocated only when
689 instructions express preferences for them.
690
691 The classes must be numbered in nondecreasing order; that is,
692 a larger-numbered class must never be contained completely
693 in a smaller-numbered class.
694
695 For any two classes, it is very desirable that there be another
696 class that represents their union. */
697
698
699enum reg_class
700{
701 NO_REGS,
702 A0H_REG,
703 A0L_REG,
704 A0_REG,
705 A1H_REG,
706 ACCUM_HIGH_REGS,
707 A1L_REG,
708 ACCUM_LOW_REGS,
709 A1_REG,
710 ACCUM_REGS,
711 X_REG,
712 X_OR_ACCUM_LOW_REGS,
713 X_OR_ACCUM_REGS,
714 YH_REG,
715 YH_OR_ACCUM_HIGH_REGS,
716 X_OR_YH_REGS,
717 YL_REG,
718 YL_OR_ACCUM_LOW_REGS,
719 X_OR_YL_REGS,
720 X_OR_Y_REGS,
721 Y_REG,
722 ACCUM_OR_Y_REGS,
723 PH_REG,
724 X_OR_PH_REGS,
725 PL_REG,
726 PL_OR_ACCUM_LOW_REGS,
727 X_OR_PL_REGS,
728 YL_OR_PL_OR_ACCUM_LOW_REGS,
729 P_REG,
730 ACCUM_OR_P_REGS,
731 YL_OR_P_REGS,
732 ACCUM_LOW_OR_YL_OR_P_REGS,
733 Y_OR_P_REGS,
734 ACCUM_Y_OR_P_REGS,
735 NO_FRAME_Y_ADDR_REGS,
736 Y_ADDR_REGS,
737 ACCUM_LOW_OR_Y_ADDR_REGS,
738 ACCUM_OR_Y_ADDR_REGS,
739 X_OR_Y_ADDR_REGS,
740 Y_OR_Y_ADDR_REGS,
741 P_OR_Y_ADDR_REGS,
742 NON_HIGH_YBASE_ELIGIBLE_REGS,
743 YBASE_ELIGIBLE_REGS,
744 J_REG,
745 J_OR_DAU_16_BIT_REGS,
746 BMU_REGS,
747 NOHIGH_NON_ADDR_REGS,
748 NON_ADDR_REGS,
749 SLOW_MEM_LOAD_REGS,
750 NOHIGH_NON_YBASE_REGS,
751 NO_ACCUM_NON_YBASE_REGS,
752 NON_YBASE_REGS,
753 YBASE_VIRT_REGS,
754 ACCUM_LOW_OR_YBASE_REGS,
755 ACCUM_OR_YBASE_REGS,
756 X_OR_YBASE_REGS,
757 Y_OR_YBASE_REGS,
758 ACCUM_LOW_YL_PL_OR_YBASE_REGS,
759 P_OR_YBASE_REGS,
760 ACCUM_Y_P_OR_YBASE_REGS,
761 Y_ADDR_OR_YBASE_REGS,
762 YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS,
763 YBASE_OR_YBASE_ELIGIBLE_REGS,
764 NO_HIGH_ALL_REGS,
765 ALL_REGS,
766 LIM_REG_CLASSES
767};
768
769/* GENERAL_REGS must be the name of a register class */
770#define GENERAL_REGS ALL_REGS
771
772#define N_REG_CLASSES (int) LIM_REG_CLASSES
773
bf0e974b 774/* Give names of register classes as strings for dump file. */
946730d0
RK
775
776#define REG_CLASS_NAMES \
777{ \
778 "NO_REGS", \
779 "A0H_REG", \
780 "A0L_REG", \
781 "A0_REG", \
782 "A1H_REG", \
783 "ACCUM_HIGH_REGS", \
784 "A1L_REG", \
785 "ACCUM_LOW_REGS", \
786 "A1_REG", \
787 "ACCUM_REGS", \
788 "X_REG", \
789 "X_OR_ACCUM_LOW_REGS", \
790 "X_OR_ACCUM_REGS", \
791 "YH_REG", \
792 "YH_OR_ACCUM_HIGH_REGS", \
793 "X_OR_YH_REGS", \
794 "YL_REG", \
795 "YL_OR_ACCUM_LOW_REGS", \
796 "X_OR_YL_REGS", \
797 "X_OR_Y_REGS", \
798 "Y_REG", \
799 "ACCUM_OR_Y_REGS", \
800 "PH_REG", \
801 "X_OR_PH_REGS", \
802 "PL_REG", \
803 "PL_OR_ACCUM_LOW_REGS", \
804 "X_OR_PL_REGS", \
805 "PL_OR_YL_OR_ACCUM_LOW_REGS", \
806 "P_REG", \
807 "ACCUM_OR_P_REGS", \
808 "YL_OR_P_REGS", \
809 "ACCUM_LOW_OR_YL_OR_P_REGS", \
810 "Y_OR_P_REGS", \
811 "ACCUM_Y_OR_P_REGS", \
812 "NO_FRAME_Y_ADDR_REGS", \
813 "Y_ADDR_REGS", \
814 "ACCUM_LOW_OR_Y_ADDR_REGS", \
815 "ACCUM_OR_Y_ADDR_REGS", \
816 "X_OR_Y_ADDR_REGS", \
817 "Y_OR_Y_ADDR_REGS", \
818 "P_OR_Y_ADDR_REGS", \
819 "NON_HIGH_YBASE_ELIGIBLE_REGS", \
820 "YBASE_ELIGIBLE_REGS", \
821 "J_REG", \
822 "J_OR_DAU_16_BIT_REGS", \
823 "BMU_REGS", \
824 "NOHIGH_NON_ADDR_REGS", \
825 "NON_ADDR_REGS", \
826 "SLOW_MEM_LOAD_REGS", \
827 "NOHIGH_NON_YBASE_REGS", \
828 "NO_ACCUM_NON_YBASE_REGS", \
829 "NON_YBASE_REGS", \
830 "YBASE_VIRT_REGS", \
831 "ACCUM_LOW_OR_YBASE_REGS", \
832 "ACCUM_OR_YBASE_REGS", \
833 "X_OR_YBASE_REGS", \
834 "Y_OR_YBASE_REGS", \
835 "ACCUM_LOW_YL_PL_OR_YBASE_REGS", \
836 "P_OR_YBASE_REGS", \
837 "ACCUM_Y_P_OR_YBASE_REGS", \
838 "Y_ADDR_OR_YBASE_REGS", \
839 "YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS", \
840 "YBASE_OR_YBASE_ELIGIBLE_REGS", \
841 "NO_HIGH_ALL_REGS", \
842 "ALL_REGS" \
843}
844
845/* Define which registers fit in which classes.
