]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/h8300/h8300.c
poly_int: emit_single_push_insn_1
[thirdparty/gcc.git] / gcc / config / h8300 / h8300.c
CommitLineData
340f6494 1/* Subroutines for insn-output.c for Renesas H8/300.
cbe34bb5 2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
48837e29
DE
3 Contributed by Steve Chamberlain (sac@cygnus.com),
4 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
07aae5c2 5
8aa063fb 6This file is part of GCC.
07aae5c2 7
8aa063fb 8GCC is free software; you can redistribute it and/or modify
07aae5c2 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
07aae5c2
SC
11any later version.
12
8aa063fb 13GCC is distributed in the hope that it will be useful,
07aae5c2
SC
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
2f83c7d6
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
07aae5c2 21
8fcc61f8
RS
22#define IN_TARGET_CODE 1
23
07aae5c2 24#include "config.h"
c5c76735 25#include "system.h"
4977bab6 26#include "coretypes.h"
c7131fb2 27#include "backend.h"
e11c4407 28#include "target.h"
07aae5c2 29#include "rtl.h"
e11c4407 30#include "tree.h"
c7131fb2 31#include "df.h"
4d0cdd0c 32#include "memmodel.h"
e11c4407
AM
33#include "tm_p.h"
34#include "stringpool.h"
314e6352 35#include "attribs.h"
e11c4407
AM
36#include "optabs.h"
37#include "regs.h"
38#include "emit-rtl.h"
39#include "recog.h"
40#include "diagnostic-core.h"
40e23961 41#include "alias.h"
d8a2d370
DN
42#include "stor-layout.h"
43#include "varasm.h"
44#include "calls.h"
07aae5c2 45#include "conditions.h"
07aae5c2
SC
46#include "output.h"
47#include "insn-attr.h"
48#include "flags.h"
36566b39 49#include "explow.h"
36566b39 50#include "expr.h"
ceaaaeab 51#include "tm-constrs.h"
9b2b7279 52#include "builtins.h"
07aae5c2 53
994c5d85 54/* This file should be included last. */
d58627a0
RS
55#include "target-def.h"
56
beed8fc0
AO
57/* Classifies a h8300_src_operand or h8300_dst_operand.
58
59 H8OP_IMMEDIATE
60 A constant operand of some sort.
61
62 H8OP_REGISTER
63 An ordinary register.
64
65 H8OP_MEM_ABSOLUTE
66 A memory reference with a constant address.
67
68 H8OP_MEM_BASE
69 A memory reference with a register as its address.
70
71 H8OP_MEM_COMPLEX
72 Some other kind of memory reference. */
73enum h8300_operand_class
74{
75 H8OP_IMMEDIATE,
76 H8OP_REGISTER,
77 H8OP_MEM_ABSOLUTE,
78 H8OP_MEM_BASE,
79 H8OP_MEM_COMPLEX,
80 NUM_H8OPS
81};
82
beed8fc0
AO
83/* For a general two-operand instruction, element [X][Y] gives
84 the length of the opcode fields when the first operand has class
85 (X + 1) and the second has class Y. */
86typedef unsigned char h8300_length_table[NUM_H8OPS - 1][NUM_H8OPS];
87
07aae5c2 88/* Forward declarations. */
cb713a8d
KH
89static const char *byte_reg (rtx, int);
90static int h8300_interrupt_function_p (tree);
3cfa3702 91static int h8300_saveall_function_p (tree);
cb713a8d
KH
92static int h8300_monitor_function_p (tree);
93static int h8300_os_task_function_p (tree);
c72ea086 94static void h8300_emit_stack_adjustment (int, HOST_WIDE_INT, bool);
e68d4dd1 95static HOST_WIDE_INT round_frame_size (HOST_WIDE_INT);
cb713a8d 96static unsigned int compute_saved_regs (void);
cb713a8d
KH
97static const char *cond_string (enum rtx_code);
98static unsigned int h8300_asm_insn_count (const char *);
cb713a8d
KH
99static tree h8300_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
100static tree h8300_handle_eightbit_data_attribute (tree *, tree, tree, int, bool *);
101static tree h8300_handle_tiny_data_attribute (tree *, tree, tree, int, bool *);
cc8ca59e 102static void h8300_print_operand_address (FILE *, machine_mode, rtx);
88cb339e
N
103static void h8300_print_operand (FILE *, rtx, int);
104static bool h8300_print_operand_punct_valid_p (unsigned char code);
ede75ee8 105#ifndef OBJECT_FORMAT_ELF
c18a5b6c 106static void h8300_asm_named_section (const char *, unsigned int, tree);
ede75ee8 107#endif
ef4bddc2 108static int h8300_register_move_cost (machine_mode, reg_class_t, reg_class_t);
cb713a8d
KH
109static int h8300_and_costs (rtx);
110static int h8300_shift_costs (rtx);
ac447f25 111static void h8300_push_pop (int, int, bool, bool);
beed8fc0
AO
112static int h8300_stack_offset_p (rtx, int);
113static int h8300_ldm_stm_regno (rtx, int, int, int);
beed8fc0
AO
114static void h8300_reorg (void);
115static unsigned int h8300_constant_length (rtx);
116static unsigned int h8300_displacement_length (rtx, int);
117static unsigned int h8300_classify_operand (rtx, int, enum h8300_operand_class *);
118static unsigned int h8300_length_from_table (rtx, rtx, const h8300_length_table *);
119static unsigned int h8300_unary_length (rtx);
120static unsigned int h8300_short_immediate_length (rtx);
121static unsigned int h8300_bitfield_length (rtx, rtx);
e7041fcc 122static unsigned int h8300_binary_length (rtx_insn *, const h8300_length_table *);
beed8fc0
AO
123static bool h8300_short_move_mem_p (rtx, enum rtx_code);
124static unsigned int h8300_move_length (rtx *, const h8300_length_table *);
2e762884 125static bool h8300_hard_regno_scratch_ok (unsigned int);
ef4bddc2 126static rtx h8300_get_index (rtx, machine_mode mode, int *);
f5b65a56 127
48837e29
DE
128/* CPU_TYPE, says what cpu we're compiling for. */
129int cpu_type;
130
e392d367
KH
131/* True if a #pragma interrupt has been seen for the current function. */
132static int pragma_interrupt;
07aae5c2
SC
133
134/* True if a #pragma saveall has been seen for the current function. */
0869f126 135static int pragma_saveall;
07aae5c2 136
441d04c6 137static const char *const names_big[] =
07e4d94e 138{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" };
48837e29 139
441d04c6 140static const char *const names_extended[] =
07e4d94e 141{ "er0", "er1", "er2", "er3", "er4", "er5", "er6", "er7" };
48837e29 142
441d04c6 143static const char *const names_upper_extended[] =
07e4d94e 144{ "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7" };
48837e29
DE
145
146/* Points to one of the above. */
147/* ??? The above could be put in an array indexed by CPU_TYPE. */
441d04c6 148const char * const *h8_reg_names;
48837e29
DE
149
150/* Various operations needed by the following, indexed by CPU_TYPE. */
48837e29 151
441d04c6 152const char *h8_push_op, *h8_pop_op, *h8_mov_op;
dc66a1c4 153
beed8fc0
AO
154/* Value of MOVE_RATIO. */
155int h8300_move_ratio;
672a6f42 156\f
c4dfc70c
DD
157/* See below where shifts are handled for explanation of this enum. */
158
159enum shift_alg
160{
161 SHIFT_INLINE,
162 SHIFT_ROT_AND,
163 SHIFT_SPECIAL,
164 SHIFT_LOOP
165};
166
167/* Symbols of the various shifts which can be used as indices. */
168
169enum shift_type
170{
171 SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
172};
173
174/* Macros to keep the shift algorithm tables small. */
175#define INL SHIFT_INLINE
176#define ROT SHIFT_ROT_AND
177#define LOP SHIFT_LOOP
178#define SPC SHIFT_SPECIAL
179
180/* The shift algorithms for each machine, mode, shift type, and shift
181 count are defined below. The three tables below correspond to
182 QImode, HImode, and SImode, respectively. Each table is organized
f411c849 183 by, in the order of indices, machine, shift type, and shift count. */
c4dfc70c
DD
184
185static enum shift_alg shift_alg_qi[3][3][8] = {
186 {
187 /* TARGET_H8300 */
188 /* 0 1 2 3 4 5 6 7 */
189 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
190 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
191 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
192 },
193 {
194 /* TARGET_H8300H */
195 /* 0 1 2 3 4 5 6 7 */
196 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
197 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
198 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
199 },
200 {
201 /* TARGET_H8300S */
202 /* 0 1 2 3 4 5 6 7 */
203 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_ASHIFT */
204 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_LSHIFTRT */
205 { INL, INL, INL, INL, INL, INL, INL, SPC } /* SHIFT_ASHIFTRT */
206 }
207};
208
209static enum shift_alg shift_alg_hi[3][3][16] = {
210 {
211 /* TARGET_H8300 */
212 /* 0 1 2 3 4 5 6 7 */
213 /* 8 9 10 11 12 13 14 15 */
214 { INL, INL, INL, INL, INL, INL, INL, SPC,
215 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
216 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
217 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
218 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
219 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
220 },
221 {
222 /* TARGET_H8300H */
223 /* 0 1 2 3 4 5 6 7 */
224 /* 8 9 10 11 12 13 14 15 */
225 { INL, INL, INL, INL, INL, INL, INL, SPC,
226 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
227 { INL, INL, INL, INL, INL, INL, INL, SPC,
228 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
229 { INL, INL, INL, INL, INL, INL, INL, SPC,
230 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
231 },
232 {
233 /* TARGET_H8300S */
234 /* 0 1 2 3 4 5 6 7 */
235 /* 8 9 10 11 12 13 14 15 */
236 { INL, INL, INL, INL, INL, INL, INL, INL,
237 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
238 { INL, INL, INL, INL, INL, INL, INL, INL,
239 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
240 { INL, INL, INL, INL, INL, INL, INL, INL,
241 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
242 }
243};
244
245static enum shift_alg shift_alg_si[3][3][32] = {
246 {
247 /* TARGET_H8300 */
248 /* 0 1 2 3 4 5 6 7 */
249 /* 8 9 10 11 12 13 14 15 */
250 /* 16 17 18 19 20 21 22 23 */
251 /* 24 25 26 27 28 29 30 31 */
252 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
253 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
254 SPC, SPC, SPC, SPC, SPC, LOP, LOP, LOP,
255 SPC, SPC, SPC, SPC, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFT */
256 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
257 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC,
258 SPC, SPC, SPC, LOP, LOP, LOP, LOP, LOP,
259 SPC, SPC, SPC, SPC, SPC, LOP, LOP, SPC }, /* SHIFT_LSHIFTRT */
260 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
261 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
262 SPC, SPC, LOP, LOP, LOP, LOP, LOP, LOP,
263 SPC, SPC, SPC, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
264 },
265 {
266 /* TARGET_H8300H */
267 /* 0 1 2 3 4 5 6 7 */
268 /* 8 9 10 11 12 13 14 15 */
269 /* 16 17 18 19 20 21 22 23 */
270 /* 24 25 26 27 28 29 30 31 */
271 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
272 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
273 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
1e5bdc40 274 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
c4dfc70c
DD
275 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
276 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
277 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
1e5bdc40 278 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
c4dfc70c
DD
279 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
280 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
281 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
282 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
283 },
284 {
285 /* TARGET_H8300S */
286 /* 0 1 2 3 4 5 6 7 */
287 /* 8 9 10 11 12 13 14 15 */
288 /* 16 17 18 19 20 21 22 23 */
289 /* 24 25 26 27 28 29 30 31 */
290 { INL, INL, INL, INL, INL, INL, INL, INL,
291 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
292 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
1e5bdc40 293 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
c4dfc70c
DD
294 { INL, INL, INL, INL, INL, INL, INL, INL,
295 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
296 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
1e5bdc40 297 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
c4dfc70c
DD
298 { INL, INL, INL, INL, INL, INL, INL, INL,
299 INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
300 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
301 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
302 }
303};
304
305#undef INL
306#undef ROT
307#undef LOP
308#undef SPC
309
310enum h8_cpu
311{
312 H8_300,
313 H8_300H,
314 H8_S
315};
316
48837e29
DE
317/* Initialize various cpu specific globals at start up. */
318
c5387660
JM
319static void
320h8300_option_override (void)
48837e29 321{
cbf1b2da
KH
322 static const char *const h8_push_ops[2] = { "push" , "push.l" };
323 static const char *const h8_pop_ops[2] = { "pop" , "pop.l" };
324 static const char *const h8_mov_ops[2] = { "mov.w", "mov.l" };
325
f4ea8112
SKS
326#ifndef OBJECT_FORMAT_ELF
327 if (TARGET_H8300SX)
328 {
329 error ("-msx is not supported in coff");
330 target_flags |= MASK_H8300S;
331 }
332#endif
333
48837e29
DE
334 if (TARGET_H8300)
335 {
336 cpu_type = (int) CPU_H8300;
337 h8_reg_names = names_big;
338 }
339 else
340 {
3db11b5c 341 /* For this we treat the H8/300H and H8S the same. */
48837e29
DE
342 cpu_type = (int) CPU_H8300H;
343 h8_reg_names = names_extended;
344 }
345 h8_push_op = h8_push_ops[cpu_type];
346 h8_pop_op = h8_pop_ops[cpu_type];
347 h8_mov_op = h8_mov_ops[cpu_type];
17f0f8fa
KH
348
349 if (!TARGET_H8300S && TARGET_MAC)
400500c4 350 {
c725bd79 351 error ("-ms2600 is used without -ms");
5463c726 352 target_flags |= MASK_H8300S_1;
400500c4 353 }
920e86b8 354
39ba95b5
VK
355 if (TARGET_H8300 && TARGET_NORMAL_MODE)
356 {
f4ea8112 357 error ("-mn is used without -mh or -ms or -msx");
39ba95b5
VK
358 target_flags ^= MASK_NORMAL_MODE;
359 }
c4dfc70c 360
f4ea8112
SKS
361 if (! TARGET_H8300S && TARGET_EXR)
362 {
363 error ("-mexr is used without -ms");
364 target_flags |= MASK_H8300S_1;
365 }
366
367 if (TARGET_H8300 && TARGET_INT32)
368 {
369 error ("-mint32 is not supported for H8300 and H8300L targets");
370 target_flags ^= MASK_INT32;
371 }
372
373 if ((!TARGET_H8300S && TARGET_EXR) && (!TARGET_H8300SX && TARGET_EXR))
374 {
375 error ("-mexr is used without -ms or -msx");
376 target_flags |= MASK_H8300S_1;
377 }
378
379 if ((!TARGET_H8300S && TARGET_NEXR) && (!TARGET_H8300SX && TARGET_NEXR))
380 {
381 warning (OPT_mno_exr, "-mno-exr valid only with -ms or -msx \
382 - Option ignored!");
383 }
384
2f6bd6eb
YS
385#ifdef H8300_LINUX
386 if ((TARGET_NORMAL_MODE))
387 {
388 error ("-mn is not supported for linux targets");
389 target_flags ^= MASK_NORMAL_MODE;
390 }
391#endif
392
8bd06267 393 /* Some of the shifts are optimized for speed by default.
c4dfc70c 394 See http://gcc.gnu.org/ml/gcc-patches/2002-07/msg01858.html
8bd06267 395 If optimizing for size, change shift_alg for those shift to
c4dfc70c 396 SHIFT_LOOP. */
b6894857 397 if (optimize_size)
c4dfc70c 398 {
b6894857
KH
399 /* H8/300 */
400 shift_alg_hi[H8_300][SHIFT_ASHIFT][5] = SHIFT_LOOP;
401 shift_alg_hi[H8_300][SHIFT_ASHIFT][6] = SHIFT_LOOP;
402 shift_alg_hi[H8_300][SHIFT_ASHIFT][13] = SHIFT_LOOP;
403 shift_alg_hi[H8_300][SHIFT_ASHIFT][14] = SHIFT_LOOP;
c4dfc70c 404
b6894857
KH
405 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][13] = SHIFT_LOOP;
406 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][14] = SHIFT_LOOP;
c4dfc70c 407
b6894857
KH
408 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
409 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
c4dfc70c 410
b6894857
KH
411 /* H8/300H */
412 shift_alg_hi[H8_300H][SHIFT_ASHIFT][5] = SHIFT_LOOP;
413 shift_alg_hi[H8_300H][SHIFT_ASHIFT][6] = SHIFT_LOOP;
c4dfc70c 414
b6894857
KH
415 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][5] = SHIFT_LOOP;
416 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][6] = SHIFT_LOOP;
c4dfc70c 417
b6894857
KH
418 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][5] = SHIFT_LOOP;
419 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][6] = SHIFT_LOOP;
420 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
421 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
c4dfc70c
DD
422
423 /* H8S */
b6894857 424 shift_alg_hi[H8_S][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
c4dfc70c 425 }
beed8fc0
AO
426
427 /* Work out a value for MOVE_RATIO. */
428 if (!TARGET_H8300SX)
429 {
430 /* Memory-memory moves are quite expensive without the
431 h8sx instructions. */
432 h8300_move_ratio = 3;
433 }
434 else if (flag_omit_frame_pointer)
435 {
436 /* movmd sequences are fairly cheap when er6 isn't fixed. They can
437 sometimes be as short as two individual memory-to-memory moves,
438 but since they use all the call-saved registers, it seems better
439 to allow up to three moves here. */
440 h8300_move_ratio = 4;
441 }
442 else if (optimize_size)
443 {
444 /* In this case we don't use movmd sequences since they tend
445 to be longer than calls to memcpy(). Memory-to-memory
446 moves are cheaper than for !TARGET_H8300SX, so it makes
447 sense to have a slightly higher threshold. */
448 h8300_move_ratio = 4;
449 }
450 else
451 {
452 /* We use movmd sequences for some moves since it can be quicker
453 than calling memcpy(). The sequences will need to save and
454 restore er6 though, so bump up the cost. */
455 h8300_move_ratio = 6;
456 }
0685e770
DD
457
458 /* This target defaults to strict volatile bitfields. */
36acc1a2 459 if (flag_strict_volatile_bitfields < 0 && abi_version_at_least(2))
0685e770 460 flag_strict_volatile_bitfields = 1;
beed8fc0
AO
461}
462
e9eba255
KH
463/* Return the byte register name for a register rtx X. B should be 0
464 if you want a lower byte register. B should be 1 if you want an
465 upper byte register. */
466
9c188705 467static const char *
cb713a8d 468byte_reg (rtx x, int b)
07aae5c2 469{
9cbcd983
KH
470 static const char *const names_small[] = {
471 "r0l", "r0h", "r1l", "r1h", "r2l", "r2h", "r3l", "r3h",
472 "r4l", "r4h", "r5l", "r5h", "r6l", "r6h", "r7l", "r7h"
473 };
07aae5c2 474
8c440872 475 gcc_assert (REG_P (x));
500fc80f 476
07aae5c2
SC
477 return names_small[REGNO (x) * 2 + b];
478}
479
480/* REGNO must be saved/restored across calls if this macro is true. */
48837e29 481
9cbcd983 482#define WORD_REG_USED(regno) \
d60004ee 483 (regno < SP_REG \
9cbcd983
KH
484 /* No need to save registers if this function will not return. */ \
485 && ! TREE_THIS_VOLATILE (current_function_decl) \
3cfa3702 486 && (h8300_saveall_function_p (current_function_decl) \
9cbcd983 487 /* Save any call saved register that was used. */ \
6fb5fa3c 488 || (df_regs_ever_live_p (regno) && !call_used_regs[regno]) \
9cbcd983 489 /* Save the frame pointer if it was used. */ \
6fb5fa3c 490 || (regno == HARD_FRAME_POINTER_REGNUM && df_regs_ever_live_p (regno)) \
9cbcd983 491 /* Save any register used in an interrupt handler. */ \
e392d367 492 || (h8300_current_function_interrupt_function_p () \
6fb5fa3c 493 && df_regs_ever_live_p (regno)) \
9cbcd983
KH
494 /* Save call clobbered registers in non-leaf interrupt \
495 handlers. */ \
e392d367 496 || (h8300_current_function_interrupt_function_p () \
9cbcd983 497 && call_used_regs[regno] \
416ff32e 498 && !crtl->is_leaf)))
07aae5c2 499
18674659 500/* We use this to wrap all emitted insns in the prologue. */
e7041fcc
DM
501static rtx_insn *
502F (rtx_insn *x, bool set_it)
18674659 503{
c72ea086
DD
504 if (set_it)
505 RTX_FRAME_RELATED_P (x) = 1;
18674659
DD
506 return x;
507}
508
509/* Mark all the subexpressions of the PARALLEL rtx PAR as
510 frame-related. Return PAR.
511
512 dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
513 PARALLEL rtx other than the first if they do not have the
514 FRAME_RELATED flag set on them. */
515static rtx
516Fpa (rtx par)
517{
518 int len = XVECLEN (par, 0);
519 int i;
520
521 for (i = 0; i < len; i++)
f698a4b1 522 RTX_FRAME_RELATED_P (XVECEXP (par, 0, i)) = 1;
18674659
DD
523
524 return par;
525}
526
07aae5c2 527/* Output assembly language to FILE for the operation OP with operand size
48837e29 528 SIZE to adjust the stack pointer. */
48837e29 529
07aae5c2 530static void
c72ea086 531h8300_emit_stack_adjustment (int sign, HOST_WIDE_INT size, bool in_prologue)
07aae5c2 532{
72b1de44
KH
533 /* If the frame size is 0, we don't have anything to do. */
534 if (size == 0)
f8b58e56 535 return;
72b1de44 536
68ee6df6
KH
537 /* H8/300 cannot add/subtract a large constant with a single
538 instruction. If a temporary register is available, load the
539 constant to it and then do the addition. */
540 if (TARGET_H8300
541 && size > 4
542 && !h8300_current_function_interrupt_function_p ()
6de9cd9a 543 && !(cfun->static_chain_decl != NULL && sign < 0))
f8f26adc 544 {
68ee6df6 545 rtx r3 = gen_rtx_REG (Pmode, 3);
c72ea086 546 F (emit_insn (gen_movhi (r3, GEN_INT (sign * size))), in_prologue);
18674659 547 F (emit_insn (gen_addhi3 (stack_pointer_rtx,
c72ea086 548 stack_pointer_rtx, r3)), in_prologue);
7b3d4613
KH
549 }
550 else
551 {
68ee6df6
KH
552 /* The stack adjustment made here is further optimized by the
553 splitter. In case of H8/300, the splitter always splits the
18674659
DD
554 addition emitted here to make the adjustment interrupt-safe.
555 FIXME: We don't always tag those, because we don't know what
556 the splitter will do. */
72b1de44 557 if (Pmode == HImode)
18674659 558 {
e7041fcc
DM
559 rtx_insn *x = emit_insn (gen_addhi3 (stack_pointer_rtx,
560 stack_pointer_rtx,
561 GEN_INT (sign * size)));
18674659 562 if (size < 4)
c72ea086 563 F (x, in_prologue);
18674659 564 }
72b1de44 565 else
18674659 566 F (emit_insn (gen_addsi3 (stack_pointer_rtx,
c72ea086 567 stack_pointer_rtx, GEN_INT (sign * size))), in_prologue);
07aae5c2
SC
568 }
569}
570
8682223f
KH
571/* Round up frame size SIZE. */
572
e68d4dd1
UB
573static HOST_WIDE_INT
574round_frame_size (HOST_WIDE_INT size)
8682223f 575{
489eda65
KH
576 return ((size + STACK_BOUNDARY / BITS_PER_UNIT - 1)
577 & -STACK_BOUNDARY / BITS_PER_UNIT);
8682223f
KH
578}
579
580/* Compute which registers to push/pop.
581 Return a bit vector of registers. */
582
583static unsigned int
cb713a8d 584compute_saved_regs (void)
8682223f
KH
585{
586 unsigned int saved_regs = 0;
587 int regno;
588
589 /* Construct a bit vector of registers to be pushed/popped. */
1807b726 590 for (regno = 0; regno <= HARD_FRAME_POINTER_REGNUM; regno++)
8682223f
KH
591 {
592 if (WORD_REG_USED (regno))
593 saved_regs |= 1 << regno;
594 }
595
596 /* Don't push/pop the frame pointer as it is treated separately. */
597 if (frame_pointer_needed)
1807b726 598 saved_regs &= ~(1 << HARD_FRAME_POINTER_REGNUM);
8682223f
KH
599
600 return saved_regs;
601}
602
68ee6df6 603/* Emit an insn to push register RN. */
8682223f 604
8f1594b2 605static rtx
1901e8d6 606push (int rn, bool in_prologue)
8682223f 607{
68ee6df6
KH
608 rtx reg = gen_rtx_REG (word_mode, rn);
609 rtx x;
610
513f31eb 611 if (TARGET_H8300)
68ee6df6 612 x = gen_push_h8300 (reg);
f24f0897 613 else if (!TARGET_NORMAL_MODE)
32da7865 614 x = gen_push_h8300hs_advanced (reg);
f24f0897
KH
615 else
616 x = gen_push_h8300hs_normal (reg);
1901e8d6 617 x = F (emit_insn (x), in_prologue);
9690aa8e 618 add_reg_note (x, REG_INC, stack_pointer_rtx);
8f1594b2 619 return x;
8682223f
KH
620}
621
68ee6df6 622/* Emit an insn to pop register RN. */
8682223f 623
8f1594b2 624static rtx
cb713a8d 625pop (int rn)
8682223f 626{
68ee6df6
KH
627 rtx reg = gen_rtx_REG (word_mode, rn);
628 rtx x;
629
513f31eb 630 if (TARGET_H8300)
68ee6df6 631 x = gen_pop_h8300 (reg);
f24f0897 632 else if (!TARGET_NORMAL_MODE)
32da7865 633 x = gen_pop_h8300hs_advanced (reg);
f24f0897
KH
634 else
635 x = gen_pop_h8300hs_normal (reg);
68ee6df6 636 x = emit_insn (x);
9690aa8e 637 add_reg_note (x, REG_INC, stack_pointer_rtx);
8f1594b2 638 return x;
8682223f 639}
07aae5c2 640
beed8fc0
AO
641/* Emit an instruction to push or pop NREGS consecutive registers
642 starting at register REGNO. POP_P selects a pop rather than a
643 push and RETURN_P is true if the instruction should return.
644
645 It must be possible to do the requested operation in a single
646 instruction. If NREGS == 1 && !RETURN_P, use a normal push
647 or pop insn. Otherwise emit a parallel of the form:
648
649 (parallel
650 [(return) ;; if RETURN_P
651 (save or restore REGNO)
652 (save or restore REGNO + 1)
653 ...
654 (save or restore REGNO + NREGS - 1)
655 (set sp (plus sp (const_int adjust)))] */
656
657static void
ac447f25 658h8300_push_pop (int regno, int nregs, bool pop_p, bool return_p)
beed8fc0
AO
659{
660 int i, j;
661 rtvec vec;
18674659 662 rtx sp, offset, x;
beed8fc0
AO
663
664 /* See whether we can use a simple push or pop. */
665 if (!return_p && nregs == 1)
666 {
667 if (pop_p)
668 pop (regno);
669 else
1901e8d6 670 push (regno, false);
beed8fc0
AO
671 return;
672 }
673
674 /* We need one element for the return insn, if present, one for each
675 register, and one for stack adjustment. */
ac447f25 676 vec = rtvec_alloc ((return_p ? 1 : 0) + nregs + 1);
beed8fc0
AO
677 sp = stack_pointer_rtx;
678 i = 0;
679
680 /* Add the return instruction. */
681 if (return_p)
682 {
3810076b 683 RTVEC_ELT (vec, i) = ret_rtx;
beed8fc0
AO
684 i++;
685 }
686
687 /* Add the register moves. */
688 for (j = 0; j < nregs; j++)
689 {
690 rtx lhs, rhs;
691
692 if (pop_p)
693 {
694 /* Register REGNO + NREGS - 1 is popped first. Before the
695 stack adjustment, its slot is at address @sp. */
696 lhs = gen_rtx_REG (SImode, regno + j);
0a81f074
RS
697 rhs = gen_rtx_MEM (SImode, plus_constant (Pmode, sp,
698 (nregs - j - 1) * 4));
beed8fc0
AO
699 }
700 else
701 {
702 /* Register REGNO is pushed first and will be stored at @(-4,sp). */
0a81f074 703 lhs = gen_rtx_MEM (SImode, plus_constant (Pmode, sp, (j + 1) * -4));
beed8fc0
AO
704 rhs = gen_rtx_REG (SImode, regno + j);
705 }
f7df4a84 706 RTVEC_ELT (vec, i + j) = gen_rtx_SET (lhs, rhs);
beed8fc0
AO
707 }
708
709 /* Add the stack adjustment. */
710 offset = GEN_INT ((pop_p ? nregs : -nregs) * 4);
f7df4a84 711 RTVEC_ELT (vec, i + j) = gen_rtx_SET (sp, gen_rtx_PLUS (Pmode, sp, offset));
beed8fc0 712
18674659
DD
713 x = gen_rtx_PARALLEL (VOIDmode, vec);
714 if (!pop_p)
715 x = Fpa (x);
ac447f25
NC
716
717 if (return_p)
718 emit_jump_insn (x);
719 else
720 emit_insn (x);
beed8fc0
AO
721}
722
723/* Return true if X has the value sp + OFFSET. */
724
725static int
726h8300_stack_offset_p (rtx x, int offset)
727{
728 if (offset == 0)
729 return x == stack_pointer_rtx;
730
731 return (GET_CODE (x) == PLUS
732 && XEXP (x, 0) == stack_pointer_rtx
733 && GET_CODE (XEXP (x, 1)) == CONST_INT
734 && INTVAL (XEXP (x, 1)) == offset);
735}
736
737/* A subroutine of h8300_ldm_stm_parallel. X is one pattern in
738 something that may be an ldm or stm instruction. If it fits
739 the required template, return the register it loads or stores,
740 otherwise return -1.
