]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/h8300/h8300.c
2003-06-21 Michael Koch <konqueror@gmx.de>
[thirdparty/gcc.git] / gcc / config / h8300 / h8300.c
CommitLineData
e1629549 1/* Subroutines for insn-output.c for Hitachi H8/300.
7913b5f4 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
f420bedf 3 2001, 2002, 2003 Free Software Foundation, Inc.
b839e0b4 4 Contributed by Steve Chamberlain (sac@cygnus.com),
5 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
e1629549 6
dbbae424 7This file is part of GCC.
e1629549 8
dbbae424 9GCC is free software; you can redistribute it and/or modify
e1629549 10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
dbbae424 14GCC is distributed in the hope that it will be useful,
e1629549 15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
dbbae424 20along with GCC; see the file COPYING. If not, write to
b0603eb3 21the Free Software Foundation, 59 Temple Place - Suite 330,
22Boston, MA 02111-1307, USA. */
e1629549 23
e1629549 24#include "config.h"
7014838c 25#include "system.h"
805e22b2 26#include "coretypes.h"
27#include "tm.h"
e1629549 28#include "rtl.h"
4faf81b8 29#include "tree.h"
e1629549 30#include "regs.h"
31#include "hard-reg-set.h"
32#include "real.h"
33#include "insn-config.h"
34#include "conditions.h"
e1629549 35#include "output.h"
36#include "insn-attr.h"
37#include "flags.h"
38#include "recog.h"
39#include "expr.h"
4faf81b8 40#include "function.h"
9305fe33 41#include "toplev.h"
1fcd08b1 42#include "c-pragma.h"
9305fe33 43#include "tm_p.h"
f8870f17 44#include "ggc.h"
a767736d 45#include "target.h"
46#include "target-def.h"
e1629549 47
48/* Forward declarations. */
230002f2 49static const char *byte_reg (rtx, int);
50static int h8300_interrupt_function_p (tree);
51static int h8300_monitor_function_p (tree);
52static int h8300_os_task_function_p (tree);
53static void dosize (int, unsigned int);
54static int round_frame_size (int);
55static unsigned int compute_saved_regs (void);
56static void push (int);
57static void pop (int);
58static const char *cond_string (enum rtx_code);
59static unsigned int h8300_asm_insn_count (const char *);
230002f2 60static tree h8300_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
61static tree h8300_handle_eightbit_data_attribute (tree *, tree, tree, int, bool *);
62static tree h8300_handle_tiny_data_attribute (tree *, tree, tree, int, bool *);
6e4758ce 63#ifndef OBJECT_FORMAT_ELF
230002f2 64static void h8300_asm_named_section (const char *, unsigned int);
6e4758ce 65#endif
230002f2 66static int h8300_and_costs (rtx);
67static int h8300_shift_costs (rtx);
b11bfc61 68
b839e0b4 69/* CPU_TYPE, says what cpu we're compiling for. */
70int cpu_type;
71
41ed3bcd 72/* True if a #pragma interrupt has been seen for the current function. */
73static int pragma_interrupt;
e1629549 74
75/* True if a #pragma saveall has been seen for the current function. */
8ba450ad 76static int pragma_saveall;
e1629549 77
9305fe33 78static const char *const names_big[] =
eb2aa24e 79{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" };
b839e0b4 80
9305fe33 81static const char *const names_extended[] =
eb2aa24e 82{ "er0", "er1", "er2", "er3", "er4", "er5", "er6", "er7" };
b839e0b4 83
9305fe33 84static const char *const names_upper_extended[] =
eb2aa24e 85{ "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7" };
b839e0b4 86
87/* Points to one of the above. */
88/* ??? The above could be put in an array indexed by CPU_TYPE. */
9305fe33 89const char * const *h8_reg_names;
b839e0b4 90
91/* Various operations needed by the following, indexed by CPU_TYPE. */
b839e0b4 92
9305fe33 93const char *h8_push_op, *h8_pop_op, *h8_mov_op;
d37aaac2 94
95/* Machine-specific symbol_ref flags. */
96#define SYMBOL_FLAG_FUNCVEC_FUNCTION (SYMBOL_FLAG_MACH_DEP << 0)
97#define SYMBOL_FLAG_EIGHTBIT_DATA (SYMBOL_FLAG_MACH_DEP << 1)
98#define SYMBOL_FLAG_TINY_DATA (SYMBOL_FLAG_MACH_DEP << 2)
a767736d 99\f
0650a2e5 100/* See below where shifts are handled for explanation of this enum. */
101
102enum shift_alg
103{
104 SHIFT_INLINE,
105 SHIFT_ROT_AND,
106 SHIFT_SPECIAL,
107 SHIFT_LOOP
108};
109
110/* Symbols of the various shifts which can be used as indices. */
111
112enum shift_type
113{
114 SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
115};
116
117/* Macros to keep the shift algorithm tables small. */
118#define INL SHIFT_INLINE
119#define ROT SHIFT_ROT_AND
120#define LOP SHIFT_LOOP
121#define SPC SHIFT_SPECIAL
122
123/* The shift algorithms for each machine, mode, shift type, and shift
124 count are defined below. The three tables below correspond to
125 QImode, HImode, and SImode, respectively. Each table is organized
cc72e60a 126 by, in the order of indices, machine, shift type, and shift count. */
0650a2e5 127
128static enum shift_alg shift_alg_qi[3][3][8] = {
129 {
130 /* TARGET_H8300 */
131 /* 0 1 2 3 4 5 6 7 */
132 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
133 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
134 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
135 },
136 {
137 /* TARGET_H8300H */
138 /* 0 1 2 3 4 5 6 7 */
139 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
140 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
141 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
142 },
143 {
144 /* TARGET_H8300S */
145 /* 0 1 2 3 4 5 6 7 */
146 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_ASHIFT */
147 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_LSHIFTRT */
148 { INL, INL, INL, INL, INL, INL, INL, SPC } /* SHIFT_ASHIFTRT */
149 }
150};
151
152static enum shift_alg shift_alg_hi[3][3][16] = {
153 {
154 /* TARGET_H8300 */
155 /* 0 1 2 3 4 5 6 7 */
156 /* 8 9 10 11 12 13 14 15 */
157 { INL, INL, INL, INL, INL, INL, INL, SPC,
158 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
159 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
160 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
161 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
162 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
163 },
164 {
165 /* TARGET_H8300H */
166 /* 0 1 2 3 4 5 6 7 */
167 /* 8 9 10 11 12 13 14 15 */
168 { INL, INL, INL, INL, INL, INL, INL, SPC,
169 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
170 { INL, INL, INL, INL, INL, INL, INL, SPC,
171 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
172 { INL, INL, INL, INL, INL, INL, INL, SPC,
173 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
174 },
175 {
176 /* TARGET_H8300S */
177 /* 0 1 2 3 4 5 6 7 */
178 /* 8 9 10 11 12 13 14 15 */
179 { INL, INL, INL, INL, INL, INL, INL, INL,
180 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
181 { INL, INL, INL, INL, INL, INL, INL, INL,
182 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
183 { INL, INL, INL, INL, INL, INL, INL, INL,
184 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
185 }
186};
187
188static enum shift_alg shift_alg_si[3][3][32] = {
189 {
190 /* TARGET_H8300 */
191 /* 0 1 2 3 4 5 6 7 */
192 /* 8 9 10 11 12 13 14 15 */
193 /* 16 17 18 19 20 21 22 23 */
194 /* 24 25 26 27 28 29 30 31 */
195 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
196 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
197 SPC, SPC, SPC, SPC, SPC, LOP, LOP, LOP,
198 SPC, SPC, SPC, SPC, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFT */
199 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
200 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC,
201 SPC, SPC, SPC, LOP, LOP, LOP, LOP, LOP,
202 SPC, SPC, SPC, SPC, SPC, LOP, LOP, SPC }, /* SHIFT_LSHIFTRT */
203 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
204 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
205 SPC, SPC, LOP, LOP, LOP, LOP, LOP, LOP,
206 SPC, SPC, SPC, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
207 },
208 {
209 /* TARGET_H8300H */
210 /* 0 1 2 3 4 5 6 7 */
211 /* 8 9 10 11 12 13 14 15 */
212 /* 16 17 18 19 20 21 22 23 */
213 /* 24 25 26 27 28 29 30 31 */
214 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
215 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
216 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
567c4b66 217 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
0650a2e5 218 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
219 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
220 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
567c4b66 221 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
0650a2e5 222 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
223 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
224 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
225 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
226 },
227 {
228 /* TARGET_H8300S */
229 /* 0 1 2 3 4 5 6 7 */
230 /* 8 9 10 11 12 13 14 15 */
231 /* 16 17 18 19 20 21 22 23 */
232 /* 24 25 26 27 28 29 30 31 */
233 { INL, INL, INL, INL, INL, INL, INL, INL,
234 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
235 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
567c4b66 236 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
0650a2e5 237 { INL, INL, INL, INL, INL, INL, INL, INL,
238 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
239 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
567c4b66 240 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
0650a2e5 241 { INL, INL, INL, INL, INL, INL, INL, INL,
242 INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
243 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
244 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
245 }
246};
247
248#undef INL
249#undef ROT
250#undef LOP
251#undef SPC
252
253enum h8_cpu
254{
255 H8_300,
256 H8_300H,
257 H8_S
258};
259
b839e0b4 260/* Initialize various cpu specific globals at start up. */
261
262void
230002f2 263h8300_init_once (void)
b839e0b4 264{
1592a00c 265 static const char *const h8_push_ops[2] = { "push" , "push.l" };
266 static const char *const h8_pop_ops[2] = { "pop" , "pop.l" };
267 static const char *const h8_mov_ops[2] = { "mov.w", "mov.l" };
268
b839e0b4 269 if (TARGET_H8300)
270 {
271 cpu_type = (int) CPU_H8300;
272 h8_reg_names = names_big;
273 }
274 else
275 {
11f95d7c 276 /* For this we treat the H8/300H and H8S the same. */
b839e0b4 277 cpu_type = (int) CPU_H8300H;
278 h8_reg_names = names_extended;
279 }
280 h8_push_op = h8_push_ops[cpu_type];
281 h8_pop_op = h8_pop_ops[cpu_type];
282 h8_mov_op = h8_mov_ops[cpu_type];
92d7ef92 283
284 if (!TARGET_H8300S && TARGET_MAC)
f060a027 285 {
68435912 286 error ("-ms2600 is used without -ms");
cf976cad 287 target_flags |= MASK_H8300S;
f060a027 288 }
16b503e9 289
35a462ce 290 if (TARGET_H8300 && TARGET_NORMAL_MODE)
291 {
5d4af384 292 error ("-mn is used without -mh or -ms");
35a462ce 293 target_flags ^= MASK_NORMAL_MODE;
294 }
0650a2e5 295
9f56f86b 296 /* Some of the shifts are optimized for speed by default.
0650a2e5 297 See http://gcc.gnu.org/ml/gcc-patches/2002-07/msg01858.html
9f56f86b 298 If optimizing for size, change shift_alg for those shift to
0650a2e5 299 SHIFT_LOOP. */
3a599070 300 if (optimize_size)
0650a2e5 301 {
3a599070 302 /* H8/300 */
303 shift_alg_hi[H8_300][SHIFT_ASHIFT][5] = SHIFT_LOOP;
304 shift_alg_hi[H8_300][SHIFT_ASHIFT][6] = SHIFT_LOOP;
305 shift_alg_hi[H8_300][SHIFT_ASHIFT][13] = SHIFT_LOOP;
306 shift_alg_hi[H8_300][SHIFT_ASHIFT][14] = SHIFT_LOOP;
0650a2e5 307
3a599070 308 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][13] = SHIFT_LOOP;
309 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][14] = SHIFT_LOOP;
0650a2e5 310
3a599070 311 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
312 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
0650a2e5 313
3a599070 314 /* H8/300H */
315 shift_alg_hi[H8_300H][SHIFT_ASHIFT][5] = SHIFT_LOOP;
316 shift_alg_hi[H8_300H][SHIFT_ASHIFT][6] = SHIFT_LOOP;
0650a2e5 317
3a599070 318 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][5] = SHIFT_LOOP;
319 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][6] = SHIFT_LOOP;
0650a2e5 320
3a599070 321 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][5] = SHIFT_LOOP;
322 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][6] = SHIFT_LOOP;
323 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
324 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
0650a2e5 325
326 /* H8S */
3a599070 327 shift_alg_hi[H8_S][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
0650a2e5 328 }
b839e0b4 329}
e1629549 330
7198848c 331static const char *
230002f2 332byte_reg (rtx x, int b)
e1629549 333{
ded3e58c 334 static const char *const names_small[] = {
335 "r0l", "r0h", "r1l", "r1h", "r2l", "r2h", "r3l", "r3h",
336 "r4l", "r4h", "r5l", "r5h", "r6l", "r6h", "r7l", "r7h"
337 };
e1629549 338
339 return names_small[REGNO (x) * 2 + b];
340}
341
342/* REGNO must be saved/restored across calls if this macro is true. */
b839e0b4 343
ded3e58c 344#define WORD_REG_USED(regno) \
345 (regno < 7 \
346 /* No need to save registers if this function will not return. */ \
347 && ! TREE_THIS_VOLATILE (current_function_decl) \
348 && (pragma_saveall \
349 /* Save any call saved register that was used. */ \
350 || (regs_ever_live[regno] && !call_used_regs[regno]) \
351 /* Save the frame pointer if it was used. */ \
352 || (regno == FRAME_POINTER_REGNUM && regs_ever_live[regno]) \
353 /* Save any register used in an interrupt handler. */ \
41ed3bcd 354 || (h8300_current_function_interrupt_function_p () \
355 && regs_ever_live[regno]) \
ded3e58c 356 /* Save call clobbered registers in non-leaf interrupt \
357 handlers. */ \
41ed3bcd 358 || (h8300_current_function_interrupt_function_p () \
ded3e58c 359 && call_used_regs[regno] \
3754a8bb 360 && !current_function_is_leaf)))
e1629549 361
362/* Output assembly language to FILE for the operation OP with operand size
b839e0b4 363 SIZE to adjust the stack pointer. */
b839e0b4 364
e1629549 365static void
8f260b97 366dosize (sign, size)
b2dd6aa3 367 int sign;
e1629549 368 unsigned int size;
e1629549 369{
8f260b97 370 /* H8/300 cannot add/subtract a large constant with a single
371 instruction. If a temporary register is available, load the
372 constant to it and then do the addition. */
373 if (TARGET_H8300
374 && size > 4
375 && !h8300_current_function_interrupt_function_p ()
376 && !(current_function_needs_context && sign < 0))
b9393aaf 377 {
8f260b97 378 rtx new_sp;
379 rtx r3 = gen_rtx_REG (Pmode, 3);
380 emit_insn (gen_rtx_SET (Pmode, r3, GEN_INT (sign * size)));
381 new_sp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, r3);
382 emit_insn (gen_rtx_SET (Pmode, stack_pointer_rtx, new_sp));
bfc1492f 383 }
384 else
385 {
8f260b97 386 /* The stack adjustment made here is further optimized by the
387 splitter. In case of H8/300, the splitter always splits the
388 addition emitted here to make the adjustment
389 interrupt-safe. */
390 rtx new_sp = plus_constant (stack_pointer_rtx, sign * size);
391 emit_insn (gen_rtx_SET (Pmode, stack_pointer_rtx, new_sp));
e1629549 392 }
393}
394
b1292c73 395/* Round up frame size SIZE. */
396
397static int
230002f2 398round_frame_size (int size)
b1292c73 399{
b25ffd74 400 return ((size + STACK_BOUNDARY / BITS_PER_UNIT - 1)
401 & -STACK_BOUNDARY / BITS_PER_UNIT);
b1292c73 402}
403
404/* Compute which registers to push/pop.
