]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
i386.c (ix86_lea_outperforms): Fix formatting.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
d1e082c2 2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36
MM
42#define TARGET_64BIT TARGET_ISA_64BIT
43#define TARGET_MMX TARGET_ISA_MMX
44#define TARGET_3DNOW TARGET_ISA_3DNOW
45#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
46#define TARGET_SSE TARGET_ISA_SSE
47#define TARGET_SSE2 TARGET_ISA_SSE2
48#define TARGET_SSE3 TARGET_ISA_SSE3
49#define TARGET_SSSE3 TARGET_ISA_SSSE3
50#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
51#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
52#define TARGET_AVX TARGET_ISA_AVX
53#define TARGET_AVX2 TARGET_ISA_AVX2
54#define TARGET_FMA TARGET_ISA_FMA
55#define TARGET_SSE4A TARGET_ISA_SSE4A
56#define TARGET_FMA4 TARGET_ISA_FMA4
57#define TARGET_XOP TARGET_ISA_XOP
58#define TARGET_LWP TARGET_ISA_LWP
59#define TARGET_ROUND TARGET_ISA_ROUND
60#define TARGET_ABM TARGET_ISA_ABM
61#define TARGET_BMI TARGET_ISA_BMI
62#define TARGET_BMI2 TARGET_ISA_BMI2
63#define TARGET_LZCNT TARGET_ISA_LZCNT
64#define TARGET_TBM TARGET_ISA_TBM
65#define TARGET_POPCNT TARGET_ISA_POPCNT
66#define TARGET_SAHF TARGET_ISA_SAHF
67#define TARGET_MOVBE TARGET_ISA_MOVBE
68#define TARGET_CRC32 TARGET_ISA_CRC32
69#define TARGET_AES TARGET_ISA_AES
70#define TARGET_PCLMUL TARGET_ISA_PCLMUL
71#define TARGET_CMPXCHG16B TARGET_ISA_CX16
72#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
73#define TARGET_RDRND TARGET_ISA_RDRND
74#define TARGET_F16C TARGET_ISA_F16C
75#define TARGET_RTM TARGET_ISA_RTM
76#define TARGET_HLE TARGET_ISA_HLE
77#define TARGET_RDSEED TARGET_ISA_RDSEED
78#define TARGET_PRFCHW TARGET_ISA_PRFCHW
79#define TARGET_ADX TARGET_ISA_ADX
3a0d99bb
AI
80#define TARGET_FXSR TARGET_ISA_FXSR
81#define TARGET_XSAVE TARGET_ISA_XSAVE
82#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
ab442df7 83
90922d36
MM
84#define TARGET_LP64 TARGET_ABI_64
85#define TARGET_X32 TARGET_ABI_X32
04e1d06b 86
cbf2e4d4
HJ
87/* SSE4.1 defines round instructions */
88#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 89#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 90
26b5109f
RS
91#include "config/vxworks-dummy.h"
92
7eb68c06 93#include "config/i386/i386-opts.h"
ccf8e764 94
c69fa2d4 95#define MAX_STRINGOP_ALGS 4
ccf8e764 96
8c996513
JH
97/* Specify what algorithm to use for stringops on known size.
98 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
99 known at compile time or estimated via feedback, the SIZE array
100 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 101 means infinity). Corresponding ALG is used then.
340ef734
JH
102 When NOALIGN is true the code guaranting the alignment of the memory
103 block is skipped.
104
8c996513 105 For example initializer:
4f3f76e6 106 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 107 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 108 be used otherwise. */
8c996513
JH
109struct stringop_algs
110{
111 const enum stringop_alg unknown_size;
112 const struct stringop_strategy {
113 const int max;
114 const enum stringop_alg alg;
340ef734 115 int noalign;
c69fa2d4 116 } size [MAX_STRINGOP_ALGS];
8c996513
JH
117};
118
d4ba09c0
SC
119/* Define the specific costs for a given cpu */
120
121struct processor_costs {
8b60264b
KG
122 const int add; /* cost of an add instruction */
123 const int lea; /* cost of a lea instruction */
124 const int shift_var; /* variable shift costs */
125 const int shift_const; /* constant shift costs */
f676971a 126 const int mult_init[5]; /* cost of starting a multiply
4977bab6 127 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 128 const int mult_bit; /* cost of multiply per each bit set */
f676971a 129 const int divide[5]; /* cost of a divide/mod
4977bab6 130 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
131 int movsx; /* The cost of movsx operation. */
132 int movzx; /* The cost of movzx operation. */
8b60264b
KG
133 const int large_insn; /* insns larger than this cost more */
134 const int move_ratio; /* The threshold of number of scalar
ac775968 135 memory-to-memory move insns. */
8b60264b
KG
136 const int movzbl_load; /* cost of loading using movzbl */
137 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
138 in QImode, HImode and SImode relative
139 to reg-reg move (2). */
8b60264b 140 const int int_store[3]; /* cost of storing integer register
96e7ae40 141 in QImode, HImode and SImode */
8b60264b
KG
142 const int fp_move; /* cost of reg,reg fld/fst */
143 const int fp_load[3]; /* cost of loading FP register
96e7ae40 144 in SFmode, DFmode and XFmode */
8b60264b 145 const int fp_store[3]; /* cost of storing FP register
96e7ae40 146 in SFmode, DFmode and XFmode */
8b60264b
KG
147 const int mmx_move; /* cost of moving MMX register. */
148 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 149 in SImode and DImode */
8b60264b 150 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 151 in SImode and DImode */
8b60264b
KG
152 const int sse_move; /* cost of moving SSE register. */
153 const int sse_load[3]; /* cost of loading SSE register
fa79946e 154 in SImode, DImode and TImode*/
8b60264b 155 const int sse_store[3]; /* cost of storing SSE register
fa79946e 156 in SImode, DImode and TImode*/
