]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
rs6000.c (rs6000_option_override_internal): Enable -fvariable-expansion-in-unroller...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
a5544970 2 Copyright (C) 1988-2019 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
fca51879
JK
88#define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
79fc8ffe
AS
90#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
98966963
JK
92#define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
e2a29465
JK
94#define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
e21b52af
HL
96#define TARGET_AVX512VP2INTERSECT TARGET_ISA_AVX512VP2INTERSECT
97#define TARGET_AVX512VP2INTERSECT_P(x) TARGET_ISA_AVX512VP2INTERSECT_P(x)
90922d36 98#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 99#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 100#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 101#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 102#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 103#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 104#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 105#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 106#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 107#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 108#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 109#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
13b93d4b
OM
110#define TARGET_PCONFIG TARGET_ISA_PCONFIG
111#define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x)
112#define TARGET_WBNOINVD TARGET_ISA_WBNOINVD
113#define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x)
73e32c47
JK
114#define TARGET_SGX TARGET_ISA_SGX
115#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
116#define TARGET_RDPID TARGET_ISA_RDPID
117#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
b8cca31c
JK
118#define TARGET_GFNI TARGET_ISA_GFNI
119#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
b7b0a4fa
JK
120#define TARGET_VAES TARGET_ISA_VAES
121#define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x)
6557be99
JK
122#define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
123#define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
90922d36 124#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 125#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 126#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 127#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 128#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 129#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 130#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 131#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 132#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 133#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 134#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 135#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 136#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 137#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 138#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 139#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 140#define TARGET_AES TARGET_ISA_AES
bf7b5747 141#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
142#define TARGET_SHA TARGET_ISA_SHA
143#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
144#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
145#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
146#define TARGET_CLZERO TARGET_ISA_CLZERO
147#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
148#define TARGET_XSAVEC TARGET_ISA_XSAVEC
149#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
150#define TARGET_XSAVES TARGET_ISA_XSAVES
151#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 152#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 153#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
154#define TARGET_CMPXCHG16B TARGET_ISA_CX16
155#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 156#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 157#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 158#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 159#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 160#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 161#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
162#define TARGET_RTM TARGET_ISA_RTM
163#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 164#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 165#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 166#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 167#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 168#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 169#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 170#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 171#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 172#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 173#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 174#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 175#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 176#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 177#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
178#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
179#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
9c3bca11
IT
180#define TARGET_CLWB TARGET_ISA_CLWB
181#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
182#define TARGET_MWAITX TARGET_ISA_MWAITX
183#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
184#define TARGET_PKU TARGET_ISA_PKU
185#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
186#define TARGET_SHSTK TARGET_ISA_SHSTK
187#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
37d51c75
SP
188#define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
189#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
190#define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B
191#define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
55f31ed1
SP
192#define TARGET_WAITPKG TARGET_ISA_WAITPKG
193#define TARGET_WAITPKG_P(x) TARGET_ISA_WAITPKG_P(x)
f8d9957e
SP
194#define TARGET_CLDEMOTE TARGET_ISA_CLDEMOTE
195#define TARGET_CLDEMOTE_P(x) TARGET_ISA_CLDEMOTE_P(x)
41f8d1fc
AK
196#define TARGET_PTWRITE TARGET_ISA_PTWRITE
197#define TARGET_PTWRITE_P(x) TARGET_ISA_PTWRITE_P(x)
4f0e90fa
HL
198#define TARGET_AVX512BF16 TARGET_ISA_AVX512BF16
199#define TARGET_AVX512BF16_P(x) TARGET_ISA_AVX512BF16_P(x)
6a10feda
XG
200#define TARGET_ENQCMD TARGET_ISA_ENQCMD
201#define TARGET_ENQCMD_P(x) TARGET_ISA_ENQCMD_P(x)
41a4ef22 202
90922d36 203#define TARGET_LP64 TARGET_ABI_64
bf7b5747 204#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 205#define TARGET_X32 TARGET_ABI_X32
bf7b5747 206#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
207#define TARGET_16BIT TARGET_CODE16
208#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 209
dfa61b9e
L
210#define TARGET_MMX_WITH_SSE (TARGET_64BIT && TARGET_SSE2)
211
26b5109f
RS
212#include "config/vxworks-dummy.h"
213
7eb68c06 214#include "config/i386/i386-opts.h"
ccf8e764 215
c69fa2d4 216#define MAX_STRINGOP_ALGS 4
ccf8e764 217
8c996513
JH
218/* Specify what algorithm to use for stringops on known size.
219 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
220 known at compile time or estimated via feedback, the SIZE array
221 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 222 means infinity). Corresponding ALG is used then.
340ef734
JH
223 When NOALIGN is true the code guaranting the alignment of the memory
224 block is skipped.
225
8c996513 226 For example initializer:
4f3f76e6 227 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 228 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 229 be used otherwise. */
8c996513
JH
230struct stringop_algs
231{
232 const enum stringop_alg unknown_size;
233 const struct stringop_strategy {
234 const int max;
235 const enum stringop_alg alg;
340ef734 236 int noalign;
c69fa2d4 237 } size [MAX_STRINGOP_ALGS];
8c996513
JH
238};
239
d4ba09c0
SC
240/* Define the specific costs for a given cpu */
241
242struct processor_costs {
8b60264b
KG
243 const int add; /* cost of an add instruction */
244 const int lea; /* cost of a lea instruction */
245 const int shift_var; /* variable shift costs */
246 const int shift_const; /* constant shift costs */
f676971a 247 const int mult_init[5]; /* cost of starting a multiply
4977bab6 248 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 249 const int mult_bit; /* cost of multiply per each bit set */
f676971a 250 const int divide[5]; /* cost of a divide/mod
4977bab6 251 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
252 int movsx; /* The cost of movsx operation. */
253 int movzx; /* The cost of movzx operation. */
8b60264b
KG
254 const int large_insn; /* insns larger than this cost more */
255 const int move_ratio; /* The threshold of number of scalar
ac775968 256 memory-to-memory move insns. */
8b60264b
KG
257 const int movzbl_load; /* cost of loading using movzbl */
258 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
259 in QImode, HImode and SImode relative
260 to reg-reg move (2). */
8b60264b 261 const int int_store[3]; /* cost of storing integer register
96e7ae40 262 in QImode, HImode and SImode */
8b60264b
KG
263 const int fp_move; /* cost of reg,reg fld/fst */
264 const int fp_load[3]; /* cost of loading FP register
96e7ae40 265 in SFmode, DFmode and XFmode */
8b60264b 266 const int fp_store[3]; /* cost of storing FP register
96e7ae40 267 in SFmode, DFmode and XFmode */
8b60264b
KG
268 const int mmx_move; /* cost of moving MMX register. */
269 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 270 in SImode and DImode */
8b60264b 271 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 272 in SImode and DImode */
df41dbaf
JH
273 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
274 zmm_move;
275 const int sse_load[5]; /* cost of loading SSE register
276 in 32bit, 64bit, 128bit, 256bit and 512bit */
277 const int sse_unaligned_load[5];/* cost of unaligned load. */
278 const int sse_store[5]; /* cost of storing SSE register
279 in SImode, DImode and TImode. */
280 const int sse_unaligned_store[5];/* cost of unaligned store. */
66574c53
HL
281 const int sse_to_integer; /* cost of moving SSE register to integer. */
282 const int integer_to_sse; /* cost of moving integer register to SSE. */
a4fe6139
JH
283 const int gather_static, gather_per_elt; /* Cost of gather load is computed
284 as static + per_item * nelts. */
285 const int scatter_static, scatter_per_elt; /* Cost of gather store is
286 computed as static + per_item * nelts. */
46cb0441
ZD
287 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
288 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
289 const int prefetch_block; /* bytes moved to cache for prefetch. */
290 const int simultaneous_prefetches; /* number of parallel prefetch
291 operations. */
4977bab6 292 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
293 const int fadd; /* cost of FADD and FSUB instructions. */
294 const int fmul; /* cost of FMUL instruction. */
295 const int fdiv; /* cost of FDIV instruction. */
296 const int fabs; /* cost of FABS instruction. */
297 const int fchs; /* cost of FCHS instruction. */
298 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 299 /* Specify what algorithm
bee51209 300 to use for stringops on unknown size. */
c53c148c 301 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
302 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
303 const int mulss; /* cost of MULSS instructions. */
304 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
305 const int fmass; /* cost of FMASS instructions. */
306 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
307 const int divss; /* cost of DIVSS instructions. */
308 const int divsd; /* cost of DIVSD instructions. */
309 const int sqrtss; /* cost of SQRTSS instructions. */
310 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
311 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
312 /* Specify reassociation width for integer,
313 fp, vector integer and vector fp
314 operations. Generally should correspond
315 to number of instructions executed in
316 parallel. See also
317 ix86_reassociation_width. */
ad83025e 318 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
319 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
320 cost model. */
321 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
322 vectorizer cost model. */
7dc58b50
ML
323
324 /* The "0:0:8" label alignment specified for some processors generates
325 secondary 8-byte alignment only for those label/jump/loop targets
326 which have primary alignment. */
327 const char *const align_loop; /* Loop alignment. */
328 const char *const align_jump; /* Jump alignment. */
329 const char *const align_label; /* Label alignment. */
330 const char *const align_func; /* Function alignment. */
d4ba09c0
SC
331};
332
8b60264b 333extern const struct processor_costs *ix86_cost;
b2077fd2
JH
334extern const struct processor_costs ix86_size_cost;
335
336#define ix86_cur_cost() \
337 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 338
c98f8742
JVA
339/* Macros used in the machine description to test the flags. */
340
b97de419 341/* configure can arrange to change it. */
e075ae69 342
35b528be 343#ifndef TARGET_CPU_DEFAULT
b97de419 344#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 345#endif
35b528be 346
004d3859
GK
347#ifndef TARGET_FPMATH_DEFAULT
348#define TARGET_FPMATH_DEFAULT \
349 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
350#endif
351
bf7b5747
ST
352#ifndef TARGET_FPMATH_DEFAULT_P
353#define TARGET_FPMATH_DEFAULT_P(x) \
354 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
355#endif
356
c207fd99
L
357/* If the i387 is disabled or -miamcu is used , then do not return
358 values in it. */
359#define TARGET_FLOAT_RETURNS_IN_80387 \
360 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
361#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
362 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 363
5791cc29
JT
364/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
365 compile-time constant. */
366#ifdef IN_LIBGCC2
6ac49599 367#undef TARGET_64BIT
5791cc29
JT
368#ifdef __x86_64__
369#define TARGET_64BIT 1
370#else
371#define TARGET_64BIT 0
372#endif
373#else
6ac49599
RS
374#ifndef TARGET_BI_ARCH
375#undef TARGET_64BIT
e49080ec 376#undef TARGET_64BIT_P
67adf6a9 377#if TARGET_64BIT_DEFAULT
0c2dc519 378#define TARGET_64BIT 1
e49080ec 379#define TARGET_64BIT_P(x) 1
0c2dc519
JH
380#else
381#define TARGET_64BIT 0
e49080ec 382#define TARGET_64BIT_P(x) 0
0c2dc519
JH
383#endif
384#endif
5791cc29 385#endif
25f94bb5 386
750054a2
CT
387#define HAS_LONG_COND_BRANCH 1
388#define HAS_LONG_UNCOND_BRANCH 1
389
9e555526
RH
390#define TARGET_386 (ix86_tune == PROCESSOR_I386)
391#define TARGET_486 (ix86_tune == PROCESSOR_I486)
392#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
393#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 394#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
395#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
396#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
397#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
398#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 399#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 400#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 401#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
402#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
403#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 404#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
405#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