405 Return a bit vector of registers. */
406
407static unsigned int
230002f2 408compute_saved_regs (void)
b1292c73 409{
410 unsigned int saved_regs = 0;
411 int regno;
412
413 /* Construct a bit vector of registers to be pushed/popped. */
5d822c00 414 for (regno = 0; regno <= FRAME_POINTER_REGNUM; regno++)
b1292c73 415 {
416 if (WORD_REG_USED (regno))
417 saved_regs |= 1 << regno;
418 }
419
420 /* Don't push/pop the frame pointer as it is treated separately. */
421 if (frame_pointer_needed)
422 saved_regs &= ~(1 << FRAME_POINTER_REGNUM);
423
424 return saved_regs;
425}
426
8f260b97 427/* Emit an insn to push register RN. */
b1292c73 428
429static void
230002f2 430push (int rn)
b1292c73 431{
8f260b97 432 rtx reg = gen_rtx_REG (word_mode, rn);
433 rtx x;
434
4081a531 435 if (TARGET_H8300)
8f260b97 436 x = gen_push_h8300 (reg);
4081a531 437 else
8f260b97 438 x = gen_push_h8300hs (reg);
439 x = emit_insn (x);
440 REG_NOTES (x) = gen_rtx_EXPR_LIST (REG_INC, stack_pointer_rtx, 0);
b1292c73 441}
442
8f260b97 443/* Emit an insn to pop register RN. */
b1292c73 444
445static void
230002f2 446pop (int rn)
b1292c73 447{
8f260b97 448 rtx reg = gen_rtx_REG (word_mode, rn);
449 rtx x;
450
4081a531 451 if (TARGET_H8300)
8f260b97 452 x = gen_pop_h8300 (reg);
4081a531 453 else
8f260b97 454 x = gen_pop_h8300hs (reg);
455 x = emit_insn (x);
456 REG_NOTES (x) = gen_rtx_EXPR_LIST (REG_INC, stack_pointer_rtx, 0);
b1292c73 457}
e1629549 458
f2702e8a 459/* This is what the stack looks like after the prolog of
e1629549 460 a function with a frame has been set up:
461
b839e0b4 462 <args>
463 PC
464 FP <- fp
465 <locals>
9f56f86b 466 <saved registers> <- sp
e1629549 467
468 This is what the stack looks like after the prolog of
469 a function which doesn't have a frame:
470
b839e0b4 471 <args>
472 PC
473 <locals>
9f56f86b 474 <saved registers> <- sp
e1629549 475*/
476
8f260b97 477/* Generate RTL code for the function prologue. */
b1292c73 478
8f260b97 479void
230002f2 480h8300_expand_prologue (void)
e1629549 481{
b2adb3e0 482 int regno;
b1292c73 483 int saved_regs;
97709d8d 484 int n_regs;
e1629549 485
09c48b9c 486 /* If the current function has the OS_Task attribute set, then
487 we have a naked prologue. */
488 if (h8300_os_task_function_p (current_function_decl))
8f260b97 489 return;
09c48b9c 490
491 if (h8300_monitor_function_p (current_function_decl))
8f260b97 492 /* My understanding of monitor functions is they act just like
493 interrupt functions, except the prologue must mask
494 interrupts. */
495 emit_insn (gen_monitor_prologue ());
09c48b9c 496
b839e0b4 497 if (frame_pointer_needed)
498 {
eb2aa24e 499 /* Push fp. */
8f260b97 500 push (FRAME_POINTER_REGNUM);
501 emit_insn (gen_rtx_SET (Pmode, frame_pointer_rtx, stack_pointer_rtx));
69b4e418 502 }
b839e0b4 503
eb2aa24e 504 /* Leave room for locals. */
b36ddff8 505 dosize (-1, round_frame_size (get_frame_size ()));
e1629549 506
b1292c73 507 /* Push the rest of the registers in ascending order. */
508 saved_regs = compute_saved_regs ();
b2adb3e0 509 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno += n_regs)
97709d8d 510 {
97709d8d 511 n_regs = 1;
b1292c73 512 if (saved_regs & (1 << regno))
69b4e418 513 {
514 if (TARGET_H8300S)
515 {
97709d8d 516 /* See how many registers we can push at the same time. */
517 if ((regno == 0 || regno == 4)
b1292c73 518 && ((saved_regs >> regno) & 0x0f) == 0x0f)
97709d8d 519 n_regs = 4;
520
521 else if ((regno == 0 || regno == 4)
b1292c73 522 && ((saved_regs >> regno) & 0x07) == 0x07)
97709d8d 523 n_regs = 3;
524
525 else if ((regno == 0 || regno == 2 || regno == 4 || regno == 6)
b1292c73 526 && ((saved_regs >> regno) & 0x03) == 0x03)
97709d8d 527 n_regs = 2;
69b4e418 528 }
97709d8d 529
b2dd6aa3 530 switch (n_regs)
531 {
532 case 1:
8f260b97 533 push (regno);
b2dd6aa3 534 break;
535 case 2:
8f260b97 536 emit_insn (gen_stm_h8300s_2 (gen_rtx_REG (SImode, regno),
537 gen_rtx_REG (SImode, regno + 1)));
b2dd6aa3 538 break;
539 case 3:
8f260b97 540 emit_insn (gen_stm_h8300s_3 (gen_rtx_REG (SImode, regno),
541 gen_rtx_REG (SImode, regno + 1),
542 gen_rtx_REG (SImode, regno + 2)));
b2dd6aa3 543 break;
544 case 4:
8f260b97 545 emit_insn (gen_stm_h8300s_4 (gen_rtx_REG (SImode, regno),
546 gen_rtx_REG (SImode, regno + 1),
547 gen_rtx_REG (SImode, regno + 2),
548 gen_rtx_REG (SImode, regno + 3)));
b2dd6aa3 549 break;
550 default:
551 abort ();
552 }
e1629549 553 }
554 }
555}
556
8f260b97 557int
230002f2 558h8300_can_use_return_insn_p (void)
8f260b97 559{
560 return (reload_completed
561 && !frame_pointer_needed
562 && get_frame_size () == 0
563 && compute_saved_regs () == 0);
564}
e1629549 565
8f260b97 566/* Generate RTL code for the function epilogue. */
567
568void
230002f2 569h8300_expand_epilogue (void)
e1629549 570{
b2adb3e0 571 int regno;
b1292c73 572 int saved_regs;
97709d8d 573 int n_regs;
e1629549 574
41ed3bcd 575 if (h8300_os_task_function_p (current_function_decl))
8f260b97 576 /* OS_Task epilogues are nearly naked -- they just have an
577 rts instruction. */
578 return;
e1629549 579
b1292c73 580 /* Pop the saved registers in descending order. */
581 saved_regs = compute_saved_regs ();
b2adb3e0 582 for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno -= n_regs)
97709d8d 583 {
97709d8d 584 n_regs = 1;
b1292c73 585 if (saved_regs & (1 << regno))
e1629549 586 {
69b4e418 587 if (TARGET_H8300S)
588 {
97709d8d 589 /* See how many registers we can pop at the same time. */
590 if ((regno == 7 || regno == 3)
b1292c73 591 && ((saved_regs >> (regno - 3)) & 0x0f) == 0x0f)
97709d8d 592 n_regs = 4;
593
594 else if ((regno == 6 || regno == 2)
b1292c73 595 && ((saved_regs >> (regno - 2)) & 0x07) == 0x07)
97709d8d 596 n_regs = 3;
597
598 else if ((regno == 7 || regno == 5 || regno == 3 || regno == 1)
b1292c73 599 && ((saved_regs >> (regno - 1)) & 0x03) == 0x03)
97709d8d 600 n_regs = 2;
69b4e418 601 }
97709d8d 602
b2dd6aa3 603 switch (n_regs)
604 {
605 case 1:
8f260b97 606 pop (regno);
b2dd6aa3 607 break;
608 case 2:
8f260b97 609 emit_insn (gen_ldm_h8300s_2 (gen_rtx_REG (SImode, regno - 1),
610 gen_rtx_REG (SImode, regno)));
b2dd6aa3 611 break;
612 case 3:
8f260b97 613 emit_insn (gen_ldm_h8300s_3 (gen_rtx_REG (SImode, regno - 2),
614 gen_rtx_REG (SImode, regno - 1),
615 gen_rtx_REG (SImode, regno)));
b2dd6aa3 616 break;
617 case 4:
8f260b97 618 emit_insn (gen_ldm_h8300s_4 (gen_rtx_REG (SImode, regno - 3),
619 gen_rtx_REG (SImode, regno - 2),
620 gen_rtx_REG (SImode, regno - 1),
621 gen_rtx_REG (SImode, regno)));
b2dd6aa3 622 break;
623 default:
624 abort ();
625 }
e1629549 626 }
e1629549 627 }
b839e0b4 628
eb2aa24e 629 /* Deallocate locals. */
b36ddff8 630 dosize (1, round_frame_size (get_frame_size ()));
69b4e418 631
eb2aa24e 632 /* Pop frame pointer if we had one. */
69b4e418 633 if (frame_pointer_needed)
8f260b97 634 pop (FRAME_POINTER_REGNUM);
635}
69b4e418 636
8f260b97 637/* Output assembly language code for the function epilogue. */
e1629549 638
8f260b97 639static void
230002f2 640h8300_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
641 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
8f260b97 642{
e1629549 643 pragma_saveall = 0;
b839e0b4 644}
230002f2 645
41ed3bcd 646/* Return nonzero if the current function is an interrupt
647 function. */
648
649int
230002f2 650h8300_current_function_interrupt_function_p (void)
41ed3bcd 651{
652 return (h8300_interrupt_function_p (current_function_decl)
653 || h8300_monitor_function_p (current_function_decl));
654}
655
b839e0b4 656/* Output assembly code for the start of the file. */
657
92c473b8 658static void
659h8300_file_start (void)
b839e0b4 660{
92c473b8 661 default_file_start ();
9f56f86b 662
b839e0b4 663 if (TARGET_H8300H)
92c473b8 664 fputs (TARGET_NORMAL_MODE ? "\t.h8300hn\n" : "\t.h8300h\n", asm_out_file);
69b4e418 665 else if (TARGET_H8300S)
92c473b8 666 fputs (TARGET_NORMAL_MODE ? "\t.h8300sn\n" : "\t.h8300s\n", asm_out_file);
b839e0b4 667}
668
669/* Output assembly language code for the end of file. */
670
f6940372 671static void
230002f2 672h8300_file_end (void)
b839e0b4 673{
f6940372 674 fputs ("\t.end\n", asm_out_file);
e1629549 675}
676\f
f39dbbab 677/* Return true if OP is a valid source operand for an integer move
e1629549 678 instruction. */
b839e0b4 679
e1629549 680int
230002f2 681general_operand_src (rtx op, enum machine_mode mode)
e1629549 682{
5b145e0c 683 if (GET_MODE (op) == mode
684 && GET_CODE (op) == MEM
685 && GET_CODE (XEXP (op, 0)) == POST_INC)
b839e0b4 686 return 1;
e1629549 687 return general_operand (op, mode);
688}
689
690/* Return true if OP is a valid destination operand for an integer move
10b87dba 691 instruction. */
b839e0b4 692
e1629549 693int
230002f2 694general_operand_dst (rtx op, enum machine_mode mode)
e1629549 695{
5b145e0c 696 if (GET_MODE (op) == mode
697 && GET_CODE (op) == MEM
698 && GET_CODE (XEXP (op, 0)) == PRE_DEC)
b839e0b4 699 return 1;
e1629549 700 return general_operand (op, mode);
701}
b839e0b4 702
3a59a065 703/* Return true if OP is a constant that contains only one 1 in its
704 binary representation. */
b839e0b4 705
706int
230002f2 707single_one_operand (rtx operand, enum machine_mode mode ATTRIBUTE_UNUSED)
b839e0b4 708{
3a59a065 709 if (GET_CODE (operand) == CONST_INT)
710 {
711 /* We really need to do this masking because 0x80 in QImode is
712 represented as -128 for example. */
5c7b13c9 713 if (exact_log2 (INTVAL (operand) & GET_MODE_MASK (mode)) >= 0)
3a59a065 714 return 1;
715 }
716
717 return 0;
718}
719
720/* Return true if OP is a constant that contains only one 0 in its
721 binary representation. */
722
723int
230002f2 724single_zero_operand (rtx operand, enum machine_mode mode ATTRIBUTE_UNUSED)
3a59a065 725{
726 if (GET_CODE (operand) == CONST_INT)
727 {
728 /* We really need to do this masking because 0x80 in QImode is
729 represented as -128 for example. */
5c7b13c9 730 if (exact_log2 (~INTVAL (operand) & GET_MODE_MASK (mode)) >= 0)
3a59a065 731 return 1;
732 }
733
734 return 0;
b839e0b4 735}
736
b839e0b4 737/* Return true if OP is a valid call operand. */
738
739int
230002f2 740call_insn_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
b839e0b4 741{
742 if (GET_CODE (op) == MEM)
743 {
744 rtx inside = XEXP (op, 0);
745 if (register_operand (inside, Pmode))
746 return 1;
747 if (CONSTANT_ADDRESS_P (inside))
748 return 1;
749 }
750 return 0;
751}
752
9c068f13 753/* Return 1 if an addition/subtraction of a constant integer can be
3c4d0c20 754 transformed into two consecutive adds/subs that are faster than the
9c068f13 755 straightforward way. Otherwise, return 0. */
3c4d0c20 756
0a56558f 757int
230002f2 758two_insn_adds_subs_operand (rtx op, enum machine_mode mode)
0a56558f 759{
760 if (GET_CODE (op) == CONST_INT)
761 {
8e7d5182 762 HOST_WIDE_INT value = INTVAL (op);
0a56558f 763
3c4d0c20 764 /* Force VALUE to be positive so that we do not have to consider
765 the negative case. */
766 if (value < 0)
767 value = -value;
8e7d5182 768 if (TARGET_H8300H || TARGET_H8300S)
769 {
3c4d0c20 770 /* A constant addition/subtraction takes 2 states in QImode,
771 4 states in HImode, and 6 states in SImode. Thus, the
772 only case we can win is when SImode is used, in which
0c2bee79 773 case, two adds/subs are used, taking 4 states. */
3c4d0c20 774 if (mode == SImode
775 && (value == 2 + 1
776 || value == 4 + 1
777 || value == 4 + 2
778 || value == 4 + 4))
9c068f13 779 return 1;
8e7d5182 780 }
781 else
782 {
c5599633 783 /* We do not profit directly by splitting addition or
784 subtraction of 3 and 4. However, since these are
785 implemented as a sequence of adds or subs, they do not
786 clobber (cc0) unlike a sequence of add.b and add.x. */
787 if (mode == HImode
3c4d0c20 788 && (value == 2 + 1
789 || value == 2 + 2))
8e7d5182 790 return 1;
791 }
792 }
fe19f1e0 793
fe19f1e0 794 return 0;
795}
796
c5673261 797/* Split an add of a small constant into two adds/subs insns.
798
799 If USE_INCDEC_P is nonzero, we generate the last insn using inc/dec
800 instead of adds/subs. */
8e7d5182 801
802void
230002f2 803split_adds_subs (enum machine_mode mode, rtx *operands)
0a56558f 804{
8e7d5182 805 HOST_WIDE_INT val = INTVAL (operands[1]);
806 rtx reg = operands[0];
d8afbfc6 807 HOST_WIDE_INT sign = 1;
808 HOST_WIDE_INT amount;
90b024e5 809 rtx (*gen_add) (rtx, rtx, rtx);
0a56558f 810
d8afbfc6 811 /* Force VAL to be positive so that we do not have to consider the
812 sign. */
813 if (val < 0)
0a56558f 814 {
d8afbfc6 815 val = -val;
816 sign = -1;
817 }
0a56558f 818
c5673261 819 switch (mode)
820 {
821 case HImode:
90b024e5 822 gen_add = gen_addhi3;
c5673261 823 break;
824
825 case SImode:
90b024e5 826 gen_add = gen_addsi3;
c5673261 827 break;
828
829 default:
830 abort ();
831 }
832
d8afbfc6 833 /* Try different amounts in descending order. */
834 for (amount = (TARGET_H8300H || TARGET_H8300S) ? 4 : 2;
835 amount > 0;
836 amount /= 2)
837 {
27276a3b 838 for (; val >= amount; val -= amount)
90b024e5 839 emit_insn (gen_add (reg, reg, GEN_INT (sign * amount)));
0a56558f 840 }
841
d8afbfc6 842 return;
0a56558f 843}
844
b11bfc61 845/* Return true if OP is a valid call operand, and OP represents
846 an operand for a small call (4 bytes instead of 6 bytes). */
847
848int
230002f2 849small_call_insn_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
b11bfc61 850{
851 if (GET_CODE (op) == MEM)
852 {
853 rtx inside = XEXP (op, 0);
854
855 /* Register indirect is a small call. */
856 if (register_operand (inside, Pmode))
857 return 1;
858
d37aaac2 859 /* A call through the function vector is a small call too. */
b11bfc61 860 if (GET_CODE (inside) == SYMBOL_REF
d37aaac2 861 && (SYMBOL_REF_FLAGS (inside) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
b11bfc61 862 return 1;
863 }
864 /* Otherwise it's a large call. */
865 return 0;
866}
867
b839e0b4 868/* Return true if OP is a valid jump operand. */
869
870int
230002f2 871jump_address_operand (rtx op, enum machine_mode mode)
b839e0b4 872{
873 if (GET_CODE (op) == REG)
874 return mode == Pmode;
875
876 if (GET_CODE (op) == MEM)
877 {
878 rtx inside = XEXP (op, 0);
879 if (register_operand (inside, Pmode))
880 return 1;
881 if (CONSTANT_ADDRESS_P (inside))
882 return 1;
883 }
884 return 0;
885}
886
ceb2fe0f 887/* Recognize valid operands for bit-field instructions. */
b839e0b4 888
889extern int rtx_equal_function_value_matters;
890
891int
230002f2 892bit_operand (rtx op, enum machine_mode mode)
b839e0b4 893{
cc72e60a 894 /* We can accept any general operand, except that MEM operands must
b839e0b4 895 be limited to those that use addresses valid for the 'U' constraint. */
896 if (!general_operand (op, mode))
897 return 0;
898
899 /* Accept any mem during RTL generation. Otherwise, the code that does
900 insv and extzv will think that we can not handle memory. However,
901 to avoid reload problems, we only accept 'U' MEM operands after RTL
902 generation. This means that any named pattern which uses this predicate
903 must force its operands to match 'U' before emitting RTL. */
904
905 if (GET_CODE (op) == REG)
906 return 1;
907 if (GET_CODE (op) == SUBREG)
908 return 1;
d28c6096 909 return (GET_CODE (op) == MEM
910 && EXTRA_CONSTRAINT (op, 'U'));
b839e0b4 911}
912
27a0be8f 913int
230002f2 914bit_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
27a0be8f 915{
916 return (GET_CODE (op) == MEM
917 && EXTRA_CONSTRAINT (op, 'U'));
918}
919
e1629549 920/* Handle machine specific pragmas for compatibility with existing
b839e0b4 921 compilers for the H8/300.
e1629549 922
cc72e60a 923 pragma saveall generates prologue/epilogue code which saves and
e1629549 924 restores all the registers on function entry.
b839e0b4 925
e1629549 926 pragma interrupt saves and restores all registers, and exits with
927 an rte instruction rather than an rts. A pointer to a function
928 with this attribute may be safely used in an interrupt vector. */
b839e0b4 929
1fcd08b1 930void
230002f2 931h8300_pr_interrupt (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
e1629549 932{
41ed3bcd 933 pragma_interrupt = 1;
1fcd08b1 934}
b97b38c0 935
1fcd08b1 936void
230002f2 937h8300_pr_saveall (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
1fcd08b1 938{
939 pragma_saveall = 1;
e1629549 940}
1fcd08b1 941
c738c371 942/* If the next function argument with MODE and TYPE is to be passed in
943 a register, return a reg RTX for the hard register in which to pass
944 the argument. CUM represents the state after the last argument.
945 If the argument is to be pushed, NULL_RTX is returned. */
b839e0b4 946
e1629549 947rtx
230002f2 948function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
949 tree type, int named)
e1629549 950{
70a21926 951 static const char *const hand_list[] = {
952 "__main",
953 "__cmpsi2",
954 "__divhi3",
955 "__modhi3",
956 "__udivhi3",
957 "__umodhi3",
958 "__divsi3",
959 "__modsi3",
960 "__udivsi3",
961 "__umodsi3",
962 "__mulhi3",
963 "__mulsi3",
964 "__reg_memcpy",
965 "__reg_memset",
966 "__ucmpsi2",
967 0,
968 };
969
6996dd46 970 rtx result = NULL_RTX;
9305fe33 971 const char *fname;
b839e0b4 972 int regpass = 0;
973
0d37f3a1 974 /* Never pass unnamed arguments in registers. */
975 if (!named)
6996dd46 976 return NULL_RTX;
0d37f3a1 977
b839e0b4 978 /* Pass 3 regs worth of data in regs when user asked on the command line. */
979 if (TARGET_QUICKCALL)
980 regpass = 3;
981
982 /* If calling hand written assembler, use 4 regs of args. */
b839e0b4 983 if (cum->libcall)
984 {
9305fe33 985 const char * const *p;
b839e0b4 986
987 fname = XSTR (cum->libcall, 0);
988
989 /* See if this libcall is one of the hand coded ones. */
b839e0b4 990 for (p = hand_list; *p && strcmp (*p, fname) != 0; p++)
991 ;
e1629549 992
b839e0b4 993 if (*p)
994 regpass = 4;
995 }
996
997 if (regpass)
998 {
999 int size;
1000
1001 if (mode == BLKmode)
1002 size = int_size_in_bytes (type);
1003 else
1004 size = GET_MODE_SIZE (mode);
1005
60ff2ea8 1006 if (size + cum->nbytes <= regpass * UNITS_PER_WORD
1007 && cum->nbytes / UNITS_PER_WORD <= 3)
1008 result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
b839e0b4 1009 }
e1629549 1010
b839e0b4 1011 return result;
1012}
1013\f
fab7adbf 1014static int
230002f2 1015h8300_and_costs (rtx x)
b785ceb4 1016{
1017 rtx operands[4];
1018
1019 if (GET_MODE (x) == QImode)
1020 return 1;
1021
1022 if (GET_MODE (x) != HImode
1023 && GET_MODE (x) != SImode)
1024 return 100;
1025
1026 operands[0] = NULL;
1027 operands[1] = NULL;
1028 operands[2] = XEXP (x, 1);
1029 operands[3] = x;
5a622ac3 1030 return compute_logical_op_length (GET_MODE (x), operands) / 2;
b785ceb4 1031}
1032
fab7adbf 1033static int
230002f2 1034h8300_shift_costs (rtx x)
c033ada4 1035{
1036 rtx operands[4];
1037
1038 if (GET_MODE (x) != QImode
1039 && GET_MODE (x) != HImode
1040 && GET_MODE (x) != SImode)
1041 return 100;
1042
1043 operands[0] = NULL;
1044 operands[1] = NULL;
1045 operands[2] = XEXP (x, 1);
1046 operands[3] = x;
5a622ac3 1047 return compute_a_shift_length (NULL, operands) / 2;
c033ada4 1048}
fab7adbf 1049
1050static bool
230002f2 1051h8300_rtx_costs (rtx x, int code, int outer_code, int *total)
fab7adbf 1052{
1053 switch (code)
1054 {
1d6dae88 1055 case CONST_INT:
1056 {
1057 HOST_WIDE_INT n = INTVAL (x);
1058
1059 if (-4 <= n || n <= 4)
1060 {
1061 switch ((int) n)
1062 {
1063 case 0:
1064 *total = 0;
1065 return true;
1066 case 1:
1067 case 2:
1068 case -1:
1069 case -2:
1070 *total = 0 + (outer_code == SET);
1071 return true;
1072 case 4:
1073 case -4:
1074 if (TARGET_H8300H || TARGET_H8300S)
1075 *total = 0 + (outer_code == SET);
1076 else
1077 *total = 1;
1078 return true;
1079 }
1080 }
1081 *total = 1;
1082 return true;
1083 }
1084
1085 case CONST:
1086 case LABEL_REF:
1087 case SYMBOL_REF:
1088 *total = 3;
1089 return true;
1090
1091 case CONST_DOUBLE:
1092 *total = 20;
1093 return true;
1094
fab7adbf 1095 case AND:
1096 *total = COSTS_N_INSNS (h8300_and_costs (x));
1097 return true;
1098
1099 /* We say that MOD and DIV are so expensive because otherwise we'll
1100 generate some really horrible code for division of a power of two. */
1101 case MOD:
1102 case DIV:
1103 *total = 60;
1104 return true;
1105
1106 case MULT:
1107 *total = 20;
1108 return true;
1109
1110 case ASHIFT:
1111 case ASHIFTRT:
1112 case LSHIFTRT:
1113 *total = COSTS_N_INSNS (h8300_shift_costs (x));
1114 return true;
1115
1116 case ROTATE:
1117 case ROTATERT:
1118 if (GET_MODE (x) == HImode)
1119 *total = 2;
1120 else
1121 *total = 8;
1122 return true;
1123
1124 default:
1d6dae88 1125 *total = 4;
fab7adbf 1126 return true;
1127 }
1128}
b839e0b4 1129\f
e1629549 1130/* Documentation for the machine specific operand escapes:
1131
b839e0b4 1132 'E' like s but negative.