8b60264b 157 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 158 integer and vice versa. */
46cb0441
ZD
159 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
160 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
161 const int prefetch_block; /* bytes moved to cache for prefetch. */
162 const int simultaneous_prefetches; /* number of parallel prefetch
163 operations. */
4977bab6 164 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
165 const int fadd; /* cost of FADD and FSUB instructions. */
166 const int fmul; /* cost of FMUL instruction. */
167 const int fdiv; /* cost of FDIV instruction. */
168 const int fabs; /* cost of FABS instruction. */
169 const int fchs; /* cost of FCHS instruction. */
170 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 171 /* Specify what algorithm
bee51209
L
172 to use for stringops on unknown size. */
173 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
174 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
175 load and store. */
176 const int scalar_load_cost; /* Cost of scalar load. */
177 const int scalar_store_cost; /* Cost of scalar store. */
178 const int vec_stmt_cost; /* Cost of any vector operation, excluding
179 load, store, vector-to-scalar and
180 scalar-to-vector operation. */
181 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
182 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 183 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
184 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
185 const int vec_store_cost; /* Cost of vector store. */
186 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
187 cost model. */
188 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
189 vectorizer cost model. */
d4ba09c0
SC
190};
191
8b60264b 192extern const struct processor_costs *ix86_cost;
b2077fd2
JH
193extern const struct processor_costs ix86_size_cost;
194
195#define ix86_cur_cost() \
196 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 197
c98f8742
JVA
198/* Macros used in the machine description to test the flags. */
199
ddd5a7c1 200/* configure can arrange to make this 2, to force a 486. */
e075ae69 201
35b528be 202#ifndef TARGET_CPU_DEFAULT
d326eaf0 203#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 204#endif
35b528be 205
004d3859
GK
206#ifndef TARGET_FPMATH_DEFAULT
207#define TARGET_FPMATH_DEFAULT \
208 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
209#endif
210
6ac49599 211#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 212
5791cc29
JT
213/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
214 compile-time constant. */
215#ifdef IN_LIBGCC2
6ac49599 216#undef TARGET_64BIT
5791cc29
JT
217#ifdef __x86_64__
218#define TARGET_64BIT 1
219#else
220#define TARGET_64BIT 0
221#endif
222#else
6ac49599
RS
223#ifndef TARGET_BI_ARCH
224#undef TARGET_64BIT
67adf6a9 225#if TARGET_64BIT_DEFAULT
0c2dc519
JH
226#define TARGET_64BIT 1
227#else
228#define TARGET_64BIT 0
229#endif
230#endif
5791cc29 231#endif
25f94bb5 232
750054a2
CT
233#define HAS_LONG_COND_BRANCH 1
234#define HAS_LONG_UNCOND_BRANCH 1
235
9e555526
RH
236#define TARGET_386 (ix86_tune == PROCESSOR_I386)
237#define TARGET_486 (ix86_tune == PROCESSOR_I486)
238#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
239#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 240#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
241#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
242#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
243#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
244#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 245#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 246#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734
JH
247#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
248#define TARGET_COREI7 (ix86_tune == PROCESSOR_COREI7)
3a579e09 249#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d326eaf0
JH
250#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
251#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
252#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 253#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 254#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 255#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 256#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
14b52538 257#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 258#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
b6837b94 259#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
0b871ccf 260#define TARGET_SLM (ix86_tune == PROCESSOR_SLM)
a269a03c 261
80fd744f
RH
262/* Feature tests against the various tunings. */
263enum ix86_tune_indices {
264 X86_TUNE_USE_LEAVE,
265 X86_TUNE_PUSH_MEMORY,
266 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f 267 X86_TUNE_UNROLL_STRLEN,
80fd744f
RH
268 X86_TUNE_BRANCH_PREDICTION_HINTS,
269 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 270 X86_TUNE_USE_SAHF,
80fd744f
RH
271 X86_TUNE_MOVX,
272 X86_TUNE_PARTIAL_REG_STALL,
273 X86_TUNE_PARTIAL_FLAG_REG_STALL,
7b38ee83 274 X86_TUNE_LCP_STALL,
80fd744f
RH
275 X86_TUNE_USE_HIMODE_FIOP,
276 X86_TUNE_USE_SIMODE_FIOP,
277 X86_TUNE_USE_MOV0,
278 X86_TUNE_USE_CLTD,
279 X86_TUNE_USE_XCHGB,
280 X86_TUNE_SPLIT_LONG_MOVES,
