]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
builtins.c (get_memory_rtx): Accept byte-addressable bitfields.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2f83c7d6
NC
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
2f83c7d6
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
c98f8742 21
ccf8e764
RH
22/* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
0a1c5e55
UB
37/* Redefines for option macros. */
38
39#define TARGET_64BIT OPTION_ISA_64BIT
40#define TARGET_MMX OPTION_ISA_MMX
41#define TARGET_3DNOW OPTION_ISA_3DNOW
42#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43#define TARGET_SSE OPTION_ISA_SSE
44#define TARGET_SSE2 OPTION_ISA_SSE2
45#define TARGET_SSE3 OPTION_ISA_SSE3
46#define TARGET_SSSE3 OPTION_ISA_SSSE3
47#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 48#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
0a1c5e55 49#define TARGET_SSE4A OPTION_ISA_SSE4A
04e1d06b
MM
50#define TARGET_SSE5 OPTION_ISA_SSE5
51#define TARGET_ROUND OPTION_ISA_ROUND
52
53/* SSE5 and SSE4.1 define the same round instructions */
54#define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
55#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 56
26b5109f
RS
57#include "config/vxworks-dummy.h"
58
8c996513
JH
59/* Algorithm to expand string function with. */
60enum stringop_alg
61{
62 no_stringop,
63 libcall,
64 rep_prefix_1_byte,
65 rep_prefix_4_byte,
66 rep_prefix_8_byte,
67 loop_1_byte,
68 loop,
69 unrolled_loop
70};
ccf8e764 71
8c996513 72#define NAX_STRINGOP_ALGS 4
ccf8e764 73
8c996513
JH
74/* Specify what algorithm to use for stringops on known size.
75 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
76 known at compile time or estimated via feedback, the SIZE array
77 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 78 means infinity). Corresponding ALG is used then.
8c996513 79 For example initializer:
4f3f76e6 80 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 81 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 82 be used otherwise. */
8c996513
JH
83struct stringop_algs
84{
85 const enum stringop_alg unknown_size;
86 const struct stringop_strategy {
87 const int max;
88 const enum stringop_alg alg;
89 } size [NAX_STRINGOP_ALGS];
90};
91
d4ba09c0
SC
92/* Define the specific costs for a given cpu */
93
94struct processor_costs {
8b60264b
KG
95 const int add; /* cost of an add instruction */
96 const int lea; /* cost of a lea instruction */
97 const int shift_var; /* variable shift costs */
98 const int shift_const; /* constant shift costs */
f676971a 99 const int mult_init[5]; /* cost of starting a multiply
4977bab6 100 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 101 const int mult_bit; /* cost of multiply per each bit set */
f676971a 102 const int divide[5]; /* cost of a divide/mod
4977bab6 103 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
104 int movsx; /* The cost of movsx operation. */
105 int movzx; /* The cost of movzx operation. */
8b60264b
KG
106 const int large_insn; /* insns larger than this cost more */
107 const int move_ratio; /* The threshold of number of scalar
ac775968 108 memory-to-memory move insns. */
8b60264b
KG
109 const int movzbl_load; /* cost of loading using movzbl */
110 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
111 in QImode, HImode and SImode relative
112 to reg-reg move (2). */
8b60264b 113 const int int_store[3]; /* cost of storing integer register
96e7ae40 114 in QImode, HImode and SImode */
8b60264b
KG
115 const int fp_move; /* cost of reg,reg fld/fst */
116 const int fp_load[3]; /* cost of loading FP register
96e7ae40 117 in SFmode, DFmode and XFmode */
8b60264b 118 const int fp_store[3]; /* cost of storing FP register
96e7ae40 119 in SFmode, DFmode and XFmode */
8b60264b
KG
120 const int mmx_move; /* cost of moving MMX register. */
121 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 122 in SImode and DImode */
8b60264b 123 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 124 in SImode and DImode */
8b60264b
KG
125 const int sse_move; /* cost of moving SSE register. */
126 const int sse_load[3]; /* cost of loading SSE register
fa79946e 127 in SImode, DImode and TImode*/
8b60264b 128 const int sse_store[3]; /* cost of storing SSE register
fa79946e 129 in SImode, DImode and TImode*/
8b60264b 130 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 131 integer and vice versa. */
46cb0441
ZD
132 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
133 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
134 const int prefetch_block; /* bytes moved to cache for prefetch. */
135 const int simultaneous_prefetches; /* number of parallel prefetch
136 operations. */
4977bab6 137 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
138 const int fadd; /* cost of FADD and FSUB instructions. */
139 const int fmul; /* cost of FMUL instruction. */
140 const int fdiv; /* cost of FDIV instruction. */
141 const int fabs; /* cost of FABS instruction. */
142 const int fchs; /* cost of FCHS instruction. */
143 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
144 /* Specify what algorithm
145 to use for stringops on unknown size. */
146 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
147 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
148 load and store. */
149 const int scalar_load_cost; /* Cost of scalar load. */
150 const int scalar_store_cost; /* Cost of scalar store. */
151 const int vec_stmt_cost; /* Cost of any vector operation, excluding
152 load, store, vector-to-scalar and
153 scalar-to-vector operation. */
154 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
155 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 156 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
157 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
158 const int vec_store_cost; /* Cost of vector store. */
159 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
160 cost model. */
161 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
162 vectorizer cost model. */
d4ba09c0
SC
163};
164
8b60264b 165extern const struct processor_costs *ix86_cost;
d4ba09c0 166
c98f8742
JVA
167/* Macros used in the machine description to test the flags. */
168
ddd5a7c1 169/* configure can arrange to make this 2, to force a 486. */
e075ae69 170
35b528be 171#ifndef TARGET_CPU_DEFAULT
d326eaf0 172#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 173#endif
35b528be 174
004d3859
GK
175#ifndef TARGET_FPMATH_DEFAULT
176#define TARGET_FPMATH_DEFAULT \
177 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
178#endif
179
6ac49599 180#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 181
5791cc29
JT
182/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
183 compile-time constant. */
184#ifdef IN_LIBGCC2
6ac49599 185#undef TARGET_64BIT
5791cc29
JT
186#ifdef __x86_64__
187#define TARGET_64BIT 1
188#else
189#define TARGET_64BIT 0
190#endif
191#else
6ac49599
RS
192#ifndef TARGET_BI_ARCH
193#undef TARGET_64BIT
67adf6a9 194#if TARGET_64BIT_DEFAULT
0c2dc519
JH
195#define TARGET_64BIT 1
196#else
197#define TARGET_64BIT 0
198#endif
199#endif
5791cc29 200#endif
25f94bb5 201
750054a2
CT
202#define HAS_LONG_COND_BRANCH 1
203#define HAS_LONG_UNCOND_BRANCH 1
204
9e555526
RH
205#define TARGET_386 (ix86_tune == PROCESSOR_I386)
206#define TARGET_486 (ix86_tune == PROCESSOR_I486)
207#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
208#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 209#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
210#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
211#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
212#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
213#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 214#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 215#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 216#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
217#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
218#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
219#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 220#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 221
80fd744f
RH
222/* Feature tests against the various tunings. */
223enum ix86_tune_indices {
224 X86_TUNE_USE_LEAVE,
225 X86_TUNE_PUSH_MEMORY,
226 X86_TUNE_ZERO_EXTEND_WITH_AND,
227 X86_TUNE_USE_BIT_TEST,
228 X86_TUNE_UNROLL_STRLEN,
229 X86_TUNE_DEEP_BRANCH_PREDICTION,
230 X86_TUNE_BRANCH_PREDICTION_HINTS,
231 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 232 X86_TUNE_USE_SAHF,
80fd744f
RH
233 X86_TUNE_MOVX,
234 X86_TUNE_PARTIAL_REG_STALL,
235 X86_TUNE_PARTIAL_FLAG_REG_STALL,
236 X86_TUNE_USE_HIMODE_FIOP,
237 X86_TUNE_USE_SIMODE_FIOP,
238 X86_TUNE_USE_MOV0,
239 X86_TUNE_USE_CLTD,
240 X86_TUNE_USE_XCHGB,
241 X86_TUNE_SPLIT_LONG_MOVES,
242 X86_TUNE_READ_MODIFY_WRITE,
243 X86_TUNE_READ_MODIFY,
244 X86_TUNE_PROMOTE_QIMODE,
245 X86_TUNE_FAST_PREFIX,
246 X86_TUNE_SINGLE_STRINGOP,
247 X86_TUNE_QIMODE_MATH,
248 X86_TUNE_HIMODE_MATH,
249 X86_TUNE_PROMOTE_QI_REGS,
250 X86_TUNE_PROMOTE_HI_REGS,
251 X86_TUNE_ADD_ESP_4,
252 X86_TUNE_ADD_ESP_8,
253 X86_TUNE_SUB_ESP_4,
254 X86_TUNE_SUB_ESP_8,
255 X86_TUNE_INTEGER_DFMODE_MOVES,
256 X86_TUNE_PARTIAL_REG_DEPENDENCY,
257 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
258 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
259 X86_TUNE_SSE_SPLIT_REGS,
260 X86_TUNE_SSE_TYPELESS_STORES,
261 X86_TUNE_SSE_LOAD0_BY_PXOR,
262 X86_TUNE_MEMORY_MISMATCH_STALL,
263 X86_TUNE_PROLOGUE_USING_MOVE,
264 X86_TUNE_EPILOGUE_USING_MOVE,
265 X86_TUNE_SHIFT1,
266 X86_TUNE_USE_FFREEP,
267 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 268 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
269 X86_TUNE_FOUR_JUMP_LIMIT,
270 X86_TUNE_SCHEDULE,
271 X86_TUNE_USE_BT,
272 X86_TUNE_USE_INCDEC,
273 X86_TUNE_PAD_RETURNS,
274 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
275 X86_TUNE_SHORTEN_X87_SSE,
276 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 277 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
278 X86_TUNE_SLOW_IMUL_IMM32_MEM,
279 X86_TUNE_SLOW_IMUL_IMM8,
280 X86_TUNE_MOVE_M1_VIA_OR,
281 X86_TUNE_NOT_UNPAIRABLE,
282 X86_TUNE_NOT_VECTORMODE,
4e9d897d 283 X86_TUNE_USE_VECTOR_CONVERTS,
80fd744f
RH
284
285 X86_TUNE_LAST
286};
287
288extern unsigned int ix86_tune_features[X86_TUNE_LAST];
289
290#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
291#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
292#define TARGET_ZERO_EXTEND_WITH_AND \
293 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
294#define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
295#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
296#define TARGET_DEEP_BRANCH_PREDICTION \
297 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
298#define TARGET_BRANCH_PREDICTION_HINTS \
299 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
300#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
301#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
302#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
303#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
304#define TARGET_PARTIAL_FLAG_REG_STALL \
305 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
306#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
307#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
308#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
309#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
310#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
311#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
312#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
