]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR rtl-optimization/56745 (ICE in merge_if_block)
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
d1e082c2 2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36
MM
42#define TARGET_64BIT TARGET_ISA_64BIT
43#define TARGET_MMX TARGET_ISA_MMX
44#define TARGET_3DNOW TARGET_ISA_3DNOW
45#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
46#define TARGET_SSE TARGET_ISA_SSE
47#define TARGET_SSE2 TARGET_ISA_SSE2
48#define TARGET_SSE3 TARGET_ISA_SSE3
49#define TARGET_SSSE3 TARGET_ISA_SSSE3
50#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
51#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
52#define TARGET_AVX TARGET_ISA_AVX
53#define TARGET_AVX2 TARGET_ISA_AVX2
54#define TARGET_FMA TARGET_ISA_FMA
55#define TARGET_SSE4A TARGET_ISA_SSE4A
56#define TARGET_FMA4 TARGET_ISA_FMA4
57#define TARGET_XOP TARGET_ISA_XOP
58#define TARGET_LWP TARGET_ISA_LWP
59#define TARGET_ROUND TARGET_ISA_ROUND
60#define TARGET_ABM TARGET_ISA_ABM
61#define TARGET_BMI TARGET_ISA_BMI
62#define TARGET_BMI2 TARGET_ISA_BMI2
63#define TARGET_LZCNT TARGET_ISA_LZCNT
64#define TARGET_TBM TARGET_ISA_TBM
65#define TARGET_POPCNT TARGET_ISA_POPCNT
66#define TARGET_SAHF TARGET_ISA_SAHF
67#define TARGET_MOVBE TARGET_ISA_MOVBE
68#define TARGET_CRC32 TARGET_ISA_CRC32
69#define TARGET_AES TARGET_ISA_AES
70#define TARGET_PCLMUL TARGET_ISA_PCLMUL
71#define TARGET_CMPXCHG16B TARGET_ISA_CX16
72#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
73#define TARGET_RDRND TARGET_ISA_RDRND
74#define TARGET_F16C TARGET_ISA_F16C
75#define TARGET_RTM TARGET_ISA_RTM
76#define TARGET_HLE TARGET_ISA_HLE
77#define TARGET_RDSEED TARGET_ISA_RDSEED
78#define TARGET_PRFCHW TARGET_ISA_PRFCHW
79#define TARGET_ADX TARGET_ISA_ADX
3a0d99bb
AI
80#define TARGET_FXSR TARGET_ISA_FXSR
81#define TARGET_XSAVE TARGET_ISA_XSAVE
82#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
ab442df7 83
90922d36
MM
84#define TARGET_LP64 TARGET_ABI_64
85#define TARGET_X32 TARGET_ABI_X32
04e1d06b 86
cbf2e4d4
HJ
87/* SSE4.1 defines round instructions */
88#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 89#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 90
26b5109f
RS
91#include "config/vxworks-dummy.h"
92
7eb68c06 93#include "config/i386/i386-opts.h"
ccf8e764 94
c69fa2d4 95#define MAX_STRINGOP_ALGS 4
ccf8e764 96
8c996513
JH
97/* Specify what algorithm to use for stringops on known size.
98 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
99 known at compile time or estimated via feedback, the SIZE array
100 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 101 means infinity). Corresponding ALG is used then.
340ef734
JH
102 When NOALIGN is true the code guaranting the alignment of the memory
103 block is skipped.
104
8c996513 105 For example initializer:
4f3f76e6 106 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 107 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 108 be used otherwise. */
8c996513
JH
109struct stringop_algs
110{
111 const enum stringop_alg unknown_size;
112 const struct stringop_strategy {
113 const int max;
114 const enum stringop_alg alg;
340ef734 115 int noalign;
c69fa2d4 116 } size [MAX_STRINGOP_ALGS];
8c996513
JH
117};
118
d4ba09c0
SC
119/* Define the specific costs for a given cpu */
120
121struct processor_costs {
8b60264b
KG
122 const int add; /* cost of an add instruction */
123 const int lea; /* cost of a lea instruction */
124 const int shift_var; /* variable shift costs */
125 const int shift_const; /* constant shift costs */
f676971a 126 const int mult_init[5]; /* cost of starting a multiply
4977bab6 127 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 128 const int mult_bit; /* cost of multiply per each bit set */
f676971a 129 const int divide[5]; /* cost of a divide/mod
4977bab6 130 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
131 int movsx; /* The cost of movsx operation. */
132 int movzx; /* The cost of movzx operation. */
8b60264b
KG
133 const int large_insn; /* insns larger than this cost more */
134 const int move_ratio; /* The threshold of number of scalar
ac775968 135 memory-to-memory move insns. */
8b60264b
KG
136 const int movzbl_load; /* cost of loading using movzbl */
137 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
138 in QImode, HImode and SImode relative
139 to reg-reg move (2). */
8b60264b 140 const int int_store[3]; /* cost of storing integer register
96e7ae40 141 in QImode, HImode and SImode */
8b60264b
KG
142 const int fp_move; /* cost of reg,reg fld/fst */
143 const int fp_load[3]; /* cost of loading FP register
96e7ae40 144 in SFmode, DFmode and XFmode */
8b60264b 145 const int fp_store[3]; /* cost of storing FP register
96e7ae40 146 in SFmode, DFmode and XFmode */
8b60264b
KG
147 const int mmx_move; /* cost of moving MMX register. */
148 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 149 in SImode and DImode */
8b60264b 150 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 151 in SImode and DImode */
8b60264b
KG
152 const int sse_move; /* cost of moving SSE register. */
153 const int sse_load[3]; /* cost of loading SSE register
fa79946e 154 in SImode, DImode and TImode*/
8b60264b 155 const int sse_store[3]; /* cost of storing SSE register
fa79946e 156 in SImode, DImode and TImode*/
8b60264b 157 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 158 integer and vice versa. */
46cb0441
ZD
159 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
160 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
161 const int prefetch_block; /* bytes moved to cache for prefetch. */
162 const int simultaneous_prefetches; /* number of parallel prefetch
163 operations. */
4977bab6 164 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
165 const int fadd; /* cost of FADD and FSUB instructions. */
166 const int fmul; /* cost of FMUL instruction. */
167 const int fdiv; /* cost of FDIV instruction. */
168 const int fabs; /* cost of FABS instruction. */
169 const int fchs; /* cost of FCHS instruction. */
170 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 171 /* Specify what algorithm
bee51209
L
172 to use for stringops on unknown size. */
173 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
174 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
175 load and store. */
176 const int scalar_load_cost; /* Cost of scalar load. */
177 const int scalar_store_cost; /* Cost of scalar store. */
178 const int vec_stmt_cost; /* Cost of any vector operation, excluding
179 load, store, vector-to-scalar and
180 scalar-to-vector operation. */
181 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
182 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 183 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
184 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
185 const int vec_store_cost; /* Cost of vector store. */
186 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
187 cost model. */
188 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
189 vectorizer cost model. */
d4ba09c0
SC
190};
191
8b60264b 192extern const struct processor_costs *ix86_cost;
b2077fd2
JH
193extern const struct processor_costs ix86_size_cost;
194
195#define ix86_cur_cost() \
196 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 197
c98f8742
JVA
198/* Macros used in the machine description to test the flags. */
199
ddd5a7c1 200/* configure can arrange to make this 2, to force a 486. */
e075ae69 201
35b528be 202#ifndef TARGET_CPU_DEFAULT
d326eaf0 203#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 204#endif
35b528be 205
004d3859
GK
206#ifndef TARGET_FPMATH_DEFAULT
207#define TARGET_FPMATH_DEFAULT \
208 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
209#endif
210
6ac49599 211#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 212
5791cc29
JT
213/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
214 compile-time constant. */
215#ifdef IN_LIBGCC2
6ac49599 216#undef TARGET_64BIT
5791cc29
JT
217#ifdef __x86_64__
218#define TARGET_64BIT 1
219#else
220#define TARGET_64BIT 0
221#endif
222#else
6ac49599
RS
223#ifndef TARGET_BI_ARCH
224#undef TARGET_64BIT
67adf6a9 225#if TARGET_64BIT_DEFAULT
0c2dc519
JH
226#define TARGET_64BIT 1
227#else
228#define TARGET_64BIT 0
229#endif
230#endif
5791cc29 231#endif
25f94bb5 232
750054a2
CT
233#define HAS_LONG_COND_BRANCH 1
234#define HAS_LONG_UNCOND_BRANCH 1
235
9e555526
RH
236#define TARGET_386 (ix86_tune == PROCESSOR_I386)
237#define TARGET_486 (ix86_tune == PROCESSOR_I486)
238#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
239#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 240#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
241#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
242#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
243#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
244#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 245#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 246#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734
JH
247#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
248#define TARGET_COREI7 (ix86_tune == PROCESSOR_COREI7)
3a579e09 249#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d326eaf0
JH
250#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
251#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
252#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 253#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 254#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 255#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 256#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
14b52538 257#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 258#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
b6837b94 259#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
a269a03c 260
80fd744f
RH
261/* Feature tests against the various tunings. */
262enum ix86_tune_indices {
263 X86_TUNE_USE_LEAVE,
264 X86_TUNE_PUSH_MEMORY,
265 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f 266 X86_TUNE_UNROLL_STRLEN,
80fd744f
RH
267 X86_TUNE_BRANCH_PREDICTION_HINTS,
268 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 269 X86_TUNE_USE_SAHF,
80fd744f
RH
270 X86_TUNE_MOVX,
271 X86_TUNE_PARTIAL_REG_STALL,
272 X86_TUNE_PARTIAL_FLAG_REG_STALL,
7b38ee83 273 X86_TUNE_LCP_STALL,
80fd744f
RH
274 X86_TUNE_USE_HIMODE_FIOP,
275 X86_TUNE_USE_SIMODE_FIOP,
276 X86_TUNE_USE_MOV0,
277 X86_TUNE_USE_CLTD,
278 X86_TUNE_USE_XCHGB,
279 X86_TUNE_SPLIT_LONG_MOVES,
280 X86_TUNE_READ_MODIFY_WRITE,
281 X86_TUNE_READ_MODIFY,
282 X86_TUNE_PROMOTE_QIMODE,
283 X86_TUNE_FAST_PREFIX,
284 X86_TUNE_SINGLE_STRINGOP,
285 X86_TUNE_QIMODE_MATH,
286 X86_TUNE_HIMODE_MATH,
287 X86_TUNE_PROMOTE_QI_REGS,
288 X86_TUNE_PROMOTE_HI_REGS,
d8b08ecd
UB
289 X86_TUNE_SINGLE_POP,
290 X86_TUNE_DOUBLE_POP,
291 X86_TUNE_SINGLE_PUSH,
292 X86_TUNE_DOUBLE_PUSH,
80fd744f
RH
293 X86_TUNE_INTEGER_DFMODE_MOVES,
294 X86_TUNE_PARTIAL_REG_DEPENDENCY,
295 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
296 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
297 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
298 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
299 X86_TUNE_SSE_SPLIT_REGS,
300 X86_TUNE_SSE_TYPELESS_STORES,
301 X86_TUNE_SSE_LOAD0_BY_PXOR,
302 X86_TUNE_MEMORY_MISMATCH_STALL,
303 X86_TUNE_PROLOGUE_USING_MOVE,