406#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
50e461df 407#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
74b2bb19 408#define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
a548a5a1 409#define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
52747219 410#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 411#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
176a3386 412#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
06caf59d 413#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
c234d831 414#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
79ab5364
JK
415#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
416#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
7cab07f0 417#define TARGET_CASCADELAKE (ix86_tune == PROCESSOR_CASCADELAKE)
9a7f94d7 418#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 419#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 420#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 421#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 422#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 423#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 424#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 425#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 426#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 427#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
2901f42f 428#define TARGET_ZNVER2 (ix86_tune == PROCESSOR_ZNVER2)
a269a03c 429
80fd744f
RH
430/* Feature tests against the various tunings. */
431enum ix86_tune_indices {
4b8bc035 432#undef DEF_TUNE
3ad20bd4 433#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
434#include "x86-tune.def"
435#undef DEF_TUNE
436X86_TUNE_LAST
80fd744f
RH
437};
438
ab442df7 439extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
440
441#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
442#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
443#define TARGET_ZERO_EXTEND_WITH_AND \
444 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 445#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
446#define TARGET_BRANCH_PREDICTION_HINTS \
447 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
448#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
449#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
450#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
451#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
452#define TARGET_PARTIAL_FLAG_REG_STALL \
453 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
454#define TARGET_LCP_STALL \
455 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
456#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
457#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
458#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
459#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
460#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
461#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
462#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
463#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
464#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
465#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
466#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
467#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
468 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
469#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
470#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
471#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
472#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
473#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
474#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
475#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
476#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
477#define TARGET_INTEGER_DFMODE_MOVES \
478 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
479#define TARGET_PARTIAL_REG_DEPENDENCY \
480 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
481#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
482 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
483#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
484 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
485#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
486 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
487#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
488 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
489#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
490#define TARGET_SSE_TYPELESS_STORES \
491 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
492#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
493#define TARGET_MEMORY_MISMATCH_STALL \
494 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
495#define TARGET_PROLOGUE_USING_MOVE \
496 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
497#define TARGET_EPILOGUE_USING_MOVE \
498 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
499#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
500#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
501#define TARGET_INTER_UNIT_MOVES_TO_VEC \
502 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
503#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
504 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
505#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 506 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
507#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
508#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
509#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
510#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
511#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
512#define TARGET_PAD_SHORT_FUNCTION \
513 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
514#define TARGET_EXT_80387_CONSTANTS \
515 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
516#define TARGET_AVOID_VECTOR_DECODE \
517 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
518#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
519 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
520#define TARGET_SLOW_IMUL_IMM32_MEM \
521 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
522#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
523#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
524#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
525#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
526#define TARGET_USE_VECTOR_FP_CONVERTS \
527 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
528#define TARGET_USE_VECTOR_CONVERTS \
529 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
530#define TARGET_SLOW_PSHUFB \
531 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
532#define TARGET_AVOID_4BYTE_PREFIXES \
533 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
f6aa5171
JH
534#define TARGET_USE_GATHER \
535 ix86_tune_features[X86_TUNE_USE_GATHER]
0dc41f28
WM
536#define TARGET_FUSE_CMP_AND_BRANCH_32 \
537 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
538#define TARGET_FUSE_CMP_AND_BRANCH_64 \
539 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 540#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
541 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
542 : TARGET_FUSE_CMP_AND_BRANCH_32)
543#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
544 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
545#define TARGET_FUSE_ALU_AND_BRANCH \
546 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 547#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
548#define TARGET_AVOID_LEA_FOR_ADDR \
549 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
550#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
551 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
552#define TARGET_AVX128_OPTIMAL \
553 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
554#define TARGET_GENERAL_REGS_SSE_SPILL \
555 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
556#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
557 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 558#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 559 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
560#define TARGET_ADJUST_UNROLL \
561 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
562#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
563 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
564#define TARGET_ONE_IF_CONV_INSN \
565 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
348188bf
L
566#define TARGET_EMIT_VZEROUPPER \
567 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
df7b0cc4 568
80fd744f
RH
569/* Feature tests against the various architecture variations. */
570enum ix86_arch_indices {
cef31f9c 571 X86_ARCH_CMOV,
80fd744f
RH
572 X86_ARCH_CMPXCHG,
573 X86_ARCH_CMPXCHG8B,
574 X86_ARCH_XADD,
575 X86_ARCH_BSWAP,
576
577 X86_ARCH_LAST
578};
4f3f76e6 579
ab442df7 580extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 581
cef31f9c 582#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
583#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
584#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
585#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
586#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
587
cef31f9c
UB
588/* For sane SSE instruction set generation we need fcomi instruction.
589 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
590 expands to a sequence that includes conditional move. */
591#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
592
80fd744f
RH
593#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
594
cb261eb7 595extern unsigned char x86_prefetch_sse;
80fd744f
RH
596#define TARGET_PREFETCH_SSE x86_prefetch_sse
597
80fd744f
RH
598#define ASSEMBLER_DIALECT (ix86_asm_dialect)
599
600#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
601#define TARGET_MIX_SSE_I387 \
602 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
603
5fa578f0
UB
604#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
605#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
606#define TARGET_HARD_XF_REGS (TARGET_80387)
607
80fd744f
RH
608#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
609#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
610#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 611#define TARGET_SUN_TLS 0
1ef45b77 612
67adf6a9
RH
613#ifndef TARGET_64BIT_DEFAULT
614#define TARGET_64BIT_DEFAULT 0
25f94bb5 615#endif
74dc3e94
RH
616#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
617#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
618#endif
25f94bb5 619
e0ea8797
AH
620#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
621#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
622
79f5e442
ZD
623/* Fence to use after loop using storent. */
624
625extern tree x86_mfence;
626#define FENCE_FOLLOWING_MOVNT x86_mfence
627
0ed4a390
JL
628/* Once GDB has been enhanced to deal with functions without frame
629 pointers, we can change this to allow for elimination of
630 the frame pointer in leaf functions. */
631#define TARGET_DEFAULT 0
67adf6a9 632
0a1c5e55
UB
633/* Extra bits to force. */
634#define TARGET_SUBTARGET_DEFAULT 0
635#define TARGET_SUBTARGET_ISA_DEFAULT 0
636
637/* Extra bits to force on w/ 32-bit mode. */
638#define TARGET_SUBTARGET32_DEFAULT 0
639#define TARGET_SUBTARGET32_ISA_DEFAULT 0
640
ccf8e764
RH
641/* Extra bits to force on w/ 64-bit mode. */
642#define TARGET_SUBTARGET64_DEFAULT 0
8b131a8a
UB
643/* Enable MMX, SSE and SSE2 by default. */
644#define TARGET_SUBTARGET64_ISA_DEFAULT \
645 (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
ccf8e764 646
fee3eacd
IS
647/* Replace MACH-O, ifdefs by in-line tests, where possible.
648 (a) Macros defined in config/i386/darwin.h */
b069de3b 649#define TARGET_MACHO 0
ce3a2015 650#define TARGET_MACHO_PICSYM_STUBS 0
fee3eacd
IS
651#define MACHOPIC_ATT_STUB 0
652/* (b) Macros defined in config/darwin.h */
653#define MACHO_DYNAMIC_NO_PIC_P 0
654#define MACHOPIC_INDIRECT 0
655#define MACHOPIC_PURE 0
9005471b 656
5a579c3b
LE
657/* For the RDOS */
658#define TARGET_RDOS 0
659
9005471b 660/* For the Windows 64-bit ABI. */
7c800926
KT
661#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
662
6510e8bb
KT
663/* For the Windows 32-bit ABI. */
664#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
665
f81c9774
RH
666/* This is re-defined by cygming.h. */
667#define TARGET_SEH 0
668
51212b32 669/* The default abi used by target. */
7c800926 670#define DEFAULT_ABI SYSV_ABI
ccf8e764 671
b8b3f0ca 672/* The default TLS segment register used by target. */
00402c94
RH
673#define DEFAULT_TLS_SEG_REG \
674 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 675
cc69336f
RH
676/* Subtargets may reset this to 1 in order to enable 96-bit long double
677 with the rounding mode forced to 53 bits. */
678#define TARGET_96_ROUND_53_LONG_DOUBLE 0
679
682cd442
GK
680/* -march=native handling only makes sense with compiler running on
681 an x86 or x86_64 chip. If changing this condition, also change
682 the condition in driver-i386.c. */
683#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
684/* In driver-i386.c. */
685extern const char *host_detect_local_cpu (int argc, const char **argv);
686#define EXTRA_SPEC_FUNCTIONS \
687 { "local_cpu_detect", host_detect_local_cpu },
682cd442 688#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
689#endif
690
8981c15b
JM
691#if TARGET_64BIT_DEFAULT
692#define OPT_ARCH64 "!m32"
693#define OPT_ARCH32 "m32"
694#else
f0ea7581
L
695#define OPT_ARCH64 "m64|mx32"
696#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
697#endif
698
1cba2b96
EC
699/* Support for configure-time defaults of some command line options.
700 The order here is important so that -march doesn't squash the
701 tune or cpu values. */
ce998900 702#define OPTION_DEFAULT_SPECS \
da2d4c01 703 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
704 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
705 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 706 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
707 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
708 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
709 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
710 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
711 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 712
241e1a89
SC
713/* Specs for the compiler proper */
714
628714d8 715#ifndef CC1_CPU_SPEC
eb5bb0fd 716#define CC1_CPU_SPEC_1 ""
fa959ce4 717
682cd442 718#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
719#define CC1_CPU_SPEC CC1_CPU_SPEC_1
720#else
721#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
722"%{march=native:%>march=native %:local_cpu_detect(arch) \
723 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
724%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 725#endif
241e1a89 726#endif
c98f8742 727\f
30efe578 728/* Target CPU builtins. */
ab442df7
MM
729#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
730
731/* Target Pragmas. */
732#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 733
b4c522fa
IB
734/* Target CPU versions for D. */
735#define TARGET_D_CPU_VERSIONS ix86_d_target_versions
736
628714d8 737#ifndef CC1_SPEC
8015b78d 738#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
739#endif
740
741/* This macro defines names of additional specifications to put in the
742 specs that can be used in various specifications like CC1_SPEC. Its
743 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
744
745 Each subgrouping contains a string constant, that defines the
188fc5b5 746 specification name, and a string constant that used by the GCC driver
bcd86433
SC
747 program.