846 This is an initializer for a vector of HARD_REG_SET
847 of length N_REG_CLASSES. */
848
849#define REG_CLASS_CONTENTS \
850{ \
851 {0x00000000, 0x00000000}, /* no reg */ \
852 {0x00000001, 0x00000000}, /* a0h */ \
853 {0x00000002, 0x00000000}, /* a0l */ \
854 {0x00000003, 0x00000000}, /* a0h:a0l */ \
855 {0x00000004, 0x00000000}, /* a1h */ \
856 {0x00000005, 0x00000000}, /* accum high */ \
857 {0x00000008, 0x00000000}, /* a1l */ \
858 {0x0000000A, 0x00000000}, /* accum low */ \
859 {0x0000000c, 0x00000000}, /* a1h:a1l */ \
860 {0x0000000f, 0x00000000}, /* accum regs */ \
861 {0x00000010, 0x00000000}, /* x reg */ \
862 {0x0000001A, 0x00000000}, /* x & accum_low_regs */ \
863 {0x0000001f, 0x00000000}, /* x & accum regs */ \
864 {0x00000020, 0x00000000}, /* y high */ \
865 {0x00000025, 0x00000000}, /* yh, accum high */ \
866 {0x00000030, 0x00000000}, /* x & yh */ \
867 {0x00000040, 0x00000000}, /* y low */ \
868 {0x0000004A, 0x00000000}, /* y low, accum_low */ \
869 {0x00000050, 0x00000000}, /* x & yl */ \
870 {0x00000060, 0x00000000}, /* yl:yh */ \
871 {0x00000070, 0x00000000}, /* x, yh,a nd yl */ \
872 {0x0000006F, 0x00000000}, /* accum, y */ \
873 {0x00000080, 0x00000000}, /* p high */ \
874 {0x00000090, 0x00000000}, /* x & ph */ \
875 {0x00000100, 0x00000000}, /* p low */ \
876 {0x0000010A, 0x00000000}, /* p_low and accum_low */ \
877 {0x00000110, 0x00000000}, /* x & pl */ \
878 {0x0000014A, 0x00000000}, /* pl,yl,a1l,a0l */ \
879 {0x00000180, 0x00000000}, /* pl:ph */ \
880 {0x0000018F, 0x00000000}, /* accum, p */ \
881 {0x000001C0, 0x00000000}, /* pl:ph and yl */ \
882 {0x000001CA, 0x00000000}, /* pl:ph, yl, a0l, a1l */ \
883 {0x000001E0, 0x00000000}, /* y or p */ \
884 {0x000001EF, 0x00000000}, /* accum, y or p */ \
885 {0x00000E00, 0x00000000}, /* r0-r2 */ \
886 {0x00001E00, 0x00000000}, /* r0-r3 */ \
887 {0x00001E0A, 0x00000000}, /* r0-r3, accum_low */ \
888 {0x00001E0F, 0x00000000}, /* accum,r0-r3 */ \
889 {0x00001E10, 0x00000000}, /* x,r0-r3 */ \
890 {0x00001E60, 0x00000000}, /* y,r0-r3 */ \
891 {0x00001F80, 0x00000000}, /* p,r0-r3 */ \
892 {0x00001FDA, 0x00000000}, /* ph:pl, r0-r3, x,a0l,a1l */ \
893 {0x00001fff, 0x00000000}, /* accum,x,y,p,r0-r3 */ \
894 {0x00002000, 0x00000000}, /* j */ \
895 {0x00002025, 0x00000000}, /* j, yh, a1h, a0h */ \
896 {0x001E0000, 0x00000000}, /* ar0-ar3 */ \
897 {0x03FFE1DA, 0x00000000}, /* non_addr except yh,a0h,a1h */ \
898 {0x03FFE1FF, 0x00000000}, /* non_addr regs */ \
899 {0x03FFFF8F, 0x00000000}, /* non ybase except yh, yl, and x */ \
900 {0x03FFFFDA, 0x00000000}, /* non ybase regs except yh,a0h,a1h */ \
901 {0x03FFFFF0, 0x00000000}, /* non ybase except a0,a0l,a1,a1l */ \
902 {0x03FFFFFF, 0x00000000}, /* non ybase regs */ \
903 {0xFC000000, 0x03FFFFFF}, /* virt ybase regs */ \
904 {0xFC00000A, 0x03FFFFFF}, /* accum_low, virt ybase regs */ \
905 {0xFC00000F, 0x03FFFFFF}, /* accum, virt ybase regs */ \
906 {0xFC000010, 0x03FFFFFF}, /* x,virt ybase regs */ \
907 {0xFC000060, 0x03FFFFFF}, /* y,virt ybase regs */ \
908 {0xFC00014A, 0x03FFFFFF}, /* accum_low, yl, pl, ybase */ \
909 {0xFC000180, 0x03FFFFFF}, /* p,virt ybase regs */ \
910 {0xFC0001EF, 0x03FFFFFF}, /* accum,y,p,ybase regs */ \
911 {0xFC001E00, 0x03FFFFFF}, /* r0-r3, ybase regs */ \
912 {0xFC001FDA, 0x03FFFFFF}, /* r0-r3, pl:ph,yl,x,a1l,a0l */ \
913 {0xFC001FFF, 0x03FFFFFF}, /* virt ybase, ybase eligible regs */ \
914 {0xFCFFFFDA, 0x03FFFFFF}, /* all regs except yh,a0h,a1h */ \
915 {0xFFFFFFFF, 0x03FFFFFF} /* all regs */ \
916}
917
918
919/* The same information, inverted:
920 Return the class number of the smallest class containing
921 reg number REGNO. This could be a conditional expression
922 or could index an array. */
923
924#define REGNO_REG_CLASS(REGNO) regno_reg_class(REGNO)
925
926/* The class value for index registers, and the one for base regs. */
927
928#define INDEX_REG_CLASS NO_REGS
929#define BASE_REG_CLASS Y_ADDR_REGS
930
bf0e974b 931/* Get reg_class from a letter such as appears in the machine description. */
946730d0
RK
932
933#define REG_CLASS_FROM_LETTER(C) \
934 dsp16xx_reg_class_from_letter(C)
935
936#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
937 secondary_reload_class(CLASS, MODE, X)
938
939/* When defined, the compiler allows registers explicitly used in the
940 rtl to be used as spill registers but prevents the compiler from
bf0e974b 941 extending the lifetime of these registers. */
946730d0 942
2922fe9e 943#define SMALL_REGISTER_CLASSES 1
946730d0
RK
944
945/* Macros to check register numbers against specific register classes. */
946
947/* These assume that REGNO is a hard or pseudo reg number.
