]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/frv/frv.h
Turn TRULY_NOOP_TRUNCATION into a hook
[thirdparty/gcc.git] / gcc / config / frv / frv.h
CommitLineData
36a05131 1/* Target macros for the FRV port of GCC.
cbe34bb5 2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
36a05131
BS
3 Contributed by Red Hat Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
2f83c7d6 9 by the Free Software Foundation; either version 3, or (at your
36a05131
BS
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
2f83c7d6
NC
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
36a05131
BS
20
21#ifndef __FRV_H__
22#define __FRV_H__
23
36a05131
BS
24/* Frv general purpose macros. */
25/* Align an address. */
26#define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
36a05131
BS
27\f
28/* Driver configuration. */
29
34208acf
AO
30/* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
31 FDPIC which multilib to use depends on whether FDPIC is in use or
32 not. The trick we use is to introduce -multilib-library-pic as a
33 pseudo-flag that selects the library-pic multilib, and map fpic
34 and fPIC to it only if fdpic is not selected. Also, if fdpic is
35 selected and no PIC/PIE options are present, we imply -fPIE.
36 Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
37 speed, or if we have -On with n>=3, enable inlining of PLTs. As
38 for -mgprel-ro, we want to enable it by default, but not for -fpic or
39 -fpie. */
40
41#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
42"%{mno-pack:\
43 %{!mhard-float:-msoft-float}\
44 %{!mmedia:-mno-media}}\
428b3812 45 %{!mfdpic:%{" FPIC_SPEC ": -multilib-library-pic}}\
34208acf
AO
46 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
47 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
428b3812
L
48 %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{" FPIC_SPEC ":-minline-plt} \
49 %{" NO_FPIC_SPEC ":%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}} \
50 %{!mno-gprel-ro:%{" NO_FPIE1_AND_FPIC1_SPEC ":-mgprel-ro}}} \
34208acf
AO
51"
52#ifndef SUBTARGET_DRIVER_SELF_SPECS
53# define SUBTARGET_DRIVER_SELF_SPECS
54#endif
55
36a05131
BS
56#undef ASM_SPEC
57#define ASM_SPEC "\
d3153553 58%{G*} \
36a05131
BS
59%{mtomcat-stats} \
60%{!mno-eflags: \
61 %{mcpu=*} \
62 %{mgpr-*} %{mfpr-*} \
63 %{msoft-float} %{mhard-float} \
64 %{mdword} %{mno-dword} \
65 %{mdouble} %{mno-double} \
66 %{mmedia} %{mno-media} \
67 %{mmuladd} %{mno-muladd} \
68 %{mpack} %{mno-pack} \
afbe7e61 69 %{mno-fdpic:-mnopic} %{mfdpic} \
428b3812 70 %{" FPIE1_OR_FPIC1_SPEC ":-mpic} %{" FPIE2_OR_FPIC2_SPEC ":-mPIC} %{mlibrary-pic}}"
36a05131 71
36a05131
BS
72#undef STARTFILE_SPEC
73#define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
74
36a05131
BS
75#undef ENDFILE_SPEC
76#define ENDFILE_SPEC "frvend%O%s"
77
36a05131
BS
78
79#define MASK_DEFAULT_FRV \
80 (MASK_MEDIA \
81 | MASK_DOUBLE \
82 | MASK_MULADD \
83 | MASK_DWORD \
84 | MASK_PACK)
85
86#define MASK_DEFAULT_FR500 \
87 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
88
c557edf4
RS
89#define MASK_DEFAULT_FR550 \
90 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
91
92#define MASK_DEFAULT_FR450 \
93 (MASK_GPR_32 \
94 | MASK_FPR_32 \
95 | MASK_MEDIA \
96 | MASK_SOFT_FLOAT \
97 | MASK_DWORD \
98 | MASK_PACK)
99
36a05131
BS
100#define MASK_DEFAULT_FR400 \
101 (MASK_GPR_32 \
102 | MASK_FPR_32 \
103 | MASK_MEDIA \
104 | MASK_ACC_4 \
105 | MASK_SOFT_FLOAT \
106 | MASK_DWORD \
107 | MASK_PACK)
108
109#define MASK_DEFAULT_SIMPLE \
110 (MASK_GPR_32 | MASK_SOFT_FLOAT)
111
7ec022b2
KC
112/* A C string constant that tells the GCC driver program options to pass to
113 `cc1'. It can also specify how to translate options you give to GCC into
114 options for GCC to pass to the `cc1'.
36a05131
BS
115
116 Do not define this macro if it does not need to do anything. */
117/* For ABI compliance, we need to put bss data into the normal data section. */
118#define CC1_SPEC "%{G*}"
119
36a05131
BS
120#undef LINK_SPEC
121#define LINK_SPEC "\
122%{h*} %{v:-V} \
34208acf 123%{mfdpic:-melf32frvfd -z text} \
36a05131
BS
124%{static:-dn -Bstatic} \
125%{shared:-Bdynamic} \
126%{symbolic:-Bsymbolic} \
c75d884b 127%{G*}"
36a05131 128
36a05131
BS
129#undef LIB_SPEC
130#define LIB_SPEC "--start-group -lc -lsim --end-group"
131
c557edf4 132#ifndef CPU_TYPE
36a05131
BS
133#define CPU_TYPE FRV_CPU_FR500
134#endif
135
36a05131
BS
136/* Run-time target specifications */
137
c557edf4
RS
138#define TARGET_CPU_CPP_BUILTINS() \
139 do \
140 { \
141 int issue_rate; \
142 \
143 builtin_define ("__frv__"); \
144 builtin_assert ("machine=frv"); \
145 \
146 issue_rate = frv_issue_rate (); \
147 if (issue_rate > 1) \
148 builtin_define_with_int_value ("__FRV_VLIW__", issue_rate); \
149 builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS); \
150 builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS); \
151 builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS); \
152 \
153 switch (frv_cpu_type) \
154 { \
155 case FRV_CPU_GENERIC: \
156 builtin_define ("__CPU_GENERIC__"); \
157 break; \
158 case FRV_CPU_FR550: \
159 builtin_define ("__CPU_FR550__"); \
160 break; \
161 case FRV_CPU_FR500: \
162 case FRV_CPU_TOMCAT: \
163 builtin_define ("__CPU_FR500__"); \
164 break; \
165 case FRV_CPU_FR450: \
166 builtin_define ("__CPU_FR450__"); \
167 break; \
168 case FRV_CPU_FR405: \
169 builtin_define ("__CPU_FR405__"); \
170 break; \
171 case FRV_CPU_FR400: \
172 builtin_define ("__CPU_FR400__"); \
173 break; \
174 case FRV_CPU_FR300: \
175 case FRV_CPU_SIMPLE: \
176 builtin_define ("__CPU_FR300__"); \
177 break; \
178 } \
179 \
180 if (TARGET_HARD_FLOAT) \
181 builtin_define ("__FRV_HARD_FLOAT__"); \
182 if (TARGET_DWORD) \
183 builtin_define ("__FRV_DWORD__"); \
184 if (TARGET_FDPIC) \
185 builtin_define ("__FRV_FDPIC__"); \
186 if (flag_leading_underscore > 0) \
187 builtin_define ("__FRV_UNDERSCORE__"); \
188 } \
cc956ba2 189 while (0)
36a05131
BS
190
191\f
36a05131
BS
192#define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
193
194#define NUM_GPRS (TARGET_GPR_32? 32 : 64)
195#define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
196#define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
197
c557edf4
RS
198/* X is a valid accumulator number if (X & ACC_MASK) == X. */
199#define ACC_MASK \
200 (!TARGET_MEDIA ? 0 \
201 : TARGET_ACC_4 ? 3 \
202 : frv_cpu_type == FRV_CPU_FR450 ? 11 \
203 : 7)
204
36a05131
BS
205/* Macros to identify the blend of media instructions available. Revision 1
206 is the one found on the FR500. Revision 2 includes the changes made for
207 the FR400.
208
209 Treat the generic processor as a revision 1 machine for now, for
210 compatibility with earlier releases. */
211
212#define TARGET_MEDIA_REV1 \
213 (TARGET_MEDIA \
214 && (frv_cpu_type == FRV_CPU_GENERIC \
215 || frv_cpu_type == FRV_CPU_FR500))
216
217#define TARGET_MEDIA_REV2 \
c557edf4
RS
218 (TARGET_MEDIA \
219 && (frv_cpu_type == FRV_CPU_FR400 \
220 || frv_cpu_type == FRV_CPU_FR405 \
221 || frv_cpu_type == FRV_CPU_FR450 \
222 || frv_cpu_type == FRV_CPU_FR550))
223
224#define TARGET_MEDIA_FR450 \
225 (frv_cpu_type == FRV_CPU_FR450)
226
227#define TARGET_FR500_FR550_BUILTINS \
228 (frv_cpu_type == FRV_CPU_FR500 \
229 || frv_cpu_type == FRV_CPU_FR550)
230
231#define TARGET_FR405_BUILTINS \
232 (frv_cpu_type == FRV_CPU_FR405 \
233 || frv_cpu_type == FRV_CPU_FR450)
36a05131 234
bef8809e
AH
235#ifndef HAVE_AS_TLS
236#define HAVE_AS_TLS 0
237#endif
238
c557edf4 239#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
36a05131
BS
240\f
241/* Small Data Area Support. */
242/* Maximum size of variables that go in .sdata/.sbss.
243 The -msdata=foo switch also controls how small variables are handled. */
244#ifndef SDATA_DEFAULT_SIZE
245#define SDATA_DEFAULT_SIZE 8
246#endif
247
36a05131
BS
248
249/* Storage Layout */
250
251/* Define this macro to have the value 1 if the most significant bit in a byte
252 has the lowest number; otherwise define it to have the value zero. This
253 means that bit-field instructions count from the most significant bit. If
254 the machine has no bit-field instructions, then this must still be defined,
255 but it doesn't matter which value it is defined to. This macro need not be
256 a constant.