748
749 Do not define this macro if it does not need to do anything. */
750
751#ifndef SUBTARGET_EXTRA_SPECS
752#define SUBTARGET_EXTRA_SPECS
753#endif
754
755#define EXTRA_SPECS \
628714d8 756 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
757 SUBTARGET_EXTRA_SPECS
758\f
ce998900 759
8ce94e44
JM
760/* Whether to allow x87 floating-point arithmetic on MODE (one of
761 SFmode, DFmode and XFmode) in the current excess precision
762 configuration. */
b8cab8a5
UB
763#define X87_ENABLE_ARITH(MODE) \
764 (flag_unsafe_math_optimizations \
765 || flag_excess_precision == EXCESS_PRECISION_FAST \
766 || (MODE) == XFmode)
8ce94e44
JM
767
768/* Likewise, whether to allow direct conversions from integer mode
769 IMODE (HImode, SImode or DImode) to MODE. */
770#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
771 (flag_unsafe_math_optimizations \
772 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
773 || (MODE) == XFmode \
774 || ((MODE) == DFmode && (IMODE) == SImode) \
775 || (IMODE) == HImode)
776
979c67a5
UB
777/* target machine storage layout */
778
65d9c0ab
JH
779#define SHORT_TYPE_SIZE 16
780#define INT_TYPE_SIZE 32
f0ea7581
L
781#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
782#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 783#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 784#define FLOAT_TYPE_SIZE 32
65d9c0ab 785#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
786#define LONG_DOUBLE_TYPE_SIZE \
787 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 788
c637141a 789#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 790
67adf6a9 791#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 792#define MAX_BITS_PER_WORD 64
0c2dc519
JH
793#else
794#define MAX_BITS_PER_WORD 32
0c2dc519
JH
795#endif
796
c98f8742
JVA
797/* Define this if most significant byte of a word is the lowest numbered. */
798/* That is true on the 80386. */
799
800#define BITS_BIG_ENDIAN 0
801
802/* Define this if most significant byte of a word is the lowest numbered. */
803/* That is not true on the 80386. */
804#define BYTES_BIG_ENDIAN 0
805
806/* Define this if most significant word of a multiword number is the lowest
807 numbered. */
808/* Not true for 80386 */
809#define WORDS_BIG_ENDIAN 0
810
c98f8742 811/* Width of a word, in units (bytes). */
4ae8027b 812#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
813
814#ifndef IN_LIBGCC2
2e64c636
JH
815#define MIN_UNITS_PER_WORD 4
816#endif
c98f8742 817
c98f8742 818/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 819#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 820
e075ae69 821/* Boundary (in *bits*) on which stack pointer should be aligned. */
bd5d3961 822#define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 823
2e3f842f
L
824/* Stack boundary of the main function guaranteed by OS. */
825#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
826
de1132d1 827/* Minimum stack boundary. */
cba9c789 828#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 829
d1f87653 830/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 831 aligned; the compiler cannot rely on having this alignment. */
e075ae69 832#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 833
de1132d1 834/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
835 both 32bit and 64bit, to support codes that need 128 bit stack
836 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
837#define PREFERRED_STACK_BOUNDARY_DEFAULT \
838 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
839
840/* 1 if -mstackrealign should be turned on by default. It will
841 generate an alternate prologue and epilogue that realigns the
842 runtime stack if nessary. This supports mixing codes that keep a
843 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 844 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
845#define STACK_REALIGN_DEFAULT 0
846
847/* Boundary (in *bits*) on which the incoming stack is aligned. */
848#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 849
a2851b75
TG
850/* According to Windows x64 software convention, the maximum stack allocatable
851 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
852 instructions allowed to adjust the stack pointer in the epilog, forcing the
853 use of frame pointer for frames larger than 2 GB. This theorical limit
854 is reduced by 256, an over-estimated upper bound for the stack use by the
855 prologue.
856 We define only one threshold for both the prolog and the epilog. When the
4e523f33 857 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
858 regs, then save them, and then allocate the remaining. There is no SEH
859 unwind info for this later allocation. */
860#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
861
ebff937c
SH
862/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
863 mandatory for the 64-bit ABI, and may or may not be true for other
864 operating systems. */
865#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
866
f963b5d9
RS
867/* Minimum allocation boundary for the code of a function. */
868#define FUNCTION_BOUNDARY 8
869
870/* C++ stores the virtual bit in the lowest bit of function pointers. */
871#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 872
c98f8742
JVA
873/* Minimum size in bits of the largest boundary to which any
874 and all fundamental data types supported by the hardware
875 might need to be aligned. No data type wants to be aligned
17f24ff0 876 rounder than this.
fce5a9f2 877
d1f87653 878 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
879 and Pentium Pro XFmode values at 128 bit boundaries.
880
881 When increasing the maximum, also update
882 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 883
3f97cb0b 884#define BIGGEST_ALIGNMENT \
0076c82f 885 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 886
2e3f842f
L
887/* Maximum stack alignment. */
888#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
889
6e4f1168
L
890/* Alignment value for attribute ((aligned)). It is a constant since
891 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 892#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 893
822eda12 894/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 895#define ALIGN_MODE_128(MODE) \
4501d314 896 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 897
17f24ff0 898/* The published ABIs say that doubles should be aligned on word
d1f87653 899 boundaries, so lower the alignment for structure fields unless
6fc605d8 900 -malign-double is set. */
e932b21b 901
e83f3cff
RH
902/* ??? Blah -- this macro is used directly by libobjc. Since it
903 supports no vector modes, cut out the complexity and fall back
904 on BIGGEST_FIELD_ALIGNMENT. */
905#ifdef IN_TARGET_LIBS
ef49d42e
JH
906#ifdef __x86_64__
907#define BIGGEST_FIELD_ALIGNMENT 128
908#else
e83f3cff 909#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 910#endif
e83f3cff 911#else
a4cf4b64
RB
912#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
913 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 914#endif
c98f8742 915
8a022443
JW
916/* If defined, a C expression to compute the alignment for a static
917 variable. TYPE is the data type, and ALIGN is the alignment that
918 the object would ordinarily have. The value of this macro is used
919 instead of that alignment to align the object.
920
921 If this macro is not defined, then ALIGN is used.
922
923 One use of this macro is to increase alignment of medium-size
924 data to make it all fit in fewer cache lines. Another is to
925 cause character arrays to be word-aligned so that `strcpy' calls
926 that copy constants to character arrays can be done inline. */
927
df8a1d28
JJ
928#define DATA_ALIGNMENT(TYPE, ALIGN) \
929 ix86_data_alignment ((TYPE), (ALIGN), true)
930
931/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
932 some alignment increase, instead of optimization only purposes. E.g.
933 AMD x86-64 psABI says that variables with array type larger than 15 bytes
934 must be aligned to 16 byte boundaries.
935
936 If this macro is not defined, then ALIGN is used. */
937
938#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
939 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
940
941/* If defined, a C expression to compute the alignment for a local
942 variable. TYPE is the data type, and ALIGN is the alignment that
943 the object would ordinarily have. The value of this macro is used
944 instead of that alignment to align the object.
945
946 If this macro is not defined, then ALIGN is used.
947
948 One use of this macro is to increase alignment of medium-size
949 data to make it all fit in fewer cache lines. */
950
76fe54f0
L
951#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
952 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
953
954/* If defined, a C expression to compute the alignment for stack slot.
955 TYPE is the data type, MODE is the widest mode available, and ALIGN
956 is the alignment that the slot would ordinarily have. The value of
957 this macro is used instead of that alignment to align the slot.
958
959 If this macro is not defined, then ALIGN is used when TYPE is NULL,
960 Otherwise, LOCAL_ALIGNMENT will be used.
961
962 One use of this macro is to set alignment of stack slot to the
963 maximum alignment of all possible modes which the slot may have. */
964
965#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
966 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 967
9bfaf89d
JJ
968/* If defined, a C expression to compute the alignment for a local
969 variable DECL.
970
971 If this macro is not defined, then
972 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
973
974 One use of this macro is to increase alignment of medium-size
975 data to make it all fit in fewer cache lines. */
976
977#define LOCAL_DECL_ALIGNMENT(DECL) \
978 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
979
ae58e548
JJ
980/* If defined, a C expression to compute the minimum required alignment
981 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
982 MODE, assuming normal alignment ALIGN.
983
984 If this macro is not defined, then (ALIGN) will be used. */
985
986#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 987 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 988
9bfaf89d 989
9cd10576 990/* Set this nonzero if move instructions will actually fail to work
c98f8742 991 when given unaligned data. */
b4ac57ab 992#define STRICT_ALIGNMENT 0
c98f8742
JVA
993
994/* If bit field type is int, don't let it cross an int,
995 and give entire struct the alignment of an int. */
43a88a8c 996/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 997#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
998\f
999/* Standard register usage. */
1000
1001/* This processor has special stack-like registers. See reg-stack.c
892a2d68 1002 for details. */
c98f8742
JVA
1003
1004#define STACK_REGS
ce998900 1005
f48b4284
UB
1006#define IS_STACK_MODE(MODE) \
1007 (X87_FLOAT_MODE_P (MODE) \
1008 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
1009 || TARGET_MIX_SSE_I387))
c98f8742
JVA
1010
1011/* Number of actual hardware registers.
1012 The hardware registers are assigned numbers for the compiler
1013 from 0 to just below FIRST_PSEUDO_REGISTER.
1014 All registers that the compiler knows about must be given numbers,
1015 even those that are not normally considered general registers.
1016
1017 In the 80386 we give the 8 general purpose registers the numbers 0-7.
1018 We number the floating point registers 8-15.
1019 Note that registers 0-7 can be accessed as a short or int,
1020 while only 0-3 may be used with byte `mov' instructions.
1021
1022 Reg 16 does not correspond to any hardware register, but instead
1023 appears in the RTL as an argument pointer prior to reload, and is
1024 eliminated during reloading in favor of either the stack or frame
892a2d68 1025 pointer. */
c98f8742 1026
05416670 1027#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 1028
3073d01c
ML
1029/* Number of hardware registers that go into the DWARF-2 unwind info.
1030 If not defined, equals FIRST_PSEUDO_REGISTER. */
1031
1032#define DWARF_FRAME_REGISTERS 17
1033
c98f8742
JVA
1034/* 1 for registers that have pervasive standard uses
1035 and are not available for the register allocator.
3f3f2124 1036 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 1037
621bc046
UB
1038 REX registers are disabled for 32bit targets in
1039 TARGET_CONDITIONAL_REGISTER_USAGE. */
1040
a7180f70
BS
1041#define FIXED_REGISTERS \
1042/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1043{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
eaa17c21
UB
1044/*arg,flags,fpsr,frame*/ \
1045 1, 1, 1, 1, \
a7180f70
BS
1046/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1047 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1048/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1049 0, 0, 0, 0, 0, 0, 0, 0, \
1050/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1051 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1052/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1053 0, 0, 0, 0, 0, 0, 0, 0, \
1054/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1055 0, 0, 0, 0, 0, 0, 0, 0, \
1056/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1057 0, 0, 0, 0, 0, 0, 0, 0, \
1058/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1059 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
1060
1061/* 1 for registers not available across function calls.
1062 These must include the FIXED_REGISTERS and also any
1063 registers that can be used without being saved.
1064 The latter must include the registers where values are returned
1065 and the register where structure-value addresses are passed.
fce5a9f2
EC
1066 Aside from that, you can include as many other registers as you like.
1067
621bc046
UB
1068 Value is set to 1 if the register is call used unconditionally.
1069 Bit one is set if the register is call used on TARGET_32BIT ABI.
1070 Bit two is set if the register is call used on TARGET_64BIT ABI.
1071 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1072
1073 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1074
1f3ccbc8
L
1075#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1076 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1077
a7180f70
BS
1078#define CALL_USED_REGISTERS \
1079/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1080{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
eaa17c21
UB
1081/*arg,flags,fpsr,frame*/ \
1082 1, 1, 1, 1, \
a7180f70 1083/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1084 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1085/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1086 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1087/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1088 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1089/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1090 6, 6, 6, 6, 6, 6, 6, 6, \
1091/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1092 6, 6, 6, 6, 6, 6, 6, 6, \
1093/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1094 6, 6, 6, 6, 6, 6, 6, 6, \
1095 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1096 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1097
3b3c6a3f
MM
1098/* Order in which to allocate registers. Each register must be
1099 listed once, even those in FIXED_REGISTERS. List frame pointer
1100 late and fixed registers last. Note that, in general, we prefer
1101 registers listed in CALL_USED_REGISTERS, keeping the others
1102 available for storage of persistent values.