313#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
314#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
315#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
316#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
317#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
318#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
319#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
320#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
321#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
322#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
323#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
324#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
325#define TARGET_INTEGER_DFMODE_MOVES \
326 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
327#define TARGET_PARTIAL_REG_DEPENDENCY \
328 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
329#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
330 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
331#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
332 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
333#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
334#define TARGET_SSE_TYPELESS_STORES \
335 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
336#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
337#define TARGET_MEMORY_MISMATCH_STALL \
338 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
339#define TARGET_PROLOGUE_USING_MOVE \
340 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
341#define TARGET_EPILOGUE_USING_MOVE \
342 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
343#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
344#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
345#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
346#define TARGET_INTER_UNIT_CONVERSIONS\
347 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
348#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
349#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
350#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
351#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
352#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
353#define TARGET_EXT_80387_CONSTANTS \
354 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
355#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
356#define TARGET_AVOID_VECTOR_DECODE \
357 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
358#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
359 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
360#define TARGET_SLOW_IMUL_IMM32_MEM \
361 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
362#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
363#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
364#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
365#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
4e9d897d 366#define TARGET_USE_VECTOR_CONVERTS ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
80fd744f
RH
367
368/* Feature tests against the various architecture variations. */
369enum ix86_arch_indices {
370 X86_ARCH_CMOVE, /* || TARGET_SSE */
371 X86_ARCH_CMPXCHG,
372 X86_ARCH_CMPXCHG8B,
373 X86_ARCH_XADD,
374 X86_ARCH_BSWAP,
375
376 X86_ARCH_LAST
377};
4f3f76e6 378
80fd744f
RH
379extern unsigned int ix86_arch_features[X86_ARCH_LAST];
380
381#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
382#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
383#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
384#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
385#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
386
387#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
388
389extern int x86_prefetch_sse;
0a1c5e55
UB
390
391#define TARGET_ABM x86_abm
392#define TARGET_CMPXCHG16B x86_cmpxchg16b
393#define TARGET_POPCNT x86_popcnt
80fd744f 394#define TARGET_PREFETCH_SSE x86_prefetch_sse
0a1c5e55 395#define TARGET_SAHF x86_sahf
6b889d89 396#define TARGET_RECIP x86_recip
04e1d06b 397#define TARGET_FUSED_MADD x86_fused_muladd
8b96a312
L
398#define TARGET_AES (TARGET_SSE2 && x86_aes)
399#define TARGET_PCLMUL (TARGET_SSE2 && x86_pclmul)
80fd744f 400
80fd744f
RH
401#define ASSEMBLER_DIALECT (ix86_asm_dialect)
402
403#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
404#define TARGET_MIX_SSE_I387 \
405 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
406
407#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
408#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
409#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
410#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 411
0a1c5e55
UB
412extern int ix86_isa_flags;
413
67adf6a9
RH
414#ifndef TARGET_64BIT_DEFAULT
415#define TARGET_64BIT_DEFAULT 0
25f94bb5 416#endif
74dc3e94
RH
417#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
418#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
419#endif
25f94bb5 420
79f5e442
ZD
421/* Fence to use after loop using storent. */
422
423extern tree x86_mfence;
424#define FENCE_FOLLOWING_MOVNT x86_mfence
425
0ed4a390
JL
426/* Once GDB has been enhanced to deal with functions without frame
427 pointers, we can change this to allow for elimination of
428 the frame pointer in leaf functions. */
429#define TARGET_DEFAULT 0
67adf6a9 430
0a1c5e55
UB
431/* Extra bits to force. */
432#define TARGET_SUBTARGET_DEFAULT 0
433#define TARGET_SUBTARGET_ISA_DEFAULT 0
434
435/* Extra bits to force on w/ 32-bit mode. */
436#define TARGET_SUBTARGET32_DEFAULT 0
437#define TARGET_SUBTARGET32_ISA_DEFAULT 0
438
ccf8e764
RH
439/* Extra bits to force on w/ 64-bit mode. */
440#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 441#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 442
b069de3b
SS
443/* This is not really a target flag, but is done this way so that
444 it's analogous to similar code for Mach-O on PowerPC. darwin.h
445 redefines this to 1. */
446#define TARGET_MACHO 0
447
ccf8e764 448/* Likewise, for the Windows 64-bit ABI. */
7c800926
KT
449#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
450
451/* Available call abi. */
452enum
453{
454 SYSV_ABI = 0,
455 MS_ABI = 1
456};
457
458/* The default abi form used by target. */
459#define DEFAULT_ABI SYSV_ABI
ccf8e764 460
cc69336f
RH
461/* Subtargets may reset this to 1 in order to enable 96-bit long double
462 with the rounding mode forced to 53 bits. */
463#define TARGET_96_ROUND_53_LONG_DOUBLE 0
464
f5316dfe
MM
465/* Sometimes certain combinations of command options do not make
466 sense on a particular target machine. You can define a macro
467 `OVERRIDE_OPTIONS' to take account of this. This macro, if
468 defined, is executed once just after all the command options have
469 been parsed.
470
471 Don't use this macro to turn on various extra optimizations for
472 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
473
474#define OVERRIDE_OPTIONS override_options ()
475
d4ba09c0 476/* Define this to change the optimizations performed by default. */
d9a5f180
GS
477#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
478 optimization_options ((LEVEL), (SIZE))
d4ba09c0 479
682cd442
GK
480/* -march=native handling only makes sense with compiler running on
481 an x86 or x86_64 chip. If changing this condition, also change
482 the condition in driver-i386.c. */
483#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
484/* In driver-i386.c. */
485extern const char *host_detect_local_cpu (int argc, const char **argv);
486#define EXTRA_SPEC_FUNCTIONS \
487 { "local_cpu_detect", host_detect_local_cpu },
682cd442 488#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
489#endif
490
1cba2b96
EC
491/* Support for configure-time defaults of some command line options.
492 The order here is important so that -march doesn't squash the
493 tune or cpu values. */
ce998900 494#define OPTION_DEFAULT_SPECS \
da2d4c01 495 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
ce998900 496 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96 497 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 498
241e1a89
SC
499/* Specs for the compiler proper */
500
628714d8 501#ifndef CC1_CPU_SPEC
fa959ce4 502#define CC1_CPU_SPEC_1 "\
9d913bbf 503%{mcpu=*:-mtune=%* \
d347d4c7 504%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 505%<mcpu=* \
c93e80a5
JH
506%{mintel-syntax:-masm=intel \
507%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
508%{mno-intel-syntax:-masm=att \
509%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 510
682cd442 511#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
512#define CC1_CPU_SPEC CC1_CPU_SPEC_1
513#else
514#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
515"%{march=native:%<march=native %:local_cpu_detect(arch) \
516 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
517%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
518#endif
241e1a89 519#endif
c98f8742 520\f
30efe578 521/* Target CPU builtins. */
1ba7b414
NB
522#define TARGET_CPU_CPP_BUILTINS() \
523 do \
524 { \
525 size_t arch_len = strlen (ix86_arch_string); \
9e555526 526 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 527 int last_arch_char = ix86_arch_string[arch_len - 1]; \
7706ca5d 528 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
529 \
530 if (TARGET_64BIT) \
531 { \
532 builtin_assert ("cpu=x86_64"); \
26b0ad13 533 builtin_assert ("machine=x86_64"); \
97242ddc
JH
534 builtin_define ("__amd64"); \
535 builtin_define ("__amd64__"); \
1ba7b414
NB
536 builtin_define ("__x86_64"); \
537 builtin_define ("__x86_64__"); \
538 } \
539 else \
540 { \
541 builtin_assert ("cpu=i386"); \
542 builtin_assert ("machine=i386"); \
543 builtin_define_std ("i386"); \
544 } \
545 \
8383d43c
UB
546 /* Built-ins based on -march=. */ \
547 switch (ix86_arch) \
548 { \
549 case PROCESSOR_I386: \
550 break; \
551 case PROCESSOR_I486: \
552 builtin_define ("__i486"); \
553 builtin_define ("__i486__"); \
554 break; \
555 case PROCESSOR_PENTIUM: \
556 builtin_define ("__i586"); \
557 builtin_define ("__i586__"); \
558 builtin_define ("__pentium"); \
559 builtin_define ("__pentium__"); \
560 if (last_arch_char == 'x') \
561 builtin_define ("__pentium_mmx__"); \
562 break; \
563 case PROCESSOR_PENTIUMPRO: \
564 builtin_define ("__i686"); \
565 builtin_define ("__i686__"); \
566 builtin_define ("__pentiumpro"); \
567 builtin_define ("__pentiumpro__"); \
568 break; \
569 case PROCESSOR_GEODE: \
570 builtin_define ("__geode"); \
571 builtin_define ("__geode__"); \
572 break; \
573 case PROCESSOR_K6: \
574 builtin_define ("__k6"); \
575 builtin_define ("__k6__"); \
576 if (last_arch_char == '2') \
577 builtin_define ("__k6_2__"); \
578 else if (last_arch_char == '3') \
579 builtin_define ("__k6_3__"); \
580 break; \
581 case PROCESSOR_ATHLON: \
582 builtin_define ("__athlon"); \
583 builtin_define ("__athlon__"); \
584 /* Only plain "athlon" lacks SSE. */ \
585 if (last_arch_char != 'n') \
586 builtin_define ("__athlon_sse__"); \
587 break; \
588 case PROCESSOR_K8: \
589 builtin_define ("__k8"); \
590 builtin_define ("__k8__"); \
591 break; \
592 case PROCESSOR_AMDFAM10: \
593 builtin_define ("__amdfam10"); \
594 builtin_define ("__amdfam10__"); \
595 break; \
596 case PROCESSOR_PENTIUM4: \
597 builtin_define ("__pentium4"); \
598 builtin_define ("__pentium4__"); \
599 break; \
600 case PROCESSOR_NOCONA: \
601 builtin_define ("__nocona"); \
602 builtin_define ("__nocona__"); \
603 break; \
604 case PROCESSOR_CORE2: \
605 builtin_define ("__core2"); \
606 builtin_define ("__core2__"); \
607 break; \
608 case PROCESSOR_GENERIC32: \
609 case PROCESSOR_GENERIC64: \
