]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
2007-xx-xx Nigel Stephens <nigel@mips.com> David Ung <davidu@mips.com> Thiemo...
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
8a2fcf91
KH
3 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation,
4 Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742
JVA
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
188fc5b5 19along with GCC; see the file COPYING. If not, write to
39d14dda
KC
20the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21Boston, MA 02110-1301, USA. */
c98f8742 22
ccf8e764
RH
23/* The purpose of this file is to define the characteristics of the i386,
24 independent of assembler syntax or operating system.
25
26 Three other files build on this one to describe a specific assembler syntax:
27 bsd386.h, att386.h, and sun386.h.
28
29 The actual tm.h file for a particular system should include
30 this file, and then the file for the appropriate assembler syntax.
31
32 Many macros that specify assembler syntax are omitted entirely from
33 this file because they really belong in the files for particular
34 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
35 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
36 that start with ASM_ or end in ASM_OP. */
37
0a1c5e55
UB
38/* Redefines for option macros. */
39
40#define TARGET_64BIT OPTION_ISA_64BIT
41#define TARGET_MMX OPTION_ISA_MMX
42#define TARGET_3DNOW OPTION_ISA_3DNOW
43#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
44#define TARGET_SSE OPTION_ISA_SSE
45#define TARGET_SSE2 OPTION_ISA_SSE2
46#define TARGET_SSE3 OPTION_ISA_SSE3
47#define TARGET_SSSE3 OPTION_ISA_SSSE3
48#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 49#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
0a1c5e55
UB
50#define TARGET_SSE4A OPTION_ISA_SSE4A
51
26b5109f
RS
52#include "config/vxworks-dummy.h"
53
8c996513
JH
54/* Algorithm to expand string function with. */
55enum stringop_alg
56{
57 no_stringop,
58 libcall,
59 rep_prefix_1_byte,
60 rep_prefix_4_byte,
61 rep_prefix_8_byte,
62 loop_1_byte,
63 loop,
64 unrolled_loop
65};
ccf8e764 66
8c996513 67#define NAX_STRINGOP_ALGS 4
ccf8e764 68
8c996513
JH
69/* Specify what algorithm to use for stringops on known size.
70 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
71 known at compile time or estimated via feedback, the SIZE array
72 is walked in order until MAX is greater then the estimate (or -1
73 means infinity). Corresponding ALG is used then.
74 For example initializer:
75 {{256, loop}, {-1, rep_prefix_4_byte}}
76 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 77 be used otherwise. */
8c996513
JH
78struct stringop_algs
79{
80 const enum stringop_alg unknown_size;
81 const struct stringop_strategy {
82 const int max;
83 const enum stringop_alg alg;
84 } size [NAX_STRINGOP_ALGS];
85};
86
d4ba09c0
SC
87/* Define the specific costs for a given cpu */
88
89struct processor_costs {
8b60264b
KG
90 const int add; /* cost of an add instruction */
91 const int lea; /* cost of a lea instruction */
92 const int shift_var; /* variable shift costs */
93 const int shift_const; /* constant shift costs */
f676971a 94 const int mult_init[5]; /* cost of starting a multiply
4977bab6 95 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 96 const int mult_bit; /* cost of multiply per each bit set */
f676971a 97 const int divide[5]; /* cost of a divide/mod
4977bab6 98 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
99 int movsx; /* The cost of movsx operation. */
100 int movzx; /* The cost of movzx operation. */
8b60264b
KG
101 const int large_insn; /* insns larger than this cost more */
102 const int move_ratio; /* The threshold of number of scalar
ac775968 103 memory-to-memory move insns. */
8b60264b
KG
104 const int movzbl_load; /* cost of loading using movzbl */
105 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
106 in QImode, HImode and SImode relative
107 to reg-reg move (2). */
8b60264b 108 const int int_store[3]; /* cost of storing integer register
96e7ae40 109 in QImode, HImode and SImode */
8b60264b
KG
110 const int fp_move; /* cost of reg,reg fld/fst */
111 const int fp_load[3]; /* cost of loading FP register
96e7ae40 112 in SFmode, DFmode and XFmode */
8b60264b 113 const int fp_store[3]; /* cost of storing FP register
96e7ae40 114 in SFmode, DFmode and XFmode */
8b60264b
KG
115 const int mmx_move; /* cost of moving MMX register. */
116 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 117 in SImode and DImode */
8b60264b 118 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 119 in SImode and DImode */
8b60264b
KG
120 const int sse_move; /* cost of moving SSE register. */
121 const int sse_load[3]; /* cost of loading SSE register
fa79946e 122 in SImode, DImode and TImode*/
8b60264b 123 const int sse_store[3]; /* cost of storing SSE register
fa79946e 124 in SImode, DImode and TImode*/
8b60264b 125 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 126 integer and vice versa. */
f4365627
JH
127 const int prefetch_block; /* bytes moved to cache for prefetch. */
128 const int simultaneous_prefetches; /* number of parallel prefetch
129 operations. */
4977bab6 130 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
131 const int fadd; /* cost of FADD and FSUB instructions. */
132 const int fmul; /* cost of FMUL instruction. */
133 const int fdiv; /* cost of FDIV instruction. */
134 const int fabs; /* cost of FABS instruction. */
135 const int fchs; /* cost of FCHS instruction. */
136 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
137 /* Specify what algorithm
138 to use for stringops on unknown size. */
139 struct stringop_algs memcpy[2], memset[2];
d4ba09c0
SC
140};
141
8b60264b 142extern const struct processor_costs *ix86_cost;
d4ba09c0 143
c98f8742
JVA
144/* Macros used in the machine description to test the flags. */
145
ddd5a7c1 146/* configure can arrange to make this 2, to force a 486. */
e075ae69 147
35b528be 148#ifndef TARGET_CPU_DEFAULT
d326eaf0 149#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 150#endif
35b528be 151
004d3859
GK
152#ifndef TARGET_FPMATH_DEFAULT
153#define TARGET_FPMATH_DEFAULT \
154 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
155#endif
156
6ac49599 157#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 158
5791cc29
JT
159/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
160 compile-time constant. */
161#ifdef IN_LIBGCC2
6ac49599 162#undef TARGET_64BIT
5791cc29
JT
163#ifdef __x86_64__
164#define TARGET_64BIT 1
165#else
166#define TARGET_64BIT 0
167#endif
168#else
6ac49599
RS
169#ifndef TARGET_BI_ARCH
170#undef TARGET_64BIT
67adf6a9 171#if TARGET_64BIT_DEFAULT
0c2dc519
JH
172#define TARGET_64BIT 1
173#else
174#define TARGET_64BIT 0
175#endif
176#endif
5791cc29 177#endif
25f94bb5 178
750054a2
CT
179#define HAS_LONG_COND_BRANCH 1
180#define HAS_LONG_UNCOND_BRANCH 1
181
9e555526
RH
182#define TARGET_386 (ix86_tune == PROCESSOR_I386)
183#define TARGET_486 (ix86_tune == PROCESSOR_I486)
184#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
185#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 186#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
187#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
188#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
189#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
190#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 191#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 192#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 193#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
194#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
195#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
196#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 197#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 198
80fd744f
RH
199/* Feature tests against the various tunings. */
200enum ix86_tune_indices {
201 X86_TUNE_USE_LEAVE,
202 X86_TUNE_PUSH_MEMORY,
203 X86_TUNE_ZERO_EXTEND_WITH_AND,
204 X86_TUNE_USE_BIT_TEST,
205 X86_TUNE_UNROLL_STRLEN,
206 X86_TUNE_DEEP_BRANCH_PREDICTION,
207 X86_TUNE_BRANCH_PREDICTION_HINTS,
208 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 209 X86_TUNE_USE_SAHF,
80fd744f
RH
210 X86_TUNE_MOVX,
211 X86_TUNE_PARTIAL_REG_STALL,
212 X86_TUNE_PARTIAL_FLAG_REG_STALL,
213 X86_TUNE_USE_HIMODE_FIOP,
214 X86_TUNE_USE_SIMODE_FIOP,
215 X86_TUNE_USE_MOV0,
216 X86_TUNE_USE_CLTD,
217 X86_TUNE_USE_XCHGB,
218 X86_TUNE_SPLIT_LONG_MOVES,
219 X86_TUNE_READ_MODIFY_WRITE,
220 X86_TUNE_READ_MODIFY,
221 X86_TUNE_PROMOTE_QIMODE,
222 X86_TUNE_FAST_PREFIX,
223 X86_TUNE_SINGLE_STRINGOP,
224 X86_TUNE_QIMODE_MATH,
225 X86_TUNE_HIMODE_MATH,
226 X86_TUNE_PROMOTE_QI_REGS,
227 X86_TUNE_PROMOTE_HI_REGS,
228 X86_TUNE_ADD_ESP_4,
229 X86_TUNE_ADD_ESP_8,
230 X86_TUNE_SUB_ESP_4,
231 X86_TUNE_SUB_ESP_8,
232 X86_TUNE_INTEGER_DFMODE_MOVES,
233 X86_TUNE_PARTIAL_REG_DEPENDENCY,
234 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
235 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
236 X86_TUNE_SSE_SPLIT_REGS,
237 X86_TUNE_SSE_TYPELESS_STORES,
238 X86_TUNE_SSE_LOAD0_BY_PXOR,
239 X86_TUNE_MEMORY_MISMATCH_STALL,
240 X86_TUNE_PROLOGUE_USING_MOVE,
241 X86_TUNE_EPILOGUE_USING_MOVE,
242 X86_TUNE_SHIFT1,
243 X86_TUNE_USE_FFREEP,
244 X86_TUNE_INTER_UNIT_MOVES,
245 X86_TUNE_FOUR_JUMP_LIMIT,
246 X86_TUNE_SCHEDULE,
247 X86_TUNE_USE_BT,
248 X86_TUNE_USE_INCDEC,
249 X86_TUNE_PAD_RETURNS,
250 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
251 X86_TUNE_SHORTEN_X87_SSE,
252 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 253 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
254 X86_TUNE_SLOW_IMUL_IMM32_MEM,
255 X86_TUNE_SLOW_IMUL_IMM8,
256 X86_TUNE_MOVE_M1_VIA_OR,
257 X86_TUNE_NOT_UNPAIRABLE,
258 X86_TUNE_NOT_VECTORMODE,
80fd744f
RH
259
260 X86_TUNE_LAST
261};
262
263extern unsigned int ix86_tune_features[X86_TUNE_LAST];
264
265#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
266#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
267#define TARGET_ZERO_EXTEND_WITH_AND \
268 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
269#define TARGET_USE_BIT_TEST ix86_tune_features[X86_TUNE_USE_BIT_TEST]
270#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
271#define TARGET_DEEP_BRANCH_PREDICTION \
272 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
273#define TARGET_BRANCH_PREDICTION_HINTS \
274 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
275#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
276#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
277#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
278#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
279#define TARGET_PARTIAL_FLAG_REG_STALL \
280 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
281#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
282#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
283#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
284#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
285#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
286#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