741
742 LOAD_P is true if X should be a load, false if it should be a store.
743 NREGS is the number of registers that the whole instruction is expected
744 to load or store. INDEX is the index of the register that X should
745 load or store, relative to the lowest-numbered register. */
746
747static int
748h8300_ldm_stm_regno (rtx x, int load_p, int index, int nregs)
749{
750 int regindex, memindex, offset;
751
752 if (load_p)
753 regindex = 0, memindex = 1, offset = (nregs - index - 1) * 4;
754 else
755 memindex = 0, regindex = 1, offset = (index + 1) * -4;
756
757 if (GET_CODE (x) == SET
758 && GET_CODE (XEXP (x, regindex)) == REG
759 && GET_CODE (XEXP (x, memindex)) == MEM
760 && h8300_stack_offset_p (XEXP (XEXP (x, memindex), 0), offset))
761 return REGNO (XEXP (x, regindex));
762
763 return -1;
764}
765
766/* Return true if the elements of VEC starting at FIRST describe an
767 ldm or stm instruction (LOAD_P says which). */
768
981c7dce 769int
beed8fc0
AO
770h8300_ldm_stm_parallel (rtvec vec, int load_p, int first)
771{
772 rtx last;
773 int nregs, i, regno, adjust;
774
775 /* There must be a stack adjustment, a register move, and at least one
776 other operation (a return or another register move). */
777 if (GET_NUM_ELEM (vec) < 3)
778 return false;
779
780 /* Get the range of registers to be pushed or popped. */
781 nregs = GET_NUM_ELEM (vec) - first - 1;
782 regno = h8300_ldm_stm_regno (RTVEC_ELT (vec, first), load_p, 0, nregs);
783
784 /* Check that the call to h8300_ldm_stm_regno succeeded and
785 that we're only dealing with GPRs. */
786 if (regno < 0 || regno + nregs > 8)
787 return false;
788
789 /* 2-register h8s instructions must start with an even-numbered register.
790 3- and 4-register instructions must start with er0 or er4. */
791 if (!TARGET_H8300SX)
792 {
793 if ((regno & 1) != 0)
794 return false;
795 if (nregs > 2 && (regno & 3) != 0)
796 return false;
797 }
798
799 /* Check the other loads or stores. */
800 for (i = 1; i < nregs; i++)
801 if (h8300_ldm_stm_regno (RTVEC_ELT (vec, first + i), load_p, i, nregs)
802 != regno + i)
803 return false;
804
805 /* Check the stack adjustment. */
806 last = RTVEC_ELT (vec, first + nregs);
807 adjust = (load_p ? nregs : -nregs) * 4;
808 return (GET_CODE (last) == SET
809 && SET_DEST (last) == stack_pointer_rtx
810 && h8300_stack_offset_p (SET_SRC (last), adjust));
811}
812
f0b6f9a6 813/* This is what the stack looks like after the prolog of
07aae5c2
SC
814 a function with a frame has been set up:
815
48837e29
DE
816 <args>
817 PC
818 FP <- fp
819 <locals>
8bd06267 820 <saved registers> <- sp
07aae5c2
SC
821
822 This is what the stack looks like after the prolog of
823 a function which doesn't have a frame:
824
48837e29
DE
825 <args>
826 PC
827 <locals>
8bd06267 828 <saved registers> <- sp
07aae5c2
SC
829*/
830
68ee6df6 831/* Generate RTL code for the function prologue. */
8682223f 832
68ee6df6 833void
cb713a8d 834h8300_expand_prologue (void)
07aae5c2 835{
e651d484 836 int regno;
8682223f 837 int saved_regs;
cda4bd43 838 int n_regs;
07aae5c2 839
fabe72bb
JL
840 /* If the current function has the OS_Task attribute set, then
841 we have a naked prologue. */
842 if (h8300_os_task_function_p (current_function_decl))
68ee6df6 843 return;
fabe72bb
JL
844
845 if (h8300_monitor_function_p (current_function_decl))
f4ea8112
SKS
846 /* The monitor function act as normal functions, which means it
847 can accept parameters and return values. In addition to this,
848 interrupts are masked in prologue and return with "rte" in epilogue. */
68ee6df6 849 emit_insn (gen_monitor_prologue ());
fabe72bb 850
48837e29
DE
851 if (frame_pointer_needed)
852 {
07e4d94e 853 /* Push fp. */
1901e8d6 854 push (HARD_FRAME_POINTER_REGNUM, true);
ac447f25 855 F (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx), true);
a1616dd9 856 }
48837e29 857
8682223f
KH
858 /* Push the rest of the registers in ascending order. */
859 saved_regs = compute_saved_regs ();
e651d484 860 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno += n_regs)
cda4bd43 861 {
cda4bd43 862 n_regs = 1;
8682223f 863 if (saved_regs & (1 << regno))
a1616dd9
JL
864 {
865 if (TARGET_H8300S)
866 {
cda4bd43 867 /* See how many registers we can push at the same time. */
beed8fc0 868 if ((!TARGET_H8300SX || (regno & 3) == 0)
8682223f 869 && ((saved_regs >> regno) & 0x0f) == 0x0f)
cda4bd43
KH
870 n_regs = 4;
871
beed8fc0 872 else if ((!TARGET_H8300SX || (regno & 3) == 0)
8682223f 873 && ((saved_regs >> regno) & 0x07) == 0x07)
cda4bd43
KH
874 n_regs = 3;
875
beed8fc0 876 else if ((!TARGET_H8300SX || (regno & 1) == 0)
8682223f 877 && ((saved_regs >> regno) & 0x03) == 0x03)
cda4bd43 878 n_regs = 2;
a1616dd9 879 }
cda4bd43 880
ac447f25 881 h8300_push_pop (regno, n_regs, false, false);
07aae5c2
SC
882 }
883 }
1807b726
KH
884
885 /* Leave room for locals. */
c72ea086 886 h8300_emit_stack_adjustment (-1, round_frame_size (get_frame_size ()), true);
ed1332ee
NC
887
888 if (flag_stack_usage_info)
889 current_function_static_stack_size
890 = round_frame_size (get_frame_size ())
891 + (__builtin_popcount (saved_regs) * UNITS_PER_WORD)
892 + (frame_pointer_needed ? UNITS_PER_WORD : 0);
07aae5c2
SC
893}
894
e9eba255
KH
895/* Return nonzero if we can use "rts" for the function currently being
896 compiled. */
897
68ee6df6 898int
cb713a8d 899h8300_can_use_return_insn_p (void)
68ee6df6
KH
900{
901 return (reload_completed
902 && !frame_pointer_needed
903 && get_frame_size () == 0
904 && compute_saved_regs () == 0);
905}
07aae5c2 906
68ee6df6
KH
907/* Generate RTL code for the function epilogue. */
908
909void
cb713a8d 910h8300_expand_epilogue (void)
07aae5c2 911{
e651d484 912 int regno;
8682223f 913 int saved_regs;
cda4bd43 914 int n_regs;
beed8fc0
AO
915 HOST_WIDE_INT frame_size;
916 bool returned_p;
07aae5c2 917
e392d367 918 if (h8300_os_task_function_p (current_function_decl))
68ee6df6
KH
919 /* OS_Task epilogues are nearly naked -- they just have an
920 rts instruction. */
921 return;
07aae5c2 922
beed8fc0
AO
923 frame_size = round_frame_size (get_frame_size ());
924 returned_p = false;
925
1807b726 926 /* Deallocate locals. */
c72ea086 927 h8300_emit_stack_adjustment (1, frame_size, false);
1807b726 928
8682223f
KH
929 /* Pop the saved registers in descending order. */
930 saved_regs = compute_saved_regs ();
e651d484 931 for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno -= n_regs)
cda4bd43 932 {
cda4bd43 933 n_regs = 1;
8682223f 934 if (saved_regs & (1 << regno))
07aae5c2 935 {
a1616dd9
JL
936 if (TARGET_H8300S)
937 {
cda4bd43 938 /* See how many registers we can pop at the same time. */
beed8fc0
AO
939 if ((TARGET_H8300SX || (regno & 3) == 3)
940 && ((saved_regs << 3 >> regno) & 0x0f) == 0x0f)
cda4bd43
KH
941 n_regs = 4;
942
beed8fc0
AO
943 else if ((TARGET_H8300SX || (regno & 3) == 2)
944 && ((saved_regs << 2 >> regno) & 0x07) == 0x07)
cda4bd43
KH
945 n_regs = 3;
946
beed8fc0
AO
947 else if ((TARGET_H8300SX || (regno & 1) == 1)
948 && ((saved_regs << 1 >> regno) & 0x03) == 0x03)
cda4bd43 949 n_regs = 2;
a1616dd9 950 }
cda4bd43 951
beed8fc0
AO
952 /* See if this pop would be the last insn before the return.
953 If so, use rte/l or rts/l instead of pop or ldm.l. */
954 if (TARGET_H8300SX
955 && !frame_pointer_needed
956 && frame_size == 0
957 && (saved_regs & ((1 << (regno - n_regs + 1)) - 1)) == 0)
958 returned_p = true;
959
ac447f25 960 h8300_push_pop (regno - n_regs + 1, n_regs, true, returned_p);
07aae5c2 961 }
07aae5c2 962 }
48837e29 963
07e4d94e 964 /* Pop frame pointer if we had one. */
a1616dd9 965 if (frame_pointer_needed)
beed8fc0
AO
966 {
967 if (TARGET_H8300SX)
968 returned_p = true;
ac447f25 969 h8300_push_pop (HARD_FRAME_POINTER_REGNUM, 1, true, returned_p);
beed8fc0
AO
970 }
971
972 if (!returned_p)
3810076b 973 emit_jump_insn (ret_rtx);
68ee6df6 974}
a1616dd9 975
e392d367
KH
976/* Return nonzero if the current function is an interrupt
977 function. */
978
979int
cb713a8d 980h8300_current_function_interrupt_function_p (void)
e392d367 981{
f4ea8112
SKS
982 return (h8300_interrupt_function_p (current_function_decl));
983}
984
985int
986h8300_current_function_monitor_function_p ()
987{
988 return (h8300_monitor_function_p (current_function_decl));
e392d367
KH
989}
990
48837e29
DE
991/* Output assembly code for the start of the file. */
992
1bc7c5b6
ZW
993static void
994h8300_file_start (void)
48837e29 995{
1bc7c5b6 996 default_file_start ();
8bd06267 997
2f6bd6eb 998 if (TARGET_H8300SX)
beed8fc0 999 fputs (TARGET_NORMAL_MODE ? "\t.h8300sxn\n" : "\t.h8300sx\n", asm_out_file);
a1616dd9 1000 else if (TARGET_H8300S)
1bc7c5b6 1001 fputs (TARGET_NORMAL_MODE ? "\t.h8300sn\n" : "\t.h8300s\n", asm_out_file);
2f6bd6eb
YS
1002 else if (TARGET_H8300H)
1003 fputs (TARGET_NORMAL_MODE ? "\t.h8300hn\n" : "\t.h8300h\n", asm_out_file);
48837e29
DE
1004}
1005
1006/* Output assembly language code for the end of file. */
1007
a5fe455b 1008static void
cb713a8d 1009h8300_file_end (void)
48837e29 1010{
a5fe455b 1011 fputs ("\t.end\n", asm_out_file);
07aae5c2
SC
1012}
1013\f
3cee1a78
KH
1014/* Split an add of a small constant into two adds/subs insns.
1015
1016 If USE_INCDEC_P is nonzero, we generate the last insn using inc/dec
1017 instead of adds/subs. */
009ac3d3
RH
1018
1019void
ef4bddc2 1020split_adds_subs (machine_mode mode, rtx *operands)
3b7d443c 1021{
009ac3d3
RH
1022 HOST_WIDE_INT val = INTVAL (operands[1]);
1023 rtx reg = operands[0];
9492393e
KH
1024 HOST_WIDE_INT sign = 1;
1025 HOST_WIDE_INT amount;
590734b6 1026 rtx (*gen_add) (rtx, rtx, rtx);
3b7d443c 1027
9492393e
KH
1028 /* Force VAL to be positive so that we do not have to consider the
1029 sign. */
1030 if (val < 0)
3b7d443c 1031 {
9492393e
KH
1032 val = -val;
1033 sign = -1;
1034 }
3b7d443c 1035
3cee1a78
KH
1036 switch (mode)
1037 {
4e10a5a7 1038 case E_HImode:
590734b6 1039 gen_add = gen_addhi3;
3cee1a78
KH
1040 break;
1041
4e10a5a7 1042 case E_SImode:
590734b6 1043 gen_add = gen_addsi3;
3cee1a78
KH
1044 break;
1045
1046 default:
8c440872 1047 gcc_unreachable ();
3cee1a78
KH
1048 }
1049
9492393e
KH
1050 /* Try different amounts in descending order. */
1051 for (amount = (TARGET_H8300H || TARGET_H8300S) ? 4 : 2;
1052 amount > 0;
1053 amount /= 2)
1054 {
1a63219b 1055 for (; val >= amount; val -= amount)
590734b6 1056 emit_insn (gen_add (reg, reg, GEN_INT (sign * amount)));
3b7d443c
JL
1057 }
1058
9492393e 1059 return;
3b7d443c
JL
1060}
1061
07aae5c2 1062/* Handle machine specific pragmas for compatibility with existing
48837e29 1063 compilers for the H8/300.
07aae5c2 1064
f411c849 1065 pragma saveall generates prologue/epilogue code which saves and
07aae5c2 1066 restores all the registers on function entry.
48837e29 1067
07aae5c2
SC
1068 pragma interrupt saves and restores all registers, and exits with
1069 an rte instruction rather than an rts. A pointer to a function
1070 with this attribute may be safely used in an interrupt vector. */
48837e29 1071
8b97c5f8 1072void
cb713a8d 1073h8300_pr_interrupt (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
07aae5c2 1074{
e392d367 1075 pragma_interrupt = 1;
8b97c5f8 1076}
05a81fe5 1077
8b97c5f8 1078void
cb713a8d 1079h8300_pr_saveall (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
8b97c5f8
ZW
1080{
1081 pragma_saveall = 1;
07aae5c2 1082}
8b97c5f8 1083
64bead4c
KH
1084/* If the next function argument with MODE and TYPE is to be passed in
1085 a register, return a reg RTX for the hard register in which to pass
1086 the argument. CUM represents the state after the last argument.
56f9413b 1087 If the argument is to be pushed, NULL_RTX is returned.
48837e29 1088
56f9413b
NF
1089 On the H8/300 all normal args are pushed, unless -mquickcall in which
1090 case the first 3 arguments are passed in registers. */
1091
1092static rtx
ef4bddc2 1093h8300_function_arg (cumulative_args_t cum_v, machine_mode mode,
56f9413b 1094 const_tree type, bool named)
07aae5c2 1095{
d5cc9181
JR
1096 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1097
0ea6f6a0
KH
1098 static const char *const hand_list[] = {
1099 "__main",
1100 "__cmpsi2",
1101 "__divhi3",
1102 "__modhi3",
1103 "__udivhi3",
1104 "__umodhi3",
1105 "__divsi3",
1106 "__modsi3",
1107 "__udivsi3",
1108 "__umodsi3",
1109 "__mulhi3",
1110 "__mulsi3",
1111 "__reg_memcpy",
1112 "__reg_memset",
1113 "__ucmpsi2",
1114 0,
1115 };
1116
7192cbf1 1117 rtx result = NULL_RTX;
441d04c6 1118 const char *fname;
48837e29
DE
1119 int regpass = 0;
1120
dd07092e
JL
1121 /* Never pass unnamed arguments in registers. */
1122 if (!named)
7192cbf1 1123 return NULL_RTX;
dd07092e 1124
48837e29
DE
1125 /* Pass 3 regs worth of data in regs when user asked on the command line. */
1126 if (TARGET_QUICKCALL)
1127 regpass = 3;
1128
1129 /* If calling hand written assembler, use 4 regs of args. */
48837e29
DE
1130 if (cum->libcall)
1131 {
441d04c6 1132 const char * const *p;
48837e29
DE
1133
1134 fname = XSTR (cum->libcall, 0);
1135
1136 /* See if this libcall is one of the hand coded ones. */
48837e29
DE
1137 for (p = hand_list; *p && strcmp (*p, fname) != 0; p++)
1138 ;
07aae5c2 1139
48837e29
DE
1140 if (*p)
1141 regpass = 4;
1142 }
1143
1144 if (regpass)
1145 {
1146 int size;
1147
1148 if (mode == BLKmode)
1149 size = int_size_in_bytes (type);
1150 else
1151 size = GET_MODE_SIZE (mode);
1152
15e0e275
KH
1153 if (size + cum->nbytes <= regpass * UNITS_PER_WORD
1154 && cum->nbytes / UNITS_PER_WORD <= 3)
1155 result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
48837e29 1156 }
07aae5c2 1157
48837e29
DE
1158 return result;
1159}
56f9413b
NF
1160
1161/* Update the data in CUM to advance over an argument
1162 of mode MODE and data type TYPE.
1163 (TYPE is null for libcalls where that information may not be available.) */
1164
1165static void
ef4bddc2 1166h8300_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
56f9413b
NF
1167 const_tree type, bool named ATTRIBUTE_UNUSED)
1168{
d5cc9181
JR
1169 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1170
56f9413b
NF
1171 cum->nbytes += (mode != BLKmode
1172 ? (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD
1173 : (int_size_in_bytes (type) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD);
1174}
1175
48837e29 1176\f
88cb339e
N
1177/* Implements TARGET_REGISTER_MOVE_COST.
1178
1179 Any SI register-to-register move may need to be reloaded,
1180 so inmplement h8300_register_move_cost to return > 2 so that reload never
1181 shortcuts. */
1182
1183static int
ef4bddc2 1184h8300_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
88cb339e
N
1185 reg_class_t from, reg_class_t to)
1186{
1187 if (from == MAC_REGS || to == MAC_REG)
1188 return 6;
1189 else
1190 return 3;
1191}
1192
e9eba255
KH
1193/* Compute the cost of an and insn. */
1194
3c50106f 1195static int
cb713a8d 1196h8300_and_costs (rtx x)
73cc75e9
KH
1197{
1198 rtx operands[4];
1199
1200 if (GET_MODE (x) == QImode)
1201 return 1;
1202
1203 if (GET_MODE (x) != HImode
1204 && GET_MODE (x) != SImode)
1205 return 100;
1206
1207 operands[0] = NULL;
beed8fc0 1208 operands[1] = XEXP (x, 0);
73cc75e9
KH
1209 operands[2] = XEXP (x, 1);
1210 operands[3] = x;
4f4ebda3 1211 return compute_logical_op_length (GET_MODE (x), operands) / 2;
73cc75e9
KH
1212}
1213
e9eba255
KH
1214/* Compute the cost of a shift insn. */
1215
3c50106f 1216static int
cb713a8d 1217h8300_shift_costs (rtx x)
ae557002
KH
1218{
1219 rtx operands[4];
1220
1221 if (GET_MODE (x) != QImode
1222 && GET_MODE (x) != HImode
1223 && GET_MODE (x) != SImode)
1224 return 100;
1225
1226 operands[0] = NULL;
1227 operands[1] = NULL;
1228 operands[2] = XEXP (x, 1);
1229 operands[3] = x;
4f4ebda3 1230 return compute_a_shift_length (NULL, operands) / 2;
ae557002 1231}
3c50106f 1232
e9eba255
KH
1233/* Worker function for TARGET_RTX_COSTS. */
1234
3c50106f 1235static bool
e548c9df
AM
1236h8300_rtx_costs (rtx x, machine_mode mode ATTRIBUTE_UNUSED, int outer_code,
1237 int opno ATTRIBUTE_UNUSED, int *total, bool speed)
3c50106f 1238{
e548c9df
AM
1239 int code = GET_CODE (x);
1240
beed8fc0
AO
1241 if (TARGET_H8300SX && outer_code == MEM)
1242 {
1243 /* Estimate the number of execution states needed to calculate
1244 the address. */
1245 if (register_operand (x, VOIDmode)
1246 || GET_CODE (x) == POST_INC
1247 || GET_CODE (x) == POST_DEC
1248 || CONSTANT_P (x))
1249 *total = 0;
1250 else
1251 *total = COSTS_N_INSNS (1);
1252 return true;
1253 }
1254
3c50106f
RH
1255 switch (code)
1256 {
08dca707
KH
1257 case CONST_INT:
1258 {
1259 HOST_WIDE_INT n = INTVAL (x);
1260
beed8fc0
AO
1261 if (TARGET_H8300SX)
1262 {
1263 /* Constant operands need the same number of processor
1264 states as register operands. Although we could try to
f40751dd 1265 use a size-based cost for !speed, the lack of
beed8fc0
AO
1266 of a mode makes the results very unpredictable. */
1267 *total = 0;
1268 return true;
1269 }
01512446 1270 if (n >= -4 && n <= 4)
08dca707
KH
1271 {
1272 switch ((int) n)
1273 {
1274 case 0:
1275 *total = 0;
1276 return true;
1277 case 1:
1278 case 2:
1279 case -1:
1280 case -2:
1281 *total = 0 + (outer_code == SET);
1282 return true;
1283 case 4:
1284 case -4:
1285 if (TARGET_H8300H || TARGET_H8300S)
1286 *total = 0 + (outer_code == SET);
1287 else
1288 *total = 1;
1289 return true;
1290 }
1291 }
1292 *total = 1;
1293 return true;
1294 }
1295
1296 case CONST:
1297 case LABEL_REF:
1298 case SYMBOL_REF:
beed8fc0
AO
1299 if (TARGET_H8300SX)
1300 {
1301 /* See comment for CONST_INT. */
1302 *total = 0;
1303 return true;
1304 }
08dca707
KH
1305 *total = 3;
1306 return true;
1307
1308 case CONST_DOUBLE:
1309 *total = 20;
1310 return true;
1311
f90b7a5a
PB
1312 case COMPARE:
1313 if (XEXP (x, 1) == const0_rtx)
1314 *total = 0;
1315 return false;
1316
3c50106f 1317 case AND:
beed8fc0
AO
1318 if (!h8300_dst_operand (XEXP (x, 0), VOIDmode)
1319 || !h8300_src_operand (XEXP (x, 1), VOIDmode))
1320 return false;
3c50106f
RH
1321 *total = COSTS_N_INSNS (h8300_and_costs (x));
1322 return true;
1323
1324 /* We say that MOD and DIV are so expensive because otherwise we'll
1325 generate some really horrible code for division of a power of two. */
1326 case MOD:
1327 case DIV:
beed8fc0
AO
1328 case UMOD:
1329 case UDIV:
1330 if (TARGET_H8300SX)
1331 switch (GET_MODE (x))
1332 {
4e10a5a7
RS
1333 case E_QImode:
1334 case E_HImode:
f40751dd 1335 *total = COSTS_N_INSNS (!speed ? 4 : 10);
beed8fc0
AO
1336 return false;
1337
4e10a5a7 1338 case E_SImode:
f40751dd 1339 *total = COSTS_N_INSNS (!speed ? 4 : 18);
beed8fc0
AO
1340 return false;
1341
1342 default:
1343 break;
1344 }
1345 *total = COSTS_N_INSNS (12);
3c50106f
RH
1346 return true;
1347
1348 case MULT:
beed8fc0
AO
1349 if (TARGET_H8300SX)
1350 switch (GET_MODE (x))
1351 {
4e10a5a7
RS
1352 case E_QImode:
1353 case E_HImode:
beed8fc0
AO
1354 *total = COSTS_N_INSNS (2);
1355 return false;
1356
4e10a5a7 1357 case E_SImode:
beed8fc0
AO
1358 *total = COSTS_N_INSNS (5);
1359 return false;
1360
1361 default:
1362 break;
1363 }
1364 *total = COSTS_N_INSNS (4);
3c50106f
RH
1365 return true;
1366
1367 case ASHIFT:
1368 case ASHIFTRT:
1369 case LSHIFTRT:
beed8fc0
AO
1370 if (h8sx_binary_shift_operator (x, VOIDmode))
1371 {
1372 *total = COSTS_N_INSNS (2);
1373 return false;
1374 }
1375 else if (h8sx_unary_shift_operator (x, VOIDmode))
1376 {
1377 *total = COSTS_N_INSNS (1);
1378 return false;
1379 }
3c50106f
RH
1380 *total = COSTS_N_INSNS (h8300_shift_costs (x));
1381 return true;
1382
1383 case ROTATE:
1384 case ROTATERT:
1385 if (GET_MODE (x) == HImode)
1386 *total = 2;
1387 else
1388 *total = 8;
1389 return true;
1390
1391 default:
beed8fc0
AO
1392 *total = COSTS_N_INSNS (1);
1393 return false;
3c50106f
RH
1394 }
1395}
48837e29 1396\f
07aae5c2
SC
1397/* Documentation for the machine specific operand escapes:
1398
48837e29
DE
1399 'E' like s but negative.
1400 'F' like t but negative.
1401 'G' constant just the negative
15dc331e
JL
1402 'R' print operand as a byte:8 address if appropriate, else fall back to
1403 'X' handling.
48837e29 1404 'S' print operand as a long word
07aae5c2 1405 'T' print operand as a word
48837e29
DE
1406 'V' find the set bit, and print its number.
1407 'W' find the clear bit, and print its number.
1408 'X' print operand as a byte
07aae5c2 1409 'Y' print either l or h depending on whether last 'Z' operand < 8 or >= 8.
15dc331e 1410 If this operand isn't a register, fall back to 'R' handling.
48837e29 1411 'Z' print int & 7.
b059c02a 1412 'c' print the opcode corresponding to rtl
da55315a 1413 'e' first word of 32-bit value - if reg, then least reg. if mem
48837e29 1414 then least. if const then most sig word
da55315a 1415 'f' second word of 32-bit value - if reg, then biggest reg. if mem
48837e29 1416 then +2. if const then least sig word
07aae5c2
SC
1417 'j' print operand as condition code.
1418 'k' print operand as reverse condition code.