610 case PROCESSOR_max: \
611 gcc_unreachable (); \
612 } \
613 \
614 /* Built-ins based on -mtune=. */ \
615 switch (ix86_tune) \
1ba7b414 616 { \
8383d43c
UB
617 case PROCESSOR_I386: \
618 builtin_define ("__tune_i386__"); \
619 break; \
620 case PROCESSOR_I486: \
621 builtin_define ("__tune_i486__"); \
622 break; \
623 case PROCESSOR_PENTIUM: \
1ba7b414
NB
624 builtin_define ("__tune_i586__"); \
625 builtin_define ("__tune_pentium__"); \
9e555526 626 if (last_tune_char == 'x') \
1ba7b414 627 builtin_define ("__tune_pentium_mmx__"); \
8383d43c
UB
628 break; \
629 case PROCESSOR_PENTIUMPRO: \
1ba7b414
NB
630 builtin_define ("__tune_i686__"); \
631 builtin_define ("__tune_pentiumpro__"); \
9e555526 632 switch (last_tune_char) \
2e37b0ce
RH
633 { \
634 case '3': \
635 builtin_define ("__tune_pentium3__"); \
5efb1046 636 /* FALLTHRU */ \
2e37b0ce
RH
637 case '2': \
638 builtin_define ("__tune_pentium2__"); \
639 break; \
640 } \
8383d43c
UB
641 break; \
642 case PROCESSOR_GEODE: \
cfe1b18f 643 builtin_define ("__tune_geode__"); \
8383d43c
UB
644 break; \
645 case PROCESSOR_K6: \
1ba7b414 646 builtin_define ("__tune_k6__"); \
9e555526 647 if (last_tune_char == '2') \
1ba7b414 648 builtin_define ("__tune_k6_2__"); \
9e555526 649 else if (last_tune_char == '3') \
1ba7b414 650 builtin_define ("__tune_k6_3__"); \
8383d43c
UB
651 break; \
652 case PROCESSOR_ATHLON: \
1ba7b414
NB
653 builtin_define ("__tune_athlon__"); \
654 /* Only plain "athlon" lacks SSE. */ \
9e555526 655 if (last_tune_char != 'n') \
1ba7b414 656 builtin_define ("__tune_athlon_sse__"); \
8383d43c
UB
657 break; \
658 case PROCESSOR_K8: \
659 builtin_define ("__tune_k8__"); \
660 break; \
661 case PROCESSOR_AMDFAM10: \
662 builtin_define ("__tune_amdfam10__"); \
663 break; \
664 case PROCESSOR_PENTIUM4: \
665 builtin_define ("__tune_pentium4__"); \
666 break; \
667 case PROCESSOR_NOCONA: \
668 builtin_define ("__tune_nocona__"); \
669 break; \
670 case PROCESSOR_CORE2: \
671 builtin_define ("__tune_core2__"); \
672 break; \
673 case PROCESSOR_GENERIC32: \
674 case PROCESSOR_GENERIC64: \
675 break; \
676 case PROCESSOR_max: \
677 gcc_unreachable (); \
1ba7b414 678 } \
1ba7b414
NB
679 \
680 if (TARGET_MMX) \
681 builtin_define ("__MMX__"); \
682 if (TARGET_3DNOW) \
683 builtin_define ("__3dNOW__"); \
684 if (TARGET_3DNOW_A) \
685 builtin_define ("__3dNOW_A__"); \
686 if (TARGET_SSE) \
687 builtin_define ("__SSE__"); \
688 if (TARGET_SSE2) \
689 builtin_define ("__SSE2__"); \
9e200aaf
KC
690 if (TARGET_SSE3) \
691 builtin_define ("__SSE3__"); \
b1875f52
L
692 if (TARGET_SSSE3) \
693 builtin_define ("__SSSE3__"); \
9a5cee02
L
694 if (TARGET_SSE4_1) \
695 builtin_define ("__SSE4_1__"); \
3b8dd071
L
696 if (TARGET_SSE4_2) \
697 builtin_define ("__SSE4_2__"); \
8b96a312
L
698 if (TARGET_AES) \
699 builtin_define ("__AES__"); \
700 if (TARGET_PCLMUL) \
701 builtin_define ("__PCLMUL__"); \
7706ca5d 702 if (TARGET_SSE4A) \
21efb4d4 703 builtin_define ("__SSE4A__"); \
04e1d06b
MM
704 if (TARGET_SSE5) \
705 builtin_define ("__SSE5__"); \
48ddd46c
JH
706 if (TARGET_SSE_MATH && TARGET_SSE) \
707 builtin_define ("__SSE_MATH__"); \
708 if (TARGET_SSE_MATH && TARGET_SSE2) \
709 builtin_define ("__SSE2_MATH__"); \
1ba7b414 710 } \
30efe578
NB
711 while (0)
712
c2f17e19
UB
713enum target_cpu_default
714{
715 TARGET_CPU_DEFAULT_generic = 0,
716
717 TARGET_CPU_DEFAULT_i386,
718 TARGET_CPU_DEFAULT_i486,
719 TARGET_CPU_DEFAULT_pentium,
720 TARGET_CPU_DEFAULT_pentium_mmx,
721 TARGET_CPU_DEFAULT_pentiumpro,
722 TARGET_CPU_DEFAULT_pentium2,
723 TARGET_CPU_DEFAULT_pentium3,
724 TARGET_CPU_DEFAULT_pentium4,
725 TARGET_CPU_DEFAULT_pentium_m,
726 TARGET_CPU_DEFAULT_prescott,
727 TARGET_CPU_DEFAULT_nocona,
728 TARGET_CPU_DEFAULT_core2,
729
730 TARGET_CPU_DEFAULT_geode,
731 TARGET_CPU_DEFAULT_k6,
732 TARGET_CPU_DEFAULT_k6_2,
733 TARGET_CPU_DEFAULT_k6_3,
734 TARGET_CPU_DEFAULT_athlon,
735 TARGET_CPU_DEFAULT_athlon_sse,
736 TARGET_CPU_DEFAULT_k8,
737 TARGET_CPU_DEFAULT_amdfam10,
738
739 TARGET_CPU_DEFAULT_max
740};
0c2dc519 741
628714d8 742#ifndef CC1_SPEC
8015b78d 743#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
744#endif
745
746/* This macro defines names of additional specifications to put in the
747 specs that can be used in various specifications like CC1_SPEC. Its
748 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
749
750 Each subgrouping contains a string constant, that defines the
188fc5b5 751 specification name, and a string constant that used by the GCC driver
bcd86433
SC
752 program.
753
754 Do not define this macro if it does not need to do anything. */
755
756#ifndef SUBTARGET_EXTRA_SPECS
757#define SUBTARGET_EXTRA_SPECS
758#endif
759
760#define EXTRA_SPECS \
628714d8 761 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
762 SUBTARGET_EXTRA_SPECS
763\f
ce998900 764
d57a4b98
RH
765/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
766 FPU, assume that the fpcw is set to extended precision; when using
767 only SSE, rounding is correct; when using both SSE and the FPU,
768 the rounding precision is indeterminate, since either may be chosen
769 apparently at random. */
770#define TARGET_FLT_EVAL_METHOD \
5ccd517a 771 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 772
979c67a5
UB
773/* target machine storage layout */
774
65d9c0ab
JH
775#define SHORT_TYPE_SIZE 16
776#define INT_TYPE_SIZE 32
777#define FLOAT_TYPE_SIZE 32
778#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
779#define DOUBLE_TYPE_SIZE 64
780#define LONG_LONG_TYPE_SIZE 64
979c67a5
UB
781#define LONG_DOUBLE_TYPE_SIZE 80
782
783#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 784
67adf6a9 785#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 786#define MAX_BITS_PER_WORD 64
0c2dc519
JH
787#else
788#define MAX_BITS_PER_WORD 32
0c2dc519
JH
789#endif
790
c98f8742
JVA
791/* Define this if most significant byte of a word is the lowest numbered. */
792/* That is true on the 80386. */
793
794#define BITS_BIG_ENDIAN 0
795
796/* Define this if most significant byte of a word is the lowest numbered. */
797/* That is not true on the 80386. */
798#define BYTES_BIG_ENDIAN 0
799
800/* Define this if most significant word of a multiword number is the lowest
801 numbered. */
802/* Not true for 80386 */
803#define WORDS_BIG_ENDIAN 0
804
c98f8742 805/* Width of a word, in units (bytes). */
65d9c0ab 806#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
807#ifdef IN_LIBGCC2
808#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
809#else
810#define MIN_UNITS_PER_WORD 4
811#endif
c98f8742 812
c98f8742 813/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 814#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 815
e075ae69 816/* Boundary (in *bits*) on which stack pointer should be aligned. */
7c800926
KT
817#define STACK_BOUNDARY (TARGET_64BIT && DEFAULT_ABI == MS_ABI ? 128 \
818 : BITS_PER_WORD)
c98f8742 819
d1f87653 820/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 821 aligned; the compiler cannot rely on having this alignment. */
e075ae69 822#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 823
ead903e9 824/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 825 entering main. This causes expand_main_function to forcibly align
1d482056
RH
826 the stack, which results in aligned frames for functions called from
827 main, though it does nothing for the alignment of main itself. */
828#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 829 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 830
ebff937c
SH
831/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
832 mandatory for the 64-bit ABI, and may or may not be true for other
833 operating systems. */
834#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
835
f963b5d9
RS
836/* Minimum allocation boundary for the code of a function. */
837#define FUNCTION_BOUNDARY 8
838
839/* C++ stores the virtual bit in the lowest bit of function pointers. */
840#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 841
892a2d68 842/* Alignment of field after `int : 0' in a structure. */
c98f8742 843
65d9c0ab 844#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
845
846/* Minimum size in bits of the largest boundary to which any
847 and all fundamental data types supported by the hardware
848 might need to be aligned. No data type wants to be aligned
17f24ff0 849 rounder than this.
fce5a9f2 850
d1f87653 851 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
852 and Pentium Pro XFmode values at 128 bit boundaries. */
853
854#define BIGGEST_ALIGNMENT 128
855
822eda12 856/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 857#define ALIGN_MODE_128(MODE) \
4501d314 858 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 859
17f24ff0 860/* The published ABIs say that doubles should be aligned on word
d1f87653 861 boundaries, so lower the alignment for structure fields unless
6fc605d8 862 -malign-double is set. */
e932b21b 863
e83f3cff
RH
864/* ??? Blah -- this macro is used directly by libobjc. Since it
865 supports no vector modes, cut out the complexity and fall back
866 on BIGGEST_FIELD_ALIGNMENT. */
867#ifdef IN_TARGET_LIBS
ef49d42e
JH
868#ifdef __x86_64__
869#define BIGGEST_FIELD_ALIGNMENT 128
870#else
e83f3cff 871#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 872#endif
e83f3cff 873#else
e932b21b
JH
874#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
875 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 876#endif
c98f8742 877
e5e8a8bf 878/* If defined, a C expression to compute the alignment given to a
a7180f70 879 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
880 and ALIGN is the alignment that the object would ordinarily have.
881 The value of this macro is used instead of that alignment to align
882 the object.
883
884 If this macro is not defined, then ALIGN is used.
885
886 The typical use of this macro is to increase alignment for string
887 constants to be word aligned so that `strcpy' calls that copy
888 constants can be done inline. */
889
d9a5f180 890#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 891
8a022443
JW
892/* If defined, a C expression to compute the alignment for a static
893 variable. TYPE is the data type, and ALIGN is the alignment that
894 the object would ordinarily have. The value of this macro is used
895 instead of that alignment to align the object.
896
897 If this macro is not defined, then ALIGN is used.
898
899 One use of this macro is to increase alignment of medium-size
900 data to make it all fit in fewer cache lines. Another is to
901 cause character arrays to be word-aligned so that `strcpy' calls
902 that copy constants to character arrays can be done inline. */
903
d9a5f180 904#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
905
906/* If defined, a C expression to compute the alignment for a local
907 variable. TYPE is the data type, and ALIGN is the alignment that
908 the object would ordinarily have. The value of this macro is used
909 instead of that alignment to align the object.
910
911 If this macro is not defined, then ALIGN is used.
912
913 One use of this macro is to increase alignment of medium-size
914 data to make it all fit in fewer cache lines. */
915
76fe54f0
L
916#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
917 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
918
919/* If defined, a C expression to compute the alignment for stack slot.
920 TYPE is the data type, MODE is the widest mode available, and ALIGN
921 is the alignment that the slot would ordinarily have. The value of
922 this macro is used instead of that alignment to align the slot.