287#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
288#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
289#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
290#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
291#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
292#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
293#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
294#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
295#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
296#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
297#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
298#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
299#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
300#define TARGET_INTEGER_DFMODE_MOVES \
301 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
302#define TARGET_PARTIAL_REG_DEPENDENCY \
303 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
304#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
305 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
306#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
307 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
308#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
309#define TARGET_SSE_TYPELESS_STORES \
310 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
311#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
312#define TARGET_MEMORY_MISMATCH_STALL \
313 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
314#define TARGET_PROLOGUE_USING_MOVE \
315 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
316#define TARGET_EPILOGUE_USING_MOVE \
317 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
318#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
319#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
320#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
321#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
322#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
323#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
324#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
325#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
326#define TARGET_EXT_80387_CONSTANTS \
327 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
328#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
329#define TARGET_AVOID_VECTOR_DECODE \
330 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
331#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
332 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
333#define TARGET_SLOW_IMUL_IMM32_MEM \
334 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
335#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
336#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
337#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
338#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
80fd744f
RH
339
340/* Feature tests against the various architecture variations. */
341enum ix86_arch_indices {
342 X86_ARCH_CMOVE, /* || TARGET_SSE */
343 X86_ARCH_CMPXCHG,
344 X86_ARCH_CMPXCHG8B,
345 X86_ARCH_XADD,
346 X86_ARCH_BSWAP,
347
348 X86_ARCH_LAST
349};
350
351extern unsigned int ix86_arch_features[X86_ARCH_LAST];
352
353#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
354#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
355#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
356#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
357#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
358
359#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
360
361extern int x86_prefetch_sse;
0a1c5e55
UB
362
363#define TARGET_ABM x86_abm
364#define TARGET_CMPXCHG16B x86_cmpxchg16b
365#define TARGET_POPCNT x86_popcnt
80fd744f 366#define TARGET_PREFETCH_SSE x86_prefetch_sse
0a1c5e55 367#define TARGET_SAHF x86_sahf
6b889d89 368#define TARGET_RECIP x86_recip
80fd744f 369
80fd744f
RH
370#define ASSEMBLER_DIALECT (ix86_asm_dialect)
371
372#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
373#define TARGET_MIX_SSE_I387 \
374 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
375
376#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
377#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
378#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
379#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 380
0a1c5e55
UB
381extern int ix86_isa_flags;
382
67adf6a9
RH
383#ifndef TARGET_64BIT_DEFAULT
384#define TARGET_64BIT_DEFAULT 0
25f94bb5 385#endif
74dc3e94
RH
386#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
387#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
388#endif
25f94bb5 389
79f5e442
ZD
390/* Fence to use after loop using storent. */
391
392extern tree x86_mfence;
393#define FENCE_FOLLOWING_MOVNT x86_mfence
394
0ed4a390
JL
395/* Once GDB has been enhanced to deal with functions without frame
396 pointers, we can change this to allow for elimination of
397 the frame pointer in leaf functions. */
398#define TARGET_DEFAULT 0
67adf6a9 399
0a1c5e55
UB
400/* Extra bits to force. */
401#define TARGET_SUBTARGET_DEFAULT 0
402#define TARGET_SUBTARGET_ISA_DEFAULT 0
403
404/* Extra bits to force on w/ 32-bit mode. */
405#define TARGET_SUBTARGET32_DEFAULT 0
406#define TARGET_SUBTARGET32_ISA_DEFAULT 0
407
ccf8e764
RH
408/* Extra bits to force on w/ 64-bit mode. */
409#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 410#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 411
b069de3b
SS
412/* This is not really a target flag, but is done this way so that
413 it's analogous to similar code for Mach-O on PowerPC. darwin.h
414 redefines this to 1. */
415#define TARGET_MACHO 0
416
ccf8e764
RH
417/* Likewise, for the Windows 64-bit ABI. */
418#define TARGET_64BIT_MS_ABI 0
419
cc69336f
RH
420/* Subtargets may reset this to 1 in order to enable 96-bit long double
421 with the rounding mode forced to 53 bits. */
422#define TARGET_96_ROUND_53_LONG_DOUBLE 0
423
f5316dfe
MM
424/* Sometimes certain combinations of command options do not make
425 sense on a particular target machine. You can define a macro
426 `OVERRIDE_OPTIONS' to take account of this. This macro, if
427 defined, is executed once just after all the command options have
428 been parsed.
429
430 Don't use this macro to turn on various extra optimizations for
431 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
432
433#define OVERRIDE_OPTIONS override_options ()
434
d4ba09c0 435/* Define this to change the optimizations performed by default. */
d9a5f180
GS
436#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
437 optimization_options ((LEVEL), (SIZE))
d4ba09c0 438
682cd442
GK
439/* -march=native handling only makes sense with compiler running on
440 an x86 or x86_64 chip. If changing this condition, also change
441 the condition in driver-i386.c. */
442#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
443/* In driver-i386.c. */
444extern const char *host_detect_local_cpu (int argc, const char **argv);
445#define EXTRA_SPEC_FUNCTIONS \
446 { "local_cpu_detect", host_detect_local_cpu },
682cd442 447#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
448#endif
449
1cba2b96
EC
450/* Support for configure-time defaults of some command line options.
451 The order here is important so that -march doesn't squash the
452 tune or cpu values. */
7816bea0 453#define OPTION_DEFAULT_SPECS \
da2d4c01 454 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96
EC
455 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
456 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 457
241e1a89
SC
458/* Specs for the compiler proper */
459
628714d8 460#ifndef CC1_CPU_SPEC
fa959ce4 461#define CC1_CPU_SPEC_1 "\
9d913bbf 462%{mcpu=*:-mtune=%* \
d347d4c7 463%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 464%<mcpu=* \
c93e80a5
JH
465%{mintel-syntax:-masm=intel \
466%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
467%{mno-intel-syntax:-masm=att \
468%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 469
682cd442 470#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
471#define CC1_CPU_SPEC CC1_CPU_SPEC_1
472#else
473#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
474"%{march=native:%<march=native %:local_cpu_detect(arch) \
475 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
476%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
477#endif
241e1a89 478#endif
c98f8742 479\f
30efe578 480/* Target CPU builtins. */
1ba7b414
NB
481#define TARGET_CPU_CPP_BUILTINS() \
482 do \
483 { \
484 size_t arch_len = strlen (ix86_arch_string); \
9e555526 485 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 486 int last_arch_char = ix86_arch_string[arch_len - 1]; \
7706ca5d 487 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
488 \
489 if (TARGET_64BIT) \
490 { \
491 builtin_assert ("cpu=x86_64"); \
26b0ad13 492 builtin_assert ("machine=x86_64"); \
97242ddc
JH
493 builtin_define ("__amd64"); \
494 builtin_define ("__amd64__"); \
1ba7b414
NB
495 builtin_define ("__x86_64"); \
496 builtin_define ("__x86_64__"); \
497 } \
498 else \
499 { \
500 builtin_assert ("cpu=i386"); \
501 builtin_assert ("machine=i386"); \
502 builtin_define_std ("i386"); \
503 } \
504 \
9d913bbf 505 /* Built-ins based on -mtune= (or -march= if no \
9e555526 506 -mtune= given). */ \
1ba7b414
NB
507 if (TARGET_386) \
508 builtin_define ("__tune_i386__"); \
509 else if (TARGET_486) \
510 builtin_define ("__tune_i486__"); \
511 else if (TARGET_PENTIUM) \
512 { \
513 builtin_define ("__tune_i586__"); \
514 builtin_define ("__tune_pentium__"); \
9e555526 515 if (last_tune_char == 'x') \
1ba7b414
NB
516 builtin_define ("__tune_pentium_mmx__"); \
517 } \
518 else if (TARGET_PENTIUMPRO) \
519 { \
520 builtin_define ("__tune_i686__"); \
521 builtin_define ("__tune_pentiumpro__"); \
9e555526 522 switch (last_tune_char) \
2e37b0ce
RH
523 { \
524 case '3': \
525 builtin_define ("__tune_pentium3__"); \
5efb1046 526 /* FALLTHRU */ \
2e37b0ce
RH
527 case '2': \
528 builtin_define ("__tune_pentium2__"); \
529 break; \
530 } \
1ba7b414 531 } \
cfe1b18f
VM
532 else if (TARGET_GEODE) \
533 { \
534 builtin_define ("__tune_geode__"); \
535 } \
1ba7b414
NB
536 else if (TARGET_K6) \
537 { \
538 builtin_define ("__tune_k6__"); \
9e555526 539 if (last_tune_char == '2') \
1ba7b414 540 builtin_define ("__tune_k6_2__"); \
9e555526 541 else if (last_tune_char == '3') \
1ba7b414
NB
542 builtin_define ("__tune_k6_3__"); \
543 } \
544 else if (TARGET_ATHLON) \
545 { \
546 builtin_define ("__tune_athlon__"); \
547 /* Only plain "athlon" lacks SSE. */ \
9e555526 548 if (last_tune_char != 'n') \
1ba7b414
NB
549 builtin_define ("__tune_athlon_sse__"); \
550 } \
4977bab6
ZW
551 else if (TARGET_K8) \
552 builtin_define ("__tune_k8__"); \
21efb4d4
HJ
553 else if (TARGET_AMDFAM10) \
554 builtin_define ("__tune_amdfam10__"); \
1ba7b414
NB
555 else if (TARGET_PENTIUM4) \
556 builtin_define ("__tune_pentium4__"); \
89c43c0a
VM
557 else if (TARGET_NOCONA) \
558 builtin_define ("__tune_nocona__"); \
05f85dbb
VM
559 else if (TARGET_CORE2) \
560 builtin_define ("__tune_core2__"); \