1103
5a733826 1104 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1105 so this is just empty initializer for array. */
3b3c6a3f 1106
eaa17c21
UB
1107#define REG_ALLOC_ORDER \
1108{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1109 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1110 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1111 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1112 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
3b3c6a3f 1113
5a733826 1114/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1115 to be rearranged based on a particular function. When using sse math,
03c259ad 1116 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1117
5a733826 1118#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1119
f5316dfe 1120
7c800926
KT
1121#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1122
8521c414 1123#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1124 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1125 && GENERAL_REGNO_P (REGNO) \
1126 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1127
1128#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1129
e21b52af
HL
1130#define REGMODE_NATURAL_SIZE(MODE) ix86_regmode_natural_size (MODE)
1131
95879c72
L
1132#define VALID_AVX256_REG_MODE(MODE) \
1133 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1134 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1135 || (MODE) == V4DFmode)
95879c72 1136
4ac005ba 1137#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1138 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1139
3f97cb0b
AI
1140#define VALID_AVX512F_SCALAR_MODE(MODE) \
1141 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1142 || (MODE) == SFmode)
1143
1144#define VALID_AVX512F_REG_MODE(MODE) \
1145 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1146 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1147 || (MODE) == V4TImode)
1148
e6f146d2
SP
1149#define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1150 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1151
05416670 1152#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1153 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1154 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1155 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1156
ce998900
UB
1157#define VALID_SSE2_REG_MODE(MODE) \
1158 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1159 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1160
d9a5f180 1161#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1162 ((MODE) == V1TImode || (MODE) == TImode \
1163 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1164 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1165
47f339cf 1166#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1167 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1168
d9a5f180 1169#define VALID_MMX_REG_MODE(MODE) \
879f9d0b 1170 ((MODE) == V1DImode || (MODE) == DImode \
10a97ae6
UB
1171 || (MODE) == V2SImode || (MODE) == SImode \
1172 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1173
05416670
UB
1174#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1175
1176#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1177
ce998900
UB
1178#define VALID_DFP_MODE_P(MODE) \
1179 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1180
d9a5f180 1181#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1182 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1183 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1184
d9a5f180 1185#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1186 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1187 || (MODE) == DImode \
1188 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1189 || (MODE) == CDImode \
1190 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1191 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1192
822eda12 1193/* Return true for modes passed in SSE registers. */
ce998900 1194#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1195 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1196 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1197 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1198 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1199 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1200 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1201 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1202 || (MODE) == V16SFmode)
822eda12 1203
05416670
UB
1204#define X87_FLOAT_MODE_P(MODE) \
1205 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1206
05416670
UB
1207#define SSE_FLOAT_MODE_P(MODE) \
1208 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1209
1210#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1211 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1212 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1213
ff25ef99
ZD
1214/* It is possible to write patterns to move flags; but until someone
1215 does it, */
1216#define AVOID_CCMODE_COPIES
c98f8742 1217
e075ae69 1218/* Specify the modes required to caller save a given hard regno.
787dc842 1219 We do this on i386 to prevent flags from being saved at all.
e075ae69 1220
787dc842
JH
1221 Kill any attempts to combine saving of modes. */
1222
d9a5f180
GS
1223#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1224 (CC_REGNO_P (REGNO) ? VOIDmode \
1225 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1226 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1227 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1228 && TARGET_PARTIAL_REG_STALL) \
85a77221 1229 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1230 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1231 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1232 : (MODE))
ce998900 1233
c98f8742
JVA
1234/* Specify the registers used for certain standard purposes.
1235 The values of these macros are register numbers. */
1236
1237/* on the 386 the pc register is %eip, and is not usable as a general
1238 register. The ordinary mov instructions won't work */
1239/* #define PC_REGNUM */
1240
05416670
UB
1241/* Base register for access to arguments of the function. */
1242#define ARG_POINTER_REGNUM ARGP_REG
1243
c98f8742 1244/* Register to use for pushing function arguments. */
05416670 1245#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1246
1247/* Base register for access to local variables of the function. */
05416670
UB
1248#define FRAME_POINTER_REGNUM FRAME_REG
1249#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1250
05416670
UB
1251#define FIRST_INT_REG AX_REG
1252#define LAST_INT_REG SP_REG
c98f8742 1253
05416670
UB
1254#define FIRST_QI_REG AX_REG
1255#define LAST_QI_REG BX_REG
c98f8742
JVA
1256
1257/* First & last stack-like regs */
05416670
UB
1258#define FIRST_STACK_REG ST0_REG
1259#define LAST_STACK_REG ST7_REG
c98f8742 1260
05416670
UB
1261#define FIRST_SSE_REG XMM0_REG
1262#define LAST_SSE_REG XMM7_REG
fce5a9f2 1263
05416670
UB
1264#define FIRST_MMX_REG MM0_REG
1265#define LAST_MMX_REG MM7_REG
a7180f70 1266
05416670
UB
1267#define FIRST_REX_INT_REG R8_REG
1268#define LAST_REX_INT_REG R15_REG
3f3f2124 1269
05416670
UB
1270#define FIRST_REX_SSE_REG XMM8_REG
1271#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1272
05416670
UB
1273#define FIRST_EXT_REX_SSE_REG XMM16_REG
1274#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1275
05416670
UB
1276#define FIRST_MASK_REG MASK0_REG
1277#define LAST_MASK_REG MASK7_REG
85a77221 1278
aabcd309 1279/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1280 requiring a frame pointer. */
1281#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1282#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1283#endif
1284
1285/* Make sure we can access arbitrary call frames. */
1286#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1287
c98f8742 1288/* Register to hold the addressing base for position independent
5b43fed1
RH
1289 code access to data items. We don't use PIC pointer for 64bit
1290 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1291 pessimizing code dealing with EBX.
bd09bdeb
RH
1292
1293 To avoid clobbering a call-saved register unnecessarily, we renumber
1294 the pic register when possible. The change is visible after the
1295 prologue has been emitted. */
1296
e8b5eb25 1297#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1298
bcb21886 1299#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1300 (ix86_use_pseudo_pic_reg () \
1301 ? (pic_offset_table_rtx \
1302 ? INVALID_REGNUM \
1303 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1304 : INVALID_REGNUM)
c98f8742 1305
5fc0e5df
KW
1306#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1307
c51e6d85 1308/* This is overridden by <cygwin.h>. */
5e062767
DS
1309#define MS_AGGREGATE_RETURN 0
1310
61fec9ff 1311#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1312\f
1313/* Define the classes of registers for register constraints in the
1314 machine description. Also define ranges of constants.
1315
1316 One of the classes must always be named ALL_REGS and include all hard regs.
1317 If there is more than one class, another class must be named NO_REGS
1318 and contain no registers.
1319
1320 The name GENERAL_REGS must be the name of a class (or an alias for
1321 another name such as ALL_REGS). This is the class of registers
1322 that is allowed by "g" or "r" in a register constraint.
1323 Also, registers outside this class are allocated only when
1324 instructions express preferences for them.
1325
1326 The classes must be numbered in nondecreasing order; that is,
1327 a larger-numbered class must never be contained completely
2e24efd3
AM
1328 in a smaller-numbered class. This is why CLOBBERED_REGS class
1329 is listed early, even though in 64-bit mode it contains more
1330 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1331
1332 For any two classes, it is very desirable that there be another
ab408a86
JVA
1333 class that represents their union.
1334
eaa17c21 1335 The flags and fpsr registers are in no class. */
c98f8742
JVA
1336
1337enum reg_class
1338{
1339 NO_REGS,
e075ae69 1340 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1341 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1342 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1343 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1344 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1345 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1346 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1347 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1348 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1349 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1350 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1351 FLOAT_REGS,
06f4e35d 1352 SSE_FIRST_REG,
45392c76 1353 NO_REX_SSE_REGS,
a7180f70 1354 SSE_REGS,
3f97cb0b 1355 ALL_SSE_REGS,
a7180f70 1356 MMX_REGS,
446988df
JH
1357 FLOAT_SSE_REGS,
1358 FLOAT_INT_REGS,
1359 INT_SSE_REGS,
1360 FLOAT_INT_SSE_REGS,
85a77221 1361 MASK_REGS,
d18cbbf6
UB
1362 ALL_MASK_REGS,
1363 ALL_REGS,
1364 LIM_REG_CLASSES
c98f8742
JVA
1365};
1366
d9a5f180
GS
1367#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1368
1369#define INTEGER_CLASS_P(CLASS) \
1370 reg_class_subset_p ((CLASS), GENERAL_REGS)
1371#define FLOAT_CLASS_P(CLASS) \
1372 reg_class_subset_p ((CLASS), FLOAT_REGS)
1373#define SSE_CLASS_P(CLASS) \
3f97cb0b 1374 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1375#define MMX_CLASS_P(CLASS) \
f75959a6 1376 ((CLASS) == MMX_REGS)
4ed04e93 1377#define MASK_CLASS_P(CLASS) \
d18cbbf6 1378 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1379#define MAYBE_INTEGER_CLASS_P(CLASS) \
1380 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1381#define MAYBE_FLOAT_CLASS_P(CLASS) \
1382 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1383#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1384 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1385#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1386 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221 1387#define MAYBE_MASK_CLASS_P(CLASS) \
d18cbbf6 1388 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1389
1390#define Q_CLASS_P(CLASS) \
1391 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1392
0bd72901
UB
1393#define MAYBE_NON_Q_CLASS_P(CLASS) \
1394 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1395
43f3a59d 1396/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1397
1398#define REG_CLASS_NAMES \
1399{ "NO_REGS", \
ab408a86 1400 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1401 "SIREG", "DIREG", \
e075ae69 1402 "AD_REGS", \
2e24efd3 1403 "CLOBBERED_REGS", \
e075ae69 1404 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1405 "TLS_GOTBASE_REGS", \
c98f8742 1406 "INDEX_REGS", \
3f3f2124 1407 "LEGACY_REGS", \
c98f8742
JVA
1408 "GENERAL_REGS", \
1409 "FP_TOP_REG", "FP_SECOND_REG", \
1410 "FLOAT_REGS", \
cb482895 1411 "SSE_FIRST_REG", \
45392c76 1412 "NO_REX_SSE_REGS", \
a7180f70 1413 "SSE_REGS", \
3f97cb0b 1414 "ALL_SSE_REGS", \
a7180f70 1415 "MMX_REGS", \
446988df 1416 "FLOAT_SSE_REGS", \
8fcaaa80 1417 "FLOAT_INT_REGS", \
446988df
JH
1418 "INT_SSE_REGS", \
1419 "FLOAT_INT_SSE_REGS", \
85a77221 1420 "MASK_REGS", \
d18cbbf6 1421 "ALL_MASK_REGS", \
c98f8742
JVA
1422 "ALL_REGS" }
1423
ac2e563f
RH
1424/* Define which registers fit in which classes. This is an initializer
1425 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1426
621bc046
UB
1427 Note that CLOBBERED_REGS are calculated by
1428 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1429
d18cbbf6 1430#define REG_CLASS_CONTENTS \
eaa17c21
UB
1431{ { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1432 { 0x01, 0x0, 0x0 }, /* AREG */ \
1433 { 0x02, 0x0, 0x0 }, /* DREG */ \
1434 { 0x04, 0x0, 0x0 }, /* CREG */ \
1435 { 0x08, 0x0, 0x0 }, /* BREG */ \
1436 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1437 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1438 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1439 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1440 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1441 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1442 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1443 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1444 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1445 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1446 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1447 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1448 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1449 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1450 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1451 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1452 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1453{ 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1454 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1455 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1456 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1457 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1458 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1459 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
1460{ 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
e075ae69 1461}
c98f8742
JVA
1462
1463/* The same information, inverted:
1464 Return the class number of the smallest class containing
1465 reg number REGNO. This could be a conditional expression
1466 or could index an array. */
1467
1a6e82b8 1468#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1469
42db504c
SB
1470/* When this hook returns true for MODE, the compiler allows
1471 registers explicitly used in the rtl to be used as spill registers
1472 but prevents the compiler from extending the lifetime of these
1473 registers. */
1474#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1475
fc27f749 1476#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1477#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1478
1479#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1480#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1481
1482#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1483#define REX_INT_REGNO_P(N) \
1484 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1485
58b0b34c 1486#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1487#define GENERAL_REGNO_P(N) \
58b0b34c 1488 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1489
fc27f749
UB
1490#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1491#define ANY_QI_REGNO_P(N) \
1492 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1493
66aaf16f
UB
1494#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1495#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1496
fc27f749 1497#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1498#define SSE_REGNO_P(N) \
1499 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1500 || REX_SSE_REGNO_P (N) \
1501 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1502
4977bab6 1503#define REX_SSE_REGNO_P(N) \
fb84c7a0 1504 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1505
0a48088a
IT
1506#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1507
3f97cb0b
AI
1508#define EXT_REX_SSE_REGNO_P(N) \
1509 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1510
05416670
UB
1511#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1512#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1513
9e4a4dd6 1514#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1515#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
e21b52af 1516#define MASK_PAIR_REGNO_P(N) ((((N) - FIRST_MASK_REG) & 1) == 0)
446988df 1517
fc27f749 1518#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1519#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1520
e075ae69 1521#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
adb67ffb 1522#define CC_REGNO_P(X) ((X) == FLAGS_REG)
e075ae69 1523
5fbb13a7
KY
1524#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1525#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1526 || (N) == XMM4_REG \
1527 || (N) == XMM8_REG \
1528 || (N) == XMM12_REG \
1529 || (N) == XMM16_REG \
1530 || (N) == XMM20_REG \
1531 || (N) == XMM24_REG \
1532 || (N) == XMM28_REG)
1533
05416670
UB
1534/* First floating point reg */
1535#define FIRST_FLOAT_REG FIRST_STACK_REG
1536#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1537
02469d3a
UB
1538#define GET_SSE_REGNO(N) \
1539 ((N) < 8 ? FIRST_SSE_REG + (N) \
1540 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1541 : FIRST_EXT_REX_SSE_REG + (N) - 16)
05416670 1542
c98f8742
JVA
1543/* The class value for index registers, and the one for base regs. */
1544
1545#define INDEX_REG_CLASS INDEX_REGS
1546#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1547\f
1548/* Stack layout; function entry, exit and calling. */
1549
1550/* Define this if pushing a word on the stack
1551 makes the stack pointer a smaller address. */
62f9f30b 1552#define STACK_GROWS_DOWNWARD 1
c98f8742 1553
a4d05547 1554/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1555 is at the high-address end of the local variables;
1556 that is, each additional local variable allocated
1557 goes at a more negative offset in the frame. */
f62c8a5c 1558#define FRAME_GROWS_DOWNWARD 1
c98f8742 1559
7b4df2bf 1560#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
8c2b2fae
UB
1561
1562/* If defined, the maximum amount of space required for outgoing arguments
1563 will be computed and placed into the variable `crtl->outgoing_args_size'.
