]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/h8300/h8300.c
2003-06-26 Nathan C. Myers <ncm-nospam@cantrip.org>
[thirdparty/gcc.git] / gcc / config / h8300 / h8300.c
CommitLineData
e1629549 1/* Subroutines for insn-output.c for Hitachi H8/300.
7913b5f4 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
f420bedf 3 2001, 2002, 2003 Free Software Foundation, Inc.
b839e0b4 4 Contributed by Steve Chamberlain (sac@cygnus.com),
5 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
e1629549 6
dbbae424 7This file is part of GCC.
e1629549 8
dbbae424 9GCC is free software; you can redistribute it and/or modify
e1629549 10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
dbbae424 14GCC is distributed in the hope that it will be useful,
e1629549 15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
dbbae424 20along with GCC; see the file COPYING. If not, write to
b0603eb3 21the Free Software Foundation, 59 Temple Place - Suite 330,
22Boston, MA 02111-1307, USA. */
e1629549 23
e1629549 24#include "config.h"
7014838c 25#include "system.h"
805e22b2 26#include "coretypes.h"
27#include "tm.h"
e1629549 28#include "rtl.h"
4faf81b8 29#include "tree.h"
e1629549 30#include "regs.h"
31#include "hard-reg-set.h"
32#include "real.h"
33#include "insn-config.h"
34#include "conditions.h"
e1629549 35#include "output.h"
36#include "insn-attr.h"
37#include "flags.h"
38#include "recog.h"
39#include "expr.h"
4faf81b8 40#include "function.h"
9305fe33 41#include "toplev.h"
1fcd08b1 42#include "c-pragma.h"
9305fe33 43#include "tm_p.h"
f8870f17 44#include "ggc.h"
a767736d 45#include "target.h"
46#include "target-def.h"
e1629549 47
48/* Forward declarations. */
230002f2 49static const char *byte_reg (rtx, int);
50static int h8300_interrupt_function_p (tree);
51static int h8300_monitor_function_p (tree);
52static int h8300_os_task_function_p (tree);
53static void dosize (int, unsigned int);
54static int round_frame_size (int);
55static unsigned int compute_saved_regs (void);
56static void push (int);
57static void pop (int);
58static const char *cond_string (enum rtx_code);
59static unsigned int h8300_asm_insn_count (const char *);
230002f2 60static tree h8300_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
61static tree h8300_handle_eightbit_data_attribute (tree *, tree, tree, int, bool *);
62static tree h8300_handle_tiny_data_attribute (tree *, tree, tree, int, bool *);
6e4758ce 63#ifndef OBJECT_FORMAT_ELF
230002f2 64static void h8300_asm_named_section (const char *, unsigned int);
6e4758ce 65#endif
230002f2 66static int h8300_and_costs (rtx);
67static int h8300_shift_costs (rtx);
b11bfc61 68
b839e0b4 69/* CPU_TYPE, says what cpu we're compiling for. */
70int cpu_type;
71
41ed3bcd 72/* True if a #pragma interrupt has been seen for the current function. */
73static int pragma_interrupt;
e1629549 74
75/* True if a #pragma saveall has been seen for the current function. */
8ba450ad 76static int pragma_saveall;
e1629549 77
9305fe33 78static const char *const names_big[] =
eb2aa24e 79{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" };
b839e0b4 80
9305fe33 81static const char *const names_extended[] =
eb2aa24e 82{ "er0", "er1", "er2", "er3", "er4", "er5", "er6", "er7" };
b839e0b4 83
9305fe33 84static const char *const names_upper_extended[] =
eb2aa24e 85{ "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7" };
b839e0b4 86
87/* Points to one of the above. */
88/* ??? The above could be put in an array indexed by CPU_TYPE. */
9305fe33 89const char * const *h8_reg_names;
b839e0b4 90
91/* Various operations needed by the following, indexed by CPU_TYPE. */
b839e0b4 92
9305fe33 93const char *h8_push_op, *h8_pop_op, *h8_mov_op;
d37aaac2 94
95/* Machine-specific symbol_ref flags. */
96#define SYMBOL_FLAG_FUNCVEC_FUNCTION (SYMBOL_FLAG_MACH_DEP << 0)
97#define SYMBOL_FLAG_EIGHTBIT_DATA (SYMBOL_FLAG_MACH_DEP << 1)
98#define SYMBOL_FLAG_TINY_DATA (SYMBOL_FLAG_MACH_DEP << 2)
a767736d 99\f
0650a2e5 100/* See below where shifts are handled for explanation of this enum. */
101
102enum shift_alg
103{
104 SHIFT_INLINE,
105 SHIFT_ROT_AND,
106 SHIFT_SPECIAL,
107 SHIFT_LOOP
108};
109
110/* Symbols of the various shifts which can be used as indices. */
111
112enum shift_type
113{
114 SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
115};
116
117/* Macros to keep the shift algorithm tables small. */
118#define INL SHIFT_INLINE
119#define ROT SHIFT_ROT_AND
120#define LOP SHIFT_LOOP
121#define SPC SHIFT_SPECIAL
122
123/* The shift algorithms for each machine, mode, shift type, and shift
124 count are defined below. The three tables below correspond to
125 QImode, HImode, and SImode, respectively. Each table is organized
cc72e60a 126 by, in the order of indices, machine, shift type, and shift count. */
0650a2e5 127
128static enum shift_alg shift_alg_qi[3][3][8] = {
129 {
130 /* TARGET_H8300 */
131 /* 0 1 2 3 4 5 6 7 */
132 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
133 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
134 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
135 },
136 {
137 /* TARGET_H8300H */
138 /* 0 1 2 3 4 5 6 7 */
139 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
140 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
141 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
142 },
143 {
144 /* TARGET_H8300S */
145 /* 0 1 2 3 4 5 6 7 */
146 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_ASHIFT */
147 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_LSHIFTRT */
148 { INL, INL, INL, INL, INL, INL, INL, SPC } /* SHIFT_ASHIFTRT */
149 }
150};
151
152static enum shift_alg shift_alg_hi[3][3][16] = {
153 {
154 /* TARGET_H8300 */
155 /* 0 1 2 3 4 5 6 7 */
156 /* 8 9 10 11 12 13 14 15 */
157 { INL, INL, INL, INL, INL, INL, INL, SPC,
158 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
159 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
160 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
161 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
162 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
163 },
164 {
165 /* TARGET_H8300H */
166 /* 0 1 2 3 4 5 6 7 */
167 /* 8 9 10 11 12 13 14 15 */
168 { INL, INL, INL, INL, INL, INL, INL, SPC,
169 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
170 { INL, INL, INL, INL, INL, INL, INL, SPC,
171 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
172 { INL, INL, INL, INL, INL, INL, INL, SPC,
173 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
174 },
175 {
176 /* TARGET_H8300S */
177 /* 0 1 2 3 4 5 6 7 */
178 /* 8 9 10 11 12 13 14 15 */
179 { INL, INL, INL, INL, INL, INL, INL, INL,
180 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
181 { INL, INL, INL, INL, INL, INL, INL, INL,
182 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
183 { INL, INL, INL, INL, INL, INL, INL, INL,
184 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
185 }
186};
187
188static enum shift_alg shift_alg_si[3][3][32] = {
189 {
190 /* TARGET_H8300 */
191 /* 0 1 2 3 4 5 6 7 */
192 /* 8 9 10 11 12 13 14 15 */
193 /* 16 17 18 19 20 21 22 23 */
194 /* 24 25 26 27 28 29 30 31 */
195 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
196 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
197 SPC, SPC, SPC, SPC, SPC, LOP, LOP, LOP,
198 SPC, SPC, SPC, SPC, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFT */
199 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
200 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC,
201 SPC, SPC, SPC, LOP, LOP, LOP, LOP, LOP,
202 SPC, SPC, SPC, SPC, SPC, LOP, LOP, SPC }, /* SHIFT_LSHIFTRT */
203 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
204 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
205 SPC, SPC, LOP, LOP, LOP, LOP, LOP, LOP,
206 SPC, SPC, SPC, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
207 },
208 {
209 /* TARGET_H8300H */
210 /* 0 1 2 3 4 5 6 7 */
211 /* 8 9 10 11 12 13 14 15 */
212 /* 16 17 18 19 20 21 22 23 */
213 /* 24 25 26 27 28 29 30 31 */
214 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
215 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
216 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
567c4b66 217 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
0650a2e5 218 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
219 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
220 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
567c4b66 221 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
0650a2e5 222 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
223 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
224 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
225 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
226 },
227 {
228 /* TARGET_H8300S */
229 /* 0 1 2 3 4 5 6 7 */
230 /* 8 9 10 11 12 13 14 15 */
231 /* 16 17 18 19 20 21 22 23 */
232 /* 24 25 26 27 28 29 30 31 */
233 { INL, INL, INL, INL, INL, INL, INL, INL,
234 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
235 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
567c4b66 236 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
0650a2e5 237 { INL, INL, INL, INL, INL, INL, INL, INL,
238 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
239 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
567c4b66 240 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
0650a2e5 241 { INL, INL, INL, INL, INL, INL, INL, INL,
242 INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
243 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
244 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
245 }
246};
247
248#undef INL
249#undef ROT
250#undef LOP
251#undef SPC
252
253enum h8_cpu
254{
255 H8_300,
256 H8_300H,
257 H8_S
258};
259
b839e0b4 260/* Initialize various cpu specific globals at start up. */
261
262void
230002f2 263h8300_init_once (void)
b839e0b4 264{
1592a00c 265 static const char *const h8_push_ops[2] = { "push" , "push.l" };
266 static const char *const h8_pop_ops[2] = { "pop" , "pop.l" };
267 static const char *const h8_mov_ops[2] = { "mov.w", "mov.l" };
268
b839e0b4 269 if (TARGET_H8300)
270 {
271 cpu_type = (int) CPU_H8300;
272 h8_reg_names = names_big;
273 }
274 else
275 {
11f95d7c 276 /* For this we treat the H8/300H and H8S the same. */
b839e0b4 277 cpu_type = (int) CPU_H8300H;
278 h8_reg_names = names_extended;
279 }
280 h8_push_op = h8_push_ops[cpu_type];
281 h8_pop_op = h8_pop_ops[cpu_type];
282 h8_mov_op = h8_mov_ops[cpu_type];
92d7ef92 283
284 if (!TARGET_H8300S && TARGET_MAC)
f060a027 285 {
68435912 286 error ("-ms2600 is used without -ms");
cf976cad 287 target_flags |= MASK_H8300S;
f060a027 288 }
16b503e9 289
35a462ce 290 if (TARGET_H8300 && TARGET_NORMAL_MODE)
291 {
5d4af384 292 error ("-mn is used without -mh or -ms");
35a462ce 293 target_flags ^= MASK_NORMAL_MODE;
294 }
0650a2e5 295
9f56f86b 296 /* Some of the shifts are optimized for speed by default.
0650a2e5 297 See http://gcc.gnu.org/ml/gcc-patches/2002-07/msg01858.html
9f56f86b 298 If optimizing for size, change shift_alg for those shift to
0650a2e5 299 SHIFT_LOOP. */
3a599070 300 if (optimize_size)
0650a2e5 301 {
3a599070 302 /* H8/300 */
303 shift_alg_hi[H8_300][SHIFT_ASHIFT][5] = SHIFT_LOOP;
304 shift_alg_hi[H8_300][SHIFT_ASHIFT][6] = SHIFT_LOOP;
305 shift_alg_hi[H8_300][SHIFT_ASHIFT][13] = SHIFT_LOOP;
306 shift_alg_hi[H8_300][SHIFT_ASHIFT][14] = SHIFT_LOOP;
0650a2e5 307
3a599070 308 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][13] = SHIFT_LOOP;
309 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][14] = SHIFT_LOOP;
0650a2e5 310
3a599070 311 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
312 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
0650a2e5 313
3a599070 314 /* H8/300H */
315 shift_alg_hi[H8_300H][SHIFT_ASHIFT][5] = SHIFT_LOOP;
316 shift_alg_hi[H8_300H][SHIFT_ASHIFT][6] = SHIFT_LOOP;
0650a2e5 317
3a599070 318 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][5] = SHIFT_LOOP;
319 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][6] = SHIFT_LOOP;
0650a2e5 320
3a599070 321 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][5] = SHIFT_LOOP;
322 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][6] = SHIFT_LOOP;
323 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
324 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
0650a2e5 325
326 /* H8S */
3a599070 327 shift_alg_hi[H8_S][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
0650a2e5 328 }
b839e0b4 329}
e1629549 330
7198848c 331static const char *
230002f2 332byte_reg (rtx x, int b)
e1629549 333{
ded3e58c 334 static const char *const names_small[] = {
335 "r0l", "r0h", "r1l", "r1h", "r2l", "r2h", "r3l", "r3h",
336 "r4l", "r4h", "r5l", "r5h", "r6l", "r6h", "r7l", "r7h"
337 };
e1629549 338
339 return names_small[REGNO (x) * 2 + b];
340}
341
342/* REGNO must be saved/restored across calls if this macro is true. */
b839e0b4 343
ded3e58c 344#define WORD_REG_USED(regno) \
345 (regno < 7 \
346 /* No need to save registers if this function will not return. */ \
347 && ! TREE_THIS_VOLATILE (current_function_decl) \
348 && (pragma_saveall \
349 /* Save any call saved register that was used. */ \
350 || (regs_ever_live[regno] && !call_used_regs[regno]) \
351 /* Save the frame pointer if it was used. */ \
352 || (regno == FRAME_POINTER_REGNUM && regs_ever_live[regno]) \
353 /* Save any register used in an interrupt handler. */ \
41ed3bcd 354 || (h8300_current_function_interrupt_function_p () \
355 && regs_ever_live[regno]) \
ded3e58c 356 /* Save call clobbered registers in non-leaf interrupt \
357 handlers. */ \
41ed3bcd 358 || (h8300_current_function_interrupt_function_p () \
ded3e58c 359 && call_used_regs[regno] \
3754a8bb 360 && !current_function_is_leaf)))
e1629549 361
362/* Output assembly language to FILE for the operation OP with operand size
b839e0b4 363 SIZE to adjust the stack pointer. */
b839e0b4 364
e1629549 365static void
8f260b97 366dosize (sign, size)
b2dd6aa3 367 int sign;
e1629549 368 unsigned int size;
e1629549 369{
8f260b97 370 /* H8/300 cannot add/subtract a large constant with a single
371 instruction. If a temporary register is available, load the
372 constant to it and then do the addition. */
373 if (TARGET_H8300
374 && size > 4
375 && !h8300_current_function_interrupt_function_p ()
376 && !(current_function_needs_context && sign < 0))
b9393aaf 377 {
8f260b97 378 rtx new_sp;
379 rtx r3 = gen_rtx_REG (Pmode, 3);
380 emit_insn (gen_rtx_SET (Pmode, r3, GEN_INT (sign * size)));
381 new_sp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, r3);
382 emit_insn (gen_rtx_SET (Pmode, stack_pointer_rtx, new_sp));
bfc1492f 383 }
384 else
385 {
8f260b97 386 /* The stack adjustment made here is further optimized by the
387 splitter. In case of H8/300, the splitter always splits the
388 addition emitted here to make the adjustment
389 interrupt-safe. */
390 rtx new_sp = plus_constant (stack_pointer_rtx, sign * size);
391 emit_insn (gen_rtx_SET (Pmode, stack_pointer_rtx, new_sp));
e1629549 392 }
393}
394
b1292c73 395/* Round up frame size SIZE. */
396
397static int
230002f2 398round_frame_size (int size)
b1292c73 399{
b25ffd74 400 return ((size + STACK_BOUNDARY / BITS_PER_UNIT - 1)
401 & -STACK_BOUNDARY / BITS_PER_UNIT);
b1292c73 402}
403
404/* Compute which registers to push/pop.