1133 'F' like t but negative.
1134 'G' constant just the negative
2c7be643 1135 'R' print operand as a byte:8 address if appropriate, else fall back to
1136 'X' handling.
b839e0b4 1137 'S' print operand as a long word
e1629549 1138 'T' print operand as a word
b839e0b4 1139 'V' find the set bit, and print its number.
1140 'W' find the clear bit, and print its number.
1141 'X' print operand as a byte
e1629549 1142 'Y' print either l or h depending on whether last 'Z' operand < 8 or >= 8.
2c7be643 1143 If this operand isn't a register, fall back to 'R' handling.
b839e0b4 1144 'Z' print int & 7.
4c924258 1145 'c' print the opcode corresponding to rtl
b839e0b4 1146 'e' first word of 32 bit value - if reg, then least reg. if mem
1147 then least. if const then most sig word
1148 'f' second word of 32 bit value - if reg, then biggest reg. if mem
1149 then +2. if const then least sig word
e1629549 1150 'j' print operand as condition code.
1151 'k' print operand as reverse condition code.
b839e0b4 1152 's' print as low byte of 16 bit value
1153 't' print as high byte of 16 bit value
1154 'w' print as low byte of 32 bit value
1155 'x' print as 2nd byte of 32 bit value
1156 'y' print as 3rd byte of 32 bit value
1157 'z' print as msb of 32 bit value
1158*/
e1629549 1159
1160/* Return assembly language string which identifies a comparison type. */
1161
9305fe33 1162static const char *
230002f2 1163cond_string (enum rtx_code code)
e1629549 1164{
1165 switch (code)
1166 {
1167 case NE:
1168 return "ne";
1169 case EQ:
1170 return "eq";
1171 case GE:
1172 return "ge";
1173 case GT:
1174 return "gt";
1175 case LE:
1176 return "le";
1177 case LT:
1178 return "lt";
1179 case GEU:
1180 return "hs";
1181 case GTU:
1182 return "hi";
1183 case LEU:
1184 return "ls";
1185 case LTU:
1186 return "lo";
1187 default:
1188 abort ();
1189 }
1190}
1191
1192/* Print operand X using operand code CODE to assembly language output file
1193 FILE. */
1194
1195void
230002f2 1196print_operand (FILE *file, rtx x, int code)
e1629549 1197{
30c992ef 1198 /* This is used for communication between codes V,W,Z and Y. */
e1629549 1199 static int bitint;
1200
1201 switch (code)
1202 {
b839e0b4 1203 case 'E':
1204 switch (GET_CODE (x))
1205 {
1206 case REG:
1207 fprintf (file, "%sl", names_big[REGNO (x)]);
1208 break;
1209 case CONST_INT:
21650cc9 1210 fprintf (file, "#%ld", (-INTVAL (x)) & 0xff);
b839e0b4 1211 break;
1212 default:
1213 abort ();
1214 }
1215 break;
1216 case 'F':
1217 switch (GET_CODE (x))
1218 {
1219 case REG:
1220 fprintf (file, "%sh", names_big[REGNO (x)]);
1221 break;
1222 case CONST_INT:
21650cc9 1223 fprintf (file, "#%ld", ((-INTVAL (x)) & 0xff00) >> 8);
b839e0b4 1224 break;
1225 default:
1226 abort ();
1227 }
1228 break;
e1629549 1229 case 'G':
1230 if (GET_CODE (x) != CONST_INT)
1231 abort ();
21650cc9 1232 fprintf (file, "#%ld", 0xff & (-INTVAL (x)));
e1629549 1233 break;
b839e0b4 1234 case 'S':
1235 if (GET_CODE (x) == REG)
1236 fprintf (file, "%s", names_extended[REGNO (x)]);
e1629549 1237 else
b839e0b4 1238 goto def;
e1629549 1239 break;
b839e0b4 1240 case 'T':
1241 if (GET_CODE (x) == REG)
1242 fprintf (file, "%s", names_big[REGNO (x)]);
e1629549 1243 else
b839e0b4 1244 goto def;
e1629549 1245 break;
b839e0b4 1246 case 'V':
3a59a065 1247 bitint = exact_log2 (INTVAL (x) & 0xff);
b839e0b4 1248 if (bitint == -1)
e1629549 1249 abort ();
3a59a065 1250 fprintf (file, "#%d", bitint);
e1629549 1251 break;
b839e0b4 1252 case 'W':
e1629549 1253 bitint = exact_log2 ((~INTVAL (x)) & 0xff);
1254 if (bitint == -1)
1255 abort ();
3a59a065 1256 fprintf (file, "#%d", bitint);
e1629549 1257 break;
2c7be643 1258 case 'R':
b839e0b4 1259 case 'X':
1260 if (GET_CODE (x) == REG)
1261 fprintf (file, "%s", byte_reg (x, 0));
1262 else
1263 goto def;
1264 break;
1265 case 'Y':
e1629549 1266 if (bitint == -1)
1267 abort ();
b839e0b4 1268 if (GET_CODE (x) == REG)
1269 fprintf (file, "%s%c", names_big[REGNO (x)], bitint > 7 ? 'h' : 'l');
1270 else
2c7be643 1271 print_operand (file, x, 'R');
b839e0b4 1272 bitint = -1;
1273 break;
1274 case 'Z':
1275 bitint = INTVAL (x);
e1629549 1276 fprintf (file, "#%d", bitint & 7);
1277 break;
4c924258 1278 case 'c':
1279 switch (GET_CODE (x))
1280 {
1281 case IOR:
1282 fprintf (file, "or");
1283 break;
1284 case XOR:
1285 fprintf (file, "xor");
1286 break;
77016b8f 1287 case AND:
1288 fprintf (file, "and");
1289 break;
4c924258 1290 default:
1291 break;
1292 }
1293 break;
e1629549 1294 case 'e':
1295 switch (GET_CODE (x))
1296 {
1297 case REG:
b839e0b4 1298 if (TARGET_H8300)
1299 fprintf (file, "%s", names_big[REGNO (x)]);
1300 else
1301 fprintf (file, "%s", names_upper_extended[REGNO (x)]);
e1629549 1302 break;
1303 case MEM:
e1629549 1304 print_operand (file, x, 0);
1305 break;
1306 case CONST_INT:
21650cc9 1307 fprintf (file, "#%ld", ((INTVAL (x) >> 16) & 0xffff));
e1629549 1308 break;
737a5d5b 1309 case CONST_DOUBLE:
1310 {
1311 long val;
1312 REAL_VALUE_TYPE rv;
1313 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
1314 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
9305fe33 1315 fprintf (file, "#%ld", ((val >> 16) & 0xffff));
737a5d5b 1316 break;
1317 }
e1629549 1318 default:
1319 abort ();
1320 break;
1321 }
1322 break;
e1629549 1323 case 'f':
1324 switch (GET_CODE (x))
1325 {
1326 case REG:
b839e0b4 1327 if (TARGET_H8300)
1328 fprintf (file, "%s", names_big[REGNO (x) + 1]);
1329 else
1330 fprintf (file, "%s", names_big[REGNO (x)]);
e1629549 1331 break;
e1629549 1332 case MEM:
eafc6604 1333 x = adjust_address (x, HImode, 2);
e1629549 1334 print_operand (file, x, 0);
1335 break;
e1629549 1336 case CONST_INT:
21650cc9 1337 fprintf (file, "#%ld", INTVAL (x) & 0xffff);
e1629549 1338 break;
737a5d5b 1339 case CONST_DOUBLE:
1340 {
1341 long val;
1342 REAL_VALUE_TYPE rv;
1343 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
1344 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
9305fe33 1345 fprintf (file, "#%ld", (val & 0xffff));
737a5d5b 1346 break;
1347 }
e1629549 1348 default:
1349 abort ();
1350 }
1351 break;
e1629549 1352 case 'j':
7fe1d31c 1353 fputs (cond_string (GET_CODE (x)), file);
e1629549 1354 break;
e1629549 1355 case 'k':
7fe1d31c 1356 fputs (cond_string (reverse_condition (GET_CODE (x))), file);
e1629549 1357 break;
b839e0b4 1358 case 's':
1359 if (GET_CODE (x) == CONST_INT)
21650cc9 1360 fprintf (file, "#%ld", (INTVAL (x)) & 0xff);
b839e0b4 1361 else
1362 fprintf (file, "%s", byte_reg (x, 0));
1363 break;
1364 case 't':
1365 if (GET_CODE (x) == CONST_INT)
21650cc9 1366 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
b839e0b4 1367 else
1368 fprintf (file, "%s", byte_reg (x, 1));
1369 break;
b839e0b4 1370 case 'w':
1371 if (GET_CODE (x) == CONST_INT)
21650cc9 1372 fprintf (file, "#%ld", INTVAL (x) & 0xff);
b839e0b4 1373 else
69b4e418 1374 fprintf (file, "%s",
1375 byte_reg (x, TARGET_H8300 ? 2 : 0));
b839e0b4 1376 break;
1377 case 'x':
1378 if (GET_CODE (x) == CONST_INT)
21650cc9 1379 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
b839e0b4 1380 else
69b4e418 1381 fprintf (file, "%s",
1382 byte_reg (x, TARGET_H8300 ? 3 : 1));
b839e0b4 1383 break;
1384 case 'y':
1385 if (GET_CODE (x) == CONST_INT)
21650cc9 1386 fprintf (file, "#%ld", (INTVAL (x) >> 16) & 0xff);
b839e0b4 1387 else
1388 fprintf (file, "%s", byte_reg (x, 0));
1389 break;
1390 case 'z':
1391 if (GET_CODE (x) == CONST_INT)
21650cc9 1392 fprintf (file, "#%ld", (INTVAL (x) >> 24) & 0xff);
b839e0b4 1393 else
1394 fprintf (file, "%s", byte_reg (x, 1));
1395 break;
1396
e1629549 1397 default:
b839e0b4 1398 def:
e1629549 1399 switch (GET_CODE (x))
1400 {
1401 case REG:
b839e0b4 1402 switch (GET_MODE (x))
1403 {
1404 case QImode:
30c992ef 1405#if 0 /* Is it asm ("mov.b %0,r2l", ...) */
b839e0b4 1406 fprintf (file, "%s", byte_reg (x, 0));
1407#else /* ... or is it asm ("mov.b %0l,r2l", ...) */
1408 fprintf (file, "%s", names_big[REGNO (x)]);
1409#endif
1410 break;
1411 case HImode:
1412 fprintf (file, "%s", names_big[REGNO (x)]);
1413 break;
1414 case SImode:
5d369cd7 1415 case SFmode:
b839e0b4 1416 fprintf (file, "%s", names_extended[REGNO (x)]);
1417 break;
1418 default:
1419 abort ();
1420 }
e1629549 1421 break;
1422
1423 case MEM:
b99f3ebb 1424 {
1425 rtx addr = XEXP (x, 0);
1426
1427 fprintf (file, "@");
1428 output_address (addr);
1429
58b67d36 1430 /* We fall back from smaller addressing to larger
1431 addressing in various ways depending on CODE. */
1432 switch (code)
1433 {
1434 case 'R':
1435 /* Used for mov.b and bit operations. */
e566129f 1436 if (h8300_eightbit_constant_address_p (addr))
58b67d36 1437 {
1438 fprintf (file, ":8");
1439 break;
1440 }
1441
1442 /* Fall through. We should not get here if we are
1443 processing bit operations on H8/300 or H8/300H
1444 because 'U' constraint does not allow bit
1445 operations on the tiny area on these machines. */
1446
1447 case 'T':
1448 case 'S':
1449 /* Used for mov.w and mov.l. */
3696208f 1450 if (h8300_tiny_constant_address_p (addr))
58b67d36 1451 fprintf (file, ":16");
1452 break;
1453 default:
1454 break;
1455 }
b99f3ebb 1456 }
e1629549 1457 break;
1458
1459 case CONST_INT:
1460 case SYMBOL_REF:
1461 case CONST:
1462 case LABEL_REF:
1463 fprintf (file, "#");
1464 print_operand_address (file, x);
1465 break;
737a5d5b 1466 case CONST_DOUBLE:
1467 {
1468 long val;
1469 REAL_VALUE_TYPE rv;
1470 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
1471 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
9305fe33 1472 fprintf (file, "#%ld", val);
737a5d5b 1473 break;
1474 }
9305fe33 1475 default:
1476 break;
e1629549 1477 }
1478 }
1479}
1480
1481/* Output assembly language output for the address ADDR to FILE. */
1482
1483void
230002f2 1484print_operand_address (FILE *file, rtx addr)
e1629549 1485{
1486 switch (GET_CODE (addr))
1487 {
1488 case REG:
b839e0b4 1489 fprintf (file, "%s", h8_reg_names[REGNO (addr)]);
e1629549 1490 break;
1491
1492 case PRE_DEC:
b839e0b4 1493 fprintf (file, "-%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
e1629549 1494 break;
1495
1496 case POST_INC:
b839e0b4 1497 fprintf (file, "%s+", h8_reg_names[REGNO (XEXP (addr, 0))]);
e1629549 1498 break;
1499
1500 case PLUS:
1501 fprintf (file, "(");
1502 if (GET_CODE (XEXP (addr, 0)) == REG)
1503 {
1504 /* reg,foo */
1505 print_operand_address (file, XEXP (addr, 1));
1506 fprintf (file, ",");
1507 print_operand_address (file, XEXP (addr, 0));
1508 }
1509 else
1510 {
1511 /* foo+k */
1512 print_operand_address (file, XEXP (addr, 0));
1513 fprintf (file, "+");
1514 print_operand_address (file, XEXP (addr, 1));
1515 }
1516 fprintf (file, ")");
1517 break;
1518
1519 case CONST_INT:
b839e0b4 1520 {
53aec781 1521 /* Since the H8/300 only has 16 bit pointers, negative values are also
b839e0b4 1522 those >= 32768. This happens for example with pointer minus a
1523 constant. We don't want to turn (char *p - 2) into
1524 (char *p + 65534) because loop unrolling can build upon this
1525 (IE: char *p + 131068). */
1526 int n = INTVAL (addr);
1527 if (TARGET_H8300)
1528 n = (int) (short) n;
90a38175 1529 fprintf (file, "%d", n);
b839e0b4 1530 break;
1531 }
e1629549 1532
1533 default:
1534 output_addr_const (file, addr);
1535 break;
1536 }
1537}
1538\f
e1629549 1539/* Output all insn addresses and their sizes into the assembly language
1540 output file. This is helpful for debugging whether the length attributes
1541 in the md file are correct. This is not meant to be a user selectable
1542 option. */
1543
1544void
230002f2 1545final_prescan_insn (rtx insn, rtx *operand ATTRIBUTE_UNUSED,
1546 int num_operands ATTRIBUTE_UNUSED)
e1629549 1547{
1548 /* This holds the last insn address. */
1549 static int last_insn_address = 0;
1550
407921a5 1551 const int uid = INSN_UID (insn);
e1629549 1552
1553 if (TARGET_ADDRESSES)
1554 {
47fc0706 1555 fprintf (asm_out_file, "; 0x%x %d\n", INSN_ADDRESSES (uid),
1556 INSN_ADDRESSES (uid) - last_insn_address);
1557 last_insn_address = INSN_ADDRESSES (uid);
e1629549 1558 }
1559}
1560
b839e0b4 1561/* Prepare for an SI sized move. */
1562
1563int
230002f2 1564do_movsi (rtx operands[])
e1629549 1565{
b839e0b4 1566 rtx src = operands[1];
1567 rtx dst = operands[0];
1568 if (!reload_in_progress && !reload_completed)
1569 {
1570 if (!register_operand (dst, GET_MODE (dst)))
1571 {
1572 rtx tmp = gen_reg_rtx (GET_MODE (dst));
1573 emit_move_insn (tmp, src);
1574 operands[1] = tmp;
1575 }
1576 }
1577 return 0;
1578}
1579
1580/* Function for INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET).
eb2aa24e 1581 Define the offset between two registers, one to be eliminated, and
1582 the other its replacement, at the start of a routine. */
e1629549 1583
b839e0b4 1584int
230002f2 1585h8300_initial_elimination_offset (int from, int to)
b839e0b4 1586{
1587 int offset = 0;
32351c92 1588 /* The number of bytes that the return address takes on the stack. */
1589 int pc_size = POINTER_SIZE / BITS_PER_UNIT;
b839e0b4 1590
1591 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
32351c92 1592 offset = pc_size + frame_pointer_needed * UNITS_PER_WORD;
f643a7d5 1593 else if (from == RETURN_ADDRESS_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
1594 offset = frame_pointer_needed * UNITS_PER_WORD;
b839e0b4 1595 else
e1629549 1596 {
b839e0b4 1597 int regno;
1598
1599 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1dbee3e1 1600 if (WORD_REG_USED (regno))
b839e0b4 1601 offset += UNITS_PER_WORD;
1602
1603 /* See the comments for get_frame_size. We need to round it up to
1604 STACK_BOUNDARY. */
1605
581ca38a 1606 offset += round_frame_size (get_frame_size ());
b839e0b4 1607
1608 if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
32351c92 1609 /* Skip saved PC. */
1610 offset += pc_size;
b839e0b4 1611 }
35a462ce 1612
b839e0b4 1613 return offset;
1614}
1615
f643a7d5 1616rtx
230002f2 1617h8300_return_addr_rtx (int count, rtx frame)
f643a7d5 1618{
1619 rtx ret;
1620
1621 if (count == 0)
1622 ret = gen_rtx_MEM (Pmode,
1623 gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM));
1624 else if (flag_omit_frame_pointer)
1625 return (rtx) 0;
1626 else
1627 ret = gen_rtx_MEM (Pmode,
1628 memory_address (Pmode,
1629 plus_constant (frame, UNITS_PER_WORD)));
1630 set_mem_alias_set (ret, get_frame_alias_set ());
1631 return ret;
1632}
1633
b839e0b4 1634/* Update the condition code from the insn. */
1635
9305fe33 1636void
230002f2 1637notice_update_cc (rtx body, rtx insn)
b839e0b4 1638{
1617b5d2 1639 rtx set;
1640
b839e0b4 1641 switch (get_attr_cc (insn))
1642 {
1643 case CC_NONE:
30c992ef 1644 /* Insn does not affect CC at all. */
b839e0b4 1645 break;
1646
1647 case CC_NONE_0HIT:
30c992ef 1648 /* Insn does not change CC, but the 0'th operand has been changed. */
b839e0b4 1649 if (cc_status.value1 != 0
ed420a25 1650 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
b839e0b4 1651 cc_status.value1 = 0;
ad992f91 1652 if (cc_status.value2 != 0
1653 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value2))
1654 cc_status.value2 = 0;
b839e0b4 1655 break;
1656
a618bce0 1657 case CC_SET_ZN:
ed420a25 1658 /* Insn sets the Z,N flags of CC to recog_data.operand[0].