1564 No space will be pushed onto the stack for each call; instead, the
1565 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1566
1567 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1568 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1569 mode the difference is less drastic but visible.
1570
1571 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1572 actually grow with accumulation. Is that because accumulated args
41ee845b 1573 unwind info became unnecesarily bloated?
f830ddc2
RH
1574
1575 With the 64-bit MS ABI, we can generate correct code with or without
1576 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1577 generated without accumulated args is terrible.
41ee845b
JH
1578
1579 If stack probes are required, the space used for large function
1580 arguments on the stack must also be probed, so enable
f8071c05
L
1581 -maccumulate-outgoing-args so this happens in the prologue.
1582
1583 We must use argument accumulation in interrupt function if stack
1584 may be realigned to avoid DRAP. */
f73ad30e 1585
6c6094f1 1586#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1587 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1588 && optimize_function_for_speed_p (cfun)) \
1589 || (cfun->machine->func_type != TYPE_NORMAL \
1590 && crtl->stack_realign_needed) \
1591 || TARGET_STACK_PROBE \
1592 || TARGET_64BIT_MS_ABI \
ff734e26 1593 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1594
1595/* If defined, a C expression whose value is nonzero when we want to use PUSH
1596 instructions to pass outgoing arguments. */
1597
1598#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1599
2da4124d
L
1600/* We want the stack and args grow in opposite directions, even if
1601 PUSH_ARGS is 0. */
1602#define PUSH_ARGS_REVERSED 1
1603
c98f8742
JVA
1604/* Offset of first parameter from the argument pointer register value. */
1605#define FIRST_PARM_OFFSET(FNDECL) 0
1606
a7180f70
BS
1607/* Define this macro if functions should assume that stack space has been
1608 allocated for arguments even when their values are passed in registers.
1609
1610 The value of this macro is the size, in bytes, of the area reserved for
1611 arguments passed in registers for the function represented by FNDECL.
1612
1613 This space can be allocated by the caller, or be a part of the
1614 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1615 which. */
7c800926
KT
1616#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1617
4ae8027b 1618#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1619 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1620
c98f8742
JVA
1621/* Define how to find the value returned by a library function
1622 assuming the value has mode MODE. */
1623
4ae8027b 1624#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1625
e9125c09
TW
1626/* Define the size of the result block used for communication between
1627 untyped_call and untyped_return. The block contains a DImode value
1628 followed by the block used by fnsave and frstor. */
1629
1630#define APPLY_RESULT_SIZE (8+108)
1631
b08de47e 1632/* 1 if N is a possible register number for function argument passing. */
53c17031 1633#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1634
1635/* Define a data type for recording info about an argument list
1636 during the scan of that argument list. This data type should
1637 hold all necessary information about the function itself
1638 and about the args processed so far, enough to enable macros
b08de47e 1639 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1640
e075ae69 1641typedef struct ix86_args {
fa283935 1642 int words; /* # words passed so far */
b08de47e
MM
1643 int nregs; /* # registers available for passing */
1644 int regno; /* next available register number */
3e65f251
KT
1645 int fastcall; /* fastcall or thiscall calling convention
1646 is used */
fa283935 1647 int sse_words; /* # sse words passed so far */
a7180f70 1648 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1649 int warn_avx512f; /* True when we want to warn
1650 about AVX512F ABI. */
95879c72 1651 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1652 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935 1653 int warn_mmx; /* True when we want to warn about MMX ABI. */
974aedcc
MP
1654 int warn_empty; /* True when we want to warn about empty classes
1655 passing ABI change. */
fa283935
UB
1656 int sse_regno; /* next available sse register number */
1657 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1658 int mmx_nregs; /* # mmx registers available for passing */
1659 int mmx_regno; /* next available mmx register number */
892a2d68 1660 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1661 int caller; /* true if it is caller. */
2824d6e5
UB
1662 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1663 SFmode/DFmode arguments should be passed
1664 in SSE registers. Otherwise 0. */
d5e254e1 1665 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1666 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1667 MS_ABI for ms abi. */
e66fc623 1668 tree decl; /* Callee decl. */
b08de47e 1669} CUMULATIVE_ARGS;
c98f8742
JVA
1670
1671/* Initialize a variable CUM of type CUMULATIVE_ARGS
1672 for a call to a function whose data type is FNTYPE.
b08de47e 1673 For a library call, FNTYPE is 0. */
c98f8742 1674
0f6937fe 1675#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1676 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1677 (N_NAMED_ARGS) != -1)
c98f8742 1678
c98f8742
JVA
1679/* Output assembler code to FILE to increment profiler label # LABELNO
1680 for profiling a function entry. */
1681
1a6e82b8
UB
1682#define FUNCTION_PROFILER(FILE, LABELNO) \
1683 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1684
1685#define MCOUNT_NAME "_mcount"
1686
3c5273a9
KT
1687#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1688
a5fa1ecd 1689#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1690
1691/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1692 the stack pointer does not matter. The value is tested only in
1693 functions that have frame pointers.
1694 No definition is equivalent to always zero. */
fce5a9f2 1695/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1696 we have to restore it ourselves from the frame pointer, in order to
1697 use pop */
1698
1699#define EXIT_IGNORE_STACK 1
1700
f8071c05
L
1701/* Define this macro as a C expression that is nonzero for registers
1702 used by the epilogue or the `return' pattern. */
1703
1704#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1705
c98f8742
JVA
1706/* Output assembler code for a block containing the constant parts
1707 of a trampoline, leaving space for the variable parts. */
1708
a269a03c 1709/* On the 386, the trampoline contains two instructions:
c98f8742 1710 mov #STATIC,ecx
a269a03c
JC
1711 jmp FUNCTION
1712 The trampoline is generated entirely at runtime. The operand of JMP
1713 is the address of FUNCTION relative to the instruction following the
1714 JMP (which is 5 bytes long). */
c98f8742
JVA
1715
1716/* Length in units of the trampoline for entering a nested function. */
1717
6514899f 1718#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
c98f8742
JVA
1719\f
1720/* Definitions for register eliminations.
1721
1722 This is an array of structures. Each structure initializes one pair
1723 of eliminable registers. The "from" register number is given first,
1724 followed by "to". Eliminations of the same "from" register are listed
1725 in order of preference.
1726
afc2cd05
NC
1727 There are two registers that can always be eliminated on the i386.
1728 The frame pointer and the arg pointer can be replaced by either the
1729 hard frame pointer or to the stack pointer, depending upon the
1730 circumstances. The hard frame pointer is not used before reload and
1731 so it is not eligible for elimination. */
c98f8742 1732
564d80f4
JH
1733#define ELIMINABLE_REGS \
1734{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1735 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1736 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1737 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1738
c98f8742
JVA
1739/* Define the offset between two registers, one to be eliminated, and the other
1740 its replacement, at the start of a routine. */
1741
d9a5f180
GS
1742#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1743 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1744\f
1745/* Addressing modes, and classification of registers for them. */
1746
c98f8742
JVA
1747/* Macros to check register numbers against specific register classes. */
1748
1749/* These assume that REGNO is a hard or pseudo reg number.
1750 They give nonzero only if REGNO is a hard reg of the suitable class
1751 or a pseudo reg currently allocated to a suitable hard reg.
1752 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1753 has been allocated, which happens in reginfo.c during register
1754 allocation. */
c98f8742 1755
3f3f2124
JH
1756#define REGNO_OK_FOR_INDEX_P(REGNO) \
1757 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1758 || REX_INT_REGNO_P (REGNO) \
1759 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1760 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1761
3f3f2124 1762#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1763 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1764 || (REGNO) == ARG_POINTER_REGNUM \
1765 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1766 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1767
c98f8742
JVA
1768/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1769 and check its validity for a certain class.
1770 We have two alternate definitions for each of them.
1771 The usual definition accepts all pseudo regs; the other rejects
1772 them unless they have been allocated suitable hard regs.
1773 The symbol REG_OK_STRICT causes the latter definition to be used.
1774
1775 Most source files want to accept pseudo regs in the hope that
1776 they will get allocated to the class that the insn wants them to be in.
1777 Source files for reload pass need to be strict.
1778 After reload, it makes no difference, since pseudo regs have
1779 been eliminated by then. */
1780
c98f8742 1781
ff482c8d 1782/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1783#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1784 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1785 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1786 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1787
3b3c6a3f 1788#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1789 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1790 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1791 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1792 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1793
3b3c6a3f
MM
1794/* Strict versions, hard registers only */
1795#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1796#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1797
3b3c6a3f 1798#ifndef REG_OK_STRICT
d9a5f180
GS
1799#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1800#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1801
1802#else
d9a5f180
GS
1803#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1804#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1805#endif
1806
331d9186 1807/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1808 that is a valid memory address for an instruction.
1809 The MODE argument is the machine mode for the MEM expression
1810 that wants to use this address.
1811
331d9186 1812 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1813 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1814
1815 See legitimize_pic_address in i386.c for details as to what
1816 constitutes a legitimate address when -fpic is used. */
1817
1818#define MAX_REGS_PER_ADDRESS 2
1819
f996902d 1820#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1821
b949ea8b
JW
1822/* If defined, a C expression to determine the base term of address X.
1823 This macro is used in only one place: `find_base_term' in alias.c.
1824
1825 It is always safe for this macro to not be defined. It exists so
1826 that alias analysis can understand machine-dependent addresses.