beed8fc0
AO
1419 'm' convert an integer operand to a size suffix (.b, .w or .l)
1420 'o' print an integer without a leading '#'
da55315a
KH
1421 's' print as low byte of 16-bit value
1422 't' print as high byte of 16-bit value
1423 'w' print as low byte of 32-bit value
1424 'x' print as 2nd byte of 32-bit value
1425 'y' print as 3rd byte of 32-bit value
1426 'z' print as msb of 32-bit value
48837e29 1427*/
07aae5c2
SC
1428
1429/* Return assembly language string which identifies a comparison type. */
1430
441d04c6 1431static const char *
cb713a8d 1432cond_string (enum rtx_code code)
07aae5c2
SC
1433{
1434 switch (code)
1435 {
1436 case NE:
1437 return "ne";
1438 case EQ:
1439 return "eq";
1440 case GE:
1441 return "ge";
1442 case GT:
1443 return "gt";
1444 case LE:
1445 return "le";
1446 case LT:
1447 return "lt";
1448 case GEU:
1449 return "hs";
1450 case GTU:
1451 return "hi";
1452 case LEU:
1453 return "ls";
1454 case LTU:
1455 return "lo";
1456 default:
8c440872 1457 gcc_unreachable ();
07aae5c2
SC
1458 }
1459}
1460
1461/* Print operand X using operand code CODE to assembly language output file
1462 FILE. */
1463
88cb339e
N
1464static void
1465h8300_print_operand (FILE *file, rtx x, int code)
07aae5c2 1466{
269c14e1 1467 /* This is used for communication between codes V,W,Z and Y. */
07aae5c2
SC
1468 static int bitint;
1469
1470 switch (code)
1471 {
f46b8378
SKS
1472 case 'C':
1473 if (h8300_constant_length (x) == 2)
1474 fprintf (file, ":16");
1475 else
1476 fprintf (file, ":32");
1477 return;
48837e29
DE
1478 case 'E':
1479 switch (GET_CODE (x))
1480 {
1481 case REG:
1482 fprintf (file, "%sl", names_big[REGNO (x)]);
1483 break;
1484 case CONST_INT:
b47900aa 1485 fprintf (file, "#%ld", (-INTVAL (x)) & 0xff);
48837e29
DE
1486 break;
1487 default:
8c440872 1488 gcc_unreachable ();
48837e29
DE
1489 }
1490 break;
1491 case 'F':
1492 switch (GET_CODE (x))
1493 {
1494 case REG:
1495 fprintf (file, "%sh", names_big[REGNO (x)]);
1496 break;
1497 case CONST_INT:
b47900aa 1498 fprintf (file, "#%ld", ((-INTVAL (x)) & 0xff00) >> 8);
48837e29
DE
1499 break;
1500 default:
8c440872 1501 gcc_unreachable ();
48837e29
DE
1502 }
1503 break;
07aae5c2 1504 case 'G':
8c440872 1505 gcc_assert (GET_CODE (x) == CONST_INT);
b47900aa 1506 fprintf (file, "#%ld", 0xff & (-INTVAL (x)));
07aae5c2 1507 break;
48837e29
DE
1508 case 'S':
1509 if (GET_CODE (x) == REG)
1510 fprintf (file, "%s", names_extended[REGNO (x)]);
07aae5c2 1511 else
48837e29 1512 goto def;
07aae5c2 1513 break;
48837e29
DE
1514 case 'T':
1515 if (GET_CODE (x) == REG)
1516 fprintf (file, "%s", names_big[REGNO (x)]);
07aae5c2 1517 else
48837e29 1518 goto def;
07aae5c2 1519 break;
48837e29 1520 case 'V':
0f6b820c
KP
1521 bitint = (INTVAL (x) & 0xffff);
1522 if ((exact_log2 ((bitint >> 8) & 0xff)) == -1)
1523 bitint = exact_log2 (bitint & 0xff);
1524 else
1525 bitint = exact_log2 ((bitint >> 8) & 0xff);
8c440872 1526 gcc_assert (bitint >= 0);
4d4d89e2 1527 fprintf (file, "#%d", bitint);
07aae5c2 1528 break;
48837e29 1529 case 'W':
0f6b820c
KP
1530 bitint = ((~INTVAL (x)) & 0xffff);
1531 if ((exact_log2 ((bitint >> 8) & 0xff)) == -1 )
1532 bitint = exact_log2 (bitint & 0xff);
1533 else
1534 bitint = (exact_log2 ((bitint >> 8) & 0xff));
8c440872 1535 gcc_assert (bitint >= 0);
4d4d89e2 1536 fprintf (file, "#%d", bitint);
07aae5c2 1537 break;
15dc331e 1538 case 'R':
48837e29
DE
1539 case 'X':
1540 if (GET_CODE (x) == REG)
1541 fprintf (file, "%s", byte_reg (x, 0));
1542 else
1543 goto def;
1544 break;
1545 case 'Y':
8c440872 1546 gcc_assert (bitint >= 0);
48837e29
DE
1547 if (GET_CODE (x) == REG)
1548 fprintf (file, "%s%c", names_big[REGNO (x)], bitint > 7 ? 'h' : 'l');
1549 else
88cb339e 1550 h8300_print_operand (file, x, 'R');
48837e29
DE
1551 bitint = -1;
1552 break;
1553 case 'Z':
1554 bitint = INTVAL (x);
07aae5c2
SC
1555 fprintf (file, "#%d", bitint & 7);
1556 break;
b059c02a
KH
1557 case 'c':
1558 switch (GET_CODE (x))
1559 {
1560 case IOR:
1561 fprintf (file, "or");
1562 break;
1563 case XOR:
1564 fprintf (file, "xor");
1565 break;
5abfd1af
KH
1566 case AND:
1567 fprintf (file, "and");
1568 break;
b059c02a
KH
1569 default:
1570 break;
1571 }
1572 break;
07aae5c2
SC
1573 case 'e':
1574 switch (GET_CODE (x))
1575 {
1576 case REG:
48837e29
DE
1577 if (TARGET_H8300)
1578 fprintf (file, "%s", names_big[REGNO (x)]);
1579 else
1580 fprintf (file, "%s", names_upper_extended[REGNO (x)]);
07aae5c2
SC
1581 break;
1582 case MEM:
88cb339e 1583 h8300_print_operand (file, x, 0);
07aae5c2
SC
1584 break;
1585 case CONST_INT:
b47900aa 1586 fprintf (file, "#%ld", ((INTVAL (x) >> 16) & 0xffff));
07aae5c2 1587 break;
808fbfac
JL
1588 case CONST_DOUBLE:
1589 {
1590 long val;
34a72c33 1591 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
441d04c6 1592 fprintf (file, "#%ld", ((val >> 16) & 0xffff));
808fbfac
JL
1593 break;
1594 }
07aae5c2 1595 default:
8c440872 1596 gcc_unreachable ();
07aae5c2
SC
1597 break;
1598 }
1599 break;
07aae5c2
SC
1600 case 'f':
1601 switch (GET_CODE (x))
1602 {
1603 case REG:
48837e29
DE
1604 if (TARGET_H8300)
1605 fprintf (file, "%s", names_big[REGNO (x) + 1]);
1606 else
1607 fprintf (file, "%s", names_big[REGNO (x)]);
07aae5c2 1608 break;
07aae5c2 1609 case MEM:
b72f00af 1610 x = adjust_address (x, HImode, 2);
88cb339e 1611 h8300_print_operand (file, x, 0);
07aae5c2 1612 break;
07aae5c2 1613 case CONST_INT:
b47900aa 1614 fprintf (file, "#%ld", INTVAL (x) & 0xffff);
07aae5c2 1615 break;
808fbfac
JL
1616 case CONST_DOUBLE:
1617 {
1618 long val;
34a72c33 1619 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
441d04c6 1620 fprintf (file, "#%ld", (val & 0xffff));
808fbfac
JL
1621 break;
1622 }
07aae5c2 1623 default:
8c440872 1624 gcc_unreachable ();
07aae5c2
SC
1625 }
1626 break;
07aae5c2 1627 case 'j':
761c70aa 1628 fputs (cond_string (GET_CODE (x)), file);
07aae5c2 1629 break;
07aae5c2 1630 case 'k':
761c70aa 1631 fputs (cond_string (reverse_condition (GET_CODE (x))), file);
07aae5c2 1632 break;
beed8fc0 1633 case 'm':
8c440872
NS
1634 gcc_assert (GET_CODE (x) == CONST_INT);
1635 switch (INTVAL (x))
1636 {
1637 case 1:
1638 fputs (".b", file);
1639 break;
1640
1641 case 2:
1642 fputs (".w", file);
1643 break;
1644
1645 case 4:
1646 fputs (".l", file);
1647 break;
1648
1649 default:
1650 gcc_unreachable ();
1651 }
beed8fc0
AO
1652 break;
1653 case 'o':
cc8ca59e 1654 h8300_print_operand_address (file, VOIDmode, x);
beed8fc0 1655 break;
48837e29
DE
1656 case 's':
1657 if (GET_CODE (x) == CONST_INT)
b47900aa 1658 fprintf (file, "#%ld", (INTVAL (x)) & 0xff);
48837e29
DE
1659 else
1660 fprintf (file, "%s", byte_reg (x, 0));
1661 break;
1662 case 't':
1663 if (GET_CODE (x) == CONST_INT)
b47900aa 1664 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
48837e29
DE
1665 else
1666 fprintf (file, "%s", byte_reg (x, 1));
1667 break;
48837e29
DE
1668 case 'w':
1669 if (GET_CODE (x) == CONST_INT)
b47900aa 1670 fprintf (file, "#%ld", INTVAL (x) & 0xff);
48837e29 1671 else
a1616dd9
JL
1672 fprintf (file, "%s",
1673 byte_reg (x, TARGET_H8300 ? 2 : 0));
48837e29
DE
1674 break;
1675 case 'x':
1676 if (GET_CODE (x) == CONST_INT)
b47900aa 1677 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
48837e29 1678 else
a1616dd9
JL
1679 fprintf (file, "%s",
1680 byte_reg (x, TARGET_H8300 ? 3 : 1));
48837e29
DE
1681 break;
1682 case 'y':
1683 if (GET_CODE (x) == CONST_INT)
b47900aa 1684 fprintf (file, "#%ld", (INTVAL (x) >> 16) & 0xff);
48837e29
DE
1685 else
1686 fprintf (file, "%s", byte_reg (x, 0));
1687 break;
1688 case 'z':
1689 if (GET_CODE (x) == CONST_INT)
b47900aa 1690 fprintf (file, "#%ld", (INTVAL (x) >> 24) & 0xff);
48837e29
DE
1691 else
1692 fprintf (file, "%s", byte_reg (x, 1));
1693 break;
1694
07aae5c2 1695 default:
48837e29 1696 def:
07aae5c2
SC
1697 switch (GET_CODE (x))
1698 {
1699 case REG:
48837e29
DE
1700 switch (GET_MODE (x))
1701 {
4e10a5a7 1702 case E_QImode:
269c14e1 1703#if 0 /* Is it asm ("mov.b %0,r2l", ...) */
48837e29
DE
1704 fprintf (file, "%s", byte_reg (x, 0));
1705#else /* ... or is it asm ("mov.b %0l,r2l", ...) */
1706 fprintf (file, "%s", names_big[REGNO (x)]);
1707#endif
1708 break;
4e10a5a7 1709 case E_HImode:
48837e29
DE
1710 fprintf (file, "%s", names_big[REGNO (x)]);
1711 break;
4e10a5a7
RS
1712 case E_SImode:
1713 case E_SFmode:
48837e29
DE
1714 fprintf (file, "%s", names_extended[REGNO (x)]);
1715 break;
1716 default:
8c440872 1717 gcc_unreachable ();
48837e29 1718 }
07aae5c2
SC
1719 break;
1720
1721 case MEM:
87e4ee91
KH
1722 {
1723 rtx addr = XEXP (x, 0);
1724
1725 fprintf (file, "@");
cc8ca59e 1726 output_address (GET_MODE (x), addr);
87e4ee91 1727
beed8fc0
AO
1728 /* Add a length suffix to constant addresses. Although this
1729 is often unnecessary, it helps to avoid ambiguity in the
1730 syntax of mova. If we wrote an insn like:
1731
1732 mova/w.l @(1,@foo.b),er0
1733
1734 then .b would be considered part of the symbol name.
1735 Adding a length after foo will avoid this. */
1736 if (CONSTANT_P (addr))
1737 switch (code)
1738 {
1739 case 'R':
1740 /* Used for mov.b and bit operations. */
1741 if (h8300_eightbit_constant_address_p (addr))
1742 {
1743 fprintf (file, ":8");
1744 break;
1745 }
1746
451c15c2
JL
1747 /* FALLTHRU */
1748
1749 /* We should not get here if we are processing bit
1750 operations on H8/300 or H8/300H because 'U'
1751 constraint does not allow bit operations on the
1752 tiny area on these machines. */
beed8fc0
AO
1753
1754 case 'X':
1755 case 'T':
1756 case 'S':
1757 if (h8300_constant_length (addr) == 2)
1758 fprintf (file, ":16");
1759 else
1760 fprintf (file, ":32");
1761 break;
1762 default:
1763 break;
1764 }
87e4ee91 1765 }
07aae5c2
SC
1766 break;
1767
1768 case CONST_INT:
1769 case SYMBOL_REF:
1770 case CONST:
1771 case LABEL_REF:
1772 fprintf (file, "#");
cc8ca59e 1773 h8300_print_operand_address (file, VOIDmode, x);
07aae5c2 1774 break;
808fbfac
JL
1775 case CONST_DOUBLE:
1776 {
1777 long val;
34a72c33 1778 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
441d04c6 1779 fprintf (file, "#%ld", val);
808fbfac
JL
1780 break;
1781 }
441d04c6
KG
1782 default:
1783 break;
07aae5c2
SC
1784 }
1785 }
1786}
1787
88cb339e
N
1788/* Implements TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
1789
1790static bool
1791h8300_print_operand_punct_valid_p (unsigned char code)
1792{
1793 return (code == '#');
1794}
1795
07aae5c2
SC
1796/* Output assembly language output for the address ADDR to FILE. */
1797
88cb339e 1798static void
cc8ca59e 1799h8300_print_operand_address (FILE *file, machine_mode mode, rtx addr)
07aae5c2 1800{
beed8fc0
AO
1801 rtx index;
1802 int size;
1803
07aae5c2
SC
1804 switch (GET_CODE (addr))
1805 {
1806 case REG:
48837e29 1807 fprintf (file, "%s", h8_reg_names[REGNO (addr)]);
07aae5c2
SC
1808 break;
1809
1810 case PRE_DEC:
48837e29 1811 fprintf (file, "-%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
07aae5c2
SC
1812 break;
1813
1814 case POST_INC:
48837e29 1815 fprintf (file, "%s+", h8_reg_names[REGNO (XEXP (addr, 0))]);
07aae5c2
SC
1816 break;
1817
beed8fc0
AO
1818 case PRE_INC:
1819 fprintf (file, "+%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
1820 break;
1821
1822 case POST_DEC:
1823 fprintf (file, "%s-", h8_reg_names[REGNO (XEXP (addr, 0))]);
1824 break;
1825
07aae5c2
SC
1826 case PLUS:
1827 fprintf (file, "(");
beed8fc0
AO
1828
1829 index = h8300_get_index (XEXP (addr, 0), VOIDmode, &size);
1830 if (GET_CODE (index) == REG)
07aae5c2
SC
1831 {
1832 /* reg,foo */
cc8ca59e 1833 h8300_print_operand_address (file, mode, XEXP (addr, 1));
07aae5c2 1834 fprintf (file, ",");
beed8fc0
AO
1835 switch (size)
1836 {
1837 case 0:
cc8ca59e 1838 h8300_print_operand_address (file, mode, index);
beed8fc0
AO
1839 break;
1840
1841 case 1:
88cb339e 1842 h8300_print_operand (file, index, 'X');
beed8fc0
AO
1843 fputs (".b", file);
1844 break;
1845
1846 case 2:
88cb339e 1847 h8300_print_operand (file, index, 'T');
beed8fc0
AO
1848 fputs (".w", file);
1849 break;
1850
1851 case 4:
88cb339e 1852 h8300_print_operand (file, index, 'S');
beed8fc0
AO
1853 fputs (".l", file);
1854 break;
1855 }
88cb339e 1856 /* h8300_print_operand_address (file, XEXP (addr, 0)); */
07aae5c2
SC
1857 }
1858 else
1859 {
1860 /* foo+k */
cc8ca59e 1861 h8300_print_operand_address (file, mode, XEXP (addr, 0));
07aae5c2 1862 fprintf (file, "+");
cc8ca59e 1863 h8300_print_operand_address (file, mode, XEXP (addr, 1));
07aae5c2
SC
1864 }
1865 fprintf (file, ")");
1866 break;
1867
1868 case CONST_INT:
48837e29 1869 {
da55315a 1870 /* Since the H8/300 only has 16-bit pointers, negative values are also
48837e29
DE
1871 those >= 32768. This happens for example with pointer minus a
1872 constant. We don't want to turn (char *p - 2) into
1873 (char *p + 65534) because loop unrolling can build upon this
1874 (IE: char *p + 131068). */
1875 int n = INTVAL (addr);
1876 if (TARGET_H8300)
1877 n = (int) (short) n;
7a770d8b 1878 fprintf (file, "%d", n);
48837e29
DE
1879 break;
1880 }
07aae5c2
SC
1881
1882 default:
1883 output_addr_const (file, addr);
1884 break;
1885 }
1886}
1887\f
07aae5c2
SC
1888/* Output all insn addresses and their sizes into the assembly language
1889 output file. This is helpful for debugging whether the length attributes
1890 in the md file are correct. This is not meant to be a user selectable
1891 option. */
1892
1893void
e7041fcc 1894final_prescan_insn (rtx_insn *insn, rtx *operand ATTRIBUTE_UNUSED,
cb713a8d 1895 int num_operands ATTRIBUTE_UNUSED)
07aae5c2
SC
1896{
1897 /* This holds the last insn address. */
1898 static int last_insn_address = 0;
1899
7798db98 1900 const int uid = INSN_UID (insn);
07aae5c2
SC
1901
1902 if (TARGET_ADDRESSES)
1903 {
9d98a694
AO
1904 fprintf (asm_out_file, "; 0x%x %d\n", INSN_ADDRESSES (uid),
1905 INSN_ADDRESSES (uid) - last_insn_address);
1906 last_insn_address = INSN_ADDRESSES (uid);
07aae5c2
SC
1907 }
1908}
1909
48837e29
DE
1910/* Prepare for an SI sized move. */
1911
1912int
1a793acf 1913h8300_expand_movsi (rtx operands[])
07aae5c2 1914{
48837e29
DE
1915 rtx src = operands[1];
1916 rtx dst = operands[0];
1917 if (!reload_in_progress && !reload_completed)
1918 {
1919 if (!register_operand (dst, GET_MODE (dst)))
1920 {
1921 rtx tmp = gen_reg_rtx (GET_MODE (dst));
1922 emit_move_insn (tmp, src);
1923 operands[1] = tmp;
1924 }
1925 }
1926 return 0;
1927}
1928
7b5cbb57
AS
1929/* Given FROM and TO register numbers, say whether this elimination is allowed.
1930 Frame pointer elimination is automatically handled.
1931
1932 For the h8300, if frame pointer elimination is being done, we would like to
1933 convert ap and rp into sp, not fp.
1934
1935 All other eliminations are valid. */
1936
1937static bool
1938h8300_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
1939{
1940 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
1941}
1942
5efd84c5
NF
1943/* Conditionally modify register usage based on target flags. */
1944
1945static void
1946h8300_conditional_register_usage (void)
1947{
1948 if (!TARGET_MAC)
1949 fixed_regs[MAC_REG] = call_used_regs[MAC_REG] = 1;
1950}
1951
48837e29 1952/* Function for INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET).
07e4d94e
KH
1953 Define the offset between two registers, one to be eliminated, and
1954 the other its replacement, at the start of a routine. */
07aae5c2 1955
48837e29 1956int
cb713a8d 1957h8300_initial_elimination_offset (int from, int to)
48837e29 1958{
d18ad191
KH
1959 /* The number of bytes that the return address takes on the stack. */
1960 int pc_size = POINTER_SIZE / BITS_PER_UNIT;
48837e29 1961
1807b726
KH
1962 /* The number of bytes that the saved frame pointer takes on the stack. */
1963 int fp_size = frame_pointer_needed * UNITS_PER_WORD;
1964
1965 /* The number of bytes that the saved registers, excluding the frame
1966 pointer, take on the stack. */
1967 int saved_regs_size = 0;
48837e29 1968
1807b726
KH
1969 /* The number of bytes that the locals takes on the stack. */
1970 int frame_size = round_frame_size (get_frame_size ());
48837e29 1971
1807b726 1972 int regno;
48837e29 1973
1807b726
KH
1974 for (regno = 0; regno <= HARD_FRAME_POINTER_REGNUM; regno++)
1975 if (WORD_REG_USED (regno))
1976 saved_regs_size += UNITS_PER_WORD;
48837e29 1977
1807b726
KH
1978 /* Adjust saved_regs_size because the above loop took the frame
1979 pointer int account. */
1980 saved_regs_size -= fp_size;
39ba95b5 1981
8c440872 1982 switch (to)
1807b726 1983 {
8c440872 1984 case HARD_FRAME_POINTER_REGNUM:
1807b726
KH
1985 switch (from)
1986 {
1987 case ARG_POINTER_REGNUM:
1988 return pc_size + fp_size;
1989 case RETURN_ADDRESS_POINTER_REGNUM:
1990 return fp_size;
1991 case FRAME_POINTER_REGNUM:
1992 return -saved_regs_size;
1993 default:
8c440872 1994 gcc_unreachable ();
1807b726 1995 }
8c440872
NS
1996 break;
1997 case STACK_POINTER_REGNUM:
1807b726
KH
1998 switch (from)
1999 {
2000 case ARG_POINTER_REGNUM:
2001 return pc_size + saved_regs_size + frame_size;
2002 case RETURN_ADDRESS_POINTER_REGNUM:
2003 return saved_regs_size + frame_size;
2004 case FRAME_POINTER_REGNUM:
2005 return frame_size;
2006 default:
8c440872 2007 gcc_unreachable ();
1807b726 2008 }
8c440872
NS
2009 break;
2010 default:
2011 gcc_unreachable ();
1807b726 2012 }
8c440872 2013 gcc_unreachable ();
48837e29
DE
2014}
2015
e9eba255
KH
2016/* Worker function for RETURN_ADDR_RTX. */
2017
1aae372e 2018rtx
cb713a8d 2019h8300_return_addr_rtx (int count, rtx frame)
1aae372e
JL
2020{
2021 rtx ret;
2022
2023 if (count == 0)
2024 ret = gen_rtx_MEM (Pmode,
2025 gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM));
2026 else if (flag_omit_frame_pointer)
2027 return (rtx) 0;
2028 else
2029 ret = gen_rtx_MEM (Pmode,
2030 memory_address (Pmode,
0a81f074
RS
2031 plus_constant (Pmode, frame,
2032 UNITS_PER_WORD)));
1aae372e
JL
2033 set_mem_alias_set (ret, get_frame_alias_set ());
2034 return ret;
2035}
2036
48837e29
DE
2037/* Update the condition code from the insn. */
2038
441d04c6 2039void
e8a54173 2040notice_update_cc (rtx body, rtx_insn *insn)
48837e29 2041{
d99c740f
KH
2042 rtx set;
2043
48837e29
DE
2044 switch (get_attr_cc (insn))
2045 {
2046 case CC_NONE:
269c14e1 2047 /* Insn does not affect CC at all. */
48837e29
DE
2048 break;
2049
2050 case CC_NONE_0HIT:
269c14e1 2051 /* Insn does not change CC, but the 0'th operand has been changed. */
48837e29 2052 if (cc_status.value1 != 0
1ccbefce 2053 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
48837e29 2054 cc_status.value1 = 0;
d4d6d0ce
KH
2055 if (cc_status.value2 != 0
2056 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value2))
2057 cc_status.value2 = 0;
48837e29
DE
2058 break;
2059
065bbfe6 2060 case CC_SET_ZN:
1ccbefce 2061 /* Insn sets the Z,N flags of CC to recog_data.operand[0].
269c14e1
DE
2062 The V flag is unusable. The C flag may or may not be known but
2063 that's ok because alter_cond will change tests to use EQ/NE. */
48837e29 2064 CC_STATUS_INIT;
269c14e1 2065 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
d99c740f
KH
2066 set = single_set (insn);
2067 cc_status.value1 = SET_SRC (set);
2068 if (SET_DEST (set) != cc0_rtx)
2069 cc_status.value2 = SET_DEST (set);
48837e29
DE
2070 break;
2071
065bbfe6 2072 case CC_SET_ZNV:
1ccbefce 2073 /* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
065bbfe6
JL
2074 The C flag may or may not be known but that's ok because
2075 alter_cond will change tests to use EQ/NE. */
2076 CC_STATUS_INIT;
2077 cc_status.flags |= CC_NO_CARRY;
d99c740f
KH
2078 set = single_set (insn);
2079 cc_status.value1 = SET_SRC (set);
2080 if (SET_DEST (set) != cc0_rtx)
c8fcf20c
KH
2081 {
2082 /* If the destination is STRICT_LOW_PART, strip off
2083 STRICT_LOW_PART. */
2084 if (GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
2085 cc_status.value2 = XEXP (SET_DEST (set), 0);
2086 else
2087 cc_status.value2 = SET_DEST (set);
2088 }
065bbfe6
JL
2089 break;
2090
beed8fc0
AO
2091 case CC_COMPARE:
2092 /* The insn is a compare instruction. */
2093 CC_STATUS_INIT;
2094 cc_status.value1 = SET_SRC (body);
2095 break;
2096
2097 case CC_CLOBBER:
2098 /* Insn doesn't leave CC in a usable state. */
2099 CC_STATUS_INIT;
2100 break;
2101 }
2102}
beed8fc0
AO
2103\f
2104/* Given that X occurs in an address of the form (plus X constant),
2105 return the part of X that is expected to be a register. There are
2106 four kinds of addressing mode to recognize:
2107
2108 @(dd,Rn)
2109 @(dd,RnL.b)
2110 @(dd,Rn.w)
2111 @(dd,ERn.l)
2112
2113 If SIZE is nonnull, and the address is one of the last three forms,
2114 set *SIZE to the index multiplication factor. Set it to 0 for
2115 plain @(dd,Rn) addresses.
2116
2117 MODE is the mode of the value being accessed. It can be VOIDmode
2118 if the address is known to be valid, but its mode is unknown. */
2119
f52d97da 2120static rtx
ef4bddc2 2121h8300_get_index (rtx x, machine_mode mode, int *size)
beed8fc0
AO
2122{
2123 int dummy, factor;
2124
2125 if (size == 0)
2126 size = &dummy;
2127
2128 factor = (mode == VOIDmode ? 0 : GET_MODE_SIZE (mode));
2129 if (TARGET_H8300SX
2130 && factor <= 4
2131 && (mode == VOIDmode
2132 || GET_MODE_CLASS (mode) == MODE_INT
2133 || GET_MODE_CLASS (mode) == MODE_FLOAT))
2134 {
2135 if (factor <= 1 && GET_CODE (x) == ZERO_EXTEND)
2136 {
2137 /* When accessing byte-sized values, the index can be
2138 a zero-extended QImode or HImode register. */
2139 *size = GET_MODE_SIZE (GET_MODE (XEXP (x, 0)));
2140 return XEXP (x, 0);
2141 }
2142 else
2143 {
2144 /* We're looking for addresses of the form:
2145
2146 (mult X I)
2147 or (mult (zero_extend X) I)
2148
2149 where I is the size of the operand being accessed.
2150 The canonical form of the second expression is:
2151
2152 (and (mult (subreg X) I) J)
2153
2154 where J == GET_MODE_MASK (GET_MODE (X)) * I. */
2155 rtx index;
2156
2157 if (GET_CODE (x) == AND
2158 && GET_CODE (XEXP (x, 1)) == CONST_INT
2159 && (factor == 0
2160 || INTVAL (XEXP (x, 1)) == 0xff * factor
2161 || INTVAL (XEXP (x, 1)) == 0xffff * factor))
2162 {
2163 index = XEXP (x, 0);
2164 *size = (INTVAL (XEXP (x, 1)) >= 0xffff ? 2 : 1);
2165 }
2166 else
2167 {
2168 index = x;
2169 *size = 4;
2170 }
2171
2172 if (GET_CODE (index) == MULT
2173 && GET_CODE (XEXP (index, 1)) == CONST_INT
2174 && (factor == 0 || factor == INTVAL (XEXP (index, 1))))
2175 return XEXP (index, 0);
2176 }
2177 }
2178 *size = 0;
2179 return x;
2180}
2181\f
f52d97da
AS
2182/* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P.