30c992ef 1659 The V flag is unusable. The C flag may or may not be known but
1660 that's ok because alter_cond will change tests to use EQ/NE. */
b839e0b4 1661 CC_STATUS_INIT;
30c992ef 1662 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
1617b5d2 1663 set = single_set (insn);
1664 cc_status.value1 = SET_SRC (set);
1665 if (SET_DEST (set) != cc0_rtx)
1666 cc_status.value2 = SET_DEST (set);
b839e0b4 1667 break;
1668
a618bce0 1669 case CC_SET_ZNV:
ed420a25 1670 /* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
a618bce0 1671 The C flag may or may not be known but that's ok because
1672 alter_cond will change tests to use EQ/NE. */
1673 CC_STATUS_INIT;
1674 cc_status.flags |= CC_NO_CARRY;
1617b5d2 1675 set = single_set (insn);
1676 cc_status.value1 = SET_SRC (set);
1677 if (SET_DEST (set) != cc0_rtx)
83e2d3b1 1678 {
1679 /* If the destination is STRICT_LOW_PART, strip off
1680 STRICT_LOW_PART. */
1681 if (GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1682 cc_status.value2 = XEXP (SET_DEST (set), 0);
1683 else
1684 cc_status.value2 = SET_DEST (set);
1685 }
a618bce0 1686 break;
1687
30c992ef 1688 case CC_COMPARE:
1689 /* The insn is a compare instruction. */
b839e0b4 1690 CC_STATUS_INIT;
30c992ef 1691 cc_status.value1 = SET_SRC (body);
b839e0b4 1692 break;
1693
b839e0b4 1694 case CC_CLOBBER:
30c992ef 1695 /* Insn doesn't leave CC in a usable state. */
b839e0b4 1696 CC_STATUS_INIT;
1697 break;
e1629549 1698 }
b839e0b4 1699}
1700
90e56b83 1701/* Return nonzero if X is a stack pointer. */
1702
1703int
230002f2 1704stack_pointer_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
90e56b83 1705{
1706 return x == stack_pointer_rtx;
1707}
1708
90e56b83 1709/* Return nonzero if X is a constant whose absolute value is greater
1710 than 2. */
1711
1712int
230002f2 1713const_int_gt_2_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
90e56b83 1714{
1715 return (GET_CODE (x) == CONST_INT
1716 && abs (INTVAL (x)) > 2);
1717}
1718
1719/* Return nonzero if X is a constant whose absolute value is no
1720 smaller than 8. */
1721
1722int
230002f2 1723const_int_ge_8_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
90e56b83 1724{
1725 return (GET_CODE (x) == CONST_INT
1726 && abs (INTVAL (x)) >= 8);
1727}
1728
0d565792 1729/* Return nonzero if X is a constant expressible in QImode. */
1730
1731int
230002f2 1732const_int_qi_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
0d565792 1733{
1734 return (GET_CODE (x) == CONST_INT
1735 && (INTVAL (x) & 0xff) == INTVAL (x));
1736}
1737
1738/* Return nonzero if X is a constant expressible in HImode. */
1739
1740int
230002f2 1741const_int_hi_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
0d565792 1742{
1743 return (GET_CODE (x) == CONST_INT
1744 && (INTVAL (x) & 0xffff) == INTVAL (x));
1745}
1746
079b5951 1747/* Return nonzero if X is a constant suitable for inc/dec. */
1748
1749int
230002f2 1750incdec_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
079b5951 1751{
1752 return (GET_CODE (x) == CONST_INT
1753 && (CONST_OK_FOR_M (INTVAL (x))
1754 || CONST_OK_FOR_O (INTVAL (x))));
1755}
1756
1757/* Return nonzero if X is either EQ or NE. */
1758
1759int
230002f2 1760eqne_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
079b5951 1761{
1762 enum rtx_code code = GET_CODE (x);
1763
1764 return (code == EQ || code == NE);
1765}
1766
ad927dea 1767/* Return nonzero if X is GT, LE, GTU, or LEU. */
1768
1769int
230002f2 1770gtle_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
ad927dea 1771{
1772 enum rtx_code code = GET_CODE (x);
1773
1774 return (code == GT || code == LE || code == GTU || code == LEU);
1775}
1776
c6720edd 1777/* Return nonzero if X is either GTU or LEU. */
1778
1779int
230002f2 1780gtuleu_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
c6720edd 1781{
1782 enum rtx_code code = GET_CODE (x);
1783
1784 return (code == GTU || code == LEU);
1785}
1786
4c924258 1787/* Return nonzero if X is either IOR or XOR. */
1788
1789int
230002f2 1790iorxor_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
4c924258 1791{
1792 enum rtx_code code = GET_CODE (x);
1793
1794 return (code == IOR || code == XOR);
1795}
1796
eb2aa24e 1797/* Recognize valid operators for bit instructions. */
b839e0b4 1798
1799int
230002f2 1800bit_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
b839e0b4 1801{
1802 enum rtx_code code = GET_CODE (x);
e1629549 1803
b839e0b4 1804 return (code == XOR
1805 || code == AND
1806 || code == IOR);
e1629549 1807}
b839e0b4 1808\f
6a8a3fa3 1809const char *
230002f2 1810output_plussi (rtx *operands)
aa3382b1 1811{
1812 enum machine_mode mode = GET_MODE (operands[0]);
1813
1814 if (mode != SImode)
1815 abort ();
1816
1817 if (TARGET_H8300)
1818 {
469dc9d2 1819 if (GET_CODE (operands[2]) == REG)
1820 return "add.w\t%f2,%f0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
1821
1822 if (GET_CODE (operands[2]) == CONST_INT)
1823 {
1824 HOST_WIDE_INT n = INTVAL (operands[2]);
1825
1826 if ((n & 0xffffff) == 0)
1827 return "add\t%z2,%z0";
1828 if ((n & 0xffff) == 0)
1829 return "add\t%y2,%y0\n\taddx\t%z2,%z0";
1830 if ((n & 0xff) == 0)
1831 return "add\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
1832 }
1833
1834 return "add\t%w2,%w0\n\taddx\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
aa3382b1 1835 }
1836 else
1837 {
1838 if (GET_CODE (operands[2]) == REG)
1839 return "add.l\t%S2,%S0";
1840
1841 if (GET_CODE (operands[2]) == CONST_INT)
1842 {
1843 HOST_WIDE_INT intval = INTVAL (operands[2]);
1844
1845 /* See if we can finish with 2 bytes. */
1846
11233c59 1847 switch ((unsigned int) intval & 0xffffffff)
aa3382b1 1848 {
1849 case 0x00000001:
1850 case 0x00000002:
1851 case 0x00000004:
1852 return "adds\t%2,%S0";
1853
1854 case 0xffffffff:
1855 case 0xfffffffe:
1856 case 0xfffffffc:
1857 return "subs\t%G2,%S0";
1858
1859 case 0x00010000:
1860 case 0x00020000:
1861 operands[2] = GEN_INT (intval >> 16);
1862 return "inc.w\t%2,%e0";
1863
1864 case 0xffff0000:
1865 case 0xfffe0000:
1866 operands[2] = GEN_INT (intval >> 16);
1867 return "dec.w\t%G2,%e0";
1868 }
1869
1870 /* See if we can finish with 4 bytes. */
1871 if ((intval & 0xffff) == 0)
1872 {
1873 operands[2] = GEN_INT (intval >> 16);
1874 return "add.w\t%2,%e0";
1875 }
1876 }
1877
1878 return "add.l\t%S2,%S0";
1879 }
1880}
1881
1882unsigned int
230002f2 1883compute_plussi_length (rtx *operands)
aa3382b1 1884{
1885 enum machine_mode mode = GET_MODE (operands[0]);
1886
1887 if (mode != SImode)
1888 abort ();
1889
1890 if (TARGET_H8300)
1891 {
469dc9d2 1892 if (GET_CODE (operands[2]) == REG)
1893 return 6;
1894
1895 if (GET_CODE (operands[2]) == CONST_INT)
1896 {
1897 HOST_WIDE_INT n = INTVAL (operands[2]);
1898
1899 if ((n & 0xffffff) == 0)
1900 return 2;
1901 if ((n & 0xffff) == 0)
1902 return 4;
1903 if ((n & 0xff) == 0)
1904 return 6;
1905 }
1906
1907 return 8;
aa3382b1 1908 }
1909 else
1910 {
1911 if (GET_CODE (operands[2]) == REG)
1912 return 2;
1913
1914 if (GET_CODE (operands[2]) == CONST_INT)
1915 {
1916 HOST_WIDE_INT intval = INTVAL (operands[2]);
1917
1918 /* See if we can finish with 2 bytes. */
1919
11233c59 1920 switch ((unsigned int) intval & 0xffffffff)
aa3382b1 1921 {
1922 case 0x00000001:
1923 case 0x00000002:
1924 case 0x00000004:
1925 return 2;
1926
1927 case 0xffffffff:
1928 case 0xfffffffe:
1929 case 0xfffffffc:
1930 return 2;
1931
1932 case 0x00010000:
1933 case 0x00020000:
1934 return 2;
1935
1936 case 0xffff0000:
1937 case 0xfffe0000:
1938 return 2;
1939 }
1940
1941 /* See if we can finish with 4 bytes. */
1942 if ((intval & 0xffff) == 0)
1943 return 4;
1944 }
1945
1946 return 6;
1947 }
1948}
1949
d00580fa 1950int
230002f2 1951compute_plussi_cc (rtx *operands)
aa3382b1 1952{
1953 enum machine_mode mode = GET_MODE (operands[0]);
1954
1955 if (mode != SImode)
1956 abort ();
1957
1958 if (TARGET_H8300)
1959 {
469dc9d2 1960 return CC_CLOBBER;
aa3382b1 1961 }
1962 else
1963 {
1964 if (GET_CODE (operands[2]) == REG)
1965 return CC_SET_ZN;
1966
1967 if (GET_CODE (operands[2]) == CONST_INT)
1968 {
1969 HOST_WIDE_INT intval = INTVAL (operands[2]);
1970
1971 /* See if we can finish with 2 bytes. */
1972
11233c59 1973 switch ((unsigned int) intval & 0xffffffff)
aa3382b1 1974 {
1975 case 0x00000001:
1976 case 0x00000002:
1977 case 0x00000004:
1978 return CC_NONE_0HIT;
1979
1980 case 0xffffffff:
1981 case 0xfffffffe:
1982 case 0xfffffffc:
1983 return CC_NONE_0HIT;
1984
1985 case 0x00010000:
1986 case 0x00020000:
1987 return CC_CLOBBER;
1988
1989 case 0xffff0000:
1990 case 0xfffe0000:
1991 return CC_CLOBBER;
1992 }
1993
1994 /* See if we can finish with 4 bytes. */
1995 if ((intval & 0xffff) == 0)
1996 return CC_CLOBBER;
1997 }
1998
1999 return CC_SET_ZN;
2000 }
2001}
2002\f
2003const char *
230002f2 2004output_logical_op (enum machine_mode mode, rtx *operands)
6a8a3fa3 2005{
6ad7df02 2006 /* Figure out the logical op that we need to perform. */
2007 enum rtx_code code = GET_CODE (operands[3]);
6a8a3fa3 2008 /* Pretend that every byte is affected if both operands are registers. */
407921a5 2009 const unsigned HOST_WIDE_INT intval =
6a8a3fa3 2010 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
2011 ? INTVAL (operands[2]) : 0x55555555);
2012 /* The determinant of the algorithm. If we perform an AND, 0
2013 affects a bit. Otherwise, 1 affects a bit. */
407921a5 2014 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
e6cf6c71 2015 /* Break up DET into pieces. */
2016 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
2017 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
cdcf26ff 2018 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
2019 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
e6cf6c71 2020 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
2021 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
2022 int lower_half_easy_p = 0;
2023 int upper_half_easy_p = 0;
6a8a3fa3 2024 /* The name of an insn. */
2025 const char *opname;
2026 char insn_buf[100];
2027
2028 switch (code)
2029 {
2030 case AND:
2031 opname = "and";
2032 break;
2033 case IOR:
2034 opname = "or";
2035 break;
2036 case XOR:
2037 opname = "xor";
2038 break;
2039 default:
2040 abort ();
2041 }
2042
2043 switch (mode)
2044 {
2045 case HImode:
2046 /* First, see if we can finish with one insn. */
2047 if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2048 && b0 != 0
2049 && b1 != 0)
6a8a3fa3 2050 {
2051 sprintf (insn_buf, "%s.w\t%%T2,%%T0", opname);
2052 output_asm_insn (insn_buf, operands);
2053 }
2054 else
2055 {
2056 /* Take care of the lower byte. */
cdcf26ff 2057 if (b0 != 0)
6a8a3fa3 2058 {
2059 sprintf (insn_buf, "%s\t%%s2,%%s0", opname);
2060 output_asm_insn (insn_buf, operands);
2061 }
2062 /* Take care of the upper byte. */
cdcf26ff 2063 if (b1 != 0)
6a8a3fa3 2064 {
2065 sprintf (insn_buf, "%s\t%%t2,%%t0", opname);
2066 output_asm_insn (insn_buf, operands);
2067 }
2068 }
2069 break;
2070 case SImode:
e6cf6c71 2071 if (TARGET_H8300H || TARGET_H8300S)
2072 {
2073 /* Determine if the lower half can be taken care of in no more
2074 than two bytes. */
2075 lower_half_easy_p = (b0 == 0
2076 || b1 == 0
2077 || (code != IOR && w0 == 0xffff));
2078
2079 /* Determine if the upper half can be taken care of in no more
2080 than two bytes. */
2081 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
2082 || (code == AND && w1 == 0xff00));
2083 }
6a8a3fa3 2084
e6cf6c71 2085 /* Check if doing everything with one insn is no worse than
2086 using multiple insns. */
6a8a3fa3 2087 if ((TARGET_H8300H || TARGET_H8300S)
e6cf6c71 2088 && w0 != 0 && w1 != 0
0372ccb5 2089 && !(lower_half_easy_p && upper_half_easy_p)
2090 && !(code == IOR && w1 == 0xffff
2091 && (w0 & 0x8000) != 0 && lower_half_easy_p))
6a8a3fa3 2092 {
2093 sprintf (insn_buf, "%s.l\t%%S2,%%S0", opname);
2094 output_asm_insn (insn_buf, operands);
2095 }
2096 else
2097 {
2098 /* Take care of the lower and upper words individually. For
2099 each word, we try different methods in the order of
2100
2101 1) the special insn (in case of AND or XOR),
2102 2) the word-wise insn, and
2103 3) The byte-wise insn. */
cdcf26ff 2104 if (w0 == 0xffff
a9d986d9 2105 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
6a8a3fa3 2106 output_asm_insn ((code == AND)
b0422000 2107 ? "sub.w\t%f0,%f0" : "not.w\t%f0",
6a8a3fa3 2108 operands);
2109 else if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2110 && (b0 != 0)
2111 && (b1 != 0))
6a8a3fa3 2112 {
2113 sprintf (insn_buf, "%s.w\t%%f2,%%f0", opname);
2114 output_asm_insn (insn_buf, operands);
2115 }
2116 else
2117 {
cdcf26ff 2118 if (b0 != 0)
6a8a3fa3 2119 {
2120 sprintf (insn_buf, "%s\t%%w2,%%w0", opname);
2121 output_asm_insn (insn_buf, operands);
2122 }
cdcf26ff 2123 if (b1 != 0)
6a8a3fa3 2124 {
2125 sprintf (insn_buf, "%s\t%%x2,%%x0", opname);
2126 output_asm_insn (insn_buf, operands);
2127 }
2128 }
2129
cdcf26ff 2130 if ((w1 == 0xffff)
a9d986d9 2131 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
6a8a3fa3 2132 output_asm_insn ((code == AND)
b0422000 2133 ? "sub.w\t%e0,%e0" : "not.w\t%e0",
6a8a3fa3 2134 operands);
0372ccb5 2135 else if ((TARGET_H8300H || TARGET_H8300S)
2136 && code == IOR
2137 && w1 == 0xffff
2138 && (w0 & 0x8000) != 0)
2139 {
2140 output_asm_insn ("exts.l\t%S0", operands);
2141 }
f4bdef90 2142 else if ((TARGET_H8300H || TARGET_H8300S)
2143 && code == AND
cdcf26ff 2144 && w1 == 0xff00)
f4bdef90 2145 {
1c75fadf 2146 output_asm_insn ("extu.w\t%e0", operands);
f4bdef90 2147 }
6a8a3fa3 2148 else if (TARGET_H8300H || TARGET_H8300S)
2149 {
cdcf26ff 2150 if (w1 != 0)
6a8a3fa3 2151 {
2152 sprintf (insn_buf, "%s.w\t%%e2,%%e0", opname);
2153 output_asm_insn (insn_buf, operands);
2154 }
2155 }
2156 else
2157 {
cdcf26ff 2158 if (b2 != 0)
6a8a3fa3 2159 {
2160 sprintf (insn_buf, "%s\t%%y2,%%y0", opname);
2161 output_asm_insn (insn_buf, operands);
2162 }
cdcf26ff 2163 if (b3 != 0)
6a8a3fa3 2164 {
2165 sprintf (insn_buf, "%s\t%%z2,%%z0", opname);
2166 output_asm_insn (insn_buf, operands);
2167 }
2168 }
2169 }
2170 break;
2171 default:
2172 abort ();
2173 }
2174 return "";
2175}
359e4f59 2176
2177unsigned int
230002f2 2178compute_logical_op_length (enum machine_mode mode, rtx *operands)
359e4f59 2179{
6ad7df02 2180 /* Figure out the logical op that we need to perform. */
2181 enum rtx_code code = GET_CODE (operands[3]);
359e4f59 2182 /* Pretend that every byte is affected if both operands are registers. */
407921a5 2183 const unsigned HOST_WIDE_INT intval =
359e4f59 2184 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
2185 ? INTVAL (operands[2]) : 0x55555555);
2186 /* The determinant of the algorithm. If we perform an AND, 0
2187 affects a bit. Otherwise, 1 affects a bit. */
407921a5 2188 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
e6cf6c71 2189 /* Break up DET into pieces. */
2190 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
2191 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
cdcf26ff 2192 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
2193 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
e6cf6c71 2194 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
2195 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
2196 int lower_half_easy_p = 0;
2197 int upper_half_easy_p = 0;
359e4f59 2198 /* Insn length. */
2199 unsigned int length = 0;
2200
2201 switch (mode)
2202 {
2203 case HImode:
2204 /* First, see if we can finish with one insn. */
2205 if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2206 && b0 != 0
2207 && b1 != 0)
359e4f59 2208 {
2209 if (REG_P (operands[2]))
2210 length += 2;
2211 else
2212 length += 4;
2213 }
2214 else
2215 {
2216 /* Take care of the lower byte. */
cdcf26ff 2217 if (b0 != 0)
359e4f59 2218 length += 2;
2219
2220 /* Take care of the upper byte. */
cdcf26ff 2221 if (b1 != 0)
359e4f59 2222 length += 2;
2223 }
2224 break;
2225 case SImode:
e6cf6c71 2226 if (TARGET_H8300H || TARGET_H8300S)
2227 {
2228 /* Determine if the lower half can be taken care of in no more
2229 than two bytes. */
2230 lower_half_easy_p = (b0 == 0
2231 || b1 == 0
2232 || (code != IOR && w0 == 0xffff));
2233
2234 /* Determine if the upper half can be taken care of in no more
2235 than two bytes. */
2236 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
2237 || (code == AND && w1 == 0xff00));
2238 }
359e4f59 2239
e6cf6c71 2240 /* Check if doing everything with one insn is no worse than
2241 using multiple insns. */
359e4f59 2242 if ((TARGET_H8300H || TARGET_H8300S)
e6cf6c71 2243 && w0 != 0 && w1 != 0
0372ccb5 2244 && !(lower_half_easy_p && upper_half_easy_p)
2245 && !(code == IOR && w1 == 0xffff
2246 && (w0 & 0x8000) != 0 && lower_half_easy_p))
359e4f59 2247 {
2248 if (REG_P (operands[2]))
2249 length += 4;
2250 else
2251 length += 6;
2252 }
2253 else
2254 {
2255 /* Take care of the lower and upper words individually. For
2256 each word, we try different methods in the order of
2257
2258 1) the special insn (in case of AND or XOR),
2259 2) the word-wise insn, and
2260 3) The byte-wise insn. */
cdcf26ff 2261 if (w0 == 0xffff
359e4f59 2262 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
2263 {
2264 length += 2;
2265 }
2266 else if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2267 && (b0 != 0)
2268 && (b1 != 0))
359e4f59 2269 {
2270 length += 4;
2271 }
2272 else
2273 {
cdcf26ff 2274 if (b0 != 0)
359e4f59 2275 length += 2;
2276
cdcf26ff 2277 if (b1 != 0)
359e4f59 2278 length += 2;
2279 }
2280
cdcf26ff 2281 if (w1 == 0xffff
359e4f59 2282 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
2283 {
2284 length += 2;
2285 }
0372ccb5 2286 else if ((TARGET_H8300H || TARGET_H8300S)
2287 && code == IOR
2288 && w1 == 0xffff
2289 && (w0 & 0x8000) != 0)
2290 {
2291 length += 2;
2292 }
f4bdef90 2293 else if ((TARGET_H8300H || TARGET_H8300S)
2294 && code == AND
cdcf26ff 2295 && w1 == 0xff00)
f4bdef90 2296 {
2297 length += 2;
2298 }
359e4f59 2299 else if (TARGET_H8300H || TARGET_H8300S)
2300 {
cdcf26ff 2301 if (w1 != 0)
359e4f59 2302 length += 4;
2303 }
2304 else
2305 {
cdcf26ff 2306 if (b2 != 0)
359e4f59 2307 length += 2;
2308
cdcf26ff 2309 if (b3 != 0)
359e4f59 2310 length += 2;
2311 }
2312 }
2313 break;
2314 default:
2315 abort ();
2316 }
2317 return length;
2318}
6ad7df02 2319
2320int
230002f2 2321compute_logical_op_cc (enum machine_mode mode, rtx *operands)
6ad7df02 2322{
2323 /* Figure out the logical op that we need to perform. */
2324 enum rtx_code code = GET_CODE (operands[3]);
2325 /* Pretend that every byte is affected if both operands are registers. */
407921a5 2326 const unsigned HOST_WIDE_INT intval =
6ad7df02 2327 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
2328 ? INTVAL (operands[2]) : 0x55555555);
2329 /* The determinant of the algorithm. If we perform an AND, 0
2330 affects a bit. Otherwise, 1 affects a bit. */
407921a5 2331 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
e6cf6c71 2332 /* Break up DET into pieces. */
2333 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
2334 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
2335 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
2336 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
2337 int lower_half_easy_p = 0;
2338 int upper_half_easy_p = 0;
6ad7df02 2339 /* Condition code. */
2340 enum attr_cc cc = CC_CLOBBER;
2341
2342 switch (mode)
2343 {
2344 case HImode:
2345 /* First, see if we can finish with one insn. */
2346 if ((TARGET_H8300H || TARGET_H8300S)
cdcf26ff 2347 && b0 != 0
2348 && b1 != 0)
6ad7df02 2349 {
2350 cc = CC_SET_ZNV;
2351 }
2352 break;
2353 case SImode:
e6cf6c71 2354 if (TARGET_H8300H || TARGET_H8300S)
2355 {
2356 /* Determine if the lower half can be taken care of in no more
2357 than two bytes. */
2358 lower_half_easy_p = (b0 == 0
2359 || b1 == 0
2360 || (code != IOR && w0 == 0xffff));
2361
2362 /* Determine if the upper half can be taken care of in no more
2363 than two bytes. */
2364 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
2365 || (code == AND && w1 == 0xff00));
2366 }
6ad7df02 2367
e6cf6c71 2368 /* Check if doing everything with one insn is no worse than
2369 using multiple insns. */
6ad7df02 2370 if ((TARGET_H8300H || TARGET_H8300S)
e6cf6c71 2371 && w0 != 0 && w1 != 0
0372ccb5 2372 && !(lower_half_easy_p && upper_half_easy_p)
2373 && !(code == IOR && w1 == 0xffff
2374 && (w0 & 0x8000) != 0 && lower_half_easy_p))
6ad7df02 2375 {
2376 cc = CC_SET_ZNV;
2377 }
0372ccb5 2378 else
2379 {
2380 if ((TARGET_H8300H || TARGET_H8300S)
2381 && code == IOR
2382 && w1 == 0xffff
2383 && (w0 & 0x8000) != 0)
2384 {
2385 cc = CC_SET_ZNV;
2386 }
2387 }
6ad7df02 2388 break;
2389 default:
2390 abort ();
2391 }
2392 return cc;
2393}
6a8a3fa3 2394\f
b839e0b4 2395/* Shifts.