405 Return a bit vector of registers. */
406
407static unsigned int
230002f2 408compute_saved_regs (void)
b1292c73 409{
410 unsigned int saved_regs = 0;
411 int regno;
412
413 /* Construct a bit vector of registers to be pushed/popped. */
5d822c00 414 for (regno = 0; regno <= FRAME_POINTER_REGNUM; regno++)
b1292c73 415 {
416 if (WORD_REG_USED (regno))
417 saved_regs |= 1 << regno;
418 }
419
420 /* Don't push/pop the frame pointer as it is treated separately. */
421 if (frame_pointer_needed)
422 saved_regs &= ~(1 << FRAME_POINTER_REGNUM);
423
424 return saved_regs;
425}
426
8f260b97 427/* Emit an insn to push register RN. */
b1292c73 428
429static void
230002f2 430push (int rn)
b1292c73 431{
8f260b97 432 rtx reg = gen_rtx_REG (word_mode, rn);
433 rtx x;
434
4081a531 435 if (TARGET_H8300)
8f260b97 436 x = gen_push_h8300 (reg);
4081a531 437 else
8f260b97 438 x = gen_push_h8300hs (reg);
439 x = emit_insn (x);
440 REG_NOTES (x) = gen_rtx_EXPR_LIST (REG_INC, stack_pointer_rtx, 0);
b1292c73 441}
442
8f260b97 443/* Emit an insn to pop register RN. */
b1292c73 444
445static void
230002f2 446pop (int rn)
b1292c73 447{
8f260b97 448 rtx reg = gen_rtx_REG (word_mode, rn);
449 rtx x;
450
4081a531 451 if (TARGET_H8300)
8f260b97 452 x = gen_pop_h8300 (reg);
4081a531 453 else
8f260b97 454 x = gen_pop_h8300hs (reg);
455 x = emit_insn (x);
456 REG_NOTES (x) = gen_rtx_EXPR_LIST (REG_INC, stack_pointer_rtx, 0);
b1292c73 457}
e1629549 458
f2702e8a 459/* This is what the stack looks like after the prolog of
e1629549 460 a function with a frame has been set up:
461
b839e0b4 462 <args>
463 PC
464 FP <- fp
465 <locals>
9f56f86b 466 <saved registers> <- sp
e1629549 467
468 This is what the stack looks like after the prolog of
469 a function which doesn't have a frame:
470
b839e0b4 471 <args>
472 PC
473 <locals>
9f56f86b 474 <saved registers> <- sp
e1629549 475*/
476
8f260b97 477/* Generate RTL code for the function prologue. */
b1292c73 478
8f260b97 479void
230002f2 480h8300_expand_prologue (void)
e1629549 481{
b2adb3e0 482 int regno;
b1292c73 483 int saved_regs;
97709d8d 484 int n_regs;
e1629549 485
09c48b9c 486 /* If the current function has the OS_Task attribute set, then
487 we have a naked prologue. */
488 if (h8300_os_task_function_p (current_function_decl))
8f260b97 489 return;
09c48b9c 490
491 if (h8300_monitor_function_p (current_function_decl))
8f260b97 492 /* My understanding of monitor functions is they act just like
493 interrupt functions, except the prologue must mask
494 interrupts. */
495 emit_insn (gen_monitor_prologue ());
09c48b9c 496
b839e0b4 497 if (frame_pointer_needed)
498 {
eb2aa24e 499 /* Push fp. */
8f260b97 500 push (FRAME_POINTER_REGNUM);
501 emit_insn (gen_rtx_SET (Pmode, frame_pointer_rtx, stack_pointer_rtx));
69b4e418 502 }
b839e0b4 503
eb2aa24e 504 /* Leave room for locals. */
b36ddff8 505 dosize (-1, round_frame_size (get_frame_size ()));
e1629549 506
b1292c73 507 /* Push the rest of the registers in ascending order. */
508 saved_regs = compute_saved_regs ();
b2adb3e0 509 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno += n_regs)
97709d8d 510 {
97709d8d 511 n_regs = 1;
b1292c73 512 if (saved_regs & (1 << regno))
69b4e418 513 {
514 if (TARGET_H8300S)
515 {
97709d8d 516 /* See how many registers we can push at the same time. */
517 if ((regno == 0 || regno == 4)
b1292c73 518 && ((saved_regs >> regno) & 0x0f) == 0x0f)
97709d8d 519 n_regs = 4;
520
521 else if ((regno == 0 || regno == 4)
b1292c73 522 && ((saved_regs >> regno) & 0x07) == 0x07)
97709d8d 523 n_regs = 3;
524
525 else if ((regno == 0 || regno == 2 || regno == 4 || regno == 6)
b1292c73 526 && ((saved_regs >> regno) & 0x03) == 0x03)
97709d8d 527 n_regs = 2;
69b4e418 528 }
97709d8d 529
b2dd6aa3 530 switch (n_regs)
531 {
532 case 1:
8f260b97 533 push (regno);
b2dd6aa3 534 break;
535 case 2:
8f260b97 536 emit_insn (gen_stm_h8300s_2 (gen_rtx_REG (SImode, regno),
537 gen_rtx_REG (SImode, regno + 1)));
b2dd6aa3 538 break;
539 case 3:
8f260b97 540 emit_insn (gen_stm_h8300s_3 (gen_rtx_REG (SImode, regno),
541 gen_rtx_REG (SImode, regno + 1),
542 gen_rtx_REG (SImode, regno + 2)));
b2dd6aa3 543 break;
544 case 4:
8f260b97 545 emit_insn (gen_stm_h8300s_4 (gen_rtx_REG (SImode, regno),
546 gen_rtx_REG (SImode, regno + 1),
547 gen_rtx_REG (SImode, regno + 2),
548 gen_rtx_REG (SImode, regno + 3)));
b2dd6aa3 549 break;
550 default:
551 abort ();
552 }
e1629549 553 }
554 }
555}
556
8f260b97 557int
230002f2 558h8300_can_use_return_insn_p (void)
8f260b97 559{
560 return (reload_completed
561 && !frame_pointer_needed
562 && get_frame_size () == 0
563 && compute_saved_regs () == 0);
564}
e1629549 565
8f260b97 566/* Generate RTL code for the function epilogue. */
567
568void
230002f2 569h8300_expand_epilogue (void)
e1629549 570{
b2adb3e0 571 int regno;
b1292c73 572 int saved_regs;
97709d8d 573 int n_regs;
e1629549 574
41ed3bcd 575 if (h8300_os_task_function_p (current_function_decl))
8f260b97 576 /* OS_Task epilogues are nearly naked -- they just have an
577 rts instruction. */
578 return;
e1629549 579
b1292c73 580 /* Pop the saved registers in descending order. */
581 saved_regs = compute_saved_regs ();
b2adb3e0 582 for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno -= n_regs)
97709d8d 583 {
97709d8d 584 n_regs = 1;
b1292c73 585 if (saved_regs & (1 << regno))
e1629549 586 {
69b4e418 587 if (TARGET_H8300S)
588 {
97709d8d 589 /* See how many registers we can pop at the same time. */
590 if ((regno == 7 || regno == 3)
b1292c73 591 && ((saved_regs >> (regno - 3)) & 0x0f) == 0x0f)
97709d8d 592 n_regs = 4;
593
594 else if ((regno == 6 || regno == 2)
b1292c73 595 && ((saved_regs >> (regno - 2)) & 0x07) == 0x07)
97709d8d 596 n_regs = 3;
597
598 else if ((regno == 7 || regno == 5 || regno == 3 || regno == 1)
b1292c73 599 && ((saved_regs >> (regno - 1)) & 0x03) == 0x03)
97709d8d 600 n_regs = 2;
69b4e418 601 }
97709d8d 602
b2dd6aa3 603 switch (n_regs)
604 {
605 case 1:
8f260b97 606 pop (regno);
b2dd6aa3 607 break;
608 case 2:
8f260b97 609 emit_insn (gen_ldm_h8300s_2 (gen_rtx_REG (SImode, regno - 1),
610 gen_rtx_REG (SImode, regno)));
b2dd6aa3 611 break;
612 case 3:
8f260b97 613 emit_insn (gen_ldm_h8300s_3 (gen_rtx_REG (SImode, regno - 2),
614 gen_rtx_REG (SImode, regno - 1),
615 gen_rtx_REG (SImode, regno)));
b2dd6aa3 616 break;
617 case 4:
8f260b97 618 emit_insn (gen_ldm_h8300s_4 (gen_rtx_REG (SImode, regno - 3),
619 gen_rtx_REG (SImode, regno - 2),
620 gen_rtx_REG (SImode, regno - 1),
621 gen_rtx_REG (SImode, regno)));
b2dd6aa3 622 break;
623 default:
624 abort ();
625 }
e1629549 626 }
e1629549 627 }
b839e0b4 628
eb2aa24e 629 /* Deallocate locals. */
b36ddff8 630 dosize (1, round_frame_size (get_frame_size ()));
69b4e418 631
eb2aa24e 632 /* Pop frame pointer if we had one. */
69b4e418 633 if (frame_pointer_needed)
8f260b97 634 pop (FRAME_POINTER_REGNUM);
635}
69b4e418 636
8f260b97 637/* Output assembly language code for the function epilogue. */
e1629549 638
8f260b97 639static void
230002f2 640h8300_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
641 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
8f260b97 642{
e1629549 643 pragma_saveall = 0;
b839e0b4 644}
230002f2 645
41ed3bcd 646/* Return nonzero if the current function is an interrupt
647 function. */
648
649int
230002f2 650h8300_current_function_interrupt_function_p (void)
41ed3bcd 651{
652 return (h8300_interrupt_function_p (current_function_decl)
653 || h8300_monitor_function_p (current_function_decl));
654}
655
b839e0b4 656/* Output assembly code for the start of the file. */
657
92c473b8 658static void
659h8300_file_start (void)
b839e0b4 660{
92c473b8 661 default_file_start ();
9f56f86b 662
b839e0b4 663 if (TARGET_H8300H)
92c473b8 664 fputs (TARGET_NORMAL_MODE ? "\t.h8300hn\n" : "\t.h8300h\n", asm_out_file);
69b4e418 665 else if (TARGET_H8300S)
92c473b8 666 fputs (TARGET_NORMAL_MODE ? "\t.h8300sn\n" : "\t.h8300s\n", asm_out_file);
b839e0b4 667}
668
669/* Output assembly language code for the end of file. */
670
f6940372 671static void
230002f2 672h8300_file_end (void)
b839e0b4 673{
f6940372 674 fputs ("\t.end\n", asm_out_file);
e1629549 675}
676\f
f39dbbab 677/* Return true if OP is a valid source operand for an integer move
e1629549 678 instruction. */
b839e0b4 679
e1629549 680int
230002f2 681general_operand_src (rtx op, enum machine_mode mode)
e1629549 682{
5b145e0c 683 if (GET_MODE (op) == mode
684 && GET_CODE (op) == MEM
685 && GET_CODE (XEXP (op, 0)) == POST_INC)
b839e0b4 686 return 1;
e1629549 687 return general_operand (op, mode);
688}
689
690/* Return true if OP is a valid destination operand for an integer move
10b87dba 691 instruction. */
b839e0b4 692
e1629549 693int
230002f2 694general_operand_dst (rtx op, enum machine_mode mode)
e1629549 695{
5b145e0c 696 if (GET_MODE (op) == mode
697 && GET_CODE (op) == MEM
698 && GET_CODE (XEXP (op, 0)) == PRE_DEC)
b839e0b4 699 return 1;
e1629549 700 return general_operand (op, mode);
701}
b839e0b4 702
3a59a065 703/* Return true if OP is a constant that contains only one 1 in its
704 binary representation. */
b839e0b4 705
706int
230002f2 707single_one_operand (rtx operand, enum machine_mode mode ATTRIBUTE_UNUSED)
b839e0b4 708{
3a59a065 709 if (GET_CODE (operand) == CONST_INT)
710 {
711 /* We really need to do this masking because 0x80 in QImode is
712 represented as -128 for example. */
5c7b13c9 713 if (exact_log2 (INTVAL (operand) & GET_MODE_MASK (mode)) >= 0)
3a59a065 714 return 1;
715 }
716
717 return 0;
718}
719
720/* Return true if OP is a constant that contains only one 0 in its
721 binary representation. */
722
723int
230002f2 724single_zero_operand (rtx operand, enum machine_mode mode ATTRIBUTE_UNUSED)
3a59a065 725{
726 if (GET_CODE (operand) == CONST_INT)
727 {
728 /* We really need to do this masking because 0x80 in QImode is
729 represented as -128 for example. */
5c7b13c9 730 if (exact_log2 (~INTVAL (operand) & GET_MODE_MASK (mode)) >= 0)
3a59a065 731 return 1;
732 }
733
734 return 0;
b839e0b4 735}
736
b839e0b4 737/* Return true if OP is a valid call operand. */
738
739int
230002f2 740call_insn_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
b839e0b4 741{
742 if (GET_CODE (op) == MEM)
743 {
744 rtx inside = XEXP (op, 0);
745 if (register_operand (inside, Pmode))
746 return 1;
747 if (CONSTANT_ADDRESS_P (inside))
748 return 1;
749 }
750 return 0;
751}
752
9c068f13 753/* Return 1 if an addition/subtraction of a constant integer can be
3c4d0c20 754 transformed into two consecutive adds/subs that are faster than the
9c068f13 755 straightforward way. Otherwise, return 0. */
3c4d0c20 756
0a56558f 757int
230002f2 758two_insn_adds_subs_operand (rtx op, enum machine_mode mode)
0a56558f 759{
760 if (GET_CODE (op) == CONST_INT)
761 {
8e7d5182 762 HOST_WIDE_INT value = INTVAL (op);
0a56558f 763
3c4d0c20 764 /* Force VALUE to be positive so that we do not have to consider
765 the negative case. */
766 if (value < 0)
767 value = -value;
8e7d5182 768 if (TARGET_H8300H || TARGET_H8300S)
769 {
3c4d0c20 770 /* A constant addition/subtraction takes 2 states in QImode,
771 4 states in HImode, and 6 states in SImode. Thus, the
772 only case we can win is when SImode is used, in which
0c2bee79 773 case, two adds/subs are used, taking 4 states. */
3c4d0c20 774 if (mode == SImode
775 && (value == 2 + 1
776 || value == 4 + 1
777 || value == 4 + 2
778 || value == 4 + 4))
9c068f13 779 return 1;
8e7d5182 780 }
781 else
782 {
c5599633 783 /* We do not profit directly by splitting addition or
784 subtraction of 3 and 4. However, since these are
785 implemented as a sequence of adds or subs, they do not
786 clobber (cc0) unlike a sequence of add.b and add.x. */
787 if (mode == HImode
3c4d0c20 788 && (value == 2 + 1
789 || value == 2 + 2))
8e7d5182 790 return 1;
791 }
792 }
fe19f1e0 793
fe19f1e0 794 return 0;
795}
796
c5673261 797/* Split an add of a small constant into two adds/subs insns.
798
799 If USE_INCDEC_P is nonzero, we generate the last insn using inc/dec
800 instead of adds/subs. */
8e7d5182 801
802void
230002f2 803split_adds_subs (enum machine_mode mode, rtx *operands)
0a56558f 804{
8e7d5182 805 HOST_WIDE_INT val = INTVAL (operands[1]);
806 rtx reg = operands[0];
d8afbfc6 807 HOST_WIDE_INT sign = 1;
808 HOST_WIDE_INT amount;
90b024e5 809 rtx (*gen_add) (rtx, rtx, rtx);
0a56558f 810
d8afbfc6 811 /* Force VAL to be positive so that we do not have to consider the
812 sign. */
813 if (val < 0)
0a56558f 814 {
d8afbfc6 815 val = -val;
816 sign = -1;
817 }
0a56558f 818
c5673261 819 switch (mode)
820 {
821 case HImode:
90b024e5 822 gen_add = gen_addhi3;
c5673261 823 break;
824
825 case SImode:
90b024e5 826 gen_add = gen_addsi3;
c5673261 827 break;
828
829 default:
830 abort ();
831 }
832
d8afbfc6 833 /* Try different amounts in descending order. */
834 for (amount = (TARGET_H8300H || TARGET_H8300S) ? 4 : 2;
835 amount > 0;
836 amount /= 2)
837 {
27276a3b 838 for (; val >= amount; val -= amount)
90b024e5 839 emit_insn (gen_add (reg, reg, GEN_INT (sign * amount)));
0a56558f 840 }
841
d8afbfc6 842 return;
0a56558f 843}
844
b11bfc61 845/* Return true if OP is a valid call operand, and OP represents
846 an operand for a small call (4 bytes instead of 6 bytes). */
847
848int
230002f2 849small_call_insn_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
b11bfc61 850{
851 if (GET_CODE (op) == MEM)
852 {
853 rtx inside = XEXP (op, 0);
854
855 /* Register indirect is a small call. */
856 if (register_operand (inside, Pmode))
857 return 1;
858
d37aaac2 859 /* A call through the function vector is a small call too. */
b11bfc61 860 if (GET_CODE (inside) == SYMBOL_REF
d37aaac2 861 && (SYMBOL_REF_FLAGS (inside) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
b11bfc61 862 return 1;
863 }
864 /* Otherwise it's a large call. */
865 return 0;
866}
867
b839e0b4 868/* Return true if OP is a valid jump operand. */
869
870int
230002f2 871jump_address_operand (rtx op, enum machine_mode mode)
b839e0b4 872{
873 if (GET_CODE (op) == REG)
874 return mode == Pmode;
875
876 if (GET_CODE (op) == MEM)
877 {
878 rtx inside = XEXP (op, 0);
879 if (register_operand (inside, Pmode))
880 return 1;
881 if (CONSTANT_ADDRESS_P (inside))
882 return 1;
883 }
884 return 0;
885}
886
ceb2fe0f 887/* Recognize valid operands for bit-field instructions. */
b839e0b4 888
889extern int rtx_equal_function_value_matters;
890
891int
230002f2 892bit_operand (rtx op, enum machine_mode mode)
b839e0b4 893{
cc72e60a 894 /* We can accept any general operand, except that MEM operands must
b839e0b4 895 be limited to those that use addresses valid for the 'U' constraint. */
896 if (!general_operand (op, mode))
897 return 0;
898
899 /* Accept any mem during RTL generation. Otherwise, the code that does
900 insv and extzv will think that we can not handle memory. However,
901 to avoid reload problems, we only accept 'U' MEM operands after RTL
902 generation. This means that any named pattern which uses this predicate
903 must force its operands to match 'U' before emitting RTL. */
904
905 if (GET_CODE (op) == REG)
906 return 1;
907 if (GET_CODE (op) == SUBREG)
908 return 1;
d28c6096 909 return (GET_CODE (op) == MEM
910 && EXTRA_CONSTRAINT (op, 'U'));
b839e0b4 911}
912
27a0be8f 913int
230002f2 914bit_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
27a0be8f 915{
916 return (GET_CODE (op) == MEM
917 && EXTRA_CONSTRAINT (op, 'U'));
918}
919
e1629549 920/* Handle machine specific pragmas for compatibility with existing
b839e0b4 921 compilers for the H8/300.
e1629549 922
cc72e60a 923 pragma saveall generates prologue/epilogue code which saves and
e1629549 924 restores all the registers on function entry.
b839e0b4 925
e1629549 926 pragma interrupt saves and restores all registers, and exits with
927 an rte instruction rather than an rts. A pointer to a function
928 with this attribute may be safely used in an interrupt vector. */
b839e0b4 929
1fcd08b1 930void
230002f2 931h8300_pr_interrupt (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
e1629549 932{
41ed3bcd 933 pragma_interrupt = 1;
1fcd08b1 934}
b97b38c0 935
1fcd08b1 936void
230002f2 937h8300_pr_saveall (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
1fcd08b1 938{
939 pragma_saveall = 1;
e1629549 940}
1fcd08b1 941
c738c371 942/* If the next function argument with MODE and TYPE is to be passed in
943 a register, return a reg RTX for the hard register in which to pass
944 the argument. CUM represents the state after the last argument.
945 If the argument is to be pushed, NULL_RTX is returned. */
b839e0b4 946
e1629549 947rtx
230002f2 948function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
949 tree type, int named)
e1629549 950{
70a21926 951 static const char *const hand_list[] = {
952 "__main",
953 "__cmpsi2",
954 "__divhi3",
955 "__modhi3",
956 "__udivhi3",
957 "__umodhi3",
958 "__divsi3",
959 "__modsi3",
960 "__udivsi3",
961 "__umodsi3",
962 "__mulhi3",
963 "__mulsi3",
964 "__reg_memcpy",
965 "__reg_memset",
966 "__ucmpsi2",
967 0,
968 };
969
6996dd46 970 rtx result = NULL_RTX;
9305fe33 971 const char *fname;
b839e0b4 972 int regpass = 0;
973
0d37f3a1 974 /* Never pass unnamed arguments in registers. */
975 if (!named)
6996dd46 976 return NULL_RTX;
0d37f3a1 977
b839e0b4 978 /* Pass 3 regs worth of data in regs when user asked on the command line. */
979 if (TARGET_QUICKCALL)
980 regpass = 3;
981
982 /* If calling hand written assembler, use 4 regs of args. */
b839e0b4 983 if (cum->libcall)
984 {
9305fe33 985 const char * const *p;
b839e0b4 986
987 fname = XSTR (cum->libcall, 0);
988
989 /* See if this libcall is one of the hand coded ones. */
b839e0b4 990 for (p = hand_list; *p && strcmp (*p, fname) != 0; p++)
991 ;
e1629549 992
b839e0b4 993 if (*p)
994 regpass = 4;
995 }
996
997 if (regpass)
998 {
999 int size;
1000
1001 if (mode == BLKmode)
1002 size = int_size_in_bytes (type);
1003 else
1004 size = GET_MODE_SIZE (mode);
1005
60ff2ea8 1006 if (size + cum->nbytes <= regpass * UNITS_PER_WORD
1007 && cum->nbytes / UNITS_PER_WORD <= 3)
1008 result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
b839e0b4 1009 }
e1629549 1010
b839e0b4 1011 return result;
1012}
1013\f
fab7adbf 1014static int
230002f2 1015h8300_and_costs (rtx x)
b785ceb4 1016{
1017 rtx operands[4];
1018
1019 if (GET_MODE (x) == QImode)
1020 return 1;
1021
1022 if (GET_MODE (x) != HImode
1023 && GET_MODE (x) != SImode)
1024 return 100;
1025
1026 operands[0] = NULL;
1027 operands[1] = NULL;
1028 operands[2] = XEXP (x, 1);
1029 operands[3] = x;
5a622ac3 1030 return compute_logical_op_length (GET_MODE (x), operands) / 2;
b785ceb4 1031}
1032
fab7adbf 1033static int
230002f2 1034h8300_shift_costs (rtx x)
c033ada4 1035{
1036 rtx operands[4];
1037
1038 if (GET_MODE (x) != QImode
1039 && GET_MODE (x) != HImode
1040 && GET_MODE (x) != SImode)
1041 return 100;
1042
1043 operands[0] = NULL;
1044 operands[1] = NULL;
1045 operands[2] = XEXP (x, 1);
1046 operands[3] = x;
5a622ac3 1047 return compute_a_shift_length (NULL, operands) / 2;
c033ada4 1048}
fab7adbf 1049
1050static bool
230002f2 1051h8300_rtx_costs (rtx x, int code, int outer_code, int *total)
fab7adbf 1052{
1053 switch (code)
1054 {
1d6dae88 1055 case CONST_INT:
1056 {
1057 HOST_WIDE_INT n = INTVAL (x);
1058
1059 if (-4 <= n || n <= 4)
1060 {
1061 switch ((int) n)
1062 {
1063 case 0:
1064 *total = 0;
1065 return true;
1066 case 1:
1067 case 2:
1068 case -1:
1069 case -2:
1070 *total = 0 + (outer_code == SET);
1071 return true;
1072 case 4:
1073 case -4:
1074 if (TARGET_H8300H || TARGET_H8300S)
1075 *total = 0 + (outer_code == SET);
1076 else
1077 *total = 1;
1078 return true;
1079 }
1080 }
1081 *total = 1;
1082 return true;
1083 }
1084
1085 case CONST:
1086 case LABEL_REF:
1087 case SYMBOL_REF:
1088 *total = 3;
1089 return true;
1090
1091 case CONST_DOUBLE:
1092 *total = 20;
1093 return true;
1094
fab7adbf 1095 case AND:
1096 *total = COSTS_N_INSNS (h8300_and_costs (x));
1097 return true;
1098
1099 /* We say that MOD and DIV are so expensive because otherwise we'll
1100 generate some really horrible code for division of a power of two. */
1101 case MOD:
1102 case DIV:
1103 *total = 60;
1104 return true;
1105
1106 case MULT:
1107 *total = 20;
1108 return true;
1109
1110 case ASHIFT:
1111 case ASHIFTRT:
1112 case LSHIFTRT:
1113 *total = COSTS_N_INSNS (h8300_shift_costs (x));
1114 return true;
1115
1116 case ROTATE:
1117 case ROTATERT:
1118 if (GET_MODE (x) == HImode)
1119 *total = 2;
1120 else
1121 *total = 8;
1122 return true;
1123
1124 default:
1d6dae88 1125 *total = 4;
fab7adbf 1126 return true;
1127 }
1128}
b839e0b4 1129\f
e1629549 1130/* Documentation for the machine specific operand escapes:
1131
b839e0b4 1132 'E' like s but negative.