304 X86_TUNE_EPILOGUE_USING_MOVE,
305 X86_TUNE_SHIFT1,
306 X86_TUNE_USE_FFREEP,
307 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 308 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
309 X86_TUNE_FOUR_JUMP_LIMIT,
310 X86_TUNE_SCHEDULE,
311 X86_TUNE_USE_BT,
312 X86_TUNE_USE_INCDEC,
313 X86_TUNE_PAD_RETURNS,
e7ed95a2 314 X86_TUNE_PAD_SHORT_FUNCTION,
80fd744f 315 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9 316 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 317 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
318 X86_TUNE_SLOW_IMUL_IMM32_MEM,
319 X86_TUNE_SLOW_IMUL_IMM8,
320 X86_TUNE_MOVE_M1_VIA_OR,
321 X86_TUNE_NOT_UNPAIRABLE,
322 X86_TUNE_NOT_VECTORMODE,
54723b46 323 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 324 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 325 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 326 X86_TUNE_OPT_AGU,
e72eba85 327 X86_TUNE_VECTORIZE_DOUBLE,
5d0878e7 328 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
5c0d88e6 329 X86_TUNE_AVX128_OPTIMAL,
df7b0cc4
EI
330 X86_TUNE_REASSOC_INT_TO_PARALLEL,
331 X86_TUNE_REASSOC_FP_TO_PARALLEL,
55a2c322 332 X86_TUNE_GENERAL_REGS_SSE_SPILL,
6c72ea12 333 X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE,
80fd744f
RH
334
335 X86_TUNE_LAST
336};
337
ab442df7 338extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
339
340#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
341#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
342#define TARGET_ZERO_EXTEND_WITH_AND \
343 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 344#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
345#define TARGET_BRANCH_PREDICTION_HINTS \
346 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
347#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
348#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
349#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
350#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
351#define TARGET_PARTIAL_FLAG_REG_STALL \
352 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
353#define TARGET_LCP_STALL \
354 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
355#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
356#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
357#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
358#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
359#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
360#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
361#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
362#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
363#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
364#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
365#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
366#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
367#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
368#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
369#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
370#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
371#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
372#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
373#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
374#define TARGET_INTEGER_DFMODE_MOVES \
375 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
376#define TARGET_PARTIAL_REG_DEPENDENCY \
377 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
378#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
379 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
380#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
381 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
382#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
383 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
384#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
385 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
386#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
387#define TARGET_SSE_TYPELESS_STORES \
388 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
389#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
390#define TARGET_MEMORY_MISMATCH_STALL \
391 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
392#define TARGET_PROLOGUE_USING_MOVE \
393 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
394#define TARGET_EPILOGUE_USING_MOVE \
395 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
396#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
397#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
398#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
399#define TARGET_INTER_UNIT_CONVERSIONS\
400 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
401#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
402#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
403#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
404#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
405#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
406#define TARGET_PAD_SHORT_FUNCTION \
407 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
408#define TARGET_EXT_80387_CONSTANTS \
409 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
410#define TARGET_AVOID_VECTOR_DECODE \
411 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
412#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
413 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
414#define TARGET_SLOW_IMUL_IMM32_MEM \
415 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
416#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
417#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
418#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
419#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
420#define TARGET_USE_VECTOR_FP_CONVERTS \
421 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
422#define TARGET_USE_VECTOR_CONVERTS \
423 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
424#define TARGET_FUSE_CMP_AND_BRANCH \
425 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 426#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
427#define TARGET_VECTORIZE_DOUBLE \
428 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
429#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
430 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
431#define TARGET_AVX128_OPTIMAL \
432 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
433#define TARGET_REASSOC_INT_TO_PARALLEL \
434 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
435#define TARGET_REASSOC_FP_TO_PARALLEL \
436 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
437#define TARGET_GENERAL_REGS_SSE_SPILL \
438 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
439#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
440 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
df7b0cc4 441
80fd744f
RH
442/* Feature tests against the various architecture variations. */
443enum ix86_arch_indices {
cef31f9c 444 X86_ARCH_CMOV,
80fd744f
RH
445 X86_ARCH_CMPXCHG,
446 X86_ARCH_CMPXCHG8B,
447 X86_ARCH_XADD,
448 X86_ARCH_BSWAP,
449
450 X86_ARCH_LAST
451};
4f3f76e6 452
ab442df7 453extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 454
cef31f9c 455#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
456#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
457#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
458#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
459#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
460
cef31f9c
UB
461/* For sane SSE instruction set generation we need fcomi instruction.
462 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
463 expands to a sequence that includes conditional move. */
464#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
465
80fd744f
RH
466#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
467
cb261eb7 468extern unsigned char x86_prefetch_sse;
80fd744f
RH
469#define TARGET_PREFETCH_SSE x86_prefetch_sse
470
80fd744f
RH
471#define ASSEMBLER_DIALECT (ix86_asm_dialect)
472
473#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
474#define TARGET_MIX_SSE_I387 \
475 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
476
477#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
478#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
479#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 480#define TARGET_SUN_TLS 0
1ef45b77 481
67adf6a9
RH
482#ifndef TARGET_64BIT_DEFAULT
483#define TARGET_64BIT_DEFAULT 0
25f94bb5 484#endif
74dc3e94
RH
485#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
486#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
487#endif
25f94bb5 488
79f5e442
ZD
489/* Fence to use after loop using storent. */
490
491extern tree x86_mfence;
492#define FENCE_FOLLOWING_MOVNT x86_mfence
493
0ed4a390
JL
494/* Once GDB has been enhanced to deal with functions without frame
495 pointers, we can change this to allow for elimination of
496 the frame pointer in leaf functions. */
497#define TARGET_DEFAULT 0
67adf6a9 498
0a1c5e55
UB
499/* Extra bits to force. */
500#define TARGET_SUBTARGET_DEFAULT 0
501#define TARGET_SUBTARGET_ISA_DEFAULT 0
502
503/* Extra bits to force on w/ 32-bit mode. */
504#define TARGET_SUBTARGET32_DEFAULT 0
505#define TARGET_SUBTARGET32_ISA_DEFAULT 0
506
ccf8e764
RH
507/* Extra bits to force on w/ 64-bit mode. */
508#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 509#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 510
fee3eacd
IS
511/* Replace MACH-O, ifdefs by in-line tests, where possible.
512 (a) Macros defined in config/i386/darwin.h */
b069de3b 513#define TARGET_MACHO 0
9005471b 514#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
515#define MACHOPIC_ATT_STUB 0
516/* (b) Macros defined in config/darwin.h */
517#define MACHO_DYNAMIC_NO_PIC_P 0
518#define MACHOPIC_INDIRECT 0
519#define MACHOPIC_PURE 0
9005471b 520
5a579c3b
LE
521/* For the RDOS */
522#define TARGET_RDOS 0
523
9005471b 524/* For the Windows 64-bit ABI. */
7c800926
KT
525#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
526
6510e8bb
KT
527/* For the Windows 32-bit ABI. */
528#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
529
f81c9774
RH
530/* This is re-defined by cygming.h. */
531#define TARGET_SEH 0
532
51212b32 533/* The default abi used by target. */
7c800926 534#define DEFAULT_ABI SYSV_ABI
ccf8e764 535
cc69336f
RH
536/* Subtargets may reset this to 1 in order to enable 96-bit long double
537 with the rounding mode forced to 53 bits. */
538#define TARGET_96_ROUND_53_LONG_DOUBLE 0
539
682cd442
GK
540/* -march=native handling only makes sense with compiler running on
541 an x86 or x86_64 chip. If changing this condition, also change
542 the condition in driver-i386.c. */
543#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
544/* In driver-i386.c. */
545extern const char *host_detect_local_cpu (int argc, const char **argv);
546#define EXTRA_SPEC_FUNCTIONS \
547 { "local_cpu_detect", host_detect_local_cpu },
682cd442 548#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
549#endif
550
8981c15b
JM
551#if TARGET_64BIT_DEFAULT
552#define OPT_ARCH64 "!m32"
553#define OPT_ARCH32 "m32"
554#else
f0ea7581
L
555#define OPT_ARCH64 "m64|mx32"
556#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
557#endif
558
1cba2b96
EC
559/* Support for configure-time defaults of some command line options.