2396
f465f633 2397 We devote a fair bit of code to getting efficient shifts since we
2398 can only shift one bit at a time on the H8/300 and H8/300H and only
11f95d7c 2399 one or two bits at a time on the H8S.
f465f633 2400
2401 All shift code falls into one of the following ways of
2402 implementation:
2403
2404 o SHIFT_INLINE: Emit straight line code for the shift; this is used
2405 when a straight line shift is about the same size or smaller than
2406 a loop.
2407
2408 o SHIFT_ROT_AND: Rotate the value the opposite direction, then mask
2409 off the bits we don't need. This is used when only a few of the
2410 bits in the original value will survive in the shifted value.
2411
2412 o SHIFT_SPECIAL: Often it's possible to move a byte or a word to
2413 simulate a shift by 8, 16, or 24 bits. Once moved, a few inline
2414 shifts can be added if the shift count is slightly more than 8 or
2415 16. This case also includes other oddballs that are not worth
cc72e60a 2416 explaining here.
f465f633 2417
11f95d7c 2418 o SHIFT_LOOP: Emit a loop using one (or two on H8S) bit shifts.
f465f633 2419
140ee624 2420 For each shift count, we try to use code that has no trade-off
2421 between code size and speed whenever possible.
2422
2423 If the trade-off is unavoidable, we try to be reasonable.
2424 Specifically, the fastest version is one instruction longer than
2425 the shortest version, we take the fastest version. We also provide
2426 the use a way to switch back to the shortest version with -Os.
2427
2428 For the details of the shift algorithms for various shift counts,
2429 refer to shift_alg_[qhs]i. */
e1629549 2430
2431int
230002f2 2432nshift_operator (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
b839e0b4 2433{
2434 switch (GET_CODE (x))
2435 {
2436 case ASHIFTRT:
2437 case LSHIFTRT:
2438 case ASHIFT:
2439 return 1;
2440
2441 default:
2442 return 0;
2443 }
2444}
2445
6b07073d 2446/* Emit code to do shifts. */
b839e0b4 2447
6b07073d 2448void
230002f2 2449expand_a_shift (enum machine_mode mode, int code, rtx operands[])
e1629549 2450{
e1629549 2451 emit_move_insn (operands[0], operands[1]);
2452
eb2aa24e 2453 /* Need a loop to get all the bits we want - we generate the
2454 code at emit time, but need to allocate a scratch reg now. */
b839e0b4 2455
7014838c 2456 emit_insn (gen_rtx_PARALLEL
2457 (VOIDmode,
b839e0b4 2458 gen_rtvec (2,
7014838c 2459 gen_rtx_SET (VOIDmode, operands[0],
2460 gen_rtx (code, mode, operands[0],
2461 operands[2])),
2462 gen_rtx_CLOBBER (VOIDmode,
2463 gen_rtx_SCRATCH (QImode)))));
b839e0b4 2464}
2465
b839e0b4 2466/* Symbols of the various modes which can be used as indices. */
2467
2468enum shift_mode
27276a3b 2469{
2470 QIshift, HIshift, SIshift
2471};
b839e0b4 2472
30c992ef 2473/* For single bit shift insns, record assembler and what bits of the
2474 condition code are valid afterwards (represented as various CC_FOO
2475 bits, 0 means CC isn't left in a usable state). */
b839e0b4 2476
2477struct shift_insn
2478{
e99c3a1d 2479 const char *const assembler;
2480 const int cc_valid;
b839e0b4 2481};
2482
2483/* Assembler instruction shift table.
2484
2485 These tables are used to look up the basic shifts.
eb2aa24e 2486 They are indexed by cpu, shift_type, and mode. */
e1629549 2487
b839e0b4 2488static const struct shift_insn shift_one[2][3][3] =
2489{
2490/* H8/300 */
2491 {
2492/* SHIFT_ASHIFT */
2493 {
fd7729c5 2494 { "shll\t%X0", CC_SET_ZNV },
2495 { "add.w\t%T0,%T0", CC_SET_ZN },
2496 { "add.w\t%f0,%f0\n\taddx\t%y0,%y0\n\taddx\t%z0,%z0", CC_CLOBBER }
b839e0b4 2497 },
2498/* SHIFT_LSHIFTRT */
2499 {
fd7729c5 2500 { "shlr\t%X0", CC_SET_ZNV },
2501 { "shlr\t%t0\n\trotxr\t%s0", CC_CLOBBER },
2502 { "shlr\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
b839e0b4 2503 },
2504/* SHIFT_ASHIFTRT */
2505 {
fd7729c5 2506 { "shar\t%X0", CC_SET_ZNV },
2507 { "shar\t%t0\n\trotxr\t%s0", CC_CLOBBER },
2508 { "shar\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
b839e0b4 2509 }
2510 },
2511/* H8/300H */
2512 {
2513/* SHIFT_ASHIFT */
2514 {
fd7729c5 2515 { "shll.b\t%X0", CC_SET_ZNV },
2516 { "shll.w\t%T0", CC_SET_ZNV },
2517 { "shll.l\t%S0", CC_SET_ZNV }
b839e0b4 2518 },
2519/* SHIFT_LSHIFTRT */
2520 {
fd7729c5 2521 { "shlr.b\t%X0", CC_SET_ZNV },
2522 { "shlr.w\t%T0", CC_SET_ZNV },
2523 { "shlr.l\t%S0", CC_SET_ZNV }
b839e0b4 2524 },
2525/* SHIFT_ASHIFTRT */
2526 {
fd7729c5 2527 { "shar.b\t%X0", CC_SET_ZNV },
2528 { "shar.w\t%T0", CC_SET_ZNV },
2529 { "shar.l\t%S0", CC_SET_ZNV }
b839e0b4 2530 }
2531 }
2532};
e1629549 2533
52abe980 2534static const struct shift_insn shift_two[3][3] =
2535{
2536/* SHIFT_ASHIFT */
2537 {
fd7729c5 2538 { "shll.b\t#2,%X0", CC_SET_ZNV },
2539 { "shll.w\t#2,%T0", CC_SET_ZNV },
2540 { "shll.l\t#2,%S0", CC_SET_ZNV }
52abe980 2541 },
2542/* SHIFT_LSHIFTRT */
2543 {
fd7729c5 2544 { "shlr.b\t#2,%X0", CC_SET_ZNV },
2545 { "shlr.w\t#2,%T0", CC_SET_ZNV },
2546 { "shlr.l\t#2,%S0", CC_SET_ZNV }
52abe980 2547 },
2548/* SHIFT_ASHIFTRT */
2549 {
fd7729c5 2550 { "shar.b\t#2,%X0", CC_SET_ZNV },
2551 { "shar.w\t#2,%T0", CC_SET_ZNV },
2552 { "shar.l\t#2,%S0", CC_SET_ZNV }
52abe980 2553 }
2554};
2555
b839e0b4 2556/* Rotates are organized by which shift they'll be used in implementing.
2557 There's no need to record whether the cc is valid afterwards because
2558 it is the AND insn that will decide this. */
e1629549 2559
b839e0b4 2560static const char *const rotate_one[2][3][3] =
2561{
2562/* H8/300 */
2563 {
2564/* SHIFT_ASHIFT */
2565 {
52abe980 2566 "rotr\t%X0",
2567 "shlr\t%t0\n\trotxr\t%s0\n\tbst\t#7,%t0",
b839e0b4 2568 0
2569 },
2570/* SHIFT_LSHIFTRT */
2571 {
52abe980 2572 "rotl\t%X0",
2573 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
b839e0b4 2574 0
2575 },
2576/* SHIFT_ASHIFTRT */
2577 {
52abe980 2578 "rotl\t%X0",
2579 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
b839e0b4 2580 0
e1629549 2581 }
b839e0b4 2582 },
2583/* H8/300H */
2584 {
2585/* SHIFT_ASHIFT */
2586 {
52abe980 2587 "rotr.b\t%X0",
2588 "rotr.w\t%T0",
2589 "rotr.l\t%S0"
b839e0b4 2590 },
2591/* SHIFT_LSHIFTRT */
e1629549 2592 {
52abe980 2593 "rotl.b\t%X0",
2594 "rotl.w\t%T0",
2595 "rotl.l\t%S0"
b839e0b4 2596 },
2597/* SHIFT_ASHIFTRT */
2598 {
52abe980 2599 "rotl.b\t%X0",
2600 "rotl.w\t%T0",
2601 "rotl.l\t%S0"
b839e0b4 2602 }
2603 }
2604};
2605
52abe980 2606static const char *const rotate_two[3][3] =
2607{
2608/* SHIFT_ASHIFT */
2609 {
2610 "rotr.b\t#2,%X0",
2611 "rotr.w\t#2,%T0",
2612 "rotr.l\t#2,%S0"
2613 },
2614/* SHIFT_LSHIFTRT */
2615 {
2616 "rotl.b\t#2,%X0",
2617 "rotl.w\t#2,%T0",
2618 "rotl.l\t#2,%S0"
2619 },
2620/* SHIFT_ASHIFTRT */
2621 {
2622 "rotl.b\t#2,%X0",
2623 "rotl.w\t#2,%T0",
2624 "rotl.l\t#2,%S0"
2625 }
2626};
2627
4765dbab 2628struct shift_info {
2629 /* Shift algorithm. */
2630 enum shift_alg alg;
2631
2632 /* The number of bits to be shifted by shift1 and shift2. Valid
2633 when ALG is SHIFT_SPECIAL. */
2634 unsigned int remainder;
2635
2636 /* Special insn for a shift. Valid when ALG is SHIFT_SPECIAL. */
2637 const char *special;
2638
2639 /* Insn for a one-bit shift. Valid when ALG is either SHIFT_INLINE
c46dc351 2640 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
4765dbab 2641 const char *shift1;
2642
2643 /* Insn for a two-bit shift. Valid when ALG is either SHIFT_INLINE
c46dc351 2644 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
4765dbab 2645 const char *shift2;
2646
fd7729c5 2647 /* CC status for SHIFT_INLINE. */
2648 int cc_inline;
2649
2650 /* CC status for SHIFT_SPECIAL. */
2651 int cc_special;
4765dbab 2652};
2653
230002f2 2654static void get_shift_alg (enum shift_type,
2655 enum shift_mode, unsigned int,
2656 struct shift_info *);
9305fe33 2657
ec0b80c6 2658/* Given SHIFT_TYPE, SHIFT_MODE, and shift count COUNT, determine the