948 They give nonzero only if REGNO is a hard reg of the suitable class
949 or a pseudo reg currently allocated to a suitable hard reg.
950 Since they use reg_renumber, they are safe only once reg_renumber
951 has been allocated, which happens in local-alloc.c. */
952
953/* A C expression which is nonzero if register REGNO is suitable for use
954 as a base register in operand addresses. It may be either a suitable
955 hard register or a pseudo register that has been allocated such a
956 hard register.
957
958 On the 1610 the Y address pointers can be used as a base registers */
959#define REGNO_OK_FOR_BASE_P(REGNO) \
960(((REGNO) >= REG_R0 && (REGNO) < REG_R3 + 1) || ((unsigned) reg_renumber[REGNO] >= REG_R0 \
961 && (unsigned) reg_renumber[REGNO] < REG_R3 + 1))
962
963#define REGNO_OK_FOR_YBASE_P(REGNO) \
964 (((REGNO) == REG_YBASE) || ((unsigned) reg_renumber[REGNO] == REG_YBASE))
965
966#define REGNO_OK_FOR_INDEX_P(REGNO) 0
967
968#ifdef ALL_16_BIT_REGISTERS
969#define IS_32_BIT_REG(REGNO) 0
970#else
971#define IS_32_BIT_REG(REGNO) \
972 ((REGNO) == REG_A0 || (REGNO) == REG_A1 || (REGNO) == REG_Y || (REGNO) == REG_PROD)
973#endif
974
975/* Given an rtx X being reloaded into a reg required to be
976 in class CLASS, return the class of reg to actually use.
977 In general this is just CLASS; but on some machines
978 in some cases it is preferable to use a more restrictive class.
979 Also, we must ensure that a PLUS is reloaded either
980 into an accumulator or an address register. */
981
982#define PREFERRED_RELOAD_CLASS(X,CLASS) preferred_reload_class (X, CLASS)
983
984/* A C expression that places additional restrictions on the register
985 class to use when it is necessary to be able to hold a value of
986 mode MODE in a reload register for which class CLASS would
987 ordinarily be used.
988
989 Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when
990 there are certain modes that simply can't go in certain reload
991 classes.
992
993 The value is a register class; perhaps CLASS, or perhaps another,
994 smaller class.
995
996 Don't define this macro unless the target machine has limitations
bf0e974b 997 which require the macro to do something nontrivial. */
946730d0
RK
998
999#if 0
1000#define LIMIT_RELOAD_CLASS(MODE, CLASS) dsp16xx_limit_reload_class (MODE, CLASS)
1001#endif
1002
1003/* A C expression for the maximum number of consecutive registers of class CLASS
abc95ed3 1004 needed to hold a value of mode MODE */
946730d0
RK
1005#define CLASS_MAX_NREGS(CLASS, MODE) \
1006 class_max_nregs(CLASS, MODE)
1007
1008/* The letters 'I' through 'P' in a register constraint string
1009 can be used to stand for particular ranges of immediate operands.
1010 This macro defines what the ranges are.
1011 C is the letter, and VALUE is a constant value.
1012 Return 1 if VALUE is in the range specified by C.
1013
1014 For the 16xx, the following constraints are used:
1015 'I' requires a non-negative 16-bit value.
1016 'J' requires a non-negative 9-bit value
1017 'K' requires a constant 0 operand.
dff06f62 1018 'L' constant for use in add or sub from low 16-bits
946730d0 1019 'M' 32-bit value -- low 16-bits zero
e03f5d43 1020 'N' constant for use incrementing or decrementing an address register
dff06f62
MC
1021 'O' constant for use with and'ing only high 16-bit
1022 'P' constant for use with and'ing only low 16-bit
946730d0
RK
1023 */
1024
1025#define SMALL_INT(X) (SMALL_INTVAL (INTVAL (X)))
1026#define SMALL_INTVAL(I) ((unsigned) (I) < 0x10000)
1027#define SHORT_IMMEDIATE(X) (SHORT_INTVAL (INTVAL(X)))
1028#define SHORT_INTVAL(I) ((unsigned) (I) < 0x100)
dff06f62
MC
1029#define ADD_LOW_16(I) ((I) >= 0 && (I) <= 32767)
1030#define ADD_HIGH_16(I) (((I) & 0x0000ffff) == 0)
1031#define AND_LOW_16(I) ((I) >= 0 && (I) <= 32767)
1032#define AND_HIGH_16(I) (((I) & 0x0000ffff) == 0)
946730d0
RK
1033
1034#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1035 ((C) == 'I' ? (SMALL_INTVAL(VALUE)) \
1036 : (C) == 'J' ? (SHORT_INTVAL(VALUE)) \
1037 : (C) == 'K' ? ((VALUE) == 0) \
dff06f62
MC
1038 : (C) == 'L' ? ((VALUE) >= 0 && (VALUE) <= 32767) \
1039 : (C) == 'M' ? (((VALUE) & 0x0000ffff) == 0) \
1040 : (C) == 'N' ? ((VALUE) == -1 || (VALUE) == 1 \
1041 || (VALUE) == -2 || (VALUE) == 2) \
1042 : (C) == 'O' ? (((VALUE) & 0xffff0000) == 0xffff0000) \
1043 : (C) == 'P' ? (((VALUE) & 0x0000ffff) == 0xffff) \
946730d0
RK
1044 : 0)
1045
1046#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
1047
1048/* Optional extra constraints for this machine */
1049#define EXTRA_CONSTRAINT(OP,C) \
1050 ((C) == 'R' ? symbolic_address_p (OP) \
1051 : 0)
1052\f
1053/* DESCRIBING STACK LAYOUT AND CALLING CONVENTIONS */
1054
1055/* Define this if pushing a word on the stack
1056 makes the stack pointer a smaller address. */
1057/* #define STACK_GROWS_DOWNWARD */
1058
1059/* Define this if the nominal address of the stack frame
1060 is at the high-address end of the local variables;
1061 that is, each additional local variable allocated
1062 goes at a more negative offset in the frame. */
1063/* #define FRAME_GROWS_DOWNWARD */
1064
1065#define ARGS_GROW_DOWNWARD
1066
1067/* We use post decrement on the 1600 because there isn't
1068 a pre-decrement addressing mode. This means that we
1069 assume the stack pointer always points at the next
bf0e974b 1070 FREE location on the stack. */
946730d0
RK
1071#define STACK_PUSH_CODE POST_INC
1072
1073/* Offset within stack frame to start allocating local variables at.