560 The order here is important so that -march doesn't squash the
561 tune or cpu values. */
ce998900 562#define OPTION_DEFAULT_SPECS \
da2d4c01 563 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
564 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
565 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 566 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
567 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
568 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
569 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
570 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
571 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 572
241e1a89
SC
573/* Specs for the compiler proper */
574
628714d8 575#ifndef CC1_CPU_SPEC
eb5bb0fd 576#define CC1_CPU_SPEC_1 ""
fa959ce4 577
682cd442 578#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
579#define CC1_CPU_SPEC CC1_CPU_SPEC_1
580#else
581#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
582"%{march=native:%>march=native %:local_cpu_detect(arch) \
583 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
584%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 585#endif
241e1a89 586#endif
c98f8742 587\f
30efe578 588/* Target CPU builtins. */
ab442df7
MM
589#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
590
591/* Target Pragmas. */
592#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 593
c2f17e19
UB
594enum target_cpu_default
595{
596 TARGET_CPU_DEFAULT_generic = 0,
597
598 TARGET_CPU_DEFAULT_i386,
599 TARGET_CPU_DEFAULT_i486,
600 TARGET_CPU_DEFAULT_pentium,
601 TARGET_CPU_DEFAULT_pentium_mmx,
602 TARGET_CPU_DEFAULT_pentiumpro,
603 TARGET_CPU_DEFAULT_pentium2,
604 TARGET_CPU_DEFAULT_pentium3,
605 TARGET_CPU_DEFAULT_pentium4,
606 TARGET_CPU_DEFAULT_pentium_m,
607 TARGET_CPU_DEFAULT_prescott,
608 TARGET_CPU_DEFAULT_nocona,
609 TARGET_CPU_DEFAULT_core2,
9d8477b6 610 TARGET_CPU_DEFAULT_corei7,
3a579e09 611 TARGET_CPU_DEFAULT_haswell,
b6837b94 612 TARGET_CPU_DEFAULT_atom,
c2f17e19
UB
613
614 TARGET_CPU_DEFAULT_geode,
615 TARGET_CPU_DEFAULT_k6,
616 TARGET_CPU_DEFAULT_k6_2,
617 TARGET_CPU_DEFAULT_k6_3,
618 TARGET_CPU_DEFAULT_athlon,
619 TARGET_CPU_DEFAULT_athlon_sse,
620 TARGET_CPU_DEFAULT_k8,
621 TARGET_CPU_DEFAULT_amdfam10,
1133125e 622 TARGET_CPU_DEFAULT_bdver1,
4d652a18 623 TARGET_CPU_DEFAULT_bdver2,
eb2f2b44 624 TARGET_CPU_DEFAULT_bdver3,
14b52538 625 TARGET_CPU_DEFAULT_btver1,
e32bfc16 626 TARGET_CPU_DEFAULT_btver2,
c2f17e19
UB
627
628 TARGET_CPU_DEFAULT_max
629};
0c2dc519 630
628714d8 631#ifndef CC1_SPEC
8015b78d 632#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
633#endif
634
635/* This macro defines names of additional specifications to put in the
636 specs that can be used in various specifications like CC1_SPEC. Its
637 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
638
639 Each subgrouping contains a string constant, that defines the
188fc5b5 640 specification name, and a string constant that used by the GCC driver
bcd86433
SC
641 program.
642
643 Do not define this macro if it does not need to do anything. */
644
645#ifndef SUBTARGET_EXTRA_SPECS
646#define SUBTARGET_EXTRA_SPECS
647#endif
648
649#define EXTRA_SPECS \
628714d8 650 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
651 SUBTARGET_EXTRA_SPECS
652\f
ce998900 653
d57a4b98
RH
654/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
655 FPU, assume that the fpcw is set to extended precision; when using
656 only SSE, rounding is correct; when using both SSE and the FPU,
657 the rounding precision is indeterminate, since either may be chosen
658 apparently at random. */
659#define TARGET_FLT_EVAL_METHOD \
5ccd517a 660 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 661
8ce94e44
JM
662/* Whether to allow x87 floating-point arithmetic on MODE (one of
663 SFmode, DFmode and XFmode) in the current excess precision
664 configuration. */
665#define X87_ENABLE_ARITH(MODE) \
666 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
667
668/* Likewise, whether to allow direct conversions from integer mode
669 IMODE (HImode, SImode or DImode) to MODE. */
670#define X87_ENABLE_FLOAT(MODE, IMODE) \
671 (flag_excess_precision == EXCESS_PRECISION_FAST \
672 || (MODE) == XFmode \
673 || ((MODE) == DFmode && (IMODE) == SImode) \
674 || (IMODE) == HImode)
675
979c67a5
UB
676/* target machine storage layout */
677
65d9c0ab
JH
678#define SHORT_TYPE_SIZE 16
679#define INT_TYPE_SIZE 32
f0ea7581
L
680#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
681#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 682#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 683#define FLOAT_TYPE_SIZE 32
65d9c0ab 684#define DOUBLE_TYPE_SIZE 64
c637141a 685#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
979c67a5 686
c637141a
L
687/* Define this to set long double type size to use in libgcc2.c, which can
688 not depend on target_flags. */
689#ifdef __LONG_DOUBLE_64__
690#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
691#else
692#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
693#endif
694
695#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 696
67adf6a9 697#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 698#define MAX_BITS_PER_WORD 64
0c2dc519
JH
699#else
700#define MAX_BITS_PER_WORD 32
0c2dc519
JH
701#endif
702
c98f8742
JVA
703/* Define this if most significant byte of a word is the lowest numbered. */
704/* That is true on the 80386. */
705
706#define BITS_BIG_ENDIAN 0
707
708/* Define this if most significant byte of a word is the lowest numbered. */
709/* That is not true on the 80386. */
710#define BYTES_BIG_ENDIAN 0
711
712/* Define this if most significant word of a multiword number is the lowest
713 numbered. */
714/* Not true for 80386 */
715#define WORDS_BIG_ENDIAN 0
716
c98f8742 717/* Width of a word, in units (bytes). */
4ae8027b 718#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
719
720#ifndef IN_LIBGCC2
2e64c636
JH
721#define MIN_UNITS_PER_WORD 4
722#endif
c98f8742 723
c98f8742 724/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 725#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 726
e075ae69 727/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 728#define STACK_BOUNDARY \
51212b32 729 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 730
2e3f842f
L
731/* Stack boundary of the main function guaranteed by OS. */
732#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
733
de1132d1 734/* Minimum stack boundary. */
5bfb2af2 735#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 736
d1f87653 737/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 738 aligned; the compiler cannot rely on having this alignment. */
e075ae69 739#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 740
de1132d1 741/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
742 both 32bit and 64bit, to support codes that need 128 bit stack
743 alignment for SSE instructions, but can't realign the stack. */
744#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
745
746/* 1 if -mstackrealign should be turned on by default. It will
747 generate an alternate prologue and epilogue that realigns the
748 runtime stack if nessary. This supports mixing codes that keep a
749 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 750 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
751#define STACK_REALIGN_DEFAULT 0
752
753/* Boundary (in *bits*) on which the incoming stack is aligned. */
754#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 755
a2851b75
TG
756/* According to Windows x64 software convention, the maximum stack allocatable
757 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
758 instructions allowed to adjust the stack pointer in the epilog, forcing the
759 use of frame pointer for frames larger than 2 GB. This theorical limit
760 is reduced by 256, an over-estimated upper bound for the stack use by the
761 prologue.
762 We define only one threshold for both the prolog and the epilog. When the
4e523f33 763 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
764 regs, then save them, and then allocate the remaining. There is no SEH
765 unwind info for this later allocation. */
766#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
767
ebff937c
SH
768/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
769 mandatory for the 64-bit ABI, and may or may not be true for other
770 operating systems. */
771#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
772
f963b5d9
RS
773/* Minimum allocation boundary for the code of a function. */
774#define FUNCTION_BOUNDARY 8
775
776/* C++ stores the virtual bit in the lowest bit of function pointers. */
777#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 778
c98f8742
JVA
779/* Minimum size in bits of the largest boundary to which any
780 and all fundamental data types supported by the hardware
781 might need to be aligned. No data type wants to be aligned
17f24ff0 782 rounder than this.
fce5a9f2 783
d1f87653 784 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
785 and Pentium Pro XFmode values at 128 bit boundaries. */
786
2824d6e5 787#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
17f24ff0 788
2e3f842f
L
789/* Maximum stack alignment. */
790#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
791
6e4f1168
L
792/* Alignment value for attribute ((aligned)). It is a constant since
793 it is the part of the ABI. We shouldn't change it with -mavx. */
794#define ATTRIBUTE_ALIGNED_VALUE 128
795
822eda12 796/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 797#define ALIGN_MODE_128(MODE) \
4501d314 798 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 799
17f24ff0 800/* The published ABIs say that doubles should be aligned on word
d1f87653 801 boundaries, so lower the alignment for structure fields unless
6fc605d8 802 -malign-double is set. */
e932b21b 803
e83f3cff
RH
804/* ??? Blah -- this macro is used directly by libobjc. Since it
805 supports no vector modes, cut out the complexity and fall back
806 on BIGGEST_FIELD_ALIGNMENT. */
807#ifdef IN_TARGET_LIBS
ef49d42e
JH
808#ifdef __x86_64__
809#define BIGGEST_FIELD_ALIGNMENT 128
810#else
e83f3cff 811#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 812#endif
e83f3cff 813#else
e932b21b
JH
814#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
815 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 816#endif
c98f8742 817
e5e8a8bf 818/* If defined, a C expression to compute the alignment given to a
a7180f70 819 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
820 and ALIGN is the alignment that the object would ordinarily have.
821 The value of this macro is used instead of that alignment to align
822 the object.
823
824 If this macro is not defined, then ALIGN is used.
825
826 The typical use of this macro is to increase alignment for string
827 constants to be word aligned so that `strcpy' calls that copy
828 constants can be done inline. */
829
d9a5f180 830#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 831
8a022443
JW
832/* If defined, a C expression to compute the alignment for a static
833 variable. TYPE is the data type, and ALIGN is the alignment that
834 the object would ordinarily have. The value of this macro is used
835 instead of that alignment to align the object.
836
837 If this macro is not defined, then ALIGN is used.
838
839 One use of this macro is to increase alignment of medium-size
840 data to make it all fit in fewer cache lines. Another is to
841 cause character arrays to be word-aligned so that `strcpy' calls
842 that copy constants to character arrays can be done inline. */
843
d9a5f180 844#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
845
846/* If defined, a C expression to compute the alignment for a local
847 variable. TYPE is the data type, and ALIGN is the alignment that
848 the object would ordinarily have. The value of this macro is used
849 instead of that alignment to align the object.
850
851 If this macro is not defined, then ALIGN is used.
852
853 One use of this macro is to increase alignment of medium-size
854 data to make it all fit in fewer cache lines. */
855
76fe54f0
L
856#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
857 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
858
859/* If defined, a C expression to compute the alignment for stack slot.
860 TYPE is the data type, MODE is the widest mode available, and ALIGN
861 is the alignment that the slot would ordinarily have. The value of
862 this macro is used instead of that alignment to align the slot.
863
864 If this macro is not defined, then ALIGN is used when TYPE is NULL,
865 Otherwise, LOCAL_ALIGNMENT will be used.
866
867 One use of this macro is to set alignment of stack slot to the
868 maximum alignment of all possible modes which the slot may have. */
869
870#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
871 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 872
9bfaf89d
JJ
873/* If defined, a C expression to compute the alignment for a local
874 variable DECL.