1133 'F' like t but negative.
1134 'G' constant just the negative
2c7be643 1135 'R' print operand as a byte:8 address if appropriate, else fall back to
1136 'X' handling.
b839e0b4 1137 'S' print operand as a long word
e1629549 1138 'T' print operand as a word
b839e0b4 1139 'V' find the set bit, and print its number.
1140 'W' find the clear bit, and print its number.
1141 'X' print operand as a byte
e1629549 1142 'Y' print either l or h depending on whether last 'Z' operand < 8 or >= 8.
2c7be643 1143 If this operand isn't a register, fall back to 'R' handling.
b839e0b4 1144 'Z' print int & 7.
4c924258 1145 'c' print the opcode corresponding to rtl
b839e0b4 1146 'e' first word of 32 bit value - if reg, then least reg. if mem
1147 then least. if const then most sig word
1148 'f' second word of 32 bit value - if reg, then biggest reg. if mem
1149 then +2. if const then least sig word
e1629549 1150 'j' print operand as condition code.
1151 'k' print operand as reverse condition code.
b839e0b4 1152 's' print as low byte of 16 bit value
1153 't' print as high byte of 16 bit value
1154 'w' print as low byte of 32 bit value
1155 'x' print as 2nd byte of 32 bit value
1156 'y' print as 3rd byte of 32 bit value
1157 'z' print as msb of 32 bit value
1158*/
e1629549 1159
1160/* Return assembly language string which identifies a comparison type. */
1161
9305fe33 1162static const char *
230002f2 1163cond_string (enum rtx_code code)
e1629549 1164{
1165 switch (code)
1166 {
1167 case NE:
1168 return "ne";
1169 case EQ:
1170 return "eq";
1171 case GE:
1172 return "ge";
1173 case GT:
1174 return "gt";
1175 case LE:
1176 return "le";
1177 case LT:
1178 return "lt";
1179 case GEU:
1180 return "hs";
1181 case GTU:
1182 return "hi";
1183 case LEU:
1184 return "ls";
1185 case LTU:
1186 return "lo";
1187 default:
1188 abort ();
1189 }
1190}
1191
1192/* Print operand X using operand code CODE to assembly language output file
1193 FILE. */
1194
1195void
230002f2 1196print_operand (FILE *file, rtx x, int code)
e1629549 1197{
30c992ef 1198 /* This is used for communication between codes V,W,Z and Y. */
e1629549 1199 static int bitint;
1200
1201 switch (code)
1202 {
b839e0b4 1203 case 'E':
1204 switch (GET_CODE (x))
1205 {
1206 case REG:
1207 fprintf (file, "%sl", names_big[REGNO (x)]);
1208 break;
1209 case CONST_INT:
21650cc9 1210 fprintf (file, "#%ld", (-INTVAL (x)) & 0xff);
b839e0b4 1211 break;
1212 default:
1213 abort ();
1214 }
1215 break;
1216 case 'F':
1217 switch (GET_CODE (x))
1218 {
1219 case REG:
1220 fprintf (file, "%sh", names_big[REGNO (x)]);
1221 break;
1222 case CONST_INT:
21650cc9 1223 fprintf (file, "#%ld", ((-INTVAL (x)) & 0xff00) >> 8);
b839e0b4 1224 break;
1225 default:
1226 abort ();
1227 }
1228 break;
e1629549 1229 case 'G':
1230 if (GET_CODE (x) != CONST_INT)
1231 abort ();
21650cc9 1232 fprintf (file, "#%ld", 0xff & (-INTVAL (x)));
e1629549 1233 break;
b839e0b4 1234 case 'S':
1235 if (GET_CODE (x) == REG)
1236 fprintf (file, "%s", names_extended[REGNO (x)]);
e1629549 1237 else
b839e0b4 1238 goto def;
e1629549 1239 break;
b839e0b4 1240 case 'T':
1241 if (GET_CODE (x) == REG)
1242 fprintf (file, "%s", names_big[REGNO (x)]);
e1629549 1243 else
b839e0b4 1244 goto def;
e1629549 1245 break;
b839e0b4 1246 case 'V':
3a59a065 1247 bitint = exact_log2 (INTVAL (x) & 0xff);
b839e0b4 1248 if (bitint == -1)
e1629549 1249 abort ();
3a59a065 1250 fprintf (file, "#%d", bitint);
e1629549 1251 break;
b839e0b4 1252 case 'W':
e1629549 1253 bitint = exact_log2 ((~INTVAL (x)) & 0xff);
1254 if (bitint == -1)
1255 abort ();
3a59a065 1256 fprintf (file, "#%d", bitint);
e1629549 1257 break;
2c7be643 1258 case 'R':
b839e0b4 1259 case 'X':
1260 if (GET_CODE (x) == REG)
1261 fprintf (file, "%s", byte_reg (x, 0));
1262 else
1263 goto def;
1264 break;
1265 case 'Y':
e1629549 1266 if (bitint == -1)
1267 abort ();
b839e0b4 1268 if (GET_CODE (x) == REG)
1269 fprintf (file, "%s%c", names_big[REGNO (x)], bitint > 7 ? 'h' : 'l');
1270 else
2c7be643 1271 print_operand (file, x, 'R');
b839e0b4 1272 bitint = -1;
1273 break;
1274 case 'Z':
1275 bitint = INTVAL (x);
e1629549 1276 fprintf (file, "#%d", bitint & 7);
1277 break;
4c924258 1278 case 'c':
1279 switch (GET_CODE (x))
1280 {
1281 case IOR:
1282 fprintf (file, "or");
1283 break;
1284 case XOR:
1285 fprintf (file, "xor");
1286 break;
77016b8f 1287 case AND:
1288 fprintf (file, "and");
1289 break;
4c924258 1290 default:
1291 break;
1292 }
1293 break;
e1629549 1294 case 'e':
1295 switch (GET_CODE (x))
1296 {
1297 case REG:
b839e0b4 1298 if (TARGET_H8300)
1299 fprintf (file, "%s", names_big[REGNO (x)]);
1300 else
1301 fprintf (file, "%s", names_upper_extended[REGNO (x)]);
e1629549 1302 break;
1303 case MEM:
e1629549 1304 print_operand (file, x, 0);
1305 break;
1306 case CONST_INT:
21650cc9 1307 fprintf (file, "#%ld", ((INTVAL (x) >> 16) & 0xffff));
e1629549 1308 break;
737a5d5b 1309 case CONST_DOUBLE:
1310 {
1311 long val;
1312 REAL_VALUE_TYPE rv;
1313 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
1314 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
9305fe33 1315 fprintf (file, "#%ld", ((val >> 16) & 0xffff));
737a5d5b 1316 break;
1317 }
e1629549 1318 default:
1319 abort ();
1320 break;
1321 }
1322 break;
e1629549 1323 case 'f':
1324 switch (GET_CODE (x))
1325 {
1326 case REG:
b839e0b4 1327 if (TARGET_H8300)
1328 fprintf (file, "%s", names_big[REGNO (x) + 1]);
1329 else
1330 fprintf (file, "%s", names_big[REGNO (x)]);
e1629549 1331 break;
e1629549 1332 case MEM:
eafc6604 1333 x = adjust_address (x, HImode, 2);
e1629549 1334 print_operand (file, x, 0);
1335 break;
e1629549 1336 case CONST_INT:
21650cc9 1337 fprintf (file, "#%ld", INTVAL (x) & 0xffff);
e1629549 1338 break;
737a5d5b 1339 case CONST_DOUBLE:
1340 {
1341 long val;
1342 REAL_VALUE_TYPE rv;
1343 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
1344 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
9305fe33 1345 fprintf (file, "#%ld", (val & 0xffff));
737a5d5b 1346 break;
1347 }
e1629549 1348 default:
1349 abort ();
1350 }
1351 break;
e1629549 1352 case 'j':
7fe1d31c 1353 fputs (cond_string (GET_CODE (x)), file);
e1629549 1354 break;
e1629549 1355 case 'k':
7fe1d31c 1356 fputs (cond_string (reverse_condition (GET_CODE (x))), file);
e1629549 1357 break;
b839e0b4 1358 case 's':
1359 if (GET_CODE (x) == CONST_INT)
21650cc9 1360 fprintf (file, "#%ld", (INTVAL (x)) & 0xff);
b839e0b4 1361 else
1362 fprintf (file, "%s", byte_reg (x, 0));
1363 break;
1364 case 't':
1365 if (GET_CODE (x) == CONST_INT)
21650cc9 1366 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
b839e0b4 1367 else
1368 fprintf (file, "%s", byte_reg (x, 1));
1369 break;
b839e0b4 1370 case 'w':
1371 if (GET_CODE (x) == CONST_INT)
21650cc9 1372 fprintf (file, "#%ld", INTVAL (x) & 0xff);
b839e0b4 1373 else
69b4e418 1374 fprintf (file, "%s",
1375 byte_reg (x, TARGET_H8300 ? 2 : 0));
b839e0b4 1376 break;
1377 case 'x':
1378 if (GET_CODE (x) == CONST_INT)
21650cc9 1379 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
b839e0b4 1380 else
69b4e418 1381 fprintf (file, "%s",
1382 byte_reg (x, TARGET_H8300 ? 3 : 1));
b839e0b4 1383 break;
1384 case 'y':
1385 if (GET_CODE (x) == CONST_INT)
21650cc9 1386 fprintf (file, "#%ld", (INTVAL (x) >> 16) & 0xff);
b839e0b4 1387 else
1388 fprintf (file, "%s", byte_reg (x, 0));
1389 break;
1390 case 'z':
1391 if (GET_CODE (x) == CONST_INT)
21650cc9 1392 fprintf (file, "#%ld", (INTVAL (x) >> 24) & 0xff);
b839e0b4 1393 else
1394 fprintf (file, "%s", byte_reg (x, 1));
1395 break;
1396
e1629549 1397 default:
b839e0b4 1398 def:
e1629549 1399 switch (GET_CODE (x))
1400 {
1401 case REG:
b839e0b4 1402 switch (GET_MODE (x))
1403 {
1404 case QImode:
30c992ef 1405#if 0 /* Is it asm ("mov.b %0,r2l", ...) */
b839e0b4 1406 fprintf (file, "%s", byte_reg (x, 0));
1407#else /* ... or is it asm ("mov.b %0l,r2l", ...) */
1408 fprintf (file, "%s", names_big[REGNO (x)]);
1409#endif
1410 break;
1411 case HImode:
1412 fprintf (file, "%s", names_big[REGNO (x)]);
1413 break;
1414 case SImode:
5d369cd7 1415 case SFmode:
b839e0b4 1416 fprintf (file, "%s", names_extended[REGNO (x)]);
1417 break;
1418 default:
1419 abort ();
1420 }
e1629549 1421 break;
1422
1423 case MEM:
b99f3ebb 1424 {
1425 rtx addr = XEXP (x, 0);
1426
1427 fprintf (file, "@");
1428 output_address (addr);
1429
58b67d36 1430 /* We fall back from smaller addressing to larger
1431 addressing in various ways depending on CODE. */
1432 switch (code)
1433 {
1434 case 'R':
1435 /* Used for mov.b and bit operations. */
e566129f 1436 if (h8300_eightbit_constant_address_p (addr))
58b67d36 1437 {
1438 fprintf (file, ":8");
1439 break;
1440 }
1441
1442 /* Fall through. We should not get here if we are
1443 processing bit operations on H8/300 or H8/300H
1444 because 'U' constraint does not allow bit
1445 operations on the tiny area on these machines. */
1446
1447 case 'T':
1448 case 'S':
1449 /* Used for mov.w and mov.l. */
3696208f 1450 if (h8300_tiny_constant_address_p (addr))
58b67d36 1451 fprintf (file, ":16");
1452 break;
1453 default:
1454 break;
1455 }
b99f3ebb 1456 }
e1629549 1457 break;
1458
1459 case CONST_INT:
1460 case SYMBOL_REF:
1461 case CONST:
1462 case LABEL_REF:
1463 fprintf (file, "#");
1464 print_operand_address (file, x);
1465 break;
737a5d5b 1466 case CONST_DOUBLE:
1467 {
1468 long val;
1469 REAL_VALUE_TYPE rv;
1470 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
1471 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
9305fe33 1472 fprintf (file, "#%ld", val);
737a5d5b 1473 break;
1474 }
9305fe33 1475 default:
1476 break;
e1629549 1477 }
1478 }
1479}
1480
1481/* Output assembly language output for the address ADDR to FILE. */
1482
1483void
230002f2 1484print_operand_address (FILE *file, rtx addr)
e1629549 1485{
1486 switch (GET_CODE (addr))
1487 {
1488 case REG:
b839e0b4 1489 fprintf (file, "%s", h8_reg_names[REGNO (addr)]);
e1629549 1490 break;
1491
1492 case PRE_DEC:
b839e0b4 1493 fprintf (file, "-%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
e1629549 1494 break;
1495
1496 case POST_INC:
b839e0b4 1497 fprintf (file, "%s+", h8_reg_names[REGNO (XEXP (addr, 0))]);
e1629549 1498 break;
1499
1500 case PLUS:
1501 fprintf (file, "(");
1502 if (GET_CODE (XEXP (addr, 0)) == REG)
1503 {
1504 /* reg,foo */
1505 print_operand_address (file, XEXP (addr, 1));
1506 fprintf (file, ",");
1507 print_operand_address (file, XEXP (addr, 0));
1508 }
1509 else
1510 {
1511 /* foo+k */
1512 print_operand_address (file, XEXP (addr, 0));
1513 fprintf (file, "+");
1514 print_operand_address (file, XEXP (addr, 1));
1515 }
1516 fprintf (file, ")");
1517 break;
1518
1519 case CONST_INT:
b839e0b4 1520 {
53aec781 1521 /* Since the H8/300 only has 16 bit pointers, negative values are also
b839e0b4 1522 those >= 32768. This happens for example with pointer minus a
1523 constant. We don't want to turn (char *p - 2) into
1524 (char *p + 65534) because loop unrolling can build upon this
1525 (IE: char *p + 131068). */
1526 int n = INTVAL (addr);
1527 if (TARGET_H8300)
1528 n = (int) (short) n;
90a38175 1529 fprintf (file, "%d", n);
b839e0b4 1530 break;
1531 }
e1629549 1532
1533 default:
1534 output_addr_const (file, addr);
1535 break;
1536 }
1537}
1538\f
e1629549 1539/* Output all insn addresses and their sizes into the assembly language
1540 output file. This is helpful for debugging whether the length attributes
1541 in the md file are correct. This is not meant to be a user selectable
1542 option. */
1543
1544void
230002f2 1545final_prescan_insn (rtx insn, rtx *operand ATTRIBUTE_UNUSED,
1546 int num_operands ATTRIBUTE_UNUSED)
e1629549 1547{
1548 /* This holds the last insn address. */
1549 static int last_insn_address = 0;
1550
407921a5 1551 const int uid = INSN_UID (insn);
e1629549 1552
1553 if (TARGET_ADDRESSES)
1554 {
47fc0706 1555 fprintf (asm_out_file, "; 0x%x %d\n", INSN_ADDRESSES (uid),
1556 INSN_ADDRESSES (uid) - last_insn_address);
1557 last_insn_address = INSN_ADDRESSES (uid);
e1629549 1558 }
1559}
1560
b839e0b4 1561/* Prepare for an SI sized move. */
1562
1563int
230002f2 1564do_movsi (rtx operands[])
e1629549 1565{
b839e0b4 1566 rtx src = operands[1];
1567 rtx dst = operands[0];
1568 if (!reload_in_progress && !reload_completed)
1569 {
1570 if (!register_operand (dst, GET_MODE (dst)))
1571 {
1572 rtx tmp = gen_reg_rtx (GET_MODE (dst));
1573 emit_move_insn (tmp, src);
1574 operands[1] = tmp;
1575 }
1576 }
1577 return 0;
1578}
1579
1580/* Function for INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET).
eb2aa24e 1581 Define the offset between two registers, one to be eliminated, and
1582 the other its replacement, at the start of a routine. */
e1629549 1583
b839e0b4 1584int
230002f2 1585h8300_initial_elimination_offset (int from, int to)
b839e0b4 1586{
1587 int offset = 0;
32351c92 1588 /* The number of bytes that the return address takes on the stack. */
1589 int pc_size = POINTER_SIZE / BITS_PER_UNIT;
b839e0b4 1590
1591 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
32351c92 1592 offset = pc_size + frame_pointer_needed * UNITS_PER_WORD;
f643a7d5 1593 else if (from == RETURN_ADDRESS_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
1594 offset = frame_pointer_needed * UNITS_PER_WORD;
b839e0b4 1595 else
e1629549 1596 {
b839e0b4 1597 int regno;
1598
1599 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1dbee3e1 1600 if (WORD_REG_USED (regno))
b839e0b4 1601 offset += UNITS_PER_WORD;
1602
1603 /* See the comments for get_frame_size. We need to round it up to
1604 STACK_BOUNDARY. */
1605
581ca38a 1606 offset += round_frame_size (get_frame_size ());
b839e0b4 1607
1608 if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
32351c92 1609 /* Skip saved PC. */
1610 offset += pc_size;
b839e0b4 1611 }
35a462ce 1612
b839e0b4 1613 return offset;
1614}
1615
f643a7d5 1616rtx
230002f2 1617h8300_return_addr_rtx (int count, rtx frame)
f643a7d5 1618{
1619 rtx ret;
1620
1621 if (count == 0)
1622 ret = gen_rtx_MEM (Pmode,
1623 gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM));
1624 else if (flag_omit_frame_pointer)
1625 return (rtx) 0;
1626 else
1627 ret = gen_rtx_MEM (Pmode,
1628 memory_address (Pmode,
1629 plus_constant (frame, UNITS_PER_WORD)));
1630 set_mem_alias_set (ret, get_frame_alias_set ());
1631 return ret;
1632}
1633
b839e0b4 1634/* Update the condition code from the insn. */
1635
9305fe33 1636void
230002f2 1637notice_update_cc (rtx body, rtx insn)
b839e0b4 1638{
1617b5d2 1639 rtx set;
1640
b839e0b4 1641 switch (get_attr_cc (insn))
1642 {
1643 case CC_NONE:
30c992ef 1644 /* Insn does not affect CC at all. */
b839e0b4 1645 break;
1646
1647 case CC_NONE_0HIT:
30c992ef 1648 /* Insn does not change CC, but the 0'th operand has been changed. */
b839e0b4 1649 if (cc_status.value1 != 0
ed420a25 1650 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
b839e0b4 1651 cc_status.value1 = 0;
ad992f91 1652 if (cc_status.value2 != 0
1653 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value2))
1654 cc_status.value2 = 0;
b839e0b4 1655 break;
1656
a618bce0 1657 case CC_SET_ZN:
ed420a25 1658 /* Insn sets the Z,N flags of CC to recog_data.operand[0].