2183
2184 On the H8/300, the predecrement and postincrement address depend thus
2185 (the amount of decrement or increment being the length of the operand). */
2186
2187static bool
5bfed9a9
GJL
2188h8300_mode_dependent_address_p (const_rtx addr,
2189 addr_space_t as ATTRIBUTE_UNUSED)
f52d97da
AS
2190{
2191 if (GET_CODE (addr) == PLUS
2192 && h8300_get_index (XEXP (addr, 0), VOIDmode, 0) != XEXP (addr, 0))
2193 return true;
2194
2195 return false;
2196}
2197\f
beed8fc0
AO
2198static const h8300_length_table addb_length_table =
2199{
2200 /* #xx Rs @aa @Rs @xx */
2201 { 2, 2, 4, 4, 4 }, /* add.b xx,Rd */
2202 { 4, 4, 4, 4, 6 }, /* add.b xx,@aa */
2203 { 4, 4, 4, 4, 6 }, /* add.b xx,@Rd */
2204 { 6, 4, 4, 4, 6 } /* add.b xx,@xx */
2205};
2206
2207static const h8300_length_table addw_length_table =
2208{
2209 /* #xx Rs @aa @Rs @xx */
2210 { 2, 2, 4, 4, 4 }, /* add.w xx,Rd */
2211 { 4, 4, 4, 4, 6 }, /* add.w xx,@aa */
2212 { 4, 4, 4, 4, 6 }, /* add.w xx,@Rd */
2213 { 4, 4, 4, 4, 6 } /* add.w xx,@xx */
2214};
2215
2216static const h8300_length_table addl_length_table =
2217{
2218 /* #xx Rs @aa @Rs @xx */
2219 { 2, 2, 4, 4, 4 }, /* add.l xx,Rd */
2220 { 4, 4, 6, 6, 6 }, /* add.l xx,@aa */
2221 { 4, 4, 6, 6, 6 }, /* add.l xx,@Rd */
2222 { 4, 4, 6, 6, 6 } /* add.l xx,@xx */
2223};
2224
2225#define logicb_length_table addb_length_table
2226#define logicw_length_table addw_length_table
2227
2228static const h8300_length_table logicl_length_table =
2229{
2230 /* #xx Rs @aa @Rs @xx */
2231 { 2, 4, 4, 4, 4 }, /* and.l xx,Rd */
2232 { 4, 4, 6, 6, 6 }, /* and.l xx,@aa */
2233 { 4, 4, 6, 6, 6 }, /* and.l xx,@Rd */
2234 { 4, 4, 6, 6, 6 } /* and.l xx,@xx */
2235};
2236
2237static const h8300_length_table movb_length_table =
2238{
2239 /* #xx Rs @aa @Rs @xx */
2240 { 2, 2, 2, 2, 4 }, /* mov.b xx,Rd */
2241 { 4, 2, 4, 4, 4 }, /* mov.b xx,@aa */
2242 { 4, 2, 4, 4, 4 }, /* mov.b xx,@Rd */
2243 { 4, 4, 4, 4, 4 } /* mov.b xx,@xx */
2244};
2245
2246#define movw_length_table movb_length_table
2247
2248static const h8300_length_table movl_length_table =
2249{
2250 /* #xx Rs @aa @Rs @xx */
2251 { 2, 2, 4, 4, 4 }, /* mov.l xx,Rd */
2252 { 4, 4, 4, 4, 4 }, /* mov.l xx,@aa */
2253 { 4, 4, 4, 4, 4 }, /* mov.l xx,@Rd */
2254 { 4, 4, 4, 4, 4 } /* mov.l xx,@xx */
2255};
2256
2257/* Return the size of the given address or displacement constant. */
2258
2259static unsigned int
2260h8300_constant_length (rtx constant)
2261{
2262 /* Check for (@d:16,Reg). */
2263 if (GET_CODE (constant) == CONST_INT
2264 && IN_RANGE (INTVAL (constant), -0x8000, 0x7fff))
2265 return 2;
2266
2267 /* Check for (@d:16,Reg) in cases where the displacement is
2268 an absolute address. */
2269 if (Pmode == HImode || h8300_tiny_constant_address_p (constant))
2270 return 2;
2271
2272 return 4;
2273}
2274
2275/* Return the size of a displacement field in address ADDR, which should
2276 have the form (plus X constant). SIZE is the number of bytes being
2277 accessed. */
2278
2279static unsigned int
2280h8300_displacement_length (rtx addr, int size)
2281{
2282 rtx offset;
2283
2284 offset = XEXP (addr, 1);
2285
2286 /* Check for @(d:2,Reg). */
2287 if (register_operand (XEXP (addr, 0), VOIDmode)
2288 && GET_CODE (offset) == CONST_INT
2289 && (INTVAL (offset) == size
2290 || INTVAL (offset) == size * 2
2291 || INTVAL (offset) == size * 3))
2292 return 0;
2293
2294 return h8300_constant_length (offset);
2295}
2296
0a2aaacc
KG
2297/* Store the class of operand OP in *OPCLASS and return the length of any
2298 extra operand fields. SIZE is the number of bytes in OP. OPCLASS
beed8fc0
AO
2299 can be null if only the length is needed. */
2300
2301static unsigned int
0a2aaacc 2302h8300_classify_operand (rtx op, int size, enum h8300_operand_class *opclass)
beed8fc0
AO
2303{
2304 enum h8300_operand_class dummy;
2305
0a2aaacc
KG
2306 if (opclass == 0)
2307 opclass = &dummy;
beed8fc0
AO
2308
2309 if (CONSTANT_P (op))
2310 {
0a2aaacc 2311 *opclass = H8OP_IMMEDIATE;
beed8fc0
AO
2312
2313 /* Byte-sized immediates are stored in the opcode fields. */
2314 if (size == 1)
2315 return 0;
2316
2317 /* If this is a 32-bit instruction, see whether the constant
2318 will fit into a 16-bit immediate field. */
2319 if (TARGET_H8300SX
2320 && size == 4
2321 && GET_CODE (op) == CONST_INT
2322 && IN_RANGE (INTVAL (op), 0, 0xffff))
2323 return 2;
2324
2325 return size;
2326 }
2327 else if (GET_CODE (op) == MEM)
2328 {
2329 op = XEXP (op, 0);
2330 if (CONSTANT_P (op))
2331 {
0a2aaacc 2332 *opclass = H8OP_MEM_ABSOLUTE;
beed8fc0
AO
2333 return h8300_constant_length (op);
2334 }
2335 else if (GET_CODE (op) == PLUS && CONSTANT_P (XEXP (op, 1)))
2336 {
0a2aaacc 2337 *opclass = H8OP_MEM_COMPLEX;
beed8fc0
AO
2338 return h8300_displacement_length (op, size);
2339 }
2340 else if (GET_RTX_CLASS (GET_CODE (op)) == RTX_AUTOINC)
2341 {
0a2aaacc 2342 *opclass = H8OP_MEM_COMPLEX;
beed8fc0
AO
2343 return 0;
2344 }
2345 else if (register_operand (op, VOIDmode))
2346 {
0a2aaacc 2347 *opclass = H8OP_MEM_BASE;
beed8fc0
AO
2348 return 0;
2349 }
2350 }
8c440872 2351 gcc_assert (register_operand (op, VOIDmode));
0a2aaacc 2352 *opclass = H8OP_REGISTER;
8c440872 2353 return 0;
beed8fc0
AO
2354}
2355
2356/* Return the length of the instruction described by TABLE given that
2357 its operands are OP1 and OP2. OP1 must be an h8300_dst_operand
2358 and OP2 must be an h8300_src_operand. */
2359
2360static unsigned int
2361h8300_length_from_table (rtx op1, rtx op2, const h8300_length_table *table)
2362{
2363 enum h8300_operand_class op1_class, op2_class;
2364 unsigned int size, immediate_length;
2365
2366 size = GET_MODE_SIZE (GET_MODE (op1));
2367 immediate_length = (h8300_classify_operand (op1, size, &op1_class)
2368 + h8300_classify_operand (op2, size, &op2_class));
2369 return immediate_length + (*table)[op1_class - 1][op2_class];
2370}
2371
2372/* Return the length of a unary instruction such as neg or not given that
2373 its operand is OP. */
2374
2375unsigned int
2376h8300_unary_length (rtx op)
2377{
0a2aaacc 2378 enum h8300_operand_class opclass;
beed8fc0
AO
2379 unsigned int size, operand_length;
2380
2381 size = GET_MODE_SIZE (GET_MODE (op));
0a2aaacc
KG
2382 operand_length = h8300_classify_operand (op, size, &opclass);
2383 switch (opclass)
beed8fc0
AO
2384 {
2385 case H8OP_REGISTER:
2386 return 2;
2387
2388 case H8OP_MEM_BASE:
2389 return (size == 4 ? 6 : 4);
2390
2391 case H8OP_MEM_ABSOLUTE:
2392 return operand_length + (size == 4 ? 6 : 4);
2393
2394 case H8OP_MEM_COMPLEX:
2395 return operand_length + 6;
2396
2397 default:
8c440872 2398 gcc_unreachable ();
beed8fc0
AO
2399 }
2400}
2401
2402/* Likewise short immediate instructions such as add.w #xx:3,OP. */
2403
2404static unsigned int
2405h8300_short_immediate_length (rtx op)
2406{
0a2aaacc 2407 enum h8300_operand_class opclass;
beed8fc0
AO
2408 unsigned int size, operand_length;
2409
2410 size = GET_MODE_SIZE (GET_MODE (op));
0a2aaacc 2411 operand_length = h8300_classify_operand (op, size, &opclass);
beed8fc0 2412
0a2aaacc 2413 switch (opclass)
beed8fc0
AO
2414 {
2415 case H8OP_REGISTER:
2416 return 2;
2417
2418 case H8OP_MEM_BASE:
2419 case H8OP_MEM_ABSOLUTE:
2420 case H8OP_MEM_COMPLEX:
2421 return 4 + operand_length;
2422
2423 default:
8c440872 2424 gcc_unreachable ();
beed8fc0
AO
2425 }
2426}
2427
2428/* Likewise bitfield load and store instructions. */
48837e29 2429
beed8fc0
AO
2430static unsigned int
2431h8300_bitfield_length (rtx op, rtx op2)
2432{
0a2aaacc 2433 enum h8300_operand_class opclass;
beed8fc0
AO
2434 unsigned int size, operand_length;
2435
2436 if (GET_CODE (op) == REG)
2437 op = op2;
8c440872 2438 gcc_assert (GET_CODE (op) != REG);
beed8fc0
AO
2439
2440 size = GET_MODE_SIZE (GET_MODE (op));
0a2aaacc 2441 operand_length = h8300_classify_operand (op, size, &opclass);
beed8fc0 2442
0a2aaacc 2443 switch (opclass)
beed8fc0
AO
2444 {
2445 case H8OP_MEM_BASE:
2446 case H8OP_MEM_ABSOLUTE:
2447 case H8OP_MEM_COMPLEX:
2448 return 4 + operand_length;
2449
2450 default:
8c440872 2451 gcc_unreachable ();
07aae5c2 2452 }
48837e29
DE
2453}
2454
beed8fc0 2455/* Calculate the length of general binary instruction INSN using TABLE. */
8ccf5d5f 2456
beed8fc0 2457static unsigned int
e7041fcc 2458h8300_binary_length (rtx_insn *insn, const h8300_length_table *table)
8ccf5d5f 2459{
beed8fc0
AO
2460 rtx set;
2461
2462 set = single_set (insn);
8c440872 2463 gcc_assert (set);
beed8fc0
AO
2464
2465 if (BINARY_P (SET_SRC (set)))
2466 return h8300_length_from_table (XEXP (SET_SRC (set), 0),
2467 XEXP (SET_SRC (set), 1), table);
beed8fc0 2468 else
8c440872
NS
2469 {
2470 gcc_assert (GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == RTX_TERNARY);
2471 return h8300_length_from_table (XEXP (XEXP (SET_SRC (set), 1), 0),
2472 XEXP (XEXP (SET_SRC (set), 1), 1),
2473 table);
2474 }
8ccf5d5f
KH
2475}
2476
beed8fc0
AO
2477/* Subroutine of h8300_move_length. Return true if OP is 1- or 2-byte
2478 memory reference and either (1) it has the form @(d:16,Rn) or
2479 (2) its address has the code given by INC_CODE. */
8ccf5d5f 2480
beed8fc0
AO
2481static bool
2482h8300_short_move_mem_p (rtx op, enum rtx_code inc_code)
8ccf5d5f 2483{
beed8fc0
AO
2484 rtx addr;
2485 unsigned int size;
2486
2487 if (GET_CODE (op) != MEM)
2488 return false;
2489
2490 addr = XEXP (op, 0);
2491 size = GET_MODE_SIZE (GET_MODE (op));
2492 if (size != 1 && size != 2)
2493 return false;
2494
2495 return (GET_CODE (addr) == inc_code
2496 || (GET_CODE (addr) == PLUS
2497 && GET_CODE (XEXP (addr, 0)) == REG
2498 && h8300_displacement_length (addr, size) == 2));
8ccf5d5f
KH
2499}
2500
beed8fc0
AO
2501/* Calculate the length of move instruction INSN using the given length
2502 table. Although the tables are correct for most cases, there is some
2503 irregularity in the length of mov.b and mov.w. The following forms:
8ccf5d5f 2504
beed8fc0
AO
2505 mov @ERs+, Rd
2506 mov @(d:16,ERs), Rd
2507 mov Rs, @-ERd
2508 mov Rs, @(d:16,ERd)
2509
2510 are two bytes shorter than most other "mov Rs, @complex" or
2511 "mov @complex,Rd" combinations. */
2512
2513static unsigned int
2514h8300_move_length (rtx *operands, const h8300_length_table *table)
8ccf5d5f 2515{
beed8fc0
AO
2516 unsigned int size;
2517
2518 size = h8300_length_from_table (operands[0], operands[1], table);
2519 if (REG_P (operands[0]) && h8300_short_move_mem_p (operands[1], POST_INC))
2520 size -= 2;
2521 if (REG_P (operands[1]) && h8300_short_move_mem_p (operands[0], PRE_DEC))
2522 size -= 2;
2523 return size;
8ccf5d5f
KH
2524}
2525
beed8fc0
AO
2526/* Return the length of a mova instruction with the given operands.
2527 DEST is the register destination, SRC is the source address and
2528 OFFSET is the 16-bit or 32-bit displacement. */
2873836b 2529
beed8fc0
AO
2530static unsigned int
2531h8300_mova_length (rtx dest, rtx src, rtx offset)
2873836b 2532{
beed8fc0
AO
2533 unsigned int size;
2534
2535 size = (2
2536 + h8300_constant_length (offset)
2537 + h8300_classify_operand (src, GET_MODE_SIZE (GET_MODE (src)), 0));
2538 if (!REG_P (dest) || !REG_P (src) || REGNO (src) != REGNO (dest))
2539 size += 2;
2540 return size;
2873836b
KH
2541}
2542
beed8fc0
AO
2543/* Compute the length of INSN based on its length_table attribute.
2544 OPERANDS is the array of its operands. */
2873836b 2545
beed8fc0 2546unsigned int
e7041fcc 2547h8300_insn_length_from_table (rtx_insn *insn, rtx * operands)
2873836b 2548{
beed8fc0
AO
2549 switch (get_attr_length_table (insn))
2550 {
2551 case LENGTH_TABLE_NONE:
8c440872 2552 gcc_unreachable ();
beed8fc0
AO
2553
2554 case LENGTH_TABLE_ADDB:
2555 return h8300_binary_length (insn, &addb_length_table);
2556
2557 case LENGTH_TABLE_ADDW:
2558 return h8300_binary_length (insn, &addw_length_table);
2559
2560 case LENGTH_TABLE_ADDL:
2561 return h8300_binary_length (insn, &addl_length_table);
2562
2563 case LENGTH_TABLE_LOGICB:
2564 return h8300_binary_length (insn, &logicb_length_table);
2565
2566 case LENGTH_TABLE_MOVB:
2567 return h8300_move_length (operands, &movb_length_table);
2568
2569 case LENGTH_TABLE_MOVW:
2570 return h8300_move_length (operands, &movw_length_table);
2571
2572 case LENGTH_TABLE_MOVL:
2573 return h8300_move_length (operands, &movl_length_table);
2574
2575 case LENGTH_TABLE_MOVA:
2576 return h8300_mova_length (operands[0], operands[1], operands[2]);
2577
2578 case LENGTH_TABLE_MOVA_ZERO:
2579 return h8300_mova_length (operands[0], operands[1], const0_rtx);
2580
2581 case LENGTH_TABLE_UNARY:
2582 return h8300_unary_length (operands[0]);
2583
2584 case LENGTH_TABLE_MOV_IMM4:
2585 return 2 + h8300_classify_operand (operands[0], 0, 0);
2586
2587 case LENGTH_TABLE_SHORT_IMMEDIATE:
2588 return h8300_short_immediate_length (operands[0]);
2589
2590 case LENGTH_TABLE_BITFIELD:
2591 return h8300_bitfield_length (operands[0], operands[1]);
2592
2593 case LENGTH_TABLE_BITBRANCH:
2594 return h8300_bitfield_length (operands[1], operands[2]) - 2;
8c440872
NS
2595
2596 default:
2597 gcc_unreachable ();
beed8fc0 2598 }
2873836b
KH
2599}
2600
beed8fc0
AO
2601/* Return true if LHS and RHS are memory references that can be mapped
2602 to the same h8sx assembly operand. LHS appears as the destination of
2603 an instruction and RHS appears as a source.
f9d2de4d 2604
beed8fc0
AO
2605 Three cases are allowed:
2606
2607 - RHS is @+Rn or @-Rn, LHS is @Rn
2608 - RHS is @Rn, LHS is @Rn+ or @Rn-
2609 - RHS and LHS have the same address and neither has side effects. */
2610
2611bool
2612h8sx_mergeable_memrefs_p (rtx lhs, rtx rhs)
f9d2de4d 2613{
beed8fc0
AO
2614 if (GET_CODE (rhs) == MEM && GET_CODE (lhs) == MEM)
2615 {
2616 rhs = XEXP (rhs, 0);
2617 lhs = XEXP (lhs, 0);
2618
2619 if (GET_CODE (rhs) == PRE_INC || GET_CODE (rhs) == PRE_DEC)
2620 return rtx_equal_p (XEXP (rhs, 0), lhs);
2621
2622 if (GET_CODE (lhs) == POST_INC || GET_CODE (lhs) == POST_DEC)
2623 return rtx_equal_p (rhs, XEXP (lhs, 0));
2624
2625 if (rtx_equal_p (rhs, lhs))
2626 return true;
2627 }
2628 return false;
f9d2de4d
KH
2629}
2630
beed8fc0
AO
2631/* Return true if OPERANDS[1] can be mapped to the same assembly
2632 operand as OPERANDS[0]. */
f9d2de4d 2633
beed8fc0
AO
2634bool
2635h8300_operands_match_p (rtx *operands)
f9d2de4d 2636{
beed8fc0
AO
2637 if (register_operand (operands[0], VOIDmode)
2638 && register_operand (operands[1], VOIDmode))
2639 return true;
f9d2de4d 2640
beed8fc0
AO
2641 if (h8sx_mergeable_memrefs_p (operands[0], operands[1]))
2642 return true;
2643
2644 return false;
f9d2de4d 2645}
beed8fc0
AO
2646\f
2647/* Try using movmd to move LENGTH bytes from memory region SRC to memory
2648 region DEST. The two regions do not overlap and have the common
2649 alignment given by ALIGNMENT. Return true on success.
717d8b71 2650
beed8fc0
AO
2651 Using movmd for variable-length moves seems to involve some
2652 complex trade-offs. For instance:
b059c02a 2653
beed8fc0
AO
2654 - Preparing for a movmd instruction is similar to preparing
2655 for a memcpy. The main difference is that the arguments
2656 are moved into er4, er5 and er6 rather than er0, er1 and er2.
2657
2658 - Since movmd clobbers the frame pointer, we need to save
2659 and restore it somehow when frame_pointer_needed. This can
2660 sometimes make movmd sequences longer than calls to memcpy().
2661
2662 - The counter register is 16 bits, so the instruction is only
2663 suitable for variable-length moves when sizeof (size_t) == 2.
2664 That's only true in normal mode.
2665
2666 - We will often lack static alignment information. Falling back
2667 on movmd.b would likely be slower than calling memcpy(), at least
2668 for big moves.
2669
2670 This function therefore only uses movmd when the length is a
2671 known constant, and only then if -fomit-frame-pointer is in
2672 effect or if we're not optimizing for size.
2673
2674 At the moment the function uses movmd for all in-range constants,
2675 but it might be better to fall back on memcpy() for large moves
2676 if ALIGNMENT == 1. */
2677
2678bool
2679h8sx_emit_movmd (rtx dest, rtx src, rtx length,
2680 HOST_WIDE_INT alignment)
b059c02a 2681{
beed8fc0
AO
2682 if (!flag_omit_frame_pointer && optimize_size)
2683 return false;
b059c02a 2684
beed8fc0
AO
2685 if (GET_CODE (length) == CONST_INT)
2686 {
2687 rtx dest_reg, src_reg, first_dest, first_src;
2688 HOST_WIDE_INT n;
2689 int factor;
2690
2691 /* Use movmd.l if the alignment allows it, otherwise fall back
2692 on movmd.b. */
2693 factor = (alignment >= 2 ? 4 : 1);
2694
2695 /* Make sure the length is within range. We can handle counter
2696 values up to 65536, although HImode truncation will make
2697 the count appear negative in rtl dumps. */
2698 n = INTVAL (length);
2699 if (n <= 0 || n / factor > 65536)
2700 return false;
2701
2702 /* Create temporary registers for the source and destination
2703 pointers. Initialize them to the start of each region. */
2704 dest_reg = copy_addr_to_reg (XEXP (dest, 0));
2705 src_reg = copy_addr_to_reg (XEXP (src, 0));
2706
2707 /* Create references to the movmd source and destination blocks. */
2708 first_dest = replace_equiv_address (dest, dest_reg);
2709 first_src = replace_equiv_address (src, src_reg);
2710
f5541398
RS
2711 set_mem_size (first_dest, n & -factor);
2712 set_mem_size (first_src, n & -factor);
beed8fc0
AO
2713
2714 length = copy_to_mode_reg (HImode, gen_int_mode (n / factor, HImode));
2715 emit_insn (gen_movmd (first_dest, first_src, length, GEN_INT (factor)));
2716
2717 if ((n & -factor) != n)
2718 {
2719 /* Move SRC and DEST past the region we just copied.
2720 This is done to update the memory attributes. */
2721 dest = adjust_address (dest, BLKmode, n & -factor);
2722 src = adjust_address (src, BLKmode, n & -factor);
2723
2724 /* Replace the addresses with the source and destination
2725 registers, which movmd has left with the right values. */
2726 dest = replace_equiv_address (dest, dest_reg);
2727 src = replace_equiv_address (src, src_reg);
2728
2729 /* Mop up the left-over bytes. */
2730 if (n & 2)
2731 emit_move_insn (adjust_address (dest, HImode, 0),
2732 adjust_address (src, HImode, 0));
2733 if (n & 1)
2734 emit_move_insn (adjust_address (dest, QImode, n & 2),
2735 adjust_address (src, QImode, n & 2));
2736 }
2737 return true;
2738 }
2739 return false;
b059c02a
KH
2740}
2741
beed8fc0 2742/* Move ADDR into er6 after pushing its old value onto the stack. */
48837e29 2743
beed8fc0
AO
2744void
2745h8300_swap_into_er6 (rtx addr)
48837e29 2746{
1901e8d6 2747 rtx insn = push (HARD_FRAME_POINTER_REGNUM, false);
8f1594b2
RH
2748 if (frame_pointer_needed)
2749 add_reg_note (insn, REG_CFA_DEF_CFA,
0a81f074 2750 plus_constant (Pmode, gen_rtx_MEM (Pmode, stack_pointer_rtx),
8f1594b2
RH
2751 2 * UNITS_PER_WORD));
2752 else
2753 add_reg_note (insn, REG_CFA_ADJUST_CFA,
f7df4a84 2754 gen_rtx_SET (stack_pointer_rtx,
0a81f074 2755 plus_constant (Pmode, stack_pointer_rtx, 4)));
8f1594b2 2756
beed8fc0
AO
2757 emit_move_insn (hard_frame_pointer_rtx, addr);
2758 if (REGNO (addr) == SP_REG)
2759 emit_move_insn (hard_frame_pointer_rtx,
0a81f074 2760 plus_constant (Pmode, hard_frame_pointer_rtx,
beed8fc0
AO
2761 GET_MODE_SIZE (word_mode)));
2762}
07aae5c2 2763
beed8fc0
AO
2764/* Move the current value of er6 into ADDR and pop its old value
2765 from the stack. */
2766
2767void
2768h8300_swap_out_of_er6 (rtx addr)
2769{
8f1594b2
RH
2770 rtx insn;
2771
beed8fc0
AO
2772 if (REGNO (addr) != SP_REG)
2773 emit_move_insn (addr, hard_frame_pointer_rtx);
8f1594b2
RH
2774
2775 insn = pop (HARD_FRAME_POINTER_REGNUM);
8f1594b2
RH
2776 if (frame_pointer_needed)
2777 add_reg_note (insn, REG_CFA_DEF_CFA,
0a81f074
RS
2778 plus_constant (Pmode, hard_frame_pointer_rtx,
2779 2 * UNITS_PER_WORD));
8f1594b2
RH
2780 else
2781 add_reg_note (insn, REG_CFA_ADJUST_CFA,
f7df4a84 2782 gen_rtx_SET (stack_pointer_rtx,
0a81f074 2783 plus_constant (Pmode, stack_pointer_rtx, -4)));
07aae5c2 2784}
48837e29 2785\f
7948a9ea
KH
2786/* Return the length of mov instruction. */
2787
2788unsigned int
2789compute_mov_length (rtx *operands)
2790{
2791 /* If the mov instruction involves a memory operand, we compute the
2792 length, assuming the largest addressing mode is used, and then
2793 adjust later in the function. Otherwise, we compute and return
2794 the exact length in one step. */
ef4bddc2 2795 machine_mode mode = GET_MODE (operands[0]);
7948a9ea
KH
2796 rtx dest = operands[0];
2797 rtx src = operands[1];
2798 rtx addr;
2799
2800 if (GET_CODE (src) == MEM)
2801 addr = XEXP (src, 0);
2802 else if (GET_CODE (dest) == MEM)
2803 addr = XEXP (dest, 0);
2804 else
2805 addr = NULL_RTX;
2806
2807 if (TARGET_H8300)
2808 {
2809 unsigned int base_length;
2810
2811 switch (mode)
2812 {
4e10a5a7 2813 case E_QImode:
7948a9ea
KH
2814 if (addr == NULL_RTX)
2815 return 2;
2816
2817 /* The eightbit addressing is available only in QImode, so
2818 go ahead and take care of it. */
2819 if (h8300_eightbit_constant_address_p (addr))
2820 return 2;
2821
2822 base_length = 4;
2823 break;
2824
4e10a5a7 2825 case E_HImode:
7948a9ea
KH
2826 if (addr == NULL_RTX)
2827 {
2828 if (REG_P (src))
2829 return 2;
2830
2831 if (src == const0_rtx)
2832 return 2;
2833
2834 return 4;
2835 }
2836
2837 base_length = 4;
2838 break;
2839
4e10a5a7 2840 case E_SImode:
7948a9ea
KH
2841 if (addr == NULL_RTX)
2842 {
2843 if (REG_P (src))
2844 return 4;
2845
2846 if (GET_CODE (src) == CONST_INT)
2847 {
2848 if (src == const0_rtx)
2849 return 4;
2850
2851 if ((INTVAL (src) & 0xffff) == 0)
2852 return 6;
2853
2854 if ((INTVAL (src) & 0xffff) == 0)
2855 return 6;
f5139cc5
KH
2856
2857 if ((INTVAL (src) & 0xffff)
2858 == ((INTVAL (src) >> 16) & 0xffff))
2859 return 6;
7948a9ea
KH
2860 }
2861 return 8;
2862 }
2863
2864 base_length = 8;
2865 break;
2866
4e10a5a7 2867 case E_SFmode:
7948a9ea
KH
2868 if (addr == NULL_RTX)
2869 {
2870 if (REG_P (src))
2871 return 4;
2872
ceaaaeab 2873 if (satisfies_constraint_G (src))
2c4a71b3
KH
2874 return 4;
2875
81983b04 2876 return 8;
7948a9ea
KH
2877 }
2878
2879 base_length = 8;
2880 break;
2881
2882 default:
8c440872 2883 gcc_unreachable ();
7948a9ea
KH
2884 }
2885
2886 /* Adjust the length based on the addressing mode used.
2887 Specifically, we subtract the difference between the actual
2888 length and the longest one, which is @(d:16,Rs). For SImode
2889 and SFmode, we double the adjustment because two mov.w are
2890 used to do the job. */
2891
2892 /* @Rs+ and @-Rd are 2 bytes shorter than the longest. */
2893 if (GET_CODE (addr) == PRE_DEC
2894 || GET_CODE (addr) == POST_INC)
2895 {
2896 if (mode == QImode || mode == HImode)
2897 return base_length - 2;
2898 else
2899 /* In SImode and SFmode, we use two mov.w instructions, so
2a43945f 2900 double the adjustment. */
7948a9ea
KH
2901 return base_length - 4;
2902 }
2903
2904 /* @Rs and @Rd are 2 bytes shorter than the longest. Note that
2905 in SImode and SFmode, the second mov.w involves an address
2906 with displacement, namely @(2,Rs) or @(2,Rd), so we subtract
2907 only 2 bytes. */
2908 if (GET_CODE (addr) == REG)
2909 return base_length - 2;
2910
2911 return base_length;
2912 }
2913 else
2914 {
2915 unsigned int base_length;
2916
2917 switch (mode)
2918 {
4e10a5a7 2919 case E_QImode:
7948a9ea
KH
2920 if (addr == NULL_RTX)
2921 return 2;
2922
2923 /* The eightbit addressing is available only in QImode, so
2924 go ahead and take care of it. */
2925 if (h8300_eightbit_constant_address_p (addr))
2926 return 2;
2927
2928 base_length = 8;
2929 break;
2930
4e10a5a7 2931 case E_HImode:
7948a9ea
KH
2932 if (addr == NULL_RTX)
2933 {
2934 if (REG_P (src))
2935 return 2;
2936
2937 if (src == const0_rtx)
2938 return 2;
2939
2940 return 4;
2941 }
2942
2943 base_length = 8;
2944 break;
2945
4e10a5a7 2946 case E_SImode:
7948a9ea
KH
2947 if (addr == NULL_RTX)
2948 {
2949 if (REG_P (src))
2950 {
2951 if (REGNO (src) == MAC_REG || REGNO (dest) == MAC_REG)
2952 return 4;
2953 else
2954 return 2;
2955 }
2956
2957 if (GET_CODE (src) == CONST_INT)
2958 {
2959 int val = INTVAL (src);
2960
2961 if (val == 0)
2962 return 2;
2963
2964 if (val == (val & 0x00ff) || val == (val & 0xff00))
2965 return 4;
80e58519 2966
7948a9ea
KH
2967 switch (val & 0xffffffff)
2968 {
2969 case 0xffffffff:
2970 case 0xfffffffe:
2971 case 0xfffffffc:
2972 case 0x0000ffff:
2973 case 0x0000fffe:
2974 case 0xffff0000:
2975 case 0xfffe0000:
2976 case 0x00010000:
2977 case 0x00020000:
2978 return 4;
2979 }
2980 }
2981 return 6;
2982 }
2983
2984 base_length = 10;
2985 break;
2986
4e10a5a7 2987 case E_SFmode:
7948a9ea
KH
2988 if (addr == NULL_RTX)
2989 {
2990 if (REG_P (src))
2991 return 2;
2992
ceaaaeab 2993 if (satisfies_constraint_G (src))
7948a9ea 2994 return 2;
2c4a71b3 2995
7948a9ea
KH
2996 return 6;
2997 }
2998
2999 base_length = 10;
3000 break;
3001
3002 default:
8c440872 3003 gcc_unreachable ();
7948a9ea
KH
3004 }
3005
3006 /* Adjust the length based on the addressing mode used.