875
876 If this macro is not defined, then
877 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
878
879 One use of this macro is to increase alignment of medium-size
880 data to make it all fit in fewer cache lines. */
881
882#define LOCAL_DECL_ALIGNMENT(DECL) \
883 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
884
ae58e548
JJ
885/* If defined, a C expression to compute the minimum required alignment
886 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
887 MODE, assuming normal alignment ALIGN.
888
889 If this macro is not defined, then (ALIGN) will be used. */
890
891#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
892 ix86_minimum_alignment (EXP, MODE, ALIGN)
893
9bfaf89d 894
9cd10576 895/* Set this nonzero if move instructions will actually fail to work
c98f8742 896 when given unaligned data. */
b4ac57ab 897#define STRICT_ALIGNMENT 0
c98f8742
JVA
898
899/* If bit field type is int, don't let it cross an int,
900 and give entire struct the alignment of an int. */
43a88a8c 901/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 902#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
903\f
904/* Standard register usage. */
905
906/* This processor has special stack-like registers. See reg-stack.c
892a2d68 907 for details. */
c98f8742
JVA
908
909#define STACK_REGS
ce998900 910
d9a5f180 911#define IS_STACK_MODE(MODE) \
63001560
UB
912 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
913 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 914 || (MODE) == XFmode)
c98f8742
JVA
915
916/* Number of actual hardware registers.
917 The hardware registers are assigned numbers for the compiler
918 from 0 to just below FIRST_PSEUDO_REGISTER.
919 All registers that the compiler knows about must be given numbers,
920 even those that are not normally considered general registers.
921
922 In the 80386 we give the 8 general purpose registers the numbers 0-7.
923 We number the floating point registers 8-15.
924 Note that registers 0-7 can be accessed as a short or int,
925 while only 0-3 may be used with byte `mov' instructions.
926
927 Reg 16 does not correspond to any hardware register, but instead
928 appears in the RTL as an argument pointer prior to reload, and is
929 eliminated during reloading in favor of either the stack or frame
892a2d68 930 pointer. */
c98f8742 931
b0d95de8 932#define FIRST_PSEUDO_REGISTER 53
c98f8742 933
3073d01c
ML
934/* Number of hardware registers that go into the DWARF-2 unwind info.
935 If not defined, equals FIRST_PSEUDO_REGISTER. */
936
937#define DWARF_FRAME_REGISTERS 17
938
c98f8742
JVA
939/* 1 for registers that have pervasive standard uses
940 and are not available for the register allocator.
3f3f2124 941 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 942
621bc046
UB
943 REX registers are disabled for 32bit targets in
944 TARGET_CONDITIONAL_REGISTER_USAGE. */
945
a7180f70
BS
946#define FIXED_REGISTERS \
947/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 948{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
949/*arg,flags,fpsr,fpcr,frame*/ \
950 1, 1, 1, 1, 1, \
a7180f70
BS
951/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
952 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 953/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
954 0, 0, 0, 0, 0, 0, 0, 0, \
955/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 956 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 957/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 958 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
959
960/* 1 for registers not available across function calls.
961 These must include the FIXED_REGISTERS and also any
962 registers that can be used without being saved.
963 The latter must include the registers where values are returned
964 and the register where structure-value addresses are passed.
fce5a9f2
EC
965 Aside from that, you can include as many other registers as you like.
966
621bc046
UB
967 Value is set to 1 if the register is call used unconditionally.
968 Bit one is set if the register is call used on TARGET_32BIT ABI.
969 Bit two is set if the register is call used on TARGET_64BIT ABI.
970 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
971
972 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
973
a7180f70
BS
974#define CALL_USED_REGISTERS \
975/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 976{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
977/*arg,flags,fpsr,fpcr,frame*/ \
978 1, 1, 1, 1, 1, \
a7180f70 979/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 980 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 981/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 982 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 983/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 984 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 985/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 986 6, 6, 6, 6, 6, 6, 6, 6 }
c98f8742 987
3b3c6a3f
MM
988/* Order in which to allocate registers. Each register must be
989 listed once, even those in FIXED_REGISTERS. List frame pointer
990 late and fixed registers last. Note that, in general, we prefer
991 registers listed in CALL_USED_REGISTERS, keeping the others
992 available for storage of persistent values.
993
5a733826 994 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 995 so this is just empty initializer for array. */
3b3c6a3f 996
162f023b
JH
997#define REG_ALLOC_ORDER \
998{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
999 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1000 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 1001 48, 49, 50, 51, 52 }
3b3c6a3f 1002
5a733826 1003/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1004 to be rearranged based on a particular function. When using sse math,
03c259ad 1005 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1006
5a733826 1007#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1008
f5316dfe 1009
7c800926
KT
1010#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1011
c98f8742
JVA
1012/* Return number of consecutive hard regs needed starting at reg REGNO
1013 to hold something of mode MODE.
1014 This is ordinarily the length in words of a value of mode MODE
1015 but can be less for certain modes in special long registers.
1016
fce5a9f2 1017 Actually there are no two word move instructions for consecutive
c98f8742 1018 registers. And only registers 0-3 may have mov byte instructions
63001560 1019 applied to them. */
c98f8742 1020
ce998900 1021#define HARD_REGNO_NREGS(REGNO, MODE) \
66aaf16f 1022 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
92d0fb09 1023 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1024 : ((MODE) == XFmode \
92d0fb09 1025 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1026 : (MODE) == XCmode \
92d0fb09 1027 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1028 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1029
8521c414
JM
1030#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1031 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1032 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1033 ? 0 \
1034 : ((MODE) == XFmode || (MODE) == XCmode)) \
1035 : 0)
1036
1037#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1038
95879c72
L
1039#define VALID_AVX256_REG_MODE(MODE) \
1040 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1041 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1042 || (MODE) == V4DFmode)
95879c72 1043
ff97910d
VY
1044#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1045 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1046
ce998900
UB
1047#define VALID_SSE2_REG_MODE(MODE) \
1048 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1049 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1050
d9a5f180 1051#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1052 ((MODE) == V1TImode || (MODE) == TImode \
1053 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1054 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1055
47f339cf 1056#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1057 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1058
d9a5f180 1059#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1060 ((MODE == V1DImode) || (MODE) == DImode \
1061 || (MODE) == V2SImode || (MODE) == SImode \
1062 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1063
ce998900
UB
1064#define VALID_DFP_MODE_P(MODE) \
1065 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1066
d9a5f180 1067#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1068 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1069 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1070
d9a5f180 1071#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1072 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1073 || (MODE) == DImode \
1074 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1075 || (MODE) == CDImode \
1076 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1077 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1078
822eda12 1079/* Return true for modes passed in SSE registers. */
ce998900 1080#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1081 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1082 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1083 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1084 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1085 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1086 || (MODE) == V2TImode)
822eda12 1087
e075ae69 1088/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1089
a946dd00 1090#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1091 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1092
1093/* Value is 1 if it is a good idea to tie two pseudo registers
1094 when one has mode MODE1 and one has mode MODE2.
1095 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1096 for any hard reg, then this must be 0 for correct output. */
1097
c1c5b5e3 1098#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1099
ff25ef99
ZD
1100/* It is possible to write patterns to move flags; but until someone
1101 does it, */
1102#define AVOID_CCMODE_COPIES
c98f8742 1103
e075ae69 1104/* Specify the modes required to caller save a given hard regno.
787dc842 1105 We do this on i386 to prevent flags from being saved at all.
e075ae69 1106
787dc842
JH
1107 Kill any attempts to combine saving of modes. */
1108
d9a5f180
GS
1109#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1110 (CC_REGNO_P (REGNO) ? VOIDmode \
1111 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1112 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1113 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
fc27f749 1114 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
d2836273 1115 : (MODE))
ce998900 1116
51ba747a
RH
1117/* The only ABI that saves SSE registers across calls is Win64 (thus no
1118 need to check the current ABI here), and with AVX enabled Win64 only
1119 guarantees that the low 16 bytes are saved. */
1120#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1121 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1122
c98f8742
JVA
1123/* Specify the registers used for certain standard purposes.
1124 The values of these macros are register numbers. */
1125
1126/* on the 386 the pc register is %eip, and is not usable as a general
1127 register. The ordinary mov instructions won't work */
1128/* #define PC_REGNUM */
1129
1130/* Register to use for pushing function arguments. */
1131#define STACK_POINTER_REGNUM 7
1132
1133/* Base register for access to local variables of the function. */
564d80f4
JH
1134#define HARD_FRAME_POINTER_REGNUM 6
1135
1136/* Base register for access to local variables of the function. */
b0d95de8 1137#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1138
1139/* First floating point reg */
1140#define FIRST_FLOAT_REG 8
1141
1142/* First & last stack-like regs */
1143#define FIRST_STACK_REG FIRST_FLOAT_REG
1144#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1145
a7180f70
BS
1146#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1147#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1148
a7180f70
BS
1149#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1150#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1151
3f3f2124
JH
1152#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1153#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1154
1155#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1156#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1157
aabcd309 1158/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1159 requiring a frame pointer. */
1160#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1161#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1162#endif
1163
1164/* Make sure we can access arbitrary call frames. */
1165#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1166
1167/* Base register for access to arguments of the function. */
1168#define ARG_POINTER_REGNUM 16
1169
c98f8742 1170/* Register to hold the addressing base for position independent
5b43fed1
RH
1171 code access to data items. We don't use PIC pointer for 64bit
1172 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1173 pessimizing code dealing with EBX.
bd09bdeb
RH
1174
1175 To avoid clobbering a call-saved register unnecessarily, we renumber
1176 the pic register when possible. The change is visible after the
1177 prologue has been emitted. */
1178
2e3f842f 1179#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1180
1181#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1182 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1183 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1184 : reload_completed ? REGNO (pic_offset_table_rtx) \
1185 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1186
5fc0e5df
KW
1187#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1188
c51e6d85 1189/* This is overridden by <cygwin.h>. */
5e062767
DS
1190#define MS_AGGREGATE_RETURN 0
1191
61fec9ff 1192#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1193\f
1194/* Define the classes of registers for register constraints in the
1195 machine description. Also define ranges of constants.
1196
1197 One of the classes must always be named ALL_REGS and include all hard regs.
1198 If there is more than one class, another class must be named NO_REGS
1199 and contain no registers.
1200
1201 The name GENERAL_REGS must be the name of a class (or an alias for
1202 another name such as ALL_REGS). This is the class of registers
1203 that is allowed by "g" or "r" in a register constraint.