30c992ef 1659 The V flag is unusable. The C flag may or may not be known but
1660 that's ok because alter_cond will change tests to use EQ/NE. */
b839e0b4 1661 CC_STATUS_INIT;
30c992ef 1662 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
1617b5d2 1663 set = single_set (insn);
1664 cc_status.value1 = SET_SRC (set);
1665 if (SET_DEST (set) != cc0_rtx)
1666 cc_status.value2 = SET_DEST (set);
b839e0b4 1667 break;
1668
a618bce0 1669 case CC_SET_ZNV:
ed420a25 1670 /* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
a618bce0 1671 The C flag may or may not be known but that's ok because
1672 alter_cond will change tests to use EQ/NE. */
1673 CC_STATUS_INIT;
1674 cc_status.flags |= CC_NO_CARRY;
1617b5d2 1675 set = single_set (insn);
1676 cc_status.value1 = SET_SRC (set);
1677 if (SET_DEST (set) != cc0_rtx)
83e2d3b1 1678 {
1679 /* If the destination is STRICT_LOW_PART, strip off
1680 STRICT_LOW_PART. */
1681 if (GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1682 cc_status.value2 = XEXP (SET_DEST (set), 0);
1683 else
1684 cc_status.value2 = SET_DEST (set);
1685 }
a618bce0 1686 break;
1687
30c992ef 1688 case CC_COMPARE:
1689 /* The insn is a compare instruction. */
b839e0b4 1690 CC_STATUS_INIT;
30c992ef 1691 cc_status.value1 = SET_SRC (body);
b839e0b4 1692 break;
1693
b839e0b4 1694 case CC_CLOBBER:
30c992ef 1695 /* Insn doesn't leave CC in a usable state. */
b839e0b4 1696 CC_STATUS_INIT;
1697 break;
e1629549 1698 }
b839e0b4 1699}
1700
90e56b83 1701/* Return nonzero if X is a stack pointer. */
1702
1703int
230002f2 1704stack_pointer_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
90e56b83 1705{
1706 return x == stack_pointer_rtx;
1707}
1708
90e56b83 1709/* Return nonzero if X is a constant whose absolute value is greater
1710 than 2. */
1711
1712int
230002f2 1713const_int_gt_2_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
90e56b83 1714{
1715 return (GET_CODE (x) == CONST_INT
1716 && abs (INTVAL (x)) > 2);
1717}
1718
1719/* Return nonzero if X is a constant whose absolute value is no
1720 smaller than 8. */
1721
1722int
230002f2 1723const_int_ge_8_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
90e56b83 1724{
1725 return (GET_CODE (x) == CONST_INT
1726 && abs (INTVAL (x)) >= 8);
1727}
1728
0d565792 1729/* Return nonzero if X is a constant expressible in QImode. */
1730
1731int
230002f2 1732const_int_qi_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
0d565792 1733{
1734 return (GET_CODE (x) == CONST_INT
1735 && (INTVAL (x) & 0xff) == INTVAL (x));
1736}
1737
1738/* Return nonzero if X is a constant expressible in HImode. */
1739
1740int
230002f2 1741const_int_hi_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
0d565792 1742{
1743 return (GET_CODE (x) == CONST_INT
1744 && (INTVAL (x) & 0xffff) == INTVAL (x));
1745}
1746
079b5951 1747/* Return nonzero if X is a constant suitable for inc/dec. */
1748
1749int
230002f2 1750incdec_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
079b5951 1751{
1752 return (GET_CODE (x) == CONST_INT
1753 && (CONST_OK_FOR_M (INTVAL (x))
1754 || CONST_OK_FOR_O (INTVAL (x))));
1755}
1756
1757/* Return nonzero if X is either EQ or NE. */
1758
1759int
230002f2 1760eqne_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
079b5951 1761{
1762 enum rtx_code code = GET_CODE (x);
1763
1764 return (code == EQ || code == NE);
1765}
1766
ad927dea 1767/* Return nonzero if X is GT, LE, GTU, or LEU. */
1768
1769int
230002f2 1770gtle_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
ad927dea 1771{
1772 enum rtx_code code = GET_CODE (x);
1773
1774 return (code == GT || code == LE || code == GTU || code == LEU);
1775}
1776
c6720edd 1777/* Return nonzero if X is either GTU or LEU. */
1778
1779int
230002f2 1780gtuleu_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
c6720edd 1781{
1782 enum rtx_code code = GET_CODE (x);
1783
1784 return (code == GTU || code == LEU);
1785}
1786
4c924258 1787/* Return nonzero if X is either IOR or XOR. */
1788
1789int
230002f2 1790iorxor_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
4c924258 1791{
1792 enum rtx_code code = GET_CODE (x);
1793
1794 return (code == IOR || code == XOR);
1795}
1796
eb2aa24e 1797/* Recognize valid operators for bit instructions. */
b839e0b4 1798
1799int
230002f2 1800bit_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
b839e0b4 1801{
1802 enum rtx_code code = GET_CODE (x);
e1629549 1803
b839e0b4 1804 return (code == XOR
1805 || code == AND
1806 || code == IOR);
e1629549 1807}
b839e0b4 1808\f
2e295ea4 1809/* Return the length of mov instruction. */
1810
1811unsigned int
1812compute_mov_length (rtx *operands)
1813{
1814 /* If the mov instruction involves a memory operand, we compute the
1815 length, assuming the largest addressing mode is used, and then
1816 adjust later in the function. Otherwise, we compute and return
1817 the exact length in one step. */
1818 enum machine_mode mode = GET_MODE (operands[0]);
1819 rtx dest = operands[0];
1820 rtx src = operands[1];
1821 rtx addr;
1822
1823 if (GET_CODE (src) == MEM)
1824 addr = XEXP (src, 0);
1825 else if (GET_CODE (dest) == MEM)
1826 addr = XEXP (dest, 0);
1827 else
1828 addr = NULL_RTX;
1829
1830 if (TARGET_H8300)
1831 {
1832 unsigned int base_length;
1833
1834 switch (mode)
1835 {
1836 case QImode:
1837 if (addr == NULL_RTX)
1838 return 2;
1839
1840 /* The eightbit addressing is available only in QImode, so
1841 go ahead and take care of it. */
1842 if (h8300_eightbit_constant_address_p (addr))
1843 return 2;
1844
1845 base_length = 4;
1846 break;
1847
1848 case HImode:
1849 if (addr == NULL_RTX)
1850 {
1851 if (REG_P (src))
1852 return 2;
1853
1854 if (src == const0_rtx)
1855 return 2;
1856
1857 return 4;
1858 }
1859
1860 base_length = 4;
1861 break;
1862
1863 case SImode:
1864 if (addr == NULL_RTX)
1865 {
1866 if (REG_P (src))
1867 return 4;
1868
1869 if (GET_CODE (src) == CONST_INT)
1870 {
1871 if (src == const0_rtx)
1872 return 4;
1873
1874 if ((INTVAL (src) & 0xffff) == 0)
1875 return 6;
1876
1877 if ((INTVAL (src) & 0xffff) == 0)
1878 return 6;
786637e0 1879
1880 if ((INTVAL (src) & 0xffff)
1881 == ((INTVAL (src) >> 16) & 0xffff))
1882 return 6;
2e295ea4 1883 }
1884 return 8;
1885 }
1886
1887 base_length = 8;
1888 break;
1889
1890 case SFmode:
1891 if (addr == NULL_RTX)
1892 {
1893 if (REG_P (src))
1894 return 4;
1895
1896 if (src == const0_rtx)
1897 return 2;
1898
1899 return 6;
1900 }
1901
1902 base_length = 8;
1903 break;
1904
1905 default:
1906 abort ();
1907 }
1908
1909 /* Adjust the length based on the addressing mode used.
1910 Specifically, we subtract the difference between the actual
1911 length and the longest one, which is @(d:16,Rs). For SImode
1912 and SFmode, we double the adjustment because two mov.w are
1913 used to do the job. */
1914
1915 /* @Rs+ and @-Rd are 2 bytes shorter than the longest. */
1916 if (GET_CODE (addr) == PRE_DEC
1917 || GET_CODE (addr) == POST_INC)
1918 {
1919 if (mode == QImode || mode == HImode)
1920 return base_length - 2;
1921 else
1922 /* In SImode and SFmode, we use two mov.w instructions, so
1923 double the adustment. */
1924 return base_length - 4;
1925 }
1926
1927 /* @Rs and @Rd are 2 bytes shorter than the longest. Note that
1928 in SImode and SFmode, the second mov.w involves an address
1929 with displacement, namely @(2,Rs) or @(2,Rd), so we subtract
1930 only 2 bytes. */
1931 if (GET_CODE (addr) == REG)
1932 return base_length - 2;
1933
1934 return base_length;
1935 }
1936 else
1937 {
1938 unsigned int base_length;
1939
1940 switch (mode)
1941 {
1942 case QImode:
1943 if (addr == NULL_RTX)
1944 return 2;
1945
1946 /* The eightbit addressing is available only in QImode, so
1947 go ahead and take care of it. */
1948 if (h8300_eightbit_constant_address_p (addr))
1949 return 2;
1950
1951 base_length = 8;
1952 break;
1953
1954 case HImode:
1955 if (addr == NULL_RTX)
1956 {
1957 if (REG_P (src))
1958 return 2;
1959
1960 if (src == const0_rtx)
1961 return 2;
1962
1963 return 4;
1964 }
1965
1966 base_length = 8;
1967 break;
1968
1969 case SImode:
1970 if (addr == NULL_RTX)
1971 {
1972 if (REG_P (src))
1973 {
1974 if (REGNO (src) == MAC_REG || REGNO (dest) == MAC_REG)
1975 return 4;
1976 else
1977 return 2;
1978 }
1979
1980 if (GET_CODE (src) == CONST_INT)
1981 {
1982 int val = INTVAL (src);
1983
1984 if (val == 0)
1985 return 2;
1986
1987 if (val == (val & 0x00ff) || val == (val & 0xff00))
1988 return 4;
1989
1990 switch (val & 0xffffffff)
1991 {
1992 case 0xffffffff:
1993 case 0xfffffffe:
1994 case 0xfffffffc:
1995 case 0x0000ffff:
1996 case 0x0000fffe:
1997 case 0xffff0000:
1998 case 0xfffe0000:
1999 case 0x00010000:
2000 case 0x00020000:
2001 return 4;
2002 }
2003 }
2004 return 6;
2005 }
2006
2007 base_length = 10;
2008 break;
2009
2010 case SFmode:
2011 if (addr == NULL_RTX)
2012 {
2013 if (REG_P (src))
2014 return 2;
2015
2016 if (src == const0_rtx)
2017 return 2;
2018 return 6;
2019 }
2020
2021 base_length = 10;
2022 break;
2023
2024 default:
2025 abort ();
2026 }
2027
2028 /* Adjust the length based on the addressing mode used.
2029 Specifically, we subtract the difference between the actual
2030 length and the longest one, which is @(d:24,ERs). */
2031
2032 /* @ERs+ and @-ERd are 6 bytes shorter than the longest. */
2033 if (GET_CODE (addr) == PRE_DEC
2034 || GET_CODE (addr) == POST_INC)
2035 return base_length - 6;
2036
2037 /* @ERs and @ERd are 6 bytes shorter than the longest. */
2038 if (GET_CODE (addr) == REG)
2039 return base_length - 6;
2040
2041 /* @(d:16,ERs) and @(d:16,ERd) are 4 bytes shorter than the
2042 longest. */
2043 if (GET_CODE (addr) == PLUS
2044 && GET_CODE (XEXP (addr, 0)) == REG
2045 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2046 && INTVAL (XEXP (addr, 1)) > -32768
2047 && INTVAL (XEXP (addr, 1)) < 32767)
2048 return base_length - 4;
2049
2050 /* @aa:16 is 4 bytes shorter than the longest. */
2051 if (h8300_tiny_constant_address_p (addr))
2052 return base_length - 4;
2053
2054 /* @aa:24 is 2 bytes shorter than the longest. */
2055 if (CONSTANT_P (addr))
2056 return base_length - 2;
2057
2058 return base_length;
2059 }
2060}
2061\f
6a8a3fa3 2062const char *
230002f2 2063output_plussi (rtx *operands)
aa3382b1 2064{
2065 enum machine_mode mode = GET_MODE (operands[0]);
2066
2067 if (mode != SImode)
2068 abort ();
2069
2070 if (TARGET_H8300)
2071 {
469dc9d2 2072 if (GET_CODE (operands[2]) == REG)
2073 return "add.w\t%f2,%f0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
2074
2075 if (GET_CODE (operands[2]) == CONST_INT)
2076 {
2077 HOST_WIDE_INT n = INTVAL (operands[2]);
2078
2079 if ((n & 0xffffff) == 0)
2080 return "add\t%z2,%z0";
2081 if ((n & 0xffff) == 0)
2082 return "add\t%y2,%y0\n\taddx\t%z2,%z0";
2083 if ((n & 0xff) == 0)
2084 return "add\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
2085 }
2086
2087 return "add\t%w2,%w0\n\taddx\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
aa3382b1 2088 }
2089 else
2090 {
2091 if (GET_CODE (operands[2]) == REG)
2092 return "add.l\t%S2,%S0";
2093
2094 if (GET_CODE (operands[2]) == CONST_INT)
2095 {
2096 HOST_WIDE_INT intval = INTVAL (operands[2]);
2097
2098 /* See if we can finish with 2 bytes. */
2099
11233c59 2100 switch ((unsigned int) intval & 0xffffffff)
aa3382b1 2101 {
2102 case 0x00000001:
2103 case 0x00000002:
2104 case 0x00000004:
2105 return "adds\t%2,%S0";
2106
2107 case 0xffffffff:
2108 case 0xfffffffe:
2109 case 0xfffffffc:
2110 return "subs\t%G2,%S0";
2111
2112 case 0x00010000:
2113 case 0x00020000:
2114 operands[2] = GEN_INT (intval >> 16);
2115 return "inc.w\t%2,%e0";
2116
2117 case 0xffff0000:
2118 case 0xfffe0000:
2119 operands[2] = GEN_INT (intval >> 16);
2120 return "dec.w\t%G2,%e0";
2121 }
2122
2123 /* See if we can finish with 4 bytes. */
2124 if ((intval & 0xffff) == 0)
2125 {
2126 operands[2] = GEN_INT (intval >> 16);
2127 return "add.w\t%2,%e0";
2128 }
2129 }
2130
2131 return "add.l\t%S2,%S0";
2132 }
2133}
2134
2135unsigned int
230002f2 2136compute_plussi_length (rtx *operands)
aa3382b1 2137{
2138 enum machine_mode mode = GET_MODE (operands[0]);
2139
2140 if (mode != SImode)
2141 abort ();
2142
2143 if (TARGET_H8300)
2144 {
469dc9d2 2145 if (GET_CODE (operands[2]) == REG)
2146 return 6;
2147
2148 if (GET_CODE (operands[2]) == CONST_INT)
2149 {
2150 HOST_WIDE_INT n = INTVAL (operands[2]);
2151
2152 if ((n & 0xffffff) == 0)
2153 return 2;
2154 if ((n & 0xffff) == 0)
2155 return 4;
2156 if ((n & 0xff) == 0)
2157 return 6;
2158 }
2159
2160 return 8;
aa3382b1 2161 }
2162 else
2163 {
2164 if (GET_CODE (operands[2]) == REG)
2165 return 2;
2166
2167 if (GET_CODE (operands[2]) == CONST_INT)
2168 {
2169 HOST_WIDE_INT intval = INTVAL (operands[2]);
2170
2171 /* See if we can finish with 2 bytes. */
2172
11233c59 2173 switch ((unsigned int) intval & 0xffffffff)
aa3382b1 2174 {
2175 case 0x00000001:
2176 case 0x00000002:
2177 case 0x00000004:
2178 return 2;
2179
2180 case 0xffffffff:
2181 case 0xfffffffe:
2182 case 0xfffffffc:
2183 return 2;
2184
2185 case 0x00010000:
2186 case 0x00020000:
2187 return 2;
2188
2189 case 0xffff0000:
2190 case 0xfffe0000:
2191 return 2;
2192 }
2193
2194 /* See if we can finish with 4 bytes. */
2195 if ((intval & 0xffff) == 0)
2196 return 4;
2197 }
2198
2199 return 6;
2200 }
2201}
2202
d00580fa 2203int
230002f2 2204compute_plussi_cc (rtx *operands)
aa3382b1 2205{
2206 enum machine_mode mode = GET_MODE (operands[0]);
2207
2208 if (mode != SImode)
2209 abort ();
2210
2211 if (TARGET_H8300)
2212 {
469dc9d2 2213 return CC_CLOBBER;
aa3382b1 2214 }
2215 else
2216 {
2217 if (GET_CODE (operands[2]) == REG)
2218 return CC_SET_ZN;
2219
2220 if (GET_CODE (operands[2]) == CONST_INT)
2221 {
2222 HOST_WIDE_INT intval = INTVAL (operands[2]);
2223
2224 /* See if we can finish with 2 bytes. */
2225
11233c59 2226 switch ((unsigned int) intval & 0xffffffff)
aa3382b1 2227 {
2228 case 0x00000001:
2229 case 0x00000002:
2230 case 0x00000004:
2231 return CC_NONE_0HIT;
2232
2233 case 0xffffffff:
2234 case 0xfffffffe:
2235 case 0xfffffffc:
2236 return CC_NONE_0HIT;
2237
2238 case 0x00010000:
2239 case 0x00020000:
2240 return CC_CLOBBER;
2241
2242 case 0xffff0000:
2243 case 0xfffe0000:
2244 return CC_CLOBBER;
2245 }
2246
2247 /* See if we can finish with 4 bytes. */
2248 if ((intval & 0xffff) == 0)
2249 return CC_CLOBBER;
2250 }
2251
2252 return CC_SET_ZN;
2253 }
2254}
2255\f
2256const char *
230002f2 2257output_logical_op (enum machine_mode mode, rtx *operands)
6a8a3fa3 2258{
6ad7df02 2259 /* Figure out the logical op that we need to perform. */
2260 enum rtx_code code = GET_CODE (operands[3]);
6a8a3fa3 2261 /* Pretend that every byte is affected if both operands are registers. */
407921a5 2262 const unsigned HOST_WIDE_INT intval =
6a8a3fa3 2263 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
2264 ? INTVAL (operands[2]) : 0x55555555);
2265 /* The determinant of the algorithm. If we perform an AND, 0
2266 affects a bit. Otherwise, 1 affects a bit. */
407921a5 2267 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
e6cf6c71 2268 /* Break up DET into pieces. */
2269 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
2270 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
cdcf26ff 2271 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
2272 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
e6cf6c71 2273 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
2274 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
2275 int lower_half_easy_p = 0;
2276 int upper_half_easy_p = 0;
6a8a3fa3 2277 /* The name of an insn. */
2278 const char *opname;
2279 char insn_buf[100];
2280
2281 switch (code)
2282 {
2283 case AND:
2284 opname = "and";
2285 break;
2286 case IOR:
2287 opname = "or";
2288 break;
2289 case XOR:
2290 opname = "xor";
2291 break;
2292 default:
2293 abort ();
2294 }
2295
2296 switch (mode)
2297 {
2298 case HImode:
2299 /* First, see if we can finish with one insn. */
2300 if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2301 && b0 != 0
2302 && b1 != 0)
6a8a3fa3 2303 {
2304 sprintf (insn_buf, "%s.w\t%%T2,%%T0", opname);
2305 output_asm_insn (insn_buf, operands);
2306 }
2307 else
2308 {
2309 /* Take care of the lower byte. */
cdcf26ff 2310 if (b0 != 0)
6a8a3fa3 2311 {
2312 sprintf (insn_buf, "%s\t%%s2,%%s0", opname);
2313 output_asm_insn (insn_buf, operands);
2314 }
2315 /* Take care of the upper byte. */
cdcf26ff 2316 if (b1 != 0)
6a8a3fa3 2317 {
2318 sprintf (insn_buf, "%s\t%%t2,%%t0", opname);
2319 output_asm_insn (insn_buf, operands);
2320 }
2321 }
2322 break;
2323 case SImode:
e6cf6c71 2324 if (TARGET_H8300H || TARGET_H8300S)
2325 {
2326 /* Determine if the lower half can be taken care of in no more
2327 than two bytes. */
2328 lower_half_easy_p = (b0 == 0
2329 || b1 == 0
2330 || (code != IOR && w0 == 0xffff));
2331
2332 /* Determine if the upper half can be taken care of in no more
2333 than two bytes. */
2334 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
2335 || (code == AND && w1 == 0xff00));
2336 }
6a8a3fa3 2337