257
258 This macro does not affect the way structure fields are packed into bytes or
259 words; that is controlled by `BYTES_BIG_ENDIAN'. */
260#define BITS_BIG_ENDIAN 1
261
262/* Define this macro to have the value 1 if the most significant byte in a word
263 has the lowest number. This macro need not be a constant. */
264#define BYTES_BIG_ENDIAN 1
265
266/* Define this macro to have the value 1 if, in a multiword object, the most
267 significant word has the lowest number. This applies to both memory
7ec022b2 268 locations and registers; GCC fundamentally assumes that the order of
36a05131
BS
269 words in memory is the same as the order in registers. This macro need not
270 be a constant. */
271#define WORDS_BIG_ENDIAN 1
272
273/* Number of storage units in a word; normally 4. */
274#define UNITS_PER_WORD 4
275
276/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
277 which has the specified mode and signedness is to be stored in a register.
278 This macro is only called when TYPE is a scalar type.
279
280 On most RISC machines, which only have operations that operate on a full
281 register, define this macro to set M to `word_mode' if M is an integer mode
282 narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
283 widened because wider-precision floating-point operations are usually more
284 expensive than their narrower counterparts.
285
286 For most machines, the macro definition does not change UNSIGNEDP. However,
287 some machines, have instructions that preferentially handle either signed or
288 unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
289 loads from memory and 32-bit add instructions sign-extend the result to 64
290 bits. On such machines, set UNSIGNEDP according to which kind of extension
291 is more efficient.
292
293 Do not define this macro if it would never modify MODE. */
294#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
295 do \
296 { \
297 if (GET_MODE_CLASS (MODE) == MODE_INT \
298 && GET_MODE_SIZE (MODE) < 4) \
299 (MODE) = SImode; \
300 } \
301 while (0)
302
303/* Normal alignment required for function parameters on the stack, in bits.
304 All stack parameters receive at least this much alignment regardless of data
305 type. On most machines, this is the same as the size of an integer. */
306#define PARM_BOUNDARY 32
307
308/* Define this macro if you wish to preserve a certain alignment for the stack
309 pointer. The definition is a C expression for the desired alignment
310 (measured in bits).
311
312 If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
313 specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
314 strict alignment than `STACK_BOUNDARY', the stack may be momentarily
315 unaligned while pushing arguments. */
316#define STACK_BOUNDARY 64
317
318/* Alignment required for a function entry point, in bits. */
319#define FUNCTION_BOUNDARY 128
320
321/* Biggest alignment that any data type can require on this machine,
322 in bits. */
323#define BIGGEST_ALIGNMENT 64
324
325/* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
326 some reason. */
327#ifdef IN_TARGET_LIBS
328#define BIGGEST_FIELD_ALIGNMENT 64
329#else
330/* An expression for the alignment of a structure field FIELD if the
7ec022b2 331 alignment computed in the usual way is COMPUTED. GCC uses this
36a05131
BS
332 value instead of the value in `BIGGEST_ALIGNMENT' or
333 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
a4cf4b64 334#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
36a05131
BS
335 frv_adjust_field_align (FIELD, COMPUTED)
336#endif
337
338/* If defined, a C expression to compute the alignment for a static variable.
339 TYPE is the data type, and ALIGN is the alignment that the object
340 would ordinarily have. The value of this macro is used instead of that
341 alignment to align the object.
342
343 If this macro is not defined, then ALIGN is used.
344
345 One use of this macro is to increase alignment of medium-size data to make
346 it all fit in fewer cache lines. Another is to cause character arrays to be
347 word-aligned so that `strcpy' calls that copy constants to character arrays
348 can be done inline. */
349#define DATA_ALIGNMENT(TYPE, ALIGN) \
350 (TREE_CODE (TYPE) == ARRAY_TYPE \
351 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
352 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
353
354/* If defined, a C expression to compute the alignment given to a constant that
355 is being placed in memory. CONSTANT is the constant and ALIGN is the
356 alignment that the object would ordinarily have. The value of this macro is
357 used instead of that alignment to align the object.
358
359 If this macro is not defined, then ALIGN is used.
360
361 The typical use of this macro is to increase alignment for string constants
362 to be word aligned so that `strcpy' calls that copy constants can be done
363 inline. */
364#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
365 (TREE_CODE (EXP) == STRING_CST \
366 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
367
368/* Define this macro to be the value 1 if instructions will fail to work if
369 given data not on the nominal alignment. If instructions will merely go
370 slower in that case, define this macro as 0. */
371#define STRICT_ALIGNMENT 1
372
36a05131
BS
373#define PCC_BITFIELD_TYPE_MATTERS 1
374
36a05131
BS
375\f
376/* Layout of Source Language Data Types. */
377
378#define CHAR_TYPE_SIZE 8
379#define SHORT_TYPE_SIZE 16
380#define INT_TYPE_SIZE 32
381#define LONG_TYPE_SIZE 32
382#define LONG_LONG_TYPE_SIZE 64
383#define FLOAT_TYPE_SIZE 32
384#define DOUBLE_TYPE_SIZE 64
385#define LONG_DOUBLE_TYPE_SIZE 64
386
387/* An expression whose value is 1 or 0, according to whether the type `char'
388 should be signed or unsigned by default. The user can always override this
389 default with the options `-fsigned-char' and `-funsigned-char'. */
390#define DEFAULT_SIGNED_CHAR 1
391
a3724010
JM
392#undef SIZE_TYPE
393#define SIZE_TYPE "unsigned int"
394
395#undef PTRDIFF_TYPE
396#define PTRDIFF_TYPE "int"
397
398#undef WCHAR_TYPE
399#define WCHAR_TYPE "long int"
400
401#undef WCHAR_TYPE_SIZE
402#define WCHAR_TYPE_SIZE BITS_PER_WORD
403
36a05131
BS
404\f
405/* General purpose registers. */
406#define GPR_FIRST 0 /* First gpr */
407#define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
408#define GPR_R0 GPR_FIRST /* R0, constant 0 */
409#define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
410#define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
411 /* small data register */
34208acf
AO
412#define SDA_BASE_REG ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
413#define PIC_REGNO (GPR_FIRST + (TARGET_FDPIC?15:17)) /* PIC register. */
414#define FDPIC_FPTR_REGNO (GPR_FIRST + 14) /* uClinux PIC function pointer register. */
415#define FDPIC_REGNO (GPR_FIRST + 15) /* uClinux PIC register. */
416
b8a19ec4
NC
417#define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
418
34208acf 419#define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
36a05131
BS
420
421#define FPR_FIRST 64 /* First FP reg */
422#define FPR_LAST 127 /* Last FP reg */
423
36a05131
BS
424#define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
425
426/* We reserve the last CR and CCR in each category to be used as a reload
427 register to reload the CR/CCR registers. This is a kludge. */
428#define CC_FIRST 128 /* First ICC/FCC reg */
429#define CC_LAST 135 /* Last ICC/FCC reg */
430#define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
431#define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
432#define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
433#define FCC_FIRST (CC_FIRST) /* First FCC reg */
434#define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
435
436/* Amount to shift a value to locate a ICC or FCC register in the CCR
437 register and shift it to the bottom 4 bits. */
438#define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
439
440/* Mask to isolate a single ICC/FCC value. */
441#define CC_MASK 0xf
442
443/* Masks to isolate the various bits in an ICC field. */
444#define ICC_MASK_N 0x8 /* negative */
445#define ICC_MASK_Z 0x4 /* zero */
446#define ICC_MASK_V 0x2 /* overflow */
447#define ICC_MASK_C 0x1 /* carry */
448
449/* Mask to isolate the N/Z flags in an ICC. */
450#define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
451
452/* Mask to isolate the Z/C flags in an ICC. */
453#define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
454
455/* Masks to isolate the various bits in a FCC field. */
456#define FCC_MASK_E 0x8 /* equal */
457#define FCC_MASK_L 0x4 /* less than */
458#define FCC_MASK_G 0x2 /* greater than */
459#define FCC_MASK_U 0x1 /* unordered */
460
461/* For CCR registers, the machine wants CR4..CR7 to be used for integer
462 code and CR0..CR3 to be used for floating point. */
463#define CR_FIRST 136 /* First CCR */
464#define CR_LAST 143 /* Last CCR */
465#define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
466#define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
467#define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
468#define ICR_TEMP ICR_LAST /* Temp integer CCR */
469#define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
470#define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
471
472/* Amount to shift a value to locate a CR register in the CCCR special purpose
473 register and shift it to the bottom 2 bits. */
474#define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
475
476/* Mask to isolate a single CR value. */
477#define CR_MASK 0x3
478
479#define ACC_FIRST 144 /* First acc register */
c557edf4 480#define ACC_LAST 155 /* Last acc register */
36a05131 481
c557edf4
RS
482#define ACCG_FIRST 156 /* First accg register */
483#define ACCG_LAST 167 /* Last accg register */
36a05131 484
c557edf4 485#define AP_FIRST 168 /* fake argument pointer */
36a05131 486
c557edf4
RS
487#define SPR_FIRST 169
488#define SPR_LAST 172
36a05131
BS
489#define LR_REGNO (SPR_FIRST)
490#define LCR_REGNO (SPR_FIRST + 1)
c557edf4
RS
491#define IACC_FIRST (SPR_FIRST + 2)
492#define IACC_LAST (SPR_FIRST + 3)
36a05131 493
2f5b1308 494#define GPR_P(R) IN_RANGE (R, GPR_FIRST, GPR_LAST)
36a05131 495#define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
2f5b1308
JR
496#define FPR_P(R) IN_RANGE (R, FPR_FIRST, FPR_LAST)
497#define CC_P(R) IN_RANGE (R, CC_FIRST, CC_LAST)
498#define ICC_P(R) IN_RANGE (R, ICC_FIRST, ICC_LAST)
499#define FCC_P(R) IN_RANGE (R, FCC_FIRST, FCC_LAST)
500#define CR_P(R) IN_RANGE (R, CR_FIRST, CR_LAST)
501#define ICR_P(R) IN_RANGE (R, ICR_FIRST, ICR_LAST)
502#define FCR_P(R) IN_RANGE (R, FCR_FIRST, FCR_LAST)
503#define ACC_P(R) IN_RANGE (R, ACC_FIRST, ACC_LAST)
504#define ACCG_P(R) IN_RANGE (R, ACCG_FIRST, ACCG_LAST)
505#define SPR_P(R) IN_RANGE (R, SPR_FIRST, SPR_LAST)
36a05131
BS
506
507#define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
508#define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
509#define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
510#define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
511#define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
512#define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
513#define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
514#define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
515#define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
516#define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
517#define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
518
519#define MAX_STACK_IMMEDIATE_OFFSET 2047
520
521\f
522/* Register Basics. */
523
524/* Number of hardware registers known to the compiler. They receive numbers 0
525 through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
526 really is assigned the number `FIRST_PSEUDO_REGISTER'. */
527#define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
528
529/* The first/last register that can contain the arguments to a function. */
530#define FIRST_ARG_REGNUM (GPR_FIRST + 8)
531#define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
532
533/* Registers used by the exception handling functions. These should be
1ae58c30 534 registers that are not otherwise used by the calling sequence. */
36a05131
BS
535#define FIRST_EH_REGNUM 14
536#define LAST_EH_REGNUM 15
537
538/* Scratch registers used in the prologue, epilogue and thunks.