1074 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1075 first local allocated. Otherwise, it is the offset to the BEGINNING
1076 of the first local allocated. */
1077#define STARTING_FRAME_OFFSET 0
1078
1079/* Offset from the stack pointer register to the first
bf0e974b 1080 location at which outgoing arguments are placed. */
946730d0
RK
1081#define STACK_POINTER_OFFSET (0)
1082
1083struct dsp16xx_frame_info
1084{
1085 unsigned long total_size; /* # bytes that the entire frame takes up */
1086 unsigned long var_size; /* # bytes that variables take up */
1087 unsigned long args_size; /* # bytes that outgoing arguments take up */
1088 unsigned long extra_size; /* # bytes of extra gunk */
1089 unsigned int reg_size; /* # bytes needed to store regs */
1090 long fp_save_offset; /* offset from vfp to store registers */
1091 unsigned long sp_save_offset; /* offset from new sp to store registers */
dff06f62 1092 int pr_save_offset; /* offset to saved PR */
946730d0
RK
1093 int initialized; /* != 0 if frame size already calculated */
1094 int num_regs; /* number of registers saved */
1095 int function_makes_calls; /* Does the function make calls */
1096};
1097
1098extern struct dsp16xx_frame_info current_frame_info;
1099
dff06f62
MC
1100#define RETURN_ADDR_OFF current_frame_info.pr_save_offset
1101
946730d0 1102/* If we generate an insn to push BYTES bytes,
bf0e974b 1103 this says how many the stack pointer really advances by. */
946730d0
RK
1104/* #define PUSH_ROUNDING(BYTES) ((BYTES)) */
1105
1106/* If defined, the maximum amount of space required for outgoing
1107 arguments will be computed and placed into the variable
1108 'current_function_outgoing_args_size'. No space will be pushed
1109 onto the stack for each call; instead, the function prologue should
1110 increase the stack frame size by this amount.
1111
1112 It is not proper to define both 'PUSH_ROUNDING' and
bf0e974b 1113 'ACCUMULATE_OUTGOING_ARGS'. */
f73ad30e 1114#define ACCUMULATE_OUTGOING_ARGS 1
946730d0
RK
1115
1116/* Offset of first parameter from the argument pointer
bf0e974b 1117 register value. */
946730d0
RK
1118
1119#define FIRST_PARM_OFFSET(FNDECL) (0)
1120
1121/* Value is 1 if returning from a function call automatically
1122 pops the arguments described by the number-of-args field in the call.
8b109b37 1123 FUNDECL is the declaration node of the function (as a tree),
946730d0 1124 FUNTYPE is the data type of the function (as a tree),
bf0e974b 1125 or for a library call it is an identifier node for the subroutine name. */
946730d0 1126
8b109b37 1127#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
946730d0
RK
1128
1129/* Define how to find the value returned by a function.
1130 VALTYPE is the data type of the value (as a tree).
1131 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1132 otherwise, FUNC is 0. On the 1610 all function return their values
1133 in a0 (i.e. the upper 16 bits). If the return value is 32-bits the
bf0e974b 1134 entire register is significant. */
946730d0
RK
1135
1136#define VALUE_REGNO(MODE) (REG_Y)
1137
1138#define FUNCTION_VALUE(VALTYPE, FUNC) \
d2a0c2ee 1139 gen_rtx_REG (TYPE_MODE (VALTYPE), VALUE_REGNO(TYPE_MODE(VALTYPE)))
946730d0
RK
1140
1141/* Define how to find the value returned by a library function
1142 assuming the value has mode MODE. */
d2a0c2ee 1143#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
946730d0 1144
bf0e974b 1145/* 1 if N is a possible register number for a function value. */
946730d0
RK
1146#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_Y)
1147\f
1148
1149/* Define where to put the arguments to a function.
1150 Value is zero to push the argument on the stack,
1151 or a hard register in which to store the argument.
1152
1153 MODE is the argument's machine mode.
1154 TYPE is the data type of the argument (as a tree).
1155 This is null for libcalls where that information may
1156 not be available.
1157 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1158 the preceding args and about the function being called.
1159 NAMED is nonzero if this argument is a named parameter
1160 (otherwise it is an extra parameter matching an ellipsis). */
1161
1162/* On the 1610 all args are pushed, except if -mregparm is specified
bf0e974b 1163 then the first two words of arguments are passed in a0, a1. */
946730d0
RK
1164#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1165 dsp16xx_function_arg (CUM, MODE, TYPE, NAMED)
1166
1167/* Define the first register to be used for argument passing */
1168#define FIRST_REG_FOR_FUNCTION_ARG REG_Y
1169
ddd5a7c1
RK
1170/* Define the profitability of saving registers around calls.
1171 NOTE: For now we turn this off because of a bug in the
946730d0 1172 caller-saves code and also because i'm not sure it is helpful
bf0e974b 1173 on the 1610. */
946730d0
RK
1174
1175#define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1176
1177/* This indicates that an argument is to be passed with an invisible reference
1178 (i.e., a pointer to the object is passed).
1179
1180 On the dsp16xx, we do this if it must be passed on the stack. */
1181
1182#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1183 (MUST_PASS_IN_STACK (MODE, TYPE))
1184
1185/* For an arg passed partly in registers and partly in memory,
1186 this is the number of registers used.
1187 For args passed entirely in registers or entirely in memory, zero. */
1188
1189#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1190
1191/* Define a data type for recording info about an argument list
1192 during the scan of that argument list. This data type should
1193 hold all necessary information about the function itself
1194 and about the args processed so far, enough to enable macros
bf0e974b 1195 such as FUNCTION_ARG to determine where the next arg should go. */
946730d0
RK
1196#define CUMULATIVE_ARGS int
1197
1198/* Initialize a variable CUM of type CUMULATIVE_ARGS
1199 for a call to a function whose data type is FNTYPE.
bf0e974b 1200 For a library call, FNTYPE is 0. */
2c7ee1a6 1201#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) ((CUM) = 0)
946730d0
RK
1202
1203/* Update the data in CUM to advance over an argument
1204 of mode MODE and data type TYPE.