e6cf6c71 2338 /* Check if doing everything with one insn is no worse than
2339 using multiple insns. */
6a8a3fa3 2340 if ((TARGET_H8300H || TARGET_H8300S)
e6cf6c71 2341 && w0 != 0 && w1 != 0
0372ccb5 2342 && !(lower_half_easy_p && upper_half_easy_p)
2343 && !(code == IOR && w1 == 0xffff
2344 && (w0 & 0x8000) != 0 && lower_half_easy_p))
6a8a3fa3 2345 {
2346 sprintf (insn_buf, "%s.l\t%%S2,%%S0", opname);
2347 output_asm_insn (insn_buf, operands);
2348 }
2349 else
2350 {
2351 /* Take care of the lower and upper words individually. For
2352 each word, we try different methods in the order of
2353
2354 1) the special insn (in case of AND or XOR),
2355 2) the word-wise insn, and
2356 3) The byte-wise insn. */
cdcf26ff 2357 if (w0 == 0xffff
a9d986d9 2358 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
6a8a3fa3 2359 output_asm_insn ((code == AND)
b0422000 2360 ? "sub.w\t%f0,%f0" : "not.w\t%f0",
6a8a3fa3 2361 operands);
2362 else if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2363 && (b0 != 0)
2364 && (b1 != 0))
6a8a3fa3 2365 {
2366 sprintf (insn_buf, "%s.w\t%%f2,%%f0", opname);
2367 output_asm_insn (insn_buf, operands);
2368 }
2369 else
2370 {
cdcf26ff 2371 if (b0 != 0)
6a8a3fa3 2372 {
2373 sprintf (insn_buf, "%s\t%%w2,%%w0", opname);
2374 output_asm_insn (insn_buf, operands);
2375 }
cdcf26ff 2376 if (b1 != 0)
6a8a3fa3 2377 {
2378 sprintf (insn_buf, "%s\t%%x2,%%x0", opname);
2379 output_asm_insn (insn_buf, operands);
2380 }
2381 }
2382
cdcf26ff 2383 if ((w1 == 0xffff)
a9d986d9 2384 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
6a8a3fa3 2385 output_asm_insn ((code == AND)
b0422000 2386 ? "sub.w\t%e0,%e0" : "not.w\t%e0",
6a8a3fa3 2387 operands);
0372ccb5 2388 else if ((TARGET_H8300H || TARGET_H8300S)
2389 && code == IOR
2390 && w1 == 0xffff
2391 && (w0 & 0x8000) != 0)
2392 {
2393 output_asm_insn ("exts.l\t%S0", operands);
2394 }
f4bdef90 2395 else if ((TARGET_H8300H || TARGET_H8300S)
2396 && code == AND
cdcf26ff 2397 && w1 == 0xff00)
f4bdef90 2398 {
1c75fadf 2399 output_asm_insn ("extu.w\t%e0", operands);
f4bdef90 2400 }
6a8a3fa3 2401 else if (TARGET_H8300H || TARGET_H8300S)
2402 {
cdcf26ff 2403 if (w1 != 0)
6a8a3fa3 2404 {
2405 sprintf (insn_buf, "%s.w\t%%e2,%%e0", opname);
2406 output_asm_insn (insn_buf, operands);
2407 }
2408 }
2409 else
2410 {
cdcf26ff 2411 if (b2 != 0)
6a8a3fa3 2412 {
2413 sprintf (insn_buf, "%s\t%%y2,%%y0", opname);
2414 output_asm_insn (insn_buf, operands);
2415 }
cdcf26ff 2416 if (b3 != 0)
6a8a3fa3 2417 {
2418 sprintf (insn_buf, "%s\t%%z2,%%z0", opname);
2419 output_asm_insn (insn_buf, operands);
2420 }
2421 }
2422 }
2423 break;
2424 default:
2425 abort ();
2426 }
2427 return "";
2428}
359e4f59 2429
2430unsigned int
230002f2 2431compute_logical_op_length (enum machine_mode mode, rtx *operands)
359e4f59 2432{
6ad7df02 2433 /* Figure out the logical op that we need to perform. */
2434 enum rtx_code code = GET_CODE (operands[3]);
359e4f59 2435 /* Pretend that every byte is affected if both operands are registers. */
407921a5 2436 const unsigned HOST_WIDE_INT intval =
359e4f59 2437 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
2438 ? INTVAL (operands[2]) : 0x55555555);
2439 /* The determinant of the algorithm. If we perform an AND, 0
2440 affects a bit. Otherwise, 1 affects a bit. */
407921a5 2441 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
e6cf6c71 2442 /* Break up DET into pieces. */
2443 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
2444 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
cdcf26ff 2445 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
2446 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
e6cf6c71 2447 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
2448 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
2449 int lower_half_easy_p = 0;
2450 int upper_half_easy_p = 0;
359e4f59 2451 /* Insn length. */
2452 unsigned int length = 0;
2453
2454 switch (mode)
2455 {
2456 case HImode:
2457 /* First, see if we can finish with one insn. */
2458 if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2459 && b0 != 0
2460 && b1 != 0)
359e4f59 2461 {
2462 if (REG_P (operands[2]))
2463 length += 2;
2464 else
2465 length += 4;
2466 }
2467 else
2468 {
2469 /* Take care of the lower byte. */
cdcf26ff 2470 if (b0 != 0)
359e4f59 2471 length += 2;
2472
2473 /* Take care of the upper byte. */
cdcf26ff 2474 if (b1 != 0)
359e4f59 2475 length += 2;
2476 }
2477 break;
2478 case SImode:
e6cf6c71 2479 if (TARGET_H8300H || TARGET_H8300S)
2480 {
2481 /* Determine if the lower half can be taken care of in no more
2482 than two bytes. */
2483 lower_half_easy_p = (b0 == 0
2484 || b1 == 0
2485 || (code != IOR && w0 == 0xffff));
2486
2487 /* Determine if the upper half can be taken care of in no more
2488 than two bytes. */
2489 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
2490 || (code == AND && w1 == 0xff00));
2491 }
359e4f59 2492
e6cf6c71 2493 /* Check if doing everything with one insn is no worse than
2494 using multiple insns. */
359e4f59 2495 if ((TARGET_H8300H || TARGET_H8300S)
e6cf6c71 2496 && w0 != 0 && w1 != 0
0372ccb5 2497 && !(lower_half_easy_p && upper_half_easy_p)
2498 && !(code == IOR && w1 == 0xffff
2499 && (w0 & 0x8000) != 0 && lower_half_easy_p))
359e4f59 2500 {
2501 if (REG_P (operands[2]))
2502 length += 4;
2503 else
2504 length += 6;
2505 }
2506 else
2507 {
2508 /* Take care of the lower and upper words individually. For
2509 each word, we try different methods in the order of
2510
2511 1) the special insn (in case of AND or XOR),
2512 2) the word-wise insn, and
2513 3) The byte-wise insn. */
cdcf26ff 2514 if (w0 == 0xffff
359e4f59 2515 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
2516 {
2517 length += 2;
2518 }
2519 else if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2520 && (b0 != 0)
2521 && (b1 != 0))
359e4f59 2522 {
2523 length += 4;
2524 }
2525 else
2526 {
cdcf26ff 2527 if (b0 != 0)
359e4f59 2528 length += 2;
2529
cdcf26ff 2530 if (b1 != 0)
359e4f59 2531 length += 2;
2532 }
2533
cdcf26ff 2534 if (w1 == 0xffff
359e4f59 2535 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
2536 {
2537 length += 2;
2538 }
0372ccb5 2539 else if ((TARGET_H8300H || TARGET_H8300S)
2540 && code == IOR
2541 && w1 == 0xffff
2542 && (w0 & 0x8000) != 0)
2543 {
2544 length += 2;
2545 }
f4bdef90 2546 else if ((TARGET_H8300H || TARGET_H8300S)
2547 && code == AND
cdcf26ff 2548 && w1 == 0xff00)
f4bdef90 2549 {
2550 length += 2;
2551 }
359e4f59 2552 else if (TARGET_H8300H || TARGET_H8300S)
2553 {
cdcf26ff 2554 if (w1 != 0)
359e4f59 2555 length += 4;
2556 }
2557 else
2558 {
cdcf26ff 2559 if (b2 != 0)
359e4f59 2560 length += 2;
2561
cdcf26ff 2562 if (b3 != 0)
359e4f59 2563 length += 2;
2564 }
2565 }
2566 break;
2567 default:
2568 abort ();
2569 }
2570 return length;
2571}
6ad7df02 2572
2573int
230002f2 2574compute_logical_op_cc (enum machine_mode mode, rtx *operands)
6ad7df02 2575{
2576 /* Figure out the logical op that we need to perform. */
2577 enum rtx_code code = GET_CODE (operands[3]);
2578 /* Pretend that every byte is affected if both operands are registers. */
407921a5 2579 const unsigned HOST_WIDE_INT intval =
6ad7df02 2580 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
2581 ? INTVAL (operands[2]) : 0x55555555);
2582 /* The determinant of the algorithm. If we perform an AND, 0
2583 affects a bit. Otherwise, 1 affects a bit. */
407921a5 2584 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
e6cf6c71 2585 /* Break up DET into pieces. */
2586 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
2587 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
2588 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
2589 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
2590 int lower_half_easy_p = 0;
2591 int upper_half_easy_p = 0;
6ad7df02 2592 /* Condition code. */
2593 enum attr_cc cc = CC_CLOBBER;
2594
2595 switch (mode)
2596 {
2597 case HImode:
2598 /* First, see if we can finish with one insn. */
2599 if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2600 && b0 != 0
2601 && b1 != 0)
6ad7df02 2602 {
2603 cc = CC_SET_ZNV;
2604 }
2605 break;
2606 case SImode:
e6cf6c71 2607 if (TARGET_H8300H || TARGET_H8300S)
2608 {
2609 /* Determine if the lower half can be taken care of in no more
2610 than two bytes. */
2611 lower_half_easy_p = (b0 == 0
2612 || b1 == 0
2613 || (code != IOR && w0 == 0xffff));
2614
2615 /* Determine if the upper half can be taken care of in no more
2616 than two bytes. */
2617 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
2618 || (code == AND && w1 == 0xff00));
2619 }
6ad7df02 2620
e6cf6c71 2621 /* Check if doing everything with one insn is no worse than
2622 using multiple insns. */
6ad7df02 2623 if ((TARGET_H8300H || TARGET_H8300S)
e6cf6c71 2624 && w0 != 0 && w1 != 0
0372ccb5 2625 && !(lower_half_easy_p && upper_half_easy_p)
2626 && !(code == IOR && w1 == 0xffff
2627 && (w0 & 0x8000) != 0 && lower_half_easy_p))
6ad7df02 2628 {
2629 cc = CC_SET_ZNV;
2630 }
0372ccb5 2631 else
2632 {
2633 if ((TARGET_H8300H || TARGET_H8300S)
2634 && code == IOR
2635 && w1 == 0xffff
2636 && (w0 & 0x8000) != 0)
2637 {
2638 cc = CC_SET_ZNV;
2639 }
2640 }
6ad7df02 2641 break;
2642 default:
2643 abort ();
2644 }
2645 return cc;
2646}
6a8a3fa3 2647\f
b839e0b4 2648/* Shifts.
2649
f465f633 2650 We devote a fair bit of code to getting efficient shifts since we
2651 can only shift one bit at a time on the H8/300 and H8/300H and only
11f95d7c 2652 one or two bits at a time on the H8S.
f465f633 2653
2654 All shift code falls into one of the following ways of
2655 implementation:
2656
2657 o SHIFT_INLINE: Emit straight line code for the shift; this is used
2658 when a straight line shift is about the same size or smaller than
2659 a loop.
2660
2661 o SHIFT_ROT_AND: Rotate the value the opposite direction, then mask
2662 off the bits we don't need. This is used when only a few of the
2663 bits in the original value will survive in the shifted value.
2664
2665 o SHIFT_SPECIAL: Often it's possible to move a byte or a word to
2666 simulate a shift by 8, 16, or 24 bits. Once moved, a few inline
2667 shifts can be added if the shift count is slightly more than 8 or
2668 16. This case also includes other oddballs that are not worth
cc72e60a 2669 explaining here.
f465f633 2670
11f95d7c 2671 o SHIFT_LOOP: Emit a loop using one (or two on H8S) bit shifts.
f465f633 2672
140ee624 2673 For each shift count, we try to use code that has no trade-off
2674 between code size and speed whenever possible.
2675
2676 If the trade-off is unavoidable, we try to be reasonable.
2677 Specifically, the fastest version is one instruction longer than
2678 the shortest version, we take the fastest version. We also provide
2679 the use a way to switch back to the shortest version with -Os.
2680
2681 For the details of the shift algorithms for various shift counts,
2682 refer to shift_alg_[qhs]i. */
e1629549 2683
2684int
230002f2 2685nshift_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
b839e0b4 2686{
2687 switch (GET_CODE (x))
2688 {
2689 case ASHIFTRT:
2690 case LSHIFTRT:
2691 case ASHIFT:
2692 return 1;
2693
2694 default:
2695 return 0;
2696 }
2697}
2698
6b07073d 2699/* Emit code to do shifts. */
b839e0b4 2700
6b07073d 2701void
230002f2 2702expand_a_shift (enum machine_mode mode, int code, rtx operands[])
e1629549 2703{
e1629549 2704 emit_move_insn (operands[0], operands[1]);
2705
eb2aa24e 2706 /* Need a loop to get all the bits we want - we generate the
2707 code at emit time, but need to allocate a scratch reg now. */
b839e0b4 2708
7014838c 2709 emit_insn (gen_rtx_PARALLEL
2710 (VOIDmode,
b839e0b4 2711 gen_rtvec (2,
7014838c 2712 gen_rtx_SET (VOIDmode, operands[0],
2713 gen_rtx (code, mode, operands[0],
2714 operands[2])),
2715 gen_rtx_CLOBBER (VOIDmode,
2716 gen_rtx_SCRATCH (QImode)))));
b839e0b4 2717}
2718
b839e0b4 2719/* Symbols of the various modes which can be used as indices. */
2720
2721enum shift_mode
27276a3b 2722{
2723 QIshift, HIshift, SIshift
2724};
b839e0b4 2725
30c992ef 2726/* For single bit shift insns, record assembler and what bits of the
2727 condition code are valid afterwards (represented as various CC_FOO
2728 bits, 0 means CC isn't left in a usable state). */
b839e0b4 2729
2730struct shift_insn
2731{
e99c3a1d 2732 const char *const assembler;
2733 const int cc_valid;
b839e0b4 2734};
2735
2736/* Assembler instruction shift table.
2737
2738 These tables are used to look up the basic shifts.
eb2aa24e 2739 They are indexed by cpu, shift_type, and mode. */
e1629549 2740
b839e0b4 2741static const struct shift_insn shift_one[2][3][3] =
2742{
2743/* H8/300 */
2744 {
2745/* SHIFT_ASHIFT */
2746 {
fd7729c5 2747 { "shll\t%X0", CC_SET_ZNV },
2748 { "add.w\t%T0,%T0", CC_SET_ZN },
2749 { "add.w\t%f0,%f0\n\taddx\t%y0,%y0\n\taddx\t%z0,%z0", CC_CLOBBER }
b839e0b4 2750 },
2751/* SHIFT_LSHIFTRT */
2752 {
fd7729c5 2753 { "shlr\t%X0", CC_SET_ZNV },
2754 { "shlr\t%t0\n\trotxr\t%s0", CC_CLOBBER },
2755 { "shlr\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
b839e0b4 2756 },
2757/* SHIFT_ASHIFTRT */
2758 {
fd7729c5 2759 { "shar\t%X0", CC_SET_ZNV },
2760 { "shar\t%t0\n\trotxr\t%s0", CC_CLOBBER },
2761 { "shar\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
b839e0b4 2762 }
2763 },
2764/* H8/300H */
2765 {
2766/* SHIFT_ASHIFT */
2767 {
fd7729c5 2768 { "shll.b\t%X0", CC_SET_ZNV },
2769 { "shll.w\t%T0", CC_SET_ZNV },
2770 { "shll.l\t%S0", CC_SET_ZNV }
b839e0b4 2771 },
2772/* SHIFT_LSHIFTRT */
2773 {
fd7729c5 2774 { "shlr.b\t%X0", CC_SET_ZNV },
2775 { "shlr.w\t%T0", CC_SET_ZNV },
2776 { "shlr.l\t%S0", CC_SET_ZNV }
b839e0b4 2777 },
2778/* SHIFT_ASHIFTRT */
2779 {
fd7729c5 2780 { "shar.b\t%X0", CC_SET_ZNV },
2781 { "shar.w\t%T0", CC_SET_ZNV },
2782 { "shar.l\t%S0", CC_SET_ZNV }
b839e0b4 2783 }
2784 }
2785};
e1629549 2786
52abe980 2787static const struct shift_insn shift_two[3][3] =
2788{
2789/* SHIFT_ASHIFT */
2790 {
fd7729c5 2791 { "shll.b\t#2,%X0", CC_SET_ZNV },
2792 { "shll.w\t#2,%T0", CC_SET_ZNV },
2793 { "shll.l\t#2,%S0", CC_SET_ZNV }
52abe980 2794 },
2795/* SHIFT_LSHIFTRT */
2796 {
fd7729c5 2797 { "shlr.b\t#2,%X0", CC_SET_ZNV },
2798 { "shlr.w\t#2,%T0", CC_SET_ZNV },
2799 { "shlr.l\t#2,%S0", CC_SET_ZNV }
52abe980 2800 },
2801/* SHIFT_ASHIFTRT */
2802 {
fd7729c5 2803 { "shar.b\t#2,%X0", CC_SET_ZNV },
2804 { "shar.w\t#2,%T0", CC_SET_ZNV },
2805 { "shar.l\t#2,%S0", CC_SET_ZNV }
52abe980 2806 }
2807};
2808
b839e0b4 2809/* Rotates are organized by which shift they'll be used in implementing.
2810 There's no need to record whether the cc is valid afterwards because
2811 it is the AND insn that will decide this. */
e1629549 2812
b839e0b4 2813static const char *const rotate_one[2][3][3] =
2814{
2815/* H8/300 */
2816 {
2817/* SHIFT_ASHIFT */
2818 {
52abe980 2819 "rotr\t%X0",
2820 "shlr\t%t0\n\trotxr\t%s0\n\tbst\t#7,%t0",
b839e0b4 2821 0
2822 },
2823/* SHIFT_LSHIFTRT */
2824 {
52abe980 2825 "rotl\t%X0",
2826 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
b839e0b4 2827 0
2828 },
2829/* SHIFT_ASHIFTRT */
2830 {
52abe980 2831 "rotl\t%X0",
2832 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
b839e0b4 2833 0
e1629549 2834 }
b839e0b4 2835 },
2836/* H8/300H */
2837 {
2838/* SHIFT_ASHIFT */
2839 {
52abe980 2840 "rotr.b\t%X0",
2841 "rotr.w\t%T0",
2842 "rotr.l\t%S0"
b839e0b4 2843 },
2844/* SHIFT_LSHIFTRT */
e1629549 2845 {
52abe980 2846 "rotl.b\t%X0",
2847 "rotl.w\t%T0",
2848 "rotl.l\t%S0"
b839e0b4 2849 },
2850/* SHIFT_ASHIFTRT */
2851 {
52abe980 2852 "rotl.b\t%X0",
2853 "rotl.w\t%T0",
2854 "rotl.l\t%S0"
b839e0b4 2855 }
2856 }
2857};
2858
52abe980 2859static const char *const rotate_two[3][3] =
2860{
2861/* SHIFT_ASHIFT */
2862 {
2863 "rotr.b\t#2,%X0",
2864 "rotr.w\t#2,%T0",
2865 "rotr.l\t#2,%S0"
2866 },
2867/* SHIFT_LSHIFTRT */
2868 {
2869 "rotl.b\t#2,%X0",
2870 "rotl.w\t#2,%T0",
2871 "rotl.l\t#2,%S0"
2872 },
2873/* SHIFT_ASHIFTRT */
2874 {
2875 "rotl.b\t#2,%X0",
2876 "rotl.w\t#2,%T0",
2877 "rotl.l\t#2,%S0"
2878 }
2879};
2880
4765dbab 2881struct shift_info {
2882 /* Shift algorithm. */
2883 enum shift_alg alg;
2884
2885 /* The number of bits to be shifted by shift1 and shift2. Valid
2886 when ALG is SHIFT_SPECIAL. */
2887 unsigned int remainder;
2888
2889 /* Special insn for a shift. Valid when ALG is SHIFT_SPECIAL. */
2890 const char *special;
2891
2892 /* Insn for a one-bit shift. Valid when ALG is either SHIFT_INLINE
c46dc351 2893 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
4765dbab 2894 const char *shift1;
2895
2896 /* Insn for a two-bit shift. Valid when ALG is either SHIFT_INLINE
c46dc351 2897 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
4765dbab 2898 const char *shift2;
2899
fd7729c5 2900 /* CC status for SHIFT_INLINE. */
2901 int cc_inline;
2902
2903 /* CC status for SHIFT_SPECIAL. */
2904 int cc_special;
4765dbab 2905};
2906
230002f2 2907static void get_shift_alg (enum shift_type,
2908 enum shift_mode, unsigned int,
2909 struct shift_info *);
9305fe33 2910
ec0b80c6 2911/* Given SHIFT_TYPE, SHIFT_MODE, and shift count COUNT, determine the