1ba7b414
NB
561 \
562 if (TARGET_MMX) \
563 builtin_define ("__MMX__"); \
564 if (TARGET_3DNOW) \
565 builtin_define ("__3dNOW__"); \
566 if (TARGET_3DNOW_A) \
567 builtin_define ("__3dNOW_A__"); \
568 if (TARGET_SSE) \
569 builtin_define ("__SSE__"); \
570 if (TARGET_SSE2) \
571 builtin_define ("__SSE2__"); \
9e200aaf
KC
572 if (TARGET_SSE3) \
573 builtin_define ("__SSE3__"); \
b1875f52
L
574 if (TARGET_SSSE3) \
575 builtin_define ("__SSSE3__"); \
9a5cee02
L
576 if (TARGET_SSE4_1) \
577 builtin_define ("__SSE4_1__"); \
3b8dd071
L
578 if (TARGET_SSE4_2) \
579 builtin_define ("__SSE4_2__"); \
7706ca5d 580 if (TARGET_SSE4A) \
21efb4d4 581 builtin_define ("__SSE4A__"); \
48ddd46c
JH
582 if (TARGET_SSE_MATH && TARGET_SSE) \
583 builtin_define ("__SSE_MATH__"); \
584 if (TARGET_SSE_MATH && TARGET_SSE2) \
585 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
586 \
587 /* Built-ins based on -march=. */ \
588 if (ix86_arch == PROCESSOR_I486) \
589 { \
590 builtin_define ("__i486"); \
591 builtin_define ("__i486__"); \
592 } \
593 else if (ix86_arch == PROCESSOR_PENTIUM) \
594 { \
595 builtin_define ("__i586"); \
596 builtin_define ("__i586__"); \
597 builtin_define ("__pentium"); \
598 builtin_define ("__pentium__"); \
599 if (last_arch_char == 'x') \
600 builtin_define ("__pentium_mmx__"); \
601 } \
602 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
603 { \
604 builtin_define ("__i686"); \
605 builtin_define ("__i686__"); \
606 builtin_define ("__pentiumpro"); \
607 builtin_define ("__pentiumpro__"); \
608 } \
cfe1b18f
VM
609 else if (ix86_arch == PROCESSOR_GEODE) \
610 { \
611 builtin_define ("__geode"); \
612 builtin_define ("__geode__"); \
613 } \
1ba7b414
NB
614 else if (ix86_arch == PROCESSOR_K6) \
615 { \
616 \
617 builtin_define ("__k6"); \
618 builtin_define ("__k6__"); \
619 if (last_arch_char == '2') \
620 builtin_define ("__k6_2__"); \
621 else if (last_arch_char == '3') \
622 builtin_define ("__k6_3__"); \
623 } \
624 else if (ix86_arch == PROCESSOR_ATHLON) \
625 { \
626 builtin_define ("__athlon"); \
627 builtin_define ("__athlon__"); \
628 /* Only plain "athlon" lacks SSE. */ \
629 if (last_arch_char != 'n') \
630 builtin_define ("__athlon_sse__"); \
631 } \
4977bab6
ZW
632 else if (ix86_arch == PROCESSOR_K8) \
633 { \
634 builtin_define ("__k8"); \
635 builtin_define ("__k8__"); \
636 } \
21efb4d4
HJ
637 else if (ix86_arch == PROCESSOR_AMDFAM10) \
638 { \
639 builtin_define ("__amdfam10"); \
640 builtin_define ("__amdfam10__"); \
641 } \
1ba7b414
NB
642 else if (ix86_arch == PROCESSOR_PENTIUM4) \
643 { \
644 builtin_define ("__pentium4"); \
645 builtin_define ("__pentium4__"); \
646 } \
89c43c0a
VM
647 else if (ix86_arch == PROCESSOR_NOCONA) \
648 { \
649 builtin_define ("__nocona"); \
650 builtin_define ("__nocona__"); \
651 } \
05f85dbb
VM
652 else if (ix86_arch == PROCESSOR_CORE2) \
653 { \
654 builtin_define ("__core2"); \
655 builtin_define ("__core2__"); \
656 } \
1ba7b414 657 } \
30efe578
NB
658 while (0)
659
f4365627
JH
660#define TARGET_CPU_DEFAULT_i386 0
661#define TARGET_CPU_DEFAULT_i486 1
662#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
663#define TARGET_CPU_DEFAULT_pentium_mmx 3
664#define TARGET_CPU_DEFAULT_pentiumpro 4
665#define TARGET_CPU_DEFAULT_pentium2 5
666#define TARGET_CPU_DEFAULT_pentium3 6
667#define TARGET_CPU_DEFAULT_pentium4 7
cfe1b18f
VM
668#define TARGET_CPU_DEFAULT_geode 8
669#define TARGET_CPU_DEFAULT_k6 9
670#define TARGET_CPU_DEFAULT_k6_2 10
671#define TARGET_CPU_DEFAULT_k6_3 11
672#define TARGET_CPU_DEFAULT_athlon 12
673#define TARGET_CPU_DEFAULT_athlon_sse 13
674#define TARGET_CPU_DEFAULT_k8 14
675#define TARGET_CPU_DEFAULT_pentium_m 15
676#define TARGET_CPU_DEFAULT_prescott 16
677#define TARGET_CPU_DEFAULT_nocona 17
05f85dbb
VM
678#define TARGET_CPU_DEFAULT_core2 18
679#define TARGET_CPU_DEFAULT_generic 19
21efb4d4 680#define TARGET_CPU_DEFAULT_amdfam10 20
f4365627
JH
681
682#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
683 "pentiumpro", "pentium2", "pentium3", \
cfe1b18f 684 "pentium4", "geode", "k6", "k6-2", "k6-3", \
5bbeea44 685 "athlon", "athlon-4", "k8", \
d326eaf0 686 "pentium-m", "prescott", "nocona", \
21efb4d4 687 "core2", "generic", "amdfam10"}
0c2dc519 688
628714d8 689#ifndef CC1_SPEC
8015b78d 690#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
691#endif
692
693/* This macro defines names of additional specifications to put in the
694 specs that can be used in various specifications like CC1_SPEC. Its
695 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
696
697 Each subgrouping contains a string constant, that defines the
188fc5b5 698 specification name, and a string constant that used by the GCC driver
bcd86433
SC
699 program.
700
701 Do not define this macro if it does not need to do anything. */
702
703#ifndef SUBTARGET_EXTRA_SPECS
704#define SUBTARGET_EXTRA_SPECS
705#endif
706
707#define EXTRA_SPECS \
628714d8 708 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
709 SUBTARGET_EXTRA_SPECS
710\f
c98f8742
JVA
711/* target machine storage layout */
712
968a7562 713#define LONG_DOUBLE_TYPE_SIZE 80
2b589241 714
d57a4b98
RH
715/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
716 FPU, assume that the fpcw is set to extended precision; when using
717 only SSE, rounding is correct; when using both SSE and the FPU,
718 the rounding precision is indeterminate, since either may be chosen
719 apparently at random. */
720#define TARGET_FLT_EVAL_METHOD \
5ccd517a 721 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 722
65d9c0ab
JH
723#define SHORT_TYPE_SIZE 16
724#define INT_TYPE_SIZE 32
725#define FLOAT_TYPE_SIZE 32
726#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
727#define DOUBLE_TYPE_SIZE 64
728#define LONG_LONG_TYPE_SIZE 64
729
67adf6a9 730#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 731#define MAX_BITS_PER_WORD 64
0c2dc519
JH
732#else
733#define MAX_BITS_PER_WORD 32
0c2dc519
JH
734#endif
735
c98f8742
JVA
736/* Define this if most significant byte of a word is the lowest numbered. */
737/* That is true on the 80386. */
738
739#define BITS_BIG_ENDIAN 0
740
741/* Define this if most significant byte of a word is the lowest numbered. */
742/* That is not true on the 80386. */
743#define BYTES_BIG_ENDIAN 0
744
745/* Define this if most significant word of a multiword number is the lowest
746 numbered. */
747/* Not true for 80386 */
748#define WORDS_BIG_ENDIAN 0
749
c98f8742 750/* Width of a word, in units (bytes). */
65d9c0ab 751#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
752#ifdef IN_LIBGCC2
753#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
754#else
755#define MIN_UNITS_PER_WORD 4
756#endif
c98f8742 757
c98f8742 758/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 759#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 760
e075ae69 761/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 762#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 763
d1f87653 764/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 765 aligned; the compiler cannot rely on having this alignment. */
e075ae69 766#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 767
ead903e9 768/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 769 entering main. This causes expand_main_function to forcibly align
1d482056
RH
770 the stack, which results in aligned frames for functions called from
771 main, though it does nothing for the alignment of main itself. */
772#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 773 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 774
ebff937c
SH
775/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
776 mandatory for the 64-bit ABI, and may or may not be true for other
777 operating systems. */
778#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
779
f963b5d9
RS
780/* Minimum allocation boundary for the code of a function. */
781#define FUNCTION_BOUNDARY 8
782
783/* C++ stores the virtual bit in the lowest bit of function pointers. */
784#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 785
892a2d68 786/* Alignment of field after `int : 0' in a structure. */
c98f8742 787
65d9c0ab 788#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
789
790/* Minimum size in bits of the largest boundary to which any
791 and all fundamental data types supported by the hardware
792 might need to be aligned. No data type wants to be aligned
17f24ff0 793 rounder than this.
fce5a9f2 794
d1f87653 795 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
796 and Pentium Pro XFmode values at 128 bit boundaries. */
797
798#define BIGGEST_ALIGNMENT 128
799
822eda12 800/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 801#define ALIGN_MODE_128(MODE) \
4501d314 802 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 803
17f24ff0 804/* The published ABIs say that doubles should be aligned on word
d1f87653 805 boundaries, so lower the alignment for structure fields unless
6fc605d8 806 -malign-double is set. */
e932b21b 807
e83f3cff
RH
808/* ??? Blah -- this macro is used directly by libobjc. Since it
809 supports no vector modes, cut out the complexity and fall back
810 on BIGGEST_FIELD_ALIGNMENT. */
811#ifdef IN_TARGET_LIBS
ef49d42e
JH
812#ifdef __x86_64__
813#define BIGGEST_FIELD_ALIGNMENT 128
814#else
e83f3cff 815#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 816#endif
e83f3cff 817#else
e932b21b
JH
818#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
819 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 820#endif
c98f8742 821
e5e8a8bf 822/* If defined, a C expression to compute the alignment given to a
a7180f70 823 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
824 and ALIGN is the alignment that the object would ordinarily have.
825 The value of this macro is used instead of that alignment to align
826 the object.
827
828 If this macro is not defined, then ALIGN is used.
829
830 The typical use of this macro is to increase alignment for string
831 constants to be word aligned so that `strcpy' calls that copy
832 constants can be done inline. */
833
d9a5f180 834#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 835
8a022443
JW
836/* If defined, a C expression to compute the alignment for a static
837 variable. TYPE is the data type, and ALIGN is the alignment that
838 the object would ordinarily have. The value of this macro is used
839 instead of that alignment to align the object.
840
841 If this macro is not defined, then ALIGN is used.
842
843 One use of this macro is to increase alignment of medium-size
844 data to make it all fit in fewer cache lines. Another is to
845 cause character arrays to be word-aligned so that `strcpy' calls
846 that copy constants to character arrays can be done inline. */
847
d9a5f180 848#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
849
850/* If defined, a C expression to compute the alignment for a local
851 variable. TYPE is the data type, and ALIGN is the alignment that
852 the object would ordinarily have. The value of this macro is used
853 instead of that alignment to align the object.