923
924 If this macro is not defined, then ALIGN is used when TYPE is NULL,
925 Otherwise, LOCAL_ALIGNMENT will be used.
926
927 One use of this macro is to set alignment of stack slot to the
928 maximum alignment of all possible modes which the slot may have. */
929
930#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
931 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 932
53c17031
JH
933/* If defined, a C expression that gives the alignment boundary, in
934 bits, of an argument with the specified mode and type. If it is
935 not defined, `PARM_BOUNDARY' is used for all arguments. */
936
d9a5f180
GS
937#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
938 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 939
9cd10576 940/* Set this nonzero if move instructions will actually fail to work
c98f8742 941 when given unaligned data. */
b4ac57ab 942#define STRICT_ALIGNMENT 0
c98f8742
JVA
943
944/* If bit field type is int, don't let it cross an int,
945 and give entire struct the alignment of an int. */
43a88a8c 946/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 947#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
948\f
949/* Standard register usage. */
950
951/* This processor has special stack-like registers. See reg-stack.c
892a2d68 952 for details. */
c98f8742
JVA
953
954#define STACK_REGS
ce998900 955
d9a5f180 956#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
957 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
958 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
959 || (MODE) == XFmode)
c98f8742
JVA
960
961/* Number of actual hardware registers.
962 The hardware registers are assigned numbers for the compiler
963 from 0 to just below FIRST_PSEUDO_REGISTER.
964 All registers that the compiler knows about must be given numbers,
965 even those that are not normally considered general registers.
966
967 In the 80386 we give the 8 general purpose registers the numbers 0-7.
968 We number the floating point registers 8-15.
969 Note that registers 0-7 can be accessed as a short or int,
970 while only 0-3 may be used with byte `mov' instructions.
971
972 Reg 16 does not correspond to any hardware register, but instead
973 appears in the RTL as an argument pointer prior to reload, and is
974 eliminated during reloading in favor of either the stack or frame
892a2d68 975 pointer. */
c98f8742 976
b0d95de8 977#define FIRST_PSEUDO_REGISTER 53
c98f8742 978
3073d01c
ML
979/* Number of hardware registers that go into the DWARF-2 unwind info.
980 If not defined, equals FIRST_PSEUDO_REGISTER. */
981
982#define DWARF_FRAME_REGISTERS 17
983
c98f8742
JVA
984/* 1 for registers that have pervasive standard uses
985 and are not available for the register allocator.
3f3f2124 986 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 987
3a4416fb
RS
988 The value is zero if the register is not fixed on either 32 or
989 64 bit targets, one if the register if fixed on both 32 and 64
990 bit targets, two if it is only fixed on 32bit targets and three
991 if its only fixed on 64bit targets.
992 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 993 */
a7180f70
BS
994#define FIXED_REGISTERS \
995/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 996{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
997/*arg,flags,fpsr,fpcr,frame*/ \
998 1, 1, 1, 1, 1, \
a7180f70
BS
999/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1000 0, 0, 0, 0, 0, 0, 0, 0, \
1001/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
1002 0, 0, 0, 0, 0, 0, 0, 0, \
1003/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1004 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 1005/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 1006 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 1007
c98f8742
JVA
1008
1009/* 1 for registers not available across function calls.
1010 These must include the FIXED_REGISTERS and also any
1011 registers that can be used without being saved.
1012 The latter must include the registers where values are returned
1013 and the register where structure-value addresses are passed.
fce5a9f2
EC
1014 Aside from that, you can include as many other registers as you like.
1015
9d72d996
JJ
1016 The value is zero if the register is not call used on either 32 or
1017 64 bit targets, one if the register if call used on both 32 and 64
1018 bit targets, two if it is only call used on 32bit targets and three
1019 if its only call used on 64bit targets.
3a4416fb 1020 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 1021*/
a7180f70
BS
1022#define CALL_USED_REGISTERS \
1023/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1024{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1025/*arg,flags,fpsr,fpcr,frame*/ \
1026 1, 1, 1, 1, 1, \
a7180f70 1027/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 1028 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 1029/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 1030 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1031/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1032 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1033/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 1034 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1035
3b3c6a3f
MM
1036/* Order in which to allocate registers. Each register must be
1037 listed once, even those in FIXED_REGISTERS. List frame pointer
1038 late and fixed registers last. Note that, in general, we prefer
1039 registers listed in CALL_USED_REGISTERS, keeping the others
1040 available for storage of persistent values.
1041
162f023b
JH
1042 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
1043 so this is just empty initializer for array. */
3b3c6a3f 1044
162f023b
JH
1045#define REG_ALLOC_ORDER \
1046{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1047 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1048 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 1049 48, 49, 50, 51, 52 }
3b3c6a3f 1050
162f023b
JH
1051/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1052 to be rearranged based on a particular function. When using sse math,
03c259ad 1053 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1054
162f023b 1055#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 1056
f5316dfe 1057
7c800926
KT
1058#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1059
c98f8742 1060/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 1061#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 1062do { \
3f3f2124 1063 int i; \
b0fede98 1064 unsigned int j; \
3f3f2124
JH
1065 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1066 { \
3a4416fb
RS
1067 if (fixed_regs[i] > 1) \
1068 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
1069 if (call_used_regs[i] > 1) \
1070 call_used_regs[i] = (call_used_regs[i] \
1071 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 1072 } \
b0fede98 1073 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 1074 if (j != INVALID_REGNUM) \
a7180f70 1075 { \
7706ca5d
L
1076 fixed_regs[j] = 1; \
1077 call_used_regs[j] = 1; \
a7180f70
BS
1078 } \
1079 if (! TARGET_MMX) \
1080 { \
1081 int i; \
1082 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1083 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 1084 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1085 } \
1086 if (! TARGET_SSE) \
1087 { \
1088 int i; \
1089 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1090 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 1091 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1092 } \
1093 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1094 { \
1095 int i; \
1096 HARD_REG_SET x; \
1097 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1098 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1099 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
1100 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1101 } \
1102 if (! TARGET_64BIT) \
1103 { \
1104 int i; \
1105 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
1106 reg_names[i] = ""; \
1107 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
1108 reg_names[i] = ""; \
a7180f70 1109 } \
7c800926 1110 if (TARGET_64BIT && DEFAULT_ABI == MS_ABI) \
d29899ba
KT
1111 { \
1112 call_used_regs[4 /*RSI*/] = 0; \
1113 call_used_regs[5 /*RDI*/] = 0; \
1114 } \
d9a5f180 1115 } while (0)
c98f8742
JVA
1116
1117/* Return number of consecutive hard regs needed starting at reg REGNO
1118 to hold something of mode MODE.
1119 This is ordinarily the length in words of a value of mode MODE
1120 but can be less for certain modes in special long registers.
1121
fce5a9f2 1122 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1123 registers. And only registers 0-3 may have mov byte instructions
1124 applied to them.
1125 */
1126
ce998900 1127#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1128 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1129 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1130 : ((MODE) == XFmode \
92d0fb09 1131 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1132 : (MODE) == XCmode \
92d0fb09 1133 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1134 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1135
8521c414
JM
1136#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1137 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1138 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1139 ? 0 \
1140 : ((MODE) == XFmode || (MODE) == XCmode)) \
1141 : 0)
1142
1143#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1144
ce998900
UB
1145#define VALID_SSE2_REG_MODE(MODE) \
1146 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1147 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1148
d9a5f180 1149#define VALID_SSE_REG_MODE(MODE) \
ce998900
UB
1150 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1151 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1152
47f339cf 1153#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1154 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1155
d9a5f180 1156#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1157 ((MODE == V1DImode) || (MODE) == DImode \
1158 || (MODE) == V2SImode || (MODE) == SImode \
1159 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1160
accde4cf
RH
1161/* ??? No autovectorization into MMX or 3DNOW until we can reliably
1162 place emms and femms instructions. */
9d3a9de1 1163#define UNITS_PER_SIMD_WORD(MODE) (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 1164
ce998900
UB
1165#define VALID_DFP_MODE_P(MODE) \
1166 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1167
d9a5f180 1168#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1169 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1170 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1171
d9a5f180 1172#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1173 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1174 || (MODE) == DImode \
1175 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1176 || (MODE) == CDImode \
1177 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1178 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1179
822eda12 1180/* Return true for modes passed in SSE registers. */
ce998900
UB
1181#define SSE_REG_MODE_P(MODE) \
1182 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
1183 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1184 || (MODE) == V4SFmode || (MODE) == V4SImode)
1185
e075ae69 1186/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1187
a946dd00 1188#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1189 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1190
1191/* Value is 1 if it is a good idea to tie two pseudo registers
1192 when one has mode MODE1 and one has mode MODE2.
1193 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1194 for any hard reg, then this must be 0 for correct output. */
1195
c1c5b5e3 1196#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1197
ff25ef99
ZD
1198/* It is possible to write patterns to move flags; but until someone
1199 does it, */
1200#define AVOID_CCMODE_COPIES
c98f8742 1201
e075ae69 1202/* Specify the modes required to caller save a given hard regno.
787dc842 1203 We do this on i386 to prevent flags from being saved at all.
e075ae69 1204
787dc842
JH
1205 Kill any attempts to combine saving of modes. */
1206
d9a5f180
GS
1207#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1208 (CC_REGNO_P (REGNO) ? VOIDmode \
1209 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1210 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180
GS
1211 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1212 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1213 : (MODE))
ce998900 1214
c98f8742
JVA
1215/* Specify the registers used for certain standard purposes.
1216 The values of these macros are register numbers. */
1217
1218/* on the 386 the pc register is %eip, and is not usable as a general
1219 register. The ordinary mov instructions won't work */
1220/* #define PC_REGNUM */
1221
1222/* Register to use for pushing function arguments. */
1223#define STACK_POINTER_REGNUM 7
1224
1225/* Base register for access to local variables of the function. */
564d80f4
JH
1226#define HARD_FRAME_POINTER_REGNUM 6
1227
1228/* Base register for access to local variables of the function. */
b0d95de8 1229#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1230
1231/* First floating point reg */
1232#define FIRST_FLOAT_REG 8
1233
1234/* First & last stack-like regs */
1235#define FIRST_STACK_REG FIRST_FLOAT_REG
1236#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1237
a7180f70
BS
1238#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1239#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1240
a7180f70
BS
1241#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1242#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1243
3f3f2124
JH
1244#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1245#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1246
1247#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1248#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1249
c98f8742
JVA
1250/* Value should be nonzero if functions must have frame pointers.
1251 Zero means the frame pointer need not be set up (and parms
1252 may be accessed via the stack pointer) in functions that seem suitable.
1253 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1254#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1255
aabcd309 1256/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1257 requiring a frame pointer. */
1258#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1259#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1260#endif
1261
1262/* Make sure we can access arbitrary call frames. */
1263#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1264
1265/* Base register for access to arguments of the function. */
1266#define ARG_POINTER_REGNUM 16
1267
d2836273
JH
1268/* Register in which static-chain is passed to a function.