1204 Also, registers outside this class are allocated only when
1205 instructions express preferences for them.
1206
1207 The classes must be numbered in nondecreasing order; that is,
1208 a larger-numbered class must never be contained completely
1209 in a smaller-numbered class.
1210
1211 For any two classes, it is very desirable that there be another
ab408a86
JVA
1212 class that represents their union.
1213
1214 It might seem that class BREG is unnecessary, since no useful 386
1215 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1216 and the "b" register constraint is useful in asms for syscalls.
1217
03c259ad 1218 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1219
1220enum reg_class
1221{
1222 NO_REGS,
e075ae69 1223 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1224 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1225 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1226 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1227 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1228 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1229 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1230 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1231 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1232 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1233 FLOAT_REGS,
06f4e35d 1234 SSE_FIRST_REG,
a7180f70
BS
1235 SSE_REGS,
1236 MMX_REGS,
446988df
JH
1237 FP_TOP_SSE_REGS,
1238 FP_SECOND_SSE_REGS,
1239 FLOAT_SSE_REGS,
1240 FLOAT_INT_REGS,
1241 INT_SSE_REGS,
1242 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1243 ALL_REGS, LIM_REG_CLASSES
1244};
1245
d9a5f180
GS
1246#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1247
1248#define INTEGER_CLASS_P(CLASS) \
1249 reg_class_subset_p ((CLASS), GENERAL_REGS)
1250#define FLOAT_CLASS_P(CLASS) \
1251 reg_class_subset_p ((CLASS), FLOAT_REGS)
1252#define SSE_CLASS_P(CLASS) \
06f4e35d 1253 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1254#define MMX_CLASS_P(CLASS) \
f75959a6 1255 ((CLASS) == MMX_REGS)
d9a5f180
GS
1256#define MAYBE_INTEGER_CLASS_P(CLASS) \
1257 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1258#define MAYBE_FLOAT_CLASS_P(CLASS) \
1259 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1260#define MAYBE_SSE_CLASS_P(CLASS) \
1261 reg_classes_intersect_p (SSE_REGS, (CLASS))
1262#define MAYBE_MMX_CLASS_P(CLASS) \
1263 reg_classes_intersect_p (MMX_REGS, (CLASS))
1264
1265#define Q_CLASS_P(CLASS) \
1266 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1267
43f3a59d 1268/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1269
1270#define REG_CLASS_NAMES \
1271{ "NO_REGS", \
ab408a86 1272 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1273 "SIREG", "DIREG", \
e075ae69
RH
1274 "AD_REGS", \
1275 "Q_REGS", "NON_Q_REGS", \
c98f8742 1276 "INDEX_REGS", \
3f3f2124 1277 "LEGACY_REGS", \
621bc046 1278 "CLOBBERED_REGS", \
c98f8742
JVA
1279 "GENERAL_REGS", \
1280 "FP_TOP_REG", "FP_SECOND_REG", \
1281 "FLOAT_REGS", \
cb482895 1282 "SSE_FIRST_REG", \
a7180f70
BS
1283 "SSE_REGS", \
1284 "MMX_REGS", \
446988df
JH
1285 "FP_TOP_SSE_REGS", \
1286 "FP_SECOND_SSE_REGS", \
1287 "FLOAT_SSE_REGS", \
8fcaaa80 1288 "FLOAT_INT_REGS", \
446988df
JH
1289 "INT_SSE_REGS", \
1290 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1291 "ALL_REGS" }
1292
ac2e563f
RH
1293/* Define which registers fit in which classes. This is an initializer
1294 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1295
621bc046
UB
1296 Note that CLOBBERED_REGS are calculated by
1297 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1298
a7180f70 1299#define REG_CLASS_CONTENTS \
3f3f2124
JH
1300{ { 0x00, 0x0 }, \
1301 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1302 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1303 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1304 { 0x03, 0x0 }, /* AD_REGS */ \
1305 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1306 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1307 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1308 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
621bc046 1309 { 0x00, 0x0 }, /* CLOBBERED_REGS */ \
b0d95de8 1310 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1311 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1312 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1313 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1314{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1315{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1316{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1317{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
0b99eef6 1318{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
b197fc48
UB
1319 { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1320{ 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1321{ 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
b0d95de8 1322{ 0xffffffff,0x1fffff } \
e075ae69 1323}
c98f8742
JVA
1324
1325/* The same information, inverted:
1326 Return the class number of the smallest class containing
1327 reg number REGNO. This could be a conditional expression
1328 or could index an array. */
1329
c98f8742
JVA
1330#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1331
42db504c
SB
1332/* When this hook returns true for MODE, the compiler allows
1333 registers explicitly used in the rtl to be used as spill registers
1334 but prevents the compiler from extending the lifetime of these
1335 registers. */
1336#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1337
fc27f749
UB
1338#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1339#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1340
1341#define GENERAL_REG_P(X) \
6189a572 1342 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1343#define GENERAL_REGNO_P(N) \
1344 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1345
fc27f749
UB
1346#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1347#define ANY_QI_REGNO_P(N) \
1348 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1349
fc27f749 1350#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1351#define REX_INT_REGNO_P(N) \
1352 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1353
66aaf16f
UB
1354#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1355#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1356
446988df 1357#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1358#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1359
54a88090 1360#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1361 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1362
fc27f749 1363#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1364#define SSE_REGNO_P(N) \
1365 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1366 || REX_SSE_REGNO_P (N))
3f3f2124 1367
4977bab6 1368#define REX_SSE_REGNO_P(N) \
fb84c7a0 1369 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1370
d9a5f180
GS
1371#define SSE_REGNO(N) \
1372 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1373
d9a5f180 1374#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1375 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1376
cbf2e4d4
HJ
1377#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1378 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1379 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1380
fc27f749 1381#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1382#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1383
fc27f749 1384#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1385
e075ae69
RH
1386#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1387#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1388
c98f8742
JVA
1389/* The class value for index registers, and the one for base regs. */
1390
1391#define INDEX_REG_CLASS INDEX_REGS
1392#define BASE_REG_CLASS GENERAL_REGS
1393
c98f8742 1394/* Place additional restrictions on the register class to use when it
4cbb525c 1395 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1396 register for which class CLASS would ordinarily be used.
1397
1398 We avoid classes containing registers from multiple units due to
1399 the limitation in ix86_secondary_memory_needed. We limit these
1400 classes to their "natural mode" single unit register class, depending
1401 on the unit availability.
1402
1403 Please note that reg_class_subset_p is not commutative, so these
1404 conditions mean "... if (CLASS) includes ALL registers from the
1405 register set." */
1406
1407#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1408 (((MODE) == QImode && !TARGET_64BIT \
1409 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1410 : (((MODE) == SImode || (MODE) == DImode) \
1411 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1412 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1413 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1414 : (X87_FLOAT_MODE_P (MODE) \
1415 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1416 : (CLASS))
c98f8742 1417
85ff473e 1418/* If we are copying between general and FP registers, we need a memory
f84aa48a 1419 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1420#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1421 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1422
c62b3659
UB
1423/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1424 There is no need to emit full 64 bit move on 64 bit targets
1425 for integral modes that can be moved using 32 bit move. */
1426#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1427 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1428 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1429 : MODE)
1430
1272914c
RH
1431/* Return a class of registers that cannot change FROM mode to TO mode. */
1432
1433#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1434 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1435\f
1436/* Stack layout; function entry, exit and calling. */
1437
1438/* Define this if pushing a word on the stack
1439 makes the stack pointer a smaller address. */
1440#define STACK_GROWS_DOWNWARD
1441
a4d05547 1442/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1443 is at the high-address end of the local variables;
1444 that is, each additional local variable allocated
1445 goes at a more negative offset in the frame. */
f62c8a5c 1446#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1447
1448/* Offset within stack frame to start allocating local variables at.
1449 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1450 first local allocated. Otherwise, it is the offset to the BEGINNING
1451 of the first local allocated. */
1452#define STARTING_FRAME_OFFSET 0
1453
8c2b2fae
UB
1454/* If we generate an insn to push BYTES bytes, this says how many the stack
1455 pointer really advances by. On 386, we have pushw instruction that
1456 decrements by exactly 2 no matter what the position was, there is no pushb.
1457
1458 But as CIE data alignment factor on this arch is -4 for 32bit targets
1459 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1460 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1461
d2836273 1462#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1463 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1464
1465/* If defined, the maximum amount of space required for outgoing arguments
1466 will be computed and placed into the variable `crtl->outgoing_args_size'.
1467 No space will be pushed onto the stack for each call; instead, the
1468 function prologue should increase the stack frame size by this amount.
9aa5c1b2 1469
6510e8bb
KT
1470 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1471 function prologue and apilogue. This is not possible without
9aa5c1b2 1472 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1473
6c6094f1 1474#define ACCUMULATE_OUTGOING_ARGS \
6510e8bb 1475 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1476
1477/* If defined, a C expression whose value is nonzero when we want to use PUSH
1478 instructions to pass outgoing arguments. */
1479
1480#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1481
2da4124d
L
1482/* We want the stack and args grow in opposite directions, even if
1483 PUSH_ARGS is 0. */
1484#define PUSH_ARGS_REVERSED 1
1485
c98f8742
JVA
1486/* Offset of first parameter from the argument pointer register value. */
1487#define FIRST_PARM_OFFSET(FNDECL) 0
1488
a7180f70
BS
1489/* Define this macro if functions should assume that stack space has been
1490 allocated for arguments even when their values are passed in registers.
1491
1492 The value of this macro is the size, in bytes, of the area reserved for
1493 arguments passed in registers for the function represented by FNDECL.