854
855 If this macro is not defined, then ALIGN is used.
856
857 One use of this macro is to increase alignment of medium-size
858 data to make it all fit in fewer cache lines. */
859
d9a5f180 860#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 861
53c17031
JH
862/* If defined, a C expression that gives the alignment boundary, in
863 bits, of an argument with the specified mode and type. If it is
864 not defined, `PARM_BOUNDARY' is used for all arguments. */
865
d9a5f180
GS
866#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
867 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 868
9cd10576 869/* Set this nonzero if move instructions will actually fail to work
c98f8742 870 when given unaligned data. */
b4ac57ab 871#define STRICT_ALIGNMENT 0
c98f8742
JVA
872
873/* If bit field type is int, don't let it cross an int,
874 and give entire struct the alignment of an int. */
43a88a8c 875/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 876#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
877\f
878/* Standard register usage. */
879
880/* This processor has special stack-like registers. See reg-stack.c
892a2d68 881 for details. */
c98f8742
JVA
882
883#define STACK_REGS
d9a5f180 884#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
885 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
886 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
887 || (MODE) == XFmode)
c98f8742
JVA
888
889/* Number of actual hardware registers.
890 The hardware registers are assigned numbers for the compiler
891 from 0 to just below FIRST_PSEUDO_REGISTER.
892 All registers that the compiler knows about must be given numbers,
893 even those that are not normally considered general registers.
894
895 In the 80386 we give the 8 general purpose registers the numbers 0-7.
896 We number the floating point registers 8-15.
897 Note that registers 0-7 can be accessed as a short or int,
898 while only 0-3 may be used with byte `mov' instructions.
899
900 Reg 16 does not correspond to any hardware register, but instead
901 appears in the RTL as an argument pointer prior to reload, and is
902 eliminated during reloading in favor of either the stack or frame
892a2d68 903 pointer. */
c98f8742 904
b0d95de8 905#define FIRST_PSEUDO_REGISTER 53
c98f8742 906
3073d01c
ML
907/* Number of hardware registers that go into the DWARF-2 unwind info.
908 If not defined, equals FIRST_PSEUDO_REGISTER. */
909
910#define DWARF_FRAME_REGISTERS 17
911
c98f8742
JVA
912/* 1 for registers that have pervasive standard uses
913 and are not available for the register allocator.
3f3f2124 914 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 915
3a4416fb
RS
916 The value is zero if the register is not fixed on either 32 or
917 64 bit targets, one if the register if fixed on both 32 and 64
918 bit targets, two if it is only fixed on 32bit targets and three
919 if its only fixed on 64bit targets.
920 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 921 */
a7180f70
BS
922#define FIXED_REGISTERS \
923/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 924{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
925/*arg,flags,fpsr,fpcr,frame*/ \
926 1, 1, 1, 1, 1, \
a7180f70
BS
927/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
928 0, 0, 0, 0, 0, 0, 0, 0, \
929/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
930 0, 0, 0, 0, 0, 0, 0, 0, \
931/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 932 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 933/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 934 2, 2, 2, 2, 2, 2, 2, 2}
fce5a9f2 935
c98f8742
JVA
936
937/* 1 for registers not available across function calls.
938 These must include the FIXED_REGISTERS and also any
939 registers that can be used without being saved.
940 The latter must include the registers where values are returned
941 and the register where structure-value addresses are passed.
fce5a9f2
EC
942 Aside from that, you can include as many other registers as you like.
943
9d72d996
JJ
944 The value is zero if the register is not call used on either 32 or
945 64 bit targets, one if the register if call used on both 32 and 64
946 bit targets, two if it is only call used on 32bit targets and three
947 if its only call used on 64bit targets.
3a4416fb 948 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 949*/
a7180f70
BS
950#define CALL_USED_REGISTERS \
951/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 952{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
953/*arg,flags,fpsr,fpcr,frame*/ \
954 1, 1, 1, 1, 1, \
a7180f70 955/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 956 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 957/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 958 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 959/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 960 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 961/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 962 1, 1, 1, 1, 1, 1, 1, 1} \
c98f8742 963
3b3c6a3f
MM
964/* Order in which to allocate registers. Each register must be
965 listed once, even those in FIXED_REGISTERS. List frame pointer
966 late and fixed registers last. Note that, in general, we prefer
967 registers listed in CALL_USED_REGISTERS, keeping the others
968 available for storage of persistent values.
969
162f023b
JH
970 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
971 so this is just empty initializer for array. */
3b3c6a3f 972
162f023b
JH
973#define REG_ALLOC_ORDER \
974{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
975 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
976 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 977 48, 49, 50, 51, 52 }
3b3c6a3f 978
162f023b
JH
979/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
980 to be rearranged based on a particular function. When using sse math,
03c259ad 981 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 982
162f023b 983#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 984
f5316dfe 985
c98f8742 986/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 987#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 988do { \
3f3f2124 989 int i; \
b0fede98 990 unsigned int j; \
3f3f2124
JH
991 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
992 { \
3a4416fb
RS
993 if (fixed_regs[i] > 1) \
994 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
995 if (call_used_regs[i] > 1) \
996 call_used_regs[i] = (call_used_regs[i] \
997 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 998 } \
b0fede98 999 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 1000 if (j != INVALID_REGNUM) \
a7180f70 1001 { \
7706ca5d
L
1002 fixed_regs[j] = 1; \
1003 call_used_regs[j] = 1; \
a7180f70
BS
1004 } \
1005 if (! TARGET_MMX) \
1006 { \
1007 int i; \
1008 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1009 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 1010 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1011 } \
1012 if (! TARGET_SSE) \
1013 { \
1014 int i; \
1015 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1016 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 1017 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
1018 } \
1019 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1020 { \
1021 int i; \
1022 HARD_REG_SET x; \
1023 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1025 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
1026 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
1027 } \
1028 if (! TARGET_64BIT) \
1029 { \
1030 int i; \
1031 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
1032 reg_names[i] = ""; \
1033 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
1034 reg_names[i] = ""; \
a7180f70 1035 } \
ccf8e764
RH
1036 if (TARGET_64BIT_MS_ABI) \
1037 { \
1038 call_used_regs[4 /*RSI*/] = 0; \
1039 call_used_regs[5 /*RDI*/] = 0; \
1040 } \
d9a5f180 1041 } while (0)
c98f8742
JVA
1042
1043/* Return number of consecutive hard regs needed starting at reg REGNO
1044 to hold something of mode MODE.
1045 This is ordinarily the length in words of a value of mode MODE
1046 but can be less for certain modes in special long registers.
1047
fce5a9f2 1048 Actually there are no two word move instructions for consecutive
c98f8742
JVA
1049 registers. And only registers 0-3 may have mov byte instructions
1050 applied to them.
1051 */
1052
1053#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
1054 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1055 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1056 : ((MODE) == XFmode \
92d0fb09 1057 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1058 : (MODE) == XCmode \
92d0fb09 1059 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1060 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1061
8521c414
JM
1062#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1063 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1064 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1065 ? 0 \
1066 : ((MODE) == XFmode || (MODE) == XCmode)) \
1067 : 0)
1068
1069#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1070
fbe5eb6d
BS
1071#define VALID_SSE2_REG_MODE(MODE) \
1072 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
6c4ccfd8 1073 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1074
d9a5f180
GS
1075#define VALID_SSE_REG_MODE(MODE) \
1076 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
dcbca208 1077 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1078
47f339cf
BS
1079#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1080 ((MODE) == V2SFmode || (MODE) == SFmode)
1081
d9a5f180
GS
1082#define VALID_MMX_REG_MODE(MODE) \
1083 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
1084 || (MODE) == V2SImode || (MODE) == SImode)
1085
accde4cf
RH
1086/* ??? No autovectorization into MMX or 3DNOW until we can reliably
1087 place emms and femms instructions. */
c4336539 1088#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 1089
d9a5f180 1090#define VALID_FP_MODE_P(MODE) \
f8a1ebc6
JH
1091 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1092 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1093
d9a5f180
GS
1094#define VALID_INT_MODE_P(MODE) \
1095 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1096 || (MODE) == DImode \
1097 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1098 || (MODE) == CDImode \
f8a1ebc6
JH
1099 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1100 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1101
822eda12
JH
1102/* Return true for modes passed in SSE registers. */
1103#define SSE_REG_MODE_P(MODE) \
f8a1ebc6 1104 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
1105 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1106 || (MODE) == V4SFmode || (MODE) == V4SImode)
1107
e075ae69 1108/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1109
a946dd00 1110#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1111 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1112
1113/* Value is 1 if it is a good idea to tie two pseudo registers
1114 when one has mode MODE1 and one has mode MODE2.
1115 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1116 for any hard reg, then this must be 0 for correct output. */
1117
c1c5b5e3 1118#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1119
ff25ef99
ZD
1120/* It is possible to write patterns to move flags; but until someone
1121 does it, */
1122#define AVOID_CCMODE_COPIES
c98f8742 1123
e075ae69 1124/* Specify the modes required to caller save a given hard regno.
787dc842 1125 We do this on i386 to prevent flags from being saved at all.
e075ae69 1126
787dc842
JH
1127 Kill any attempts to combine saving of modes. */
1128
d9a5f180
GS
1129#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1130 (CC_REGNO_P (REGNO) ? VOIDmode \
1131 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
fee226d2 1132 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
d9a5f180
GS
1133 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1134 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 1135 : (MODE))
c98f8742
JVA
1136/* Specify the registers used for certain standard purposes.
1137 The values of these macros are register numbers. */
1138
1139/* on the 386 the pc register is %eip, and is not usable as a general
1140 register. The ordinary mov instructions won't work */
1141/* #define PC_REGNUM */
1142
1143/* Register to use for pushing function arguments. */
1144#define STACK_POINTER_REGNUM 7
1145
1146/* Base register for access to local variables of the function. */
564d80f4
JH
1147#define HARD_FRAME_POINTER_REGNUM 6
1148
1149/* Base register for access to local variables of the function. */
b0d95de8 1150#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1151
1152/* First floating point reg */
1153#define FIRST_FLOAT_REG 8
1154
1155/* First & last stack-like regs */
1156#define FIRST_STACK_REG FIRST_FLOAT_REG
1157#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1158
a7180f70
BS
1159#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1160#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1161
a7180f70
BS
1162#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1163#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1164
3f3f2124
JH
1165#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1166#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1167
1168#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1169#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1170
c98f8742
JVA
1171/* Value should be nonzero if functions must have frame pointers.
1172 Zero means the frame pointer need not be set up (and parms
1173 may be accessed via the stack pointer) in functions that seem suitable.
1174 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1175#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1176
aabcd309 1177/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1178 requiring a frame pointer. */
1179#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1180#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1181#endif
1182
1183/* Make sure we can access arbitrary call frames. */
1184#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1185
1186/* Base register for access to arguments of the function. */
1187#define ARG_POINTER_REGNUM 16
1188
d2836273
JH
1189/* Register in which static-chain is passed to a function.