2659 best algorithm for doing the shift. The assembler code is stored
140ee624 2660 in the pointers in INFO. We achieve the maximum efficiency in most
2661 cases when !TARGET_H8300. In case of TARGET_H8300, shifts in
2662 SImode in particular have a lot of room to optimize.
2663
2664 We first determine the strategy of the shift algorithm by a table
2665 lookup. If that tells us to use a hand crafted assembly code, we
2666 go into the big switch statement to find what that is. Otherwise,
2667 we resort to a generic way, such as inlining. In either case, the
2668 result is returned through INFO. */
b839e0b4 2669
5a40b38e 2670static void
230002f2 2671get_shift_alg (enum shift_type shift_type, enum shift_mode shift_mode,
2672 unsigned int count, struct shift_info *info)
b839e0b4 2673{
5d822c00 2674 enum h8_cpu cpu;
58285553 2675
2676 /* Find the target CPU. */
2677 if (TARGET_H8300)
5d822c00 2678 cpu = H8_300;
58285553 2679 else if (TARGET_H8300H)
5d822c00 2680 cpu = H8_300H;
58285553 2681 else
5d822c00 2682 cpu = H8_S;
58285553 2683
ce8940f6 2684 /* Find the shift algorithm. */
5d822c00 2685 info->alg = SHIFT_LOOP;
b839e0b4 2686 switch (shift_mode)
2687 {
2688 case QIshift:
5d822c00 2689 if (count < GET_MODE_BITSIZE (QImode))
ce8940f6 2690 info->alg = shift_alg_qi[cpu][shift_type][count];
2691 break;
58285553 2692
ce8940f6 2693 case HIshift:
5d822c00 2694 if (count < GET_MODE_BITSIZE (HImode))
ce8940f6 2695 info->alg = shift_alg_hi[cpu][shift_type][count];
2696 break;
2697
2698 case SIshift:
5d822c00 2699 if (count < GET_MODE_BITSIZE (SImode))
ce8940f6 2700 info->alg = shift_alg_si[cpu][shift_type][count];
2701 break;
2702
2703 default:
2704 abort ();
2705 }
2706
2707 /* Fill in INFO. Return unless we have SHIFT_SPECIAL. */
2708 switch (info->alg)
2709 {
2710 case SHIFT_INLINE:
2711 info->remainder = count;
2712 /* Fall through. */
2713
2714 case SHIFT_LOOP:
2715 /* It is up to the caller to know that looping clobbers cc. */
2716 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
2717 info->shift2 = shift_two[shift_type][shift_mode].assembler;
fd7729c5 2718 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
ce8940f6 2719 goto end;
2720
2721 case SHIFT_ROT_AND:
2722 info->shift1 = rotate_one[cpu_type][shift_type][shift_mode];
2723 info->shift2 = rotate_two[shift_type][shift_mode];
fd7729c5 2724 info->cc_inline = CC_CLOBBER;
ce8940f6 2725 goto end;
2726
2727 case SHIFT_SPECIAL:
2728 /* REMAINDER is 0 for most cases, so initialize it to 0. */
2729 info->remainder = 0;
2730 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
2731 info->shift2 = shift_two[shift_type][shift_mode].assembler;
fd7729c5 2732 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
2733 info->cc_special = CC_CLOBBER;
ce8940f6 2734 break;
2735 }
52abe980 2736
ce8940f6 2737 /* Here we only deal with SHIFT_SPECIAL. */
2738 switch (shift_mode)
2739 {
2740 case QIshift:
58285553 2741 /* For ASHIFTRT by 7 bits, the sign bit is simply replicated
2742 through the entire value. */
2743 if (shift_type == SHIFT_ASHIFTRT && count == 7)
2744 {
2745 info->special = "shll\t%X0\n\tsubx\t%X0,%X0";
606a6902 2746 goto end;
58285553 2747 }
2748 abort ();
2749
2750 case HIshift:
58285553 2751 if (count == 7)
52abe980 2752 {
79b29436 2753 switch (shift_type)
52abe980 2754 {
79b29436 2755 case SHIFT_ASHIFT:
2756 if (TARGET_H8300)
2757 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.b\t%t0\n\trotr.b\t%s0\n\tand.b\t#0x80,%s0";
2758 else
2759 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.w\t%T0\n\tand.b\t#0x80,%s0";
606a6902 2760 goto end;
79b29436 2761 case SHIFT_LSHIFTRT:
2762 if (TARGET_H8300)
2763 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\trotl.b\t%t0\n\tand.b\t#0x01,%t0";
2764 else
2765 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.w\t%T0\n\tand.b\t#0x01,%t0";
606a6902 2766 goto end;
79b29436 2767 case SHIFT_ASHIFTRT:
4765dbab 2768 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\tsubx\t%t0,%t0";
606a6902 2769 goto end;
b839e0b4 2770 }
e1629549 2771 }
a033fe93 2772 else if ((8 <= count && count <= 13)
8796f52f 2773 || (TARGET_H8300S && count == 14))
e1629549 2774 {
8db8f925 2775 info->remainder = count - 8;
2776
52abe980 2777 switch (shift_type)
b839e0b4 2778 {
52abe980 2779 case SHIFT_ASHIFT:
4765dbab 2780 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0";
606a6902 2781 goto end;
52abe980 2782 case SHIFT_LSHIFTRT:
903ae79d 2783 if (TARGET_H8300)
2784 {
2785 info->special = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0";
2786 info->shift1 = "shlr.b\t%s0";
fd7729c5 2787 info->cc_inline = CC_SET_ZNV;
903ae79d 2788 }
2789 else
2790 {
2791 info->special = "mov.b\t%t0,%s0\n\textu.w\t%T0";
fd7729c5 2792 info->cc_special = CC_SET_ZNV;
903ae79d 2793 }
606a6902 2794 goto end;
52abe980 2795 case SHIFT_ASHIFTRT:
2796 if (TARGET_H8300)
903ae79d 2797 {
2798 info->special = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0";
2799 info->shift1 = "shar.b\t%s0";
903ae79d 2800 }
52abe980 2801 else
903ae79d 2802 {
2803 info->special = "mov.b\t%t0,%s0\n\texts.w\t%T0";
fd7729c5 2804 info->cc_special = CC_SET_ZNV;
903ae79d 2805 }
606a6902 2806 goto end;
52abe980 2807 }
2808 }
a0bbe9df 2809 else if (count == 14)
2810 {
2811 switch (shift_type)
2812 {
2813 case SHIFT_ASHIFT:
2814 if (TARGET_H8300)
2815 info->special = "mov.b\t%s0,%t0\n\trotr.b\t%t0\n\trotr.b\t%t0\n\tand.b\t#0xC0,%t0\n\tsub.b\t%s0,%s0";
2816 goto end;
2817 case SHIFT_LSHIFTRT:
2818 if (TARGET_H8300)
2819 info->special = "mov.b\t%t0,%s0\n\trotl.b\t%s0\n\trotl.b\t%s0\n\tand.b\t#3,%s0\n\tsub.b\t%t0,%t0";
2820 goto end;
2821 case SHIFT_ASHIFTRT:
2822 if (TARGET_H8300)
2823 info->special = "mov.b\t%t0,%s0\n\tshll.b\t%s0\n\tsubx.b\t%t0,%t0\n\tshll.b\t%s0\n\tmov.b\t%t0,%s0\n\tbst.b\t#0,%s0";
2824 else if (TARGET_H8300H)
fd7729c5 2825 {
2826 info->special = "shll.b\t%t0\n\tsubx.b\t%s0,%s0\n\tshll.b\t%t0\n\trotxl.b\t%s0\n\texts.w\t%T0";
2827 info->cc_special = CC_SET_ZNV;
2828 }
a0bbe9df 2829 else /* TARGET_H8300S */
a033fe93 2830 abort ();
a0bbe9df 2831 goto end;
2832 }
2833 }
f76e2664 2834 else if (count == 15)
52abe980 2835 {
f76e2664 2836 switch (shift_type)
2837 {
2838 case SHIFT_ASHIFT:
2839 info->special = "bld\t#0,%s0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#7,%t0";
2840 goto end;
2841 case SHIFT_LSHIFTRT:
2842 info->special = "bld\t#7,%t0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#0,%s0";
2843 goto end;
2844 case SHIFT_ASHIFTRT:
2845 info->special = "shll\t%t0\n\tsubx\t%t0,%t0\n\tmov.b\t%t0,%s0";
2846 goto end;
2847 }
e1629549 2848 }
58285553 2849 abort ();
52abe980 2850
b839e0b4 2851 case SIshift:
f76e2664 2852 if (TARGET_H8300 && 8 <= count && count <= 9)
b839e0b4 2853 {
f76e2664 2854 info->remainder = count - 8;
2855
52abe980 2856 switch (shift_type)
b839e0b4 2857 {
52abe980 2858 case SHIFT_ASHIFT:
4765dbab 2859 info->special = "mov.b\t%y0,%z0\n\tmov.b\t%x0,%y0\n\tmov.b\t%w0,%x0\n\tsub.b\t%w0,%w0";
606a6902 2860 goto end;
52abe980 2861 case SHIFT_LSHIFTRT:
4765dbab 2862 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tsub.b\t%z0,%z0";
f76e2664 2863 info->shift1 = "shlr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0";
606a6902 2864 goto end;
52abe980 2865 case SHIFT_ASHIFTRT:
4765dbab 2866 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tshll\t%z0\n\tsubx\t%z0,%z0";
606a6902 2867 goto end;
b839e0b4 2868 }
b839e0b4 2869 }
9bbc06f2 2870 else if (count == 8 && !TARGET_H8300)
2871 {
2872 switch (shift_type)
2873 {
2874 case SHIFT_ASHIFT:
4765dbab 2875 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%s4,%t4\n\tmov.b\t%t0,%s4\n\tmov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f4,%e0";
606a6902 2876 goto end;
9bbc06f2 2877 case SHIFT_LSHIFTRT:
4765dbab 2878 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\textu.w\t%f4\n\tmov.w\t%f4,%e0";
606a6902 2879 goto end;
9bbc06f2 2880 case SHIFT_ASHIFTRT:
4765dbab 2881 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\texts.w\t%f4\n\tmov.w\t%f4,%e0";
606a6902 2882 goto end;
9bbc06f2 2883 }
2884 }
f76e2664 2885 else if (count == 15 && TARGET_H8300)
2886 {
2887 switch (shift_type)
2888 {
2889 case SHIFT_ASHIFT:
2890 abort ();
2891 case SHIFT_LSHIFTRT:
a6f6d86d 2892 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\txor\t%y0,%y0\n\txor\t%z0,%z0\n\trotxl\t%w0\n\trotxl\t%x0\n\trotxl\t%y0";
f76e2664 2893 goto end;
2894 case SHIFT_ASHIFTRT:
a6f6d86d 2895 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\trotxl\t%w0\n\trotxl\t%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
f76e2664 2896 goto end;
2897 }
2898 }
37e1f65a 2899 else if (count == 15 && !TARGET_H8300)
2900 {
2901 switch (shift_type)
2902 {
2903 case SHIFT_ASHIFT:
2904 info->special = "shlr.w\t%e0\n\tmov.w\t%f0,%e0\n\txor.w\t%f0,%f0\n\trotxr.l\t%S0";
fd7729c5 2905 info->cc_special = CC_SET_ZNV;
37e1f65a 2906 goto end;
2907 case SHIFT_LSHIFTRT:
d2079f6d 2908 info->special = "shll.w\t%f0\n\tmov.w\t%e0,%f0\n\txor.w\t%e0,%e0\n\trotxl.l\t%S0";
fd7729c5 2909 info->cc_special = CC_SET_ZNV;
37e1f65a 2910 goto end;
7913b5f4 2911 case SHIFT_ASHIFTRT:
2912 abort ();
37e1f65a 2913 }
2914 }
f76e2664 2915 else if ((TARGET_H8300 && 16 <= count && count <= 20)
8db8f925 2916 || (TARGET_H8300H && 16 <= count && count <= 19)
776e0da8 2917 || (TARGET_H8300S && 16 <= count && count <= 21))
b839e0b4 2918 {
8db8f925 2919 info->remainder = count - 16;
2920
b839e0b4 2921 switch (shift_type)
2922 {
2923 case SHIFT_ASHIFT:
4765dbab 2924 info->special = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
f76e2664 2925 if (TARGET_H8300)
a033fe93 2926 info->shift1 = "add.w\t%e0,%e0";
606a6902 2927 goto end;
52abe980 2928 case SHIFT_LSHIFTRT:
f76e2664 2929 if (TARGET_H8300)
2930 {
903ae79d 2931 info->special = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0";
2932 info->shift1 = "shlr\t%x0\n\trotxr\t%w0";
f76e2664 2933 }
2934 else
2935 {
903ae79d 2936 info->special = "mov.w\t%e0,%f0\n\textu.l\t%S0";
fd7729c5 2937 info->cc_special = CC_SET_ZNV;
f76e2664 2938 }
606a6902 2939 goto end;
52abe980 2940 case SHIFT_ASHIFTRT:
2941 if (TARGET_H8300)
f76e2664 2942 {
2943 info->special = "mov.w\t%e0,%f0\n\tshll\t%z0\n\tsubx\t%z0,%z0\n\tmov.b\t%z0,%y0";
2944 info->shift1 = "shar\t%x0\n\trotxr\t%w0";
2945 }
52abe980 2946 else
f76e2664 2947 {
2948 info->special = "mov.w\t%e0,%f0\n\texts.l\t%S0";
fd7729c5 2949 info->cc_special = CC_SET_ZNV;
f76e2664 2950 }
606a6902 2951 goto end;
52abe980 2952 }
2953 }
f76e2664 2954 else if (TARGET_H8300 && 24 <= count && count <= 28)
81c3eb11 2955 {
2956 info->remainder = count - 24;
f2702e8a 2957
81c3eb11 2958 switch (shift_type)
2959 {
2960 case SHIFT_ASHIFT:
2961 info->special = "mov.b\t%w0,%z0\n\tsub.b\t%y0,%y0\n\tsub.w\t%f0,%f0";
2962 info->shift1 = "shll.b\t%z0";
fd7729c5 2963 info->cc_inline = CC_SET_ZNV;
81c3eb11 2964 goto end;
2965 case SHIFT_LSHIFTRT:
2966 info->special = "mov.b\t%z0,%w0\n\tsub.b\t%x0,%x0\n\tsub.w\t%e0,%e0";
2967 info->shift1 = "shlr.b\t%w0";
fd7729c5 2968 info->cc_inline = CC_SET_ZNV;
81c3eb11 2969 goto end;
2970 case SHIFT_ASHIFTRT:
2971 info->special = "mov.b\t%z0,%w0\n\tbld\t#7,%w0\n\tsubx\t%x0,%x0\n\tsubx\t%x0,%x0\n\tsubx\t%x0,%x0";
2972 info->shift1 = "shar.b\t%w0";
fd7729c5 2973 info->cc_inline = CC_SET_ZNV;
b44470aa 2974 goto end;
2975 }
2976 }
0d219270 2977 else if ((TARGET_H8300H && count == 24)
2978 || (TARGET_H8300S && 24 <= count && count <= 25))
9bbc06f2 2979 {
0d219270 2980 info->remainder = count - 24;
2981
9bbc06f2 2982 switch (shift_type)
2983 {
2984 case SHIFT_ASHIFT:
4765dbab 2985 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
606a6902 2986 goto end;
9bbc06f2 2987 case SHIFT_LSHIFTRT:
4765dbab 2988 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\textu.w\t%f0\n\textu.l\t%S0";
fd7729c5 2989 info->cc_special = CC_SET_ZNV;
606a6902 2990 goto end;
9bbc06f2 2991 case SHIFT_ASHIFTRT:
4765dbab 2992 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\texts.w\t%f0\n\texts.l\t%S0";
fd7729c5 2993 info->cc_special = CC_SET_ZNV;
606a6902 2994 goto end;
9bbc06f2 2995 }
2996 }
567c4b66 2997 else if (!TARGET_H8300 && count == 28)
2998 {
2999 switch (shift_type)
3000 {
3001 case SHIFT_ASHIFT:
3002 if (TARGET_H8300H)
3003 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
3004 else
3005 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
567c4b66 3006 goto end;
3007 case SHIFT_LSHIFTRT:
3008 if (TARGET_H8300H)
fd7729c5 3009 {
3010 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
3011 info->cc_special = CC_SET_ZNV;
3012 }
567c4b66 3013 else
903ae79d 3014 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
567c4b66 3015 goto end;
3016 case SHIFT_ASHIFTRT:
3017 abort ();
3018 }
3019 }
3020 else if (!TARGET_H8300 && count == 29)
3021 {
3022 switch (shift_type)
3023 {
3024 case SHIFT_ASHIFT:
3025 if (TARGET_H8300H)
3026 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
3027 else
3028 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
567c4b66 3029 goto end;
3030 case SHIFT_LSHIFTRT:
3031 if (TARGET_H8300H)
fd7729c5 3032 {
3033 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
3034 info->cc_special = CC_SET_ZNV;
3035 }
567c4b66 3036 else
fd7729c5 3037 {
3038 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
3039 info->cc_special = CC_SET_ZNV;
3040 }
567c4b66 3041 goto end;
3042 case SHIFT_ASHIFTRT:
3043 abort ();
3044 }
3045 }
3046 else if (!TARGET_H8300 && count == 30)
3047 {
3048 switch (shift_type)
3049 {
3050 case SHIFT_ASHIFT:
3051 if (TARGET_H8300H)
3052 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
3053 else
3054 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
567c4b66 3055 goto end;
3056 case SHIFT_LSHIFTRT:
3057 if (TARGET_H8300H)
903ae79d 3058 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
567c4b66 3059 else
903ae79d 3060 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
567c4b66 3061 goto end;
3062 case SHIFT_ASHIFTRT:
3063 abort ();
3064 }
3065 }
b839e0b4 3066 else if (count == 31)
3067 {
37e1f65a 3068 if (TARGET_H8300)
b839e0b4 3069 {
37e1f65a 3070 switch (shift_type)
3071 {
3072 case SHIFT_ASHIFT:
3073 info->special = "sub.w\t%e0,%e0\n\tshlr\t%w0\n\tmov.w\t%e0,%f0\n\trotxr\t%z0";
3074 goto end;
3075 case SHIFT_LSHIFTRT:
3076 info->special = "sub.w\t%f0,%f0\n\tshll\t%z0\n\tmov.w\t%f0,%e0\n\trotxl\t%w0";
3077 goto end;
3078 case SHIFT_ASHIFTRT:
3079 info->special = "shll\t%z0\n\tsubx\t%w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
3080 goto end;
3081 }
b839e0b4 3082 }
3083 else
3084 {
37e1f65a 3085 switch (shift_type)
b839e0b4 3086 {
37e1f65a 3087 case SHIFT_ASHIFT:
3088 info->special = "shlr.l\t%S0\n\txor.l\t%S0,%S0\n\trotxr.l\t%S0";
fd7729c5 3089 info->cc_special = CC_SET_ZNV;
37e1f65a 3090 goto end;
3091 case SHIFT_LSHIFTRT:
3092 info->special = "shll.l\t%S0\n\txor.l\t%S0,%S0\n\trotxl.l\t%S0";
fd7729c5 3093 info->cc_special = CC_SET_ZNV;
37e1f65a 3094 goto end;
3095 case SHIFT_ASHIFTRT:
903ae79d 3096 info->special = "shll\t%e0\n\tsubx\t%w0,%w0\n\texts.w\t%T0\n\texts.l\t%S0";
fd7729c5 3097 info->cc_special = CC_SET_ZNV;
606a6902 3098 goto end;
b839e0b4 3099 }
b839e0b4 3100 }
3101 }
58285553 3102 abort ();
52abe980 3103
b839e0b4 3104 default:
3105 abort ();
e1629549 3106 }
b839e0b4 3107
5a40b38e 3108 end:
3109 if (!TARGET_H8300S)
3110 info->shift2 = NULL;
e1629549 3111}
3112
6b30b2e6 3113/* Given COUNT and MODE of a shift, return 1 if a scratch reg may be
3114 needed for some shift with COUNT and MODE. Return 0 otherwise. */
3115
3116int
230002f2 3117h8300_shift_needs_scratch_p (int count, enum machine_mode mode)
6b30b2e6 3118{
5d822c00 3119 enum h8_cpu cpu;
6b30b2e6 3120 int a, lr, ar;
3121
3122 if (GET_MODE_BITSIZE (mode) <= count)
3123 return 1;
3124
3125 /* Find out the target CPU. */
3126 if (TARGET_H8300)
5d822c00 3127 cpu = H8_300;
6b30b2e6 3128 else if (TARGET_H8300H)
5d822c00 3129 cpu = H8_300H;
6b30b2e6 3130 else
5d822c00 3131 cpu = H8_S;
6b30b2e6 3132
3133 /* Find the shift algorithm. */
3134 switch (mode)
3135 {
3136 case QImode:
3137 a = shift_alg_qi[cpu][SHIFT_ASHIFT][count];
3138 lr = shift_alg_qi[cpu][SHIFT_LSHIFTRT][count];
3139 ar = shift_alg_qi[cpu][SHIFT_ASHIFTRT][count];
3140 break;
3141
3142 case HImode:
3143 a = shift_alg_hi[cpu][SHIFT_ASHIFT][count];
3144 lr = shift_alg_hi[cpu][SHIFT_LSHIFTRT][count];
3145 ar = shift_alg_hi[cpu][SHIFT_ASHIFTRT][count];
3146 break;
3147
3148 case SImode:
3149 a = shift_alg_si[cpu][SHIFT_ASHIFT][count];
3150 lr = shift_alg_si[cpu][SHIFT_LSHIFTRT][count];
3151 ar = shift_alg_si[cpu][SHIFT_ASHIFTRT][count];
3152 break;
3153
3154 default:
3155 abort ();
3156 }
3157
33a9c2d6 3158 /* On H8/300H, count == 8 uses a scratch register. */
6b30b2e6 3159 return (a == SHIFT_LOOP || lr == SHIFT_LOOP || ar == SHIFT_LOOP
c6ff55c2 3160 || (TARGET_H8300H && mode == SImode && count == 8));
6b30b2e6 3161}
3162
b839e0b4 3163/* Emit the assembler code for doing shifts. */
3164
9305fe33 3165const char *
230002f2 3166output_a_shift (rtx *operands)
e1629549 3167{
b839e0b4 3168 static int loopend_lab;
b839e0b4 3169 rtx shift = operands[3];
3170 enum machine_mode mode = GET_MODE (shift);
3171 enum rtx_code code = GET_CODE (shift);
3172 enum shift_type shift_type;
3173 enum shift_mode shift_mode;
4765dbab 3174 struct shift_info info;
b839e0b4 3175
3176 loopend_lab++;
3177
3178 switch (mode)
3179 {
3180 case QImode:
3181 shift_mode = QIshift;
3182 break;
3183 case HImode:
3184 shift_mode = HIshift;
3185 break;
3186 case SImode:
3187 shift_mode = SIshift;
3188 break;
3189 default:
3190 abort ();
3191 }
e1629549 3192
b839e0b4 3193 switch (code)
e1629549 3194 {
b839e0b4 3195 case ASHIFTRT:
3196 shift_type = SHIFT_ASHIFTRT;
3197 break;
3198 case LSHIFTRT:
3199 shift_type = SHIFT_LSHIFTRT;
3200 break;
3201 case ASHIFT:
3202 shift_type = SHIFT_ASHIFT;
3203 break;
3204 default:
3205 abort ();
3206 }
e1629549 3207
b839e0b4 3208 if (GET_CODE (operands[2]) != CONST_INT)
3209 {
3d71ed48 3210 /* This case must be taken care of by one of the two splitters
3211 that convert a variable shift into a loop. */
3212 abort ();
b839e0b4 3213 }
3214 else
3215 {
3216 int n = INTVAL (operands[2]);
b839e0b4 3217
3218 /* If the count is negative, make it 0. */
3219 if (n < 0)
3220 n = 0;
3221 /* If the count is too big, truncate it.
3222 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
3223 do the intuitive thing. */
53aec781 3224 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
b839e0b4 3225 n = GET_MODE_BITSIZE (mode);
3226
5a40b38e 3227 get_shift_alg (shift_type, shift_mode, n, &info);
b839e0b4 3228
5a40b38e 3229 switch (info.alg)
b839e0b4 3230 {
5a40b38e 3231 case SHIFT_SPECIAL:
3232 output_asm_insn (info.special, operands);
3233 /* Fall through. */
3234
b839e0b4 3235 case SHIFT_INLINE:
5a40b38e 3236 n = info.remainder;
3237
52abe980 3238 /* Emit two bit shifts first. */
8aaeb4a6 3239 if (info.shift2 != NULL)
52abe980 3240 {
8aaeb4a6 3241 for (; n > 1; n -= 2)
3242 output_asm_insn (info.shift2, operands);
52abe980 3243 }
3244
3245 /* Now emit one bit shifts for any residual. */
8aaeb4a6 3246 for (; n > 0; n--)
3247 output_asm_insn (info.shift1, operands);
b839e0b4 3248 return "";
52abe980 3249
b839e0b4 3250 case SHIFT_ROT_AND:
3251 {
3252 int m = GET_MODE_BITSIZE (mode) - n;
407921a5 3253 const int mask = (shift_type == SHIFT_ASHIFT
3254 ? ((1 << m) - 1) << n
3255 : (1 << m) - 1);
b839e0b4 3256 char insn_buf[200];
cb95c693 3257
b839e0b4 3258 /* Not all possibilities of rotate are supported. They shouldn't
3259 be generated, but let's watch for 'em. */
4765dbab 3260 if (info.shift1 == 0)
b839e0b4 3261 abort ();
52abe980 3262
3263 /* Emit two bit rotates first. */
8aaeb4a6 3264 if (info.shift2 != NULL)
52abe980 3265 {
8aaeb4a6 3266 for (; m > 1; m -= 2)
3267 output_asm_insn (info.shift2, operands);
52abe980 3268 }
3269
3270 /* Now single bit rotates for any residual. */
8aaeb4a6 3271 for (; m > 0; m--)
3272 output_asm_insn (info.shift1, operands);
52abe980 3273
3274 /* Now mask off the high bits. */
87fbdf7b 3275 if (mode == QImode)
3276 sprintf (insn_buf, "and\t#%d,%%X0", mask);
3277 else if (mode == HImode && (TARGET_H8300H || TARGET_H8300S))
3278 sprintf (insn_buf, "and.w\t#%d,%%T0", mask);
3279 else
3280 abort ();
3281
b839e0b4 3282 output_asm_insn (insn_buf, operands);
3283 return "";
3284 }
cb95c693 3285
cb95c693 3286 case SHIFT_LOOP:
3287 /* A loop to shift by a "large" constant value.