1269 We do use ECX as static chain register for 32 bit ABI. On the
1270 64bit ABI, ECX is an argument register, so we use R10 instead. */
2ff8644d 1271#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
c98f8742
JVA
1272
1273/* Register to hold the addressing base for position independent
5b43fed1
RH
1274 code access to data items. We don't use PIC pointer for 64bit
1275 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1276 pessimizing code dealing with EBX.
bd09bdeb
RH
1277
1278 To avoid clobbering a call-saved register unnecessarily, we renumber
1279 the pic register when possible. The change is visible after the
1280 prologue has been emitted. */
1281
1282#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1283
1284#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1285 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1286 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1287 : reload_completed ? REGNO (pic_offset_table_rtx) \
1288 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1289
5fc0e5df
KW
1290#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1291
c51e6d85 1292/* This is overridden by <cygwin.h>. */
5e062767
DS
1293#define MS_AGGREGATE_RETURN 0
1294
61fec9ff
JB
1295/* This is overridden by <netware.h>. */
1296#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1297\f
1298/* Define the classes of registers for register constraints in the
1299 machine description. Also define ranges of constants.
1300
1301 One of the classes must always be named ALL_REGS and include all hard regs.
1302 If there is more than one class, another class must be named NO_REGS
1303 and contain no registers.
1304
1305 The name GENERAL_REGS must be the name of a class (or an alias for
1306 another name such as ALL_REGS). This is the class of registers
1307 that is allowed by "g" or "r" in a register constraint.
1308 Also, registers outside this class are allocated only when
1309 instructions express preferences for them.
1310
1311 The classes must be numbered in nondecreasing order; that is,
1312 a larger-numbered class must never be contained completely
1313 in a smaller-numbered class.
1314
1315 For any two classes, it is very desirable that there be another
ab408a86
JVA
1316 class that represents their union.
1317
1318 It might seem that class BREG is unnecessary, since no useful 386
1319 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1320 and the "b" register constraint is useful in asms for syscalls.
1321
03c259ad 1322 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1323
1324enum reg_class
1325{
1326 NO_REGS,
e075ae69 1327 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1328 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1329 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1330 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1331 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1332 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1333 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1334 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1335 FLOAT_REGS,
06f4e35d 1336 SSE_FIRST_REG,
a7180f70
BS
1337 SSE_REGS,
1338 MMX_REGS,
446988df
JH
1339 FP_TOP_SSE_REGS,
1340 FP_SECOND_SSE_REGS,
1341 FLOAT_SSE_REGS,
1342 FLOAT_INT_REGS,
1343 INT_SSE_REGS,
1344 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1345 ALL_REGS, LIM_REG_CLASSES
1346};
1347
d9a5f180
GS
1348#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1349
1350#define INTEGER_CLASS_P(CLASS) \
1351 reg_class_subset_p ((CLASS), GENERAL_REGS)
1352#define FLOAT_CLASS_P(CLASS) \
1353 reg_class_subset_p ((CLASS), FLOAT_REGS)
1354#define SSE_CLASS_P(CLASS) \
06f4e35d 1355 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1356#define MMX_CLASS_P(CLASS) \
f75959a6 1357 ((CLASS) == MMX_REGS)
d9a5f180
GS
1358#define MAYBE_INTEGER_CLASS_P(CLASS) \
1359 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1360#define MAYBE_FLOAT_CLASS_P(CLASS) \
1361 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1362#define MAYBE_SSE_CLASS_P(CLASS) \
1363 reg_classes_intersect_p (SSE_REGS, (CLASS))
1364#define MAYBE_MMX_CLASS_P(CLASS) \
1365 reg_classes_intersect_p (MMX_REGS, (CLASS))
1366
1367#define Q_CLASS_P(CLASS) \
1368 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1369
43f3a59d 1370/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1371
1372#define REG_CLASS_NAMES \
1373{ "NO_REGS", \
ab408a86 1374 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1375 "SIREG", "DIREG", \
e075ae69
RH
1376 "AD_REGS", \
1377 "Q_REGS", "NON_Q_REGS", \
c98f8742 1378 "INDEX_REGS", \
3f3f2124 1379 "LEGACY_REGS", \
c98f8742
JVA
1380 "GENERAL_REGS", \
1381 "FP_TOP_REG", "FP_SECOND_REG", \
1382 "FLOAT_REGS", \
cb482895 1383 "SSE_FIRST_REG", \
a7180f70
BS
1384 "SSE_REGS", \
1385 "MMX_REGS", \
446988df
JH
1386 "FP_TOP_SSE_REGS", \
1387 "FP_SECOND_SSE_REGS", \
1388 "FLOAT_SSE_REGS", \
8fcaaa80 1389 "FLOAT_INT_REGS", \
446988df
JH
1390 "INT_SSE_REGS", \
1391 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1392 "ALL_REGS" }
1393
1394/* Define which registers fit in which classes.
1395 This is an initializer for a vector of HARD_REG_SET
1396 of length N_REG_CLASSES. */
1397
a7180f70 1398#define REG_CLASS_CONTENTS \
3f3f2124
JH
1399{ { 0x00, 0x0 }, \
1400 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1401 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1402 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1403 { 0x03, 0x0 }, /* AD_REGS */ \
1404 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1405 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1406 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1407 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1408 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1409 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1410 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1411 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1412{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1413{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1414{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1415{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1416{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1417 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1418{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1419{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1420{ 0xffffffff,0x1fffff } \
e075ae69 1421}
c98f8742
JVA
1422
1423/* The same information, inverted:
1424 Return the class number of the smallest class containing
1425 reg number REGNO. This could be a conditional expression
1426 or could index an array. */
1427
c98f8742
JVA
1428#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1429
1430/* When defined, the compiler allows registers explicitly used in the
1431 rtl to be used as spill registers but prevents the compiler from
892a2d68 1432 extending the lifetime of these registers. */
c98f8742 1433
2922fe9e 1434#define SMALL_REGISTER_CLASSES 1
c98f8742 1435
fb84c7a0 1436#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1437
d9a5f180 1438#define GENERAL_REGNO_P(N) \
fb84c7a0 1439 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1440
1441#define GENERAL_REG_P(X) \
6189a572 1442 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1443
1444#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1445
fb84c7a0
UB
1446#define REX_INT_REGNO_P(N) \
1447 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1448#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1449
c98f8742 1450#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1451#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1452#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1453#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1454
54a88090 1455#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1456 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1457
fb84c7a0
UB
1458#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1459#define SSE_REGNO_P(N) \
1460 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1461 || REX_SSE_REGNO_P (N))
3f3f2124 1462
4977bab6 1463#define REX_SSE_REGNO_P(N) \
fb84c7a0 1464 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1465
d9a5f180
GS
1466#define SSE_REGNO(N) \
1467 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1468
d9a5f180 1469#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1470 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1471
d6023b50
UB
1472#define SSE_VEC_FLOAT_MODE_P(MODE) \
1473 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1474
d9a5f180 1475#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1476#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1477
fb84c7a0 1478#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1479#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1480
d9a5f180 1481#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1482
e075ae69
RH
1483#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1484#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1485
c98f8742
JVA
1486/* The class value for index registers, and the one for base regs. */
1487
1488#define INDEX_REG_CLASS INDEX_REGS
1489#define BASE_REG_CLASS GENERAL_REGS
1490
c98f8742 1491/* Place additional restrictions on the register class to use when it
4cbb525c 1492 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1493 register for which class CLASS would ordinarily be used. */
c98f8742 1494
d2836273
JH
1495#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1496 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1497 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1498 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1499 ? Q_REGS : (CLASS))
1500
1501/* Given an rtx X being reloaded into a reg required to be
1502 in class CLASS, return the class of reg to actually use.
1503 In general this is just CLASS; but on some machines
1504 in some cases it is preferable to use a more restrictive class.
1505 On the 80386 series, we prevent floating constants from being
1506 reloaded into floating registers (since no move-insn can do that)
1507 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1508
d398b3b1 1509/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1510 QImode must go into class Q_REGS.
d398b3b1 1511 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1512 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1513
d9a5f180
GS
1514#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1515 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1516
b5c82fa1
PB
1517/* Discourage putting floating-point values in SSE registers unless
1518 SSE math is being used, and likewise for the 387 registers. */
1519
1520#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1521 ix86_preferred_output_reload_class ((X), (CLASS))
1522
85ff473e 1523/* If we are copying between general and FP registers, we need a memory
f84aa48a 1524 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1525#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1526 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1527
c62b3659
UB
1528/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1529 There is no need to emit full 64 bit move on 64 bit targets
1530 for integral modes that can be moved using 32 bit move. */
1531#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1532 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1533 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1534 : MODE)
1535
c98f8742
JVA
1536/* Return the maximum number of consecutive registers
1537 needed to represent mode MODE in a register of class CLASS. */
1538/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1539 except in the FP regs, where a single reg is always enough. */
a7180f70 1540#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1541 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1542 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1543 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1544 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1545
1546/* A C expression whose value is nonzero if pseudos that have been
1547 assigned to registers of class CLASS would likely be spilled
1548 because registers of CLASS are needed for spill registers.
1549
1550 The default value of this macro returns 1 if CLASS has exactly one
1551 register and zero otherwise. On most machines, this default
1552 should be used. Only define this macro to some other expression
1553 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1554 their hard registers were needed for spill registers. If this
f5316dfe
MM
1555 macro returns nonzero for those classes, those pseudos will only
1556 be allocated by `global.c', which knows how to reallocate the
1557 pseudo to another register. If there would not be another
1558 register available for reallocation, you should not change the
1559 definition of this macro since the only effect of such a
1560 definition would be to slow down register allocation. */
1561
1562#define CLASS_LIKELY_SPILLED_P(CLASS) \
1563 (((CLASS) == AREG) \
1564 || ((CLASS) == DREG) \
1565 || ((CLASS) == CREG) \
1566 || ((CLASS) == BREG) \
1567 || ((CLASS) == AD_REGS) \
1568 || ((CLASS) == SIREG) \
b0af5c03
JH
1569 || ((CLASS) == DIREG) \
1570 || ((CLASS) == FP_TOP_REG) \
1571 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1572
1272914c
RH
1573/* Return a class of registers that cannot change FROM mode to TO mode. */
1574
1575#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1576 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1577\f
1578/* Stack layout; function entry, exit and calling. */
1579
1580/* Define this if pushing a word on the stack
1581 makes the stack pointer a smaller address. */
1582#define STACK_GROWS_DOWNWARD
1583
a4d05547 1584/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1585 is at the high-address end of the local variables;
1586 that is, each additional local variable allocated
1587 goes at a more negative offset in the frame. */
f62c8a5c 1588#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1589
1590/* Offset within stack frame to start allocating local variables at.
1591 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1592 first local allocated. Otherwise, it is the offset to the BEGINNING
1593 of the first local allocated. */
1594#define STARTING_FRAME_OFFSET 0
1595
1596/* If we generate an insn to push BYTES bytes,
1597 this says how many the stack pointer really advances by.
6541fe75
JJ
1598 On 386, we have pushw instruction that decrements by exactly 2 no
1599 matter what the position was, there is no pushb.