1190 We do use ECX as static chain register for 32 bit ABI. On the
1191 64bit ABI, ECX is an argument register, so we use R10 instead. */
1192#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
1193
1194/* Register to hold the addressing base for position independent
5b43fed1
RH
1195 code access to data items. We don't use PIC pointer for 64bit
1196 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1197 pessimizing code dealing with EBX.
bd09bdeb
RH
1198
1199 To avoid clobbering a call-saved register unnecessarily, we renumber
1200 the pic register when possible. The change is visible after the
1201 prologue has been emitted. */
1202
1203#define REAL_PIC_OFFSET_TABLE_REGNUM 3
1204
1205#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1206 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1207 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1208 : reload_completed ? REGNO (pic_offset_table_rtx) \
1209 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1210
5fc0e5df
KW
1211#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1212
713225d4
MM
1213/* A C expression which can inhibit the returning of certain function
1214 values in registers, based on the type of value. A nonzero value
1215 says to return the function value in memory, just as large
1216 structures are always returned. Here TYPE will be a C expression
1217 of type `tree', representing the data type of the value.
1218
1219 Note that values of mode `BLKmode' must be explicitly handled by
1220 this macro. Also, the option `-fpcc-struct-return' takes effect
1221 regardless of this macro. On most systems, it is possible to
1222 leave the macro undefined; this causes a default definition to be
1223 used, whose value is the constant 1 for `BLKmode' values, and 0
1224 otherwise.
1225
1226 Do not use this macro to indicate that structures and unions
1227 should always be returned in memory. You should instead use
1228 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1229
d9a5f180 1230#define RETURN_IN_MEMORY(TYPE) \
53c17031 1231 ix86_return_in_memory (TYPE)
713225d4 1232
c51e6d85 1233/* This is overridden by <cygwin.h>. */
5e062767
DS
1234#define MS_AGGREGATE_RETURN 0
1235
61fec9ff
JB
1236/* This is overridden by <netware.h>. */
1237#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1238\f
1239/* Define the classes of registers for register constraints in the
1240 machine description. Also define ranges of constants.
1241
1242 One of the classes must always be named ALL_REGS and include all hard regs.
1243 If there is more than one class, another class must be named NO_REGS
1244 and contain no registers.
1245
1246 The name GENERAL_REGS must be the name of a class (or an alias for
1247 another name such as ALL_REGS). This is the class of registers
1248 that is allowed by "g" or "r" in a register constraint.
1249 Also, registers outside this class are allocated only when
1250 instructions express preferences for them.
1251
1252 The classes must be numbered in nondecreasing order; that is,
1253 a larger-numbered class must never be contained completely
1254 in a smaller-numbered class.
1255
1256 For any two classes, it is very desirable that there be another
ab408a86
JVA
1257 class that represents their union.
1258
1259 It might seem that class BREG is unnecessary, since no useful 386
1260 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1261 and the "b" register constraint is useful in asms for syscalls.
1262
03c259ad 1263 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1264
1265enum reg_class
1266{
1267 NO_REGS,
e075ae69 1268 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1269 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1270 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1271 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1272 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1273 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1274 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1275 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1276 FLOAT_REGS,
06f4e35d 1277 SSE_FIRST_REG,
a7180f70
BS
1278 SSE_REGS,
1279 MMX_REGS,
446988df
JH
1280 FP_TOP_SSE_REGS,
1281 FP_SECOND_SSE_REGS,
1282 FLOAT_SSE_REGS,
1283 FLOAT_INT_REGS,
1284 INT_SSE_REGS,
1285 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1286 ALL_REGS, LIM_REG_CLASSES
1287};
1288
d9a5f180
GS
1289#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1290
1291#define INTEGER_CLASS_P(CLASS) \
1292 reg_class_subset_p ((CLASS), GENERAL_REGS)
1293#define FLOAT_CLASS_P(CLASS) \
1294 reg_class_subset_p ((CLASS), FLOAT_REGS)
1295#define SSE_CLASS_P(CLASS) \
06f4e35d 1296 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1297#define MMX_CLASS_P(CLASS) \
f75959a6 1298 ((CLASS) == MMX_REGS)
d9a5f180
GS
1299#define MAYBE_INTEGER_CLASS_P(CLASS) \
1300 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1301#define MAYBE_FLOAT_CLASS_P(CLASS) \
1302 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1303#define MAYBE_SSE_CLASS_P(CLASS) \
1304 reg_classes_intersect_p (SSE_REGS, (CLASS))
1305#define MAYBE_MMX_CLASS_P(CLASS) \
1306 reg_classes_intersect_p (MMX_REGS, (CLASS))
1307
1308#define Q_CLASS_P(CLASS) \
1309 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1310
43f3a59d 1311/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1312
1313#define REG_CLASS_NAMES \
1314{ "NO_REGS", \
ab408a86 1315 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1316 "SIREG", "DIREG", \
e075ae69
RH
1317 "AD_REGS", \
1318 "Q_REGS", "NON_Q_REGS", \
c98f8742 1319 "INDEX_REGS", \
3f3f2124 1320 "LEGACY_REGS", \
c98f8742
JVA
1321 "GENERAL_REGS", \
1322 "FP_TOP_REG", "FP_SECOND_REG", \
1323 "FLOAT_REGS", \
cb482895 1324 "SSE_FIRST_REG", \
a7180f70
BS
1325 "SSE_REGS", \
1326 "MMX_REGS", \
446988df
JH
1327 "FP_TOP_SSE_REGS", \
1328 "FP_SECOND_SSE_REGS", \
1329 "FLOAT_SSE_REGS", \
8fcaaa80 1330 "FLOAT_INT_REGS", \
446988df
JH
1331 "INT_SSE_REGS", \
1332 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1333 "ALL_REGS" }
1334
1335/* Define which registers fit in which classes.
1336 This is an initializer for a vector of HARD_REG_SET
1337 of length N_REG_CLASSES. */
1338
a7180f70 1339#define REG_CLASS_CONTENTS \
3f3f2124
JH
1340{ { 0x00, 0x0 }, \
1341 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1342 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1343 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1344 { 0x03, 0x0 }, /* AD_REGS */ \
1345 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1346 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1347 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1348 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1349 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1350 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1351 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1352 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1353{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1354{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1355{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1356{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1357{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1358 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1359{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1360{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1361{ 0xffffffff,0x1fffff } \
e075ae69 1362}
c98f8742
JVA
1363
1364/* The same information, inverted:
1365 Return the class number of the smallest class containing
1366 reg number REGNO. This could be a conditional expression
1367 or could index an array. */
1368
c98f8742
JVA
1369#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1370
1371/* When defined, the compiler allows registers explicitly used in the
1372 rtl to be used as spill registers but prevents the compiler from
892a2d68 1373 extending the lifetime of these registers. */
c98f8742 1374
2922fe9e 1375#define SMALL_REGISTER_CLASSES 1
c98f8742 1376
fb84c7a0 1377#define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
3f3f2124 1378
d9a5f180 1379#define GENERAL_REGNO_P(N) \
fb84c7a0 1380 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1381
1382#define GENERAL_REG_P(X) \
6189a572 1383 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1384
1385#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1386
fb84c7a0
UB
1387#define REX_INT_REGNO_P(N) \
1388 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1389#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1390
c98f8742 1391#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1392#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1393#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1394#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1395
54a88090 1396#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1397 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1398
fb84c7a0
UB
1399#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1400#define SSE_REGNO_P(N) \
1401 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1402 || REX_SSE_REGNO_P (N))
3f3f2124 1403
4977bab6 1404#define REX_SSE_REGNO_P(N) \
fb84c7a0 1405 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1406
d9a5f180
GS
1407#define SSE_REGNO(N) \
1408 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1409
d9a5f180 1410#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1411 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1412
d9a5f180 1413#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1414#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1415
fb84c7a0 1416#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1417#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1418
d9a5f180 1419#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1420
e075ae69
RH
1421#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1422#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1423
c98f8742
JVA
1424/* The class value for index registers, and the one for base regs. */
1425
1426#define INDEX_REG_CLASS INDEX_REGS
1427#define BASE_REG_CLASS GENERAL_REGS
1428
c98f8742 1429/* Place additional restrictions on the register class to use when it
4cbb525c 1430 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1431 register for which class CLASS would ordinarily be used. */
c98f8742 1432
d2836273
JH
1433#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1434 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1435 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1436 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1437 ? Q_REGS : (CLASS))
1438
1439/* Given an rtx X being reloaded into a reg required to be
1440 in class CLASS, return the class of reg to actually use.
1441 In general this is just CLASS; but on some machines
1442 in some cases it is preferable to use a more restrictive class.
1443 On the 80386 series, we prevent floating constants from being
1444 reloaded into floating registers (since no move-insn can do that)
1445 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1446
d398b3b1 1447/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1448 QImode must go into class Q_REGS.
d398b3b1 1449 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1450 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1451
d9a5f180
GS
1452#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1453 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1454
b5c82fa1
PB
1455/* Discourage putting floating-point values in SSE registers unless
1456 SSE math is being used, and likewise for the 387 registers. */
1457
1458#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1459 ix86_preferred_output_reload_class ((X), (CLASS))
1460
85ff473e 1461/* If we are copying between general and FP registers, we need a memory
f84aa48a 1462 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1463#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1464 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1465
1466/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1467 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1468 pseudo. */
1469
d9a5f180 1470#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1471 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1472 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1473 ? Q_REGS : NO_REGS)
c98f8742
JVA
1474
1475/* Return the maximum number of consecutive registers
1476 needed to represent mode MODE in a register of class CLASS. */
1477/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1478 except in the FP regs, where a single reg is always enough. */
a7180f70 1479#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1480 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1481 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1482 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1483 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1484
1485/* A C expression whose value is nonzero if pseudos that have been
1486 assigned to registers of class CLASS would likely be spilled
1487 because registers of CLASS are needed for spill registers.