1205 (TYPE is null for libcalls where that information may not be available.) */
1206
1207#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1208 dsp16xx_function_arg_advance (&CUM, MODE,TYPE, NAMED)
1209
bf0e974b 1210/* 1 if N is a possible register number for function argument passing. */
946730d0
RK
1211#define FUNCTION_ARG_REGNO_P(N) \
1212 ((N) == REG_Y || (N) == REG_YL || (N) == REG_PROD || (N) == REG_PRODL)
1213
946730d0 1214/* Output assembler code to FILE to increment profiler label # LABELNO
bf0e974b 1215 for profiling a function entry. */
946730d0 1216
c4636dd1 1217#define FUNCTION_PROFILER(FILE, LABELNO) \
c725bd79 1218 internal_error ("profiling not implemented yet")
946730d0 1219
946730d0
RK
1220/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1221 the stack pointer does not matter. The value is tested only in
1222 functions that have frame pointers.
1223 No definition is equivalent to always zero. */
1224
1225#define EXIT_IGNORE_STACK (0)
1226
c4636dd1 1227#define TRAMPOLINE_TEMPLATE(FILE) \
c725bd79 1228 internal_error ("trampolines not yet implemented");
946730d0
RK
1229
1230/* Length in units of the trampoline for entering a nested function.
1231 This is a dummy value */
1232
1233#define TRAMPOLINE_SIZE 20
1234
1235/* Emit RTL insns to initialize the variable parts of a trampoline.
1236 FNADDR is an RTX for the address of the function's pure code.
bf0e974b 1237 CXT is an RTX for the static chain value for the function. */
946730d0
RK
1238
1239#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
c725bd79 1240 internal_error ("trampolines not yet implemented");
946730d0 1241
946730d0
RK
1242/* A C expression which is nonzero if a function must have and use a
1243 frame pointer. If its value is nonzero the functions will have a
bf0e974b 1244 frame pointer. */
946730d0
RK
1245#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1246
1247/* A C statement to store in the variable 'DEPTH' the difference
1248 between the frame pointer and the stack pointer values immediately
bf0e974b 1249 after the function prologue. */
946730d0
RK
1250#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1251{ (DEPTH) = initial_frame_pointer_offset(); \
1252}
1253\f
1254/* IMPLICIT CALLS TO LIBRARY ROUTINES */
1255
1256#define ADDHF3_LIBCALL "__Emulate_addhf3"
1257#define SUBHF3_LIBCALL "__Emulate_subhf3"
1258#define MULHF3_LIBCALL "__Emulate_mulhf3"
1259#define DIVHF3_LIBCALL "__Emulate_divhf3"
1260#define CMPHF3_LIBCALL "__Emulate_cmphf3"
1261#define FIXHFHI2_LIBCALL "__Emulate_fixhfhi2"
1262#define FLOATHIHF2_LIBCALL "__Emulate_floathihf2"
1263#define NEGHF2_LIBCALL "__Emulate_neghf2"
1264
1265#define UMULHI3_LIBCALL "__Emulate_umulhi3"
1266#define MULHI3_LIBCALL "__Emulate_mulhi3"
1267#define UDIVQI3_LIBCALL "__Emulate_udivqi3"
1268#define UDIVHI3_LIBCALL "__Emulate_udivhi3"
1269#define DIVQI3_LIBCALL "__Emulate_divqi3"
1270#define DIVHI3_LIBCALL "__Emulate_divhi3"
1271#define MODQI3_LIBCALL "__Emulate_modqi3"
1272#define MODHI3_LIBCALL "__Emulate_modhi3"
1273#define UMODQI3_LIBCALL "__Emulate_umodqi3"
1274#define UMODHI3_LIBCALL "__Emulate_umodhi3"
1275#define ASHRHI3_LIBCALL "__Emulate_ashrhi3"
1276#define LSHRHI3_LIBCALL "__Emulate_lshrhi3"
1277#define ASHLHI3_LIBCALL "__Emulate_ashlhi3"
1278#define LSHLHI3_LIBCALL "__Emulate_lshlhi3" /* NOT USED */
1279
1280/* Define this macro if calls to the ANSI C library functions memcpy and
bf0e974b 1281 memset should be generated instead of the BSD function bcopy & bzero. */
946730d0
RK
1282#define TARGET_MEM_FUNCTIONS
1283
1284\f
1285/* ADDRESSING MODES */
1286
1287/* The 1610 has post-increment and decrement, but no pre-modify */
940da324
JL
1288#define HAVE_POST_INCREMENT 1
1289#define HAVE_POST_DECREMENT 1
946730d0 1290
946730d0
RK
1291/* Recognize any constant value that is a valid address. */
1292#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
1293
1294/* Maximum number of registers that can appear in a valid memory address. */
1295#define MAX_REGS_PER_ADDRESS 1
1296
1297/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1298 and check its validity for a certain class.
1299 We have two alternate definitions for each of them.
1300 The usual definition accepts all pseudo regs; the other rejects
1301 them unless they have been allocated suitable hard regs.
1302 The symbol REG_OK_STRICT causes the latter definition to be used.
1303
1304 Most source files want to accept pseudo regs in the hope that
1305 they will get allocated to the class that the insn wants them to be in.
1306 Source files for reload pass need to be strict.
1307 After reload, it makes no difference, since pseudo regs have
1308 been eliminated by then. */
1309
1310#ifndef REG_OK_STRICT
1311
1312/* Nonzero if X is a hard reg that can be used as an index
1313 or if it is a pseudo reg. */
1314#define REG_OK_FOR_INDEX_P(X) 0
1315
1316/* Nonzero if X is a hard reg that can be used as a base reg
1317 or if it is a pseudo reg. */
1318#define REG_OK_FOR_BASE_P(X) \
1319 ((REGNO (X) >= REG_R0 && REGNO (X) < REG_R3 + 1 ) \
1320 || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1321
1322/* Nonzero if X is the 'ybase' register */
1323#define REG_OK_FOR_YBASE_P(X) \
1324 (REGNO(X) == REG_YBASE || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1325#else
1326
1327/* Nonzero if X is a hard reg that can be used as an index. */
1328#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1329
1330/* Nonzero if X is a hard reg that can be used as a base reg. */
1331#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1332
1333/* Nonzero if X is the 'ybase' register */
1334#define REG_OK_FOR_YBASE_P(X) REGNO_OK_FOR_YBASE_P (REGNO(X))
1335
1336#endif
1337\f
1338/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1339 that is a valid memory address for an instruction.