539 OFFSET_REGNO is for loading constant addends that are too big for a
540 single instruction. TEMP_REGNO is used for transferring SPRs to and from
541 the stack, and various other activities. */
542#define OFFSET_REGNO 4
543#define TEMP_REGNO 5
544
545/* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
546 which is sometimes used to set up the frame pointer. */
547#define OLD_SP_REGNO 6
548
549/* Registers used in the epilogue. STACKADJ_REGNO stores the exception
550 handler's stack adjustment. */
551#define STACKADJ_REGNO 6
552
553/* Registers used in thunks. JMP_REGNO is used for loading the target
554 address. */
555#define JUMP_REGNO 6
556
557#define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
558 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
559#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
560#define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
561
e1175f68
RS
562#define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
563
36a05131
BS
564/* An initializer that says which registers are used for fixed purposes all
565 throughout the compiled code and are therefore not available for general
566 allocation. These would include the stack pointer, the frame pointer
567 (except on machines where that can be used as a general register when no
568 frame pointer is needed), the program counter on machines where that is
569 considered one of the addressable registers, and any other numbered register
570 with a standard use.
571
572 This information is expressed as a sequence of numbers, separated by commas
573 and surrounded by braces. The Nth number is 1 if register N is fixed, 0
574 otherwise.
575
576 The table initialized from this macro, and the table initialized by the
577 following one, may be overridden at run time either automatically, by the
578 actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
579 command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
580
581/* gr0 -- Hard Zero
582 gr1 -- Stack Pointer
583 gr2 -- Frame Pointer
584 gr3 -- Hidden Parameter
585 gr16 -- Small Data reserved
586 gr17 -- Pic reserved
587 gr28 -- OS reserved
588 gr29 -- OS reserved
589 gr30 -- OS reserved
590 gr31 -- OS reserved
591 cr3 -- reserved to reload FCC registers.
592 cr7 -- reserved to reload ICC registers. */
593#define FIXED_REGISTERS \
594{ /* Integer Registers */ \
595 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
596 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
597 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
598 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
599 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
600 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
601 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
602 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
603 /* Float Registers */ \
604 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
605 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
606 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
607 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
608 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
609 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
610 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
611 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
612 /* Condition Code Registers */ \
613 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
614 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
615 /* Conditional execution Registers (CCR) */ \
616 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
617 /* Accumulators */ \
618 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
c557edf4
RS
619 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
620 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
621 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
36a05131 622 /* Other registers */ \
c557edf4 623 1, /* 168, AP - fake arg ptr */ \
8d8256c1 624 1, /* 169, LR - Link register*/ \
c557edf4
RS
625 0, /* 170, LCR - Loop count reg*/ \
626 1, 1 /* 171-172, iacc0 */ \
36a05131
BS
627}
628
629/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
630 general) by function calls as well as for fixed registers. This macro
631 therefore identifies the registers that are not available for general
632 allocation of values that must live across function calls.
633
634 If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
635 saves it on function entry and restores it on function exit, if the register
636 is used within the function. */
637#define CALL_USED_REGISTERS \
638{ /* Integer Registers */ \
639 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
640 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
641 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
642 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
643 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
644 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
645 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
646 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
647 /* Float Registers */ \
648 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
649 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
650 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
651 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
652 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
653 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
654 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
655 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
656 /* Condition Code Registers */ \
657 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
658 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
659 /* Conditional execution Registers (CCR) */ \
660 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
661 /* Accumulators */ \
662 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
c557edf4
RS
663 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
664 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
665 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
36a05131 666 /* Other registers */ \
c557edf4
RS
667 1, /* 168, AP - fake arg ptr */ \
668 1, /* 169, LR - Link register*/ \
669 1, /* 170, LCR - Loop count reg */ \
670 1, 1 /* 171-172, iacc0 */ \
36a05131
BS
671}
672
36a05131
BS
673\f
674/* Order of allocation of registers. */
675
676/* If defined, an initializer for a vector of integers, containing the numbers
7ec022b2 677 of hard registers in the order in which GCC should prefer to use them
36a05131
BS
678 (from most preferred to least).
679
680 If this macro is not defined, registers are used lowest numbered first (all
681 else being equal).
682
683 One use of this macro is on machines where the highest numbered registers
684 must always be saved and the save-multiple-registers instruction supports
685 only sequences of consecutive registers. On such machines, define
686 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
687 allocatable register first. */
688
689/* On the FRV, allocate GR16 and GR17 after other saved registers so that we
690 have a better chance of allocating 2 registers at a time and can use the
691 double word load/store instructions in the prologue. */
692#define REG_ALLOC_ORDER \
693{ \
694 /* volatile registers */ \
695 GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
696 GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
697 GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
698 GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
699 GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
700 GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
701 GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
702 \
703 FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
704 FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
705 FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
706 FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
707 FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
708 FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
709 FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
710 FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
711 \
712 ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
713 FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
714 CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
715 CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
716 \
717 /* saved registers */ \
718 GPR_FIRST + 18, GPR_FIRST + 19, \
719 GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
720 GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
721 GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
722 GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
723 GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
724 GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
725 GPR_FIRST + 16, GPR_FIRST + 17, \
726 \
727 FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
728 FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
729 FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
730 FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
731 FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
732 FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
733 FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
734 FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
735 \
736 /* special or fixed registers */ \
737 GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
738 GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
739 ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
740 ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
c557edf4 741 ACC_FIRST + 8, ACC_FIRST + 9, ACC_FIRST + 10, ACC_FIRST + 11, \
36a05131
BS
742 ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
743 ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
c557edf4
RS
744 ACCG_FIRST + 8, ACCG_FIRST + 9, ACCG_FIRST + 10, ACCG_FIRST + 11, \
745 AP_FIRST, LR_REGNO, LCR_REGNO, \
746 IACC_FIRST + 0, IACC_FIRST + 1 \
36a05131
BS
747}
748
749\f
36a05131
BS
750/* Define this macro if the compiler should avoid copies to/from CCmode
751 registers. You should only define this macro if support fo copying to/from
752 CCmode is incomplete. */
753#define AVOID_CCMODE_COPIES
754
755\f
756/* Register Classes. */
757
758/* An enumeral type that must be defined with all the register class names as
759 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
760 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
761 which is not a register class but rather tells how many classes there are.
762
763 Each register class has a number, which is the value of casting the class
764 name to type `int'. The number serves as an index in many of the tables
765 described below. */
766enum reg_class
767{
768 NO_REGS,
769 ICC_REGS,
770 FCC_REGS,
771 CC_REGS,
772 ICR_REGS,
773 FCR_REGS,
774 CR_REGS,
775 LCR_REG,
776 LR_REG,
bef8809e
AH
777 GR8_REGS,
778 GR9_REGS,
779 GR89_REGS,
34208acf
AO
780 FDPIC_REGS,
781 FDPIC_FPTR_REGS,
782 FDPIC_CALL_REGS,
36a05131
BS
783 SPR_REGS,
784 QUAD_ACC_REGS,
36a05131
BS
785 ACCG_REGS,
786 QUAD_FPR_REGS,
36a05131 787 QUAD_REGS,
36a05131
BS
788 GPR_REGS,
789 ALL_REGS,
790 LIM_REG_CLASSES
791};
792
793#define GENERAL_REGS GPR_REGS
794
795/* The number of distinct register classes, defined as follows:
796
797 #define N_REG_CLASSES (int) LIM_REG_CLASSES */
798#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
799
800/* An initializer containing the names of the register classes as C string
801 constants. These names are used in writing some of the debugging dumps. */
802#define REG_CLASS_NAMES { \
803 "NO_REGS", \
804 "ICC_REGS", \
805 "FCC_REGS", \
806 "CC_REGS", \
807 "ICR_REGS", \
808 "FCR_REGS", \
809 "CR_REGS", \
810 "LCR_REG", \
811 "LR_REG", \
bef8809e
AH
812 "GR8_REGS", \
813 "GR9_REGS", \
814 "GR89_REGS", \
34208acf
AO
815 "FDPIC_REGS", \
816 "FDPIC_FPTR_REGS", \
817 "FDPIC_CALL_REGS", \
36a05131
BS
818 "SPR_REGS", \
819 "QUAD_ACC_REGS", \
36a05131
BS
820 "ACCG_REGS", \
821 "QUAD_FPR_REGS", \
36a05131 822 "QUAD_REGS", \
36a05131
BS
823 "GPR_REGS", \
824 "ALL_REGS" \
825}
826
827/* An initializer containing the contents of the register classes, as integers
828 which are bit masks. The Nth integer specifies the contents of class N.