3288 If we have shift-by-2 insns, use them. */
4765dbab 3289 if (info.shift2 != NULL)
cb95c693 3290 {
3291 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n / 2,
3292 names_big[REGNO (operands[4])]);
3293 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4765dbab 3294 output_asm_insn (info.shift2, operands);
cb95c693 3295 output_asm_insn ("add #0xff,%X4", operands);
3296 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
3297 if (n % 2)
4765dbab 3298 output_asm_insn (info.shift1, operands);
cb95c693 3299 }
3300 else
3301 {
3302 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n,
3303 names_big[REGNO (operands[4])]);
3304 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4765dbab 3305 output_asm_insn (info.shift1, operands);
cb95c693 3306 output_asm_insn ("add #0xff,%X4", operands);
3307 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
3308 }
52abe980 3309 return "";
cb95c693 3310
3311 default:
3312 abort ();
52abe980 3313 }
e1629549 3314 }
e1629549 3315}
484c1e8d 3316
3317static unsigned int
230002f2 3318h8300_asm_insn_count (const char *template)
484c1e8d 3319{
3320 unsigned int count = 1;
3321
3322 for (; *template; template++)
3323 if (*template == '\n')
3324 count++;
3325
3326 return count;
3327}
3328
3329unsigned int
230002f2 3330compute_a_shift_length (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
484c1e8d 3331{
3332 rtx shift = operands[3];
3333 enum machine_mode mode = GET_MODE (shift);
3334 enum rtx_code code = GET_CODE (shift);
3335 enum shift_type shift_type;
3336 enum shift_mode shift_mode;
3337 struct shift_info info;
3338 unsigned int wlength = 0;
3339
3340 switch (mode)
3341 {
3342 case QImode:
3343 shift_mode = QIshift;
3344 break;
3345 case HImode:
3346 shift_mode = HIshift;
3347 break;
3348 case SImode:
3349 shift_mode = SIshift;
3350 break;
3351 default:
3352 abort ();
3353 }
3354
3355 switch (code)
3356 {
3357 case ASHIFTRT:
3358 shift_type = SHIFT_ASHIFTRT;
3359 break;
3360 case LSHIFTRT:
3361 shift_type = SHIFT_LSHIFTRT;
3362 break;
3363 case ASHIFT:
3364 shift_type = SHIFT_ASHIFT;
3365 break;
3366 default:
3367 abort ();
3368 }
3369
3370 if (GET_CODE (operands[2]) != CONST_INT)
3371 {
3372 /* Get the assembler code to do one shift. */
3373 get_shift_alg (shift_type, shift_mode, 1, &info);
3374
3375 return (4 + h8300_asm_insn_count (info.shift1)) * 2;
3376 }
3377 else
3378 {
3379 int n = INTVAL (operands[2]);
3380
3381 /* If the count is negative, make it 0. */
3382 if (n < 0)
3383 n = 0;
3384 /* If the count is too big, truncate it.
3385 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
3386 do the intuitive thing. */
3387 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
3388 n = GET_MODE_BITSIZE (mode);
3389
3390 get_shift_alg (shift_type, shift_mode, n, &info);
3391
3392 switch (info.alg)
3393 {
3394 case SHIFT_SPECIAL:
3395 wlength += h8300_asm_insn_count (info.special);
f56f0ed0 3396
3397 /* Every assembly instruction used in SHIFT_SPECIAL case
3398 takes 2 bytes except xor.l, which takes 4 bytes, so if we
3399 see xor.l, we just pretend that xor.l counts as two insns
3400 so that the insn length will be computed correctly. */
3401 if (strstr (info.special, "xor.l") != NULL)
3402 wlength++;
3403
484c1e8d 3404 /* Fall through. */
3405
3406 case SHIFT_INLINE:
3407 n = info.remainder;
3408
3409 if (info.shift2 != NULL)
3410 {
3411 wlength += h8300_asm_insn_count (info.shift2) * (n / 2);
3412 n = n % 2;
3413 }
3414
3415 wlength += h8300_asm_insn_count (info.shift1) * n;
66b41076 3416
484c1e8d 3417 return 2 * wlength;
3418
3419 case SHIFT_ROT_AND:
3420 {
3421 int m = GET_MODE_BITSIZE (mode) - n;
3422
3423 /* Not all possibilities of rotate are supported. They shouldn't
3424 be generated, but let's watch for 'em. */
3425 if (info.shift1 == 0)
3426 abort ();
3427
3428 if (info.shift2 != NULL)
3429 {
3430 wlength += h8300_asm_insn_count (info.shift2) * (m / 2);
3431 m = m % 2;
3432 }
3433
3434 wlength += h8300_asm_insn_count (info.shift1) * m;
66b41076 3435
484c1e8d 3436 /* Now mask off the high bits. */
3437 switch (mode)
3438 {
3439 case QImode:
3440 wlength += 1;
3441 break;
3442 case HImode:
3443 wlength += 2;
3444 break;
3445 case SImode:
3446 if (TARGET_H8300)
3447 abort ();
3448 wlength += 3;
3449 break;
3450 default:
3451 abort ();
3452 }
3453 return 2 * wlength;
3454 }
3455
3456 case SHIFT_LOOP:
3457 /* A loop to shift by a "large" constant value.
3458 If we have shift-by-2 insns, use them. */
3459 if (info.shift2 != NULL)
3460 {
3461 wlength += 3 + h8300_asm_insn_count (info.shift2);
3462 if (n % 2)
3463 wlength += h8300_asm_insn_count (info.shift1);
3464 }
3465 else
3466 {
3467 wlength += 3 + h8300_asm_insn_count (info.shift1);
3468 }
3469 return 2 * wlength;
3470
3471 default:
3472 abort ();
3473 }
3474 }
3475}
fd7729c5 3476
3477int
230002f2 3478compute_a_shift_cc (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
fd7729c5 3479{
3480 rtx shift = operands[3];
3481 enum machine_mode mode = GET_MODE (shift);
3482 enum rtx_code code = GET_CODE (shift);
3483 enum shift_type shift_type;
3484 enum shift_mode shift_mode;
3485 struct shift_info info;
3486
3487 switch (mode)
3488 {
3489 case QImode:
3490 shift_mode = QIshift;
3491 break;
3492 case HImode:
3493 shift_mode = HIshift;
3494 break;
3495 case SImode:
3496 shift_mode = SIshift;
3497 break;
3498 default:
3499 abort ();
3500 }
3501
3502 switch (code)
3503 {
3504 case ASHIFTRT:
3505 shift_type = SHIFT_ASHIFTRT;
3506 break;
3507 case LSHIFTRT:
3508 shift_type = SHIFT_LSHIFTRT;
3509 break;
3510 case ASHIFT:
3511 shift_type = SHIFT_ASHIFT;
3512 break;
3513 default:
3514 abort ();
3515 }
3516
3517 if (GET_CODE (operands[2]) != CONST_INT)
3518 {
3519 /* This case must be taken care of by one of the two splitters
3520 that convert a variable shift into a loop. */
3521 abort ();
3522 }
3523 else
3524 {
3525 int n = INTVAL (operands[2]);
3526
3527 /* If the count is negative, make it 0. */
3528 if (n < 0)
3529 n = 0;
3530 /* If the count is too big, truncate it.
3531 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
3532 do the intuitive thing. */
3533 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
3534 n = GET_MODE_BITSIZE (mode);
3535
3536 get_shift_alg (shift_type, shift_mode, n, &info);
3537
3538 switch (info.alg)
3539 {
3540 case SHIFT_SPECIAL:
3541 if (info.remainder == 0)
3542 return info.cc_special;
3543
3544 /* Fall through. */
3545
3546 case SHIFT_INLINE:
3547 return info.cc_inline;
3548
3549 case SHIFT_ROT_AND:
3550 /* This case always ends with an and instruction. */
3551 return CC_SET_ZNV;
3552
3553 case SHIFT_LOOP:
3554 /* A loop to shift by a "large" constant value.
3555 If we have shift-by-2 insns, use them. */
3556 if (info.shift2 != NULL)
3557 {
3558 if (n % 2)
3559 return info.cc_inline;
3560 }
3561 return CC_CLOBBER;
3562
3563 default:
3564 abort ();
3565 }
3566 }
3567}
b839e0b4 3568\f
b4fa7cf2 3569/* A rotation by a non-constant will cause a loop to be generated, in
3570 which a rotation by one bit is used. A rotation by a constant,
3571 including the one in the loop, will be taken care of by
3572 emit_a_rotate () at the insn emit time. */
3573
3574int
230002f2 3575expand_a_rotate (enum rtx_code code, rtx operands[])
b4fa7cf2 3576{
3577 rtx dst = operands[0];
3578 rtx src = operands[1];
3579 rtx rotate_amount = operands[2];
3580 enum machine_mode mode = GET_MODE (dst);
3581 rtx tmp;
3582
3583 /* We rotate in place. */
3584 emit_move_insn (dst, src);
3585
3586 if (GET_CODE (rotate_amount) != CONST_INT)
3587 {
3588 rtx counter = gen_reg_rtx (QImode);
3589 rtx start_label = gen_label_rtx ();
3590 rtx end_label = gen_label_rtx ();
3591
3592 /* If the rotate amount is less than or equal to 0,
3593 we go out of the loop. */
7e69f45b 3594 emit_cmp_and_jump_insns (rotate_amount, GEN_INT (0), LE, NULL_RTX,
3595 QImode, 0, end_label);
b4fa7cf2 3596
3597 /* Initialize the loop counter. */
3598 emit_move_insn (counter, rotate_amount);
3599
3600 emit_label (start_label);
3601
3602 /* Rotate by one bit. */
3603 tmp = gen_rtx (code, mode, dst, GEN_INT (1));
3604 emit_insn (gen_rtx_SET (mode, dst, tmp));
3605
3606 /* Decrement the counter by 1. */
3607 tmp = gen_rtx_PLUS (QImode, counter, GEN_INT (-1));
3608 emit_insn (gen_rtx_SET (VOIDmode, counter, tmp));
3609
c46dc351 3610 /* If the loop counter is nonzero, we go back to the beginning
b4fa7cf2 3611 of the loop. */
7e69f45b 3612 emit_cmp_and_jump_insns (counter, GEN_INT (0), NE, NULL_RTX, QImode, 1,
3613 start_label);
b4fa7cf2 3614
3615 emit_label (end_label);
3616 }
3617 else
3618 {
3619 /* Rotate by AMOUNT bits. */
3620 tmp = gen_rtx (code, mode, dst, rotate_amount);
3621 emit_insn (gen_rtx_SET (mode, dst, tmp));
3622 }
3623
3624 return 1;
3625}
3626
3627/* Emit rotate insns. */
3628
3629const char *
230002f2 3630emit_a_rotate (enum rtx_code code, rtx *operands)
b4fa7cf2 3631{
3632 rtx dst = operands[0];
3633 rtx rotate_amount = operands[2];
3634 enum shift_mode rotate_mode;
3635 enum shift_type rotate_type;
3636 const char *insn_buf;
3637 int bits;
3638 int amount;
3639 enum machine_mode mode = GET_MODE (dst);
3640
3641 if (GET_CODE (rotate_amount) != CONST_INT)
3642 abort ();
3643
3644 switch (mode)
3645 {
3646 case QImode:
3647 rotate_mode = QIshift;
3648 break;
3649 case HImode:
3650 rotate_mode = HIshift;
3651 break;
3652 case SImode:
3653 rotate_mode = SIshift;
3654 break;
3655 default:
3656 abort ();
3657 }
3658
3659 switch (code)
3660 {
3661 case ROTATERT:
3662 rotate_type = SHIFT_ASHIFT;
3663 break;
3664 case ROTATE:
3665 rotate_type = SHIFT_LSHIFTRT;
3666 break;
3667 default:
3668 abort ();
3669 }
3670
3671 amount = INTVAL (rotate_amount);
3672
3673 /* Clean up AMOUNT. */
3674 if (amount < 0)
3675 amount = 0;
3676 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
3677 amount = GET_MODE_BITSIZE (mode);
3678
3679 /* Determine the faster direction. After this phase, amount will be
3680 at most a half of GET_MODE_BITSIZE (mode). */
de8409f8 3681 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
b4fa7cf2 3682 {
3683 /* Flip the direction. */
3684 amount = GET_MODE_BITSIZE (mode) - amount;
3685 rotate_type =
3686 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
3687 }
3688
3689 /* See if a byte swap (in HImode) or a word swap (in SImode) can
3690 boost up the rotation. */
3691 if ((mode == HImode && TARGET_H8300 && amount >= 5)
3692 || (mode == HImode && TARGET_H8300H && amount >= 6)
3693 || (mode == HImode && TARGET_H8300S && amount == 8)
3694 || (mode == SImode && TARGET_H8300H && amount >= 10)
3695 || (mode == SImode && TARGET_H8300S && amount >= 13))
3696 {
3697 switch (mode)
3698 {
3699 case HImode:
3700 /* This code works on any family. */
3701 insn_buf = "xor.b\t%s0,%t0\n\txor.b\t%t0,%s0\n\txor.b\t%s0,%t0";
3702 output_asm_insn (insn_buf, operands);
3703 break;
3704
3705 case SImode:
11f95d7c 3706 /* This code works on the H8/300H and H8S. */
b4fa7cf2 3707 insn_buf = "xor.w\t%e0,%f0\n\txor.w\t%f0,%e0\n\txor.w\t%e0,%f0";
3708 output_asm_insn (insn_buf, operands);
3709 break;
3710
3711 default:
3712 abort ();
3713 }
3714
3715 /* Adjust AMOUNT and flip the direction. */
3716 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
3717 rotate_type =
3718 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
3719 }
3720
3721 /* Emit rotate insns. */
3722 for (bits = TARGET_H8300S ? 2 : 1; bits > 0; bits /= 2)
3723 {
3724 if (bits == 2)
3725 insn_buf = rotate_two[rotate_type][rotate_mode];
3726 else
3727 insn_buf = rotate_one[cpu_type][rotate_type][rotate_mode];
a86fab2e 3728
b4fa7cf2 3729 for (; amount >= bits; amount -= bits)
3730 output_asm_insn (insn_buf, operands);
3731 }
3732
3733 return "";
3734}
3735\f
b839e0b4 3736/* Fix the operands of a gen_xxx so that it could become a bit
a86fab2e 3737 operating insn. */
e1629549 3738
3739int
230002f2 3740fix_bit_operand (rtx *operands, int what, enum rtx_code type)
e1629549 3741{
b090827b 3742 /* The bit_operand predicate accepts any memory during RTL generation, but
b839e0b4 3743 only 'U' memory afterwards, so if this is a MEM operand, we must force
3744 it to be valid for 'U' by reloading the address. */
e1629549 3745
c7619744 3746 if ((what == 0 && single_zero_operand (operands[2], QImode))
3747 || (what == 1 && single_one_operand (operands[2], QImode)))
e1629549 3748 {
c7619744 3749 /* OK to have a memory dest. */
3750 if (GET_CODE (operands[0]) == MEM
3751 && !EXTRA_CONSTRAINT (operands[0], 'U'))
b839e0b4 3752 {
c7619744 3753 rtx mem = gen_rtx_MEM (GET_MODE (operands[0]),
3754 copy_to_mode_reg (Pmode,
3755 XEXP (operands[0], 0)));
3756 MEM_COPY_ATTRIBUTES (mem, operands[0]);
3757 operands[0] = mem;
3758 }
b839e0b4 3759
c7619744 3760 if (GET_CODE (operands[1]) == MEM
3761 && !EXTRA_CONSTRAINT (operands[1], 'U'))
3762 {
3763 rtx mem = gen_rtx_MEM (GET_MODE (operands[1]),
3764 copy_to_mode_reg (Pmode,
3765 XEXP (operands[1], 0)));
3766 MEM_COPY_ATTRIBUTES (mem, operands[0]);
3767 operands[1] = mem;
b839e0b4 3768 }
c7619744 3769 return 0;
b839e0b4 3770 }
e1629549 3771
b839e0b4 3772 /* Dest and src op must be register. */
e1629549 3773
b839e0b4 3774 operands[1] = force_reg (QImode, operands[1]);
3775 {
3776 rtx res = gen_reg_rtx (QImode);
7014838c 3777 emit_insn (gen_rtx_SET (VOIDmode, res,
3778 gen_rtx (type, QImode, operands[1], operands[2])));
3779 emit_insn (gen_rtx_SET (VOIDmode, operands[0], res));
b839e0b4 3780 }
3781 return 1;
e1629549 3782}
b11bfc61 3783
b11bfc61 3784/* Return nonzero if FUNC is an interrupt function as specified
3785 by the "interrupt" attribute. */
3786
3787static int
230002f2 3788h8300_interrupt_function_p (tree func)
b11bfc61 3789{
3790 tree a;
3791
3792 if (TREE_CODE (func) != FUNCTION_DECL)
3793 return 0;
3794
e3c541f0 3795 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
b11bfc61 3796 return a != NULL_TREE;
3797}
3798
09c48b9c 3799/* Return nonzero if FUNC is an OS_Task function as specified
3800 by the "OS_Task" attribute. */
3801
3802static int
230002f2 3803h8300_os_task_function_p (tree func)
09c48b9c 3804{
3805 tree a;
3806
3807 if (TREE_CODE (func) != FUNCTION_DECL)
3808 return 0;
3809
e3c541f0 3810 a = lookup_attribute ("OS_Task", DECL_ATTRIBUTES (func));
09c48b9c 3811 return a != NULL_TREE;
3812}
3813
3814/* Return nonzero if FUNC is a monitor function as specified
3815 by the "monitor" attribute. */
3816
3817static int
230002f2 3818h8300_monitor_function_p (tree func)
09c48b9c 3819{
3820 tree a;
3821
3822 if (TREE_CODE (func) != FUNCTION_DECL)
3823 return 0;
3824
e3c541f0 3825 a = lookup_attribute ("monitor", DECL_ATTRIBUTES (func));
09c48b9c 3826 return a != NULL_TREE;
3827}
3828
b11bfc61 3829/* Return nonzero if FUNC is a function that should be called
3830 through the function vector. */
3831
3832int
230002f2 3833h8300_funcvec_function_p (tree func)
b11bfc61 3834{
3835 tree a;
3836
3837 if (TREE_CODE (func) != FUNCTION_DECL)
3838 return 0;
3839
e3c541f0 3840 a = lookup_attribute ("function_vector", DECL_ATTRIBUTES (func));
b11bfc61 3841 return a != NULL_TREE;
3842}
3843
27a0be8f 3844/* Return nonzero if DECL is a variable that's in the eight bit
2c7be643 3845 data area. */
3846
3847int
230002f2 3848h8300_eightbit_data_p (tree decl)
2c7be643 3849{
3850 tree a;
3851
3852 if (TREE_CODE (decl) != VAR_DECL)
3853 return 0;
3854
e3c541f0 3855 a = lookup_attribute ("eightbit_data", DECL_ATTRIBUTES (decl));
2c7be643 3856 return a != NULL_TREE;
3857}
3858
27a0be8f 3859/* Return nonzero if DECL is a variable that's in the tiny
3860 data area. */
3861
3862int
230002f2 3863h8300_tiny_data_p (tree decl)
27a0be8f 3864{
3865 tree a;
3866
3867 if (TREE_CODE (decl) != VAR_DECL)
3868 return 0;
3869
e3c541f0 3870 a = lookup_attribute ("tiny_data", DECL_ATTRIBUTES (decl));
27a0be8f 3871 return a != NULL_TREE;
3872}
3873
ad7d09f6 3874/* Generate an 'interrupt_handler' attribute for decls. */
3875
3876static void
230002f2 3877h8300_insert_attributes (tree node, tree *attributes)
ad7d09f6 3878{
41ed3bcd 3879 if (!pragma_interrupt
ad7d09f6 3880 || TREE_CODE (node) != FUNCTION_DECL)
3881 return;
3882
41ed3bcd 3883 pragma_interrupt = 0;
3884
ad7d09f6 3885 /* Add an 'interrupt_handler' attribute. */
3886 *attributes = tree_cons (get_identifier ("interrupt_handler"),
3887 NULL, *attributes);
3888}
3889
e3c541f0 3890/* Supported attributes:
b11bfc61 3891
bd297402 3892 interrupt_handler: output a prologue and epilogue suitable for an
b11bfc61 3893 interrupt handler.