1340 The MODE argument is the machine mode for the MEM expression
1341 that wants to use this address.
1342
1343 On the 1610, the actual legitimate addresses must be N (N must fit in
1344 5 bits), *rn (register indirect), *rn++, or *rn-- */
1345
1346#define INT_FITS_5_BITS(I) ((unsigned long) (I) < 0x20)
1347#define INT_FITS_16_BITS(I) ((unsigned long) (I) < 0x10000)
1348#define YBASE_CONST_OFFSET(I) ((I) >= -31 && (I) <= 0)
1349#define YBASE_OFFSET(X) (GET_CODE (X) == CONST_INT && YBASE_CONST_OFFSET (INTVAL(X)))
1350
1351#define FITS_16_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_16_BITS(INTVAL(X)))
1352#define FITS_5_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_5_BITS(INTVAL(X)))
1353#define ILLEGAL_HIMODE_ADDR(MODE, CONST) ((MODE) == HImode && CONST == -31)
1354
1355#define INDIRECTABLE_ADDRESS_P(X) \
1356 ((GET_CODE(X) == REG && REG_OK_FOR_BASE_P(X)) \
1357 || ((GET_CODE(X) == POST_DEC || GET_CODE(X) == POST_INC) \
1358 && REG_P(XEXP(X,0)) && REG_OK_FOR_BASE_P(XEXP(X,0))) \
1359 || (GET_CODE(X) == CONST_INT && (unsigned long) (X) < 0x20))
1360
1361
1362#define INDEXABLE_ADDRESS_P(X,MODE) \
1363 ((GET_CODE(X) == PLUS && GET_CODE (XEXP (X,0)) == REG && \
1364 XEXP(X,0) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,1)) && \
1365 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,1)))) || \
1366 (GET_CODE(X) == PLUS && GET_CODE (XEXP (X,1)) == REG && \
1367 XEXP(X,1) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,0)) && \
1368 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,0)))))
1369
1370#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1371{ \
1372 if (INDIRECTABLE_ADDRESS_P(X)) \
1373 goto ADDR; \
1374}
1375
1376\f
1377/* Try machine-dependent ways of modifying an illegitimate address
1378 to be legitimate. If we find one, return the new, valid address.
1379 This macro is used in only one place: `memory_address' in explow.c.
1380
1381 OLDX is the address as it was before break_out_memory_refs was called.
1382 In some cases it is useful to look at this to decide what needs to be done.
1383
1384 MODE and WIN are passed so that this macro can use
1385 GO_IF_LEGITIMATE_ADDRESS.
1386
1387 It is always safe for this macro to do nothing. It exists to recognize
1388 opportunities to optimize the output.
1389
1390 For the 1610, we need not do anything. However, if we don't,
1391 `memory_address' will try lots of things to get a valid address, most of
1392 which will result in dead code and extra pseudos. So we make the address
1393 valid here.
1394
1395 This is easy: The only valid addresses are an offset from a register
1396 and we know the address isn't valid. So just call either `force_operand'
1397 or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */
1398
1399#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1400{ if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \
1401 X = XEXP (x, 0); \
1402 if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \
1403 X = force_operand (X, 0); \
1404 else \
1405 X = force_reg (Pmode, X); \
1406 goto WIN; \
1407}
1408
1409/* Go to LABEL if ADDR (a legitimate address expression)
1410 has an effect that depends on the machine mode it is used for.
1411 On the 1610, only postdecrement and postincrement address depend thus
1412 (the amount of decrement or increment being the length of the operand). */
1413
1414#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1415 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1416
1417/* Nonzero if the constant value X is a legitimate general operand.
1418 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1419#define LEGITIMATE_CONSTANT_P(X) (1)
1420
1421\f
1422/* CONDITION CODE INFORMATION */
1423
1424/* Store in cc_status the expressions
1425 that the condition codes will describe
1426 after execution of an instruction whose pattern is EXP.
bf0e974b 1427 Do not alter them if the instruction would not alter the cc's. */
946730d0
RK
1428
1429#define NOTICE_UPDATE_CC(EXP, INSN) \
1430 notice_update_cc( (EXP) )
1431\f
1432/* DESCRIBING RELATIVE COSTS OF OPERATIONS */
1433
946730d0
RK
1434/* A c expression for the cost of moving data from a register in
1435 class FROM to one in class TO. The classes are expressed using
1436 the enumeration values such as GENERAL_REGS. A value of 2 is
bf0e974b 1437 the default. */
cf011243 1438#define REGISTER_MOVE_COST(MODE,FROM,TO) dsp16xx_register_move_cost (FROM, TO)
946730d0
RK
1439
1440/* A C expression for the cost of moving data of mode MODE between
bf0e974b 1441 a register and memory. A value of 2 is the default. */
f5963e61 1442#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
946730d0
RK
1443 (GET_MODE_CLASS(MODE) == MODE_INT && MODE == QImode ? 12 \
1444 : 16)
1445
1446/* A C expression for the cost of a branch instruction. A value of
1447 1 is the default; */
dff06f62 1448#define BRANCH_COST 1
946730d0
RK
1449\f
1450
1451/* Define this because otherwise gcc will try to put the function address
bf0e974b 1452 in any old pseudo register. We can only use pt. */
946730d0
RK
1453#define NO_FUNCTION_CSE
1454
1455/* Define this macro as a C expression which is nonzero if accessing less
1456 than a word of memory (i.e a char or short) is no faster than accessing
1457 a word of memory, i.e if such access require more than one instruction
0e8a66de 1458 or if there is no difference in cost between byte and (aligned) word
bf0e974b 1459 loads. */
946730d0
RK
1460#define SLOW_BYTE_ACCESS 1
1461
946730d0
RK