1494
1495 This space can be allocated by the caller, or be a part of the
1496 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1497 which. */
7c800926
KT
1498#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1499
4ae8027b 1500#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1501 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1502
c98f8742
JVA
1503/* Define how to find the value returned by a library function
1504 assuming the value has mode MODE. */
1505
4ae8027b 1506#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1507
e9125c09
TW
1508/* Define the size of the result block used for communication between
1509 untyped_call and untyped_return. The block contains a DImode value
1510 followed by the block used by fnsave and frstor. */
1511
1512#define APPLY_RESULT_SIZE (8+108)
1513
b08de47e 1514/* 1 if N is a possible register number for function argument passing. */
53c17031 1515#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1516
1517/* Define a data type for recording info about an argument list
1518 during the scan of that argument list. This data type should
1519 hold all necessary information about the function itself
1520 and about the args processed so far, enough to enable macros
b08de47e 1521 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1522
e075ae69 1523typedef struct ix86_args {
fa283935 1524 int words; /* # words passed so far */
b08de47e
MM
1525 int nregs; /* # registers available for passing */
1526 int regno; /* next available register number */
3e65f251
KT
1527 int fastcall; /* fastcall or thiscall calling convention
1528 is used */
fa283935 1529 int sse_words; /* # sse words passed so far */
a7180f70 1530 int sse_nregs; /* # sse registers available for passing */
95879c72 1531 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1532 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1533 int warn_mmx; /* True when we want to warn about MMX ABI. */
1534 int sse_regno; /* next available sse register number */
1535 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1536 int mmx_nregs; /* # mmx registers available for passing */
1537 int mmx_regno; /* next available mmx register number */
892a2d68 1538 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1539 int caller; /* true if it is caller. */
2824d6e5
UB
1540 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1541 SFmode/DFmode arguments should be passed
1542 in SSE registers. Otherwise 0. */
51212b32 1543 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1544 MS_ABI for ms abi. */
b08de47e 1545} CUMULATIVE_ARGS;
c98f8742
JVA
1546
1547/* Initialize a variable CUM of type CUMULATIVE_ARGS
1548 for a call to a function whose data type is FNTYPE.
b08de47e 1549 For a library call, FNTYPE is 0. */
c98f8742 1550
0f6937fe 1551#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1552 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1553 (N_NAMED_ARGS) != -1)
c98f8742 1554
c98f8742
JVA
1555/* Output assembler code to FILE to increment profiler label # LABELNO
1556 for profiling a function entry. */
1557
a5fa1ecd
JH
1558#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1559
1560#define MCOUNT_NAME "_mcount"
1561
3c5273a9
KT
1562#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1563
a5fa1ecd 1564#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1565
1566/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1567 the stack pointer does not matter. The value is tested only in
1568 functions that have frame pointers.
1569 No definition is equivalent to always zero. */
fce5a9f2 1570/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1571 we have to restore it ourselves from the frame pointer, in order to
1572 use pop */
1573
1574#define EXIT_IGNORE_STACK 1
1575
c98f8742
JVA
1576/* Output assembler code for a block containing the constant parts
1577 of a trampoline, leaving space for the variable parts. */
1578
a269a03c 1579/* On the 386, the trampoline contains two instructions:
c98f8742 1580 mov #STATIC,ecx
a269a03c
JC
1581 jmp FUNCTION
1582 The trampoline is generated entirely at runtime. The operand of JMP
1583 is the address of FUNCTION relative to the instruction following the
1584 JMP (which is 5 bytes long). */
c98f8742
JVA
1585
1586/* Length in units of the trampoline for entering a nested function. */
1587
3452586b 1588#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1589\f
1590/* Definitions for register eliminations.
1591
1592 This is an array of structures. Each structure initializes one pair
1593 of eliminable registers. The "from" register number is given first,
1594 followed by "to". Eliminations of the same "from" register are listed
1595 in order of preference.
1596
afc2cd05
NC
1597 There are two registers that can always be eliminated on the i386.
1598 The frame pointer and the arg pointer can be replaced by either the
1599 hard frame pointer or to the stack pointer, depending upon the
1600 circumstances. The hard frame pointer is not used before reload and
1601 so it is not eligible for elimination. */
c98f8742 1602
564d80f4
JH
1603#define ELIMINABLE_REGS \
1604{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1605 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1606 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1607 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1608
c98f8742
JVA
1609/* Define the offset between two registers, one to be eliminated, and the other
1610 its replacement, at the start of a routine. */
1611
d9a5f180
GS
1612#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1613 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1614\f
1615/* Addressing modes, and classification of registers for them. */
1616
c98f8742
JVA
1617/* Macros to check register numbers against specific register classes. */
1618
1619/* These assume that REGNO is a hard or pseudo reg number.
1620 They give nonzero only if REGNO is a hard reg of the suitable class
1621 or a pseudo reg currently allocated to a suitable hard reg.
1622 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1623 has been allocated, which happens in reginfo.c during register
1624 allocation. */
c98f8742 1625
3f3f2124
JH
1626#define REGNO_OK_FOR_INDEX_P(REGNO) \
1627 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1628 || REX_INT_REGNO_P (REGNO) \
1629 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1630 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1631
3f3f2124 1632#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1633 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1634 || (REGNO) == ARG_POINTER_REGNUM \
1635 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1636 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1637
c98f8742
JVA
1638/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1639 and check its validity for a certain class.
1640 We have two alternate definitions for each of them.
1641 The usual definition accepts all pseudo regs; the other rejects
1642 them unless they have been allocated suitable hard regs.
1643 The symbol REG_OK_STRICT causes the latter definition to be used.
1644
1645 Most source files want to accept pseudo regs in the hope that
1646 they will get allocated to the class that the insn wants them to be in.
1647 Source files for reload pass need to be strict.
1648 After reload, it makes no difference, since pseudo regs have
1649 been eliminated by then. */
1650
c98f8742 1651
ff482c8d 1652/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1653#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1654 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1655 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1656 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1657
3b3c6a3f 1658#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1659 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1660 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1661 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1662 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1663
3b3c6a3f
MM
1664/* Strict versions, hard registers only */
1665#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1666#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1667
3b3c6a3f 1668#ifndef REG_OK_STRICT
d9a5f180
GS
1669#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1670#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1671
1672#else
d9a5f180
GS
1673#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1674#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1675#endif
1676
331d9186 1677/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1678 that is a valid memory address for an instruction.
1679 The MODE argument is the machine mode for the MEM expression
1680 that wants to use this address.
1681
331d9186 1682 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1683 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1684
1685 See legitimize_pic_address in i386.c for details as to what
1686 constitutes a legitimate address when -fpic is used. */
1687
1688#define MAX_REGS_PER_ADDRESS 2
1689
f996902d 1690#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1691
ae1547cc
UB
1692/* Try a machine-dependent way of reloading an illegitimate address
1693 operand. If we find one, push the reload and jump to WIN. This
1694 macro is used in only one place: `find_reloads_address' in reload.c. */
1695
1696#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1697do { \
1698 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1699 (int)(TYPE), (INDL))) \
1700 goto WIN; \
1701} while (0)
1702
b949ea8b
JW
1703/* If defined, a C expression to determine the base term of address X.
1704 This macro is used in only one place: `find_base_term' in alias.c.
1705
1706 It is always safe for this macro to not be defined. It exists so
1707 that alias analysis can understand machine-dependent addresses.
1708
1709 The typical use of this macro is to handle addresses containing
1710 a label_ref or symbol_ref within an UNSPEC. */
1711
d9a5f180 1712#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1713
c98f8742 1714/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1715 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1716 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1717
f996902d 1718#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1719
1720#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1721 (GET_CODE (X) == SYMBOL_REF \
1722 || GET_CODE (X) == LABEL_REF \
1723 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1724\f
b08de47e
MM
1725/* Max number of args passed in registers. If this is more than 3, we will
1726 have problems with ebx (register #4), since it is a caller save register and
1727 is also used as the pic register in ELF. So for now, don't allow more than
1728 3 registers to be passed in registers. */
1729
7c800926
KT
1730/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1731#define X86_64_REGPARM_MAX 6
72fa3605 1732#define X86_64_MS_REGPARM_MAX 4
7c800926 1733
72fa3605 1734#define X86_32_REGPARM_MAX 3
7c800926 1735
4ae8027b 1736#define REGPARM_MAX \
2824d6e5
UB
1737 (TARGET_64BIT \
1738 ? (TARGET_64BIT_MS_ABI \
1739 ? X86_64_MS_REGPARM_MAX \
1740 : X86_64_REGPARM_MAX) \
4ae8027b 1741 : X86_32_REGPARM_MAX)
d2836273 1742
72fa3605
UB
1743#define X86_64_SSE_REGPARM_MAX 8
1744#define X86_64_MS_SSE_REGPARM_MAX 4
1745
b6010cab 1746#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1747
4ae8027b 1748#define SSE_REGPARM_MAX \
2824d6e5
UB
1749 (TARGET_64BIT \
1750 ? (TARGET_64BIT_MS_ABI \
1751 ? X86_64_MS_SSE_REGPARM_MAX \
1752 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1753 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1754
1755#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1756\f
1757/* Specify the machine mode that this machine uses
1758 for the index in the tablejump instruction. */
dc4d7240 1759#define CASE_VECTOR_MODE \
6025b127 1760 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1761
c98f8742
JVA
1762/* Define this as 1 if `char' should by default be signed; else as 0. */
1763#define DEFAULT_SIGNED_CHAR 1
1764
1765/* Max number of bytes we can move from memory to memory
1766 in one reasonably fast instruction. */
65d9c0ab
JH
1767#define MOVE_MAX 16
1768
1769/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1770 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1771 number of bytes we can move with a single instruction. */
63001560 1772#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1773
7e24ffc9 1774/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1775 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1776 Increasing the value will always make code faster, but eventually
1777 incurs high cost in increased code size.
c98f8742 1778
e2e52e1b 1779 If you don't define this, a reasonable default is used. */
c98f8742 1780
e04ad03d 1781#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1782
45d78e7f
JJ
1783/* If a clear memory operation would take CLEAR_RATIO or more simple
1784 move-instruction sequences, we will do a clrmem or libcall instead. */
1785
e04ad03d 1786#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1787
53f00dde
UB
1788/* Define if shifts truncate the shift count which implies one can
1789 omit a sign-extension or zero-extension of a shift count.
1790
1791 On i386, shifts do truncate the count. But bit test instructions
1792 take the modulo of the bit offset operand. */
c98f8742
JVA
1793
1794/* #define SHIFT_COUNT_TRUNCATED */
1795
1796/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1797 is done just by pretending it is already truncated. */
1798#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1799
d9f32422
JH
1800/* A macro to update M and UNSIGNEDP when an object whose type is
1801 TYPE and which has the specified mode and signedness is to be
1802 stored in a register. This macro is only called when TYPE is a
1803 scalar type.
1804
f710504c 1805 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1806 quantities to SImode. The choice depends on target type. */
1807
1808#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1809do { \
d9f32422
JH
1810 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1811 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1812 (MODE) = SImode; \
1813} while (0)
d9f32422 1814
c98f8742
JVA
1815/* Specify the machine mode that pointers have.