3894
bd297402 3895 function_vector: This function should be called through the
27a0be8f 3896 function vector.
3897
3898 eightbit_data: This variable lives in the 8-bit data area and can
3899 be referenced with 8-bit absolute memory addresses.
3900
3901 tiny_data: This variable lives in the tiny data area and can be
3902 referenced with 16-bit absolute memory references. */
b11bfc61 3903
e3c541f0 3904const struct attribute_spec h8300_attribute_table[] =
b11bfc61 3905{
e3c541f0 3906 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
3907 { "interrupt_handler", 0, 0, true, false, false, h8300_handle_fndecl_attribute },
3908 { "OS_Task", 0, 0, true, false, false, h8300_handle_fndecl_attribute },
3909 { "monitor", 0, 0, true, false, false, h8300_handle_fndecl_attribute },
3910 { "function_vector", 0, 0, true, false, false, h8300_handle_fndecl_attribute },
3911 { "eightbit_data", 0, 0, true, false, false, h8300_handle_eightbit_data_attribute },
3912 { "tiny_data", 0, 0, true, false, false, h8300_handle_tiny_data_attribute },
3913 { NULL, 0, 0, false, false, false, NULL }
3914};
b11bfc61 3915
2c7be643 3916
e3c541f0 3917/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
3918 struct attribute_spec.handler. */
3919static tree
230002f2 3920h8300_handle_fndecl_attribute (tree *node, tree name,
3921 tree args ATTRIBUTE_UNUSED,
3922 int flags ATTRIBUTE_UNUSED,
3923 bool *no_add_attrs)
e3c541f0 3924{
3925 if (TREE_CODE (*node) != FUNCTION_DECL)
3926 {
3927 warning ("`%s' attribute only applies to functions",
3928 IDENTIFIER_POINTER (name));
3929 *no_add_attrs = true;
3930 }
3931
3932 return NULL_TREE;
3933}
3934
3935/* Handle an "eightbit_data" attribute; arguments as in
3936 struct attribute_spec.handler. */
3937static tree
230002f2 3938h8300_handle_eightbit_data_attribute (tree *node, tree name,
3939 tree args ATTRIBUTE_UNUSED,
3940 int flags ATTRIBUTE_UNUSED,
3941 bool *no_add_attrs)
e3c541f0 3942{
3943 tree decl = *node;
3944
3945 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
2c7be643 3946 {
b6a063c6 3947 DECL_SECTION_NAME (decl) = build_string (7, ".eight");
e3c541f0 3948 }
3949 else
3950 {
3951 warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
3952 *no_add_attrs = true;
27a0be8f 3953 }
3954
e3c541f0 3955 return NULL_TREE;
3956}
3957
3958/* Handle an "tiny_data" attribute; arguments as in
3959 struct attribute_spec.handler. */
3960static tree
230002f2 3961h8300_handle_tiny_data_attribute (tree *node, tree name,
3962 tree args ATTRIBUTE_UNUSED,
3963 int flags ATTRIBUTE_UNUSED,
3964 bool *no_add_attrs)
e3c541f0 3965{
3966 tree decl = *node;
3967
3968 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
27a0be8f 3969 {
b6a063c6 3970 DECL_SECTION_NAME (decl) = build_string (6, ".tiny");
e3c541f0 3971 }
3972 else
3973 {
3974 warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
3975 *no_add_attrs = true;
2c7be643 3976 }
eb2aa24e 3977
e3c541f0 3978 return NULL_TREE;
b11bfc61 3979}
3980
d37aaac2 3981/* Mark function vectors, and various small data objects. */
7811991d 3982
3983static void
230002f2 3984h8300_encode_section_info (tree decl, rtx rtl, int first)
7811991d 3985{
d37aaac2 3986 int extra_flags = 0;
3987
2c129d70 3988 default_encode_section_info (decl, rtl, first);
d37aaac2 3989
7811991d 3990 if (TREE_CODE (decl) == FUNCTION_DECL
3991 && h8300_funcvec_function_p (decl))
d37aaac2 3992 extra_flags = SYMBOL_FLAG_FUNCVEC_FUNCTION;
7811991d 3993 else if (TREE_CODE (decl) == VAR_DECL
3994 && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
3995 {
3996 if (h8300_eightbit_data_p (decl))
d37aaac2 3997 extra_flags = SYMBOL_FLAG_EIGHTBIT_DATA;
7811991d 3998 else if (first && h8300_tiny_data_p (decl))
d37aaac2 3999 extra_flags = SYMBOL_FLAG_TINY_DATA;
7811991d 4000 }
7b4a38a6 4001
d37aaac2 4002 if (extra_flags)
2c129d70 4003 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
7b4a38a6 4004}
4005
9305fe33 4006const char *
230002f2 4007output_simode_bld (int bild, rtx operands[])
92eae32b 4008{
7ef78393 4009 if (TARGET_H8300)
4010 {
4011 /* Clear the destination register. */
4012 output_asm_insn ("sub.w\t%e0,%e0\n\tsub.w\t%f0,%f0", operands);
4013
4014 /* Now output the bit load or bit inverse load, and store it in
4015 the destination. */
4016 if (bild)
4017 output_asm_insn ("bild\t%Z2,%Y1", operands);
4018 else
4019 output_asm_insn ("bld\t%Z2,%Y1", operands);
92eae32b 4020
7ef78393 4021 output_asm_insn ("bst\t#0,%w0", operands);
4022 }
92eae32b 4023 else
7ef78393 4024 {
7d3e46b8 4025 /* Determine if we can clear the destination first. */
4026 int clear_first = (REG_P (operands[0]) && REG_P (operands[1])
4027 && REGNO (operands[0]) != REGNO (operands[1]));
4028
4029 if (clear_first)
4030 output_asm_insn ("sub.l\t%S0,%S0", operands);
4031
7ef78393 4032 /* Output the bit load or bit inverse load. */
4033 if (bild)
4034 output_asm_insn ("bild\t%Z2,%Y1", operands);
4035 else
4036 output_asm_insn ("bld\t%Z2,%Y1", operands);
4037
7d3e46b8 4038 if (!clear_first)
4039 output_asm_insn ("xor.l\t%S0,%S0", operands);
4040
4041 /* Perform the bit store. */
4042 output_asm_insn ("bst\t#0,%w0", operands);
7ef78393 4043 }
92eae32b 4044
4045 /* All done. */
4046 return "";
4047}
fe19f1e0 4048
9e042f31 4049/* Given INSN and its current length LENGTH, return the adjustment
fe19f1e0 4050 (in bytes) to correctly compute INSN's length.
4051
4052 We use this to get the lengths of various memory references correct. */
4053
9305fe33 4054int
230002f2 4055h8300_adjust_insn_length (rtx insn, int length ATTRIBUTE_UNUSED)
fe19f1e0 4056{
6f04daec 4057 rtx pat = PATTERN (insn);
8d0fbce4 4058
f0fc9484 4059 /* We must filter these out before calling get_attr_adjust_length. */
6f04daec 4060 if (GET_CODE (pat) == USE
4061 || GET_CODE (pat) == CLOBBER
4062 || GET_CODE (pat) == SEQUENCE
4063 || GET_CODE (pat) == ADDR_VEC
4064 || GET_CODE (pat) == ADDR_DIFF_VEC)
8a040e41 4065 return 0;
4066
8d0fbce4 4067 if (get_attr_adjust_length (insn) == ADJUST_LENGTH_NO)
4068 return 0;
4069
fe19f1e0 4070 /* Adjust length for reg->mem and mem->reg copies. */
4071 if (GET_CODE (pat) == SET
4072 && (GET_CODE (SET_SRC (pat)) == MEM
4073 || GET_CODE (SET_DEST (pat)) == MEM))
4074 {
4075 /* This insn might need a length adjustment. */
4076 rtx addr;
4077
4078 if (GET_CODE (SET_SRC (pat)) == MEM)
4079 addr = XEXP (SET_SRC (pat), 0);
4080 else
4081 addr = XEXP (SET_DEST (pat), 0);
4082
21c71966 4083 if (TARGET_H8300)
4084 {
4085 /* On the H8/300, we subtract the difference between the
4086 actual length and the longest one, which is @(d:16,ERs). */
fe19f1e0 4087
21c71966 4088 /* @Rs is 2 bytes shorter than the longest. */
4089 if (GET_CODE (addr) == REG)
4090 return -2;
da540d53 4091
4092 /* @aa:8 is 2 bytes shorter than the longest. */
4093 if (GET_MODE (SET_SRC (pat)) == QImode
e566129f 4094 && h8300_eightbit_constant_address_p (addr))
da540d53 4095 return -2;
21c71966 4096 }
4097 else
4098 {
11f95d7c 4099 /* On the H8/300H and H8S, we subtract the difference
21c71966 4100 between the actual length and the longest one, which is
4101 @(d:24,ERs). */
4102
4103 /* @ERs is 6 bytes shorter than the longest. */
4104 if (GET_CODE (addr) == REG)
4105 return -6;
4106
4107 /* @(d:16,ERs) is 6 bytes shorter than the longest. */
4108 if (GET_CODE (addr) == PLUS
4109 && GET_CODE (XEXP (addr, 0)) == REG
4110 && GET_CODE (XEXP (addr, 1)) == CONST_INT
4111 && INTVAL (XEXP (addr, 1)) > -32768
4112 && INTVAL (XEXP (addr, 1)) < 32767)
4113 return -4;
4114
320e354f 4115 /* @aa:8 is 6 bytes shorter than the longest. */
4116 if (GET_MODE (SET_SRC (pat)) == QImode
e566129f 4117 && h8300_eightbit_constant_address_p (addr))
320e354f 4118 return -6;
4119
4120 /* @aa:16 is 4 bytes shorter than the longest. */
3696208f 4121 if (h8300_tiny_constant_address_p (addr))
320e354f 4122 return -4;
4123
4124 /* @aa:24 is 2 bytes shorter than the longest. */
4125 if (GET_CODE (addr) == CONST_INT)
21c71966 4126 return -2;
4127 }
fe19f1e0 4128 }
4129
4130 /* Loading some constants needs adjustment. */
4131 if (GET_CODE (pat) == SET
4132 && GET_CODE (SET_SRC (pat)) == CONST_INT
4133 && GET_MODE (SET_DEST (pat)) == SImode
4134 && INTVAL (SET_SRC (pat)) != 0)
4135 {
53aec781 4136 int val = INTVAL (SET_SRC (pat));
4137
fe19f1e0 4138 if (TARGET_H8300
53aec781 4139 && ((val & 0xffff) == 0
4140 || ((val >> 16) & 0xffff) == 0))
fe19f1e0 4141 return -2;
4142
69b4e418 4143 if (TARGET_H8300H || TARGET_H8300S)
fe19f1e0 4144 {
fe19f1e0 4145 if (val == (val & 0xff)
4146 || val == (val & 0xff00))
16ff02f6 4147 return 4 - 6;
fe19f1e0 4148
16ff02f6 4149 switch (val & 0xffffffff)
4150 {
4151 case 0xffffffff:
4152 case 0xfffffffe:
4153 case 0xfffffffc:
4154 case 0x0000ffff:
4155 case 0x0000fffe:
4156 case 0xffff0000:
4157 case 0xfffe0000:
4158 case 0x00010000:
4159 case 0x00020000:
4160 return 4 - 6;
4161 }
fe19f1e0 4162 }
4163 }
4164
b4fa7cf2 4165 /* Rotations need various adjustments. */
4166 if (GET_CODE (pat) == SET
4167 && (GET_CODE (SET_SRC (pat)) == ROTATE
4168 || GET_CODE (SET_SRC (pat)) == ROTATERT))
4169 {
4170 rtx src = SET_SRC (pat);
4171 enum machine_mode mode = GET_MODE (src);
4172 int amount;
4173 int states = 0;
4174
4175 if (GET_CODE (XEXP (src, 1)) != CONST_INT)
4176 return 0;
4177
4178 amount = INTVAL (XEXP (src, 1));
4179
4180 /* Clean up AMOUNT. */
4181 if (amount < 0)
4182 amount = 0;
4183 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
4184 amount = GET_MODE_BITSIZE (mode);
4185
4186 /* Determine the faster direction. After this phase, amount
4187 will be at most a half of GET_MODE_BITSIZE (mode). */
de8409f8 4188 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
b4fa7cf2 4189 /* Flip the direction. */
4190 amount = GET_MODE_BITSIZE (mode) - amount;
4191
4192 /* See if a byte swap (in HImode) or a word swap (in SImode) can
4193 boost up the rotation. */
4194 if ((mode == HImode && TARGET_H8300 && amount >= 5)
4195 || (mode == HImode && TARGET_H8300H && amount >= 6)
4196 || (mode == HImode && TARGET_H8300S && amount == 8)
4197 || (mode == SImode && TARGET_H8300H && amount >= 10)
4198 || (mode == SImode && TARGET_H8300S && amount >= 13))
4199 {
4200 /* Adjust AMOUNT and flip the direction. */
4201 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
4202 states += 6;
4203 }
4204
cc72e60a 4205 /* We use 2-bit rotations on the H8S. */
b4fa7cf2 4206 if (TARGET_H8300S)
4207 amount = amount / 2 + amount % 2;
4208
4209 /* The H8/300 uses three insns to rotate one bit, taking 6
4210 states. */
4211 states += amount * ((TARGET_H8300 && mode == HImode) ? 6 : 2);
4212
4213 return -(20 - states);
4214 }
4215
fe19f1e0 4216 return 0;
4217}
2cb4ac60 4218
6e4758ce 4219#ifndef OBJECT_FORMAT_ELF
2cb4ac60 4220static void
230002f2 4221h8300_asm_named_section (const char *name, unsigned int flags ATTRIBUTE_UNUSED)
2cb4ac60 4222{
4223 /* ??? Perhaps we should be using default_coff_asm_named_section. */
4224 fprintf (asm_out_file, "\t.section %s\n", name);
4225}
6e4758ce 4226#endif /* ! OBJECT_FORMAT_ELF */
6c48c1e4 4227
e566129f 4228/* Nonzero if X is a constant address suitable as an 8-bit absolute,
4229 which is a special case of the 'R' operand. */
4230
6c48c1e4 4231int
230002f2 4232h8300_eightbit_constant_address_p (rtx x)
6c48c1e4 4233{
462c2024 4234 /* The ranges of the 8-bit area. */
424064e7 4235 const unsigned HOST_WIDE_INT n1 = trunc_int_for_mode (0xff00, HImode);
4236 const unsigned HOST_WIDE_INT n2 = trunc_int_for_mode (0xffff, HImode);
6c48c1e4 4237 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00ffff00, SImode);
4238 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00ffffff, SImode);
4239 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0xffffff00, SImode);
4240 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0xffffffff, SImode);
4241
4242 unsigned HOST_WIDE_INT addr;
4243
e55c1a72 4244 /* We accept symbols declared with eightbit_data. */
d37aaac2 4245 if (GET_CODE (x) == SYMBOL_REF)
4246 return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_EIGHTBIT_DATA) != 0;
e55c1a72 4247
6c48c1e4 4248 if (GET_CODE (x) != CONST_INT)
4249 return 0;
4250
4251 addr = INTVAL (x);
4252
4253 return (0
35a462ce 4254 || ((TARGET_H8300 || TARGET_NORMAL_MODE) && IN_RANGE (addr, n1, n2))
6c48c1e4 4255 || (TARGET_H8300H && IN_RANGE (addr, h1, h2))
4256 || (TARGET_H8300S && IN_RANGE (addr, s1, s2)));
4257}
4258
e566129f 4259/* Nonzero if X is a constant address suitable as an 16-bit absolute
4260 on H8/300H and H8S. */
4261
6c48c1e4 4262int
230002f2 4263h8300_tiny_constant_address_p (rtx x)
6c48c1e4 4264{
462c2024 4265 /* The ranges of the 16-bit area. */
6c48c1e4 4266 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00000000, SImode);
4267 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00007fff, SImode);
4268 const unsigned HOST_WIDE_INT h3 = trunc_int_for_mode (0x00ff8000, SImode);
4269 const unsigned HOST_WIDE_INT h4 = trunc_int_for_mode (0x00ffffff, SImode);
4270 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0x00000000, SImode);
4271 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0x00007fff, SImode);
4272 const unsigned HOST_WIDE_INT s3 = trunc_int_for_mode (0xffff8000, SImode);
4273 const unsigned HOST_WIDE_INT s4 = trunc_int_for_mode (0xffffffff, SImode);
4274
4275 unsigned HOST_WIDE_INT addr;
4276
3696208f 4277 /* We accept symbols declared with tiny_data. */
d37aaac2 4278 if (GET_CODE (x) == SYMBOL_REF)
4279 return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_TINY_DATA) != 0;
3696208f 4280
6c48c1e4 4281 if (GET_CODE (x) != CONST_INT)
4282 return 0;
4283
4284 addr = INTVAL (x);
4285
4286 return (0
a9955fee 4287 || TARGET_NORMAL_MODE
4288 || (TARGET_H8300H
1f8bbe78 4289 && (IN_RANGE (addr, h1, h2) || IN_RANGE (addr, h3, h4)))
a9955fee 4290 || (TARGET_H8300S
1f8bbe78 4291 && (IN_RANGE (addr, s1, s2) || IN_RANGE (addr, s3, s4))));
6c48c1e4 4292}
e33ecec3 4293
4294int
230002f2 4295byte_accesses_mergeable_p (rtx addr1, rtx addr2)
e33ecec3 4296{
4297 HOST_WIDE_INT offset1, offset2;
4298 rtx reg1, reg2;
4299
4300 if (REG_P (addr1))
4301 {
4302 reg1 = addr1;
4303 offset1 = 0;
4304 }
4305 else if (GET_CODE (addr1) == PLUS
4306 && REG_P (XEXP (addr1, 0))
4307 && GET_CODE (XEXP (addr1, 1)) == CONST_INT)
4308 {
4309 reg1 = XEXP (addr1, 0);
4310 offset1 = INTVAL (XEXP (addr1, 1));
4311 }
4312 else
4313 return 0;
4314
4315 if (REG_P (addr2))
4316 {
4317 reg2 = addr2;
4318 offset2 = 0;
4319 }
4320 else if (GET_CODE (addr2) == PLUS
4321 && REG_P (XEXP (addr2, 0))
4322 && GET_CODE (XEXP (addr2, 1)) == CONST_INT)
4323 {
4324 reg2 = XEXP (addr2, 0);
4325 offset2 = INTVAL (XEXP (addr2, 1));
4326 }
4327 else
4328 return 0;
4329
4330 if (((reg1 == stack_pointer_rtx && reg2 == stack_pointer_rtx)
4331 || (reg1 == frame_pointer_rtx && reg2 == frame_pointer_rtx))
4332 && offset1 % 2 == 0
4333 && offset1 + 1 == offset2)
4334 return 1;
4335
4336 return 0;
4337}
9fb90c4e 4338\f
4339/* Initialize the GCC target structure. */
4340#undef TARGET_ATTRIBUTE_TABLE
4341#define TARGET_ATTRIBUTE_TABLE h8300_attribute_table
4342
4343#undef TARGET_ASM_ALIGNED_HI_OP
4344#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
4345
4346#undef TARGET_ASM_FUNCTION_EPILOGUE
4347#define TARGET_ASM_FUNCTION_EPILOGUE h8300_output_function_epilogue
4348
92c473b8 4349#undef TARGET_ASM_FILE_START
4350#define TARGET_ASM_FILE_START h8300_file_start
4351#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
4352#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
4353
9fb90c4e 4354#undef TARGET_ASM_FILE_END
4355#define TARGET_ASM_FILE_END h8300_file_end
4356
4357#undef TARGET_ENCODE_SECTION_INFO
4358#define TARGET_ENCODE_SECTION_INFO h8300_encode_section_info
4359
4360#undef TARGET_INSERT_ATTRIBUTES
4361#define TARGET_INSERT_ATTRIBUTES h8300_insert_attributes
4362
4363#undef TARGET_RTX_COSTS
4364#define TARGET_RTX_COSTS h8300_rtx_costs
4365
4366struct gcc_target targetm = TARGET_INITIALIZER;