1462/* Define this macro if unaligned accesses have a cost many times greater than
1463 aligned accesses, for example if they are emulated in a trap handler */
e1565e65 1464/* define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) */
946730d0 1465
946730d0
RK
1466\f
1467/* DIVIDING THE OUTPUT IN SECTIONS */
1468/* Output before read-only data. */
1469
1470#define DEFAULT_TEXT_SEG_NAME ".text"
1471#define TEXT_SECTION_ASM_OP rsect_text
1472
1473/* Output before constants and strings */
1474#define DEFAULT_CONST_SEG_NAME ".const"
d48bc59a 1475#define READONLY_DATA_SECTION_ASM_OP rsect_const
946730d0
RK
1476
1477/* Output before writable data. */
1478#define DEFAULT_DATA_SEG_NAME ".data"
1479#define DATA_SECTION_ASM_OP rsect_data
1480
1481#define DEFAULT_BSS_SEG_NAME ".bss"
1482#define BSS_SECTION_ASM_OP rsect_bss
1483
1484/* We will default to using 1610 if the user doesn't
bf0e974b 1485 specify it. */
946730d0 1486#define DEFAULT_CHIP_NAME "1610"
946730d0
RK
1487\f
1488/* THE OVERALL FRAMEWORK OF AN ASSEMBLER FILE */
1489
946730d0 1490/* A C string constant describing how to begin a comment in the target
bf0e974b 1491 assembler language. */
dff06f62
MC
1492#define ASM_COMMENT_START ""
1493#define ASM_COMMENT_END ""
946730d0
RK
1494
1495/* Output to assembler file text saying following lines
1496 may contain character constants, extra white space, comments, etc. */
1497#define ASM_APP_ON ""
1498
1499/* Output to assembler file text saying following lines
1500 no longer contain unusual constructs. */
1501#define ASM_APP_OFF ""
1502\f
1503/* OUTPUT OF DATA */
1504
946730d0
RK
1505/* This is how we output a 'c' character string. For the 16xx
1506 assembler we have to do it one letter at a time */
1507
1508#define ASCII_LENGTH 10
1509
1510#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1511 do { \
1512 FILE *_hide_asm_out_file = (MYFILE); \
69985118 1513 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
946730d0
RK
1514 int _hide_thissize = (MYLENGTH); \
1515 { \
1516 FILE *asm_out_file = _hide_asm_out_file; \
69985118 1517 const unsigned char *p = _hide_p; \
946730d0
RK
1518 int thissize = _hide_thissize; \
1519 int i; \
1520 \
1521 for (i = 0; i < thissize; i++) \
1522 { \
1523 register int c = p[i]; \
1524 \
1525 if (i % ASCII_LENGTH == 0) \
1526 fprintf (asm_out_file, "\tint "); \
1527 \
1528 if (c >= ' ' && c < 0177 && c != '\'') \
1529 { \
1530 putc ('\'', asm_out_file); \
1531 putc (c, asm_out_file); \
1532 putc ('\'', asm_out_file); \
1533 } \
1534 else \
1535 { \
1536 fprintf (asm_out_file, "%d", c); \
1537 /* After an octal-escape, if a digit follows, \
1538 terminate one string constant and start another. \
4912a07c 1539 The VAX assembler fails to stop reading the escape \
946730d0
RK
1540 after three digits, so this is the only way we \
1541 can get it to parse the data properly. \
0df6c2c7 1542 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
946730d0
RK
1543 fprintf (asm_out_file, "\'\n\tint \'"); \
1544 */ \
1545 } \
1546 /* if: \
1547 we are not at the last char (i != thissize -1) \
1548 and (we are not at a line break multiple \
1549 but i == 0) (it will be the very first time) \
1550 then put out a comma to extend. \
1551 */ \
1552 if ((i != thissize - 1) && ((i + 1) % ASCII_LENGTH)) \
1553 fprintf(asm_out_file, ","); \
1554 if (!((i + 1) % ASCII_LENGTH)) \
1555 fprintf (asm_out_file, "\n"); \
1556 } \
1557 fprintf (asm_out_file, "\n"); \
1558 } \
1559 } \
1560 while (0)
1561
4977bab6 1562#define ASM_PN_FORMAT "*L%s_%lu"
946730d0
RK
1563\f
1564/* OUTPUT OF UNINITIALIZED VARIABLES */
1565
1566/* This says how to output an assembler line
1567 to define a global common symbol. */
1568
1569#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1570 asm_output_common (FILE, NAME, SIZE, ROUNDED);
1571
1572/* This says how to output an assembler line
1573 to define a local common symbol. */
1574
1575#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1576 asm_output_local (FILE, NAME, SIZE, ROUNDED);
1577\f
1578/* OUTPUT AND GENERATION OF LABELS */
1579
506a61b1
KG
1580/* Globalizing directive for a label. */
1581#define GLOBAL_ASM_OP ".global "
946730d0
RK
1582
1583/* A C statement to output to the stdio stream any text necessary
1584 for declaring the name of an external symbol named name which
bf0e974b 1585 is referenced in this compilation but not defined. */
946730d0
RK
1586
1587#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1588{ \
1589 fprintf (FILE, ".extern "); \
1590 assemble_name (FILE, NAME); \
1591 fprintf (FILE, "\n"); \
1592}
1593/* A C statement to output on stream an assembler pseudo-op to
bf0e974b 1594 declare a library function named external. */
946730d0
RK
1595
1596#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1597{ \
1598 fprintf (FILE, ".extern "); \
1599 assemble_name (FILE, XSTR (FUN, 0)); \
1600 fprintf (FILE, "\n"); \
1601}
4e0c8ad2 1602
bf0e974b 1603/* The prefix to add to user-visible assembler symbols. */
4e0c8ad2
RK
1604
1605#define USER_LABEL_PREFIX "_"
946730d0 1606
946730d0
RK
1607/* This is how to store into the string LABEL
1608 the symbol_ref name of an internal numbered label where
1609 PREFIX is the class of label and NUM is the number within the class.
1610 This is suitable for output with `assemble_name'. */
1611#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
74eda121 1612 sprintf (LABEL, "*%s%lu", PREFIX, (unsigned long)(NUM))
946730d0
RK
1613
1614\f
1615/* OUTPUT OF ASSEMBLER INSTRUCTIONS */
1616
1617/* How to refer to registers in assembler output.