3007 Specifically, we subtract the difference between the actual
3008 length and the longest one, which is @(d:24,ERs). */
3009
3010 /* @ERs+ and @-ERd are 6 bytes shorter than the longest. */
3011 if (GET_CODE (addr) == PRE_DEC
3012 || GET_CODE (addr) == POST_INC)
3013 return base_length - 6;
3014
3015 /* @ERs and @ERd are 6 bytes shorter than the longest. */
3016 if (GET_CODE (addr) == REG)
3017 return base_length - 6;
3018
3019 /* @(d:16,ERs) and @(d:16,ERd) are 4 bytes shorter than the
3020 longest. */
3021 if (GET_CODE (addr) == PLUS
3022 && GET_CODE (XEXP (addr, 0)) == REG
3023 && GET_CODE (XEXP (addr, 1)) == CONST_INT
3024 && INTVAL (XEXP (addr, 1)) > -32768
3025 && INTVAL (XEXP (addr, 1)) < 32767)
3026 return base_length - 4;
3027
3028 /* @aa:16 is 4 bytes shorter than the longest. */
3029 if (h8300_tiny_constant_address_p (addr))
3030 return base_length - 4;
3031
3032 /* @aa:24 is 2 bytes shorter than the longest. */
3033 if (CONSTANT_P (addr))
3034 return base_length - 2;
3035
3036 return base_length;
3037 }
3038}
3039\f
e9eba255
KH
3040/* Output an addition insn. */
3041
366a7b27 3042const char *
cb713a8d 3043output_plussi (rtx *operands)
7d6ac401 3044{
ef4bddc2 3045 machine_mode mode = GET_MODE (operands[0]);
7d6ac401 3046
8c440872 3047 gcc_assert (mode == SImode);
7d6ac401
KH
3048
3049 if (TARGET_H8300)
3050 {
cfedf91b
KH
3051 if (GET_CODE (operands[2]) == REG)
3052 return "add.w\t%f2,%f0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
3053
3054 if (GET_CODE (operands[2]) == CONST_INT)
3055 {
3056 HOST_WIDE_INT n = INTVAL (operands[2]);
3057
3058 if ((n & 0xffffff) == 0)
3059 return "add\t%z2,%z0";
3060 if ((n & 0xffff) == 0)
3061 return "add\t%y2,%y0\n\taddx\t%z2,%z0";
3062 if ((n & 0xff) == 0)
3063 return "add\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
3064 }
3065
3066 return "add\t%w2,%w0\n\taddx\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
7d6ac401
KH
3067 }
3068 else
3069 {
beed8fc0
AO
3070 if (GET_CODE (operands[2]) == CONST_INT
3071 && register_operand (operands[1], VOIDmode))
7d6ac401
KH
3072 {
3073 HOST_WIDE_INT intval = INTVAL (operands[2]);
3074
beed8fc0
AO
3075 if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
3076 return "add.l\t%S2,%S0";
3077 if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
3078 return "sub.l\t%G2,%S0";
3079
7d6ac401
KH
3080 /* See if we can finish with 2 bytes. */
3081
9ac7ebba 3082 switch ((unsigned int) intval & 0xffffffff)
7d6ac401
KH
3083 {
3084 case 0x00000001:
3085 case 0x00000002:
3086 case 0x00000004:
3087 return "adds\t%2,%S0";
3088
3089 case 0xffffffff:
3090 case 0xfffffffe:
3091 case 0xfffffffc:
3092 return "subs\t%G2,%S0";
3093
3094 case 0x00010000:
3095 case 0x00020000:
3096 operands[2] = GEN_INT (intval >> 16);
3097 return "inc.w\t%2,%e0";
3098
3099 case 0xffff0000:
3100 case 0xfffe0000:
3101 operands[2] = GEN_INT (intval >> 16);
3102 return "dec.w\t%G2,%e0";
3103 }
3104
3105 /* See if we can finish with 4 bytes. */
3106 if ((intval & 0xffff) == 0)
3107 {
3108 operands[2] = GEN_INT (intval >> 16);
3109 return "add.w\t%2,%e0";
3110 }
3111 }
3112
beed8fc0
AO
3113 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0)
3114 {
3115 operands[2] = GEN_INT (-INTVAL (operands[2]));
3116 return "sub.l\t%S2,%S0";
3117 }
7d6ac401
KH
3118 return "add.l\t%S2,%S0";
3119 }
3120}
3121
beed8fc0
AO
3122/* ??? It would be much easier to add the h8sx stuff if a single function
3123 classified the addition as either inc/dec, adds/subs, add.w or add.l. */
e9eba255
KH
3124/* Compute the length of an addition insn. */
3125
7d6ac401 3126unsigned int
cb713a8d 3127compute_plussi_length (rtx *operands)
7d6ac401 3128{
ef4bddc2 3129 machine_mode mode = GET_MODE (operands[0]);
7d6ac401 3130
8c440872 3131 gcc_assert (mode == SImode);
7d6ac401
KH
3132
3133 if (TARGET_H8300)
3134 {
cfedf91b
KH
3135 if (GET_CODE (operands[2]) == REG)
3136 return 6;
3137
3138 if (GET_CODE (operands[2]) == CONST_INT)
3139 {
3140 HOST_WIDE_INT n = INTVAL (operands[2]);
3141
3142 if ((n & 0xffffff) == 0)
3143 return 2;
3144 if ((n & 0xffff) == 0)
3145 return 4;
3146 if ((n & 0xff) == 0)
3147 return 6;
3148 }
3149
3150 return 8;
7d6ac401
KH
3151 }
3152 else
3153 {
beed8fc0
AO
3154 if (GET_CODE (operands[2]) == CONST_INT
3155 && register_operand (operands[1], VOIDmode))
7d6ac401
KH
3156 {
3157 HOST_WIDE_INT intval = INTVAL (operands[2]);
3158
beed8fc0
AO
3159 if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
3160 return 2;
3161 if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
3162 return 2;
3163
7d6ac401
KH
3164 /* See if we can finish with 2 bytes. */
3165
9ac7ebba 3166 switch ((unsigned int) intval & 0xffffffff)
7d6ac401
KH
3167 {
3168 case 0x00000001:
3169 case 0x00000002:
3170 case 0x00000004:
3171 return 2;
3172
3173 case 0xffffffff:
3174 case 0xfffffffe:
3175 case 0xfffffffc:
3176 return 2;
3177
3178 case 0x00010000:
3179 case 0x00020000:
3180 return 2;
3181
3182 case 0xffff0000:
3183 case 0xfffe0000:
3184 return 2;
3185 }
3186
3187 /* See if we can finish with 4 bytes. */
3188 if ((intval & 0xffff) == 0)
3189 return 4;
3190 }
3191
beed8fc0
AO
3192 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0)
3193 return h8300_length_from_table (operands[0],
3194 GEN_INT (-INTVAL (operands[2])),
3195 &addl_length_table);
3196 else
3197 return h8300_length_from_table (operands[0], operands[2],
3198 &addl_length_table);
7d6ac401
KH
3199 return 6;
3200 }
3201}
3202
e9eba255
KH
3203/* Compute which flag bits are valid after an addition insn. */
3204
9690aa8e 3205enum attr_cc
cb713a8d 3206compute_plussi_cc (rtx *operands)
7d6ac401 3207{
ef4bddc2 3208 machine_mode mode = GET_MODE (operands[0]);
7d6ac401 3209
8c440872 3210 gcc_assert (mode == SImode);
7d6ac401
KH
3211
3212 if (TARGET_H8300)
3213 {
cfedf91b 3214 return CC_CLOBBER;
7d6ac401
KH
3215 }
3216 else
3217 {
beed8fc0
AO
3218 if (GET_CODE (operands[2]) == CONST_INT
3219 && register_operand (operands[1], VOIDmode))
7d6ac401
KH
3220 {
3221 HOST_WIDE_INT intval = INTVAL (operands[2]);
3222
beed8fc0
AO
3223 if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
3224 return CC_SET_ZN;
3225 if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
3226 return CC_SET_ZN;
3227
7d6ac401
KH
3228 /* See if we can finish with 2 bytes. */
3229
9ac7ebba 3230 switch ((unsigned int) intval & 0xffffffff)
7d6ac401
KH
3231 {
3232 case 0x00000001:
3233 case 0x00000002:
3234 case 0x00000004:
3235 return CC_NONE_0HIT;
3236
3237 case 0xffffffff:
3238 case 0xfffffffe:
3239 case 0xfffffffc:
3240 return CC_NONE_0HIT;
3241
3242 case 0x00010000:
3243 case 0x00020000:
3244 return CC_CLOBBER;
3245
3246 case 0xffff0000:
3247 case 0xfffe0000:
3248 return CC_CLOBBER;
3249 }
3250
3251 /* See if we can finish with 4 bytes. */
3252 if ((intval & 0xffff) == 0)
3253 return CC_CLOBBER;
3254 }
3255
3256 return CC_SET_ZN;
3257 }
3258}
3259\f
e9eba255
KH
3260/* Output a logical insn. */
3261
7d6ac401 3262const char *
ef4bddc2 3263output_logical_op (machine_mode mode, rtx *operands)
366a7b27 3264{
b42cff6b
KH
3265 /* Figure out the logical op that we need to perform. */
3266 enum rtx_code code = GET_CODE (operands[3]);
366a7b27 3267 /* Pretend that every byte is affected if both operands are registers. */
7798db98 3268 const unsigned HOST_WIDE_INT intval =
366a7b27 3269 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
beed8fc0
AO
3270 /* Always use the full instruction if the
3271 first operand is in memory. It is better
3272 to use define_splits to generate the shorter
3273 sequence where valid. */
3274 && register_operand (operands[1], VOIDmode)
366a7b27
KH
3275 ? INTVAL (operands[2]) : 0x55555555);
3276 /* The determinant of the algorithm. If we perform an AND, 0
3277 affects a bit. Otherwise, 1 affects a bit. */
7798db98 3278 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
f9ac2f95
KH
3279 /* Break up DET into pieces. */
3280 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
3281 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
c5e7ce43
KH
3282 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
3283 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
f9ac2f95
KH
3284 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
3285 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
3286 int lower_half_easy_p = 0;
3287 int upper_half_easy_p = 0;
366a7b27
KH
3288 /* The name of an insn. */
3289 const char *opname;
3290 char insn_buf[100];
3291
3292 switch (code)
3293 {
3294 case AND:
3295 opname = "and";
3296 break;
3297 case IOR:
3298 opname = "or";
3299 break;
3300 case XOR:
3301 opname = "xor";
3302 break;
3303 default:
8c440872 3304 gcc_unreachable ();
366a7b27
KH
3305 }
3306
3307 switch (mode)
3308 {
4e10a5a7 3309 case E_HImode:
366a7b27
KH
3310 /* First, see if we can finish with one insn. */
3311 if ((TARGET_H8300H || TARGET_H8300S)
c5e7ce43
KH
3312 && b0 != 0
3313 && b1 != 0)
366a7b27
KH
3314 {
3315 sprintf (insn_buf, "%s.w\t%%T2,%%T0", opname);
3316 output_asm_insn (insn_buf, operands);
3317 }
3318 else
3319 {
3320 /* Take care of the lower byte. */
c5e7ce43 3321 if (b0 != 0)
366a7b27
KH
3322 {
3323 sprintf (insn_buf, "%s\t%%s2,%%s0", opname);
3324 output_asm_insn (insn_buf, operands);
3325 }
3326 /* Take care of the upper byte. */
c5e7ce43 3327 if (b1 != 0)
366a7b27
KH
3328 {
3329 sprintf (insn_buf, "%s\t%%t2,%%t0", opname);
3330 output_asm_insn (insn_buf, operands);
3331 }
3332 }
3333 break;
4e10a5a7 3334 case E_SImode:
f9ac2f95
KH
3335 if (TARGET_H8300H || TARGET_H8300S)
3336 {
3337 /* Determine if the lower half can be taken care of in no more
3338 than two bytes. */
3339 lower_half_easy_p = (b0 == 0
3340 || b1 == 0
3341 || (code != IOR && w0 == 0xffff));
3342
3343 /* Determine if the upper half can be taken care of in no more
3344 than two bytes. */
3345 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
3346 || (code == AND && w1 == 0xff00));
3347 }
366a7b27 3348
f9ac2f95
KH
3349 /* Check if doing everything with one insn is no worse than
3350 using multiple insns. */
366a7b27 3351 if ((TARGET_H8300H || TARGET_H8300S)
f9ac2f95 3352 && w0 != 0 && w1 != 0
472f2723
KH
3353 && !(lower_half_easy_p && upper_half_easy_p)
3354 && !(code == IOR && w1 == 0xffff
3355 && (w0 & 0x8000) != 0 && lower_half_easy_p))
366a7b27
KH
3356 {
3357 sprintf (insn_buf, "%s.l\t%%S2,%%S0", opname);
3358 output_asm_insn (insn_buf, operands);
3359 }
3360 else
3361 {
3362 /* Take care of the lower and upper words individually. For
3363 each word, we try different methods in the order of
3364
3365 1) the special insn (in case of AND or XOR),
3366 2) the word-wise insn, and
3367 3) The byte-wise insn. */
c5e7ce43 3368 if (w0 == 0xffff
6dfa4005 3369 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
366a7b27 3370 output_asm_insn ((code == AND)
187462ac 3371 ? "sub.w\t%f0,%f0" : "not.w\t%f0",
366a7b27
KH
3372 operands);
3373 else if ((TARGET_H8300H || TARGET_H8300S)
c5e7ce43
KH
3374 && (b0 != 0)
3375 && (b1 != 0))
366a7b27
KH
3376 {
3377 sprintf (insn_buf, "%s.w\t%%f2,%%f0", opname);
3378 output_asm_insn (insn_buf, operands);
3379 }
3380 else
3381 {
c5e7ce43 3382 if (b0 != 0)
366a7b27
KH
3383 {
3384 sprintf (insn_buf, "%s\t%%w2,%%w0", opname);
3385 output_asm_insn (insn_buf, operands);
3386 }
c5e7ce43 3387 if (b1 != 0)
366a7b27
KH
3388 {
3389 sprintf (insn_buf, "%s\t%%x2,%%x0", opname);
3390 output_asm_insn (insn_buf, operands);
3391 }
3392 }
3393
c5e7ce43 3394 if ((w1 == 0xffff)
6dfa4005 3395 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
366a7b27 3396 output_asm_insn ((code == AND)
187462ac 3397 ? "sub.w\t%e0,%e0" : "not.w\t%e0",
366a7b27 3398 operands);
472f2723
KH
3399 else if ((TARGET_H8300H || TARGET_H8300S)
3400 && code == IOR
3401 && w1 == 0xffff
3402 && (w0 & 0x8000) != 0)
3403 {
3404 output_asm_insn ("exts.l\t%S0", operands);
3405 }
a6e8d113
KH
3406 else if ((TARGET_H8300H || TARGET_H8300S)
3407 && code == AND
c5e7ce43 3408 && w1 == 0xff00)
a6e8d113 3409 {
dc5f17ec 3410 output_asm_insn ("extu.w\t%e0", operands);
a6e8d113 3411 }
366a7b27
KH
3412 else if (TARGET_H8300H || TARGET_H8300S)
3413 {
c5e7ce43 3414 if (w1 != 0)
366a7b27
KH
3415 {
3416 sprintf (insn_buf, "%s.w\t%%e2,%%e0", opname);
3417 output_asm_insn (insn_buf, operands);
3418 }
3419 }
3420 else
3421 {
c5e7ce43 3422 if (b2 != 0)
366a7b27
KH
3423 {
3424 sprintf (insn_buf, "%s\t%%y2,%%y0", opname);
3425 output_asm_insn (insn_buf, operands);
3426 }
c5e7ce43 3427 if (b3 != 0)
366a7b27
KH
3428 {
3429 sprintf (insn_buf, "%s\t%%z2,%%z0", opname);
3430 output_asm_insn (insn_buf, operands);
3431 }
3432 }
3433 }
3434 break;
3435 default:
8c440872 3436 gcc_unreachable ();
366a7b27
KH
3437 }
3438 return "";
3439}
40367e2d 3440
e9eba255
KH
3441/* Compute the length of a logical insn. */
3442
40367e2d 3443unsigned int
ef4bddc2 3444compute_logical_op_length (machine_mode mode, rtx *operands)
40367e2d 3445{
b42cff6b
KH
3446 /* Figure out the logical op that we need to perform. */
3447 enum rtx_code code = GET_CODE (operands[3]);
40367e2d 3448 /* Pretend that every byte is affected if both operands are registers. */
7798db98 3449 const unsigned HOST_WIDE_INT intval =
40367e2d 3450 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
beed8fc0
AO
3451 /* Always use the full instruction if the
3452 first operand is in memory. It is better
3453 to use define_splits to generate the shorter
3454 sequence where valid. */
3455 && register_operand (operands[1], VOIDmode)
40367e2d
KH
3456 ? INTVAL (operands[2]) : 0x55555555);
3457 /* The determinant of the algorithm. If we perform an AND, 0
3458 affects a bit. Otherwise, 1 affects a bit. */
7798db98 3459 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
f9ac2f95
KH
3460 /* Break up DET into pieces. */
3461 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
3462 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
c5e7ce43
KH
3463 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
3464 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
f9ac2f95
KH
3465 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
3466 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
3467 int lower_half_easy_p = 0;
3468 int upper_half_easy_p = 0;
40367e2d
KH
3469 /* Insn length. */
3470 unsigned int length = 0;
3471
3472 switch (mode)
3473 {
4e10a5a7 3474 case E_HImode:
40367e2d
KH
3475 /* First, see if we can finish with one insn. */
3476 if ((TARGET_H8300H || TARGET_H8300S)
c5e7ce43
KH
3477 && b0 != 0
3478 && b1 != 0)
40367e2d 3479 {
beed8fc0
AO
3480 length = h8300_length_from_table (operands[1], operands[2],
3481 &logicw_length_table);
40367e2d
KH
3482 }
3483 else
3484 {
3485 /* Take care of the lower byte. */
c5e7ce43 3486 if (b0 != 0)
40367e2d
KH
3487 length += 2;
3488
3489 /* Take care of the upper byte. */
c5e7ce43 3490 if (b1 != 0)
40367e2d
KH
3491 length += 2;
3492 }
3493 break;
4e10a5a7 3494 case E_SImode:
f9ac2f95
KH
3495 if (TARGET_H8300H || TARGET_H8300S)
3496 {
3497 /* Determine if the lower half can be taken care of in no more
3498 than two bytes. */
3499 lower_half_easy_p = (b0 == 0
3500 || b1 == 0
3501 || (code != IOR && w0 == 0xffff));
3502
3503 /* Determine if the upper half can be taken care of in no more
3504 than two bytes. */
3505 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
3506 || (code == AND && w1 == 0xff00));
3507 }
40367e2d 3508
f9ac2f95
KH
3509 /* Check if doing everything with one insn is no worse than
3510 using multiple insns. */
40367e2d 3511 if ((TARGET_H8300H || TARGET_H8300S)
f9ac2f95 3512 && w0 != 0 && w1 != 0
472f2723
KH
3513 && !(lower_half_easy_p && upper_half_easy_p)
3514 && !(code == IOR && w1 == 0xffff
3515 && (w0 & 0x8000) != 0 && lower_half_easy_p))
40367e2d 3516 {
beed8fc0
AO
3517 length = h8300_length_from_table (operands[1], operands[2],
3518 &logicl_length_table);
40367e2d
KH
3519 }
3520 else
3521 {
3522 /* Take care of the lower and upper words individually. For
3523 each word, we try different methods in the order of
3524
3525 1) the special insn (in case of AND or XOR),
3526 2) the word-wise insn, and
3527 3) The byte-wise insn. */
c5e7ce43 3528 if (w0 == 0xffff
40367e2d
KH
3529 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3530 {
3531 length += 2;
3532 }
3533 else if ((TARGET_H8300H || TARGET_H8300S)
c5e7ce43
KH
3534 && (b0 != 0)
3535 && (b1 != 0))
40367e2d
KH
3536 {
3537 length += 4;
3538 }
3539 else
3540 {
c5e7ce43 3541 if (b0 != 0)
40367e2d
KH
3542 length += 2;
3543
c5e7ce43 3544 if (b1 != 0)
40367e2d
KH
3545 length += 2;
3546 }
3547
c5e7ce43 3548 if (w1 == 0xffff
40367e2d
KH
3549 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3550 {
3551 length += 2;
3552 }
472f2723
KH
3553 else if ((TARGET_H8300H || TARGET_H8300S)
3554 && code == IOR
3555 && w1 == 0xffff
3556 && (w0 & 0x8000) != 0)
3557 {
3558 length += 2;
3559 }
a6e8d113
KH
3560 else if ((TARGET_H8300H || TARGET_H8300S)
3561 && code == AND
c5e7ce43 3562 && w1 == 0xff00)
a6e8d113
KH
3563 {
3564 length += 2;
3565 }
40367e2d
KH
3566 else if (TARGET_H8300H || TARGET_H8300S)
3567 {
c5e7ce43 3568 if (w1 != 0)
40367e2d
KH
3569 length += 4;
3570 }
3571 else
3572 {
c5e7ce43 3573 if (b2 != 0)
40367e2d
KH
3574 length += 2;
3575
c5e7ce43 3576 if (b3 != 0)
40367e2d
KH
3577 length += 2;
3578 }
3579 }
3580 break;
3581 default:
8c440872 3582 gcc_unreachable ();
40367e2d
KH
3583 }
3584 return length;
3585}
b42cff6b 3586
e9eba255
KH
3587/* Compute which flag bits are valid after a logical insn. */
3588
9690aa8e 3589enum attr_cc
ef4bddc2 3590compute_logical_op_cc (machine_mode mode, rtx *operands)
b42cff6b
KH
3591{
3592 /* Figure out the logical op that we need to perform. */
3593 enum rtx_code code = GET_CODE (operands[3]);
3594 /* Pretend that every byte is affected if both operands are registers. */
7798db98 3595 const unsigned HOST_WIDE_INT intval =
b42cff6b 3596 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
beed8fc0
AO
3597 /* Always use the full instruction if the
3598 first operand is in memory. It is better
3599 to use define_splits to generate the shorter
3600 sequence where valid. */
3601 && register_operand (operands[1], VOIDmode)
b42cff6b
KH
3602 ? INTVAL (operands[2]) : 0x55555555);
3603 /* The determinant of the algorithm. If we perform an AND, 0
3604 affects a bit. Otherwise, 1 affects a bit. */
7798db98 3605 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
f9ac2f95
KH
3606 /* Break up DET into pieces. */
3607 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
3608 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
3609 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
3610 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
3611 int lower_half_easy_p = 0;
3612 int upper_half_easy_p = 0;
b42cff6b
KH
3613 /* Condition code. */
3614 enum attr_cc cc = CC_CLOBBER;
3615
3616 switch (mode)
3617 {
4e10a5a7 3618 case E_HImode:
b42cff6b
KH
3619 /* First, see if we can finish with one insn. */
3620 if ((TARGET_H8300H || TARGET_H8300S)
c5e7ce43
KH
3621 && b0 != 0
3622 && b1 != 0)
b42cff6b
KH
3623 {
3624 cc = CC_SET_ZNV;
3625 }
3626 break;
4e10a5a7 3627 case E_SImode:
f9ac2f95
KH
3628 if (TARGET_H8300H || TARGET_H8300S)
3629 {
3630 /* Determine if the lower half can be taken care of in no more
3631 than two bytes. */
3632 lower_half_easy_p = (b0 == 0
3633 || b1 == 0
3634 || (code != IOR && w0 == 0xffff));
3635
3636 /* Determine if the upper half can be taken care of in no more
3637 than two bytes. */
3638 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
3639 || (code == AND && w1 == 0xff00));
3640 }
b42cff6b 3641
f9ac2f95
KH
3642 /* Check if doing everything with one insn is no worse than
3643 using multiple insns. */
b42cff6b 3644 if ((TARGET_H8300H || TARGET_H8300S)
f9ac2f95 3645 && w0 != 0 && w1 != 0
472f2723
KH
3646 && !(lower_half_easy_p && upper_half_easy_p)
3647 && !(code == IOR && w1 == 0xffff
3648 && (w0 & 0x8000) != 0 && lower_half_easy_p))
b42cff6b
KH
3649 {
3650 cc = CC_SET_ZNV;
3651 }
472f2723
KH
3652 else
3653 {
3654 if ((TARGET_H8300H || TARGET_H8300S)
3655 && code == IOR
3656 && w1 == 0xffff
3657 && (w0 & 0x8000) != 0)
3658 {
3659 cc = CC_SET_ZNV;
3660 }
3661 }
b42cff6b
KH
3662 break;
3663 default:
8c440872 3664 gcc_unreachable ();
b42cff6b
KH
3665 }
3666 return cc;
3667}
366a7b27 3668\f
8981ecd3
KH
3669/* Expand a conditional branch. */
3670
3671void
f90b7a5a 3672h8300_expand_branch (rtx operands[])
8981ecd3 3673{
f90b7a5a
PB
3674 enum rtx_code code = GET_CODE (operands[0]);
3675 rtx op0 = operands[1];
3676 rtx op1 = operands[2];
3677 rtx label = operands[3];
8981ecd3
KH
3678 rtx tmp;
3679
f90b7a5a 3680 tmp = gen_rtx_COMPARE (VOIDmode, op0, op1);
f7df4a84 3681 emit_insn (gen_rtx_SET (cc0_rtx, tmp));
f90b7a5a 3682
8981ecd3
KH
3683 tmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
3684 tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
3685 gen_rtx_LABEL_REF (VOIDmode, label),
3686 pc_rtx);
f7df4a84 3687 emit_jump_insn (gen_rtx_SET (pc_rtx, tmp));
8981ecd3 3688}
f90b7a5a
PB
3689
3690
3691/* Expand a conditional store. */
3692
3693void
3694h8300_expand_store (rtx operands[])
3695{
3696 rtx dest = operands[0];
3697 enum rtx_code code = GET_CODE (operands[1]);
3698 rtx op0 = operands[2];
3699 rtx op1 = operands[3];
3700 rtx tmp;
3701
3702 tmp = gen_rtx_COMPARE (VOIDmode, op0, op1);
f7df4a84 3703 emit_insn (gen_rtx_SET (cc0_rtx, tmp));
f90b7a5a
PB
3704
3705 tmp = gen_rtx_fmt_ee (code, GET_MODE (dest), cc0_rtx, const0_rtx);
f7df4a84 3706 emit_insn (gen_rtx_SET (dest, tmp));
f90b7a5a 3707}
8981ecd3 3708\f
48837e29
DE
3709/* Shifts.
3710
005e3e05
KH
3711 We devote a fair bit of code to getting efficient shifts since we
3712 can only shift one bit at a time on the H8/300 and H8/300H and only
3db11b5c 3713 one or two bits at a time on the H8S.
005e3e05
KH
3714
3715 All shift code falls into one of the following ways of
3716 implementation:
3717
3718 o SHIFT_INLINE: Emit straight line code for the shift; this is used
3719 when a straight line shift is about the same size or smaller than
3720 a loop.
3721
3722 o SHIFT_ROT_AND: Rotate the value the opposite direction, then mask
3723 off the bits we don't need. This is used when only a few of the
3724 bits in the original value will survive in the shifted value.
3725
3726 o SHIFT_SPECIAL: Often it's possible to move a byte or a word to
3727 simulate a shift by 8, 16, or 24 bits. Once moved, a few inline
3728 shifts can be added if the shift count is slightly more than 8 or
3729 16. This case also includes other oddballs that are not worth
f411c849 3730 explaining here.
005e3e05 3731
3db11b5c 3732 o SHIFT_LOOP: Emit a loop using one (or two on H8S) bit shifts.
005e3e05 3733
5ec0b66e
KH
3734 For each shift count, we try to use code that has no trade-off
3735 between code size and speed whenever possible.
3736
3737 If the trade-off is unavoidable, we try to be reasonable.
3738 Specifically, the fastest version is one instruction longer than
3739 the shortest version, we take the fastest version. We also provide
3740 the use a way to switch back to the shortest version with -Os.
3741
3742 For the details of the shift algorithms for various shift counts,
3743 refer to shift_alg_[qhs]i. */
07aae5c2 3744
beed8fc0
AO
3745/* Classify a shift with the given mode and code. OP is the shift amount. */
3746
3747enum h8sx_shift_type
ef4bddc2 3748h8sx_classify_shift (machine_mode mode, enum rtx_code code, rtx op)
beed8fc0
AO
3749{
3750 if (!TARGET_H8300SX)
3751 return H8SX_SHIFT_NONE;
3752
3753 switch (code)
3754 {
3755 case ASHIFT:
3756 case LSHIFTRT:
3757 /* Check for variable shifts (shll Rs,Rd and shlr Rs,Rd). */
3758 if (GET_CODE (op) != CONST_INT)
3759 return H8SX_SHIFT_BINARY;
3760
3761 /* Reject out-of-range shift amounts. */
3762 if (INTVAL (op) <= 0 || INTVAL (op) >= GET_MODE_BITSIZE (mode))
3763 return H8SX_SHIFT_NONE;
3764
3765 /* Power-of-2 shifts are effectively unary operations. */
3766 if (exact_log2 (INTVAL (op)) >= 0)
3767 return H8SX_SHIFT_UNARY;
3768
3769 return H8SX_SHIFT_BINARY;
3770
3771 case ASHIFTRT:
3772 if (op == const1_rtx || op == const2_rtx)
3773 return H8SX_SHIFT_UNARY;
3774 return H8SX_SHIFT_NONE;
3775
3776 case ROTATE:
3777 if (GET_CODE (op) == CONST_INT
3778 && (INTVAL (op) == 1
3779 || INTVAL (op) == 2
3780 || INTVAL (op) == GET_MODE_BITSIZE (mode) - 2
3781 || INTVAL (op) == GET_MODE_BITSIZE (mode) - 1))
3782 return H8SX_SHIFT_UNARY;
3783 return H8SX_SHIFT_NONE;
3784
3785 default:
3786 return H8SX_SHIFT_NONE;
3787 }
3788}
3789
beed8fc0
AO
3790/* Return the asm template for a single h8sx shift instruction.
3791 OPERANDS[0] and OPERANDS[1] are the destination, OPERANDS[2]
3792 is the source and OPERANDS[3] is the shift. SUFFIX is the
88cb339e 3793 size suffix ('b', 'w' or 'l') and OPTYPE is the h8300_print_operand
beed8fc0
AO
3794 prefix for the destination operand. */
3795
3796const char *
3797output_h8sx_shift (rtx *operands, int suffix, int optype)
3798{
3799 static char buffer[16];
3800 const char *stem;
3801
3802 switch (GET_CODE (operands[3]))
3803 {
3804 case ASHIFT:
3805 stem = "shll";
3806 break;
3807
3808 case ASHIFTRT:
3809 stem = "shar";
3810 break;
3811
3812 case LSHIFTRT:
3813 stem = "shlr";
3814 break;
3815
3816 case ROTATE:
3817 stem = "rotl";
3818 if (INTVAL (operands[2]) > 2)
3819 {
3820 /* This is really a right rotate. */
3821 operands[2] = GEN_INT (GET_MODE_BITSIZE (GET_MODE (operands[0]))
3822 - INTVAL (operands[2]));
3823 stem = "rotr";
3824 }
3825 break;
3826
3827 default:
8c440872 3828 gcc_unreachable ();
beed8fc0
AO
3829 }
3830 if (operands[2] == const1_rtx)
3831 sprintf (buffer, "%s.%c\t%%%c0", stem, suffix, optype);
3832 else
3833 sprintf (buffer, "%s.%c\t%%X2,%%%c0", stem, suffix, optype);
3834 return buffer;
3835}
48837e29 3836
317d21e9 3837/* Emit code to do shifts. */
48837e29 3838
beed8fc0 3839bool
ef4bddc2 3840expand_a_shift (machine_mode mode, enum rtx_code code, rtx operands[])
07aae5c2 3841{
beed8fc0
AO
3842 switch (h8sx_classify_shift (mode, code, operands[2]))
3843 {
3844 case H8SX_SHIFT_BINARY:
3845 operands[1] = force_reg (mode, operands[1]);
3846 return false;
3847
3848 case H8SX_SHIFT_UNARY:
3849 return false;
3850
3851 case H8SX_SHIFT_NONE:
3852 break;
3853 }
3854
bc9b880c 3855 emit_move_insn (copy_rtx (operands[0]), operands[1]);
07aae5c2 3856
07e4d94e
KH
3857 /* Need a loop to get all the bits we want - we generate the
3858 code at emit time, but need to allocate a scratch reg now. */
48837e29 3859
c5c76735
JL
3860 emit_insn (gen_rtx_PARALLEL
3861 (VOIDmode,
48837e29 3862 gen_rtvec (2,
f7df4a84 3863 gen_rtx_SET (copy_rtx (operands[0]),
0f4c242b 3864 gen_rtx_fmt_ee (code, mode,
bc9b880c 3865 copy_rtx (operands[0]), operands[2])),
c5c76735
JL
3866 gen_rtx_CLOBBER (VOIDmode,
3867 gen_rtx_SCRATCH (QImode)))));
beed8fc0 3868 return true;
48837e29
DE
3869}
3870
48837e29
DE
3871/* Symbols of the various modes which can be used as indices. */
3872
3873enum shift_mode
1a63219b
KH
3874{
3875 QIshift, HIshift, SIshift
3876};
48837e29 3877
269c14e1
DE
3878/* For single bit shift insns, record assembler and what bits of the
3879 condition code are valid afterwards (represented as various CC_FOO
3880 bits, 0 means CC isn't left in a usable state). */
48837e29
DE
3881
3882struct shift_insn
3883{
8b60264b 3884 const char *const assembler;
9690aa8e 3885 const enum attr_cc cc_valid;
48837e29
DE
3886};
3887
3888/* Assembler instruction shift table.