1827
1828 The typical use of this macro is to handle addresses containing
1829 a label_ref or symbol_ref within an UNSPEC. */
1830
d9a5f180 1831#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1832
c98f8742 1833/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1834 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1835 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1836
f996902d 1837#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1838
1839#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1840 (GET_CODE (X) == SYMBOL_REF \
1841 || GET_CODE (X) == LABEL_REF \
1842 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1843\f
b08de47e
MM
1844/* Max number of args passed in registers. If this is more than 3, we will
1845 have problems with ebx (register #4), since it is a caller save register and
1846 is also used as the pic register in ELF. So for now, don't allow more than
1847 3 registers to be passed in registers. */
1848
7c800926
KT
1849/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1850#define X86_64_REGPARM_MAX 6
72fa3605 1851#define X86_64_MS_REGPARM_MAX 4
7c800926 1852
72fa3605 1853#define X86_32_REGPARM_MAX 3
7c800926 1854
4ae8027b 1855#define REGPARM_MAX \
2824d6e5
UB
1856 (TARGET_64BIT \
1857 ? (TARGET_64BIT_MS_ABI \
1858 ? X86_64_MS_REGPARM_MAX \
1859 : X86_64_REGPARM_MAX) \
4ae8027b 1860 : X86_32_REGPARM_MAX)
d2836273 1861
72fa3605
UB
1862#define X86_64_SSE_REGPARM_MAX 8
1863#define X86_64_MS_SSE_REGPARM_MAX 4
1864
b6010cab 1865#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1866
4ae8027b 1867#define SSE_REGPARM_MAX \
2824d6e5
UB
1868 (TARGET_64BIT \
1869 ? (TARGET_64BIT_MS_ABI \
1870 ? X86_64_MS_SSE_REGPARM_MAX \
1871 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1872 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1873
1874#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1875\f
1876/* Specify the machine mode that this machine uses
1877 for the index in the tablejump instruction. */
dc4d7240 1878#define CASE_VECTOR_MODE \
6025b127 1879 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1880
c98f8742
JVA
1881/* Define this as 1 if `char' should by default be signed; else as 0. */
1882#define DEFAULT_SIGNED_CHAR 1
1883
1884/* Max number of bytes we can move from memory to memory
1885 in one reasonably fast instruction. */
65d9c0ab
JH
1886#define MOVE_MAX 16
1887
1888/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1889 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1890 number of bytes we can move with a single instruction.
1891
1892 ??? We should use TImode in 32-bit mode and use OImode or XImode
1893 if they are available. But since by_pieces_ninsns determines the
1894 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1895 64-bit mode. */
1896#define MOVE_MAX_PIECES \
1897 ((TARGET_64BIT \
1898 && TARGET_SSE2 \
1899 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1900 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1901 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1902
7e24ffc9 1903/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1904 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1905 Increasing the value will always make code faster, but eventually
1906 incurs high cost in increased code size.
c98f8742 1907
e2e52e1b 1908 If you don't define this, a reasonable default is used. */
c98f8742 1909
e04ad03d 1910#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1911
45d78e7f
JJ
1912/* If a clear memory operation would take CLEAR_RATIO or more simple
1913 move-instruction sequences, we will do a clrmem or libcall instead. */
1914
e04ad03d 1915#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1916
53f00dde
UB
1917/* Define if shifts truncate the shift count which implies one can
1918 omit a sign-extension or zero-extension of a shift count.
1919
1920 On i386, shifts do truncate the count. But bit test instructions
1921 take the modulo of the bit offset operand. */
c98f8742
JVA
1922
1923/* #define SHIFT_COUNT_TRUNCATED */
1924
d9f32422
JH
1925/* A macro to update M and UNSIGNEDP when an object whose type is
1926 TYPE and which has the specified mode and signedness is to be
1927 stored in a register. This macro is only called when TYPE is a
1928 scalar type.
1929
f710504c 1930 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1931 quantities to SImode. The choice depends on target type. */
1932
1933#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1934do { \
d9f32422
JH
1935 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1936 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1937 (MODE) = SImode; \
1938} while (0)
d9f32422 1939
c98f8742
JVA
1940/* Specify the machine mode that pointers have.
1941 After generation of rtl, the compiler makes no further distinction
1942 between pointers and any other objects of this machine mode. */
28968d91 1943#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1944
5e1e91c4
L
1945/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1946 NONLOCAL needs space to save both shadow stack and stack pointers.
1947
1948 FIXME: We only need to save and restore stack pointer in ptr_mode.
1949 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1950 to save and restore stack pointer. See
1951 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1952 */
1953#define STACK_SAVEAREA_MODE(LEVEL) \
1954 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1955
d16b9d1c
UB
1956/* Specify the machine_mode of the size increment
1957 operand of an 'allocate_stack' named pattern. */
1958#define STACK_SIZE_MODE Pmode
1959
f0ea7581
L
1960/* A C expression whose value is zero if pointers that need to be extended
1961 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1962 greater then zero if they are zero-extended and less then zero if the
1963 ptr_extend instruction should be used. */
1964
1965#define POINTERS_EXTEND_UNSIGNED 1
1966
c98f8742
JVA
1967/* A function address in a call instruction
1968 is a byte address (for indexing purposes)
1969 so give the MEM rtx a byte's mode. */
1970#define FUNCTION_MODE QImode
d4ba09c0 1971\f
d4ba09c0 1972
d4ba09c0
SC
1973/* A C expression for the cost of a branch instruction. A value of 1
1974 is the default; other values are interpreted relative to that. */
1975
3a4fd356
JH
1976#define BRANCH_COST(speed_p, predictable_p) \
1977 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1978
e327d1a3
L
1979/* An integer expression for the size in bits of the largest integer machine
1980 mode that should actually be used. We allow pairs of registers. */
1981#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1982
d4ba09c0
SC
1983/* Define this macro as a C expression which is nonzero if accessing
1984 less than a word of memory (i.e. a `char' or a `short') is no
1985 faster than accessing a word of memory, i.e., if such access
1986 require more than one instruction or if there is no difference in
1987 cost between byte and (aligned) word loads.
1988
1989 When this macro is not defined, the compiler will access a field by
1990 finding the smallest containing object; when it is defined, a
1991 fullword load will be used if alignment permits. Unless bytes
1992 accesses are faster than word accesses, using word accesses is
1993 preferable since it may eliminate subsequent memory access if
1994 subsequent accesses occur to other fields in the same word of the
1995 structure, but to different bytes. */
1996
1997#define SLOW_BYTE_ACCESS 0
1998
1999/* Nonzero if access to memory by shorts is slow and undesirable. */
2000#define SLOW_SHORT_ACCESS 0
2001
d4ba09c0
SC
2002/* Define this macro if it is as good or better to call a constant
2003 function address than to call an address kept in a register.
2004
2005 Desirable on the 386 because a CALL with a constant address is
2006 faster than one with a register address. */
2007
1e8552c2 2008#define NO_FUNCTION_CSE 1
c98f8742 2009\f
c572e5ba
JVA
2010/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2011 return the mode to be used for the comparison.
2012
2013 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2014 VOIDmode should be used in all other cases.
c572e5ba 2015
16189740 2016 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2017 possible, to allow for more combinations. */
c98f8742 2018
d9a5f180 2019#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2020
9cd10576 2021/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2022 reversed. */
2023
2024#define REVERSIBLE_CC_MODE(MODE) 1
2025
2026/* A C expression whose value is reversed condition code of the CODE for
2027 comparison done in CC_MODE mode. */
3c5cb3e4 2028#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2029
c98f8742
JVA
2030\f
2031/* Control the assembler format that we output, to the extent
2032 this does not vary between assemblers. */
2033
2034/* How to refer to registers in assembler output.
892a2d68 2035 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2036
a7b376ee 2037/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2038 For non floating point regs, the following are the HImode names.
2039
2040 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2041 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2042 "y" code. */
c98f8742 2043
a7180f70
BS
2044#define HI_REGISTER_NAMES \
2045{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2046 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
eaa17c21 2047 "argp", "flags", "fpsr", "frame", \
a7180f70 2048 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2049 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2050 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2051 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2052 "xmm16", "xmm17", "xmm18", "xmm19", \
2053 "xmm20", "xmm21", "xmm22", "xmm23", \
2054 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2055 "xmm28", "xmm29", "xmm30", "xmm31", \
eafa30ef 2056 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2057
c98f8742
JVA
2058#define REGISTER_NAMES HI_REGISTER_NAMES
2059
50bec228
UB
2060#define QI_REGISTER_NAMES \
2061{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2062
2063#define QI_HIGH_REGISTER_NAMES \
2064{"ah", "dh", "ch", "bh"}
2065
c98f8742
JVA
2066/* Table of additional register names to use in user input. */
2067
eaa17c21
UB
2068#define ADDITIONAL_REGISTER_NAMES \
2069{ \
2070 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
2071 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
2072 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
2073 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
2074 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
50bec228 2075 { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG }, \
eaa17c21
UB
2076 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
2077 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2078 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2079 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2080 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2081 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2082 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2083 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2084 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2085 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2086 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2087 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2088 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2089 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2090 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2091 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2092 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
2093}
c98f8742 2094
c98f8742
JVA
2095/* How to renumber registers for dbx and gdb. */
2096
d9a5f180
GS
2097#define DBX_REGISTER_NUMBER(N) \
2098 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2099
9a82e702
MS
2100extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2101extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2102extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2103
469ac993
JM
2104/* Before the prologue, RA is at 0(%esp). */
2105#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2106 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2107
e414ab29 2108/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2109#define RETURN_ADDR_RTX(COUNT, FRAME) \
2110 ((COUNT) == 0 \
2111 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2112 -UNITS_PER_WORD)) \
2113 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2114
892a2d68 2115/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2116#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2117
a10b3cf1
L
2118/* Before the prologue, there are return address and error code for
2119 exception handler on the top of the frame. */
2120#define INCOMING_FRAME_SP_OFFSET \
2121 (cfun->machine->func_type == TYPE_EXCEPTION \
2122 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2123
26fc730d
JJ
2124/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2125 .cfi_startproc. */
2126#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2127
1020a5ab 2128/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2129#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2130#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2131
ad919812 2132
e4c4ebeb
RH
2133/* Select a format to encode pointers in exception handling data. CODE
2134 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2135 true if the symbol may be affected by dynamic relocations.
2136
2137 ??? All x86 object file formats are capable of representing this.