1600 But as CIE data alignment factor on this arch is -4, we need to make
1601 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1602
d2836273
JH
1603 For 64bit ABI we round up to 8 bytes.
1604 */
c98f8742 1605
d2836273
JH
1606#define PUSH_ROUNDING(BYTES) \
1607 (TARGET_64BIT \
1608 ? (((BYTES) + 7) & (-8)) \
6541fe75 1609 : (((BYTES) + 3) & (-4)))
c98f8742 1610
f73ad30e
JH
1611/* If defined, the maximum amount of space required for outgoing arguments will
1612 be computed and placed into the variable
38173d38 1613 `crtl->outgoing_args_size'. No space will be pushed onto the
f73ad30e
JH
1614 stack for each call; instead, the function prologue should increase the stack
1615 frame size by this amount. */
1616
1617#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1618
1619/* If defined, a C expression whose value is nonzero when we want to use PUSH
1620 instructions to pass outgoing arguments. */
1621
1622#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1623
2da4124d
L
1624/* We want the stack and args grow in opposite directions, even if
1625 PUSH_ARGS is 0. */
1626#define PUSH_ARGS_REVERSED 1
1627
c98f8742
JVA
1628/* Offset of first parameter from the argument pointer register value. */
1629#define FIRST_PARM_OFFSET(FNDECL) 0
1630
a7180f70
BS
1631/* Define this macro if functions should assume that stack space has been
1632 allocated for arguments even when their values are passed in registers.
1633
1634 The value of this macro is the size, in bytes, of the area reserved for
1635 arguments passed in registers for the function represented by FNDECL.
1636
1637 This space can be allocated by the caller, or be a part of the
1638 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1639 which. */
7c800926
KT
1640#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1641
1642#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) (ix86_function_type_abi (FNTYPE) == MS_ABI ? 1 : 0)
1643
c98f8742
JVA
1644/* Value is the number of bytes of arguments automatically
1645 popped when returning from a subroutine call.
8b109b37 1646 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1647 FUNTYPE is the data type of the function (as a tree),
1648 or for a library call it is an identifier node for the subroutine name.
1649 SIZE is the number of bytes of arguments passed on the stack.
1650
1651 On the 80386, the RTD insn may be used to pop them if the number
1652 of args is fixed, but if the number is variable then the caller
1653 must pop them all. RTD can't be used for library calls now
1654 because the library is compiled with the Unix compiler.
1655 Use of RTD is a selectable option, since it is incompatible with
1656 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1657 the caller must always pop the args.
1658
1659 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1660
d9a5f180
GS
1661#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1662 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1663
53c17031
JH
1664#define FUNCTION_VALUE_REGNO_P(N) \
1665 ix86_function_value_regno_p (N)
c98f8742
JVA
1666
1667/* Define how to find the value returned by a library function
1668 assuming the value has mode MODE. */
1669
1670#define LIBCALL_VALUE(MODE) \
53c17031 1671 ix86_libcall_value (MODE)
c98f8742 1672
e9125c09
TW
1673/* Define the size of the result block used for communication between
1674 untyped_call and untyped_return. The block contains a DImode value
1675 followed by the block used by fnsave and frstor. */
1676
1677#define APPLY_RESULT_SIZE (8+108)
1678
b08de47e 1679/* 1 if N is a possible register number for function argument passing. */
53c17031 1680#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1681
1682/* Define a data type for recording info about an argument list
1683 during the scan of that argument list. This data type should
1684 hold all necessary information about the function itself
1685 and about the args processed so far, enough to enable macros
b08de47e 1686 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1687
e075ae69 1688typedef struct ix86_args {
fa283935 1689 int words; /* # words passed so far */
b08de47e
MM
1690 int nregs; /* # registers available for passing */
1691 int regno; /* next available register number */
9d72d996 1692 int fastcall; /* fastcall calling convention is used */
fa283935 1693 int sse_words; /* # sse words passed so far */
a7180f70 1694 int sse_nregs; /* # sse registers available for passing */
47a37ce4 1695 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1696 int warn_mmx; /* True when we want to warn about MMX ABI. */
1697 int sse_regno; /* next available sse register number */
1698 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1699 int mmx_nregs; /* # mmx registers available for passing */
1700 int mmx_regno; /* next available mmx register number */
892a2d68 1701 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1702 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1703 be passed in SSE registers. Otherwise 0. */
7c800926
KT
1704 int call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1705 MS_ABI for ms abi. */
b08de47e 1706} CUMULATIVE_ARGS;
c98f8742
JVA
1707
1708/* Initialize a variable CUM of type CUMULATIVE_ARGS
1709 for a call to a function whose data type is FNTYPE.
b08de47e 1710 For a library call, FNTYPE is 0. */
c98f8742 1711
0f6937fe 1712#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1713 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1714
1715/* Update the data in CUM to advance over an argument
1716 of mode MODE and data type TYPE.
1717 (TYPE is null for libcalls where that information may not be available.) */
1718
d9a5f180
GS
1719#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1720 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1721
1722/* Define where to put the arguments to a function.
1723 Value is zero to push the argument on the stack,
1724 or a hard register in which to store the argument.
1725
1726 MODE is the argument's machine mode.
1727 TYPE is the data type of the argument (as a tree).
1728 This is null for libcalls where that information may
1729 not be available.
1730 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1731 the preceding args and about the function being called.
1732 NAMED is nonzero if this argument is a named parameter
1733 (otherwise it is an extra parameter matching an ellipsis). */
1734
c98f8742 1735#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1736 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1737
a5fe455b
ZW
1738#define TARGET_ASM_FILE_END ix86_file_end
1739#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1740
c98f8742
JVA
1741/* Output assembler code to FILE to increment profiler label # LABELNO
1742 for profiling a function entry. */
1743
a5fa1ecd
JH
1744#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1745
1746#define MCOUNT_NAME "_mcount"
1747
1748#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1749
1750/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1751 the stack pointer does not matter. The value is tested only in
1752 functions that have frame pointers.
1753 No definition is equivalent to always zero. */
fce5a9f2 1754/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1755 we have to restore it ourselves from the frame pointer, in order to
1756 use pop */
1757
1758#define EXIT_IGNORE_STACK 1
1759
c98f8742
JVA
1760/* Output assembler code for a block containing the constant parts
1761 of a trampoline, leaving space for the variable parts. */
1762
a269a03c 1763/* On the 386, the trampoline contains two instructions:
c98f8742 1764 mov #STATIC,ecx
a269a03c
JC
1765 jmp FUNCTION
1766 The trampoline is generated entirely at runtime. The operand of JMP
1767 is the address of FUNCTION relative to the instruction following the
1768 JMP (which is 5 bytes long). */
c98f8742
JVA
1769
1770/* Length in units of the trampoline for entering a nested function. */
1771
39d04363 1772#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1773
1774/* Emit RTL insns to initialize the variable parts of a trampoline.
1775 FNADDR is an RTX for the address of the function's pure code.
1776 CXT is an RTX for the static chain value for the function. */
1777
d9a5f180
GS
1778#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1779 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1780\f
1781/* Definitions for register eliminations.
1782
1783 This is an array of structures. Each structure initializes one pair
1784 of eliminable registers. The "from" register number is given first,
1785 followed by "to". Eliminations of the same "from" register are listed
1786 in order of preference.
1787
afc2cd05
NC
1788 There are two registers that can always be eliminated on the i386.
1789 The frame pointer and the arg pointer can be replaced by either the
1790 hard frame pointer or to the stack pointer, depending upon the
1791 circumstances. The hard frame pointer is not used before reload and
1792 so it is not eligible for elimination. */
c98f8742 1793
564d80f4
JH
1794#define ELIMINABLE_REGS \
1795{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1796 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1797 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1798 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1799
2c5a510c
RH
1800/* Given FROM and TO register numbers, say whether this elimination is
1801 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1802
1803 All other eliminations are valid. */
1804
2c5a510c 1805#define CAN_ELIMINATE(FROM, TO) \
979c67a5 1806 ((TO) == STACK_POINTER_REGNUM ? !frame_pointer_needed : 1)
c98f8742
JVA
1807
1808/* Define the offset between two registers, one to be eliminated, and the other
1809 its replacement, at the start of a routine. */
1810
d9a5f180
GS
1811#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1812 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1813\f
1814/* Addressing modes, and classification of registers for them. */
1815
c98f8742
JVA
1816/* Macros to check register numbers against specific register classes. */
1817
1818/* These assume that REGNO is a hard or pseudo reg number.
1819 They give nonzero only if REGNO is a hard reg of the suitable class
1820 or a pseudo reg currently allocated to a suitable hard reg.
1821 Since they use reg_renumber, they are safe only once reg_renumber
1822 has been allocated, which happens in local-alloc.c. */
1823
3f3f2124
JH
1824#define REGNO_OK_FOR_INDEX_P(REGNO) \
1825 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1826 || REX_INT_REGNO_P (REGNO) \
1827 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1828 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1829
3f3f2124 1830#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1831 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1832 || (REGNO) == ARG_POINTER_REGNUM \
1833 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1834 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1835
c98f8742
JVA
1836/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1837 and check its validity for a certain class.
1838 We have two alternate definitions for each of them.
1839 The usual definition accepts all pseudo regs; the other rejects
1840 them unless they have been allocated suitable hard regs.
1841 The symbol REG_OK_STRICT causes the latter definition to be used.
1842
1843 Most source files want to accept pseudo regs in the hope that
1844 they will get allocated to the class that the insn wants them to be in.
1845 Source files for reload pass need to be strict.
1846 After reload, it makes no difference, since pseudo regs have
1847 been eliminated by then. */
1848
c98f8742 1849
ff482c8d 1850/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1851#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1852 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1853 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1854 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1855
3b3c6a3f 1856#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1857 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1858 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1859 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1860 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1861
3b3c6a3f
MM
1862/* Strict versions, hard registers only */
1863#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1864#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1865
3b3c6a3f 1866#ifndef REG_OK_STRICT
d9a5f180
GS
1867#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1868#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1869
1870#else
d9a5f180
GS
1871#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1872#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1873#endif
1874
1875/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1876 that is a valid memory address for an instruction.
1877 The MODE argument is the machine mode for the MEM expression
1878 that wants to use this address.
1879
1880 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1881 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1882
1883 See legitimize_pic_address in i386.c for details as to what
1884 constitutes a legitimate address when -fpic is used. */
1885
1886#define MAX_REGS_PER_ADDRESS 2
1887
f996902d 1888#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1889
1890/* Nonzero if the constant value X is a legitimate general operand.
1891 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1892
f996902d 1893#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1894
3b3c6a3f
MM
1895#ifdef REG_OK_STRICT
1896#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1897do { \
1898 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1899 goto ADDR; \
d9a5f180 1900} while (0)
c98f8742 1901
3b3c6a3f
MM
1902#else
1903#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1904do { \
1905 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1906 goto ADDR; \
d9a5f180 1907} while (0)
c98f8742 1908
3b3c6a3f
MM
1909#endif
1910
b949ea8b
JW
1911/* If defined, a C expression to determine the base term of address X.
1912 This macro is used in only one place: `find_base_term' in alias.c.
1913
1914 It is always safe for this macro to not be defined. It exists so
1915 that alias analysis can understand machine-dependent addresses.