829 The way the integer MASK is interpreted is that register R is in the class
830 if `MASK & (1 << R)' is 1.
831
832 When the machine has more than 32 registers, an integer does not suffice.
833 Then the integers are replaced by sub-initializers, braced groupings
834 containing several integers. Each sub-initializer must be suitable as an
835 initializer for the type `HARD_REG_SET' which is defined in
836 `hard-reg-set.h'. */
837#define REG_CLASS_CONTENTS \
838{ /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
839 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
840 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
841 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
842 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
843 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
844 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
845 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
c557edf4
RS
846 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
847 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS */\
bef8809e
AH
848 { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
849 { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
850 { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
34208acf
AO
851 { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
852 { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
853 { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
c557edf4
RS
854 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
855 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
c557edf4 856 { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
36a05131 857 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
36a05131 858 { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
c557edf4
RS
859 { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
860 { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
36a05131
BS
861}
862
9b5db25d
NC
863#define EVEN_ACC_REGS QUAD_ACC_REGS
864#define ACC_REGS QUAD_ACC_REGS
865#define FEVEN_REGS QUAD_FPR_REGS
866#define FPR_REGS QUAD_FPR_REGS
867#define EVEN_REGS QUAD_REGS
868
36a05131
BS
869/* A C expression whose value is a register class containing hard register
870 REGNO. In general there is more than one such class; choose a class which
871 is "minimal", meaning that no smaller class also contains the register. */
872
873extern enum reg_class regno_reg_class[];
874#define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
875
876/* A macro whose definition is the name of the class to which a valid base
877 register must belong. A base register is one used in an address which is
878 the register value plus a displacement. */
879#define BASE_REG_CLASS GPR_REGS
880
881/* A macro whose definition is the name of the class to which a valid index
882 register must belong. An index register is one used in an address where its
883 value is either multiplied by a scale factor or added to another register
884 (as well as added to a displacement). */
885#define INDEX_REG_CLASS GPR_REGS
886
36a05131
BS
887/* A C expression which is nonzero if register number NUM is suitable for use
888 as a base register in operand addresses. It may be either a suitable hard
889 register or a pseudo register that has been allocated such a hard register. */
890#define REGNO_OK_FOR_BASE_P(NUM) \
891 ((NUM) < FIRST_PSEUDO_REGISTER \
892 ? GPR_P (NUM) \
893 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
894
895/* A C expression which is nonzero if register number NUM is suitable for use
896 as an index register in operand addresses. It may be either a suitable hard
897 register or a pseudo register that has been allocated such a hard register.
898
899 The difference between an index register and a base register is that the
900 index register may be scaled. If an address involves the sum of two
901 registers, neither one of them scaled, then either one may be labeled the
902 "base" and the other the "index"; but whichever labeling is used must fit
903 the machine's constraints of which registers may serve in each capacity.
904 The compiler will try both labelings, looking for one that is valid, and
905 will reload one or both registers only if neither labeling works. */
906#define REGNO_OK_FOR_INDEX_P(NUM) \
907 ((NUM) < FIRST_PSEUDO_REGISTER \
908 ? GPR_P (NUM) \
909 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
910
36a05131 911#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
35f2d8ef 912 frv_secondary_reload_class (CLASS, MODE, X)
36a05131
BS
913
914#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
35f2d8ef 915 frv_secondary_reload_class (CLASS, MODE, X)
36a05131 916
36a05131
BS
917#define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
918
919#define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
920
36a05131
BS
921\f
922/* Basic Stack Layout. */
923
924/* Structure to describe information about a saved range of registers */
925
926typedef struct frv_stack_regs {
927 const char * name; /* name of the register ranges */
928 int first; /* first register in the range */
929 int last; /* last register in the range */
930 int size_1word; /* # of bytes to be stored via 1 word stores */
931 int size_2words; /* # of bytes to be stored via 2 word stores */
932 unsigned char field_p; /* true if the registers are a single SPR */
933 unsigned char dword_p; /* true if we can do dword stores */
934 unsigned char special_p; /* true if the regs have a fixed save loc. */
935} frv_stack_regs_t;
936
937/* Register ranges to look into saving. */
938#define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
939#define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
940#define STACK_REGS_LR 2 /* LR register */
941#define STACK_REGS_CC 3 /* CCrs (normally not saved) */
942#define STACK_REGS_LCR 5 /* lcr register */
943#define STACK_REGS_STDARG 6 /* stdarg registers */
944#define STACK_REGS_STRUCT 7 /* structure return (gr3) */
945#define STACK_REGS_FP 8 /* FP register */
946#define STACK_REGS_MAX 9 /* # of register ranges */
947
948/* Values for save_p field. */
949#define REG_SAVE_NO_SAVE 0 /* register not saved */
950#define REG_SAVE_1WORD 1 /* save the register */
951#define REG_SAVE_2WORDS 2 /* save register and register+1 */
952
953/* Structure used to define the frv stack. */
954
955typedef struct frv_stack {
956 int total_size; /* total bytes allocated for stack */
957 int vars_size; /* variable save area size */
958 int parameter_size; /* outgoing parameter size */
959 int stdarg_size; /* size of regs needed to be saved for stdarg */
960 int regs_size; /* size of the saved registers */
961 int regs_size_1word; /* # of bytes to be stored via 1 word stores */
962 int regs_size_2words; /* # of bytes to be stored via 2 word stores */
963 int header_size; /* size of the old FP, struct ret., LR save */
964 int pretend_size; /* size of pretend args */
965 int vars_offset; /* offset to save local variables from new SP*/
966 int regs_offset; /* offset to save registers from new SP */
967 /* register range information */
968 frv_stack_regs_t regs[STACK_REGS_MAX];
969 /* offset to store each register */
970 int reg_offset[FIRST_PSEUDO_REGISTER];
971 /* whether to save register (& reg+1) */
972 unsigned char save_p[FIRST_PSEUDO_REGISTER];
973} frv_stack_t;
974
975/* Define this macro if pushing a word onto the stack moves the stack pointer
976 to a smaller address. */
977#define STACK_GROWS_DOWNWARD 1
978
a4d05547 979/* Define this macro to nonzero if the addresses of local variable slots
f62c8a5c
JJ
980 are at negative offsets from the frame pointer. */
981#define FRAME_GROWS_DOWNWARD 1
36a05131
BS
982
983/* Offset from the frame pointer to the first local variable slot to be
984 allocated.
985
986 If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
987 first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
988 adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
989#define STARTING_FRAME_OFFSET 0
990
991/* Offset from the stack pointer register to the first location at which
992 outgoing arguments are placed. If not specified, the default value of zero
993 is used. This is the proper value for most machines.
994
995 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
996 location at which outgoing arguments are placed. */
997#define STACK_POINTER_OFFSET 0
998
999/* Offset from the argument pointer register to the first argument's address.
1000 On some machines it may depend on the data type of the function.
1001
1002 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1003 argument's address. */
1004#define FIRST_PARM_OFFSET(FUNDECL) 0
1005
1006/* A C expression whose value is RTL representing the address in a stack frame
1007 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
1008 an RTL expression for the address of the stack frame itself.
1009
1010 If you don't define this macro, the default is to return the value of
1011 FRAMEADDR--that is, the stack frame address is also the address of the stack
1012 word that points to the previous frame. */
1013#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1014
1015/* A C expression whose value is RTL representing the value of the return
1016 address for the frame COUNT steps up from the current frame, after the
1017 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1018 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1019 defined.
1020
1021 The value of the expression must always be the correct address when COUNT is
1022 zero, but may be `NULL_RTX' if there is not way to determine the return
1023 address of other frames. */
1024#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1025
36a05131
BS
1026#define RETURN_POINTER_REGNUM LR_REGNO
1027
1028/* A C expression whose value is RTL representing the location of the incoming
1029 return address at the beginning of any function, before the prologue. This
1030 RTL is either a `REG', indicating that the return value is saved in `REG',
1031 or a `MEM' representing a location in the stack.
1032
1033 You only need to define this macro if you want to support call frame
1034 debugging information like that provided by DWARF 2. */
1035#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1036
1037\f
1038/* Register That Address the Stack Frame. */
1039
1040/* The register number of the stack pointer register, which must also be a
1041 fixed register according to `FIXED_REGISTERS'. On most machines, the
1042 hardware determines which register this is. */
1043#define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1044
1045/* The register number of the frame pointer register, which is used to access
1046 automatic variables in the stack frame. On some machines, the hardware
1047 determines which register this is. On other machines, you can choose any
1048 register you wish for this purpose. */
1049#define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1050
1051/* The register number of the arg pointer register, which is used to access the
1052 function's argument list. On some machines, this is the same as the frame
1053 pointer register. On some machines, the hardware determines which register
1054 this is. On other machines, you can choose any register you wish for this
1055 purpose. If this is not the same register as the frame pointer register,
1056 then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1057 arrange to be able to eliminate it. */
1058
1059/* On frv this is a fake register that is eliminated in
1060 terms of either the frame pointer or stack pointer. */
1061#define ARG_POINTER_REGNUM AP_FIRST
1062
1063/* Register numbers used for passing a function's static chain pointer. If
1064 register windows are used, the register number as seen by the called
1065 function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1066 seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
1067 are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1068
1069 The static chain register need not be a fixed register.
1070
1071 If the static chain is passed in memory, these macros should not be defined;
1072 instead, the next two macros should be defined. */
1073#define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1074#define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1075
1076\f
1077/* Eliminating the Frame Pointer and the Arg Pointer. */
1078
36a05131
BS
1079/* If defined, this macro specifies a table of register pairs used to eliminate
1080 unneeded registers that point into the stack frame. If it is not defined,
1081 the only elimination attempted by the compiler is to replace references to
1082 the frame pointer with references to the stack pointer.