1488
1489 The default value of this macro returns 1 if CLASS has exactly one
1490 register and zero otherwise. On most machines, this default
1491 should be used. Only define this macro to some other expression
1492 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1493 their hard registers were needed for spill registers. If this
f5316dfe
MM
1494 macro returns nonzero for those classes, those pseudos will only
1495 be allocated by `global.c', which knows how to reallocate the
1496 pseudo to another register. If there would not be another
1497 register available for reallocation, you should not change the
1498 definition of this macro since the only effect of such a
1499 definition would be to slow down register allocation. */
1500
1501#define CLASS_LIKELY_SPILLED_P(CLASS) \
1502 (((CLASS) == AREG) \
1503 || ((CLASS) == DREG) \
1504 || ((CLASS) == CREG) \
1505 || ((CLASS) == BREG) \
1506 || ((CLASS) == AD_REGS) \
1507 || ((CLASS) == SIREG) \
b0af5c03
JH
1508 || ((CLASS) == DIREG) \
1509 || ((CLASS) == FP_TOP_REG) \
1510 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1511
1272914c
RH
1512/* Return a class of registers that cannot change FROM mode to TO mode. */
1513
1514#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1515 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1516\f
1517/* Stack layout; function entry, exit and calling. */
1518
1519/* Define this if pushing a word on the stack
1520 makes the stack pointer a smaller address. */
1521#define STACK_GROWS_DOWNWARD
1522
a4d05547 1523/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1524 is at the high-address end of the local variables;
1525 that is, each additional local variable allocated
1526 goes at a more negative offset in the frame. */
f62c8a5c 1527#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1528
1529/* Offset within stack frame to start allocating local variables at.
1530 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1531 first local allocated. Otherwise, it is the offset to the BEGINNING
1532 of the first local allocated. */
1533#define STARTING_FRAME_OFFSET 0
1534
1535/* If we generate an insn to push BYTES bytes,
1536 this says how many the stack pointer really advances by.
6541fe75
JJ
1537 On 386, we have pushw instruction that decrements by exactly 2 no
1538 matter what the position was, there is no pushb.
1539 But as CIE data alignment factor on this arch is -4, we need to make
1540 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1541
d2836273
JH
1542 For 64bit ABI we round up to 8 bytes.
1543 */
c98f8742 1544
d2836273
JH
1545#define PUSH_ROUNDING(BYTES) \
1546 (TARGET_64BIT \
1547 ? (((BYTES) + 7) & (-8)) \
6541fe75 1548 : (((BYTES) + 3) & (-4)))
c98f8742 1549
f73ad30e
JH
1550/* If defined, the maximum amount of space required for outgoing arguments will
1551 be computed and placed into the variable
1552 `current_function_outgoing_args_size'. No space will be pushed onto the
1553 stack for each call; instead, the function prologue should increase the stack
1554 frame size by this amount. */
1555
1556#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1557
1558/* If defined, a C expression whose value is nonzero when we want to use PUSH
1559 instructions to pass outgoing arguments. */
1560
1561#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1562
2da4124d
L
1563/* We want the stack and args grow in opposite directions, even if
1564 PUSH_ARGS is 0. */
1565#define PUSH_ARGS_REVERSED 1
1566
c98f8742
JVA
1567/* Offset of first parameter from the argument pointer register value. */
1568#define FIRST_PARM_OFFSET(FNDECL) 0
1569
a7180f70
BS
1570/* Define this macro if functions should assume that stack space has been
1571 allocated for arguments even when their values are passed in registers.
1572
1573 The value of this macro is the size, in bytes, of the area reserved for
1574 arguments passed in registers for the function represented by FNDECL.
1575
1576 This space can be allocated by the caller, or be a part of the
1577 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1578 which. */
1579#define REG_PARM_STACK_SPACE(FNDECL) 0
1580
c98f8742
JVA
1581/* Value is the number of bytes of arguments automatically
1582 popped when returning from a subroutine call.
8b109b37 1583 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1584 FUNTYPE is the data type of the function (as a tree),
1585 or for a library call it is an identifier node for the subroutine name.
1586 SIZE is the number of bytes of arguments passed on the stack.
1587
1588 On the 80386, the RTD insn may be used to pop them if the number
1589 of args is fixed, but if the number is variable then the caller
1590 must pop them all. RTD can't be used for library calls now
1591 because the library is compiled with the Unix compiler.
1592 Use of RTD is a selectable option, since it is incompatible with
1593 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1594 the caller must always pop the args.
1595
1596 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1597
d9a5f180
GS
1598#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1599 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1600
53c17031
JH
1601#define FUNCTION_VALUE_REGNO_P(N) \
1602 ix86_function_value_regno_p (N)
c98f8742
JVA
1603
1604/* Define how to find the value returned by a library function
1605 assuming the value has mode MODE. */
1606
1607#define LIBCALL_VALUE(MODE) \
53c17031 1608 ix86_libcall_value (MODE)
c98f8742 1609
e9125c09
TW
1610/* Define the size of the result block used for communication between
1611 untyped_call and untyped_return. The block contains a DImode value
1612 followed by the block used by fnsave and frstor. */
1613
1614#define APPLY_RESULT_SIZE (8+108)
1615
b08de47e 1616/* 1 if N is a possible register number for function argument passing. */
53c17031 1617#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1618
1619/* Define a data type for recording info about an argument list
1620 during the scan of that argument list. This data type should
1621 hold all necessary information about the function itself
1622 and about the args processed so far, enough to enable macros
b08de47e 1623 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1624
e075ae69 1625typedef struct ix86_args {
fa283935 1626 int words; /* # words passed so far */
b08de47e
MM
1627 int nregs; /* # registers available for passing */
1628 int regno; /* next available register number */
9d72d996 1629 int fastcall; /* fastcall calling convention is used */
fa283935 1630 int sse_words; /* # sse words passed so far */
a7180f70 1631 int sse_nregs; /* # sse registers available for passing */
47a37ce4 1632 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1633 int warn_mmx; /* True when we want to warn about MMX ABI. */
1634 int sse_regno; /* next available sse register number */
1635 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1636 int mmx_nregs; /* # mmx registers available for passing */
1637 int mmx_regno; /* next available mmx register number */
892a2d68 1638 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1639 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1640 be passed in SSE registers. Otherwise 0. */
b08de47e 1641} CUMULATIVE_ARGS;
c98f8742
JVA
1642
1643/* Initialize a variable CUM of type CUMULATIVE_ARGS
1644 for a call to a function whose data type is FNTYPE.
b08de47e 1645 For a library call, FNTYPE is 0. */
c98f8742 1646
0f6937fe 1647#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1648 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1649
1650/* Update the data in CUM to advance over an argument
1651 of mode MODE and data type TYPE.
1652 (TYPE is null for libcalls where that information may not be available.) */
1653
d9a5f180
GS
1654#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1655 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1656
1657/* Define where to put the arguments to a function.
1658 Value is zero to push the argument on the stack,
1659 or a hard register in which to store the argument.
1660
1661 MODE is the argument's machine mode.
1662 TYPE is the data type of the argument (as a tree).
1663 This is null for libcalls where that information may
1664 not be available.
1665 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1666 the preceding args and about the function being called.
1667 NAMED is nonzero if this argument is a named parameter
1668 (otherwise it is an extra parameter matching an ellipsis). */
1669
c98f8742 1670#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1671 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1672
ad919812 1673/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1674#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1675 ix86_va_start (VALIST, NEXTARG)
ad919812 1676
a5fe455b
ZW
1677#define TARGET_ASM_FILE_END ix86_file_end
1678#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1679
c98f8742
JVA
1680/* Output assembler code to FILE to increment profiler label # LABELNO
1681 for profiling a function entry. */
1682
a5fa1ecd
JH
1683#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1684
1685#define MCOUNT_NAME "_mcount"
1686
1687#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1688
1689/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1690 the stack pointer does not matter. The value is tested only in
1691 functions that have frame pointers.
1692 No definition is equivalent to always zero. */
fce5a9f2 1693/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1694 we have to restore it ourselves from the frame pointer, in order to
1695 use pop */
1696
1697#define EXIT_IGNORE_STACK 1
1698
c98f8742
JVA
1699/* Output assembler code for a block containing the constant parts
1700 of a trampoline, leaving space for the variable parts. */
1701
a269a03c 1702/* On the 386, the trampoline contains two instructions:
c98f8742 1703 mov #STATIC,ecx
a269a03c
JC
1704 jmp FUNCTION
1705 The trampoline is generated entirely at runtime. The operand of JMP
1706 is the address of FUNCTION relative to the instruction following the
1707 JMP (which is 5 bytes long). */
c98f8742
JVA
1708
1709/* Length in units of the trampoline for entering a nested function. */
1710
39d04363 1711#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1712
1713/* Emit RTL insns to initialize the variable parts of a trampoline.
1714 FNADDR is an RTX for the address of the function's pure code.
1715 CXT is an RTX for the static chain value for the function. */
1716
d9a5f180
GS
1717#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1718 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1719\f
1720/* Definitions for register eliminations.
1721
1722 This is an array of structures. Each structure initializes one pair
1723 of eliminable registers. The "from" register number is given first,
1724 followed by "to". Eliminations of the same "from" register are listed
1725 in order of preference.
1726
afc2cd05
NC
1727 There are two registers that can always be eliminated on the i386.
1728 The frame pointer and the arg pointer can be replaced by either the
1729 hard frame pointer or to the stack pointer, depending upon the
1730 circumstances. The hard frame pointer is not used before reload and
1731 so it is not eligible for elimination. */
c98f8742 1732
564d80f4
JH
1733#define ELIMINABLE_REGS \
1734{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1735 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1736 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1737 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1738
2c5a510c
RH
1739/* Given FROM and TO register numbers, say whether this elimination is
1740 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1741
1742 All other eliminations are valid. */
1743
2c5a510c
RH
1744#define CAN_ELIMINATE(FROM, TO) \
1745 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1746
1747/* Define the offset between two registers, one to be eliminated, and the other
1748 its replacement, at the start of a routine. */
1749
d9a5f180
GS
1750#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1751 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1752\f
1753/* Addressing modes, and classification of registers for them. */
1754
c98f8742
JVA
1755/* Macros to check register numbers against specific register classes. */
1756
1757/* These assume that REGNO is a hard or pseudo reg number.
1758 They give nonzero only if REGNO is a hard reg of the suitable class
1759 or a pseudo reg currently allocated to a suitable hard reg.
1760 Since they use reg_renumber, they are safe only once reg_renumber
1761 has been allocated, which happens in local-alloc.c. */
1762
3f3f2124
JH
1763#define REGNO_OK_FOR_INDEX_P(REGNO) \
1764 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1765 || REX_INT_REGNO_P (REGNO) \
1766 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1767 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1768
3f3f2124 1769#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1770 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1771 || (REGNO) == ARG_POINTER_REGNUM \
1772 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1773 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1774
c98f8742
JVA
1775/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1776 and check its validity for a certain class.
1777 We have two alternate definitions for each of them.
1778 The usual definition accepts all pseudo regs; the other rejects
1779 them unless they have been allocated suitable hard regs.
1780 The symbol REG_OK_STRICT causes the latter definition to be used.
1781
1782 Most source files want to accept pseudo regs in the hope that
1783 they will get allocated to the class that the insn wants them to be in.