1916
1917 The typical use of this macro is to handle addresses containing
1918 a label_ref or symbol_ref within an UNSPEC. */
1919
d9a5f180 1920#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1921
c98f8742
JVA
1922/* Try machine-dependent ways of modifying an illegitimate address
1923 to be legitimate. If we find one, return the new, valid address.
1924 This macro is used in only one place: `memory_address' in explow.c.
1925
1926 OLDX is the address as it was before break_out_memory_refs was called.
1927 In some cases it is useful to look at this to decide what needs to be done.
1928
1929 MODE and WIN are passed so that this macro can use
1930 GO_IF_LEGITIMATE_ADDRESS.
1931
1932 It is always safe for this macro to do nothing. It exists to recognize
1933 opportunities to optimize the output.
1934
1935 For the 80386, we handle X+REG by loading X into a register R and
1936 using R+REG. R will go in a general reg and indexing will be used.
1937 However, if REG is a broken-out memory address or multiplication,
1938 nothing needs to be done because REG can certainly go in a general reg.
1939
1940 When -fpic is used, special handling is needed for symbolic references.
1941 See comments by legitimize_pic_address in i386.c for details. */
1942
3b3c6a3f 1943#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1944do { \
1945 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1946 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1947 goto WIN; \
d9a5f180 1948} while (0)
c98f8742
JVA
1949
1950/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1951 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1952 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1953
f996902d 1954#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1955
1956#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1957 (GET_CODE (X) == SYMBOL_REF \
1958 || GET_CODE (X) == LABEL_REF \
1959 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1960
1961/* Go to LABEL if ADDR (a legitimate address expression)
1962 has an effect that depends on the machine mode it is used for.
1963 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1964 (the amount of decrement or increment being the length of the operand).
1965 These are now caught in recog.c. */
1966#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1967\f
b08de47e
MM
1968/* Max number of args passed in registers. If this is more than 3, we will
1969 have problems with ebx (register #4), since it is a caller save register and
1970 is also used as the pic register in ELF. So for now, don't allow more than
1971 3 registers to be passed in registers. */
1972
7c800926
KT
1973/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1974#define X86_64_REGPARM_MAX 6
1975#define X64_REGPARM_MAX 4
1976#define X86_32_REGPARM_MAX 3
1977
1978#define X86_64_SSE_REGPARM_MAX 8
1979#define X64_SSE_REGPARM_MAX 4
1980#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? 3 : 0)
1981
1982#define REGPARM_MAX (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_REGPARM_MAX \
1983 : X86_64_REGPARM_MAX) \
1984 : X86_32_REGPARM_MAX)
d2836273 1985
7c800926
KT
1986#define SSE_REGPARM_MAX (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_SSE_REGPARM_MAX \
1987 : X86_64_SSE_REGPARM_MAX) \
1988 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1989
1990#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1991
c98f8742
JVA
1992\f
1993/* Specify the machine mode that this machine uses
1994 for the index in the tablejump instruction. */
dc4d7240
JH
1995#define CASE_VECTOR_MODE \
1996 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1997
c98f8742
JVA
1998/* Define this as 1 if `char' should by default be signed; else as 0. */
1999#define DEFAULT_SIGNED_CHAR 1
2000
2001/* Max number of bytes we can move from memory to memory
2002 in one reasonably fast instruction. */
65d9c0ab
JH
2003#define MOVE_MAX 16
2004
2005/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2006 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 2007 number of bytes we can move with a single instruction. */
65d9c0ab 2008#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 2009
7e24ffc9 2010/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 2011 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
2012 Increasing the value will always make code faster, but eventually
2013 incurs high cost in increased code size.
c98f8742 2014
e2e52e1b 2015 If you don't define this, a reasonable default is used. */
c98f8742 2016
e2e52e1b 2017#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 2018
45d78e7f
JJ
2019/* If a clear memory operation would take CLEAR_RATIO or more simple
2020 move-instruction sequences, we will do a clrmem or libcall instead. */
2021
979c67a5 2022#define CLEAR_RATIO (optimize_size ? 2 : MIN (6, ix86_cost->move_ratio))
45d78e7f 2023
c98f8742
JVA
2024/* Define if shifts truncate the shift count
2025 which implies one can omit a sign-extension or zero-extension
2026 of a shift count. */
892a2d68 2027/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
2028
2029/* #define SHIFT_COUNT_TRUNCATED */
2030
2031/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2032 is done just by pretending it is already truncated. */
2033#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2034
d9f32422
JH
2035/* A macro to update M and UNSIGNEDP when an object whose type is
2036 TYPE and which has the specified mode and signedness is to be
2037 stored in a register. This macro is only called when TYPE is a
2038 scalar type.
2039
f710504c 2040 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
2041 quantities to SImode. The choice depends on target type. */
2042
2043#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 2044do { \
d9f32422
JH
2045 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2046 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
2047 (MODE) = SImode; \
2048} while (0)
d9f32422 2049
c98f8742
JVA
2050/* Specify the machine mode that pointers have.
2051 After generation of rtl, the compiler makes no further distinction
2052 between pointers and any other objects of this machine mode. */
65d9c0ab 2053#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
2054
2055/* A function address in a call instruction
2056 is a byte address (for indexing purposes)
2057 so give the MEM rtx a byte's mode. */
2058#define FUNCTION_MODE QImode
d4ba09c0 2059\f
96e7ae40
JH
2060/* A C expression for the cost of moving data from a register in class FROM to
2061 one in class TO. The classes are expressed using the enumeration values
2062 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2063 interpreted relative to that.
d4ba09c0 2064
96e7ae40
JH
2065 It is not required that the cost always equal 2 when FROM is the same as TO;
2066 on some machines it is expensive to move between registers if they are not
f84aa48a 2067 general registers. */
d4ba09c0 2068
f84aa48a 2069#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 2070 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
2071
2072/* A C expression for the cost of moving data of mode M between a
2073 register and memory. A value of 2 is the default; this cost is
2074 relative to those in `REGISTER_MOVE_COST'.
2075
2076 If moving between registers and memory is more expensive than
2077 between two registers, you should define this macro to express the
fa79946e 2078 relative cost. */
d4ba09c0 2079
d9a5f180
GS
2080#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2081 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2082
2083/* A C expression for the cost of a branch instruction. A value of 1
2084 is the default; other values are interpreted relative to that. */
2085
e075ae69 2086#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2087
2088/* Define this macro as a C expression which is nonzero if accessing
2089 less than a word of memory (i.e. a `char' or a `short') is no
2090 faster than accessing a word of memory, i.e., if such access
2091 require more than one instruction or if there is no difference in
2092 cost between byte and (aligned) word loads.
2093
2094 When this macro is not defined, the compiler will access a field by
2095 finding the smallest containing object; when it is defined, a
2096 fullword load will be used if alignment permits. Unless bytes
2097 accesses are faster than word accesses, using word accesses is
2098 preferable since it may eliminate subsequent memory access if
2099 subsequent accesses occur to other fields in the same word of the
2100 structure, but to different bytes. */
2101
2102#define SLOW_BYTE_ACCESS 0
2103
2104/* Nonzero if access to memory by shorts is slow and undesirable. */
2105#define SLOW_SHORT_ACCESS 0
2106
d4ba09c0
SC
2107/* Define this macro to be the value 1 if unaligned accesses have a
2108 cost many times greater than aligned accesses, for example if they
2109 are emulated in a trap handler.
2110
9cd10576
KH
2111 When this macro is nonzero, the compiler will act as if
2112 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2113 moves. This can cause significantly more instructions to be
9cd10576 2114 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2115 accesses only add a cycle or two to the time for a memory access.
2116
2117 If the value of this macro is always zero, it need not be defined. */
2118
e1565e65 2119/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2120
d4ba09c0
SC
2121/* Define this macro if it is as good or better to call a constant
2122 function address than to call an address kept in a register.
2123
2124 Desirable on the 386 because a CALL with a constant address is
2125 faster than one with a register address. */
2126
2127#define NO_FUNCTION_CSE
c98f8742 2128\f
c572e5ba
JVA
2129/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2130 return the mode to be used for the comparison.
2131
2132 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2133 VOIDmode should be used in all other cases.
c572e5ba 2134
16189740 2135 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2136 possible, to allow for more combinations. */
c98f8742 2137
d9a5f180 2138#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2139
9cd10576 2140/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2141 reversed. */
2142
2143#define REVERSIBLE_CC_MODE(MODE) 1
2144
2145/* A C expression whose value is reversed condition code of the CODE for
2146 comparison done in CC_MODE mode. */
3c5cb3e4 2147#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2148
c98f8742
JVA
2149\f
2150/* Control the assembler format that we output, to the extent
2151 this does not vary between assemblers. */
2152
2153/* How to refer to registers in assembler output.
892a2d68 2154 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2155
a7b376ee 2156/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2157 For non floating point regs, the following are the HImode names.
2158
2159 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2160 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2161
a7180f70
BS
2162#define HI_REGISTER_NAMES \
2163{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2164 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2165 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2166 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2167 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2168 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2169 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2170
c98f8742
JVA
2171#define REGISTER_NAMES HI_REGISTER_NAMES
2172
2173/* Table of additional register names to use in user input. */
2174
2175#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2176{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2177 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2178 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2179 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2180 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2181 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2182
2183/* Note we are omitting these since currently I don't know how
2184to get gcc to use these, since they want the same but different
2185number as al, and ax.
2186*/
2187
c98f8742 2188#define QI_REGISTER_NAMES \
3f3f2124 2189{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2190
2191/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2192 of regs 0 through 3. */
c98f8742
JVA
2193
2194#define QI_HIGH_REGISTER_NAMES \
2195{"ah", "dh", "ch", "bh", }
2196
2197/* How to renumber registers for dbx and gdb. */
2198
d9a5f180
GS
2199#define DBX_REGISTER_NUMBER(N) \
2200 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2201
9a82e702
MS
2202extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2203extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2204extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2205
469ac993
JM
2206/* Before the prologue, RA is at 0(%esp). */
2207#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2208 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2209
e414ab29 2210/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2211#define RETURN_ADDR_RTX(COUNT, FRAME) \
2212 ((COUNT) == 0 \
2213 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2214 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2215
892a2d68 2216/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2217#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2218
a6ab3aad 2219/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2220#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2221
1020a5ab
RH
2222/* Describe how we implement __builtin_eh_return. */
2223#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2224#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2225
ad919812 2226
e4c4ebeb
RH
2227/* Select a format to encode pointers in exception handling data. CODE
2228 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2229 true if the symbol may be affected by dynamic relocations.
2230
2231 ??? All x86 object file formats are capable of representing this.
2232 After all, the relocation needed is the same as for the call insn.
2233 Whether or not a particular assembler allows us to enter such, I
2234 guess we'll have to see. */
d9a5f180 2235#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2236 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2237
c98f8742
JVA
2238/* This is how to output an insn to push a register on the stack.
2239 It need not be very fast code. */
2240
d9a5f180 2241#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2242do { \
2243 if (TARGET_64BIT) \
2244 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2245 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2246 else \
2247 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2248} while (0)
c98f8742
JVA
2249
2250/* This is how to output an insn to pop a register from the stack.