1083
1084 The definition of this macro is a list of structure initializations, each of
1085 which specifies an original and replacement register.
1086
1087 On some machines, the position of the argument pointer is not known until
1088 the compilation is completed. In such a case, a separate hard register must
1089 be used for the argument pointer. This register can be eliminated by
1090 replacing it with either the frame pointer or the argument pointer,
1091 depending on whether or not the frame pointer has been eliminated.
1092
1093 In this case, you might specify:
1094 #define ELIMINABLE_REGS \
1095 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1096 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1097 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1098
1099 Note that the elimination of the argument pointer with the stack pointer is
1100 specified first since that is the preferred elimination. */
1101
1102#define ELIMINABLE_REGS \
1103{ \
1104 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1105 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1106 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
1107}
1108
53680238
BE
1109/* This macro returns the initial difference between the specified pair
1110 of registers. */
36a05131
BS
1111
1112#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1113 (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1114
1115\f
1116/* Passing Function Arguments on the Stack. */
1117
1118/* If defined, the maximum amount of space required for outgoing arguments will
1119 be computed and placed into the variable
38173d38 1120 `crtl->outgoing_args_size'. No space will be pushed onto the
36a05131
BS
1121 stack for each call; instead, the function prologue should increase the
1122 stack frame size by this amount.
1123
1124 Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1125 proper. */
1126#define ACCUMULATE_OUTGOING_ARGS 1
1127
36a05131 1128\f
36a05131
BS
1129/* The number of register assigned to holding function arguments. */
1130
1131#define FRV_NUM_ARG_REGS 6
1132
36a05131
BS
1133/* A C type for declaring a variable that is used as the first argument of
1134 `FUNCTION_ARG' and other related values. For some target machines, the type
1135 `int' suffices and can hold the number of bytes of argument so far.
1136
1137 There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1138 that have been passed on the stack. The compiler has other variables to
1139 keep track of that. For target machines on which all arguments are passed
1140 on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1141 however, the data structure must exist and should not be empty, so use
1142 `int'. */
1143#define CUMULATIVE_ARGS int
1144
1145/* A C statement (sans semicolon) for initializing the variable CUM for the
1146 state at the beginning of the argument list. The variable has type
1147 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
1148 of the function which will receive the args, or 0 if the args are to a
1149 compiler support library function. The value of INDIRECT is nonzero when
1150 processing an indirect call, for example a call through a function pointer.
1151 The value of INDIRECT is zero for a call to an explicitly named function, a
1152 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1153 arguments for the function being compiled.
1154
1155 When processing a call to a compiler support library function, LIBNAME
1156 identifies which one. It is a `symbol_ref' rtx which contains the name of
1157 the function, as a string. LIBNAME is 0 when an ordinary C function call is
1158 being processed. Thus, each time this macro is called, either LIBNAME or
1159 FNTYPE is nonzero, but never both of them at once. */
1160
0f6937fe 1161#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
563a317a 1162 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
36a05131
BS
1163
1164/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1165 arguments for the function being compiled. If this macro is undefined,
1166 `INIT_CUMULATIVE_ARGS' is used instead.
1167
1168 The value passed for LIBNAME is always 0, since library routines with
7ec022b2 1169 special calling conventions are never compiled with GCC. The argument
36a05131
BS
1170 LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
1171
1172#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
563a317a 1173 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
36a05131 1174
36a05131
BS
1175/* A C expression that is nonzero if REGNO is the number of a hard register in
1176 which function arguments are sometimes passed. This does *not* include
1177 implicit arguments such as the static chain and the structure-value address.
1178 On many machines, no registers can be used for this purpose since all
1179 function arguments are pushed on the stack. */
1180#define FUNCTION_ARG_REGNO_P(REGNO) \
1181 ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1182
1183\f
1184/* How Scalar Function Values are Returned. */
1185
1186/* The number of the hard register that is used to return a scalar value from a
1187 function call. */
1188#define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
1189
219d92a4 1190#define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
36a05131
BS
1191
1192\f
1193/* How Large Values are Returned. */
1194
56f42830 1195/* The number of the register that is used to pass the structure
8ac411c7
KH
1196 value address. */
1197#define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
36a05131
BS
1198
1199\f
1200/* Function Entry and Exit. */
1201
1202/* Define this macro as a C expression that is nonzero if the return
1203 instruction or the function epilogue ignores the value of the stack pointer;
1204 in other words, if it is safe to delete an instruction to adjust the stack
1205 pointer before a return from the function.
1206
1207 Note that this macro's value is relevant only for functions for which frame
1208 pointers are maintained. It is never safe to delete a final stack
1209 adjustment in a function that has no frame pointer, and the compiler knows
1210 this regardless of `EXIT_IGNORE_STACK'. */
1211#define EXIT_IGNORE_STACK 1
36a05131
BS
1212\f
1213/* Generating Code for Profiling. */
1214
1215/* A C statement or compound statement to output to FILE some assembler code to
1216 call the profiling subroutine `mcount'. Before calling, the assembler code
1217 must load the address of a counter variable into a register where `mcount'
1218 expects to find the address. The name of this variable is `LP' followed by
1219 the number LABELNO, so you would generate the name using `LP%d' in a
1220 `fprintf'.
1221
1222 The details of how the address should be passed to `mcount' are determined
7ec022b2 1223 by your operating system environment, not by GCC. To figure them out,
36a05131
BS
1224 compile a small program for profiling using the system's installed C
1225 compiler and look at the assembler code that results.
1226
1227 This declaration must be present, but it can be an abort if profiling is
1228 not implemented. */
1229
b16c1435 1230#define FUNCTION_PROFILER(FILE, LABELNO)
36a05131 1231
36a05131
BS
1232/* Trampolines for Nested Functions. */
1233
1234/* A C expression for the size in bytes of the trampoline, as an integer. */
1235#define TRAMPOLINE_SIZE frv_trampoline_size ()
1236
1237/* Alignment required for trampolines, in bits.
1238
1239 If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1240 aligning trampolines. */
34208acf 1241#define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
36a05131 1242
36a05131
BS
1243/* Define this macro if trampolines need a special subroutine to do their work.
1244 The macro should expand to a series of `asm' statements which will be
7ec022b2 1245 compiled with GCC. They go in a library function named
36a05131
BS
1246 `__transfer_from_trampoline'.
1247
1248 If you need to avoid executing the ordinary prologue code of a compiled C
1249 function when you jump to the subroutine, you can do so by placing a special
1250 label of your own in the assembler code. Use one `asm' statement to
1251 generate an assembler label, and another to make the label global. Then
1252 trampolines can use that label to jump directly to your special assembler
1253 code. */
1254
1255#ifdef __FRV_UNDERSCORE__
1256#define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1257#else
1258#define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1259#endif
1260
34208acf
AO
1261#define Twrite _write
1262
1263#if ! __FRV_FDPIC__
36a05131 1264#define TRANSFER_FROM_TRAMPOLINE \
34208acf 1265extern int Twrite (int, const void *, unsigned); \
36a05131
BS
1266 \
1267void \
f2206911 1268__trampoline_setup (short * addr, int size, int fnaddr, int sc) \
36a05131
BS
1269{ \
1270 extern short __trampoline_template[]; \
1271 short * to = addr; \
1272 short * from = &__trampoline_template[0]; \
1273 int i; \
1274 \
1275 if (size < 20) \
1276 { \
34208acf 1277 Twrite (2, "__trampoline_setup bad size\n", \
36a05131
BS
1278 sizeof ("__trampoline_setup bad size\n") - 1); \
1279 exit (-1); \
1280 } \
1281 \
1282 to[0] = from[0]; \
1283 to[1] = (short)(fnaddr); \
1284 to[2] = from[2]; \
1285 to[3] = (short)(sc); \
1286 to[4] = from[4]; \
1287 to[5] = (short)(fnaddr >> 16); \
1288 to[6] = from[6]; \
1289 to[7] = (short)(sc >> 16); \
1290 to[8] = from[8]; \
1291 to[9] = from[9]; \
1292 \
1293 for (i = 0; i < 20; i++) \
1294 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1295} \
1296 \
1297__asm__("\n" \
1298 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1299 "\t.text\n" \
1300 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1301 "\tsetlos #0, gr6\n" /* jump register */ \
1302 "\tsetlos #0, gr7\n" /* static chain */ \
1303 "\tsethi #0, gr6\n" \
1304 "\tsethi #0, gr7\n" \
1305 "\tjmpl @(gr0,gr6)\n");
34208acf
AO
1306#else
1307#define TRANSFER_FROM_TRAMPOLINE \
1308extern int Twrite (int, const void *, unsigned); \
1309 \
1310void \
1311__trampoline_setup (addr, size, fnaddr, sc) \
1312 short * addr; \
1313 int size; \
1314 int fnaddr; \
1315 int sc; \
1316{ \
1317 extern short __trampoline_template[]; \
1318 short * from = &__trampoline_template[0]; \
1319 int i; \
1320 short **desc = (short **)addr; \
1321 short * to = addr + 4; \
1322 \
1323 if (size != 32) \
1324 { \
1325 Twrite (2, "__trampoline_setup bad size\n", \
1326 sizeof ("__trampoline_setup bad size\n") - 1); \
1327 exit (-1); \
1328 } \
1329 \
6ef828bc
MS
1330 /* Create a function descriptor with the address of the code below \
1331 and NULL as the FDPIC value. We don't need the real GOT value \
1332 here, since we don't use it, so we use NULL, that is just as \
34208acf
AO
1333 good. */ \
1334 desc[0] = to; \
1335 desc[1] = NULL; \
1336 size -= 8; \
1337 \
1338 to[0] = from[0]; \
1339 to[1] = (short)(fnaddr); \
1340 to[2] = from[2]; \
1341 to[3] = (short)(sc); \
1342 to[4] = from[4]; \
1343 to[5] = (short)(fnaddr >> 16); \
1344 to[6] = from[6]; \
1345 to[7] = (short)(sc >> 16); \
1346 to[8] = from[8]; \
1347 to[9] = from[9]; \
1348 to[10] = from[10]; \
1349 to[11] = from[11]; \
1350 \
1351 for (i = 0; i < size; i++) \
1352 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1353} \
1354 \
1355__asm__("\n" \
1356 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1357 "\t.text\n" \
1358 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1359 "\tsetlos #0, gr6\n" /* Jump register. */ \
1360 "\tsetlos #0, gr7\n" /* Static chain. */ \
1361 "\tsethi #0, gr6\n" \
1362 "\tsethi #0, gr7\n" \
1363 "\tldd @(gr6,gr0),gr14\n" \
1364 "\tjmpl @(gr14,gr0)\n" \
1365 );
1366#endif
36a05131 1367
36a05131
BS
1368\f
1369/* Addressing Modes. */
1370
36a05131
BS
1371/* A number, the maximum number of registers that can appear in a valid memory
1372 address. Note that it is up to you to specify a value equal to the maximum
331d9186 1373 number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept. */
36a05131
BS
1374#define MAX_REGS_PER_ADDRESS 2
1375
36a05131
BS
1376/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1377 use as a base register. For hard registers, it should always accept those
1378 which the hardware permits and reject the others. Whether the macro accepts
1379 or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1380 described above. This usually requires two variant definitions, of which
1381 `REG_OK_STRICT' controls the one actually used. */
1382#ifdef REG_OK_STRICT
1383#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1384#else
1385#define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1386#endif
1387
1388/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1389 use as an index register.