1784 Source files for reload pass need to be strict.
1785 After reload, it makes no difference, since pseudo regs have
1786 been eliminated by then. */
1787
c98f8742 1788
ff482c8d 1789/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1790#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1791 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1792 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1793 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1794
3b3c6a3f 1795#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1796 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1797 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1798 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1799 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1800
3b3c6a3f
MM
1801/* Strict versions, hard registers only */
1802#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1803#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1804
3b3c6a3f 1805#ifndef REG_OK_STRICT
d9a5f180
GS
1806#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1807#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1808
1809#else
d9a5f180
GS
1810#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1811#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1812#endif
1813
1814/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1815 that is a valid memory address for an instruction.
1816 The MODE argument is the machine mode for the MEM expression
1817 that wants to use this address.
1818
1819 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1820 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1821
1822 See legitimize_pic_address in i386.c for details as to what
1823 constitutes a legitimate address when -fpic is used. */
1824
1825#define MAX_REGS_PER_ADDRESS 2
1826
f996902d 1827#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1828
1829/* Nonzero if the constant value X is a legitimate general operand.
1830 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1831
f996902d 1832#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1833
3b3c6a3f
MM
1834#ifdef REG_OK_STRICT
1835#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1836do { \
1837 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1838 goto ADDR; \
d9a5f180 1839} while (0)
c98f8742 1840
3b3c6a3f
MM
1841#else
1842#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1843do { \
1844 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1845 goto ADDR; \
d9a5f180 1846} while (0)
c98f8742 1847
3b3c6a3f
MM
1848#endif
1849
b949ea8b
JW
1850/* If defined, a C expression to determine the base term of address X.
1851 This macro is used in only one place: `find_base_term' in alias.c.
1852
1853 It is always safe for this macro to not be defined. It exists so
1854 that alias analysis can understand machine-dependent addresses.
1855
1856 The typical use of this macro is to handle addresses containing
1857 a label_ref or symbol_ref within an UNSPEC. */
1858
d9a5f180 1859#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1860
c98f8742
JVA
1861/* Try machine-dependent ways of modifying an illegitimate address
1862 to be legitimate. If we find one, return the new, valid address.
1863 This macro is used in only one place: `memory_address' in explow.c.
1864
1865 OLDX is the address as it was before break_out_memory_refs was called.
1866 In some cases it is useful to look at this to decide what needs to be done.
1867
1868 MODE and WIN are passed so that this macro can use
1869 GO_IF_LEGITIMATE_ADDRESS.
1870
1871 It is always safe for this macro to do nothing. It exists to recognize
1872 opportunities to optimize the output.
1873
1874 For the 80386, we handle X+REG by loading X into a register R and
1875 using R+REG. R will go in a general reg and indexing will be used.
1876 However, if REG is a broken-out memory address or multiplication,
1877 nothing needs to be done because REG can certainly go in a general reg.
1878
1879 When -fpic is used, special handling is needed for symbolic references.
1880 See comments by legitimize_pic_address in i386.c for details. */
1881
3b3c6a3f 1882#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1883do { \
1884 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1885 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1886 goto WIN; \
d9a5f180 1887} while (0)
c98f8742
JVA
1888
1889/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1890 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1891 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1892
f996902d 1893#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1894
1895#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1896 (GET_CODE (X) == SYMBOL_REF \
1897 || GET_CODE (X) == LABEL_REF \
1898 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1899
1900/* Go to LABEL if ADDR (a legitimate address expression)
1901 has an effect that depends on the machine mode it is used for.
1902 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1903 (the amount of decrement or increment being the length of the operand).
1904 These are now caught in recog.c. */
1905#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1906\f
b08de47e
MM
1907/* Max number of args passed in registers. If this is more than 3, we will
1908 have problems with ebx (register #4), since it is a caller save register and
1909 is also used as the pic register in ELF. So for now, don't allow more than
1910 3 registers to be passed in registers. */
1911
d2836273
JH
1912#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1913
bcf17554
JH
1914#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1915
1916#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1917
c98f8742
JVA
1918\f
1919/* Specify the machine mode that this machine uses
1920 for the index in the tablejump instruction. */
dc4d7240
JH
1921#define CASE_VECTOR_MODE \
1922 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1923
c98f8742
JVA
1924/* Define this as 1 if `char' should by default be signed; else as 0. */
1925#define DEFAULT_SIGNED_CHAR 1
1926
1927/* Max number of bytes we can move from memory to memory
1928 in one reasonably fast instruction. */
65d9c0ab
JH
1929#define MOVE_MAX 16
1930
1931/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1932 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1933 number of bytes we can move with a single instruction. */
65d9c0ab 1934#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1935
7e24ffc9 1936/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1937 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1938 Increasing the value will always make code faster, but eventually
1939 incurs high cost in increased code size.
c98f8742 1940
e2e52e1b 1941 If you don't define this, a reasonable default is used. */
c98f8742 1942
e2e52e1b 1943#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1944
45d78e7f
JJ
1945/* If a clear memory operation would take CLEAR_RATIO or more simple
1946 move-instruction sequences, we will do a clrmem or libcall instead. */
1947
1948#define CLEAR_RATIO (optimize_size ? 2 \
1949 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1950
c98f8742
JVA
1951/* Define if shifts truncate the shift count
1952 which implies one can omit a sign-extension or zero-extension
1953 of a shift count. */
892a2d68 1954/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1955
1956/* #define SHIFT_COUNT_TRUNCATED */
1957
1958/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1959 is done just by pretending it is already truncated. */
1960#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1961
d9f32422
JH
1962/* A macro to update M and UNSIGNEDP when an object whose type is
1963 TYPE and which has the specified mode and signedness is to be
1964 stored in a register. This macro is only called when TYPE is a
1965 scalar type.
1966
f710504c 1967 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1968 quantities to SImode. The choice depends on target type. */
1969
1970#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1971do { \
d9f32422
JH
1972 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1973 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1974 (MODE) = SImode; \
1975} while (0)
d9f32422 1976
c98f8742
JVA
1977/* Specify the machine mode that pointers have.
1978 After generation of rtl, the compiler makes no further distinction
1979 between pointers and any other objects of this machine mode. */
65d9c0ab 1980#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1981
1982/* A function address in a call instruction
1983 is a byte address (for indexing purposes)
1984 so give the MEM rtx a byte's mode. */
1985#define FUNCTION_MODE QImode
d4ba09c0 1986\f
96e7ae40
JH
1987/* A C expression for the cost of moving data from a register in class FROM to
1988 one in class TO. The classes are expressed using the enumeration values
1989 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1990 interpreted relative to that.
d4ba09c0 1991
96e7ae40
JH
1992 It is not required that the cost always equal 2 when FROM is the same as TO;
1993 on some machines it is expensive to move between registers if they are not
f84aa48a 1994 general registers. */
d4ba09c0 1995
f84aa48a 1996#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1997 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1998
1999/* A C expression for the cost of moving data of mode M between a
2000 register and memory. A value of 2 is the default; this cost is
2001 relative to those in `REGISTER_MOVE_COST'.
2002
2003 If moving between registers and memory is more expensive than
2004 between two registers, you should define this macro to express the
fa79946e 2005 relative cost. */
d4ba09c0 2006
d9a5f180
GS
2007#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2008 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
2009
2010/* A C expression for the cost of a branch instruction. A value of 1
2011 is the default; other values are interpreted relative to that. */
2012
e075ae69 2013#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
2014
2015/* Define this macro as a C expression which is nonzero if accessing
2016 less than a word of memory (i.e. a `char' or a `short') is no
2017 faster than accessing a word of memory, i.e., if such access
2018 require more than one instruction or if there is no difference in
2019 cost between byte and (aligned) word loads.
2020
2021 When this macro is not defined, the compiler will access a field by
2022 finding the smallest containing object; when it is defined, a
2023 fullword load will be used if alignment permits. Unless bytes
2024 accesses are faster than word accesses, using word accesses is
2025 preferable since it may eliminate subsequent memory access if
2026 subsequent accesses occur to other fields in the same word of the
2027 structure, but to different bytes. */
2028
2029#define SLOW_BYTE_ACCESS 0
2030
2031/* Nonzero if access to memory by shorts is slow and undesirable. */
2032#define SLOW_SHORT_ACCESS 0
2033
d4ba09c0
SC
2034/* Define this macro to be the value 1 if unaligned accesses have a
2035 cost many times greater than aligned accesses, for example if they
2036 are emulated in a trap handler.
2037
9cd10576
KH
2038 When this macro is nonzero, the compiler will act as if
2039 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2040 moves. This can cause significantly more instructions to be
9cd10576 2041 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2042 accesses only add a cycle or two to the time for a memory access.
2043
2044 If the value of this macro is always zero, it need not be defined. */
2045
e1565e65 2046/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2047
d4ba09c0
SC
2048/* Define this macro if it is as good or better to call a constant
2049 function address than to call an address kept in a register.
2050
2051 Desirable on the 386 because a CALL with a constant address is
2052 faster than one with a register address. */
2053
2054#define NO_FUNCTION_CSE
c98f8742 2055\f
c572e5ba
JVA
2056/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2057 return the mode to be used for the comparison.
2058
2059 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2060 VOIDmode should be used in all other cases.
c572e5ba 2061
16189740 2062 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2063 possible, to allow for more combinations. */
c98f8742 2064
d9a5f180 2065#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2066
9cd10576 2067/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2068 reversed. */
2069
2070#define REVERSIBLE_CC_MODE(MODE) 1
2071
2072/* A C expression whose value is reversed condition code of the CODE for
2073 comparison done in CC_MODE mode. */
3c5cb3e4 2074#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2075
c98f8742
JVA
2076\f
2077/* Control the assembler format that we output, to the extent
2078 this does not vary between assemblers. */
2079
2080/* How to refer to registers in assembler output.
892a2d68 2081 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2082
a7b376ee 2083/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2084 For non floating point regs, the following are the HImode names.
2085
2086 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2087 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2088
a7180f70
BS
2089#define HI_REGISTER_NAMES \
2090{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2091 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2092 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2093 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2094 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2095 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2096 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2097
c98f8742
JVA
2098#define REGISTER_NAMES HI_REGISTER_NAMES
2099
2100/* Table of additional register names to use in user input. */
2101
2102#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2103{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2104 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2105 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2106 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2107 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2108 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2109
2110/* Note we are omitting these since currently I don't know how
2111to get gcc to use these, since they want the same but different
2112number as al, and ax.