1816 After generation of rtl, the compiler makes no further distinction
1817 between pointers and any other objects of this machine mode. */
28968d91 1818#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1819
f0ea7581
L
1820/* A C expression whose value is zero if pointers that need to be extended
1821 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1822 greater then zero if they are zero-extended and less then zero if the
1823 ptr_extend instruction should be used. */
1824
1825#define POINTERS_EXTEND_UNSIGNED 1
1826
c98f8742
JVA
1827/* A function address in a call instruction
1828 is a byte address (for indexing purposes)
1829 so give the MEM rtx a byte's mode. */
1830#define FUNCTION_MODE QImode
d4ba09c0 1831\f
d4ba09c0 1832
d4ba09c0
SC
1833/* A C expression for the cost of a branch instruction. A value of 1
1834 is the default; other values are interpreted relative to that. */
1835
3a4fd356
JH
1836#define BRANCH_COST(speed_p, predictable_p) \
1837 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1838
e327d1a3
L
1839/* An integer expression for the size in bits of the largest integer machine
1840 mode that should actually be used. We allow pairs of registers. */
1841#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1842
d4ba09c0
SC
1843/* Define this macro as a C expression which is nonzero if accessing
1844 less than a word of memory (i.e. a `char' or a `short') is no
1845 faster than accessing a word of memory, i.e., if such access
1846 require more than one instruction or if there is no difference in
1847 cost between byte and (aligned) word loads.
1848
1849 When this macro is not defined, the compiler will access a field by
1850 finding the smallest containing object; when it is defined, a
1851 fullword load will be used if alignment permits. Unless bytes
1852 accesses are faster than word accesses, using word accesses is
1853 preferable since it may eliminate subsequent memory access if
1854 subsequent accesses occur to other fields in the same word of the
1855 structure, but to different bytes. */
1856
1857#define SLOW_BYTE_ACCESS 0
1858
1859/* Nonzero if access to memory by shorts is slow and undesirable. */
1860#define SLOW_SHORT_ACCESS 0
1861
d4ba09c0
SC
1862/* Define this macro to be the value 1 if unaligned accesses have a
1863 cost many times greater than aligned accesses, for example if they
1864 are emulated in a trap handler.
1865
9cd10576
KH
1866 When this macro is nonzero, the compiler will act as if
1867 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1868 moves. This can cause significantly more instructions to be
9cd10576 1869 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1870 accesses only add a cycle or two to the time for a memory access.
1871
1872 If the value of this macro is always zero, it need not be defined. */
1873
e1565e65 1874/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1875
d4ba09c0
SC
1876/* Define this macro if it is as good or better to call a constant
1877 function address than to call an address kept in a register.
1878
1879 Desirable on the 386 because a CALL with a constant address is
1880 faster than one with a register address. */
1881
1882#define NO_FUNCTION_CSE
c98f8742 1883\f
c572e5ba
JVA
1884/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1885 return the mode to be used for the comparison.
1886
1887 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1888 VOIDmode should be used in all other cases.
c572e5ba 1889
16189740 1890 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1891 possible, to allow for more combinations. */
c98f8742 1892
d9a5f180 1893#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1894
9cd10576 1895/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1896 reversed. */
1897
1898#define REVERSIBLE_CC_MODE(MODE) 1
1899
1900/* A C expression whose value is reversed condition code of the CODE for
1901 comparison done in CC_MODE mode. */
3c5cb3e4 1902#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1903
c98f8742
JVA
1904\f
1905/* Control the assembler format that we output, to the extent
1906 this does not vary between assemblers. */
1907
1908/* How to refer to registers in assembler output.
892a2d68 1909 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1910
a7b376ee 1911/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1912 For non floating point regs, the following are the HImode names.
1913
1914 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1915 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1916 "y" code. */
c98f8742 1917
a7180f70
BS
1918#define HI_REGISTER_NAMES \
1919{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1920 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1921 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1922 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1923 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1924 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1925 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1926
c98f8742
JVA
1927#define REGISTER_NAMES HI_REGISTER_NAMES
1928
1929/* Table of additional register names to use in user input. */
1930
1931#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1932{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1933 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1934 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1935 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1936 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1937 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1938
1939/* Note we are omitting these since currently I don't know how
1940to get gcc to use these, since they want the same but different
1941number as al, and ax.
1942*/
1943
c98f8742 1944#define QI_REGISTER_NAMES \
3f3f2124 1945{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1946
1947/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1948 of regs 0 through 3. */
c98f8742
JVA
1949
1950#define QI_HIGH_REGISTER_NAMES \
1951{"ah", "dh", "ch", "bh", }
1952
1953/* How to renumber registers for dbx and gdb. */
1954
d9a5f180
GS
1955#define DBX_REGISTER_NUMBER(N) \
1956 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1957
9a82e702
MS
1958extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1959extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1960extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1961
469ac993
JM
1962/* Before the prologue, RA is at 0(%esp). */
1963#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1964 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1965
e414ab29 1966/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1967#define RETURN_ADDR_RTX(COUNT, FRAME) \
1968 ((COUNT) == 0 \
0a81f074
RS
1969 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1970 -UNITS_PER_WORD)) \
1971 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 1972
892a2d68 1973/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1974#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1975
a6ab3aad 1976/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1977#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1978
1020a5ab 1979/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
1980#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1981#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 1982
ad919812 1983
e4c4ebeb
RH
1984/* Select a format to encode pointers in exception handling data. CODE
1985 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1986 true if the symbol may be affected by dynamic relocations.
1987
1988 ??? All x86 object file formats are capable of representing this.
1989 After all, the relocation needed is the same as for the call insn.
1990 Whether or not a particular assembler allows us to enter such, I
1991 guess we'll have to see. */
d9a5f180 1992#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1993 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1994
c98f8742
JVA
1995/* This is how to output an insn to push a register on the stack.
1996 It need not be very fast code. */
1997
d9a5f180 1998#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1999do { \
2000 if (TARGET_64BIT) \
2001 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2002 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2003 else \
2004 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2005} while (0)
c98f8742
JVA
2006
2007/* This is how to output an insn to pop a register from the stack.
2008 It need not be very fast code. */
2009
d9a5f180 2010#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2011do { \
2012 if (TARGET_64BIT) \
2013 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2014 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2015 else \
2016 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2017} while (0)
c98f8742 2018
f88c65f7 2019/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2020
2021#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2022 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2023
f88c65f7 2024/* This is how to output an element of a case-vector that is relative. */
c98f8742 2025
33f7f353 2026#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2027 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2028
63001560 2029/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2030
2031#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2032{ \
2033 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2034 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2035}
2036
2037/* A C statement or statements which output an assembler instruction
2038 opcode to the stdio stream STREAM. The macro-operand PTR is a
2039 variable of type `char *' which points to the opcode name in
2040 its "internal" form--the form that is written in the machine
2041 description. */
2042
2043#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2044 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2045
6a90d232
L
2046/* A C statement to output to the stdio stream FILE an assembler
2047 command to pad the location counter to a multiple of 1<<LOG
2048 bytes if it is within MAX_SKIP bytes. */
2049
2050#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2051#undef ASM_OUTPUT_MAX_SKIP_PAD
2052#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2053 if ((LOG) != 0) \
2054 { \
2055 if ((MAX_SKIP) == 0) \
2056 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2057 else \
2058 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2059 }
2060#endif
2061
135a687e
KT
2062/* Write the extra assembler code needed to declare a function
2063 properly. */
2064
2065#undef ASM_OUTPUT_FUNCTION_LABEL
2066#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2067 ix86_asm_output_function_label (FILE, NAME, DECL)
2068
f7288899
EC
2069/* Under some conditions we need jump tables in the text section,
2070 because the assembler cannot handle label differences between
2071 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2072
2073#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2074 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2075 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2076
cea3bd3e
RH
2077/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2078 and switch back. For x86 we do this only to save a few bytes that
2079 would otherwise be unused in the text section. */
ad211091
KT
2080#define CRT_MKSTR2(VAL) #VAL
2081#define CRT_MKSTR(x) CRT_MKSTR2(x)
2082
2083#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2084 asm (SECTION_OP "\n\t" \
2085 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2086 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2087
2088/* Default threshold for putting data in large sections
2089 with x86-64 medium memory model */
2090#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2091\f
b2b01543 2092/* Which processor to tune code generation for. */
5bf0ebab
RH
2093
2094enum processor_type
2095{
8383d43c 2096 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2097 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2098 PROCESSOR_PENTIUM,
2099 PROCESSOR_PENTIUMPRO,
cfe1b18f 2100 PROCESSOR_GEODE,
5bf0ebab
RH
2101 PROCESSOR_K6,
2102 PROCESSOR_ATHLON,
2103 PROCESSOR_PENTIUM4,
4977bab6 2104 PROCESSOR_K8,
89c43c0a 2105 PROCESSOR_NOCONA,
340ef734
JH
2106 PROCESSOR_CORE2,
2107 PROCESSOR_COREI7,
3a579e09 2108 PROCESSOR_HASWELL,
d326eaf0
JH
2109 PROCESSOR_GENERIC32,
2110 PROCESSOR_GENERIC64,
21efb4d4 2111 PROCESSOR_AMDFAM10,
1133125e 2112 PROCESSOR_BDVER1,
4d652a18 2113 PROCESSOR_BDVER2,
eb2f2b44 2114 PROCESSOR_BDVER3,
14b52538 2115 PROCESSOR_BTVER1,
e32bfc16 2116 PROCESSOR_BTVER2,
b6837b94 2117 PROCESSOR_ATOM,
5bf0ebab
RH
2118 PROCESSOR_max
2119};
2120
9e555526 2121extern enum processor_type ix86_tune;
5bf0ebab 2122extern enum processor_type ix86_arch;
5bf0ebab 2123
8362f420
JH
2124/* Size of the RED_ZONE area. */
2125#define RED_ZONE_SIZE 128
2126/* Reserved area of the red zone for temporaries. */
2127#define RED_ZONE_RESERVE 8
c93e80a5 2128
95899b34 2129extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2130extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2131
2132/* Smallest class containing REGNO. */
2133extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2134
0948ccb2
PB
2135enum ix86_fpcmp_strategy {
2136 IX86_FPCMP_SAHF,
2137 IX86_FPCMP_COMI,
2138 IX86_FPCMP_ARITH
2139};
22fb740d
JH
2140\f
2141/* To properly truncate FP values into integers, we need to set i387 control
2142 word. We can't emit proper mode switching code before reload, as spills
2143 generated by reload may truncate values incorrectly, but we still can avoid
2144 redundant computation of new control word by the mode switching pass.