2912 best algorithm for doing the shift. The assembler code is stored
140ee624 2913 in the pointers in INFO. We achieve the maximum efficiency in most
2914 cases when !TARGET_H8300. In case of TARGET_H8300, shifts in
2915 SImode in particular have a lot of room to optimize.
2916
2917 We first determine the strategy of the shift algorithm by a table
2918 lookup. If that tells us to use a hand crafted assembly code, we
2919 go into the big switch statement to find what that is. Otherwise,
2920 we resort to a generic way, such as inlining. In either case, the
2921 result is returned through INFO. */
b839e0b4 2922
5a40b38e 2923static void
230002f2 2924get_shift_alg (enum shift_type shift_type, enum shift_mode shift_mode,
2925 unsigned int count, struct shift_info *info)
b839e0b4 2926{
5d822c00 2927 enum h8_cpu cpu;
58285553 2928
2929 /* Find the target CPU. */
2930 if (TARGET_H8300)
5d822c00 2931 cpu = H8_300;
58285553 2932 else if (TARGET_H8300H)
5d822c00 2933 cpu = H8_300H;
58285553 2934 else
5d822c00 2935 cpu = H8_S;
58285553 2936
ce8940f6 2937 /* Find the shift algorithm. */
5d822c00 2938 info->alg = SHIFT_LOOP;
b839e0b4 2939 switch (shift_mode)
2940 {
2941 case QIshift:
5d822c00 2942 if (count < GET_MODE_BITSIZE (QImode))
ce8940f6 2943 info->alg = shift_alg_qi[cpu][shift_type][count];
2944 break;
58285553 2945
ce8940f6 2946 case HIshift:
5d822c00 2947 if (count < GET_MODE_BITSIZE (HImode))
ce8940f6 2948 info->alg = shift_alg_hi[cpu][shift_type][count];
2949 break;
2950
2951 case SIshift:
5d822c00 2952 if (count < GET_MODE_BITSIZE (SImode))
ce8940f6 2953 info->alg = shift_alg_si[cpu][shift_type][count];
2954 break;
2955
2956 default:
2957 abort ();
2958 }
2959
2960 /* Fill in INFO. Return unless we have SHIFT_SPECIAL. */
2961 switch (info->alg)
2962 {
2963 case SHIFT_INLINE:
2964 info->remainder = count;
2965 /* Fall through. */
2966
2967 case SHIFT_LOOP:
2968 /* It is up to the caller to know that looping clobbers cc. */
2969 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
2970 info->shift2 = shift_two[shift_type][shift_mode].assembler;
fd7729c5 2971 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
ce8940f6 2972 goto end;
2973
2974 case SHIFT_ROT_AND:
2975 info->shift1 = rotate_one[cpu_type][shift_type][shift_mode];
2976 info->shift2 = rotate_two[shift_type][shift_mode];
fd7729c5 2977 info->cc_inline = CC_CLOBBER;
ce8940f6 2978 goto end;
2979
2980 case SHIFT_SPECIAL:
2981 /* REMAINDER is 0 for most cases, so initialize it to 0. */
2982 info->remainder = 0;
2983 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
2984 info->shift2 = shift_two[shift_type][shift_mode].assembler;
fd7729c5 2985 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
2986 info->cc_special = CC_CLOBBER;
ce8940f6 2987 break;
2988 }
52abe980 2989
ce8940f6 2990 /* Here we only deal with SHIFT_SPECIAL. */
2991 switch (shift_mode)
2992 {
2993 case QIshift:
58285553 2994 /* For ASHIFTRT by 7 bits, the sign bit is simply replicated
2995 through the entire value. */
2996 if (shift_type == SHIFT_ASHIFTRT && count == 7)
2997 {
2998 info->special = "shll\t%X0\n\tsubx\t%X0,%X0";
606a6902 2999 goto end;
58285553 3000 }
3001 abort ();
3002
3003 case HIshift:
58285553 3004 if (count == 7)
52abe980 3005 {
79b29436 3006 switch (shift_type)
52abe980 3007 {
79b29436 3008 case SHIFT_ASHIFT:
3009 if (TARGET_H8300)
3010 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.b\t%t0\n\trotr.b\t%s0\n\tand.b\t#0x80,%s0";
3011 else
3012 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.w\t%T0\n\tand.b\t#0x80,%s0";
606a6902 3013 goto end;
79b29436 3014 case SHIFT_LSHIFTRT:
3015 if (TARGET_H8300)
3016 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\trotl.b\t%t0\n\tand.b\t#0x01,%t0";
3017 else
3018 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.w\t%T0\n\tand.b\t#0x01,%t0";
606a6902 3019 goto end;
79b29436 3020 case SHIFT_ASHIFTRT:
4765dbab 3021 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\tsubx\t%t0,%t0";
606a6902 3022 goto end;
b839e0b4 3023 }
e1629549 3024 }
a033fe93 3025 else if ((8 <= count && count <= 13)
8796f52f 3026 || (TARGET_H8300S && count == 14))
e1629549 3027 {
8db8f925 3028 info->remainder = count - 8;
3029
52abe980 3030 switch (shift_type)
b839e0b4 3031 {
52abe980 3032 case SHIFT_ASHIFT:
4765dbab 3033 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0";
606a6902 3034 goto end;
52abe980 3035 case SHIFT_LSHIFTRT:
903ae79d 3036 if (TARGET_H8300)
3037 {
3038 info->special = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0";
3039 info->shift1 = "shlr.b\t%s0";
fd7729c5 3040 info->cc_inline = CC_SET_ZNV;
903ae79d 3041 }
3042 else
3043 {
3044 info->special = "mov.b\t%t0,%s0\n\textu.w\t%T0";
fd7729c5 3045 info->cc_special = CC_SET_ZNV;
903ae79d 3046 }
606a6902 3047 goto end;
52abe980 3048 case SHIFT_ASHIFTRT:
3049 if (TARGET_H8300)
903ae79d 3050 {
3051 info->special = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0";
3052 info->shift1 = "shar.b\t%s0";
903ae79d 3053 }
52abe980 3054 else
903ae79d 3055 {
3056 info->special = "mov.b\t%t0,%s0\n\texts.w\t%T0";
fd7729c5 3057 info->cc_special = CC_SET_ZNV;
903ae79d 3058 }
606a6902 3059 goto end;
52abe980 3060 }
3061 }
a0bbe9df 3062 else if (count == 14)
3063 {
3064 switch (shift_type)
3065 {
3066 case SHIFT_ASHIFT:
3067 if (TARGET_H8300)
3068 info->special = "mov.b\t%s0,%t0\n\trotr.b\t%t0\n\trotr.b\t%t0\n\tand.b\t#0xC0,%t0\n\tsub.b\t%s0,%s0";
3069 goto end;
3070 case SHIFT_LSHIFTRT:
3071 if (TARGET_H8300)
3072 info->special = "mov.b\t%t0,%s0\n\trotl.b\t%s0\n\trotl.b\t%s0\n\tand.b\t#3,%s0\n\tsub.b\t%t0,%t0";
3073 goto end;
3074 case SHIFT_ASHIFTRT:
3075 if (TARGET_H8300)
3076 info->special = "mov.b\t%t0,%s0\n\tshll.b\t%s0\n\tsubx.b\t%t0,%t0\n\tshll.b\t%s0\n\tmov.b\t%t0,%s0\n\tbst.b\t#0,%s0";
3077 else if (TARGET_H8300H)
fd7729c5 3078 {
3079 info->special = "shll.b\t%t0\n\tsubx.b\t%s0,%s0\n\tshll.b\t%t0\n\trotxl.b\t%s0\n\texts.w\t%T0";
3080 info->cc_special = CC_SET_ZNV;
3081 }
a0bbe9df 3082 else /* TARGET_H8300S */
a033fe93 3083 abort ();
a0bbe9df 3084 goto end;
3085 }
3086 }
f76e2664 3087 else if (count == 15)
52abe980 3088 {
f76e2664 3089 switch (shift_type)
3090 {
3091 case SHIFT_ASHIFT:
3092 info->special = "bld\t#0,%s0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#7,%t0";
3093 goto end;
3094 case SHIFT_LSHIFTRT:
3095 info->special = "bld\t#7,%t0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#0,%s0";
3096 goto end;
3097 case SHIFT_ASHIFTRT:
3098 info->special = "shll\t%t0\n\tsubx\t%t0,%t0\n\tmov.b\t%t0,%s0";
3099 goto end;
3100 }
e1629549 3101 }
58285553 3102 abort ();
52abe980 3103
b839e0b4 3104 case SIshift:
f76e2664 3105 if (TARGET_H8300 && 8 <= count && count <= 9)
b839e0b4 3106 {
f76e2664 3107 info->remainder = count - 8;
3108
52abe980 3109 switch (shift_type)
b839e0b4 3110 {
52abe980 3111 case SHIFT_ASHIFT:
4765dbab 3112 info->special = "mov.b\t%y0,%z0\n\tmov.b\t%x0,%y0\n\tmov.b\t%w0,%x0\n\tsub.b\t%w0,%w0";
606a6902 3113 goto end;
52abe980 3114 case SHIFT_LSHIFTRT:
4765dbab 3115 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tsub.b\t%z0,%z0";
f76e2664 3116 info->shift1 = "shlr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0";
606a6902 3117 goto end;
52abe980 3118 case SHIFT_ASHIFTRT:
4765dbab 3119 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tshll\t%z0\n\tsubx\t%z0,%z0";
606a6902 3120 goto end;
b839e0b4 3121 }
b839e0b4 3122 }
9bbc06f2 3123 else if (count == 8 && !TARGET_H8300)
3124 {
3125 switch (shift_type)
3126 {
3127 case SHIFT_ASHIFT:
4765dbab 3128 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%s4,%t4\n\tmov.b\t%t0,%s4\n\tmov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f4,%e0";
606a6902 3129 goto end;
9bbc06f2 3130 case SHIFT_LSHIFTRT:
4765dbab 3131 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\textu.w\t%f4\n\tmov.w\t%f4,%e0";
606a6902 3132 goto end;
9bbc06f2 3133 case SHIFT_ASHIFTRT:
4765dbab 3134 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\texts.w\t%f4\n\tmov.w\t%f4,%e0";
606a6902 3135 goto end;
9bbc06f2 3136 }
3137 }
f76e2664 3138 else if (count == 15 && TARGET_H8300)
3139 {
3140 switch (shift_type)
3141 {
3142 case SHIFT_ASHIFT:
3143 abort ();
3144 case SHIFT_LSHIFTRT:
a6f6d86d 3145 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\txor\t%y0,%y0\n\txor\t%z0,%z0\n\trotxl\t%w0\n\trotxl\t%x0\n\trotxl\t%y0";
f76e2664 3146 goto end;
3147 case SHIFT_ASHIFTRT:
a6f6d86d 3148 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\trotxl\t%w0\n\trotxl\t%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
f76e2664 3149 goto end;
3150 }
3151 }
37e1f65a 3152 else if (count == 15 && !TARGET_H8300)
3153 {
3154 switch (shift_type)
3155 {
3156 case SHIFT_ASHIFT:
3157 info->special = "shlr.w\t%e0\n\tmov.w\t%f0,%e0\n\txor.w\t%f0,%f0\n\trotxr.l\t%S0";
fd7729c5 3158 info->cc_special = CC_SET_ZNV;
37e1f65a 3159 goto end;
3160 case SHIFT_LSHIFTRT:
d2079f6d 3161 info->special = "shll.w\t%f0\n\tmov.w\t%e0,%f0\n\txor.w\t%e0,%e0\n\trotxl.l\t%S0";
fd7729c5 3162 info->cc_special = CC_SET_ZNV;
37e1f65a 3163 goto end;
7913b5f4 3164 case SHIFT_ASHIFTRT:
3165 abort ();
37e1f65a 3166 }
3167 }
f76e2664 3168 else if ((TARGET_H8300 && 16 <= count && count <= 20)
8db8f925 3169 || (TARGET_H8300H && 16 <= count && count <= 19)
776e0da8 3170 || (TARGET_H8300S && 16 <= count && count <= 21))
b839e0b4 3171 {
8db8f925 3172 info->remainder = count - 16;
3173
b839e0b4 3174 switch (shift_type)
3175 {
3176 case SHIFT_ASHIFT:
4765dbab 3177 info->special = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
f76e2664 3178 if (TARGET_H8300)
a033fe93 3179 info->shift1 = "add.w\t%e0,%e0";
606a6902 3180 goto end;
52abe980 3181 case SHIFT_LSHIFTRT:
f76e2664 3182 if (TARGET_H8300)
3183 {
903ae79d 3184 info->special = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0";
3185 info->shift1 = "shlr\t%x0\n\trotxr\t%w0";
f76e2664 3186 }
3187 else
3188 {
903ae79d 3189 info->special = "mov.w\t%e0,%f0\n\textu.l\t%S0";
fd7729c5 3190 info->cc_special = CC_SET_ZNV;
f76e2664 3191 }
606a6902 3192 goto end;
52abe980 3193 case SHIFT_ASHIFTRT:
3194 if (TARGET_H8300)
f76e2664 3195 {
3196 info->special = "mov.w\t%e0,%f0\n\tshll\t%z0\n\tsubx\t%z0,%z0\n\tmov.b\t%z0,%y0";
3197 info->shift1 = "shar\t%x0\n\trotxr\t%w0";
3198 }
52abe980 3199 else
f76e2664 3200 {
3201 info->special = "mov.w\t%e0,%f0\n\texts.l\t%S0";
fd7729c5 3202 info->cc_special = CC_SET_ZNV;
f76e2664 3203 }
606a6902 3204 goto end;
52abe980 3205 }
3206 }
f76e2664 3207 else if (TARGET_H8300 && 24 <= count && count <= 28)
81c3eb11 3208 {
3209 info->remainder = count - 24;
f2702e8a 3210
81c3eb11 3211 switch (shift_type)
3212 {
3213 case SHIFT_ASHIFT:
3214 info->special = "mov.b\t%w0,%z0\n\tsub.b\t%y0,%y0\n\tsub.w\t%f0,%f0";
3215 info->shift1 = "shll.b\t%z0";
fd7729c5 3216 info->cc_inline = CC_SET_ZNV;
81c3eb11 3217 goto end;
3218 case SHIFT_LSHIFTRT:
3219 info->special = "mov.b\t%z0,%w0\n\tsub.b\t%x0,%x0\n\tsub.w\t%e0,%e0";
3220 info->shift1 = "shlr.b\t%w0";
fd7729c5 3221 info->cc_inline = CC_SET_ZNV;
81c3eb11 3222 goto end;
3223 case SHIFT_ASHIFTRT:
3224 info->special = "mov.b\t%z0,%w0\n\tbld\t#7,%w0\n\tsubx\t%x0,%x0\n\tsubx\t%x0,%x0\n\tsubx\t%x0,%x0";
3225 info->shift1 = "shar.b\t%w0";
fd7729c5 3226 info->cc_inline = CC_SET_ZNV;
b44470aa 3227 goto end;
3228 }
3229 }
0d219270 3230 else if ((TARGET_H8300H && count == 24)
3231 || (TARGET_H8300S && 24 <= count && count <= 25))
9bbc06f2 3232 {
0d219270 3233 info->remainder = count - 24;
3234
9bbc06f2 3235 switch (shift_type)
3236 {
3237 case SHIFT_ASHIFT:
4765dbab 3238 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
606a6902 3239 goto end;
9bbc06f2 3240 case SHIFT_LSHIFTRT:
4765dbab 3241 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\textu.w\t%f0\n\textu.l\t%S0";
fd7729c5 3242 info->cc_special = CC_SET_ZNV;
606a6902 3243 goto end;
9bbc06f2 3244 case SHIFT_ASHIFTRT:
4765dbab 3245 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\texts.w\t%f0\n\texts.l\t%S0";
fd7729c5 3246 info->cc_special = CC_SET_ZNV;
606a6902 3247 goto end;
9bbc06f2 3248 }
3249 }
567c4b66 3250 else if (!TARGET_H8300 && count == 28)
3251 {
3252 switch (shift_type)
3253 {
3254 case SHIFT_ASHIFT:
3255 if (TARGET_H8300H)
3256 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
3257 else
3258 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
567c4b66 3259 goto end;
3260 case SHIFT_LSHIFTRT:
3261 if (TARGET_H8300H)
fd7729c5 3262 {
3263 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
3264 info->cc_special = CC_SET_ZNV;
3265 }
567c4b66 3266 else
903ae79d 3267 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
567c4b66 3268 goto end;
3269 case SHIFT_ASHIFTRT:
3270 abort ();
3271 }
3272 }
3273 else if (!TARGET_H8300 && count == 29)
3274 {
3275 switch (shift_type)
3276 {
3277 case SHIFT_ASHIFT:
3278 if (TARGET_H8300H)
3279 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
3280 else
3281 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
567c4b66 3282 goto end;
3283 case SHIFT_LSHIFTRT:
3284 if (TARGET_H8300H)
fd7729c5 3285 {
3286 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
3287 info->cc_special = CC_SET_ZNV;
3288 }
567c4b66 3289 else
fd7729c5 3290 {
3291 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
3292 info->cc_special = CC_SET_ZNV;
3293 }
567c4b66 3294 goto end;
3295 case SHIFT_ASHIFTRT:
3296 abort ();
3297 }
3298 }
3299 else if (!TARGET_H8300 && count == 30)
3300 {
3301 switch (shift_type)
3302 {
3303 case SHIFT_ASHIFT:
3304 if (TARGET_H8300H)
3305 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
3306 else
3307 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
567c4b66 3308 goto end;
3309 case SHIFT_LSHIFTRT:
3310 if (TARGET_H8300H)
903ae79d 3311 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
567c4b66 3312 else
903ae79d 3313 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
567c4b66 3314 goto end;
3315 case SHIFT_ASHIFTRT:
3316 abort ();
3317 }
3318 }
b839e0b4 3319 else if (count == 31)
3320 {
37e1f65a 3321 if (TARGET_H8300)
b839e0b4 3322 {
37e1f65a 3323 switch (shift_type)
3324 {
3325 case SHIFT_ASHIFT:
3326 info->special = "sub.w\t%e0,%e0\n\tshlr\t%w0\n\tmov.w\t%e0,%f0\n\trotxr\t%z0";
3327 goto end;
3328 case SHIFT_LSHIFTRT:
3329 info->special = "sub.w\t%f0,%f0\n\tshll\t%z0\n\tmov.w\t%f0,%e0\n\trotxl\t%w0";
3330 goto end;
3331 case SHIFT_ASHIFTRT:
3332 info->special = "shll\t%z0\n\tsubx\t%w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
3333 goto end;
3334 }
b839e0b4 3335 }
3336 else
3337 {
37e1f65a 3338 switch (shift_type)
b839e0b4 3339 {
37e1f65a 3340 case SHIFT_ASHIFT:
3341 info->special = "shlr.l\t%S0\n\txor.l\t%S0,%S0\n\trotxr.l\t%S0";
fd7729c5 3342 info->cc_special = CC_SET_ZNV;
37e1f65a 3343 goto end;
3344 case SHIFT_LSHIFTRT:
3345 info->special = "shll.l\t%S0\n\txor.l\t%S0,%S0\n\trotxl.l\t%S0";
fd7729c5 3346 info->cc_special = CC_SET_ZNV;
37e1f65a 3347 goto end;
3348 case SHIFT_ASHIFTRT:
903ae79d 3349 info->special = "shll\t%e0\n\tsubx\t%w0,%w0\n\texts.w\t%T0\n\texts.l\t%S0";
fd7729c5 3350 info->cc_special = CC_SET_ZNV;
606a6902 3351 goto end;
b839e0b4 3352 }
b839e0b4 3353 }
3354 }
58285553 3355 abort ();
52abe980 3356
b839e0b4 3357 default:
3358 abort ();
e1629549 3359 }
b839e0b4 3360
5a40b38e 3361 end:
3362 if (!TARGET_H8300S)
3363 info->shift2 = NULL;
e1629549 3364}
3365
6b30b2e6 3366/* Given COUNT and MODE of a shift, return 1 if a scratch reg may be
3367 needed for some shift with COUNT and MODE. Return 0 otherwise. */
3368
3369int
230002f2 3370h8300_shift_needs_scratch_p (int count, enum machine_mode mode)
6b30b2e6 3371{
5d822c00 3372 enum h8_cpu cpu;
6b30b2e6 3373 int a, lr, ar;
3374
3375 if (GET_MODE_BITSIZE (mode) <= count)
3376 return 1;
3377
3378 /* Find out the target CPU. */
3379 if (TARGET_H8300)
5d822c00 3380 cpu = H8_300;
6b30b2e6 3381 else if (TARGET_H8300H)
5d822c00 3382 cpu = H8_300H;
6b30b2e6 3383 else
5d822c00 3384 cpu = H8_S;
6b30b2e6 3385
3386 /* Find the shift algorithm. */
3387 switch (mode)
3388 {
3389 case QImode:
3390 a = shift_alg_qi[cpu][SHIFT_ASHIFT][count];
3391 lr = shift_alg_qi[cpu][SHIFT_LSHIFTRT][count];
3392 ar = shift_alg_qi[cpu][SHIFT_ASHIFTRT][count];
3393 break;
3394
3395 case HImode:
3396 a = shift_alg_hi[cpu][SHIFT_ASHIFT][count];
3397 lr = shift_alg_hi[cpu][SHIFT_LSHIFTRT][count];
3398 ar = shift_alg_hi[cpu][SHIFT_ASHIFTRT][count];
3399 break;
3400
3401 case SImode:
3402 a = shift_alg_si[cpu][SHIFT_ASHIFT][count];
3403 lr = shift_alg_si[cpu][SHIFT_LSHIFTRT][count];
3404 ar = shift_alg_si[cpu][SHIFT_ASHIFTRT][count];
3405 break;
3406
3407 default:
3408 abort ();
3409 }
3410
33a9c2d6 3411 /* On H8/300H, count == 8 uses a scratch register. */
6b30b2e6 3412 return (a == SHIFT_LOOP || lr == SHIFT_LOOP || ar == SHIFT_LOOP
c6ff55c2 3413 || (TARGET_H8300H && mode == SImode && count == 8));
6b30b2e6 3414}
3415
b839e0b4 3416/* Emit the assembler code for doing shifts. */
3417
9305fe33 3418const char *
230002f2 3419output_a_shift (rtx *operands)
e1629549 3420{
b839e0b4 3421 static int loopend_lab;
b839e0b4 3422 rtx shift = operands[3];
3423 enum machine_mode mode = GET_MODE (shift);
3424 enum rtx_code code = GET_CODE (shift);
3425 enum shift_type shift_type;
3426 enum shift_mode shift_mode;
4765dbab 3427 struct shift_info info;
b839e0b4 3428
3429 loopend_lab++;
3430
3431 switch (mode)
3432 {
3433 case QImode:
3434 shift_mode = QIshift;
3435 break;
3436 case HImode:
3437 shift_mode = HIshift;
3438 break;
3439 case SImode:
3440 shift_mode = SIshift;
3441 break;
3442 default:
3443 abort ();
3444 }
e1629549 3445
b839e0b4 3446 switch (code)
e1629549 3447 {
b839e0b4 3448 case ASHIFTRT:
3449 shift_type = SHIFT_ASHIFTRT;
3450 break;
3451 case LSHIFTRT:
3452 shift_type = SHIFT_LSHIFTRT;
3453 break;
3454 case ASHIFT:
3455 shift_type = SHIFT_ASHIFT;
3456 break;
3457 default:
3458 abort ();
3459 }
e1629549 3460
b839e0b4 3461 if (GET_CODE (operands[2]) != CONST_INT)
3462 {
3d71ed48 3463 /* This case must be taken care of by one of the two splitters
3464 that convert a variable shift into a loop. */
3465 abort ();
b839e0b4 3466 }
3467 else
3468 {
3469 int n = INTVAL (operands[2]);
b839e0b4 3470
3471 /* If the count is negative, make it 0. */
3472 if (n < 0)
3473 n = 0;
3474 /* If the count is too big, truncate it.