2113*/
2114
c98f8742 2115#define QI_REGISTER_NAMES \
3f3f2124 2116{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2117
2118/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2119 of regs 0 through 3. */
c98f8742
JVA
2120
2121#define QI_HIGH_REGISTER_NAMES \
2122{"ah", "dh", "ch", "bh", }
2123
2124/* How to renumber registers for dbx and gdb. */
2125
d9a5f180
GS
2126#define DBX_REGISTER_NUMBER(N) \
2127 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2128
9a82e702
MS
2129extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2130extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2131extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2132
469ac993
JM
2133/* Before the prologue, RA is at 0(%esp). */
2134#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2135 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2136
e414ab29 2137/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2138#define RETURN_ADDR_RTX(COUNT, FRAME) \
2139 ((COUNT) == 0 \
2140 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2141 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2142
892a2d68 2143/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2144#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2145
a6ab3aad 2146/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2147#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2148
1020a5ab
RH
2149/* Describe how we implement __builtin_eh_return. */
2150#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2151#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2152
ad919812 2153
e4c4ebeb
RH
2154/* Select a format to encode pointers in exception handling data. CODE
2155 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2156 true if the symbol may be affected by dynamic relocations.
2157
2158 ??? All x86 object file formats are capable of representing this.
2159 After all, the relocation needed is the same as for the call insn.
2160 Whether or not a particular assembler allows us to enter such, I
2161 guess we'll have to see. */
d9a5f180 2162#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2163 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2164
c98f8742
JVA
2165/* This is how to output an insn to push a register on the stack.
2166 It need not be very fast code. */
2167
d9a5f180 2168#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2169do { \
2170 if (TARGET_64BIT) \
2171 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2172 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2173 else \
2174 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2175} while (0)
c98f8742
JVA
2176
2177/* This is how to output an insn to pop a register from the stack.
2178 It need not be very fast code. */
2179
d9a5f180 2180#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2181do { \
2182 if (TARGET_64BIT) \
2183 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2184 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2185 else \
2186 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2187} while (0)
c98f8742 2188
f88c65f7 2189/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2190
2191#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2192 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2193
f88c65f7 2194/* This is how to output an element of a case-vector that is relative. */
c98f8742 2195
33f7f353 2196#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2197 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2198
f7288899
EC
2199/* Under some conditions we need jump tables in the text section,
2200 because the assembler cannot handle label differences between
2201 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2202
2203#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2204 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2205 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2206
cea3bd3e
RH
2207/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2208 and switch back. For x86 we do this only to save a few bytes that
2209 would otherwise be unused in the text section. */
2210#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2211 asm (SECTION_OP "\n\t" \
2212 "call " USER_LABEL_PREFIX #FUNC "\n" \
2213 TEXT_SECTION_ASM_OP);
74b42c8b 2214\f
c98f8742
JVA
2215/* Print operand X (an rtx) in assembler syntax to file FILE.
2216 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2217 Effect of various CODE letters is described in i386.c near
2218 print_operand function. */
c98f8742 2219
d9a5f180 2220#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 2221 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742
JVA
2222
2223#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2224 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2225
2226#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2227 print_operand_address ((FILE), (ADDR))
c98f8742 2228
f996902d
RH
2229#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2230do { \
2231 if (! output_addr_const_extra (FILE, (X))) \
2232 goto FAIL; \
2233} while (0);
d4ba09c0 2234\f
5bf0ebab
RH
2235/* Which processor to schedule for. The cpu attribute defines a list that
2236 mirrors this list, so changes to i386.md must be made at the same time. */
2237
2238enum processor_type
2239{
2240 PROCESSOR_I386, /* 80386 */
2241 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2242 PROCESSOR_PENTIUM,
2243 PROCESSOR_PENTIUMPRO,
cfe1b18f 2244 PROCESSOR_GEODE,
5bf0ebab
RH
2245 PROCESSOR_K6,
2246 PROCESSOR_ATHLON,
2247 PROCESSOR_PENTIUM4,
4977bab6 2248 PROCESSOR_K8,
89c43c0a 2249 PROCESSOR_NOCONA,
05f85dbb 2250 PROCESSOR_CORE2,
d326eaf0
JH
2251 PROCESSOR_GENERIC32,
2252 PROCESSOR_GENERIC64,
21efb4d4 2253 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2254 PROCESSOR_max
2255};
2256
9e555526 2257extern enum processor_type ix86_tune;
5bf0ebab 2258extern enum processor_type ix86_arch;
5bf0ebab
RH
2259
2260enum fpmath_unit
2261{
2262 FPMATH_387 = 1,
2263 FPMATH_SSE = 2
2264};
2265
2266extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2267
f996902d
RH
2268enum tls_dialect
2269{
2270 TLS_DIALECT_GNU,
5bf5a10b 2271 TLS_DIALECT_GNU2,
f996902d
RH
2272 TLS_DIALECT_SUN
2273};
2274
2275extern enum tls_dialect ix86_tls_dialect;
f996902d 2276
6189a572 2277enum cmodel {
5bf0ebab
RH
2278 CM_32, /* The traditional 32-bit ABI. */
2279 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2280 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2281 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2282 CM_LARGE, /* No assumptions. */
7dcbf659 2283 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2284 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2285 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2286};
2287
5bf0ebab 2288extern enum cmodel ix86_cmodel;
5bf0ebab 2289
8362f420
JH
2290/* Size of the RED_ZONE area. */
2291#define RED_ZONE_SIZE 128
2292/* Reserved area of the red zone for temporaries. */
2293#define RED_ZONE_RESERVE 8
c93e80a5
JH
2294
2295enum asm_dialect {
2296 ASM_ATT,
2297 ASM_INTEL
2298};
5bf0ebab 2299
80f33d06 2300extern enum asm_dialect ix86_asm_dialect;
95899b34 2301extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2302extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2303
2304/* Smallest class containing REGNO. */
2305extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2306
d9a5f180
GS
2307extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2308extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2309extern rtx ix86_compare_emitted;
22fb740d
JH
2310\f
2311/* To properly truncate FP values into integers, we need to set i387 control
2312 word. We can't emit proper mode switching code before reload, as spills
2313 generated by reload may truncate values incorrectly, but we still can avoid
2314 redundant computation of new control word by the mode switching pass.
2315 The fldcw instructions are still emitted redundantly, but this is probably
2316 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2317 the sequence.
22fb740d
JH
2318
2319 The machinery is to emit simple truncation instructions and split them
2320 before reload to instructions having USEs of two memory locations that
2321 are filled by this code to old and new control word.
fce5a9f2 2322
22fb740d
JH
2323 Post-reload pass may be later used to eliminate the redundant fildcw if
2324 needed. */
2325
ff680eb1
UB
2326enum ix86_entity
2327{
2328 I387_TRUNC = 0,
2329 I387_FLOOR,
2330 I387_CEIL,
2331 I387_MASK_PM,
2332 MAX_386_ENTITIES
2333};
2334
1cba2b96 2335enum ix86_stack_slot
ff680eb1 2336{
80dcd3aa
UB
2337 SLOT_VIRTUAL = 0,
2338 SLOT_TEMP,
ff680eb1
UB
2339 SLOT_CW_STORED,
2340 SLOT_CW_TRUNC,
2341 SLOT_CW_FLOOR,
2342 SLOT_CW_CEIL,
2343 SLOT_CW_MASK_PM,
2344 MAX_386_STACK_LOCALS
2345};
22fb740d
JH
2346
2347/* Define this macro if the port needs extra instructions inserted
2348 for mode switching in an optimizing compilation. */
2349
ff680eb1
UB
2350#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2351 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2352
2353/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2354 initializer for an array of integers. Each initializer element N
2355 refers to an entity that needs mode switching, and specifies the
2356 number of different modes that might need to be set for this
2357 entity. The position of the initializer in the initializer -
2358 starting counting at zero - determines the integer that is used to
2359 refer to the mode-switched entity in question. */
2360
ff680eb1
UB
2361#define NUM_MODES_FOR_MODE_SWITCHING \
2362 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2363
2364/* ENTITY is an integer specifying a mode-switched entity. If
2365 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2366 return an integer value not larger than the corresponding element
2367 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2368 must be switched into prior to the execution of INSN. */
2369
2370#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2371
2372/* This macro specifies the order in which modes for ENTITY are
2373 processed. 0 is the highest priority. */
2374
d9a5f180 2375#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2376
2377/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2378 is the set of hard registers live at the point where the insn(s)
2379 are to be inserted. */
2380
2381#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2382 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2383 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2384 : 0)
ff680eb1 2385
0f0138b6
JH
2386\f
2387/* Avoid renaming of stack registers, as doing so in combination with
2388 scheduling just increases amount of live registers at time and in
2389 the turn amount of fxch instructions needed.
2390
43f3a59d 2391 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2392
d9a5f180 2393#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2394 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2395
3b3c6a3f 2396\f
e91f04de 2397#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2398\f
2399struct machine_function GTY(())
2400{
2401 struct stack_local_entry *stack_locals;
2402 const char *some_ld_name;
150cdc9e 2403 rtx force_align_arg_pointer;
fa1a0d02
JH
2404 int save_varrargs_registers;
2405 int accesses_prev_frame;
ff680eb1 2406 int optimize_mode_switching[MAX_386_ENTITIES];
d9b40e8d
JH
2407 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2408 determine the style used. */
2409 int use_fast_prologue_epilogue;
d7394366
JH
2410 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2411 for. */
2412 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2413 /* If true, the current function needs the default PIC register, not
2414 an alternate register (on x86) and must not use the red zone (on
2415 x86_64), even if it's a leaf function. We don't want the
2416 function to be regarded as non-leaf because TLS calls need not
2417 affect register allocation. This flag is set when a TLS call
2418 instruction is expanded within a function, and never reset, even
2419 if all such instructions are optimized away. Use the
2420 ix86_current_function_calls_tls_descriptor macro for a better
2421 approximation. */
2422 int tls_descriptor_call_expanded_p;
fa1a0d02
JH
2423};
2424
2425#define ix86_stack_locals (cfun->machine->stack_locals)
2426#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2427#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
5bf5a10b
AO
2428#define ix86_tls_descriptor_calls_expanded_in_cfun \
2429 (cfun->machine->tls_descriptor_call_expanded_p)
2430/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2431 calls are optimized away, we try to detect cases in which it was
2432 optimized away. Since such instructions (use (reg REG_SP)), we can
2433 verify whether there's any such instruction live by testing that
2434 REG_SP is live. */
2435#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2436 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2437
1bc7c5b6
ZW
2438/* Control behavior of x86_file_start. */
2439#define X86_FILE_START_VERSION_DIRECTIVE false
2440#define X86_FILE_START_FLTUSED false
2441
7dcbf659
JH
2442/* Flag to mark data that is in the large address area. */
2443#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2444#define SYMBOL_REF_FAR_ADDR_P(X) \
2445 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2446
2447/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2448 have defined always, to avoid ifdefing. */
2449#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2450#define SYMBOL_REF_DLLIMPORT_P(X) \
2451 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2452
2453#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2454#define SYMBOL_REF_DLLEXPORT_P(X) \
2455 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2456
c98f8742
JVA
2457/*
2458Local variables:
2459version-control: t
2460End:
2461*/