1390
1391 The difference between an index register and a base register is that the
1392 index register may be scaled. If an address involves the sum of two
1393 registers, neither one of them scaled, then either one may be labeled the
1394 "base" and the other the "index"; but whichever labeling is used must fit
1395 the machine's constraints of which registers may serve in each capacity.
1396 The compiler will try both labelings, looking for one that is valid, and
1397 will reload one or both registers only if neither labeling works. */
1398#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1399
34208acf 1400#define FIND_BASE_TERM frv_find_base_term
36a05131 1401
36a05131
BS
1402/* The load-and-update commands allow pre-modification in addresses.
1403 The index has to be in a register. */
1404#define HAVE_PRE_MODIFY_REG 1
1405
1406\f
f1c9d07d
EC
1407/* We define extra CC modes in frv-modes.def so we need a selector. */
1408
036ff63f 1409#define SELECT_CC_MODE frv_select_cc_mode
36a05131
BS
1410
1411/* A C expression whose value is one if it is always safe to reverse a
1412 comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
1413 a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1414 must be zero.
1415
1416 You need not define this macro if it would always returns zero or if the
1417 floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
981f6289 1418 example, here is the definition used on the SPARC, where floating-point
36a05131
BS
1419 inequality comparisons are always given `CCFPEmode':
1420
1421 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
1422
1423/* On frv, don't consider floating point comparisons to be reversible. In
87b483a1 1424 theory, fp equality comparisons can be reversible. */
036ff63f
RS
1425#define REVERSIBLE_CC_MODE(MODE) \
1426 ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
36a05131 1427
36a05131
BS
1428\f
1429/* Describing Relative Costs of Operations. */
1430
36a05131
BS
1431/* A C expression for the cost of a branch instruction. A value of 1 is the
1432 default; other values are interpreted relative to that. */
3a4fd356 1433#define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
36a05131
BS
1434
1435/* Define this macro as a C expression which is nonzero if accessing less than
1436 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1437 word of memory, i.e., if such access require more than one instruction or if
1438 there is no difference in cost between byte and (aligned) word loads.
1439
1440 When this macro is not defined, the compiler will access a field by finding
1441 the smallest containing object; when it is defined, a fullword load will be
1442 used if alignment permits. Unless bytes accesses are faster than word
1443 accesses, using word accesses is preferable since it may eliminate
1444 subsequent memory access if subsequent accesses occur to other fields in the
1445 same word of the structure, but to different bytes. */
1446#define SLOW_BYTE_ACCESS 1
1447
36a05131
BS
1448/* Define this macro if it is as good or better to call a constant function
1449 address than to call an address kept in a register. */
1e8552c2 1450#define NO_FUNCTION_CSE 1
36a05131 1451
36a05131
BS
1452\f
1453/* Dividing the output into sections. */
1454
1455/* A C expression whose value is a string containing the assembler operation
1456 that should precede instructions and read-only data. Normally `".text"' is
1457 right. */
1458#define TEXT_SECTION_ASM_OP "\t.text"
1459
1460/* A C expression whose value is a string containing the assembler operation to
1461 identify the following data as writable initialized data. Normally
1462 `".data"' is right. */
1463#define DATA_SECTION_ASM_OP "\t.data"
1464
36a05131
BS
1465#define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
1466
1467/* Short Data Support */
1468#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
36a05131 1469
36a05131
BS
1470#undef INIT_SECTION_ASM_OP
1471#undef FINI_SECTION_ASM_OP
1472#define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
1473#define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
1474
90a63880
RH
1475#undef CTORS_SECTION_ASM_OP
1476#undef DTORS_SECTION_ASM_OP
1477#define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
1478#define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
1479
36a05131
BS
1480/* A C expression whose value is a string containing the assembler operation to
1481 switch to the fixup section that records all initialized pointers in a -fpic
1482 program so they can be changed program startup time if the program is loaded
1483 at a different address than linked for. */
1484#define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
36a05131
BS
1485\f
1486/* Position Independent Code. */
1487
1488/* A C expression that is nonzero if X is a legitimate immediate operand on the
1489 target machine when generating position independent code. You can assume
1490 that X satisfies `CONSTANT_P', so you need not check this. You can also
1491 assume FLAG_PIC is true, so you need not check it either. You need not
1492 define this macro if all constants (including `SYMBOL_REF') can be immediate
1493 operands when generating position independent code. */
1494#define LEGITIMATE_PIC_OPERAND_P(X) \
1495 ( GET_CODE (X) == CONST_INT \
1496 || GET_CODE (X) == CONST_DOUBLE \
1497 || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
6de9cd9a 1498 || got12_operand (X, VOIDmode)) \
36a05131
BS
1499
1500\f
1501/* The Overall Framework of an Assembler File. */
1502
1503/* A C string constant describing how to begin a comment in the target
1504 assembler language. The compiler assumes that the comment will end at the
1505 end of the line. */
1506#define ASM_COMMENT_START ";"
1507
1508/* A C string constant for text to be output before each `asm' statement or
1509 group of consecutive ones. Normally this is `"#APP"', which is a comment
1510 that has no effect on most assemblers but tells the GNU assembler that it
1511 must check the lines that follow for all valid assembler constructs. */
1512#define ASM_APP_ON "#APP\n"
1513
1514/* A C string constant for text to be output after each `asm' statement or
1515 group of consecutive ones. Normally this is `"#NO_APP"', which tells the
1516 GNU assembler to resume making the time-saving assumptions that are valid
1517 for ordinary compiler output. */
1518#define ASM_APP_OFF "#NO_APP\n"
1519
1520\f
1521/* Output of Data. */
1522
1523/* This is how to output a label to dwarf/dwarf2. */
1524#define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
1525do { \
1526 fprintf (STREAM, "\t.picptr\t"); \
1527 assemble_name (STREAM, LABEL); \
1528} while (0)
1529
1530/* Whether to emit the gas specific dwarf2 line number support. */
1531#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
1532\f
1533/* Output of Uninitialized Variables. */
1534
1535/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1536 assembler definition of a local-common-label named NAME whose size is SIZE
1537 bytes. The variable ROUNDED is the size rounded up to whatever alignment
1538 the caller wants.
1539
1540 Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
1541 before and after that, output the additional assembler syntax for defining
1542 the name, and a newline.
1543
1544 This macro controls how the assembler definitions of uninitialized static
1545 variables are output. */
1546#undef ASM_OUTPUT_LOCAL
1547
36a05131
BS
1548#undef ASM_OUTPUT_ALIGNED_LOCAL
1549
1550/* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
1551extern int size_directive_output;
1552
1553/* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
1554 parameter - the DECL of variable to be output, if there is one.