3889
3890 These tables are used to look up the basic shifts.
07e4d94e 3891 They are indexed by cpu, shift_type, and mode. */
07aae5c2 3892
48837e29
DE
3893static const struct shift_insn shift_one[2][3][3] =
3894{
3895/* H8/300 */
3896 {
3897/* SHIFT_ASHIFT */
3898 {
45ca2106
KH
3899 { "shll\t%X0", CC_SET_ZNV },
3900 { "add.w\t%T0,%T0", CC_SET_ZN },
3901 { "add.w\t%f0,%f0\n\taddx\t%y0,%y0\n\taddx\t%z0,%z0", CC_CLOBBER }
48837e29
DE
3902 },
3903/* SHIFT_LSHIFTRT */
3904 {
45ca2106
KH
3905 { "shlr\t%X0", CC_SET_ZNV },
3906 { "shlr\t%t0\n\trotxr\t%s0", CC_CLOBBER },
3907 { "shlr\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
48837e29
DE
3908 },
3909/* SHIFT_ASHIFTRT */
3910 {
45ca2106
KH
3911 { "shar\t%X0", CC_SET_ZNV },
3912 { "shar\t%t0\n\trotxr\t%s0", CC_CLOBBER },
3913 { "shar\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
48837e29
DE
3914 }
3915 },
3916/* H8/300H */
3917 {
3918/* SHIFT_ASHIFT */
3919 {
45ca2106
KH
3920 { "shll.b\t%X0", CC_SET_ZNV },
3921 { "shll.w\t%T0", CC_SET_ZNV },
3922 { "shll.l\t%S0", CC_SET_ZNV }
48837e29
DE
3923 },
3924/* SHIFT_LSHIFTRT */
3925 {
45ca2106
KH
3926 { "shlr.b\t%X0", CC_SET_ZNV },
3927 { "shlr.w\t%T0", CC_SET_ZNV },
3928 { "shlr.l\t%S0", CC_SET_ZNV }
48837e29
DE
3929 },
3930/* SHIFT_ASHIFTRT */
3931 {
45ca2106
KH
3932 { "shar.b\t%X0", CC_SET_ZNV },
3933 { "shar.w\t%T0", CC_SET_ZNV },
3934 { "shar.l\t%S0", CC_SET_ZNV }
48837e29
DE
3935 }
3936 }
3937};
07aae5c2 3938
51c0c1d7
JL
3939static const struct shift_insn shift_two[3][3] =
3940{
3941/* SHIFT_ASHIFT */
3942 {
45ca2106
KH
3943 { "shll.b\t#2,%X0", CC_SET_ZNV },
3944 { "shll.w\t#2,%T0", CC_SET_ZNV },
3945 { "shll.l\t#2,%S0", CC_SET_ZNV }
51c0c1d7
JL
3946 },
3947/* SHIFT_LSHIFTRT */
3948 {
45ca2106
KH
3949 { "shlr.b\t#2,%X0", CC_SET_ZNV },
3950 { "shlr.w\t#2,%T0", CC_SET_ZNV },
3951 { "shlr.l\t#2,%S0", CC_SET_ZNV }
51c0c1d7
JL
3952 },
3953/* SHIFT_ASHIFTRT */
3954 {
45ca2106
KH
3955 { "shar.b\t#2,%X0", CC_SET_ZNV },
3956 { "shar.w\t#2,%T0", CC_SET_ZNV },
3957 { "shar.l\t#2,%S0", CC_SET_ZNV }
51c0c1d7
JL
3958 }
3959};
3960
48837e29
DE
3961/* Rotates are organized by which shift they'll be used in implementing.
3962 There's no need to record whether the cc is valid afterwards because
3963 it is the AND insn that will decide this. */
07aae5c2 3964
48837e29
DE
3965static const char *const rotate_one[2][3][3] =
3966{
3967/* H8/300 */
3968 {
3969/* SHIFT_ASHIFT */
3970 {
51c0c1d7
JL
3971 "rotr\t%X0",
3972 "shlr\t%t0\n\trotxr\t%s0\n\tbst\t#7,%t0",
48837e29
DE
3973 0
3974 },
3975/* SHIFT_LSHIFTRT */
3976 {
51c0c1d7
JL
3977 "rotl\t%X0",
3978 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
48837e29
DE
3979 0
3980 },
3981/* SHIFT_ASHIFTRT */
3982 {
51c0c1d7
JL
3983 "rotl\t%X0",
3984 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
48837e29 3985 0
07aae5c2 3986 }
48837e29
DE
3987 },
3988/* H8/300H */
3989 {
3990/* SHIFT_ASHIFT */
3991 {
51c0c1d7
JL
3992 "rotr.b\t%X0",
3993 "rotr.w\t%T0",
3994 "rotr.l\t%S0"
48837e29
DE
3995 },
3996/* SHIFT_LSHIFTRT */
07aae5c2 3997 {
51c0c1d7
JL
3998 "rotl.b\t%X0",
3999 "rotl.w\t%T0",
4000 "rotl.l\t%S0"
48837e29
DE
4001 },
4002/* SHIFT_ASHIFTRT */
4003 {
51c0c1d7
JL
4004 "rotl.b\t%X0",
4005 "rotl.w\t%T0",
4006 "rotl.l\t%S0"
48837e29
DE
4007 }
4008 }
4009};
4010
51c0c1d7
JL
4011static const char *const rotate_two[3][3] =
4012{
4013/* SHIFT_ASHIFT */
4014 {
4015 "rotr.b\t#2,%X0",
4016 "rotr.w\t#2,%T0",
4017 "rotr.l\t#2,%S0"
4018 },
4019/* SHIFT_LSHIFTRT */
4020 {
4021 "rotl.b\t#2,%X0",
4022 "rotl.w\t#2,%T0",
4023 "rotl.l\t#2,%S0"
4024 },
4025/* SHIFT_ASHIFTRT */
4026 {
4027 "rotl.b\t#2,%X0",
4028 "rotl.w\t#2,%T0",
4029 "rotl.l\t#2,%S0"
4030 }
4031};
4032
35fb3d1f
KH
4033struct shift_info {
4034 /* Shift algorithm. */
4035 enum shift_alg alg;
4036
4037 /* The number of bits to be shifted by shift1 and shift2. Valid
4038 when ALG is SHIFT_SPECIAL. */
4039 unsigned int remainder;
4040
4041 /* Special insn for a shift. Valid when ALG is SHIFT_SPECIAL. */
4042 const char *special;
4043
4044 /* Insn for a one-bit shift. Valid when ALG is either SHIFT_INLINE
9cd10576 4045 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
35fb3d1f
KH
4046 const char *shift1;
4047
4048 /* Insn for a two-bit shift. Valid when ALG is either SHIFT_INLINE
9cd10576 4049 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
35fb3d1f
KH
4050 const char *shift2;
4051
45ca2106 4052 /* CC status for SHIFT_INLINE. */
9690aa8e 4053 enum attr_cc cc_inline;
45ca2106
KH
4054
4055 /* CC status for SHIFT_SPECIAL. */
9690aa8e 4056 enum attr_cc cc_special;
35fb3d1f
KH
4057};
4058
cb713a8d
KH
4059static void get_shift_alg (enum shift_type,
4060 enum shift_mode, unsigned int,
4061 struct shift_info *);
441d04c6 4062
c009a745
KH
4063/* Given SHIFT_TYPE, SHIFT_MODE, and shift count COUNT, determine the
4064 best algorithm for doing the shift. The assembler code is stored
5ec0b66e
KH
4065 in the pointers in INFO. We achieve the maximum efficiency in most
4066 cases when !TARGET_H8300. In case of TARGET_H8300, shifts in
4067 SImode in particular have a lot of room to optimize.
4068
4069 We first determine the strategy of the shift algorithm by a table
4070 lookup. If that tells us to use a hand crafted assembly code, we
4071 go into the big switch statement to find what that is. Otherwise,
4072 we resort to a generic way, such as inlining. In either case, the
4073 result is returned through INFO. */
48837e29 4074
cb33eb17 4075static void
cb713a8d
KH
4076get_shift_alg (enum shift_type shift_type, enum shift_mode shift_mode,
4077 unsigned int count, struct shift_info *info)
48837e29 4078{
b9b575e6 4079 enum h8_cpu cpu;
769828ab
KH
4080
4081 /* Find the target CPU. */
4082 if (TARGET_H8300)
b9b575e6 4083 cpu = H8_300;
2f6bd6eb 4084 else if (TARGET_H8300S)
b9b575e6 4085 cpu = H8_S;
2f6bd6eb
YS
4086 else
4087 cpu = H8_300H;
769828ab 4088
96eaf358 4089 /* Find the shift algorithm. */
b9b575e6 4090 info->alg = SHIFT_LOOP;
48837e29
DE
4091 switch (shift_mode)
4092 {
4093 case QIshift:
b9b575e6 4094 if (count < GET_MODE_BITSIZE (QImode))
96eaf358
KH
4095 info->alg = shift_alg_qi[cpu][shift_type][count];
4096 break;
769828ab 4097
96eaf358 4098 case HIshift:
b9b575e6 4099 if (count < GET_MODE_BITSIZE (HImode))
96eaf358
KH
4100 info->alg = shift_alg_hi[cpu][shift_type][count];
4101 break;
4102
4103 case SIshift:
b9b575e6 4104 if (count < GET_MODE_BITSIZE (SImode))
96eaf358
KH
4105 info->alg = shift_alg_si[cpu][shift_type][count];
4106 break;
4107
4108 default:
8c440872 4109 gcc_unreachable ();
96eaf358
KH
4110 }
4111
4112 /* Fill in INFO. Return unless we have SHIFT_SPECIAL. */
4113 switch (info->alg)
4114 {
4115 case SHIFT_INLINE:
4116 info->remainder = count;
4117 /* Fall through. */
4118
4119 case SHIFT_LOOP:
4120 /* It is up to the caller to know that looping clobbers cc. */
4121 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
4122 info->shift2 = shift_two[shift_type][shift_mode].assembler;
45ca2106 4123 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
96eaf358
KH
4124 goto end;
4125
4126 case SHIFT_ROT_AND:
4127 info->shift1 = rotate_one[cpu_type][shift_type][shift_mode];
4128 info->shift2 = rotate_two[shift_type][shift_mode];
45ca2106 4129 info->cc_inline = CC_CLOBBER;
96eaf358
KH
4130 goto end;
4131
4132 case SHIFT_SPECIAL:
4133 /* REMAINDER is 0 for most cases, so initialize it to 0. */
4134 info->remainder = 0;
4135 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
4136 info->shift2 = shift_two[shift_type][shift_mode].assembler;
45ca2106
KH
4137 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
4138 info->cc_special = CC_CLOBBER;
96eaf358
KH
4139 break;
4140 }
51c0c1d7 4141
96eaf358
KH
4142 /* Here we only deal with SHIFT_SPECIAL. */
4143 switch (shift_mode)
4144 {
4145 case QIshift:
769828ab
KH
4146 /* For ASHIFTRT by 7 bits, the sign bit is simply replicated
4147 through the entire value. */
8c440872
NS
4148 gcc_assert (shift_type == SHIFT_ASHIFTRT && count == 7);
4149 info->special = "shll\t%X0\n\tsubx\t%X0,%X0";
4150 goto end;
769828ab
KH
4151
4152 case HIshift:
769828ab 4153 if (count == 7)
51c0c1d7 4154 {
a77b1dbc 4155 switch (shift_type)
51c0c1d7 4156 {
a77b1dbc
KH
4157 case SHIFT_ASHIFT:
4158 if (TARGET_H8300)
4159 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.b\t%t0\n\trotr.b\t%s0\n\tand.b\t#0x80,%s0";
4160 else
4161 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.w\t%T0\n\tand.b\t#0x80,%s0";
692b7eb3 4162 goto end;
a77b1dbc
KH
4163 case SHIFT_LSHIFTRT:
4164 if (TARGET_H8300)
4165 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\trotl.b\t%t0\n\tand.b\t#0x01,%t0";
4166 else
4167 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.w\t%T0\n\tand.b\t#0x01,%t0";
692b7eb3 4168 goto end;
a77b1dbc 4169 case SHIFT_ASHIFTRT:
35fb3d1f 4170 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\tsubx\t%t0,%t0";
692b7eb3 4171 goto end;
48837e29 4172 }
07aae5c2 4173 }
01512446 4174 else if ((count >= 8 && count <= 13)
a38b3eea 4175 || (TARGET_H8300S && count == 14))
07aae5c2 4176 {
a7812c0b
KH
4177 info->remainder = count - 8;
4178
51c0c1d7 4179 switch (shift_type)
48837e29 4180 {
51c0c1d7 4181 case SHIFT_ASHIFT:
35fb3d1f 4182 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0";
692b7eb3 4183 goto end;
51c0c1d7 4184 case SHIFT_LSHIFTRT:
a7612343
KH
4185 if (TARGET_H8300)
4186 {
4187 info->special = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0";
4188 info->shift1 = "shlr.b\t%s0";
45ca2106 4189 info->cc_inline = CC_SET_ZNV;
a7612343
KH
4190 }
4191 else
4192 {
4193 info->special = "mov.b\t%t0,%s0\n\textu.w\t%T0";
45ca2106 4194 info->cc_special = CC_SET_ZNV;
a7612343 4195 }
692b7eb3 4196 goto end;
51c0c1d7
JL
4197 case SHIFT_ASHIFTRT:
4198 if (TARGET_H8300)
a7612343
KH
4199 {
4200 info->special = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0";
4201 info->shift1 = "shar.b\t%s0";
a7612343 4202 }
51c0c1d7 4203 else
a7612343
KH
4204 {
4205 info->special = "mov.b\t%t0,%s0\n\texts.w\t%T0";
45ca2106 4206 info->cc_special = CC_SET_ZNV;
a7612343 4207 }
692b7eb3 4208 goto end;
51c0c1d7
JL
4209 }
4210 }
5e98fba2
DD
4211 else if (count == 14)
4212 {
4213 switch (shift_type)
4214 {
4215 case SHIFT_ASHIFT:
4216 if (TARGET_H8300)
4217 info->special = "mov.b\t%s0,%t0\n\trotr.b\t%t0\n\trotr.b\t%t0\n\tand.b\t#0xC0,%t0\n\tsub.b\t%s0,%s0";
4218 goto end;
4219 case SHIFT_LSHIFTRT:
4220 if (TARGET_H8300)
4221 info->special = "mov.b\t%t0,%s0\n\trotl.b\t%s0\n\trotl.b\t%s0\n\tand.b\t#3,%s0\n\tsub.b\t%t0,%t0";
4222 goto end;
4223 case SHIFT_ASHIFTRT:
4224 if (TARGET_H8300)
4225 info->special = "mov.b\t%t0,%s0\n\tshll.b\t%s0\n\tsubx.b\t%t0,%t0\n\tshll.b\t%s0\n\tmov.b\t%t0,%s0\n\tbst.b\t#0,%s0";
4226 else if (TARGET_H8300H)
45ca2106
KH
4227 {
4228 info->special = "shll.b\t%t0\n\tsubx.b\t%s0,%s0\n\tshll.b\t%t0\n\trotxl.b\t%s0\n\texts.w\t%T0";
4229 info->cc_special = CC_SET_ZNV;
4230 }
5e98fba2 4231 else /* TARGET_H8300S */
8c440872 4232 gcc_unreachable ();
5e98fba2
DD
4233 goto end;
4234 }
4235 }
1e41e866 4236 else if (count == 15)
51c0c1d7 4237 {
1e41e866
KH
4238 switch (shift_type)
4239 {
4240 case SHIFT_ASHIFT:
4241 info->special = "bld\t#0,%s0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#7,%t0";
4242 goto end;
4243 case SHIFT_LSHIFTRT:
4244 info->special = "bld\t#7,%t0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#0,%s0";
4245 goto end;
4246 case SHIFT_ASHIFTRT:
4247 info->special = "shll\t%t0\n\tsubx\t%t0,%t0\n\tmov.b\t%t0,%s0";
4248 goto end;
4249 }
07aae5c2 4250 }
8c440872 4251 gcc_unreachable ();
51c0c1d7 4252
48837e29 4253 case SIshift:
01512446 4254 if (TARGET_H8300 && count >= 8 && count <= 9)
48837e29 4255 {
1e41e866
KH
4256 info->remainder = count - 8;
4257
51c0c1d7 4258 switch (shift_type)
48837e29 4259 {
51c0c1d7 4260 case SHIFT_ASHIFT:
35fb3d1f 4261 info->special = "mov.b\t%y0,%z0\n\tmov.b\t%x0,%y0\n\tmov.b\t%w0,%x0\n\tsub.b\t%w0,%w0";
692b7eb3 4262 goto end;
51c0c1d7 4263 case SHIFT_LSHIFTRT:
35fb3d1f 4264 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tsub.b\t%z0,%z0";
1e41e866 4265 info->shift1 = "shlr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0";
692b7eb3 4266 goto end;
51c0c1d7 4267 case SHIFT_ASHIFTRT:
35fb3d1f 4268 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tshll\t%z0\n\tsubx\t%z0,%z0";
692b7eb3 4269 goto end;
48837e29 4270 }
48837e29 4271 }
e6bcfef9
JS
4272 else if (count == 8 && !TARGET_H8300)
4273 {
4274 switch (shift_type)
4275 {
4276 case SHIFT_ASHIFT:
35fb3d1f 4277 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%s4,%t4\n\tmov.b\t%t0,%s4\n\tmov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f4,%e0";
692b7eb3 4278 goto end;
e6bcfef9 4279 case SHIFT_LSHIFTRT:
35fb3d1f 4280 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\textu.w\t%f4\n\tmov.w\t%f4,%e0";
692b7eb3 4281 goto end;
e6bcfef9 4282 case SHIFT_ASHIFTRT:
35fb3d1f 4283 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\texts.w\t%f4\n\tmov.w\t%f4,%e0";
692b7eb3 4284 goto end;
e6bcfef9
JS
4285 }
4286 }
1e41e866
KH
4287 else if (count == 15 && TARGET_H8300)
4288 {
4289 switch (shift_type)
4290 {
4291 case SHIFT_ASHIFT:
8c440872 4292 gcc_unreachable ();
1e41e866 4293 case SHIFT_LSHIFTRT:
a35abc3c 4294 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\txor\t%y0,%y0\n\txor\t%z0,%z0\n\trotxl\t%w0\n\trotxl\t%x0\n\trotxl\t%y0";
1e41e866
KH
4295 goto end;
4296 case SHIFT_ASHIFTRT:
a35abc3c 4297 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\trotxl\t%w0\n\trotxl\t%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
1e41e866
KH
4298 goto end;
4299 }
4300 }
dd69e230
KH
4301 else if (count == 15 && !TARGET_H8300)
4302 {
4303 switch (shift_type)
4304 {
4305 case SHIFT_ASHIFT:
4306 info->special = "shlr.w\t%e0\n\tmov.w\t%f0,%e0\n\txor.w\t%f0,%f0\n\trotxr.l\t%S0";
45ca2106 4307 info->cc_special = CC_SET_ZNV;
dd69e230
KH
4308 goto end;
4309 case SHIFT_LSHIFTRT:
18cf8dda 4310 info->special = "shll.w\t%f0\n\tmov.w\t%e0,%f0\n\txor.w\t%e0,%e0\n\trotxl.l\t%S0";
45ca2106 4311 info->cc_special = CC_SET_ZNV;
dd69e230 4312 goto end;
aefc5826 4313 case SHIFT_ASHIFTRT:
8c440872 4314 gcc_unreachable ();
dd69e230
KH
4315 }
4316 }
01512446
JJ
4317 else if ((TARGET_H8300 && count >= 16 && count <= 20)
4318 || (TARGET_H8300H && count >= 16 && count <= 19)
4319 || (TARGET_H8300S && count >= 16 && count <= 21))
48837e29 4320 {
a7812c0b
KH
4321 info->remainder = count - 16;
4322
48837e29
DE
4323 switch (shift_type)
4324 {
4325 case SHIFT_ASHIFT:
35fb3d1f 4326 info->special = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
1e41e866 4327 if (TARGET_H8300)
b30686ec 4328 info->shift1 = "add.w\t%e0,%e0";
692b7eb3 4329 goto end;
51c0c1d7 4330 case SHIFT_LSHIFTRT:
1e41e866
KH
4331 if (TARGET_H8300)
4332 {
a7612343
KH
4333 info->special = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0";
4334 info->shift1 = "shlr\t%x0\n\trotxr\t%w0";
1e41e866
KH
4335 }
4336 else
4337 {
a7612343 4338 info->special = "mov.w\t%e0,%f0\n\textu.l\t%S0";
45ca2106 4339 info->cc_special = CC_SET_ZNV;
1e41e866 4340 }
692b7eb3 4341 goto end;
51c0c1d7
JL
4342 case SHIFT_ASHIFTRT:
4343 if (TARGET_H8300)
1e41e866
KH
4344 {
4345 info->special = "mov.w\t%e0,%f0\n\tshll\t%z0\n\tsubx\t%z0,%z0\n\tmov.b\t%z0,%y0";
4346 info->shift1 = "shar\t%x0\n\trotxr\t%w0";
4347 }
51c0c1d7 4348 else
1e41e866
KH
4349 {
4350 info->special = "mov.w\t%e0,%f0\n\texts.l\t%S0";
45ca2106 4351 info->cc_special = CC_SET_ZNV;
1e41e866 4352 }
692b7eb3 4353 goto end;
51c0c1d7
JL
4354 }
4355 }
01512446 4356 else if (TARGET_H8300 && count >= 24 && count <= 28)
f9477efd
KH
4357 {
4358 info->remainder = count - 24;
f0b6f9a6 4359
f9477efd
KH
4360 switch (shift_type)
4361 {
4362 case SHIFT_ASHIFT:
4363 info->special = "mov.b\t%w0,%z0\n\tsub.b\t%y0,%y0\n\tsub.w\t%f0,%f0";
4364 info->shift1 = "shll.b\t%z0";
45ca2106 4365 info->cc_inline = CC_SET_ZNV;
f9477efd
KH
4366 goto end;
4367 case SHIFT_LSHIFTRT:
4368 info->special = "mov.b\t%z0,%w0\n\tsub.b\t%x0,%x0\n\tsub.w\t%e0,%e0";
4369 info->shift1 = "shlr.b\t%w0";
45ca2106 4370 info->cc_inline = CC_SET_ZNV;
f9477efd
KH
4371 goto end;
4372 case SHIFT_ASHIFTRT:
d00f6ca6 4373 info->special = "mov.b\t%z0,%w0\n\tbld\t#7,%w0\n\tsubx\t%x0,%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
f9477efd 4374 info->shift1 = "shar.b\t%w0";
45ca2106 4375 info->cc_inline = CC_SET_ZNV;
7f473594
KH
4376 goto end;
4377 }
4378 }
4a4ae922 4379 else if ((TARGET_H8300H && count == 24)
01512446 4380 || (TARGET_H8300S && count >= 24 && count <= 25))
e6bcfef9 4381 {
4a4ae922
KH
4382 info->remainder = count - 24;
4383
e6bcfef9
JS
4384 switch (shift_type)
4385 {
4386 case SHIFT_ASHIFT:
35fb3d1f 4387 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
692b7eb3 4388 goto end;
e6bcfef9 4389 case SHIFT_LSHIFTRT:
35fb3d1f 4390 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\textu.w\t%f0\n\textu.l\t%S0";
45ca2106 4391 info->cc_special = CC_SET_ZNV;
692b7eb3 4392 goto end;
e6bcfef9 4393 case SHIFT_ASHIFTRT:
35fb3d1f 4394 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\texts.w\t%f0\n\texts.l\t%S0";
45ca2106 4395 info->cc_special = CC_SET_ZNV;
692b7eb3 4396 goto end;
e6bcfef9
JS
4397 }
4398 }
1e5bdc40
KH
4399 else if (!TARGET_H8300 && count == 28)
4400 {
4401 switch (shift_type)
4402 {
4403 case SHIFT_ASHIFT:
4404 if (TARGET_H8300H)
4405 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4406 else
4407 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
1e5bdc40
KH
4408 goto end;
4409 case SHIFT_LSHIFTRT:
4410 if (TARGET_H8300H)
45ca2106
KH
4411 {
4412 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4413 info->cc_special = CC_SET_ZNV;
4414 }
1e5bdc40 4415 else
a7612343 4416 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
1e5bdc40
KH
4417 goto end;
4418 case SHIFT_ASHIFTRT:
8c440872 4419 gcc_unreachable ();
1e5bdc40
KH
4420 }
4421 }
4422 else if (!TARGET_H8300 && count == 29)
4423 {
4424 switch (shift_type)
4425 {
4426 case SHIFT_ASHIFT:
4427 if (TARGET_H8300H)
4428 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4429 else
4430 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
1e5bdc40
KH
4431 goto end;
4432 case SHIFT_LSHIFTRT:
4433 if (TARGET_H8300H)
45ca2106
KH
4434 {
4435 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4436 info->cc_special = CC_SET_ZNV;
4437 }
1e5bdc40 4438 else
45ca2106
KH
4439 {
4440 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4441 info->cc_special = CC_SET_ZNV;
4442 }
1e5bdc40
KH
4443 goto end;
4444 case SHIFT_ASHIFTRT:
8c440872 4445 gcc_unreachable ();
1e5bdc40
KH
4446 }
4447 }
4448 else if (!TARGET_H8300 && count == 30)
4449 {
4450 switch (shift_type)
4451 {
4452 case SHIFT_ASHIFT:
4453 if (TARGET_H8300H)
4454 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4455 else
4456 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
1e5bdc40
KH
4457 goto end;
4458 case SHIFT_LSHIFTRT:
4459 if (TARGET_H8300H)
a7612343 4460 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
1e5bdc40 4461 else
a7612343 4462 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
1e5bdc40
KH
4463 goto end;
4464 case SHIFT_ASHIFTRT:
8c440872 4465 gcc_unreachable ();
1e5bdc40
KH
4466 }
4467 }
48837e29
DE
4468 else if (count == 31)
4469 {
dd69e230 4470 if (TARGET_H8300)
48837e29 4471 {
dd69e230
KH
4472 switch (shift_type)
4473 {
4474 case SHIFT_ASHIFT:
4475 info->special = "sub.w\t%e0,%e0\n\tshlr\t%w0\n\tmov.w\t%e0,%f0\n\trotxr\t%z0";
4476 goto end;
4477 case SHIFT_LSHIFTRT:
4478 info->special = "sub.w\t%f0,%f0\n\tshll\t%z0\n\tmov.w\t%f0,%e0\n\trotxl\t%w0";
4479 goto end;
4480 case SHIFT_ASHIFTRT:
4481 info->special = "shll\t%z0\n\tsubx\t%w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
4482 goto end;
4483 }
48837e29
DE
4484 }
4485 else
4486 {
dd69e230 4487 switch (shift_type)
48837e29 4488 {
dd69e230
KH
4489 case SHIFT_ASHIFT:
4490 info->special = "shlr.l\t%S0\n\txor.l\t%S0,%S0\n\trotxr.l\t%S0";
45ca2106 4491 info->cc_special = CC_SET_ZNV;
dd69e230
KH
4492 goto end;
4493 case SHIFT_LSHIFTRT:
4494 info->special = "shll.l\t%S0\n\txor.l\t%S0,%S0\n\trotxl.l\t%S0";
45ca2106 4495 info->cc_special = CC_SET_ZNV;
dd69e230
KH
4496 goto end;
4497 case SHIFT_ASHIFTRT:
a7612343 4498 info->special = "shll\t%e0\n\tsubx\t%w0,%w0\n\texts.w\t%T0\n\texts.l\t%S0";
45ca2106 4499 info->cc_special = CC_SET_ZNV;
692b7eb3 4500 goto end;
48837e29 4501 }
48837e29
DE
4502 }
4503 }
8c440872 4504 gcc_unreachable ();
51c0c1d7 4505
48837e29 4506 default:
8c440872 4507 gcc_unreachable ();
07aae5c2 4508 }
48837e29 4509
cb33eb17
KH
4510 end:
4511 if (!TARGET_H8300S)
4512 info->shift2 = NULL;
07aae5c2
SC
4513}
4514
be1e06df
KH
4515/* Given COUNT and MODE of a shift, return 1 if a scratch reg may be
4516 needed for some shift with COUNT and MODE. Return 0 otherwise. */
4517
4518int
ef4bddc2 4519h8300_shift_needs_scratch_p (int count, machine_mode mode)
be1e06df 4520{
b9b575e6 4521 enum h8_cpu cpu;
be1e06df
KH
4522 int a, lr, ar;
4523
4524 if (GET_MODE_BITSIZE (mode) <= count)
4525 return 1;
4526
4527 /* Find out the target CPU. */
4528 if (TARGET_H8300)
b9b575e6 4529 cpu = H8_300;
2f6bd6eb 4530 else if (TARGET_H8300S)
b9b575e6 4531 cpu = H8_S;
2f6bd6eb
YS
4532 else
4533 cpu = H8_300H;
be1e06df
KH
4534
4535 /* Find the shift algorithm. */
4536 switch (mode)
4537 {
4e10a5a7 4538 case E_QImode:
be1e06df
KH
4539 a = shift_alg_qi[cpu][SHIFT_ASHIFT][count];
4540 lr = shift_alg_qi[cpu][SHIFT_LSHIFTRT][count];
4541 ar = shift_alg_qi[cpu][SHIFT_ASHIFTRT][count];
4542 break;
4543
4e10a5a7 4544 case E_HImode:
be1e06df
KH
4545 a = shift_alg_hi[cpu][SHIFT_ASHIFT][count];
4546 lr = shift_alg_hi[cpu][SHIFT_LSHIFTRT][count];
4547 ar = shift_alg_hi[cpu][SHIFT_ASHIFTRT][count];
4548 break;
4549
4e10a5a7 4550 case E_SImode:
be1e06df
KH
4551 a = shift_alg_si[cpu][SHIFT_ASHIFT][count];
4552 lr = shift_alg_si[cpu][SHIFT_LSHIFTRT][count];
4553 ar = shift_alg_si[cpu][SHIFT_ASHIFTRT][count];
4554 break;
4555
4556 default:
8c440872 4557 gcc_unreachable ();
be1e06df
KH
4558 }
4559
aa2fb4dd 4560 /* On H8/300H, count == 8 uses a scratch register. */
be1e06df 4561 return (a == SHIFT_LOOP || lr == SHIFT_LOOP || ar == SHIFT_LOOP
75a3503b 4562 || (TARGET_H8300H && mode == SImode && count == 8));
be1e06df
KH
4563}
4564
e9eba255 4565/* Output the assembler code for doing shifts. */
48837e29 4566
441d04c6 4567const char *
cb713a8d 4568output_a_shift (rtx *operands)
07aae5c2 4569{
48837e29 4570 static int loopend_lab;
48837e29 4571 rtx shift = operands[3];
ef4bddc2 4572 machine_mode mode = GET_MODE (shift);
48837e29
DE
4573 enum rtx_code code = GET_CODE (shift);
4574 enum shift_type shift_type;
4575 enum shift_mode shift_mode;
35fb3d1f 4576 struct shift_info info;
8c440872 4577 int n;
48837e29
DE
4578
4579 loopend_lab++;
4580
4581 switch (mode)
4582 {
4e10a5a7 4583 case E_QImode:
48837e29
DE
4584 shift_mode = QIshift;
4585 break;
4e10a5a7 4586 case E_HImode:
48837e29
DE
4587 shift_mode = HIshift;
4588 break;
4e10a5a7 4589 case E_SImode:
48837e29
DE
4590 shift_mode = SIshift;
4591 break;
4592 default:
8c440872 4593 gcc_unreachable ();
48837e29 4594 }
07aae5c2 4595
48837e29 4596 switch (code)
07aae5c2 4597 {
48837e29
DE
4598 case ASHIFTRT:
4599 shift_type = SHIFT_ASHIFTRT;
4600 break;
4601 case LSHIFTRT:
4602 shift_type = SHIFT_LSHIFTRT;
4603 break;
4604 case ASHIFT:
4605 shift_type = SHIFT_ASHIFT;
4606 break;
4607 default:
8c440872 4608 gcc_unreachable ();
48837e29 4609 }
07aae5c2 4610
8c440872
NS
4611 /* This case must be taken care of by one of the two splitters
4612 that convert a variable shift into a loop. */
4613 gcc_assert (GET_CODE (operands[2]) == CONST_INT);
4614
4615 n = INTVAL (operands[2]);
4616
4617 /* If the count is negative, make it 0. */
4618 if (n < 0)
4619 n = 0;
4620 /* If the count is too big, truncate it.