2138 After all, the relocation needed is the same as for the call insn.
2139 Whether or not a particular assembler allows us to enter such, I
2140 guess we'll have to see. */
d9a5f180 2141#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2142 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2143
ec1895c1
UB
2144/* These are a couple of extensions to the formats accepted
2145 by asm_fprintf:
2146 %z prints out opcode suffix for word-mode instruction
2147 %r prints out word-mode name for reg_names[arg] */
2148#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2149 case 'z': \
2150 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2151 break; \
2152 \
2153 case 'r': \
2154 { \
2155 unsigned int regno = va_arg ((ARGS), int); \
2156 if (LEGACY_INT_REGNO_P (regno)) \
2157 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2158 fputs (reg_names[regno], (FILE)); \
2159 break; \
2160 }
2161
2162/* This is how to output an insn to push a register on the stack. */
2163
2164#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2165 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2166
2167/* This is how to output an insn to pop a register from the stack. */
c98f8742 2168
d9a5f180 2169#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2170 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2171
f88c65f7 2172/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2173
2174#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2175 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2176
f88c65f7 2177/* This is how to output an element of a case-vector that is relative. */
c98f8742 2178
33f7f353 2179#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2180 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2181
63001560 2182/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2183
2184#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2185{ \
2186 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2187 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2188}
2189
2190/* A C statement or statements which output an assembler instruction
2191 opcode to the stdio stream STREAM. The macro-operand PTR is a
2192 variable of type `char *' which points to the opcode name in
2193 its "internal" form--the form that is written in the machine
2194 description. */
2195
2196#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2197 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2198
6a90d232
L
2199/* A C statement to output to the stdio stream FILE an assembler
2200 command to pad the location counter to a multiple of 1<<LOG
2201 bytes if it is within MAX_SKIP bytes. */
2202
2203#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2204#undef ASM_OUTPUT_MAX_SKIP_PAD
2205#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2206 if ((LOG) != 0) \
2207 { \
dd047c67 2208 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
6a90d232
L
2209 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2210 else \
2211 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2212 }
2213#endif
2214
135a687e
KT
2215/* Write the extra assembler code needed to declare a function
2216 properly. */
2217
2218#undef ASM_OUTPUT_FUNCTION_LABEL
2219#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2220 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2221
f7288899
EC
2222/* Under some conditions we need jump tables in the text section,
2223 because the assembler cannot handle label differences between
2224 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2225
2226#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2227 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2228 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2229
cea3bd3e
RH
2230/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2231 and switch back. For x86 we do this only to save a few bytes that
2232 would otherwise be unused in the text section. */
ad211091
KT
2233#define CRT_MKSTR2(VAL) #VAL
2234#define CRT_MKSTR(x) CRT_MKSTR2(x)
2235
2236#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2237 asm (SECTION_OP "\n\t" \
2238 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2239 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2240
2241/* Default threshold for putting data in large sections
2242 with x86-64 medium memory model */
2243#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2244\f
b97de419
L
2245/* Which processor to tune code generation for. These must be in sync
2246 with processor_target_table in i386.c. */
5bf0ebab
RH
2247
2248enum processor_type
2249{
b97de419
L
2250 PROCESSOR_GENERIC = 0,
2251 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2252 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2253 PROCESSOR_PENTIUM,
2d6b2e28 2254 PROCESSOR_LAKEMONT,
5bf0ebab 2255 PROCESSOR_PENTIUMPRO,
5bf0ebab 2256 PROCESSOR_PENTIUM4,
89c43c0a 2257 PROCESSOR_NOCONA,
340ef734 2258 PROCESSOR_CORE2,
d3c11974
L
2259 PROCESSOR_NEHALEM,
2260 PROCESSOR_SANDYBRIDGE,
3a579e09 2261 PROCESSOR_HASWELL,
d3c11974
L
2262 PROCESSOR_BONNELL,
2263 PROCESSOR_SILVERMONT,
50e461df 2264 PROCESSOR_GOLDMONT,
74b2bb19 2265 PROCESSOR_GOLDMONT_PLUS,
a548a5a1 2266 PROCESSOR_TREMONT,
52747219 2267 PROCESSOR_KNL,
cace2309 2268 PROCESSOR_KNM,
176a3386 2269 PROCESSOR_SKYLAKE,
06caf59d 2270 PROCESSOR_SKYLAKE_AVX512,
c234d831 2271 PROCESSOR_CANNONLAKE,
79ab5364
JK
2272 PROCESSOR_ICELAKE_CLIENT,
2273 PROCESSOR_ICELAKE_SERVER,
7cab07f0 2274 PROCESSOR_CASCADELAKE,
9a7f94d7 2275 PROCESSOR_INTEL,
b97de419
L
2276 PROCESSOR_GEODE,
2277 PROCESSOR_K6,
2278 PROCESSOR_ATHLON,
2279 PROCESSOR_K8,
21efb4d4 2280 PROCESSOR_AMDFAM10,
1133125e 2281 PROCESSOR_BDVER1,
4d652a18 2282 PROCESSOR_BDVER2,
eb2f2b44 2283 PROCESSOR_BDVER3,
ed97ad47 2284 PROCESSOR_BDVER4,
14b52538 2285 PROCESSOR_BTVER1,
e32bfc16 2286 PROCESSOR_BTVER2,
9ce29eb0 2287 PROCESSOR_ZNVER1,
2901f42f 2288 PROCESSOR_ZNVER2,
5bf0ebab
RH
2289 PROCESSOR_max
2290};
2291
c98c2430 2292#if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2559ef9f 2293extern const char *const processor_names[];
c98c2430
ML
2294
2295#include "wide-int-bitmask.h"
2296
2297const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2298const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2299const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2300const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2301const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2302const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2303const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2304const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2305const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2306const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2307const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2308const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2309const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2310const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2311const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2312const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2313const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2314const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2315const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2316const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2317const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2318const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2319const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2320const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2321const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2322const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2323const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2324const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2325const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2326const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2327const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2328const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2329const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2330const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2331const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2332const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2333const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2334const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2335const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2336const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2337const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2338const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2339const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2340const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
2341/* Hole after PTA_MPX was removed. */
2342const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2343const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2344const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2345const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2346const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2347const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2348const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2349const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2350const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2351const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2352const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2353const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2354const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2355const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2356const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2357const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2358const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2359const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2360const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2361const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2362const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2363const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2364const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2365const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2366const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2367const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2368const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2369const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
e21b52af 2370const wide_int_bitmask PTA_AVX512VP2INTERSECT (0, HOST_WIDE_INT_1U << 9);
c98c2430 2371const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 9);
41f8d1fc 2372const wide_int_bitmask PTA_PTWRITE (0, HOST_WIDE_INT_1U << 10);
4f0e90fa 2373const wide_int_bitmask PTA_AVX512BF16 (0, HOST_WIDE_INT_1U << 11);
c98c2430
ML
2374
2375const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2376 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2377const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2378 | PTA_POPCNT;
c9450033 2379const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
c98c2430
ML
2380const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2381 | PTA_XSAVEOPT;
2382const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2383 | PTA_RDRND | PTA_F16C;
2384const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2385 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2386const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_PRFCHW
2387 | PTA_RDSEED;
c9450033 2388const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES | PTA_CLFLUSHOPT
c98c2430
ML
2389 | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2390const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2391 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2392 | PTA_CLWB;
7cab07f0 2393const wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512 | PTA_AVX512VNNI;
c98c2430
ML
2394const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2395 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2396 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2397const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2398 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2399 | PTA_RDPID | PTA_CLWB;
2400const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
2401 | PTA_WBNOINVD;
2402const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
2403 | PTA_AVX512F | PTA_AVX512CD;
2404const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2405const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND;
c9450033 2406const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA | PTA_XSAVE
c98c2430
ML
2407 | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2408 | PTA_FSGSBASE;
2409const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
41f8d1fc 2410 | PTA_SGX | PTA_PTWRITE;
c98c2430
ML
2411const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2412 | PTA_GFNI;
2413const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2414 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2415
2416#ifndef GENERATOR_FILE
2417
2418#include "insn-attr-common.h"
2419
2420struct pta
2421{
2422 const char *const name; /* processor name or nickname. */
2423 const enum processor_type processor;
2424 const enum attr_cpu schedule;
2425 const wide_int_bitmask flags;
2426};
2427
2428extern const pta processor_alias_table[];
2429extern int const pta_size;
2430#endif
2431
2432#endif
2433
9e555526 2434extern enum processor_type ix86_tune;
5bf0ebab 2435extern enum processor_type ix86_arch;
5bf0ebab 2436
8362f420
JH
2437/* Size of the RED_ZONE area. */
2438#define RED_ZONE_SIZE 128
2439/* Reserved area of the red zone for temporaries. */
2440#define RED_ZONE_RESERVE 8
c93e80a5 2441
95899b34 2442extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2443extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2444
2445/* Smallest class containing REGNO. */
2446extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2447
0948ccb2
PB
2448enum ix86_fpcmp_strategy {
2449 IX86_FPCMP_SAHF,
2450 IX86_FPCMP_COMI,
2451 IX86_FPCMP_ARITH
2452};
22fb740d
JH
2453\f
2454/* To properly truncate FP values into integers, we need to set i387 control
2455 word. We can't emit proper mode switching code before reload, as spills
2456 generated by reload may truncate values incorrectly, but we still can avoid
2457 redundant computation of new control word by the mode switching pass.
2458 The fldcw instructions are still emitted redundantly, but this is probably
2459 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2460 the sequence.
22fb740d
JH
2461
2462 The machinery is to emit simple truncation instructions and split them
2463 before reload to instructions having USEs of two memory locations that
2464 are filled by this code to old and new control word.
fce5a9f2 2465
22fb740d
JH
2466 Post-reload pass may be later used to eliminate the redundant fildcw if
2467 needed. */
2468
c7ca8ef8
UB
2469enum ix86_stack_slot
2470{
2471 SLOT_TEMP = 0,
2472 SLOT_CW_STORED,
2473 SLOT_CW_TRUNC,
2474 SLOT_CW_FLOOR,
2475 SLOT_CW_CEIL,
80008279 2476 SLOT_STV_TEMP,
c7ca8ef8
UB
2477 MAX_386_STACK_LOCALS
2478};
2479
ff680eb1
UB
2480enum ix86_entity
2481{
c7ca8ef8
UB
2482 X86_DIRFLAG = 0,
2483 AVX_U128,
ff97910d 2484 I387_TRUNC,
ff680eb1
UB
2485 I387_FLOOR,
2486 I387_CEIL,
ff680eb1
UB
2487 MAX_386_ENTITIES
2488};
2489
c7ca8ef8 2490enum x86_dirflag_state
ff680eb1 2491{
c7ca8ef8
UB
2492 X86_DIRFLAG_RESET,
2493 X86_DIRFLAG_ANY
ff680eb1 2494};
22fb740d 2495
ff97910d
VY
2496enum avx_u128_state
2497{
2498 AVX_U128_CLEAN,
2499 AVX_U128_DIRTY,
2500 AVX_U128_ANY
2501};
2502
22fb740d
JH
2503/* Define this macro if the port needs extra instructions inserted
2504 for mode switching in an optimizing compilation. */
2505
ff680eb1
UB
2506#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2507 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2508
2509/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2510 initializer for an array of integers. Each initializer element N
2511 refers to an entity that needs mode switching, and specifies the
2512 number of different modes that might need to be set for this
2513 entity. The position of the initializer in the initializer -
2514 starting counting at zero - determines the integer that is used to
2515 refer to the mode-switched entity in question. */
2516
c7ca8ef8
UB
2517#define NUM_MODES_FOR_MODE_SWITCHING \
2518 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
8c097065 2519 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2520
0f0138b6
JH
2521\f
2522/* Avoid renaming of stack registers, as doing so in combination with
2523 scheduling just increases amount of live registers at time and in
2524 the turn amount of fxch instructions needed.
2525
3f97cb0b
AI
2526 ??? Maybe Pentium chips benefits from renaming, someone can try....
2527
2528 Don't rename evex to non-evex sse registers. */
0f0138b6 2529
1a6e82b8
UB
2530#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2531 (!STACK_REGNO_P (SRC) \
2532 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2533
3b3c6a3f 2534\f
e91f04de 2535#define FASTCALL_PREFIX '@'
fa1a0d02 2536\f
77560086
BE
2537#ifndef USED_FOR_TARGET
2538/* Structure describing stack frame layout.
2539 Stack grows downward:
2540
2541 [arguments]
2542 <- ARG_POINTER
2543 saved pc
2544
2545 saved static chain if ix86_static_chain_on_stack
2546
2547 saved frame pointer if frame_pointer_needed
2548 <- HARD_FRAME_POINTER
2549 [saved regs]
2550 <- reg_save_offset
2551 [padding0]
2552 <- stack_realign_offset
2553 [saved SSE regs]
2554 OR
2555 [stub-saved registers for ms x64 --> sysv clobbers
2556 <- Start of out-of-line, stub-saved/restored regs
2557 (see libgcc/config/i386/(sav|res)ms64*.S)
2558 [XMM6-15]
2559 [RSI]
2560 [RDI]
2561 [?RBX] only if RBX is clobbered
2562 [?RBP] only if RBP and RBX are clobbered
2563 [?R12] only if R12 and all previous regs are clobbered
2564 [?R13] only if R13 and all previous regs are clobbered
2565 [?R14] only if R14 and all previous regs are clobbered
2566 [?R15] only if R15 and all previous regs are clobbered
2567 <- end of stub-saved/restored regs
2568 [padding1]
2569 ]
5d9d834d 2570 <- sse_reg_save_offset
77560086
BE
2571 [padding2]
2572 | <- FRAME_POINTER
2573 [va_arg registers] |
2574 |
2575 [frame] |
2576 |
2577 [padding2] | = to_allocate
2578 <- STACK_POINTER
2579 */
2580struct GTY(()) ix86_frame
2581{
2582 int nsseregs;
2583 int nregs;
2584 int va_arg_size;
2585 int red_zone_size;
2586 int outgoing_arguments_size;
2587
2588 /* The offsets relative to ARG_POINTER. */
2589 HOST_WIDE_INT frame_pointer_offset;
2590 HOST_WIDE_INT hard_frame_pointer_offset;
2591 HOST_WIDE_INT stack_pointer_offset;
2592 HOST_WIDE_INT hfp_save_offset;
2593 HOST_WIDE_INT reg_save_offset;
122f9da1 2594 HOST_WIDE_INT stack_realign_allocate;
77560086 2595 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2596 HOST_WIDE_INT sse_reg_save_offset;
2597
2598 /* When save_regs_using_mov is set, emit prologue using
2599 move instead of push instructions. */
2600 bool save_regs_using_mov;
2601};
2602
122f9da1
DS
2603/* Machine specific frame tracking during prologue/epilogue generation. All
2604 values are positive, but since the x86 stack grows downward, are subtratced
2605 from the CFA to produce a valid address. */
cd9c1ca8 2606
ec7ded37 2607struct GTY(()) machine_frame_state
cd9c1ca8 2608{
ec7ded37
RH
2609 /* This pair tracks the currently active CFA as reg+offset. When reg
2610 is drap_reg, we don't bother trying to record here the real CFA when
2611 it might really be a DW_CFA_def_cfa_expression. */
2612 rtx cfa_reg;
2613 HOST_WIDE_INT cfa_offset;
2614
2615 /* The current offset (canonically from the CFA) of ESP and EBP.