1618 This sequence is indexed by compiler's hard-register-number (see above). */
1619
1620#define REGISTER_NAMES \
1621{"a0", "a0l", "a1", "a1l", "x", "y", "yl", "p", "pl", \
1622 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1623 "ar0", "ar1", "ar2", "ar3", \
1624 "c0", "c1", "c2", "pr", "rb", \
1625 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1626 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1627 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1628 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1629 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1630 "*(30)", "*(31)" }
1631
1632#define HIMODE_REGISTER_NAMES \
1633{"a0", "a0", "a1", "a1", "x", "y", "y", "p", "p", \
1634 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1635 "ar0", "ar1", "ar2", "ar3", \
1636 "c0", "c1", "c2", "pr", "rb", \
1637 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1638 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1639 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1640 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1641 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1642 "*(30)", "*(31)" }
1643
1644#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1645
1646/* Print operand X (an rtx) in assembler syntax to file FILE.
1647 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1648 For `%' followed by punctuation, CODE is the punctuation and X is null.
1649
1650 DSP1610 extensions for operand codes:
1651
1652 %H - print lower 16 bits of constant
1653 %U - print upper 16 bits of constant
1654 %w - print low half of register (e.g 'a0l')
1655 %u - print upper half of register (e.g 'a0')
1656 %b - print high half of accumulator for F3 ALU instructions
1657 %h - print constant in decimal */
1658
1659#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
1660
1661
bf0e974b 1662/* Print a memory address as an operand to reference that memory location. */
946730d0
RK
1663
1664#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1665
1666/* This is how to output an insn to push a register on the stack.
1667 It need not be very fast code since it is used only for profiling */
c4636dd1 1668#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
c725bd79 1669 internal_error ("profiling not implemented yet");
946730d0
RK
1670
1671/* This is how to output an insn to pop a register from the stack.
1672 It need not be very fast code since it is used only for profiling */
c4636dd1 1673#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
c725bd79 1674 internal_error ("profiling not implemented yet");
946730d0
RK
1675\f
1676/* OUTPUT OF DISPATCH TABLES */
1677
1678/* This macro should be provided on machines where the addresses in a dispatch
bf0e974b 1679 table are relative to the table's own address. */
33f7f353 1680#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
946730d0
RK
1681 fprintf (FILE, "\tint L%d-L%d\n", VALUE, REL)
1682
1683/* This macro should be provided on machines where the addresses in a dispatch
bf0e974b 1684 table are absolute. */
946730d0
RK
1685#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1686 fprintf (FILE, "\tint L%d\n", VALUE)
1687
1688/* ASSEMBLER COMMANDS FOR ALIGNMENT */
1689
1690/* This is how to output an assembler line that says to advance
1691 the location counter to a multiple of 2**LOG bytes. We should
bf0e974b 1692 not have to do any alignment since the 1610 is a word machine. */
946730d0
RK
1693#define ASM_OUTPUT_ALIGN(FILE,LOG)
1694
1695/* Define this macro if ASM_OUTPUT_SKIP should not be used in the text section
bf0e974b 1696 because it fails to put zero1 in the bytes that are skipped. */
946730d0
RK
1697#define ASM_NO_SKIP_IN_TEXT 1
1698
1699#define ASM_OUTPUT_SKIP(FILE,SIZE) \
58e15542 1700 fprintf (FILE, "\t%d * int 0\n", (int)(SIZE))
946730d0
RK
1701
1702/* CONTROLLING DEBUGGING INFORMATION FORMAT */
1703
dff06f62 1704#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
946730d0 1705
dff06f62
MC
1706#define ASM_OUTPUT_DEF(asm_out_file, LABEL1, LABEL2) \
1707 do { \
1708 fprintf (asm_out_file, ".alias " ); \
1709 ASM_OUTPUT_LABELREF(asm_out_file, LABEL1); \
1710 fprintf (asm_out_file, "=" ); \
1711 ASM_OUTPUT_LABELREF(asm_out_file, LABEL2); \
1712 fprintf (asm_out_file, "\n" ); \
1713 } while (0)
946730d0 1714
946730d0
RK
1715\f
1716/* MISCELLANEOUS PARAMETERS */
1717
1718/* Specify the machine mode that this machine uses
1719 for the index in the tablejump instruction. */
1720#define CASE_VECTOR_MODE QImode
1721
18543a22
ILT
1722/* Define as C expression which evaluates to nonzero if the tablejump
1723 instruction expects the table to contain offsets from the address of the
1724 table.
bf0e974b 1725 Do not define this if the table should contain absolute addresses. */
18543a22 1726/* #define CASE_VECTOR_PC_RELATIVE 1 */
946730d0 1727
946730d0
RK
1728/* Max number of bytes we can move from memory to memory
1729 in one reasonably fast instruction. */
1730#define MOVE_MAX 1
1731
1732/* Defining this macro causes the compiler to omit a sign-extend, zero-extend,
1733 or bitwise 'and' instruction that truncates the count of a shift operation
1734 to a width equal to the number of bits needed to represent the size of the
ddd5a7c1 1735 object being shifted. Do not define this macro unless the truncation applies
bf0e974b 1736 to both shift operations and bit-field operations (if any). */
946730d0
RK
1737/* #define SHIFT_COUNT_TRUNCATED */
1738
1739/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1740 is done just by pretending it is already truncated. */
1741#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1742
1743/* When a prototype says `char' or `short', really pass an `int'. */
cb560352 1744#define PROMOTE_PROTOTYPES 1
946730d0
RK
1745
1746/* An alias for the machine mode used for pointers */
1747#define Pmode QImode
1748
1749/* A function address in a call instruction
1750 is a byte address (for indexing purposes)
1751 so give the MEM rtx a byte's mode. */
1752#define FUNCTION_MODE QImode
1753
1754#if !defined(__DATE__)
1755#define TARGET_VERSION fprintf (stderr, " (%s)", VERSION_INFO1)
1756#else
1757#define TARGET_VERSION fprintf (stderr, " (%s, %s)", VERSION_INFO1, __DATE__)
1758#endif
1759
dff06f62 1760#define VERSION_INFO1 "Lucent DSP16xx C Cross Compiler, version 1.3.0b"
946730d0
RK
1761
1762
1763/* Define this as 1 if `char' should by default be signed; else as 0. */
1764#define DEFAULT_SIGNED_CHAR 1
1765
946730d0 1766/* Define this so gcc does not output a call to __main, since we
bf0e974b 1767 are not currently supporting c++. */
946730d0 1768#define INIT_SECTION_ASM_OP 1
ab87f8c8 1769