4621 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
4622 do the intuitive thing. */
4623 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
4624 n = GET_MODE_BITSIZE (mode);
4625
4626 get_shift_alg (shift_type, shift_mode, n, &info);
4627
4628 switch (info.alg)
48837e29 4629 {
8c440872
NS
4630 case SHIFT_SPECIAL:
4631 output_asm_insn (info.special, operands);
4632 /* Fall through. */
48837e29 4633
8c440872
NS
4634 case SHIFT_INLINE:
4635 n = info.remainder;
48837e29 4636
8c440872
NS
4637 /* Emit two bit shifts first. */
4638 if (info.shift2 != NULL)
48837e29 4639 {
8c440872
NS
4640 for (; n > 1; n -= 2)
4641 output_asm_insn (info.shift2, operands);
4642 }
51c0c1d7 4643
8c440872
NS
4644 /* Now emit one bit shifts for any residual. */
4645 for (; n > 0; n--)
4646 output_asm_insn (info.shift1, operands);
4647 return "";
4648
4649 case SHIFT_ROT_AND:
4650 {
4651 int m = GET_MODE_BITSIZE (mode) - n;
4652 const int mask = (shift_type == SHIFT_ASHIFT
4653 ? ((1 << m) - 1) << n
4654 : (1 << m) - 1);
4655 char insn_buf[200];
4656
4657 /* Not all possibilities of rotate are supported. They shouldn't
4658 be generated, but let's watch for 'em. */
4659 gcc_assert (info.shift1);
4660
4661 /* Emit two bit rotates first. */
4662 if (info.shift2 != NULL)
48837e29 4663 {
8c440872
NS
4664 for (; m > 1; m -= 2)
4665 output_asm_insn (info.shift2, operands);
4666 }
4667
4668 /* Now single bit rotates for any residual. */
4669 for (; m > 0; m--)
4670 output_asm_insn (info.shift1, operands);
4671
4672 /* Now mask off the high bits. */
4673 switch (mode)
4674 {
4e10a5a7 4675 case E_QImode:
8c440872
NS
4676 sprintf (insn_buf, "and\t#%d,%%X0", mask);
4677 break;
51c0c1d7 4678
4e10a5a7 4679 case E_HImode:
8c440872
NS
4680 gcc_assert (TARGET_H8300H || TARGET_H8300S);
4681 sprintf (insn_buf, "and.w\t#%d,%%T0", mask);
4682 break;
51c0c1d7 4683
8c440872
NS
4684 default:
4685 gcc_unreachable ();
48837e29 4686 }
b5eaf9ba 4687
8c440872
NS
4688 output_asm_insn (insn_buf, operands);
4689 return "";
4690 }
b5eaf9ba 4691
8c440872
NS
4692 case SHIFT_LOOP:
4693 /* A loop to shift by a "large" constant value.
4694 If we have shift-by-2 insns, use them. */
4695 if (info.shift2 != NULL)
4696 {
4697 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n / 2,
4698 names_big[REGNO (operands[4])]);
4699 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4700 output_asm_insn (info.shift2, operands);
4701 output_asm_insn ("add #0xff,%X4", operands);
4702 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
4703 if (n % 2)
4704 output_asm_insn (info.shift1, operands);
4705 }
4706 else
4707 {
4708 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n,
4709 names_big[REGNO (operands[4])]);
4710 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4711 output_asm_insn (info.shift1, operands);
4712 output_asm_insn ("add #0xff,%X4", operands);
4713 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
51c0c1d7 4714 }
8c440872
NS
4715 return "";
4716
4717 default:
4718 gcc_unreachable ();
07aae5c2 4719 }
07aae5c2 4720}
86855e8c 4721
0a2aaacc 4722/* Count the number of assembly instructions in a string TEMPL. */
e9eba255 4723
86855e8c 4724static unsigned int
0a2aaacc 4725h8300_asm_insn_count (const char *templ)
86855e8c
KH
4726{
4727 unsigned int count = 1;
4728
0a2aaacc
KG
4729 for (; *templ; templ++)
4730 if (*templ == '\n')
86855e8c
KH
4731 count++;
4732
4733 return count;
4734}
4735
e9eba255
KH
4736/* Compute the length of a shift insn. */
4737
86855e8c 4738unsigned int
cb713a8d 4739compute_a_shift_length (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
86855e8c
KH
4740{
4741 rtx shift = operands[3];
ef4bddc2 4742 machine_mode mode = GET_MODE (shift);
86855e8c
KH
4743 enum rtx_code code = GET_CODE (shift);
4744 enum shift_type shift_type;
4745 enum shift_mode shift_mode;
4746 struct shift_info info;
4747 unsigned int wlength = 0;
4748
4749 switch (mode)
4750 {
4e10a5a7 4751 case E_QImode:
86855e8c
KH
4752 shift_mode = QIshift;
4753 break;
4e10a5a7 4754 case E_HImode:
86855e8c
KH
4755 shift_mode = HIshift;
4756 break;
4e10a5a7 4757 case E_SImode:
86855e8c
KH
4758 shift_mode = SIshift;
4759 break;
4760 default:
8c440872 4761 gcc_unreachable ();
86855e8c
KH
4762 }
4763
4764 switch (code)
4765 {
4766 case ASHIFTRT:
4767 shift_type = SHIFT_ASHIFTRT;
4768 break;
4769 case LSHIFTRT:
4770 shift_type = SHIFT_LSHIFTRT;
4771 break;
4772 case ASHIFT:
4773 shift_type = SHIFT_ASHIFT;
4774 break;
4775 default:
8c440872 4776 gcc_unreachable ();
86855e8c
KH
4777 }
4778
4779 if (GET_CODE (operands[2]) != CONST_INT)
4780 {
4781 /* Get the assembler code to do one shift. */
4782 get_shift_alg (shift_type, shift_mode, 1, &info);
4783
4784 return (4 + h8300_asm_insn_count (info.shift1)) * 2;
4785 }
4786 else
4787 {
4788 int n = INTVAL (operands[2]);
4789
4790 /* If the count is negative, make it 0. */
4791 if (n < 0)
4792 n = 0;
4793 /* If the count is too big, truncate it.
4794 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
4795 do the intuitive thing. */
4796 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
4797 n = GET_MODE_BITSIZE (mode);
4798
4799 get_shift_alg (shift_type, shift_mode, n, &info);
4800
4801 switch (info.alg)
4802 {
4803 case SHIFT_SPECIAL:
4804 wlength += h8300_asm_insn_count (info.special);
41c3eb5d
KH
4805
4806 /* Every assembly instruction used in SHIFT_SPECIAL case
4807 takes 2 bytes except xor.l, which takes 4 bytes, so if we
4808 see xor.l, we just pretend that xor.l counts as two insns
4809 so that the insn length will be computed correctly. */
4810 if (strstr (info.special, "xor.l") != NULL)
4811 wlength++;
4812
86855e8c
KH
4813 /* Fall through. */
4814
4815 case SHIFT_INLINE:
4816 n = info.remainder;
4817
4818 if (info.shift2 != NULL)
4819 {
4820 wlength += h8300_asm_insn_count (info.shift2) * (n / 2);
4821 n = n % 2;
4822 }
4823
4824 wlength += h8300_asm_insn_count (info.shift1) * n;
6b148bd9 4825
86855e8c
KH
4826 return 2 * wlength;
4827
4828 case SHIFT_ROT_AND:
4829 {
4830 int m = GET_MODE_BITSIZE (mode) - n;
4831
4832 /* Not all possibilities of rotate are supported. They shouldn't
4833 be generated, but let's watch for 'em. */
8c440872 4834 gcc_assert (info.shift1);
86855e8c
KH
4835
4836 if (info.shift2 != NULL)
4837 {
4838 wlength += h8300_asm_insn_count (info.shift2) * (m / 2);
4839 m = m % 2;
4840 }
4841
4842 wlength += h8300_asm_insn_count (info.shift1) * m;
6b148bd9 4843
86855e8c
KH
4844 /* Now mask off the high bits. */
4845 switch (mode)
4846 {
4e10a5a7 4847 case E_QImode:
86855e8c
KH
4848 wlength += 1;
4849 break;
4e10a5a7 4850 case E_HImode:
86855e8c
KH
4851 wlength += 2;
4852 break;
4e10a5a7 4853 case E_SImode:
8c440872 4854 gcc_assert (!TARGET_H8300);
86855e8c
KH
4855 wlength += 3;
4856 break;
4857 default:
8c440872 4858 gcc_unreachable ();
86855e8c
KH
4859 }
4860 return 2 * wlength;
4861 }
4862
4863 case SHIFT_LOOP:
4864 /* A loop to shift by a "large" constant value.
4865 If we have shift-by-2 insns, use them. */
4866 if (info.shift2 != NULL)
4867 {
4868 wlength += 3 + h8300_asm_insn_count (info.shift2);
4869 if (n % 2)
4870 wlength += h8300_asm_insn_count (info.shift1);
4871 }
4872 else
4873 {
4874 wlength += 3 + h8300_asm_insn_count (info.shift1);
4875 }
4876 return 2 * wlength;
4877
4878 default:
8c440872 4879 gcc_unreachable ();
86855e8c
KH
4880 }
4881 }
4882}
45ca2106 4883
e9eba255
KH
4884/* Compute which flag bits are valid after a shift insn. */
4885
9690aa8e 4886enum attr_cc
cb713a8d 4887compute_a_shift_cc (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
45ca2106
KH
4888{
4889 rtx shift = operands[3];
ef4bddc2 4890 machine_mode mode = GET_MODE (shift);
45ca2106
KH
4891 enum rtx_code code = GET_CODE (shift);
4892 enum shift_type shift_type;
4893 enum shift_mode shift_mode;
4894 struct shift_info info;
8c440872
NS
4895 int n;
4896
45ca2106
KH
4897 switch (mode)
4898 {
4e10a5a7 4899 case E_QImode:
45ca2106
KH
4900 shift_mode = QIshift;
4901 break;
4e10a5a7 4902 case E_HImode:
45ca2106
KH
4903 shift_mode = HIshift;
4904 break;
4e10a5a7 4905 case E_SImode:
45ca2106
KH
4906 shift_mode = SIshift;
4907 break;
4908 default:
8c440872 4909 gcc_unreachable ();
45ca2106
KH
4910 }
4911
4912 switch (code)
4913 {
4914 case ASHIFTRT:
4915 shift_type = SHIFT_ASHIFTRT;
4916 break;
4917 case LSHIFTRT:
4918 shift_type = SHIFT_LSHIFTRT;
4919 break;
4920 case ASHIFT:
4921 shift_type = SHIFT_ASHIFT;
4922 break;
4923 default:
8c440872 4924 gcc_unreachable ();
45ca2106
KH
4925 }
4926
8c440872
NS
4927 /* This case must be taken care of by one of the two splitters
4928 that convert a variable shift into a loop. */
4929 gcc_assert (GET_CODE (operands[2]) == CONST_INT);
4930
4931 n = INTVAL (operands[2]);
4932
4933 /* If the count is negative, make it 0. */
4934 if (n < 0)
4935 n = 0;
4936 /* If the count is too big, truncate it.
4937 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
4938 do the intuitive thing. */
4939 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
4940 n = GET_MODE_BITSIZE (mode);
4941
4942 get_shift_alg (shift_type, shift_mode, n, &info);
4943
4944 switch (info.alg)
45ca2106 4945 {
8c440872
NS
4946 case SHIFT_SPECIAL:
4947 if (info.remainder == 0)
4948 return info.cc_special;
45ca2106 4949
8c440872 4950 /* Fall through. */
45ca2106 4951
8c440872
NS
4952 case SHIFT_INLINE:
4953 return info.cc_inline;
4954
4955 case SHIFT_ROT_AND:
4956 /* This case always ends with an and instruction. */
4957 return CC_SET_ZNV;
4958
4959 case SHIFT_LOOP:
4960 /* A loop to shift by a "large" constant value.
4961 If we have shift-by-2 insns, use them. */
4962 if (info.shift2 != NULL)
45ca2106 4963 {
8c440872
NS
4964 if (n % 2)
4965 return info.cc_inline;
45ca2106 4966 }
8c440872
NS
4967 return CC_CLOBBER;
4968
4969 default:
4970 gcc_unreachable ();
45ca2106
KH
4971 }
4972}
48837e29 4973\f
edd71f0f
KH
4974/* A rotation by a non-constant will cause a loop to be generated, in
4975 which a rotation by one bit is used. A rotation by a constant,
4976 including the one in the loop, will be taken care of by
caf7f21a 4977 output_a_rotate () at the insn emit time. */
edd71f0f
KH
4978
4979int
3d2e90d6 4980expand_a_rotate (rtx operands[])
edd71f0f
KH
4981{
4982 rtx dst = operands[0];
4983 rtx src = operands[1];
4984 rtx rotate_amount = operands[2];
ef4bddc2 4985 machine_mode mode = GET_MODE (dst);
edd71f0f 4986
beed8fc0
AO
4987 if (h8sx_classify_shift (mode, ROTATE, rotate_amount) == H8SX_SHIFT_UNARY)
4988 return false;
4989
edd71f0f
KH
4990 /* We rotate in place. */
4991 emit_move_insn (dst, src);
4992
4993 if (GET_CODE (rotate_amount) != CONST_INT)
4994 {
4995 rtx counter = gen_reg_rtx (QImode);
19f8b229
TS
4996 rtx_code_label *start_label = gen_label_rtx ();
4997 rtx_code_label *end_label = gen_label_rtx ();
edd71f0f
KH
4998
4999 /* If the rotate amount is less than or equal to 0,
5000 we go out of the loop. */
a556fd39 5001 emit_cmp_and_jump_insns (rotate_amount, const0_rtx, LE, NULL_RTX,
d43e0b7d 5002 QImode, 0, end_label);
edd71f0f
KH
5003
5004 /* Initialize the loop counter. */
5005 emit_move_insn (counter, rotate_amount);
5006
5007 emit_label (start_label);
5008
5009 /* Rotate by one bit. */
01ab5574
KH
5010 switch (mode)
5011 {
4e10a5a7 5012 case E_QImode:
01ab5574
KH
5013 emit_insn (gen_rotlqi3_1 (dst, dst, const1_rtx));
5014 break;
4e10a5a7 5015 case E_HImode:
01ab5574
KH
5016 emit_insn (gen_rotlhi3_1 (dst, dst, const1_rtx));
5017 break;
4e10a5a7 5018 case E_SImode:
01ab5574
KH
5019 emit_insn (gen_rotlsi3_1 (dst, dst, const1_rtx));
5020 break;
5021 default:
8c440872 5022 gcc_unreachable ();
01ab5574 5023 }
edd71f0f
KH
5024
5025 /* Decrement the counter by 1. */
01ab5574 5026 emit_insn (gen_addqi3 (counter, counter, constm1_rtx));
edd71f0f 5027
9cd10576 5028 /* If the loop counter is nonzero, we go back to the beginning
edd71f0f 5029 of the loop. */
a556fd39 5030 emit_cmp_and_jump_insns (counter, const0_rtx, NE, NULL_RTX, QImode, 1,
d43e0b7d 5031 start_label);
edd71f0f
KH
5032
5033 emit_label (end_label);
5034 }
5035 else
5036 {
5037 /* Rotate by AMOUNT bits. */
01ab5574
KH
5038 switch (mode)
5039 {
4e10a5a7 5040 case E_QImode:
01ab5574
KH
5041 emit_insn (gen_rotlqi3_1 (dst, dst, rotate_amount));
5042 break;
4e10a5a7 5043 case E_HImode:
01ab5574
KH
5044 emit_insn (gen_rotlhi3_1 (dst, dst, rotate_amount));
5045 break;
4e10a5a7 5046 case E_SImode:
01ab5574
KH
5047 emit_insn (gen_rotlsi3_1 (dst, dst, rotate_amount));
5048 break;
5049 default:
8c440872 5050 gcc_unreachable ();
01ab5574 5051 }
edd71f0f
KH
5052 }
5053
5054 return 1;
5055}
5056
e9eba255 5057/* Output a rotate insn. */
edd71f0f
KH
5058
5059const char *
caf7f21a 5060output_a_rotate (enum rtx_code code, rtx *operands)
edd71f0f
KH
5061{
5062 rtx dst = operands[0];
5063 rtx rotate_amount = operands[2];
5064 enum shift_mode rotate_mode;
5065 enum shift_type rotate_type;
5066 const char *insn_buf;
5067 int bits;
5068 int amount;
ef4bddc2 5069 machine_mode mode = GET_MODE (dst);
edd71f0f 5070
8c440872 5071 gcc_assert (GET_CODE (rotate_amount) == CONST_INT);
edd71f0f
KH
5072
5073 switch (mode)
5074 {
4e10a5a7 5075 case E_QImode:
edd71f0f
KH
5076 rotate_mode = QIshift;
5077 break;
4e10a5a7 5078 case E_HImode:
edd71f0f
KH
5079 rotate_mode = HIshift;
5080 break;
4e10a5a7 5081 case E_SImode:
edd71f0f
KH
5082 rotate_mode = SIshift;
5083 break;
5084 default:
8c440872 5085 gcc_unreachable ();
edd71f0f
KH
5086 }
5087
5088 switch (code)
5089 {
5090 case ROTATERT:
5091 rotate_type = SHIFT_ASHIFT;
5092 break;
5093 case ROTATE:
5094 rotate_type = SHIFT_LSHIFTRT;
5095 break;
5096 default:
8c440872 5097 gcc_unreachable ();
edd71f0f
KH
5098 }
5099
5100 amount = INTVAL (rotate_amount);
5101
5102 /* Clean up AMOUNT. */
5103 if (amount < 0)
5104 amount = 0;
5105 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
5106 amount = GET_MODE_BITSIZE (mode);
5107
5108 /* Determine the faster direction. After this phase, amount will be
5109 at most a half of GET_MODE_BITSIZE (mode). */
e0c32c62 5110 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
edd71f0f
KH
5111 {
5112 /* Flip the direction. */
5113 amount = GET_MODE_BITSIZE (mode) - amount;
5114 rotate_type =
5115 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
5116 }
5117
5118 /* See if a byte swap (in HImode) or a word swap (in SImode) can
5119 boost up the rotation. */
5120 if ((mode == HImode && TARGET_H8300 && amount >= 5)
5121 || (mode == HImode && TARGET_H8300H && amount >= 6)
5122 || (mode == HImode && TARGET_H8300S && amount == 8)
5123 || (mode == SImode && TARGET_H8300H && amount >= 10)
5124 || (mode == SImode && TARGET_H8300S && amount >= 13))
5125 {
5126 switch (mode)
5127 {
4e10a5a7 5128 case E_HImode:
edd71f0f
KH
5129 /* This code works on any family. */
5130 insn_buf = "xor.b\t%s0,%t0\n\txor.b\t%t0,%s0\n\txor.b\t%s0,%t0";
5131 output_asm_insn (insn_buf, operands);
5132 break;
5133
4e10a5a7 5134 case E_SImode:
3db11b5c 5135 /* This code works on the H8/300H and H8S. */
edd71f0f
KH
5136 insn_buf = "xor.w\t%e0,%f0\n\txor.w\t%f0,%e0\n\txor.w\t%e0,%f0";
5137 output_asm_insn (insn_buf, operands);
5138 break;
5139
5140 default:
8c440872 5141 gcc_unreachable ();
edd71f0f
KH
5142 }
5143
5144 /* Adjust AMOUNT and flip the direction. */
5145 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
5146 rotate_type =
5147 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
5148 }
5149
01ab5574 5150 /* Output rotate insns. */
edd71f0f
KH
5151 for (bits = TARGET_H8300S ? 2 : 1; bits > 0; bits /= 2)
5152 {
5153 if (bits == 2)
5154 insn_buf = rotate_two[rotate_type][rotate_mode];
5155 else
5156 insn_buf = rotate_one[cpu_type][rotate_type][rotate_mode];
2c54abce 5157
edd71f0f
KH
5158 for (; amount >= bits; amount -= bits)
5159 output_asm_insn (insn_buf, operands);
5160 }
5161
5162 return "";
5163}
caf7f21a 5164
e9eba255
KH
5165/* Compute the length of a rotate insn. */
5166
caf7f21a
KH
5167unsigned int
5168compute_a_rotate_length (rtx *operands)
5169{
5170 rtx src = operands[1];
343fd2c7 5171 rtx amount_rtx = operands[2];
ef4bddc2 5172 machine_mode mode = GET_MODE (src);
caf7f21a
KH
5173 int amount;
5174 unsigned int length = 0;
5175
8c440872 5176 gcc_assert (GET_CODE (amount_rtx) == CONST_INT);
caf7f21a 5177
343fd2c7 5178 amount = INTVAL (amount_rtx);
caf7f21a
KH
5179
5180 /* Clean up AMOUNT. */
5181 if (amount < 0)
5182 amount = 0;
5183 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
5184 amount = GET_MODE_BITSIZE (mode);
5185
5186 /* Determine the faster direction. After this phase, amount
5187 will be at most a half of GET_MODE_BITSIZE (mode). */
5188 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
5189 /* Flip the direction. */
5190 amount = GET_MODE_BITSIZE (mode) - amount;
5191
5192 /* See if a byte swap (in HImode) or a word swap (in SImode) can
5193 boost up the rotation. */
5194 if ((mode == HImode && TARGET_H8300 && amount >= 5)
5195 || (mode == HImode && TARGET_H8300H && amount >= 6)
5196 || (mode == HImode && TARGET_H8300S && amount == 8)
5197 || (mode == SImode && TARGET_H8300H && amount >= 10)
5198 || (mode == SImode && TARGET_H8300S && amount >= 13))
5199 {
5200 /* Adjust AMOUNT and flip the direction. */
5201 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
5202 length += 6;
5203 }
5204
5205 /* We use 2-bit rotations on the H8S. */
5206 if (TARGET_H8300S)
5207 amount = amount / 2 + amount % 2;
5208
5209 /* The H8/300 uses three insns to rotate one bit, taking 6
5210 length. */
5211 length += amount * ((TARGET_H8300 && mode == HImode) ? 6 : 2);
5212
5213 return length;
5214}
edd71f0f 5215\f
48837e29 5216/* Fix the operands of a gen_xxx so that it could become a bit
2c54abce 5217 operating insn. */
07aae5c2
SC
5218
5219int
4093985c 5220fix_bit_operand (rtx *operands, enum rtx_code code)
07aae5c2 5221{
abc95ed3 5222 /* The bit_operand predicate accepts any memory during RTL generation, but
48837e29
DE
5223 only 'U' memory afterwards, so if this is a MEM operand, we must force
5224 it to be valid for 'U' by reloading the address. */
07aae5c2 5225
4093985c
KH
5226 if (code == AND
5227 ? single_zero_operand (operands[2], QImode)
5228 : single_one_operand (operands[2], QImode))
07aae5c2 5229 {
2e760b15
KH
5230 /* OK to have a memory dest. */
5231 if (GET_CODE (operands[0]) == MEM
ceaaaeab 5232 && !satisfies_constraint_U (operands[0]))
48837e29 5233 {
2e760b15
KH
5234 rtx mem = gen_rtx_MEM (GET_MODE (operands[0]),
5235 copy_to_mode_reg (Pmode,
5236 XEXP (operands[0], 0)));
5237 MEM_COPY_ATTRIBUTES (mem, operands[0]);
5238 operands[0] = mem;
5239 }
48837e29 5240
2e760b15 5241 if (GET_CODE (operands[1]) == MEM
ceaaaeab 5242 && !satisfies_constraint_U (operands[1]))
2e760b15
KH
5243 {
5244 rtx mem = gen_rtx_MEM (GET_MODE (operands[1]),
5245 copy_to_mode_reg (Pmode,
5246 XEXP (operands[1], 0)));
5247 MEM_COPY_ATTRIBUTES (mem, operands[0]);
5248 operands[1] = mem;
48837e29 5249 }
2e760b15 5250 return 0;
48837e29 5251 }
07aae5c2 5252
48837e29 5253 /* Dest and src op must be register. */
07aae5c2 5254
48837e29
DE
5255 operands[1] = force_reg (QImode, operands[1]);
5256 {
5257 rtx res = gen_reg_rtx (QImode);
fd57a6e4 5258 switch (code)
a3579575
KH
5259 {
5260 case AND:
5261 emit_insn (gen_andqi3_1 (res, operands[1], operands[2]));
5262 break;
5263 case IOR:
5264 emit_insn (gen_iorqi3_1 (res, operands[1], operands[2]));
5265 break;
5266 case XOR:
5267 emit_insn (gen_xorqi3_1 (res, operands[1], operands[2]));
5268 break;
5269 default:
8c440872 5270 gcc_unreachable ();
a3579575
KH
5271 }
5272 emit_insn (gen_movqi (operands[0], res));
48837e29
DE
5273 }
5274 return 1;
07aae5c2 5275}
f5b65a56 5276
f5b65a56
JL
5277/* Return nonzero if FUNC is an interrupt function as specified
5278 by the "interrupt" attribute. */
5279
5280static int
cb713a8d 5281h8300_interrupt_function_p (tree func)
f5b65a56
JL
5282{
5283 tree a;
5284
5285 if (TREE_CODE (func) != FUNCTION_DECL)
5286 return 0;
5287
91d231cb 5288 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
f5b65a56
JL
5289 return a != NULL_TREE;
5290}
5291
3cfa3702
KH
5292/* Return nonzero if FUNC is a saveall function as specified by the
5293 "saveall" attribute. */
5294
5295static int
5296h8300_saveall_function_p (tree func)
5297{
5298 tree a;
5299
5300 if (TREE_CODE (func) != FUNCTION_DECL)
5301 return 0;
5302
5303 a = lookup_attribute ("saveall", DECL_ATTRIBUTES (func));
5304 return a != NULL_TREE;
5305}
5306
fabe72bb
JL
5307/* Return nonzero if FUNC is an OS_Task function as specified
5308 by the "OS_Task" attribute. */
5309
5310static int
cb713a8d 5311h8300_os_task_function_p (tree func)
fabe72bb
JL
5312{
5313 tree a;
5314
5315 if (TREE_CODE (func) != FUNCTION_DECL)
5316 return 0;
5317
91d231cb 5318 a = lookup_attribute ("OS_Task", DECL_ATTRIBUTES (func));
fabe72bb
JL
5319 return a != NULL_TREE;
5320}
5321
5322/* Return nonzero if FUNC is a monitor function as specified
5323 by the "monitor" attribute. */
5324
5325static int
cb713a8d 5326h8300_monitor_function_p (tree func)
fabe72bb
JL
5327{
5328 tree a;
5329
5330 if (TREE_CODE (func) != FUNCTION_DECL)
5331 return 0;
5332
91d231cb 5333 a = lookup_attribute ("monitor", DECL_ATTRIBUTES (func));
fabe72bb
JL
5334 return a != NULL_TREE;
5335}
5336
f5b65a56
JL
5337/* Return nonzero if FUNC is a function that should be called
5338 through the function vector. */
5339
5340int
cb713a8d 5341h8300_funcvec_function_p (tree func)
f5b65a56
JL
5342{
5343 tree a;
5344
5345 if (TREE_CODE (func) != FUNCTION_DECL)
5346 return 0;
5347
91d231cb 5348 a = lookup_attribute ("function_vector", DECL_ATTRIBUTES (func));
f5b65a56
JL
5349 return a != NULL_TREE;
5350}
5351
887a8bd9 5352/* Return nonzero if DECL is a variable that's in the eight bit
15dc331e
JL
5353 data area. */
5354
5355int
cb713a8d 5356h8300_eightbit_data_p (tree decl)
15dc331e
JL
5357{
5358 tree a;
5359
5360 if (TREE_CODE (decl) != VAR_DECL)
5361 return 0;
5362
91d231cb 5363 a = lookup_attribute ("eightbit_data", DECL_ATTRIBUTES (decl));
15dc331e
JL
5364 return a != NULL_TREE;
5365}
5366
887a8bd9
JL
5367/* Return nonzero if DECL is a variable that's in the tiny
5368 data area. */
5369
5370int
cb713a8d 5371h8300_tiny_data_p (tree decl)
887a8bd9
JL
5372{
5373 tree a;
5374
5375 if (TREE_CODE (decl) != VAR_DECL)
5376 return 0;
5377
91d231cb 5378 a = lookup_attribute ("tiny_data", DECL_ATTRIBUTES (decl));
887a8bd9
JL
5379 return a != NULL_TREE;
5380}
5381
3cfa3702
KH
5382/* Generate an 'interrupt_handler' attribute for decls. We convert
5383 all the pragmas to corresponding attributes. */
2c1d2fcb
DD
5384
5385static void
cb713a8d 5386h8300_insert_attributes (tree node, tree *attributes)
2c1d2fcb 5387{
3cfa3702
KH
5388 if (TREE_CODE (node) == FUNCTION_DECL)
5389 {
5390 if (pragma_interrupt)
5391 {
5392 pragma_interrupt = 0;
2c1d2fcb 5393
3cfa3702
KH
5394 /* Add an 'interrupt_handler' attribute. */
5395 *attributes = tree_cons (get_identifier ("interrupt_handler"),
5396 NULL, *attributes);
5397 }
e392d367 5398
3cfa3702
KH
5399 if (pragma_saveall)
5400 {
5401 pragma_saveall = 0;
5402
5403 /* Add an 'saveall' attribute. */
5404 *attributes = tree_cons (get_identifier ("saveall"),
5405 NULL, *attributes);
5406 }
5407 }
2c1d2fcb
DD
5408}
5409
91d231cb 5410/* Supported attributes:
f5b65a56 5411
97c5ec1d 5412 interrupt_handler: output a prologue and epilogue suitable for an
f5b65a56
JL
5413 interrupt handler.
5414
3cfa3702
KH
5415 saveall: output a prologue and epilogue that saves and restores
5416 all registers except the stack pointer.
5417
97c5ec1d 5418 function_vector: This function should be called through the
887a8bd9
JL
5419 function vector.