2616 When stack frame re-alignment is active, these may not be relative
2617 to the CFA. However, in all cases they are relative to the offsets
2618 of the saved registers stored in ix86_frame. */
2619 HOST_WIDE_INT sp_offset;
2620 HOST_WIDE_INT fp_offset;
2621
2622 /* The size of the red-zone that may be assumed for the purposes of
2623 eliding register restore notes in the epilogue. This may be zero
2624 if no red-zone is in effect, or may be reduced from the real
2625 red-zone value by a maximum runtime stack re-alignment value. */
2626 int red_zone_offset;
2627
2628 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2629 value within the frame. If false then the offset above should be
2630 ignored. Note that DRAP, if valid, *always* points to the CFA and
2631 thus has an offset of zero. */
2632 BOOL_BITFIELD sp_valid : 1;
2633 BOOL_BITFIELD fp_valid : 1;
2634 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2635
2636 /* Indicate whether the local stack frame has been re-aligned. When
2637 set, the SP/FP offsets above are relative to the aligned frame
2638 and not the CFA. */
2639 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2640
2641 /* Indicates whether the stack pointer has been re-aligned. When set,
2642 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2643 should only be used for offsets > sp_realigned_offset, while
2644 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2645 The flags realigned and sp_realigned are mutually exclusive. */
2646 BOOL_BITFIELD sp_realigned : 1;
2647
122f9da1
DS
2648 /* If sp_realigned is set, this is the last valid offset from the CFA
2649 that can be used for access with the frame pointer. */
2650 HOST_WIDE_INT sp_realigned_fp_last;
2651
2652 /* If sp_realigned is set, this is the offset from the CFA that the stack
2653 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2654 Access via the stack pointer is only valid for offsets that are greater than
2655 this value. */
d6d4d770 2656 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2657};
2658
f81c9774
RH
2659/* Private to winnt.c. */
2660struct seh_frame_state;
2661
f8071c05
L
2662enum function_type
2663{
2664 TYPE_UNKNOWN = 0,
2665 TYPE_NORMAL,
2666 /* The current function is an interrupt service routine with a
2667 pointer argument as specified by the "interrupt" attribute. */
2668 TYPE_INTERRUPT,
2669 /* The current function is an interrupt service routine with a
2670 pointer argument and an integer argument as specified by the
2671 "interrupt" attribute. */
2672 TYPE_EXCEPTION
2673};
2674
d1b38208 2675struct GTY(()) machine_function {
fa1a0d02 2676 struct stack_local_entry *stack_locals;
4aab97f9
L
2677 int varargs_gpr_size;
2678 int varargs_fpr_size;
ff680eb1 2679 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2680
77560086
BE
2681 /* Cached initial frame layout for the current function. */
2682 struct ix86_frame frame;
3452586b 2683
7458026b
ILT
2684 /* For -fsplit-stack support: A stack local which holds a pointer to
2685 the stack arguments for a function with a variable number of
2686 arguments. This is set at the start of the function and is used
2687 to initialize the overflow_arg_area field of the va_list
2688 structure. */
2689 rtx split_stack_varargs_pointer;
2690
3452586b
RH
2691 /* This value is used for amd64 targets and specifies the current abi
2692 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2693 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2694
2695 /* Nonzero if the function accesses a previous frame. */
2696 BOOL_BITFIELD accesses_prev_frame : 1;
2697
922e3e33
UB
2698 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2699 expander to determine the style used. */
3452586b
RH
2700 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2701
1e4490dc
UB
2702 /* Nonzero if the current function calls pc thunk and
2703 must not use the red zone. */
2704 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2705
5bf5a10b
AO
2706 /* If true, the current function needs the default PIC register, not
2707 an alternate register (on x86) and must not use the red zone (on
2708 x86_64), even if it's a leaf function. We don't want the
2709 function to be regarded as non-leaf because TLS calls need not
2710 affect register allocation. This flag is set when a TLS call
2711 instruction is expanded within a function, and never reset, even
2712 if all such instructions are optimized away. Use the
2713 ix86_current_function_calls_tls_descriptor macro for a better
2714 approximation. */
3452586b
RH
2715 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2716
2717 /* If true, the current function has a STATIC_CHAIN is placed on the
2718 stack below the return address. */
2719 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2720
529a6471
JJ
2721 /* If true, it is safe to not save/restore DRAP register. */
2722 BOOL_BITFIELD no_drap_save_restore : 1;
2723
f8071c05
L
2724 /* Function type. */
2725 ENUM_BITFIELD(function_type) func_type : 2;
2726
da99fd4a
L
2727 /* How to generate indirec branch. */
2728 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2729
2730 /* If true, the current function has local indirect jumps, like
2731 "indirect_jump" or "tablejump". */
2732 BOOL_BITFIELD has_local_indirect_jump : 1;
2733
45e14019
L
2734 /* How to generate function return. */
2735 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2736
f8071c05
L
2737 /* If true, the current function is a function specified with
2738 the "interrupt" or "no_caller_saved_registers" attribute. */
2739 BOOL_BITFIELD no_caller_saved_registers : 1;
2740
a0ff7835
L
2741 /* If true, there is register available for argument passing. This
2742 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2743 if there is scratch register available for indirect sibcall. In
2744 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2745 pass arguments and can be used for indirect sibcall. */
2746 BOOL_BITFIELD arg_reg_available : 1;
2747
d6d4d770 2748 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2749 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2750 BOOL_BITFIELD call_ms2sysv : 1;
2751
2752 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2753 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2754 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2755
d6d4d770
DS
2756 /* This is the number of extra registers saved by stub (valid range is
2757 0-6). Each additional register is only saved/restored by the stubs
2758 if all successive ones are. (Will always be zero when using a hard
2759 frame pointer.) */
2760 unsigned int call_ms2sysv_extra_regs:3;
2761
35c95658
L
2762 /* Nonzero if the function places outgoing arguments on stack. */
2763 BOOL_BITFIELD outgoing_args_on_stack : 1;
2764
708c728d
L
2765 /* If true, ENDBR is queued at function entrance. */
2766 BOOL_BITFIELD endbr_queued_at_entrance : 1;
2767
c2080a1f
L
2768 /* True if the function needs a stack frame. */
2769 BOOL_BITFIELD stack_frame_required : 1;
2770
cd3410cc
L
2771 /* The largest alignment, in bytes, of stack slot actually used. */
2772 unsigned int max_used_stack_alignment;
2773
ec7ded37
RH
2774 /* During prologue/epilogue generation, the current frame state.
2775 Otherwise, the frame state at the end of the prologue. */
2776 struct machine_frame_state fs;
f81c9774
RH
2777
2778 /* During SEH output, this is non-null. */
2779 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2780};
2bf6d935
ML
2781
2782extern GTY(()) tree sysv_va_list_type_node;
2783extern GTY(()) tree ms_va_list_type_node;
cd9c1ca8 2784#endif
fa1a0d02
JH
2785
2786#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2787#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2788#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2789#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2790#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2791#define ix86_tls_descriptor_calls_expanded_in_cfun \
2792 (cfun->machine->tls_descriptor_call_expanded_p)
2793/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2794 calls are optimized away, we try to detect cases in which it was
2795 optimized away. Since such instructions (use (reg REG_SP)), we can
2796 verify whether there's any such instruction live by testing that
2797 REG_SP is live. */
2798#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2799 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2800#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2801#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2802
1bc7c5b6
ZW
2803/* Control behavior of x86_file_start. */
2804#define X86_FILE_START_VERSION_DIRECTIVE false
2805#define X86_FILE_START_FLTUSED false
2806
7dcbf659
JH
2807/* Flag to mark data that is in the large address area. */
2808#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2809#define SYMBOL_REF_FAR_ADDR_P(X) \
2810 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2811
2812/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2813 have defined always, to avoid ifdefing. */
2814#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2815#define SYMBOL_REF_DLLIMPORT_P(X) \
2816 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2817
2818#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2819#define SYMBOL_REF_DLLEXPORT_P(X) \
2820 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2821
82c0e1a0
KT
2822#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2823#define SYMBOL_REF_STUBVAR_P(X) \
2824 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2825
7942e47e
RY
2826extern void debug_ready_dispatch (void);
2827extern void debug_dispatch_window (int);
2828
91afcfa3
QN
2829/* The value at zero is only defined for the BMI instructions
2830 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2831#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2832 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2833#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2834 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2835
2836
b8ce4e94
KT
2837/* Flags returned by ix86_get_callcvt (). */
2838#define IX86_CALLCVT_CDECL 0x1
2839#define IX86_CALLCVT_STDCALL 0x2
2840#define IX86_CALLCVT_FASTCALL 0x4
2841#define IX86_CALLCVT_THISCALL 0x8
2842#define IX86_CALLCVT_REGPARM 0x10
2843#define IX86_CALLCVT_SSEREGPARM 0x20
2844
2845#define IX86_BASE_CALLCVT(FLAGS) \
2846 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2847 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2848
b86b9f44
MM
2849#define RECIP_MASK_NONE 0x00
2850#define RECIP_MASK_DIV 0x01
2851#define RECIP_MASK_SQRT 0x02
2852#define RECIP_MASK_VEC_DIV 0x04
2853#define RECIP_MASK_VEC_SQRT 0x08
2854#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2855 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2856#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2857
2858#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2859#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2860#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2861#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2862
ab2c4ec8
SS
2863/* Use 128-bit AVX instructions in the auto-vectorizer. */
2864#define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2865/* Use 256-bit AVX instructions in the auto-vectorizer. */
02a70367
SS
2866#define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2867 || prefer_vector_width_type == PVW_AVX256)
ab2c4ec8 2868
c2c601b2
L
2869#define TARGET_INDIRECT_BRANCH_REGISTER \
2870 (ix86_indirect_branch_register \
2871 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2872
5dcfdccd
KY
2873#define IX86_HLE_ACQUIRE (1 << 16)
2874#define IX86_HLE_RELEASE (1 << 17)
2875
e83b8e2e
JJ
2876/* For switching between functions with different target attributes. */
2877#define SWITCHABLE_TARGET 1
2878
44d0de8d
UB
2879#define TARGET_SUPPORTS_WIDE_INT 1
2880
2bf6d935
ML
2881#if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
2882extern enum attr_cpu ix86_schedule;
2883
2884#define NUM_X86_64_MS_CLOBBERED_REGS 12
2885#endif
2886
c98f8742
JVA
2887/*
2888Local variables:
2889version-control: t
2890End:
2891*/