2145 The fldcw instructions are still emitted redundantly, but this is probably
2146 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2147 the sequence.
22fb740d
JH
2148
2149 The machinery is to emit simple truncation instructions and split them
2150 before reload to instructions having USEs of two memory locations that
2151 are filled by this code to old and new control word.
fce5a9f2 2152
22fb740d
JH
2153 Post-reload pass may be later used to eliminate the redundant fildcw if
2154 needed. */
2155
ff680eb1
UB
2156enum ix86_entity
2157{
ff97910d
VY
2158 AVX_U128 = 0,
2159 I387_TRUNC,
ff680eb1
UB
2160 I387_FLOOR,
2161 I387_CEIL,
2162 I387_MASK_PM,
2163 MAX_386_ENTITIES
2164};
2165
1cba2b96 2166enum ix86_stack_slot
ff680eb1 2167{
443ca5fc 2168 SLOT_TEMP = 0,
ff680eb1
UB
2169 SLOT_CW_STORED,
2170 SLOT_CW_TRUNC,
2171 SLOT_CW_FLOOR,
2172 SLOT_CW_CEIL,
2173 SLOT_CW_MASK_PM,
2174 MAX_386_STACK_LOCALS
2175};
22fb740d 2176
ff97910d
VY
2177enum avx_u128_state
2178{
2179 AVX_U128_CLEAN,
2180 AVX_U128_DIRTY,
2181 AVX_U128_ANY
2182};
2183
22fb740d
JH
2184/* Define this macro if the port needs extra instructions inserted
2185 for mode switching in an optimizing compilation. */
2186
ff680eb1
UB
2187#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2188 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2189
2190/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2191 initializer for an array of integers. Each initializer element N
2192 refers to an entity that needs mode switching, and specifies the
2193 number of different modes that might need to be set for this
2194 entity. The position of the initializer in the initializer -
2195 starting counting at zero - determines the integer that is used to
2196 refer to the mode-switched entity in question. */
2197
ff680eb1 2198#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2199 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2200
2201/* ENTITY is an integer specifying a mode-switched entity. If
2202 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2203 return an integer value not larger than the corresponding element
2204 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff97910d 2205 must be switched into prior to the execution of INSN. */
ff680eb1
UB
2206
2207#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d 2208
ff97910d
VY
2209/* If this macro is defined, it is evaluated for every INSN during
2210 mode switching. It determines the mode that an insn results in (if
2211 different from the incoming mode). */
2212
2213#define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
2214
2215/* If this macro is defined, it is evaluated for every ENTITY that
2216 needs mode switching. It should evaluate to an integer, which is
2217 a mode that ENTITY is assumed to be switched to at function entry. */
2218
2219#define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
2220
2221/* If this macro is defined, it is evaluated for every ENTITY that
2222 needs mode switching. It should evaluate to an integer, which is
2223 a mode that ENTITY is assumed to be switched to at function exit. */
2224
2225#define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
2226
22fb740d
JH
2227/* This macro specifies the order in which modes for ENTITY are
2228 processed. 0 is the highest priority. */
2229
d9a5f180 2230#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2231
2232/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2233 is the set of hard registers live at the point where the insn(s)
2234 are to be inserted. */
2235
ff97910d 2236#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
5756eff7 2237 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
0f0138b6
JH
2238\f
2239/* Avoid renaming of stack registers, as doing so in combination with
2240 scheduling just increases amount of live registers at time and in
2241 the turn amount of fxch instructions needed.
2242
43f3a59d 2243 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2244
66aaf16f 2245#define HARD_REGNO_RENAME_OK(SRC, TARGET) !STACK_REGNO_P (SRC)
22fb740d 2246
3b3c6a3f 2247\f
e91f04de 2248#define FASTCALL_PREFIX '@'
fa1a0d02 2249\f
ec7ded37 2250/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2251
604a6be9 2252#ifndef USED_FOR_TARGET
ec7ded37 2253struct GTY(()) machine_frame_state
cd9c1ca8 2254{
ec7ded37
RH
2255 /* This pair tracks the currently active CFA as reg+offset. When reg
2256 is drap_reg, we don't bother trying to record here the real CFA when
2257 it might really be a DW_CFA_def_cfa_expression. */
2258 rtx cfa_reg;
2259 HOST_WIDE_INT cfa_offset;
2260
2261 /* The current offset (canonically from the CFA) of ESP and EBP.
2262 When stack frame re-alignment is active, these may not be relative
2263 to the CFA. However, in all cases they are relative to the offsets
2264 of the saved registers stored in ix86_frame. */
2265 HOST_WIDE_INT sp_offset;
2266 HOST_WIDE_INT fp_offset;
2267
2268 /* The size of the red-zone that may be assumed for the purposes of
2269 eliding register restore notes in the epilogue. This may be zero
2270 if no red-zone is in effect, or may be reduced from the real
2271 red-zone value by a maximum runtime stack re-alignment value. */
2272 int red_zone_offset;
2273
2274 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2275 value within the frame. If false then the offset above should be
2276 ignored. Note that DRAP, if valid, *always* points to the CFA and
2277 thus has an offset of zero. */
2278 BOOL_BITFIELD sp_valid : 1;
2279 BOOL_BITFIELD fp_valid : 1;
2280 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2281
2282 /* Indicate whether the local stack frame has been re-aligned. When
2283 set, the SP/FP offsets above are relative to the aligned frame
2284 and not the CFA. */
2285 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2286};
2287
f81c9774
RH
2288/* Private to winnt.c. */
2289struct seh_frame_state;
2290
d1b38208 2291struct GTY(()) machine_function {
fa1a0d02
JH
2292 struct stack_local_entry *stack_locals;
2293 const char *some_ld_name;
4aab97f9
L
2294 int varargs_gpr_size;
2295 int varargs_fpr_size;
ff680eb1 2296 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2297
2298 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2299 has been computed for. */
2300 int use_fast_prologue_epilogue_nregs;
2301
7458026b
ILT
2302 /* For -fsplit-stack support: A stack local which holds a pointer to
2303 the stack arguments for a function with a variable number of
2304 arguments. This is set at the start of the function and is used
2305 to initialize the overflow_arg_area field of the va_list
2306 structure. */
2307 rtx split_stack_varargs_pointer;
2308
3452586b
RH
2309 /* This value is used for amd64 targets and specifies the current abi
2310 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2311 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2312
2313 /* Nonzero if the function accesses a previous frame. */
2314 BOOL_BITFIELD accesses_prev_frame : 1;
2315
2316 /* Nonzero if the function requires a CLD in the prologue. */
2317 BOOL_BITFIELD needs_cld : 1;
2318
922e3e33
UB
2319 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2320 expander to determine the style used. */
3452586b
RH
2321 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2322
5bf5a10b
AO
2323 /* If true, the current function needs the default PIC register, not
2324 an alternate register (on x86) and must not use the red zone (on
2325 x86_64), even if it's a leaf function. We don't want the
2326 function to be regarded as non-leaf because TLS calls need not
2327 affect register allocation. This flag is set when a TLS call
2328 instruction is expanded within a function, and never reset, even
2329 if all such instructions are optimized away. Use the
2330 ix86_current_function_calls_tls_descriptor macro for a better
2331 approximation. */
3452586b
RH
2332 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2333
2334 /* If true, the current function has a STATIC_CHAIN is placed on the
2335 stack below the return address. */
2336 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2337
ec7ded37
RH
2338 /* During prologue/epilogue generation, the current frame state.
2339 Otherwise, the frame state at the end of the prologue. */
2340 struct machine_frame_state fs;
f81c9774
RH
2341
2342 /* During SEH output, this is non-null. */
2343 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2344};
cd9c1ca8 2345#endif
fa1a0d02
JH
2346
2347#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2348#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2349#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2350#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2351#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2352#define ix86_tls_descriptor_calls_expanded_in_cfun \
2353 (cfun->machine->tls_descriptor_call_expanded_p)
2354/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2355 calls are optimized away, we try to detect cases in which it was
2356 optimized away. Since such instructions (use (reg REG_SP)), we can
2357 verify whether there's any such instruction live by testing that
2358 REG_SP is live. */
2359#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2360 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2361#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2362
1bc7c5b6
ZW
2363/* Control behavior of x86_file_start. */
2364#define X86_FILE_START_VERSION_DIRECTIVE false
2365#define X86_FILE_START_FLTUSED false
2366
7dcbf659
JH
2367/* Flag to mark data that is in the large address area. */
2368#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2369#define SYMBOL_REF_FAR_ADDR_P(X) \
2370 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2371
2372/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2373 have defined always, to avoid ifdefing. */
2374#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2375#define SYMBOL_REF_DLLIMPORT_P(X) \
2376 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2377
2378#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2379#define SYMBOL_REF_DLLEXPORT_P(X) \
2380 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2381
7942e47e
RY
2382extern void debug_ready_dispatch (void);
2383extern void debug_dispatch_window (int);
2384
91afcfa3
QN
2385/* The value at zero is only defined for the BMI instructions
2386 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2387#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2388 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2389#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2390 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2391
2392
b8ce4e94
KT
2393/* Flags returned by ix86_get_callcvt (). */
2394#define IX86_CALLCVT_CDECL 0x1
2395#define IX86_CALLCVT_STDCALL 0x2
2396#define IX86_CALLCVT_FASTCALL 0x4
2397#define IX86_CALLCVT_THISCALL 0x8
2398#define IX86_CALLCVT_REGPARM 0x10
2399#define IX86_CALLCVT_SSEREGPARM 0x20
2400
2401#define IX86_BASE_CALLCVT(FLAGS) \
2402 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2403 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2404
b86b9f44
MM
2405#define RECIP_MASK_NONE 0x00
2406#define RECIP_MASK_DIV 0x01
2407#define RECIP_MASK_SQRT 0x02
2408#define RECIP_MASK_VEC_DIV 0x04
2409#define RECIP_MASK_VEC_SQRT 0x08
2410#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2411 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2412#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2413
2414#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2415#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2416#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2417#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2418
5dcfdccd
KY
2419#define IX86_HLE_ACQUIRE (1 << 16)
2420#define IX86_HLE_RELEASE (1 << 17)
2421
c98f8742
JVA
2422/*
2423Local variables:
2424version-control: t
2425End:
2426*/