2251 It need not be very fast code. */
2252
d9a5f180 2253#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2254do { \
2255 if (TARGET_64BIT) \
2256 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2257 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2258 else \
2259 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2260} while (0)
c98f8742 2261
f88c65f7 2262/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2263
2264#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2265 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2266
f88c65f7 2267/* This is how to output an element of a case-vector that is relative. */
c98f8742 2268
33f7f353 2269#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2270 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2271
f7288899
EC
2272/* Under some conditions we need jump tables in the text section,
2273 because the assembler cannot handle label differences between
2274 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2275
2276#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2277 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2278 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2279
cea3bd3e
RH
2280/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2281 and switch back. For x86 we do this only to save a few bytes that
2282 would otherwise be unused in the text section. */
2283#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2284 asm (SECTION_OP "\n\t" \
2285 "call " USER_LABEL_PREFIX #FUNC "\n" \
2286 TEXT_SECTION_ASM_OP);
74b42c8b 2287\f
c98f8742
JVA
2288/* Print operand X (an rtx) in assembler syntax to file FILE.
2289 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2290 Effect of various CODE letters is described in i386.c near
2291 print_operand function. */
c98f8742 2292
d9a5f180 2293#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c9d259cb 2294 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
c98f8742
JVA
2295
2296#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2297 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2298
2299#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2300 print_operand_address ((FILE), (ADDR))
c98f8742 2301
f996902d
RH
2302#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2303do { \
2304 if (! output_addr_const_extra (FILE, (X))) \
2305 goto FAIL; \
2306} while (0);
d4ba09c0 2307\f
5bf0ebab
RH
2308/* Which processor to schedule for. The cpu attribute defines a list that
2309 mirrors this list, so changes to i386.md must be made at the same time. */
2310
2311enum processor_type
2312{
8383d43c 2313 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2314 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2315 PROCESSOR_PENTIUM,
2316 PROCESSOR_PENTIUMPRO,
cfe1b18f 2317 PROCESSOR_GEODE,
5bf0ebab
RH
2318 PROCESSOR_K6,
2319 PROCESSOR_ATHLON,
2320 PROCESSOR_PENTIUM4,
4977bab6 2321 PROCESSOR_K8,
89c43c0a 2322 PROCESSOR_NOCONA,
05f85dbb 2323 PROCESSOR_CORE2,
d326eaf0
JH
2324 PROCESSOR_GENERIC32,
2325 PROCESSOR_GENERIC64,
21efb4d4 2326 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2327 PROCESSOR_max
2328};
2329
9e555526 2330extern enum processor_type ix86_tune;
5bf0ebab 2331extern enum processor_type ix86_arch;
5bf0ebab
RH
2332
2333enum fpmath_unit
2334{
2335 FPMATH_387 = 1,
2336 FPMATH_SSE = 2
2337};
2338
2339extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2340
f996902d
RH
2341enum tls_dialect
2342{
2343 TLS_DIALECT_GNU,
5bf5a10b 2344 TLS_DIALECT_GNU2,
f996902d
RH
2345 TLS_DIALECT_SUN
2346};
2347
2348extern enum tls_dialect ix86_tls_dialect;
f996902d 2349
6189a572 2350enum cmodel {
5bf0ebab
RH
2351 CM_32, /* The traditional 32-bit ABI. */
2352 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2353 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2354 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2355 CM_LARGE, /* No assumptions. */
7dcbf659 2356 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2357 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2358 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2359};
2360
5bf0ebab 2361extern enum cmodel ix86_cmodel;
5bf0ebab 2362
8362f420
JH
2363/* Size of the RED_ZONE area. */
2364#define RED_ZONE_SIZE 128
2365/* Reserved area of the red zone for temporaries. */
2366#define RED_ZONE_RESERVE 8
c93e80a5
JH
2367
2368enum asm_dialect {
2369 ASM_ATT,
2370 ASM_INTEL
2371};
5bf0ebab 2372
80f33d06 2373extern enum asm_dialect ix86_asm_dialect;
95899b34 2374extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2375extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2376
2377/* Smallest class containing REGNO. */
2378extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2379
d9a5f180
GS
2380extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2381extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2382extern rtx ix86_compare_emitted;
22fb740d
JH
2383\f
2384/* To properly truncate FP values into integers, we need to set i387 control
2385 word. We can't emit proper mode switching code before reload, as spills
2386 generated by reload may truncate values incorrectly, but we still can avoid
2387 redundant computation of new control word by the mode switching pass.
2388 The fldcw instructions are still emitted redundantly, but this is probably
2389 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2390 the sequence.
22fb740d
JH
2391
2392 The machinery is to emit simple truncation instructions and split them
2393 before reload to instructions having USEs of two memory locations that
2394 are filled by this code to old and new control word.
fce5a9f2 2395
22fb740d
JH
2396 Post-reload pass may be later used to eliminate the redundant fildcw if
2397 needed. */
2398
ff680eb1
UB
2399enum ix86_entity
2400{
2401 I387_TRUNC = 0,
2402 I387_FLOOR,
2403 I387_CEIL,
2404 I387_MASK_PM,
2405 MAX_386_ENTITIES
2406};
2407
1cba2b96 2408enum ix86_stack_slot
ff680eb1 2409{
80dcd3aa
UB
2410 SLOT_VIRTUAL = 0,
2411 SLOT_TEMP,
ff680eb1
UB
2412 SLOT_CW_STORED,
2413 SLOT_CW_TRUNC,
2414 SLOT_CW_FLOOR,
2415 SLOT_CW_CEIL,
2416 SLOT_CW_MASK_PM,
2417 MAX_386_STACK_LOCALS
2418};
22fb740d
JH
2419
2420/* Define this macro if the port needs extra instructions inserted
2421 for mode switching in an optimizing compilation. */
2422
ff680eb1
UB
2423#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2424 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2425
2426/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2427 initializer for an array of integers. Each initializer element N
2428 refers to an entity that needs mode switching, and specifies the
2429 number of different modes that might need to be set for this
2430 entity. The position of the initializer in the initializer -
2431 starting counting at zero - determines the integer that is used to
2432 refer to the mode-switched entity in question. */
2433
ff680eb1
UB
2434#define NUM_MODES_FOR_MODE_SWITCHING \
2435 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2436
2437/* ENTITY is an integer specifying a mode-switched entity. If
2438 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2439 return an integer value not larger than the corresponding element
2440 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2441 must be switched into prior to the execution of INSN. */
2442
2443#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2444
2445/* This macro specifies the order in which modes for ENTITY are
2446 processed. 0 is the highest priority. */
2447
d9a5f180 2448#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2449
2450/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2451 is the set of hard registers live at the point where the insn(s)
2452 are to be inserted. */
2453
2454#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2455 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2456 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2457 : 0)
ff680eb1 2458
0f0138b6
JH
2459\f
2460/* Avoid renaming of stack registers, as doing so in combination with
2461 scheduling just increases amount of live registers at time and in
2462 the turn amount of fxch instructions needed.
2463
43f3a59d 2464 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2465
d9a5f180 2466#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2467 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2468
3b3c6a3f 2469\f
e91f04de 2470#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2471\f
2472struct machine_function GTY(())
2473{
2474 struct stack_local_entry *stack_locals;
2475 const char *some_ld_name;
150cdc9e 2476 rtx force_align_arg_pointer;
fa1a0d02
JH
2477 int save_varrargs_registers;
2478 int accesses_prev_frame;
ff680eb1 2479 int optimize_mode_switching[MAX_386_ENTITIES];
922e3e33
UB
2480 int needs_cld;
2481 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2482 expander to determine the style used. */
d9b40e8d 2483 int use_fast_prologue_epilogue;
d7394366
JH
2484 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2485 for. */
2486 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2487 /* If true, the current function needs the default PIC register, not
2488 an alternate register (on x86) and must not use the red zone (on
2489 x86_64), even if it's a leaf function. We don't want the
2490 function to be regarded as non-leaf because TLS calls need not
2491 affect register allocation. This flag is set when a TLS call
2492 instruction is expanded within a function, and never reset, even
2493 if all such instructions are optimized away. Use the
2494 ix86_current_function_calls_tls_descriptor macro for a better
2495 approximation. */
2496 int tls_descriptor_call_expanded_p;
7c800926
KT
2497 /* This value is used for amd64 targets and specifies the current abi
2498 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2499 int call_abi;
fa1a0d02
JH
2500};
2501
2502#define ix86_stack_locals (cfun->machine->stack_locals)
2503#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2504#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2505#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2506#define ix86_tls_descriptor_calls_expanded_in_cfun \
2507 (cfun->machine->tls_descriptor_call_expanded_p)
2508/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2509 calls are optimized away, we try to detect cases in which it was
2510 optimized away. Since such instructions (use (reg REG_SP)), we can
2511 verify whether there's any such instruction live by testing that
2512 REG_SP is live. */
2513#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2514 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2515
1bc7c5b6
ZW
2516/* Control behavior of x86_file_start. */
2517#define X86_FILE_START_VERSION_DIRECTIVE false
2518#define X86_FILE_START_FLTUSED false
2519
7dcbf659
JH
2520/* Flag to mark data that is in the large address area. */
2521#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2522#define SYMBOL_REF_FAR_ADDR_P(X) \
2523 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2524
2525/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2526 have defined always, to avoid ifdefing. */
2527#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2528#define SYMBOL_REF_DLLIMPORT_P(X) \
2529 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2530
2531#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2532#define SYMBOL_REF_DLLEXPORT_P(X) \
2533 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2534
e70444a8
HJ
2535/* Model costs for vectorizer. */
2536
2537/* Cost of conditional branch. */
2538#undef TARG_COND_BRANCH_COST
2539#define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2540
2541/* Cost of any scalar operation, excluding load and store. */
2542#undef TARG_SCALAR_STMT_COST
2543#define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2544
2545/* Cost of scalar load. */
2546#undef TARG_SCALAR_LOAD_COST
2547#define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2548
2549/* Cost of scalar store. */
2550#undef TARG_SCALAR_STORE_COST
2551#define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2552
2553/* Cost of any vector operation, excluding load, store or vector to scalar
4f3f76e6 2554 operation. */
e70444a8
HJ
2555#undef TARG_VEC_STMT_COST
2556#define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2557
2558/* Cost of vector to scalar operation. */
2559#undef TARG_VEC_TO_SCALAR_COST
2560#define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2561
2562/* Cost of scalar to vector operation. */
2563#undef TARG_SCALAR_TO_VEC_COST
2564#define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2565
2566/* Cost of aligned vector load. */
2567#undef TARG_VEC_LOAD_COST
2568#define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2569
2570/* Cost of misaligned vector load. */
2571#undef TARG_VEC_UNALIGNED_LOAD_COST
2572#define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2573
2574/* Cost of vector store. */
2575#undef TARG_VEC_STORE_COST
2576#define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2577
2578/* Cost of conditional taken branch for vectorizer cost model. */
2579#undef TARG_COND_TAKEN_BRANCH_COST
2580#define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2581
2582/* Cost of conditional not taken branch for vectorizer cost model. */
2583#undef TARG_COND_NOT_TAKEN_BRANCH_COST
2584#define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2585
c98f8742
JVA
2586/*
2587Local variables:
2588version-control: t
2589End:
2590*/