3475 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
3476 do the intuitive thing. */
53aec781 3477 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
b839e0b4 3478 n = GET_MODE_BITSIZE (mode);
3479
5a40b38e 3480 get_shift_alg (shift_type, shift_mode, n, &info);
b839e0b4 3481
5a40b38e 3482 switch (info.alg)
b839e0b4 3483 {
5a40b38e 3484 case SHIFT_SPECIAL:
3485 output_asm_insn (info.special, operands);
3486 /* Fall through. */
3487
b839e0b4 3488 case SHIFT_INLINE:
5a40b38e 3489 n = info.remainder;
3490
52abe980 3491 /* Emit two bit shifts first. */
8aaeb4a6 3492 if (info.shift2 != NULL)
52abe980 3493 {
8aaeb4a6 3494 for (; n > 1; n -= 2)
3495 output_asm_insn (info.shift2, operands);
52abe980 3496 }
3497
3498 /* Now emit one bit shifts for any residual. */
8aaeb4a6 3499 for (; n > 0; n--)
3500 output_asm_insn (info.shift1, operands);
b839e0b4 3501 return "";
52abe980 3502
b839e0b4 3503 case SHIFT_ROT_AND:
3504 {
3505 int m = GET_MODE_BITSIZE (mode) - n;
407921a5 3506 const int mask = (shift_type == SHIFT_ASHIFT
3507 ? ((1 << m) - 1) << n
3508 : (1 << m) - 1);
b839e0b4 3509 char insn_buf[200];
cb95c693 3510
b839e0b4 3511 /* Not all possibilities of rotate are supported. They shouldn't
3512 be generated, but let's watch for 'em. */
4765dbab 3513 if (info.shift1 == 0)
b839e0b4 3514 abort ();
52abe980 3515
3516 /* Emit two bit rotates first. */
8aaeb4a6 3517 if (info.shift2 != NULL)
52abe980 3518 {
8aaeb4a6 3519 for (; m > 1; m -= 2)
3520 output_asm_insn (info.shift2, operands);
52abe980 3521 }
3522
3523 /* Now single bit rotates for any residual. */
8aaeb4a6 3524 for (; m > 0; m--)
3525 output_asm_insn (info.shift1, operands);
52abe980 3526
3527 /* Now mask off the high bits. */
87fbdf7b 3528 if (mode == QImode)
3529 sprintf (insn_buf, "and\t#%d,%%X0", mask);
3530 else if (mode == HImode && (TARGET_H8300H || TARGET_H8300S))
3531 sprintf (insn_buf, "and.w\t#%d,%%T0", mask);
3532 else
3533 abort ();
3534
b839e0b4 3535 output_asm_insn (insn_buf, operands);
3536 return "";
3537 }
cb95c693 3538
cb95c693 3539 case SHIFT_LOOP:
3540 /* A loop to shift by a "large" constant value.
3541 If we have shift-by-2 insns, use them. */
4765dbab 3542 if (info.shift2 != NULL)
cb95c693 3543 {
3544 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n / 2,
3545 names_big[REGNO (operands[4])]);
3546 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4765dbab 3547 output_asm_insn (info.shift2, operands);
cb95c693 3548 output_asm_insn ("add #0xff,%X4", operands);
3549 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
3550 if (n % 2)
4765dbab 3551 output_asm_insn (info.shift1, operands);
cb95c693 3552 }
3553 else
3554 {
3555 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n,
3556 names_big[REGNO (operands[4])]);
3557 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4765dbab 3558 output_asm_insn (info.shift1, operands);
cb95c693 3559 output_asm_insn ("add #0xff,%X4", operands);
3560 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
3561 }
52abe980 3562 return "";
cb95c693 3563
3564 default:
3565 abort ();
52abe980 3566 }
e1629549 3567 }
e1629549 3568}
484c1e8d 3569
3570static unsigned int
230002f2 3571h8300_asm_insn_count (const char *template)
484c1e8d 3572{
3573 unsigned int count = 1;
3574
3575 for (; *template; template++)
3576 if (*template == '\n')
3577 count++;
3578
3579 return count;
3580}
3581
3582unsigned int
230002f2 3583compute_a_shift_length (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
484c1e8d 3584{
3585 rtx shift = operands[3];
3586 enum machine_mode mode = GET_MODE (shift);
3587 enum rtx_code code = GET_CODE (shift);
3588 enum shift_type shift_type;
3589 enum shift_mode shift_mode;
3590 struct shift_info info;
3591 unsigned int wlength = 0;
3592
3593 switch (mode)
3594 {
3595 case QImode:
3596 shift_mode = QIshift;
3597 break;
3598 case HImode:
3599 shift_mode = HIshift;
3600 break;
3601 case SImode:
3602 shift_mode = SIshift;
3603 break;
3604 default:
3605 abort ();
3606 }
3607
3608 switch (code)
3609 {
3610 case ASHIFTRT:
3611 shift_type = SHIFT_ASHIFTRT;
3612 break;
3613 case LSHIFTRT:
3614 shift_type = SHIFT_LSHIFTRT;
3615 break;
3616 case ASHIFT:
3617 shift_type = SHIFT_ASHIFT;
3618 break;
3619 default:
3620 abort ();
3621 }
3622
3623 if (GET_CODE (operands[2]) != CONST_INT)
3624 {
3625 /* Get the assembler code to do one shift. */
3626 get_shift_alg (shift_type, shift_mode, 1, &info);
3627
3628 return (4 + h8300_asm_insn_count (info.shift1)) * 2;
3629 }
3630 else
3631 {
3632 int n = INTVAL (operands[2]);
3633
3634 /* If the count is negative, make it 0. */
3635 if (n < 0)
3636 n = 0;
3637 /* If the count is too big, truncate it.
3638 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
3639 do the intuitive thing. */
3640 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
3641 n = GET_MODE_BITSIZE (mode);
3642
3643 get_shift_alg (shift_type, shift_mode, n, &info);
3644
3645 switch (info.alg)
3646 {
3647 case SHIFT_SPECIAL:
3648 wlength += h8300_asm_insn_count (info.special);
f56f0ed0 3649
3650 /* Every assembly instruction used in SHIFT_SPECIAL case
3651 takes 2 bytes except xor.l, which takes 4 bytes, so if we
3652 see xor.l, we just pretend that xor.l counts as two insns
3653 so that the insn length will be computed correctly. */
3654 if (strstr (info.special, "xor.l") != NULL)
3655 wlength++;
3656
484c1e8d 3657 /* Fall through. */
3658
3659 case SHIFT_INLINE:
3660 n = info.remainder;
3661
3662 if (info.shift2 != NULL)
3663 {
3664 wlength += h8300_asm_insn_count (info.shift2) * (n / 2);
3665 n = n % 2;
3666 }
3667
3668 wlength += h8300_asm_insn_count (info.shift1) * n;
66b41076 3669
484c1e8d 3670 return 2 * wlength;
3671
3672 case SHIFT_ROT_AND:
3673 {
3674 int m = GET_MODE_BITSIZE (mode) - n;
3675
3676 /* Not all possibilities of rotate are supported. They shouldn't
3677 be generated, but let's watch for 'em. */
3678 if (info.shift1 == 0)
3679 abort ();
3680
3681 if (info.shift2 != NULL)
3682 {
3683 wlength += h8300_asm_insn_count (info.shift2) * (m / 2);
3684 m = m % 2;
3685 }
3686
3687 wlength += h8300_asm_insn_count (info.shift1) * m;
66b41076 3688
484c1e8d 3689 /* Now mask off the high bits. */
3690 switch (mode)
3691 {
3692 case QImode:
3693 wlength += 1;
3694 break;
3695 case HImode:
3696 wlength += 2;
3697 break;
3698 case SImode:
3699 if (TARGET_H8300)
3700 abort ();
3701 wlength += 3;
3702 break;
3703 default:
3704 abort ();
3705 }
3706 return 2 * wlength;
3707 }
3708
3709 case SHIFT_LOOP:
3710 /* A loop to shift by a "large" constant value.
3711 If we have shift-by-2 insns, use them. */
3712 if (info.shift2 != NULL)
3713 {
3714 wlength += 3 + h8300_asm_insn_count (info.shift2);
3715 if (n % 2)
3716 wlength += h8300_asm_insn_count (info.shift1);
3717 }
3718 else
3719 {
3720 wlength += 3 + h8300_asm_insn_count (info.shift1);
3721 }
3722 return 2 * wlength;
3723
3724 default:
3725 abort ();
3726 }
3727 }
3728}
fd7729c5 3729
3730int
230002f2 3731compute_a_shift_cc (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
fd7729c5 3732{
3733 rtx shift = operands[3];
3734 enum machine_mode mode = GET_MODE (shift);
3735 enum rtx_code code = GET_CODE (shift);
3736 enum shift_type shift_type;
3737 enum shift_mode shift_mode;
3738 struct shift_info info;
3739
3740 switch (mode)
3741 {
3742 case QImode:
3743 shift_mode = QIshift;
3744 break;
3745 case HImode:
3746 shift_mode = HIshift;
3747 break;
3748 case SImode:
3749 shift_mode = SIshift;
3750 break;
3751 default:
3752 abort ();
3753 }
3754
3755 switch (code)
3756 {
3757 case ASHIFTRT:
3758 shift_type = SHIFT_ASHIFTRT;
3759 break;
3760 case LSHIFTRT:
3761 shift_type = SHIFT_LSHIFTRT;
3762 break;
3763 case ASHIFT:
3764 shift_type = SHIFT_ASHIFT;
3765 break;
3766 default:
3767 abort ();
3768 }
3769
3770 if (GET_CODE (operands[2]) != CONST_INT)
3771 {
3772 /* This case must be taken care of by one of the two splitters
3773 that convert a variable shift into a loop. */
3774 abort ();
3775 }
3776 else
3777 {
3778 int n = INTVAL (operands[2]);
3779
3780 /* If the count is negative, make it 0. */
3781 if (n < 0)
3782 n = 0;
3783 /* If the count is too big, truncate it.
3784 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
3785 do the intuitive thing. */
3786 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
3787 n = GET_MODE_BITSIZE (mode);
3788
3789 get_shift_alg (shift_type, shift_mode, n, &info);
3790
3791 switch (info.alg)
3792 {
3793 case SHIFT_SPECIAL:
3794 if (info.remainder == 0)
3795 return info.cc_special;
3796
3797 /* Fall through. */
3798
3799 case SHIFT_INLINE:
3800 return info.cc_inline;
3801
3802 case SHIFT_ROT_AND:
3803 /* This case always ends with an and instruction. */
3804 return CC_SET_ZNV;
3805
3806 case SHIFT_LOOP:
3807 /* A loop to shift by a "large" constant value.
3808 If we have shift-by-2 insns, use them. */
3809 if (info.shift2 != NULL)
3810 {
3811 if (n % 2)
3812 return info.cc_inline;
3813 }
3814 return CC_CLOBBER;
3815
3816 default:
3817 abort ();
3818 }
3819 }
3820}
b839e0b4 3821\f
b4fa7cf2 3822/* A rotation by a non-constant will cause a loop to be generated, in
3823 which a rotation by one bit is used. A rotation by a constant,
3824 including the one in the loop, will be taken care of by
af63c5ce 3825 output_a_rotate () at the insn emit time. */
b4fa7cf2 3826
3827int
230002f2 3828expand_a_rotate (enum rtx_code code, rtx operands[])
b4fa7cf2 3829{
3830 rtx dst = operands[0];
3831 rtx src = operands[1];
3832 rtx rotate_amount = operands[2];
3833 enum machine_mode mode = GET_MODE (dst);
3834 rtx tmp;
3835
3836 /* We rotate in place. */
3837 emit_move_insn (dst, src);
3838
3839 if (GET_CODE (rotate_amount) != CONST_INT)
3840 {
3841 rtx counter = gen_reg_rtx (QImode);
3842 rtx start_label = gen_label_rtx ();
3843 rtx end_label = gen_label_rtx ();
3844
3845 /* If the rotate amount is less than or equal to 0,
3846 we go out of the loop. */
7e69f45b 3847 emit_cmp_and_jump_insns (rotate_amount, GEN_INT (0), LE, NULL_RTX,
3848 QImode, 0, end_label);
b4fa7cf2 3849
3850 /* Initialize the loop counter. */
3851 emit_move_insn (counter, rotate_amount);
3852
3853 emit_label (start_label);
3854
3855 /* Rotate by one bit. */
3856 tmp = gen_rtx (code, mode, dst, GEN_INT (1));
3857 emit_insn (gen_rtx_SET (mode, dst, tmp));
3858
3859 /* Decrement the counter by 1. */
3860 tmp = gen_rtx_PLUS (QImode, counter, GEN_INT (-1));
3861 emit_insn (gen_rtx_SET (VOIDmode, counter, tmp));
3862
c46dc351 3863 /* If the loop counter is nonzero, we go back to the beginning
b4fa7cf2 3864 of the loop. */
7e69f45b 3865 emit_cmp_and_jump_insns (counter, GEN_INT (0), NE, NULL_RTX, QImode, 1,
3866 start_label);
b4fa7cf2 3867
3868 emit_label (end_label);
3869 }
3870 else
3871 {
3872 /* Rotate by AMOUNT bits. */
3873 tmp = gen_rtx (code, mode, dst, rotate_amount);
3874 emit_insn (gen_rtx_SET (mode, dst, tmp));
3875 }
3876
3877 return 1;
3878}
3879
af63c5ce 3880/* Output rotate insns. */
b4fa7cf2 3881
3882const char *
af63c5ce 3883output_a_rotate (enum rtx_code code, rtx *operands)
b4fa7cf2 3884{
3885 rtx dst = operands[0];
3886 rtx rotate_amount = operands[2];
3887 enum shift_mode rotate_mode;
3888 enum shift_type rotate_type;
3889 const char *insn_buf;
3890 int bits;
3891 int amount;
3892 enum machine_mode mode = GET_MODE (dst);
3893
3894 if (GET_CODE (rotate_amount) != CONST_INT)
3895 abort ();
3896
3897 switch (mode)
3898 {
3899 case QImode:
3900 rotate_mode = QIshift;
3901 break;
3902 case HImode:
3903 rotate_mode = HIshift;
3904 break;
3905 case SImode:
3906 rotate_mode = SIshift;
3907 break;
3908 default:
3909 abort ();
3910 }
3911
3912 switch (code)
3913 {
3914 case ROTATERT:
3915 rotate_type = SHIFT_ASHIFT;
3916 break;
3917 case ROTATE:
3918 rotate_type = SHIFT_LSHIFTRT;
3919 break;
3920 default:
3921 abort ();
3922 }
3923
3924 amount = INTVAL (rotate_amount);
3925
3926 /* Clean up AMOUNT. */
3927 if (amount < 0)
3928 amount = 0;
3929 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
3930 amount = GET_MODE_BITSIZE (mode);
3931
3932 /* Determine the faster direction. After this phase, amount will be
3933 at most a half of GET_MODE_BITSIZE (mode). */
de8409f8 3934 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
b4fa7cf2 3935 {
3936 /* Flip the direction. */
3937 amount = GET_MODE_BITSIZE (mode) - amount;
3938 rotate_type =
3939 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
3940 }
3941
3942 /* See if a byte swap (in HImode) or a word swap (in SImode) can
3943 boost up the rotation. */
3944 if ((mode == HImode && TARGET_H8300 && amount >= 5)
3945 || (mode == HImode && TARGET_H8300H && amount >= 6)
3946 || (mode == HImode && TARGET_H8300S && amount == 8)
3947 || (mode == SImode && TARGET_H8300H && amount >= 10)
3948 || (mode == SImode && TARGET_H8300S && amount >= 13))
3949 {
3950 switch (mode)
3951 {
3952 case HImode:
3953 /* This code works on any family. */
3954 insn_buf = "xor.b\t%s0,%t0\n\txor.b\t%t0,%s0\n\txor.b\t%s0,%t0";
3955 output_asm_insn (insn_buf, operands);
3956 break;
3957
3958 case SImode:
11f95d7c 3959 /* This code works on the H8/300H and H8S. */
b4fa7cf2 3960 insn_buf = "xor.w\t%e0,%f0\n\txor.w\t%f0,%e0\n\txor.w\t%e0,%f0";
3961 output_asm_insn (insn_buf, operands);
3962 break;
3963
3964 default:
3965 abort ();
3966 }
3967
3968 /* Adjust AMOUNT and flip the direction. */
3969 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
3970 rotate_type =
3971 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
3972 }
3973
3974 /* Emit rotate insns. */
3975 for (bits = TARGET_H8300S ? 2 : 1; bits > 0; bits /= 2)
3976 {
3977 if (bits == 2)
3978 insn_buf = rotate_two[rotate_type][rotate_mode];
3979 else
3980 insn_buf = rotate_one[cpu_type][rotate_type][rotate_mode];
a86fab2e 3981
b4fa7cf2 3982 for (; amount >= bits; amount -= bits)
3983 output_asm_insn (insn_buf, operands);
3984 }
3985
3986 return "";
3987}
af63c5ce 3988
3989unsigned int
3990compute_a_rotate_length (rtx *operands)
3991{
3992 rtx src = operands[1];
3993 enum machine_mode mode = GET_MODE (src);
3994 int amount;
3995 unsigned int length = 0;
3996
3997 if (GET_CODE (XEXP (src, 1)) != CONST_INT)
3998 return 0;
3999
4000 amount = INTVAL (XEXP (src, 1));
4001
4002 /* Clean up AMOUNT. */
4003 if (amount < 0)
4004 amount = 0;
4005 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
4006 amount = GET_MODE_BITSIZE (mode);
4007
4008 /* Determine the faster direction. After this phase, amount
4009 will be at most a half of GET_MODE_BITSIZE (mode). */
4010 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
4011 /* Flip the direction. */
4012 amount = GET_MODE_BITSIZE (mode) - amount;
4013
4014 /* See if a byte swap (in HImode) or a word swap (in SImode) can
4015 boost up the rotation. */
4016 if ((mode == HImode && TARGET_H8300 && amount >= 5)
4017 || (mode == HImode && TARGET_H8300H && amount >= 6)
4018 || (mode == HImode && TARGET_H8300S && amount == 8)
4019 || (mode == SImode && TARGET_H8300H && amount >= 10)
4020 || (mode == SImode && TARGET_H8300S && amount >= 13))
4021 {
4022 /* Adjust AMOUNT and flip the direction. */
4023 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
4024 length += 6;
4025 }
4026
4027 /* We use 2-bit rotations on the H8S. */
4028 if (TARGET_H8300S)
4029 amount = amount / 2 + amount % 2;
4030
4031 /* The H8/300 uses three insns to rotate one bit, taking 6
4032 length. */
4033 length += amount * ((TARGET_H8300 && mode == HImode) ? 6 : 2);
4034
4035 return length;
4036}
b4fa7cf2 4037\f
b839e0b4 4038/* Fix the operands of a gen_xxx so that it could become a bit
a86fab2e 4039 operating insn. */
e1629549 4040
4041int