1555 This macro can be called with DECL == NULL_TREE. If you define
1556 this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
1557 `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
1558 handling the destination of the variable. */
1559#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
1560#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
1561do { \
fa37ed29 1562 if ((SIZE) > 0 && (SIZE) <= (unsigned HOST_WIDE_INT) g_switch_value) \
d6b5193b 1563 switch_to_section (get_named_section (NULL, ".sbss", 0)); \
36a05131 1564 else \
d6b5193b 1565 switch_to_section (bss_section); \
36a05131
BS
1566 ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
1567 ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
1568 ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
1569} while (0)
1570
1571\f
1572/* Output and Generation of Labels. */
1573
1574/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1575 assembler definition of a label named NAME. Use the expression
1576 `assemble_name (STREAM, NAME)' to output the name itself; before and after
1577 that, output the additional assembler syntax for defining the name, and a
1578 newline. */
1579#define ASM_OUTPUT_LABEL(STREAM, NAME) \
1580do { \
1581 assemble_name (STREAM, NAME); \
1582 fputs (":\n", STREAM); \
1583} while (0)
1584
5eb99654
KG
1585/* Globalizing directive for a label. */
1586#define GLOBAL_ASM_OP "\t.globl "
36a05131 1587
36a05131
BS
1588#undef ASM_GENERATE_INTERNAL_LABEL
1589#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1590do { \
1591 sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
1592} while (0)
1593
36a05131
BS
1594\f
1595/* Macros Controlling Initialization Routines. */
1596
36a05131
BS
1597#undef INIT_SECTION_ASM_OP
1598
1599/* If defined, `main' will call `__main' despite the presence of
1600 `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
1601 init section is not actually run automatically, but is still useful for
1602 collecting the lists of constructors and destructors. */
1603#define INVOKE__main
36a05131
BS
1604\f
1605/* Output of Assembler Instructions. */
1606
1607/* A C initializer containing the assembler's names for the machine registers,
1608 each one as a C string constant. This is what translates register numbers
1609 in the compiler into assembler language. */
1610#define REGISTER_NAMES \
1611{ \
1612 "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
1613 "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
1614 "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
1615 "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
1616 "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
1617 "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
1618 "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
1619 "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
1620 \
1621 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
1622 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
1623 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
1624 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
1625 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
1626 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
1627 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
1628 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
1629 \
1630 "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
1631 "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
1632 "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
c557edf4 1633 "acc8", "acc9", "acc10", "acc11", \
36a05131 1634 "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
c557edf4
RS
1635 "accg8", "accg9", "accg10", "accg11", \
1636 "ap", "lr", "lcr", "iacc0h", "iacc0l" \
36a05131
BS
1637}
1638
1639/* Define this macro if you are using an unusual assembler that
1640 requires different names for the machine instructions.
1641
1642 The definition is a C statement or statements which output an
1643 assembler instruction opcode to the stdio stream STREAM. The
1644 macro-operand PTR is a variable of type `char *' which points to
1645 the opcode name in its "internal" form--the form that is written
1646 in the machine description. The definition should output the
1647 opcode name to STREAM, performing any translation you desire, and
1648 increment the variable PTR to point at the end of the opcode so
1649 that it will not be output twice.
1650
1651 In fact, your macro definition may process less than the entire
1652 opcode name, or more than the opcode name; but if you want to
1653 process text that includes `%'-sequences to substitute operands,
1654 you must take care of the substitution yourself. Just be sure to
1655 increment PTR over whatever text should not be output normally.
1656
1657 If you need to look at the operand values, they can be found as the
1658 elements of `recog_operand'.
1659
1660 If the macro definition does nothing, the instruction is output in
1661 the usual way. */
1662
1663#define ASM_OUTPUT_OPCODE(STREAM, PTR)\
1664 (PTR) = frv_asm_output_opcode (STREAM, PTR)
1665
1666/* If defined, a C statement to be executed just prior to the output
1667 of assembler code for INSN, to modify the extracted operands so
1668 they will be output differently.
1669
1670 Here the argument OPVEC is the vector containing the operands
1671 extracted from INSN, and NOPERANDS is the number of elements of
1672 the vector which contain meaningful data for this insn. The
1673 contents of this vector are what will be used to convert the insn
1674 template into assembler code, so you can change the assembler
1675 output by changing the contents of the vector.
1676
1677 This macro is useful when various assembler syntaxes share a single
1678 file of instruction patterns; by defining this macro differently,
1679 you can cause a large class of instructions to be output
1680 differently (such as with rearranged operands). Naturally,
1681 variations in assembler syntax affecting individual insn patterns
1682 ought to be handled by writing conditional output routines in
1683 those patterns.
1684
1685 If this macro is not defined, it is equivalent to a null statement. */
1686
1687#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
1688 frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1689
36a05131
BS
1690#undef USER_LABEL_PREFIX
1691#define USER_LABEL_PREFIX ""
1692#define REGISTER_PREFIX ""
1693#define LOCAL_LABEL_PREFIX "."
1694#define IMMEDIATE_PREFIX "#"
1695
1696\f
1697/* Output of dispatch tables. */
1698
1699/* This macro should be provided on machines where the addresses in a dispatch
1700 table are relative to the table's own address.
1701
1702 The definition should be a C statement to output to the stdio stream STREAM
1703 an assembler pseudo-instruction to generate a difference between two labels.
1704 VALUE and REL are the numbers of two internal labels. The definitions of
4977bab6 1705 these labels are output using `(*targetm.asm_out.internal_label)', and they must be
36a05131
BS
1706 printed in the same way here. For example,
1707
1708 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
1709#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1710fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
1711
1712/* This macro should be provided on machines where the addresses in a dispatch
1713 table are absolute.
1714
1715 The definition should be a C statement to output to the stdio stream STREAM
1716 an assembler pseudo-instruction to generate a reference to a label. VALUE
1717 is the number of an internal label whose definition is output using
4977bab6 1718 `(*targetm.asm_out.internal_label)'. For example,
36a05131
BS
1719
1720 fprintf (STREAM, "\t.word L%d\n", VALUE) */
1721#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1722fprintf (STREAM, "\t.word .L%d\n", VALUE)
1723
e133c867 1724#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
36a05131
BS
1725\f
1726/* Assembler Commands for Exception Regions. */
1727
1728/* Define this macro to 0 if your target supports DWARF 2 frame unwind
1729 information, but it does not yet work with exception handling. Otherwise,
1730 if your target supports this information (if it defines
01a07a64
SB
1731 `INCOMING_RETURN_ADDR_RTX' and `OBJECT_FORMAT_ELF'), GCC will provide
1732 a default definition of 1.
36a05131
BS
1733
1734 If this macro is defined to 1, the DWARF 2 unwinder will be the default
1735 exception handling mechanism; otherwise, setjmp/longjmp will be used by
1736 default.
1737
1738 If this macro is defined to anything, the DWARF 2 unwinder will be used
1739 instead of inline unwinders and __unwind_function in the non-setjmp case. */
1740#define DWARF2_UNWIND_INFO 1
1741
1742#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
1743\f
1744/* Assembler Commands for Alignment. */
1745
36a05131
BS
1746#undef ASM_OUTPUT_SKIP
1747#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
58e15542 1748 fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
36a05131
BS
1749
1750/* A C statement to output to the stdio stream STREAM an assembler command to
1751 advance the location counter to a multiple of 2 to the POWER bytes. POWER
1752 will be a C expression of type `int'. */
1753#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1754 fprintf ((STREAM), "\t.p2align %d\n", (POWER))
1755
def49dc4
RS
1756/* Inside the text section, align with unpacked nops rather than zeros. */
1757#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
1758 fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
36a05131
BS
1759\f
1760/* Macros Affecting all Debug Formats. */
1761
1762/* A C expression that returns the DBX register number for the compiler
1763 register number REGNO. In simple cases, the value of this expression may be
1764 REGNO itself. But sometimes there are some registers that the compiler
1765 knows about and DBX does not, or vice versa. In such cases, some register
1766 may need to have one number in the compiler and another for DBX.
1767
7ec022b2 1768 If two registers have consecutive numbers inside GCC, and they can be
36a05131
BS
1769 used as a pair to hold a multiword value, then they *must* have consecutive
1770 numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
1771 will be unable to access such a pair, because they expect register pairs to
1772 be consecutive in their own numbering scheme.
1773
1774 If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
1775 preserve register pairs, then what you must do instead is redefine the
1776 actual register numbering scheme.
1777
1778 This declaration is required. */
1779#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1780
36a05131
BS
1781#undef PREFERRED_DEBUGGING_TYPE
1782#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
36a05131
BS
1783\f
1784/* Miscellaneous Parameters. */
1785
36a05131
BS
1786/* An alias for a machine mode name. This is the machine mode that elements of
1787 a jump-table should have. */
1788#define CASE_VECTOR_MODE SImode
1789
1790/* Define this macro if operations between registers with integral mode smaller
1791 than a word are always performed on the entire register. Most RISC machines
1792 have this property and most CISC machines do not. */
9e11bfef 1793#define WORD_REGISTER_OPERATIONS 1
36a05131
BS
1794
1795/* Define this macro to be a C expression indicating when insns that read
1796 memory in MODE, an integral mode narrower than a word, set the bits outside
1797 of MODE to be either the sign-extension or the zero-extension of the data
1798 read. Return `SIGN_EXTEND' for values of MODE for which the insn
f822d252 1799 sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
36a05131
BS
1800 modes.
1801
1802 This macro is not called with MODE non-integral or with a width greater than
1803 or equal to `BITS_PER_WORD', so you may return any value in this case. Do
f822d252 1804 not define this macro if it would always return `UNKNOWN'. On machines where
36a05131
BS
1805 this macro is defined, you will normally define it as the constant
1806 `SIGN_EXTEND' or `ZERO_EXTEND'. */
1807#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1808
1809/* Define if loading short immediate values into registers sign extends. */
58f2ae18 1810#define SHORT_IMMEDIATES_SIGN_EXTEND 1
36a05131 1811
36a05131
BS
1812/* The maximum number of bytes that a single instruction can move quickly from
1813 memory to memory. */
1814#define MOVE_MAX 8
1815
36a05131
BS
1816/* An alias for the machine mode for pointers. On most machines, define this
1817 to be the integer mode corresponding to the width of a hardware pointer;
1818 `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
1819 you must define this to be one of the partial integer modes, such as
1820 `PSImode'.