5420
5421 eightbit_data: This variable lives in the 8-bit data area and can
5422 be referenced with 8-bit absolute memory addresses.
5423
5424 tiny_data: This variable lives in the tiny data area and can be
5425 referenced with 16-bit absolute memory references. */
f5b65a56 5426
6bc7bc14 5427static const struct attribute_spec h8300_attribute_table[] =
f5b65a56 5428{
4849deb1
JJ
5429 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
5430 affects_type_identity, handler, exclude } */
5431 { "interrupt_handler", 0, 0, true, false, false, false,
5432 h8300_handle_fndecl_attribute, NULL },
5433 { "saveall", 0, 0, true, false, false, false,
5434 h8300_handle_fndecl_attribute, NULL },
5435 { "OS_Task", 0, 0, true, false, false, false,
5436 h8300_handle_fndecl_attribute, NULL },
5437 { "monitor", 0, 0, true, false, false, false,
5438 h8300_handle_fndecl_attribute, NULL },
5439 { "function_vector", 0, 0, true, false, false, false,
5440 h8300_handle_fndecl_attribute, NULL },
5441 { "eightbit_data", 0, 0, true, false, false, false,
5442 h8300_handle_eightbit_data_attribute, NULL },
5443 { "tiny_data", 0, 0, true, false, false, false,
5444 h8300_handle_tiny_data_attribute, NULL },
5445 { NULL, 0, 0, false, false, false, false, NULL, NULL }
91d231cb 5446};
f5b65a56 5447
15dc331e 5448
91d231cb
JM
5449/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
5450 struct attribute_spec.handler. */
5451static tree
cb713a8d
KH
5452h8300_handle_fndecl_attribute (tree *node, tree name,
5453 tree args ATTRIBUTE_UNUSED,
5454 int flags ATTRIBUTE_UNUSED,
5455 bool *no_add_attrs)
91d231cb
JM
5456{
5457 if (TREE_CODE (*node) != FUNCTION_DECL)
5458 {
29d08eba
JM
5459 warning (OPT_Wattributes, "%qE attribute only applies to functions",
5460 name);
91d231cb
JM
5461 *no_add_attrs = true;
5462 }
5463
5464 return NULL_TREE;
5465}
5466
5467/* Handle an "eightbit_data" attribute; arguments as in
5468 struct attribute_spec.handler. */
5469static tree
cb713a8d
KH
5470h8300_handle_eightbit_data_attribute (tree *node, tree name,
5471 tree args ATTRIBUTE_UNUSED,
5472 int flags ATTRIBUTE_UNUSED,
5473 bool *no_add_attrs)
91d231cb
JM
5474{
5475 tree decl = *node;
5476
5477 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
15dc331e 5478 {
f961457f 5479 set_decl_section_name (decl, ".eight");
91d231cb
JM
5480 }
5481 else
5482 {
29d08eba
JM
5483 warning (OPT_Wattributes, "%qE attribute ignored",
5484 name);
91d231cb 5485 *no_add_attrs = true;
887a8bd9
JL
5486 }
5487
91d231cb
JM
5488 return NULL_TREE;
5489}
5490
5491/* Handle an "tiny_data" attribute; arguments as in
5492 struct attribute_spec.handler. */
5493static tree
cb713a8d
KH
5494h8300_handle_tiny_data_attribute (tree *node, tree name,
5495 tree args ATTRIBUTE_UNUSED,
5496 int flags ATTRIBUTE_UNUSED,
5497 bool *no_add_attrs)
91d231cb
JM
5498{
5499 tree decl = *node;
5500
5501 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
887a8bd9 5502 {
f961457f 5503 set_decl_section_name (decl, ".tiny");
91d231cb
JM
5504 }
5505 else
5506 {
29d08eba
JM
5507 warning (OPT_Wattributes, "%qE attribute ignored",
5508 name);
91d231cb 5509 *no_add_attrs = true;
15dc331e 5510 }
07e4d94e 5511
91d231cb 5512 return NULL_TREE;
f5b65a56
JL
5513}
5514
dc66a1c4 5515/* Mark function vectors, and various small data objects. */
fb49053f
RH
5516
5517static void
cb713a8d 5518h8300_encode_section_info (tree decl, rtx rtl, int first)
fb49053f 5519{
dc66a1c4
RH
5520 int extra_flags = 0;
5521
c6a2438a 5522 default_encode_section_info (decl, rtl, first);
dc66a1c4 5523
fb49053f
RH
5524 if (TREE_CODE (decl) == FUNCTION_DECL
5525 && h8300_funcvec_function_p (decl))
dc66a1c4 5526 extra_flags = SYMBOL_FLAG_FUNCVEC_FUNCTION;
fb49053f
RH
5527 else if (TREE_CODE (decl) == VAR_DECL
5528 && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
5529 {
5530 if (h8300_eightbit_data_p (decl))
dc66a1c4 5531 extra_flags = SYMBOL_FLAG_EIGHTBIT_DATA;
fb49053f 5532 else if (first && h8300_tiny_data_p (decl))
dc66a1c4 5533 extra_flags = SYMBOL_FLAG_TINY_DATA;
fb49053f 5534 }
772c5265 5535
dc66a1c4 5536 if (extra_flags)
c6a2438a 5537 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
772c5265
RH
5538}
5539
e9eba255
KH
5540/* Output a single-bit extraction. */
5541
441d04c6 5542const char *
cb713a8d 5543output_simode_bld (int bild, rtx operands[])
bd93f126 5544{
6be580c7
KH
5545 if (TARGET_H8300)
5546 {
5547 /* Clear the destination register. */
5548 output_asm_insn ("sub.w\t%e0,%e0\n\tsub.w\t%f0,%f0", operands);
5549
5550 /* Now output the bit load or bit inverse load, and store it in
5551 the destination. */
5552 if (bild)
5553 output_asm_insn ("bild\t%Z2,%Y1", operands);
5554 else
5555 output_asm_insn ("bld\t%Z2,%Y1", operands);
bd93f126 5556
6be580c7
KH
5557 output_asm_insn ("bst\t#0,%w0", operands);
5558 }
bd93f126 5559 else
6be580c7 5560 {
0eb933a0
KH
5561 /* Determine if we can clear the destination first. */
5562 int clear_first = (REG_P (operands[0]) && REG_P (operands[1])
5563 && REGNO (operands[0]) != REGNO (operands[1]));
5564
5565 if (clear_first)
5566 output_asm_insn ("sub.l\t%S0,%S0", operands);
5567
6be580c7
KH
5568 /* Output the bit load or bit inverse load. */
5569 if (bild)
5570 output_asm_insn ("bild\t%Z2,%Y1", operands);
5571 else
5572 output_asm_insn ("bld\t%Z2,%Y1", operands);
5573
0eb933a0
KH
5574 if (!clear_first)
5575 output_asm_insn ("xor.l\t%S0,%S0", operands);
5576
5577 /* Perform the bit store. */
802a9907 5578 output_asm_insn ("rotxl.l\t%S0", operands);
6be580c7 5579 }
bd93f126
JL
5580
5581 /* All done. */
5582 return "";
5583}
e6219736 5584
beed8fc0
AO
5585/* Delayed-branch scheduling is more effective if we have some idea
5586 how long each instruction will be. Use a shorten_branches pass
5587 to get an initial estimate. */
5588
5589static void
5590h8300_reorg (void)
5591{
5592 if (flag_delayed_branch)
5593 shorten_branches (get_insns ());
5594}
5595
ede75ee8 5596#ifndef OBJECT_FORMAT_ELF
7c262518 5597static void
c18a5b6c
MM
5598h8300_asm_named_section (const char *name, unsigned int flags ATTRIBUTE_UNUSED,
5599 tree decl)
7c262518
RH
5600{
5601 /* ??? Perhaps we should be using default_coff_asm_named_section. */
5602 fprintf (asm_out_file, "\t.section %s\n", name);
5603}
ede75ee8 5604#endif /* ! OBJECT_FORMAT_ELF */
803d56f5 5605
7c143ed2
KH
5606/* Nonzero if X is a constant address suitable as an 8-bit absolute,
5607 which is a special case of the 'R' operand. */
5608
803d56f5 5609int
cb713a8d 5610h8300_eightbit_constant_address_p (rtx x)
803d56f5 5611{
ff482c8d 5612 /* The ranges of the 8-bit area. */
d2d199a3
KH
5613 const unsigned HOST_WIDE_INT n1 = trunc_int_for_mode (0xff00, HImode);
5614 const unsigned HOST_WIDE_INT n2 = trunc_int_for_mode (0xffff, HImode);
803d56f5
KH
5615 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00ffff00, SImode);
5616 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00ffffff, SImode);
5617 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0xffffff00, SImode);
5618 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0xffffffff, SImode);
5619
5620 unsigned HOST_WIDE_INT addr;
5621
9675a91e 5622 /* We accept symbols declared with eightbit_data. */
dc66a1c4
RH
5623 if (GET_CODE (x) == SYMBOL_REF)
5624 return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_EIGHTBIT_DATA) != 0;
9675a91e 5625
9f9ab303
JL
5626 if (GET_CODE (x) == CONST
5627 && GET_CODE (XEXP (x, 0)) == PLUS
5628 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
5629 && (SYMBOL_REF_FLAGS (XEXP (XEXP (x, 0), 0)) & SYMBOL_FLAG_EIGHTBIT_DATA) != 0)
5630 return 1;
5631
803d56f5
KH
5632 if (GET_CODE (x) != CONST_INT)
5633 return 0;
5634
5635 addr = INTVAL (x);
5636
5637 return (0
39ba95b5 5638 || ((TARGET_H8300 || TARGET_NORMAL_MODE) && IN_RANGE (addr, n1, n2))
803d56f5
KH
5639 || (TARGET_H8300H && IN_RANGE (addr, h1, h2))
5640 || (TARGET_H8300S && IN_RANGE (addr, s1, s2)));
5641}
5642
7c143ed2
KH
5643/* Nonzero if X is a constant address suitable as an 16-bit absolute
5644 on H8/300H and H8S. */
5645
803d56f5 5646int
cb713a8d 5647h8300_tiny_constant_address_p (rtx x)
803d56f5 5648{
3f7211f1 5649 /* The ranges of the 16-bit area. */
803d56f5
KH
5650 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00000000, SImode);
5651 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00007fff, SImode);
5652 const unsigned HOST_WIDE_INT h3 = trunc_int_for_mode (0x00ff8000, SImode);
5653 const unsigned HOST_WIDE_INT h4 = trunc_int_for_mode (0x00ffffff, SImode);
5654 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0x00000000, SImode);
5655 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0x00007fff, SImode);
5656 const unsigned HOST_WIDE_INT s3 = trunc_int_for_mode (0xffff8000, SImode);
5657 const unsigned HOST_WIDE_INT s4 = trunc_int_for_mode (0xffffffff, SImode);
5658
5659 unsigned HOST_WIDE_INT addr;
5660
d6456562
KH
5661 switch (GET_CODE (x))
5662 {
5663 case SYMBOL_REF:
a4bb41cc
KH
5664 /* In the normal mode, any symbol fits in the 16-bit absolute
5665 address range. We also accept symbols declared with
5666 tiny_data. */
5667 return (TARGET_NORMAL_MODE
5668 || (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_TINY_DATA) != 0);
56b8e164 5669
d6456562
KH
5670 case CONST_INT:
5671 addr = INTVAL (x);
5672 return (TARGET_NORMAL_MODE
5673 || (TARGET_H8300H
5674 && (IN_RANGE (addr, h1, h2) || IN_RANGE (addr, h3, h4)))
5675 || (TARGET_H8300S
5676 && (IN_RANGE (addr, s1, s2) || IN_RANGE (addr, s3, s4))));
803d56f5 5677
a4bb41cc
KH
5678 case CONST:
5679 return TARGET_NORMAL_MODE;
5680
d6456562
KH
5681 default:
5682 return 0;
5683 }
803d56f5 5684
803d56f5 5685}
9b98dc74 5686
e9eba255
KH
5687/* Return nonzero if ADDR1 and ADDR2 point to consecutive memory
5688 locations that can be accessed as a 16-bit word. */
5689
9b98dc74 5690int
cb713a8d 5691byte_accesses_mergeable_p (rtx addr1, rtx addr2)
9b98dc74
KH
5692{
5693 HOST_WIDE_INT offset1, offset2;
5694 rtx reg1, reg2;
5695
5696 if (REG_P (addr1))
5697 {
5698 reg1 = addr1;
5699 offset1 = 0;
5700 }
5701 else if (GET_CODE (addr1) == PLUS
5702 && REG_P (XEXP (addr1, 0))
5703 && GET_CODE (XEXP (addr1, 1)) == CONST_INT)
5704 {
5705 reg1 = XEXP (addr1, 0);
5706 offset1 = INTVAL (XEXP (addr1, 1));
5707 }
5708 else
5709 return 0;
5710
5711 if (REG_P (addr2))
5712 {
5713 reg2 = addr2;
5714 offset2 = 0;
5715 }
5716 else if (GET_CODE (addr2) == PLUS
5717 && REG_P (XEXP (addr2, 0))
5718 && GET_CODE (XEXP (addr2, 1)) == CONST_INT)
5719 {
5720 reg2 = XEXP (addr2, 0);
5721 offset2 = INTVAL (XEXP (addr2, 1));
5722 }
5723 else
5724 return 0;
5725
5726 if (((reg1 == stack_pointer_rtx && reg2 == stack_pointer_rtx)
5727 || (reg1 == frame_pointer_rtx && reg2 == frame_pointer_rtx))
5728 && offset1 % 2 == 0
5729 && offset1 + 1 == offset2)
5730 return 1;
5731
5732 return 0;
5733}
02529902
KH
5734
5735/* Return nonzero if we have the same comparison insn as I3 two insns
19cff4db 5736 before I3. I3 is assumed to be a comparison insn. */
02529902
KH
5737
5738int
82082f65 5739same_cmp_preceding_p (rtx_insn *i3)
02529902 5740{
68a1a6c0 5741 rtx_insn *i1, *i2;
02529902
KH
5742
5743 /* Make sure we have a sequence of three insns. */
5744 i2 = prev_nonnote_insn (i3);
68a1a6c0 5745 if (i2 == NULL)
02529902
KH
5746 return 0;
5747 i1 = prev_nonnote_insn (i2);
68a1a6c0 5748 if (i1 == NULL)
02529902
KH
5749 return 0;
5750
5751 return (INSN_P (i1) && rtx_equal_p (PATTERN (i1), PATTERN (i3))
5752 && any_condjump_p (i2) && onlyjump_p (i2));
5753}
c87ec0ba 5754
c06d5c85
KH
5755/* Return nonzero if we have the same comparison insn as I1 two insns
5756 after I1. I1 is assumed to be a comparison insn. */
5757
5758int
82082f65 5759same_cmp_following_p (rtx_insn *i1)
c06d5c85 5760{
68a1a6c0 5761 rtx_insn *i2, *i3;
c06d5c85
KH
5762
5763 /* Make sure we have a sequence of three insns. */
5764 i2 = next_nonnote_insn (i1);
68a1a6c0 5765 if (i2 == NULL)
c06d5c85
KH
5766 return 0;
5767 i3 = next_nonnote_insn (i2);
68a1a6c0 5768 if (i3 == NULL)
c06d5c85
KH
5769 return 0;
5770
5771 return (INSN_P (i3) && rtx_equal_p (PATTERN (i1), PATTERN (i3))
5772 && any_condjump_p (i2) && onlyjump_p (i2));
5773}
5774
a466bea3 5775/* Return nonzero if OPERANDS are valid for stm (or ldm) that pushes
1ae58c30 5776 (or pops) N registers. OPERANDS are assumed to be an array of
a466bea3
KH
5777 registers. */
5778
5779int
5780h8300_regs_ok_for_stm (int n, rtx operands[])
5781{
5782 switch (n)
5783 {
5784 case 2:
5785 return ((REGNO (operands[0]) == 0 && REGNO (operands[1]) == 1)
5786 || (REGNO (operands[0]) == 2 && REGNO (operands[1]) == 3)
5787 || (REGNO (operands[0]) == 4 && REGNO (operands[1]) == 5));
5788 case 3:
5789 return ((REGNO (operands[0]) == 0
5790 && REGNO (operands[1]) == 1
5791 && REGNO (operands[2]) == 2)
5792 || (REGNO (operands[0]) == 4
5793 && REGNO (operands[1]) == 5
5794 && REGNO (operands[2]) == 6));
5795
5796 case 4:
5797 return (REGNO (operands[0]) == 0
5798 && REGNO (operands[1]) == 1
5799 && REGNO (operands[2]) == 2
5800 && REGNO (operands[3]) == 3);
8c440872
NS
5801 default:
5802 gcc_unreachable ();
a466bea3 5803 }
a466bea3
KH
5804}
5805
c87ec0ba
NY
5806/* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */
5807
5808int
5809h8300_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5810 unsigned int new_reg)
5811{
5812 /* Interrupt functions can only use registers that have already been
5813 saved by the prologue, even if they would normally be
5814 call-clobbered. */
5815
5816 if (h8300_current_function_interrupt_function_p ()
6fb5fa3c 5817 && !df_regs_ever_live_p (new_reg))
c87ec0ba
NY
5818 return 0;
5819
80e58519 5820 return 1;
c87ec0ba 5821}
d0022200 5822
2e762884
DD
5823/* Returns true if register REGNO is safe to be allocated as a scratch
5824 register in the current function. */
5825
5826static bool
5827h8300_hard_regno_scratch_ok (unsigned int regno)
5828{
5829 if (h8300_current_function_interrupt_function_p ()
5830 && ! WORD_REG_USED (regno))
5831 return false;
5832
5833 return true;
5834}
5835
5836
d0022200
KH
5837/* Return nonzero if X is a REG or SUBREG suitable as a base register. */
5838
5839static int
5840h8300_rtx_ok_for_base_p (rtx x, int strict)
5841{
5842 /* Strip off SUBREG if any. */
5843 if (GET_CODE (x) == SUBREG)
5844 x = SUBREG_REG (x);
5845
5846 return (REG_P (x)
5847 && (strict
5848 ? REG_OK_FOR_BASE_STRICT_P (x)
5849 : REG_OK_FOR_BASE_NONSTRICT_P (x)));
5850}
5851
5852/* Return nozero if X is a legitimate address. On the H8/300, a
5853 legitimate address has the form REG, REG+CONSTANT_ADDRESS or
5854 CONSTANT_ADDRESS. */
5855
c6c3dba9 5856static bool
ef4bddc2 5857h8300_legitimate_address_p (machine_mode mode, rtx x, bool strict)
d0022200
KH
5858{
5859 /* The register indirect addresses like @er0 is always valid. */
5860 if (h8300_rtx_ok_for_base_p (x, strict))
5861 return 1;
5862
5863 if (CONSTANT_ADDRESS_P (x))
5864 return 1;
5865
beed8fc0
AO
5866 if (TARGET_H8300SX
5867 && ( GET_CODE (x) == PRE_INC
5868 || GET_CODE (x) == PRE_DEC
5869 || GET_CODE (x) == POST_INC
5870 || GET_CODE (x) == POST_DEC)
5871 && h8300_rtx_ok_for_base_p (XEXP (x, 0), strict))
5872 return 1;
5873
d0022200
KH
5874 if (GET_CODE (x) == PLUS
5875 && CONSTANT_ADDRESS_P (XEXP (x, 1))
beed8fc0
AO
5876 && h8300_rtx_ok_for_base_p (h8300_get_index (XEXP (x, 0),
5877 mode, 0), strict))
d0022200
KH
5878 return 1;
5879
5880 return 0;
5881}
07ee3b58 5882
f939c3e6 5883/* Implement TARGET_HARD_REGNO_MODE_OK. */
07ee3b58 5884
f939c3e6
RS
5885static bool
5886h8300_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
07ee3b58
KH
5887{
5888 if (TARGET_H8300)
5889 /* If an even reg, then anything goes. Otherwise the mode must be
5890 QI or HI. */
5891 return ((regno & 1) == 0) || (mode == HImode) || (mode == QImode);
5892 else
5893 /* MAC register can only be of SImode. Otherwise, anything
5894 goes. */
5895 return regno == MAC_REG ? mode == SImode : 1;
5896}
f9b4f8c1 5897
99e1629f
RS
5898/* Implement TARGET_MODES_TIEABLE_P. */
5899
5900static bool
5901h8300_modes_tieable_p (machine_mode mode1, machine_mode mode2)
5902{
5903 return (mode1 == mode2
5904 || ((mode1 == QImode
5905 || mode1 == HImode
5906 || ((TARGET_H8300H || TARGET_H8300S) && mode1 == SImode))
5907 && (mode2 == QImode
5908 || mode2 == HImode
5909 || ((TARGET_H8300H || TARGET_H8300S) && mode2 == SImode))));
5910}
5911
f9b4f8c1
RH
5912/* Helper function for the move patterns. Make sure a move is legitimate. */
5913
5914bool
5915h8300_move_ok (rtx dest, rtx src)
5916{
5917 rtx addr, other;
5918
5919 /* Validate that at least one operand is a register. */
5920 if (MEM_P (dest))
5921 {
5922 if (MEM_P (src) || CONSTANT_P (src))
5923 return false;
5924 addr = XEXP (dest, 0);
5925 other = src;
5926 }
5927 else if (MEM_P (src))
5928 {
5929 addr = XEXP (src, 0);
5930 other = dest;
5931 }
5932 else
5933 return true;
5934
5935 /* Validate that auto-inc doesn't affect OTHER. */
5936 if (GET_RTX_CLASS (GET_CODE (addr)) != RTX_AUTOINC)
5937 return true;
5938 addr = XEXP (addr, 0);
5939
5940 if (addr == stack_pointer_rtx)
5941 return register_no_sp_elim_operand (other, VOIDmode);
5942 else
5943 return !reg_overlap_mentioned_p(other, addr);
5944}
6e014ef3 5945\f
c15c90bb
ZW
5946/* Perform target dependent optabs initialization. */
5947static void
5948h8300_init_libfuncs (void)
5949{
5950 set_optab_libfunc (smul_optab, HImode, "__mulhi3");
5951 set_optab_libfunc (sdiv_optab, HImode, "__divhi3");
5952 set_optab_libfunc (udiv_optab, HImode, "__udivhi3");
5953 set_optab_libfunc (smod_optab, HImode, "__modhi3");
5954 set_optab_libfunc (umod_optab, HImode, "__umodhi3");
5955}
5956\f
9eaa7740
AS
5957/* Worker function for TARGET_FUNCTION_VALUE.
5958
5959 On the H8 the return value is in R0/R1. */
5960
5961static rtx
5962h8300_function_value (const_tree ret_type,
5963 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
5964 bool outgoing ATTRIBUTE_UNUSED)
5965{
5966 return gen_rtx_REG (TYPE_MODE (ret_type), R0_REG);
5967}
5968
5969/* Worker function for TARGET_LIBCALL_VALUE.
5970
5971 On the H8 the return value is in R0/R1. */
5972
5973static rtx
ef4bddc2 5974h8300_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
9eaa7740
AS
5975{
5976 return gen_rtx_REG (mode, R0_REG);
5977}
5978
5979/* Worker function for TARGET_FUNCTION_VALUE_REGNO_P.
5980
5981 On the H8, R0 is the only register thus used. */
5982
5983static bool
5984h8300_function_value_regno_p (const unsigned int regno)
5985{
5986 return (regno == R0_REG);
5987}
5988
e9eba255
KH
5989/* Worker function for TARGET_RETURN_IN_MEMORY. */
5990
34bf1fe3 5991static bool
586de218 5992h8300_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
34bf1fe3
KH
5993{
5994 return (TYPE_MODE (type) == BLKmode
5995 || GET_MODE_SIZE (TYPE_MODE (type)) > (TARGET_H8300 ? 4 : 8));
5996}
5997\f
9f6ef043
RH
5998/* We emit the entire trampoline here. Depending on the pointer size,
5999 we use a different trampoline.
6000
6001 Pmode == HImode
6002 vvvv context
6003 1 0000 7903xxxx mov.w #0x1234,r3
6004 2 0004 5A00xxxx jmp @0x1234
6005 ^^^^ function
6006
6007 Pmode == SImode
6008 vvvvvvvv context
6009 2 0000 7A03xxxxxxxx mov.l #0x12345678,er3
6010 3 0006 5Axxxxxx jmp @0x123456
6011 ^^^^^^ function
6012*/
6013
6014static void
6015h8300_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
6016{
6017 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6018 rtx mem;
6019
6020 if (Pmode == HImode)
6021 {
6022 mem = adjust_address (m_tramp, HImode, 0);
6023 emit_move_insn (mem, GEN_INT (0x7903));
6024 mem = adjust_address (m_tramp, Pmode, 2);
6025 emit_move_insn (mem, cxt);
6026 mem = adjust_address (m_tramp, HImode, 4);
6027 emit_move_insn (mem, GEN_INT (0x5a00));
6028 mem = adjust_address (m_tramp, Pmode, 6);
6029 emit_move_insn (mem, fnaddr);
6030 }
6031 else
6032 {
6033 rtx tem;
6034
6035 mem = adjust_address (m_tramp, HImode, 0);
6036 emit_move_insn (mem, GEN_INT (0x7a03));
6037 mem = adjust_address (m_tramp, Pmode, 2);
6038 emit_move_insn (mem, cxt);
6039
6040 tem = copy_to_reg (fnaddr);
6041 emit_insn (gen_andsi3 (tem, tem, GEN_INT (0x00ffffff)));
6042 emit_insn (gen_iorsi3 (tem, tem, GEN_INT (0x5a000000)));
6043 mem = adjust_address (m_tramp, SImode, 6);
6044 emit_move_insn (mem, tem);
6045 }
6046}
6047\f
6e014ef3
KH
6048/* Initialize the GCC target structure. */
6049#undef TARGET_ATTRIBUTE_TABLE
6050#define TARGET_ATTRIBUTE_TABLE h8300_attribute_table
6051
6052#undef TARGET_ASM_ALIGNED_HI_OP
6053#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
6054
1bc7c5b6
ZW
6055#undef TARGET_ASM_FILE_START
6056#define TARGET_ASM_FILE_START h8300_file_start
6057#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
6058#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
6059
6e014ef3
KH
6060#undef TARGET_ASM_FILE_END
6061#define TARGET_ASM_FILE_END h8300_file_end
6062
88cb339e
N
6063#undef TARGET_PRINT_OPERAND
6064#define TARGET_PRINT_OPERAND h8300_print_operand
6065#undef TARGET_PRINT_OPERAND_ADDRESS
6066#define TARGET_PRINT_OPERAND_ADDRESS h8300_print_operand_address
6067#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
6068#define TARGET_PRINT_OPERAND_PUNCT_VALID_P h8300_print_operand_punct_valid_p
6069
6e014ef3
KH
6070#undef TARGET_ENCODE_SECTION_INFO
6071#define TARGET_ENCODE_SECTION_INFO h8300_encode_section_info
6072
6073#undef TARGET_INSERT_ATTRIBUTES
6074#define TARGET_INSERT_ATTRIBUTES h8300_insert_attributes
6075
88cb339e
N
6076#undef TARGET_REGISTER_MOVE_COST
6077#define TARGET_REGISTER_MOVE_COST h8300_register_move_cost
6078
6e014ef3
KH
6079#undef TARGET_RTX_COSTS
6080#define TARGET_RTX_COSTS h8300_rtx_costs
6081
c15c90bb
ZW
6082#undef TARGET_INIT_LIBFUNCS
6083#define TARGET_INIT_LIBFUNCS h8300_init_libfuncs
6084
9eaa7740
AS
6085#undef TARGET_FUNCTION_VALUE
6086#define TARGET_FUNCTION_VALUE h8300_function_value
6087
6088#undef TARGET_LIBCALL_VALUE
6089#define TARGET_LIBCALL_VALUE h8300_libcall_value
6090
6091#undef TARGET_FUNCTION_VALUE_REGNO_P
6092#define TARGET_FUNCTION_VALUE_REGNO_P h8300_function_value_regno_p
6093
34bf1fe3
KH
6094#undef TARGET_RETURN_IN_MEMORY
6095#define TARGET_RETURN_IN_MEMORY h8300_return_in_memory
6096
56f9413b
NF
6097#undef TARGET_FUNCTION_ARG
6098#define TARGET_FUNCTION_ARG h8300_function_arg
6099
6100#undef TARGET_FUNCTION_ARG_ADVANCE
6101#define TARGET_FUNCTION_ARG_ADVANCE h8300_function_arg_advance
6102
beed8fc0
AO
6103#undef TARGET_MACHINE_DEPENDENT_REORG
6104#define TARGET_MACHINE_DEPENDENT_REORG h8300_reorg
6105
2e762884
DD
6106#undef TARGET_HARD_REGNO_SCRATCH_OK
6107#define TARGET_HARD_REGNO_SCRATCH_OK h8300_hard_regno_scratch_ok
6108
f939c3e6
RS
6109#undef TARGET_HARD_REGNO_MODE_OK
6110#define TARGET_HARD_REGNO_MODE_OK h8300_hard_regno_mode_ok
6111
99e1629f
RS
6112#undef TARGET_MODES_TIEABLE_P
6113#define TARGET_MODES_TIEABLE_P h8300_modes_tieable_p
6114
d81db636
SB
6115#undef TARGET_LRA_P
6116#define TARGET_LRA_P hook_bool_void_false
6117
c6c3dba9
PB
6118#undef TARGET_LEGITIMATE_ADDRESS_P
6119#define TARGET_LEGITIMATE_ADDRESS_P h8300_legitimate_address_p
6120
7b5cbb57
AS
6121#undef TARGET_CAN_ELIMINATE
6122#define TARGET_CAN_ELIMINATE h8300_can_eliminate
6123
5efd84c5
NF
6124#undef TARGET_CONDITIONAL_REGISTER_USAGE
6125#define TARGET_CONDITIONAL_REGISTER_USAGE h8300_conditional_register_usage
6126
9f6ef043
RH
6127#undef TARGET_TRAMPOLINE_INIT
6128#define TARGET_TRAMPOLINE_INIT h8300_trampoline_init
6129
c5387660
JM
6130#undef TARGET_OPTION_OVERRIDE
6131#define TARGET_OPTION_OVERRIDE h8300_option_override
6132
f52d97da
AS
6133#undef TARGET_MODE_DEPENDENT_ADDRESS_P
6134#define TARGET_MODE_DEPENDENT_ADDRESS_P h8300_mode_dependent_address_p
6135
6e014ef3 6136struct gcc_target targetm = TARGET_INITIALIZER;