230002f2 4042fix_bit_operand (rtx *operands, int what, enum rtx_code type)
e1629549 4043{
b090827b 4044 /* The bit_operand predicate accepts any memory during RTL generation, but
b839e0b4 4045 only 'U' memory afterwards, so if this is a MEM operand, we must force
4046 it to be valid for 'U' by reloading the address. */
e1629549 4047
c7619744 4048 if ((what == 0 && single_zero_operand (operands[2], QImode))
4049 || (what == 1 && single_one_operand (operands[2], QImode)))
e1629549 4050 {
c7619744 4051 /* OK to have a memory dest. */
4052 if (GET_CODE (operands[0]) == MEM
4053 && !EXTRA_CONSTRAINT (operands[0], 'U'))
b839e0b4 4054 {
c7619744 4055 rtx mem = gen_rtx_MEM (GET_MODE (operands[0]),
4056 copy_to_mode_reg (Pmode,
4057 XEXP (operands[0], 0)));
4058 MEM_COPY_ATTRIBUTES (mem, operands[0]);
4059 operands[0] = mem;
4060 }
b839e0b4 4061
c7619744 4062 if (GET_CODE (operands[1]) == MEM
4063 && !EXTRA_CONSTRAINT (operands[1], 'U'))
4064 {
4065 rtx mem = gen_rtx_MEM (GET_MODE (operands[1]),
4066 copy_to_mode_reg (Pmode,
4067 XEXP (operands[1], 0)));
4068 MEM_COPY_ATTRIBUTES (mem, operands[0]);
4069 operands[1] = mem;
b839e0b4 4070 }
c7619744 4071 return 0;
b839e0b4 4072 }
e1629549 4073
b839e0b4 4074 /* Dest and src op must be register. */
e1629549 4075
b839e0b4 4076 operands[1] = force_reg (QImode, operands[1]);
4077 {
4078 rtx res = gen_reg_rtx (QImode);
7014838c 4079 emit_insn (gen_rtx_SET (VOIDmode, res,
4080 gen_rtx (type, QImode, operands[1], operands[2])));
4081 emit_insn (gen_rtx_SET (VOIDmode, operands[0], res));
b839e0b4 4082 }
4083 return 1;
e1629549 4084}
b11bfc61 4085
b11bfc61 4086/* Return nonzero if FUNC is an interrupt function as specified
4087 by the "interrupt" attribute. */
4088
4089static int
230002f2 4090h8300_interrupt_function_p (tree func)
b11bfc61 4091{
4092 tree a;
4093
4094 if (TREE_CODE (func) != FUNCTION_DECL)
4095 return 0;
4096
e3c541f0 4097 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
b11bfc61 4098 return a != NULL_TREE;
4099}
4100
09c48b9c 4101/* Return nonzero if FUNC is an OS_Task function as specified
4102 by the "OS_Task" attribute. */
4103
4104static int
230002f2 4105h8300_os_task_function_p (tree func)
09c48b9c 4106{
4107 tree a;
4108
4109 if (TREE_CODE (func) != FUNCTION_DECL)
4110 return 0;
4111
e3c541f0 4112 a = lookup_attribute ("OS_Task", DECL_ATTRIBUTES (func));
09c48b9c 4113 return a != NULL_TREE;
4114}
4115
4116/* Return nonzero if FUNC is a monitor function as specified
4117 by the "monitor" attribute. */
4118
4119static int
230002f2 4120h8300_monitor_function_p (tree func)
09c48b9c 4121{
4122 tree a;
4123
4124 if (TREE_CODE (func) != FUNCTION_DECL)
4125 return 0;
4126
e3c541f0 4127 a = lookup_attribute ("monitor", DECL_ATTRIBUTES (func));
09c48b9c 4128 return a != NULL_TREE;
4129}
4130
b11bfc61 4131/* Return nonzero if FUNC is a function that should be called
4132 through the function vector. */
4133
4134int
230002f2 4135h8300_funcvec_function_p (tree func)
b11bfc61 4136{
4137 tree a;
4138
4139 if (TREE_CODE (func) != FUNCTION_DECL)
4140 return 0;
4141
e3c541f0 4142 a = lookup_attribute ("function_vector", DECL_ATTRIBUTES (func));
b11bfc61 4143 return a != NULL_TREE;
4144}
4145
27a0be8f 4146/* Return nonzero if DECL is a variable that's in the eight bit
2c7be643 4147 data area. */
4148
4149int
230002f2 4150h8300_eightbit_data_p (tree decl)
2c7be643 4151{
4152 tree a;
4153
4154 if (TREE_CODE (decl) != VAR_DECL)
4155 return 0;
4156
e3c541f0 4157 a = lookup_attribute ("eightbit_data", DECL_ATTRIBUTES (decl));
2c7be643 4158 return a != NULL_TREE;
4159}
4160
27a0be8f 4161/* Return nonzero if DECL is a variable that's in the tiny
4162 data area. */
4163
4164int
230002f2 4165h8300_tiny_data_p (tree decl)
27a0be8f 4166{
4167 tree a;
4168
4169 if (TREE_CODE (decl) != VAR_DECL)
4170 return 0;
4171
e3c541f0 4172 a = lookup_attribute ("tiny_data", DECL_ATTRIBUTES (decl));
27a0be8f 4173 return a != NULL_TREE;
4174}
4175
ad7d09f6 4176/* Generate an 'interrupt_handler' attribute for decls. */
4177
4178static void
230002f2 4179h8300_insert_attributes (tree node, tree *attributes)
ad7d09f6 4180{
41ed3bcd 4181 if (!pragma_interrupt
ad7d09f6 4182 || TREE_CODE (node) != FUNCTION_DECL)
4183 return;
4184
41ed3bcd 4185 pragma_interrupt = 0;
4186
ad7d09f6 4187 /* Add an 'interrupt_handler' attribute. */
4188 *attributes = tree_cons (get_identifier ("interrupt_handler"),
4189 NULL, *attributes);
4190}
4191
e3c541f0 4192/* Supported attributes:
b11bfc61 4193
bd297402 4194 interrupt_handler: output a prologue and epilogue suitable for an
b11bfc61 4195 interrupt handler.
4196
bd297402 4197 function_vector: This function should be called through the
27a0be8f 4198 function vector.
4199
4200 eightbit_data: This variable lives in the 8-bit data area and can
4201 be referenced with 8-bit absolute memory addresses.
4202
4203 tiny_data: This variable lives in the tiny data area and can be
4204 referenced with 16-bit absolute memory references. */
b11bfc61 4205
e3c541f0 4206const struct attribute_spec h8300_attribute_table[] =
b11bfc61 4207{
e3c541f0 4208 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
4209 { "interrupt_handler", 0, 0, true, false, false, h8300_handle_fndecl_attribute },
4210 { "OS_Task", 0, 0, true, false, false, h8300_handle_fndecl_attribute },
4211 { "monitor", 0, 0, true, false, false, h8300_handle_fndecl_attribute },
4212 { "function_vector", 0, 0, true, false, false, h8300_handle_fndecl_attribute },
4213 { "eightbit_data", 0, 0, true, false, false, h8300_handle_eightbit_data_attribute },
4214 { "tiny_data", 0, 0, true, false, false, h8300_handle_tiny_data_attribute },
4215 { NULL, 0, 0, false, false, false, NULL }
4216};
b11bfc61 4217
2c7be643 4218
e3c541f0 4219/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
4220 struct attribute_spec.handler. */
4221static tree
230002f2 4222h8300_handle_fndecl_attribute (tree *node, tree name,
4223 tree args ATTRIBUTE_UNUSED,
4224 int flags ATTRIBUTE_UNUSED,
4225 bool *no_add_attrs)
e3c541f0 4226{
4227 if (TREE_CODE (*node) != FUNCTION_DECL)
4228 {
4229 warning ("`%s' attribute only applies to functions",
4230 IDENTIFIER_POINTER (name));
4231 *no_add_attrs = true;
4232 }
4233
4234 return NULL_TREE;
4235}
4236
4237/* Handle an "eightbit_data" attribute; arguments as in
4238 struct attribute_spec.handler. */
4239static tree
230002f2 4240h8300_handle_eightbit_data_attribute (tree *node, tree name,
4241 tree args ATTRIBUTE_UNUSED,
4242 int flags ATTRIBUTE_UNUSED,
4243 bool *no_add_attrs)
e3c541f0 4244{
4245 tree decl = *node;
4246
4247 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
2c7be643 4248 {
b6a063c6 4249 DECL_SECTION_NAME (decl) = build_string (7, ".eight");
e3c541f0 4250 }
4251 else
4252 {
4253 warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
4254 *no_add_attrs = true;
27a0be8f 4255 }
4256
e3c541f0 4257 return NULL_TREE;
4258}
4259
4260/* Handle an "tiny_data" attribute; arguments as in
4261 struct attribute_spec.handler. */
4262static tree
230002f2 4263h8300_handle_tiny_data_attribute (tree *node, tree name,
4264 tree args ATTRIBUTE_UNUSED,
4265 int flags ATTRIBUTE_UNUSED,
4266 bool *no_add_attrs)
e3c541f0 4267{
4268 tree decl = *node;
4269
4270 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
27a0be8f 4271 {
b6a063c6 4272 DECL_SECTION_NAME (decl) = build_string (6, ".tiny");
e3c541f0 4273 }
4274 else
4275 {
4276 warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
4277 *no_add_attrs = true;
2c7be643 4278 }
eb2aa24e 4279
e3c541f0 4280 return NULL_TREE;
b11bfc61 4281}
4282
d37aaac2 4283/* Mark function vectors, and various small data objects. */
7811991d 4284
4285static void
230002f2 4286h8300_encode_section_info (tree decl, rtx rtl, int first)
7811991d 4287{
d37aaac2 4288 int extra_flags = 0;
4289
2c129d70 4290 default_encode_section_info (decl, rtl, first);
d37aaac2 4291
7811991d 4292 if (TREE_CODE (decl) == FUNCTION_DECL
4293 && h8300_funcvec_function_p (decl))
d37aaac2 4294 extra_flags = SYMBOL_FLAG_FUNCVEC_FUNCTION;
7811991d 4295 else if (TREE_CODE (decl) == VAR_DECL
4296 && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
4297 {
4298 if (h8300_eightbit_data_p (decl))
d37aaac2 4299 extra_flags = SYMBOL_FLAG_EIGHTBIT_DATA;
7811991d 4300 else if (first && h8300_tiny_data_p (decl))
d37aaac2 4301 extra_flags = SYMBOL_FLAG_TINY_DATA;
7811991d 4302 }
7b4a38a6 4303
d37aaac2 4304 if (extra_flags)
2c129d70 4305 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
7b4a38a6 4306}
4307
9305fe33 4308const char *
230002f2 4309output_simode_bld (int bild, rtx operands[])
92eae32b 4310{
7ef78393 4311 if (TARGET_H8300)
4312 {
4313 /* Clear the destination register. */
4314 output_asm_insn ("sub.w\t%e0,%e0\n\tsub.w\t%f0,%f0", operands);
4315
4316 /* Now output the bit load or bit inverse load, and store it in
4317 the destination. */
4318 if (bild)
4319 output_asm_insn ("bild\t%Z2,%Y1", operands);
4320 else
4321 output_asm_insn ("bld\t%Z2,%Y1", operands);
92eae32b 4322
7ef78393 4323 output_asm_insn ("bst\t#0,%w0", operands);
4324 }
92eae32b 4325 else
7ef78393 4326 {
7d3e46b8 4327 /* Determine if we can clear the destination first. */
4328 int clear_first = (REG_P (operands[0]) && REG_P (operands[1])
4329 && REGNO (operands[0]) != REGNO (operands[1]));
4330
4331 if (clear_first)
4332 output_asm_insn ("sub.l\t%S0,%S0", operands);
4333
7ef78393 4334 /* Output the bit load or bit inverse load. */
4335 if (bild)
4336 output_asm_insn ("bild\t%Z2,%Y1", operands);
4337 else
4338 output_asm_insn ("bld\t%Z2,%Y1", operands);
4339
7d3e46b8 4340 if (!clear_first)
4341 output_asm_insn ("xor.l\t%S0,%S0", operands);
4342
4343 /* Perform the bit store. */
04b5bef5 4344 output_asm_insn ("rotxl.l\t%S0", operands);
7ef78393 4345 }
92eae32b 4346
4347 /* All done. */
4348 return "";
4349}
fe19f1e0 4350
6e4758ce 4351#ifndef OBJECT_FORMAT_ELF
2cb4ac60 4352static void
230002f2 4353h8300_asm_named_section (const char *name, unsigned int flags ATTRIBUTE_UNUSED)
2cb4ac60 4354{
4355 /* ??? Perhaps we should be using default_coff_asm_named_section. */
4356 fprintf (asm_out_file, "\t.section %s\n", name);
4357}
6e4758ce 4358#endif /* ! OBJECT_FORMAT_ELF */
6c48c1e4 4359
e566129f 4360/* Nonzero if X is a constant address suitable as an 8-bit absolute,
4361 which is a special case of the 'R' operand. */
4362
6c48c1e4 4363int
230002f2 4364h8300_eightbit_constant_address_p (rtx x)
6c48c1e4 4365{
462c2024 4366 /* The ranges of the 8-bit area. */
424064e7 4367 const unsigned HOST_WIDE_INT n1 = trunc_int_for_mode (0xff00, HImode);
4368 const unsigned HOST_WIDE_INT n2 = trunc_int_for_mode (0xffff, HImode);
6c48c1e4 4369 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00ffff00, SImode);
4370 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00ffffff, SImode);
4371 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0xffffff00, SImode);
4372 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0xffffffff, SImode);
4373
4374 unsigned HOST_WIDE_INT addr;
4375
e55c1a72 4376 /* We accept symbols declared with eightbit_data. */
d37aaac2 4377 if (GET_CODE (x) == SYMBOL_REF)
4378 return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_EIGHTBIT_DATA) != 0;
e55c1a72 4379
6c48c1e4 4380 if (GET_CODE (x) != CONST_INT)
4381 return 0;
4382
4383 addr = INTVAL (x);
4384
4385 return (0
35a462ce 4386 || ((TARGET_H8300 || TARGET_NORMAL_MODE) && IN_RANGE (addr, n1, n2))
6c48c1e4 4387 || (TARGET_H8300H && IN_RANGE (addr, h1, h2))
4388 || (TARGET_H8300S && IN_RANGE (addr, s1, s2)));
4389}
4390
e566129f 4391/* Nonzero if X is a constant address suitable as an 16-bit absolute
4392 on H8/300H and H8S. */
4393
6c48c1e4 4394int
230002f2 4395h8300_tiny_constant_address_p (rtx x)
6c48c1e4 4396{
462c2024 4397 /* The ranges of the 16-bit area. */
6c48c1e4 4398 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00000000, SImode);
4399 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00007fff, SImode);
4400 const unsigned HOST_WIDE_INT h3 = trunc_int_for_mode (0x00ff8000, SImode);
4401 const unsigned HOST_WIDE_INT h4 = trunc_int_for_mode (0x00ffffff, SImode);
4402 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0x00000000, SImode);
4403 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0x00007fff, SImode);
4404 const unsigned HOST_WIDE_INT s3 = trunc_int_for_mode (0xffff8000, SImode);
4405 const unsigned HOST_WIDE_INT s4 = trunc_int_for_mode (0xffffffff, SImode);
4406
4407 unsigned HOST_WIDE_INT addr;
4408
3696208f 4409 /* We accept symbols declared with tiny_data. */
d37aaac2 4410 if (GET_CODE (x) == SYMBOL_REF)
4411 return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_TINY_DATA) != 0;
3696208f 4412
6c48c1e4 4413 if (GET_CODE (x) != CONST_INT)
4414 return 0;
4415
4416 addr = INTVAL (x);
4417
4418 return (0
a9955fee 4419 || TARGET_NORMAL_MODE
4420 || (TARGET_H8300H
1f8bbe78 4421 && (IN_RANGE (addr, h1, h2) || IN_RANGE (addr, h3, h4)))
a9955fee 4422 || (TARGET_H8300S
1f8bbe78 4423 && (IN_RANGE (addr, s1, s2) || IN_RANGE (addr, s3, s4))));
6c48c1e4 4424}
e33ecec3 4425
4426int
230002f2 4427byte_accesses_mergeable_p (rtx addr1, rtx addr2)
e33ecec3 4428{
4429 HOST_WIDE_INT offset1, offset2;
4430 rtx reg1, reg2;
4431
4432 if (REG_P (addr1))
4433 {
4434 reg1 = addr1;
4435 offset1 = 0;
4436 }
4437 else if (GET_CODE (addr1) == PLUS
4438 && REG_P (XEXP (addr1, 0))
4439 && GET_CODE (XEXP (addr1, 1)) == CONST_INT)
4440 {
4441 reg1 = XEXP (addr1, 0);
4442 offset1 = INTVAL (XEXP (addr1, 1));
4443 }
4444 else
4445 return 0;
4446
4447 if (REG_P (addr2))
4448 {
4449 reg2 = addr2;
4450 offset2 = 0;
4451 }
4452 else if (GET_CODE (addr2) == PLUS
4453 && REG_P (XEXP (addr2, 0))
4454 && GET_CODE (XEXP (addr2, 1)) == CONST_INT)
4455 {
4456 reg2 = XEXP (addr2, 0);
4457 offset2 = INTVAL (XEXP (addr2, 1));
4458 }
4459 else
4460 return 0;
4461
4462 if (((reg1 == stack_pointer_rtx && reg2 == stack_pointer_rtx)
4463 || (reg1 == frame_pointer_rtx && reg2 == frame_pointer_rtx))
4464 && offset1 % 2 == 0
4465 && offset1 + 1 == offset2)
4466 return 1;
4467
4468 return 0;
4469}
8c71b4e9 4470
4471/* Return nonzero if we have the same comparison insn as I3 two insns
4472 before I3. I3 is assumed to be a comparision insn. */
4473
4474int
4475same_cmp_preceding_p (rtx i3)
4476{
4477 rtx i1, i2;
4478
4479 /* Make sure we have a sequence of three insns. */
4480 i2 = prev_nonnote_insn (i3);
4481 if (i2 == NULL_RTX)
4482 return 0;
4483 i1 = prev_nonnote_insn (i2);
4484 if (i1 == NULL_RTX)
4485 return 0;
4486
4487 return (INSN_P (i1) && rtx_equal_p (PATTERN (i1), PATTERN (i3))
4488 && any_condjump_p (i2) && onlyjump_p (i2));
4489}
9fb90c4e 4490\f
4491/* Initialize the GCC target structure. */
4492#undef TARGET_ATTRIBUTE_TABLE
4493#define TARGET_ATTRIBUTE_TABLE h8300_attribute_table
4494
4495#undef TARGET_ASM_ALIGNED_HI_OP
4496#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
4497
4498#undef TARGET_ASM_FUNCTION_EPILOGUE
4499#define TARGET_ASM_FUNCTION_EPILOGUE h8300_output_function_epilogue
4500
92c473b8 4501#undef TARGET_ASM_FILE_START
4502#define TARGET_ASM_FILE_START h8300_file_start
4503#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
4504#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
4505
9fb90c4e 4506#undef TARGET_ASM_FILE_END
4507#define TARGET_ASM_FILE_END h8300_file_end
4508
4509#undef TARGET_ENCODE_SECTION_INFO
4510#define TARGET_ENCODE_SECTION_INFO h8300_encode_section_info
4511
4512#undef TARGET_INSERT_ATTRIBUTES
4513#define TARGET_INSERT_ATTRIBUTES h8300_insert_attributes
4514
4515#undef TARGET_RTX_COSTS
4516#define TARGET_RTX_COSTS h8300_rtx_costs
4517
4518struct gcc_target targetm = TARGET_INITIALIZER;