1821
1822 The width of `Pmode' must be at least as large as the value of
1823 `POINTER_SIZE'. If it is not equal, you must define the macro
1824 `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
1825#define Pmode SImode
1826
1827/* An alias for the machine mode used for memory references to functions being
1828 called, in `call' RTL expressions. On most machines this should be
1829 `QImode'. */
1830#define FUNCTION_MODE QImode
1831
36a05131
BS
1832/* A C expression for the maximum number of instructions to execute via
1833 conditional execution instructions instead of a branch. A value of
1834 BRANCH_COST+1 is the default if the machine does not use
1835 cc0, and 1 if it does use cc0. */
1836#define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
1837
36a05131
BS
1838/* A C expression to modify the code described by the conditional if
1839 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
1840 FALSE_EXPR for converting if-then and if-then-else code to conditional
1841 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
1842 tests cannot be converted. */
1843#define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
1844frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
1845
1846/* A C expression to modify the code described by the conditional if
1847 information CE_INFO, for the basic block BB, possibly updating the tests in
1848 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
1849 if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
1850 the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
1851 the tests cannot be converted. */
1852#define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
1853frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
1854
1855/* A C expression to modify the code described by the conditional if
1856 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
1857 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
1858 insn cannot be converted to be executed conditionally. */
1859#define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
1860(PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
1861
1862/* A C expression to perform any final machine dependent modifications in
1863 converting code to conditional execution in the code described by the
1864 conditional if information CE_INFO. */
1865#define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
1866
1867/* A C expression to cancel any machine dependent modifications in converting
1868 code to conditional execution in the code described by the conditional if
1869 information CE_INFO. */
1870#define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
1871
67a0732f
SB
1872/* Initialize the machine-specific static data for if-conversion. */
1873#define IFCVT_MACHDEP_INIT(CE_INFO) frv_ifcvt_machdep_init (CE_INFO)
36a05131 1874
36a05131
BS
1875/* The definition of the following macro results in that the 2nd jump
1876 optimization (after the 2nd insn scheduling) is minimal. It is
1877 necessary to define when start cycle marks of insns (TImode is used
1878 for this) is used for VLIW insn packing. Some jump optimizations
1879 make such marks invalid. These marks are corrected for some
1880 (minimal) optimizations. ??? Probably the macro is temporary.
1881 Final solution could making the 2nd jump optimizations before the
1882 2nd instruction scheduling or corrections of the marks for all jump
1883 optimizations. Although some jump optimizations are actually
1884 deoptimizations for VLIW (super-scalar) processors. */
1885
1886#define MINIMAL_SECOND_JUMP_OPTIMIZATION
1887
36a05131 1888
88cad84b 1889/* If the following macro is defined and nonzero and deterministic
36a05131
BS
1890 finite state automata are used for pipeline hazard recognition, we
1891 will try to exchange insns in queue ready to improve the schedule.
1892 The more macro value, the more tries will be made. */
1893#define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
1894
1895/* The following macro is used only when value of
1896 FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
1897 the more tries will be made to choose better schedule. If the
1898 macro value is zero or negative there will be no multi-pass
1899 scheduling. */
1900#define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
1901
36a05131
BS
1902enum frv_builtins
1903{
1904 FRV_BUILTIN_MAND,
1905 FRV_BUILTIN_MOR,
1906 FRV_BUILTIN_MXOR,
1907 FRV_BUILTIN_MNOT,
1908 FRV_BUILTIN_MAVEH,
1909 FRV_BUILTIN_MSATHS,
1910 FRV_BUILTIN_MSATHU,
1911 FRV_BUILTIN_MADDHSS,
1912 FRV_BUILTIN_MADDHUS,
1913 FRV_BUILTIN_MSUBHSS,
1914 FRV_BUILTIN_MSUBHUS,
1915 FRV_BUILTIN_MPACKH,
1916 FRV_BUILTIN_MQADDHSS,
1917 FRV_BUILTIN_MQADDHUS,
1918 FRV_BUILTIN_MQSUBHSS,
1919 FRV_BUILTIN_MQSUBHUS,
1920 FRV_BUILTIN_MUNPACKH,
1921 FRV_BUILTIN_MDPACKH,
1922 FRV_BUILTIN_MBTOH,
1923 FRV_BUILTIN_MHTOB,
1924 FRV_BUILTIN_MCOP1,
1925 FRV_BUILTIN_MCOP2,
1926 FRV_BUILTIN_MROTLI,
1927 FRV_BUILTIN_MROTRI,
1928 FRV_BUILTIN_MWCUT,
1929 FRV_BUILTIN_MSLLHI,
1930 FRV_BUILTIN_MSRLHI,
1931 FRV_BUILTIN_MSRAHI,
1932 FRV_BUILTIN_MEXPDHW,
1933 FRV_BUILTIN_MEXPDHD,
1934 FRV_BUILTIN_MMULHS,
1935 FRV_BUILTIN_MMULHU,
1936 FRV_BUILTIN_MMULXHS,
1937 FRV_BUILTIN_MMULXHU,
1938 FRV_BUILTIN_MMACHS,
1939 FRV_BUILTIN_MMACHU,
1940 FRV_BUILTIN_MMRDHS,
1941 FRV_BUILTIN_MMRDHU,
1942 FRV_BUILTIN_MQMULHS,
1943 FRV_BUILTIN_MQMULHU,
1944 FRV_BUILTIN_MQMULXHU,
1945 FRV_BUILTIN_MQMULXHS,
1946 FRV_BUILTIN_MQMACHS,
1947 FRV_BUILTIN_MQMACHU,
1948 FRV_BUILTIN_MCPXRS,
1949 FRV_BUILTIN_MCPXRU,
1950 FRV_BUILTIN_MCPXIS,
1951 FRV_BUILTIN_MCPXIU,
1952 FRV_BUILTIN_MQCPXRS,
1953 FRV_BUILTIN_MQCPXRU,
1954 FRV_BUILTIN_MQCPXIS,
1955 FRV_BUILTIN_MQCPXIU,
1956 FRV_BUILTIN_MCUT,
1957 FRV_BUILTIN_MCUTSS,
1958 FRV_BUILTIN_MWTACC,
1959 FRV_BUILTIN_MWTACCG,
1960 FRV_BUILTIN_MRDACC,
1961 FRV_BUILTIN_MRDACCG,
1962 FRV_BUILTIN_MTRAP,
1963 FRV_BUILTIN_MCLRACC,
1964 FRV_BUILTIN_MCLRACCA,
1965 FRV_BUILTIN_MDUNPACKH,
1966 FRV_BUILTIN_MBTOHE,
1967 FRV_BUILTIN_MQXMACHS,
1968 FRV_BUILTIN_MQXMACXHS,
1969 FRV_BUILTIN_MQMACXHS,
1970 FRV_BUILTIN_MADDACCS,
1971 FRV_BUILTIN_MSUBACCS,
1972 FRV_BUILTIN_MASACCS,
1973 FRV_BUILTIN_MDADDACCS,
1974 FRV_BUILTIN_MDSUBACCS,
1975 FRV_BUILTIN_MDASACCS,
1976 FRV_BUILTIN_MABSHS,
1977 FRV_BUILTIN_MDROTLI,
1978 FRV_BUILTIN_MCPLHI,
1979 FRV_BUILTIN_MCPLI,
1980 FRV_BUILTIN_MDCUTSSI,
1981 FRV_BUILTIN_MQSATHS,
c557edf4
RS
1982 FRV_BUILTIN_MQLCLRHS,
1983 FRV_BUILTIN_MQLMTHS,
1984 FRV_BUILTIN_MQSLLHI,
1985 FRV_BUILTIN_MQSRAHI,
36a05131
BS
1986 FRV_BUILTIN_MHSETLOS,
1987 FRV_BUILTIN_MHSETLOH,
1988 FRV_BUILTIN_MHSETHIS,
1989 FRV_BUILTIN_MHSETHIH,
1990 FRV_BUILTIN_MHDSETS,
c557edf4
RS
1991 FRV_BUILTIN_MHDSETH,
1992 FRV_BUILTIN_SMUL,
1993 FRV_BUILTIN_UMUL,
1994 FRV_BUILTIN_PREFETCH0,
1995 FRV_BUILTIN_PREFETCH,
1996 FRV_BUILTIN_SMASS,
1997 FRV_BUILTIN_SMSSS,
1998 FRV_BUILTIN_SMU,
1999 FRV_BUILTIN_SCUTSS,
2000 FRV_BUILTIN_ADDSS,
2001 FRV_BUILTIN_SUBSS,
2002 FRV_BUILTIN_SLASS,
2003 FRV_BUILTIN_IACCreadll,
2004 FRV_BUILTIN_IACCreadl,
2005 FRV_BUILTIN_IACCsetll,
2006 FRV_BUILTIN_IACCsetl,
c14ff86e
AH
2007 FRV_BUILTIN_SCAN,
2008 FRV_BUILTIN_READ8,
2009 FRV_BUILTIN_READ16,
2010 FRV_BUILTIN_READ32,
2011 FRV_BUILTIN_READ64,
2012 FRV_BUILTIN_WRITE8,
2013 FRV_BUILTIN_WRITE16,
2014 FRV_BUILTIN_WRITE32,
2015 FRV_BUILTIN_WRITE64
36a05131 2016};
c557edf4 2017#define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
36a05131 2018
36a05131
BS
2019/* Enable prototypes on the call rtl functions. */
2020#define MD_CALL_PROTOTYPES 1
2021
c557edf4
RS
2022#define CPU_UNITS_QUERY 1
2023
36a05131 2024#endif /* __FRV_H__ */