281 X86_TUNE_READ_MODIFY_WRITE,
282 X86_TUNE_READ_MODIFY,
283 X86_TUNE_PROMOTE_QIMODE,
284 X86_TUNE_FAST_PREFIX,
285 X86_TUNE_SINGLE_STRINGOP,
286 X86_TUNE_QIMODE_MATH,
287 X86_TUNE_HIMODE_MATH,
288 X86_TUNE_PROMOTE_QI_REGS,
289 X86_TUNE_PROMOTE_HI_REGS,
d8b08ecd
UB
290 X86_TUNE_SINGLE_POP,
291 X86_TUNE_DOUBLE_POP,
292 X86_TUNE_SINGLE_PUSH,
293 X86_TUNE_DOUBLE_PUSH,
80fd744f
RH
294 X86_TUNE_INTEGER_DFMODE_MOVES,
295 X86_TUNE_PARTIAL_REG_DEPENDENCY,
296 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
1133125e
HJ
297 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
298 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
299 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
80fd744f
RH
300 X86_TUNE_SSE_SPLIT_REGS,
301 X86_TUNE_SSE_TYPELESS_STORES,
302 X86_TUNE_SSE_LOAD0_BY_PXOR,
303 X86_TUNE_MEMORY_MISMATCH_STALL,
304 X86_TUNE_PROLOGUE_USING_MOVE,
305 X86_TUNE_EPILOGUE_USING_MOVE,
306 X86_TUNE_SHIFT1,
307 X86_TUNE_USE_FFREEP,
00fcb892
UB
308 X86_TUNE_INTER_UNIT_MOVES_TO_VEC,
309 X86_TUNE_INTER_UNIT_MOVES_FROM_VEC,
630ecd8d 310 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
311 X86_TUNE_FOUR_JUMP_LIMIT,
312 X86_TUNE_SCHEDULE,
313 X86_TUNE_USE_BT,
314 X86_TUNE_USE_INCDEC,
315 X86_TUNE_PAD_RETURNS,
e7ed95a2 316 X86_TUNE_PAD_SHORT_FUNCTION,
80fd744f 317 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9 318 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 319 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
320 X86_TUNE_SLOW_IMUL_IMM32_MEM,
321 X86_TUNE_SLOW_IMUL_IMM8,
322 X86_TUNE_MOVE_M1_VIA_OR,
323 X86_TUNE_NOT_UNPAIRABLE,
324 X86_TUNE_NOT_VECTORMODE,
54723b46 325 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 326 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 327 X86_TUNE_FUSE_CMP_AND_BRANCH,
b6837b94 328 X86_TUNE_OPT_AGU,
e72eba85 329 X86_TUNE_VECTORIZE_DOUBLE,
5d0878e7 330 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
5c0d88e6 331 X86_TUNE_AVX128_OPTIMAL,
df7b0cc4
EI
332 X86_TUNE_REASSOC_INT_TO_PARALLEL,
333 X86_TUNE_REASSOC_FP_TO_PARALLEL,
55a2c322 334 X86_TUNE_GENERAL_REGS_SSE_SPILL,
6c72ea12 335 X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE,
55805e54 336 X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS,
80fd744f
RH
337
338 X86_TUNE_LAST
339};
340
ab442df7 341extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
342
343#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
344#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
345#define TARGET_ZERO_EXTEND_WITH_AND \
346 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 347#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
348#define TARGET_BRANCH_PREDICTION_HINTS \
349 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
350#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
351#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
352#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
353#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
354#define TARGET_PARTIAL_FLAG_REG_STALL \
355 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
356#define TARGET_LCP_STALL \
357 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
358#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
359#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
360#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
361#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
362#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
363#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
364#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
365#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
366#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
367#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
368#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
369#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
370#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
371#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
372#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
373#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
374#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
375#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
376#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
377#define TARGET_INTEGER_DFMODE_MOVES \
378 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
379#define TARGET_PARTIAL_REG_DEPENDENCY \
380 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
381#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
382 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
383#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
384 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
385#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
386 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
387#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
388 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
389#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
390#define TARGET_SSE_TYPELESS_STORES \
391 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
392#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
393#define TARGET_MEMORY_MISMATCH_STALL \
394 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
395#define TARGET_PROLOGUE_USING_MOVE \
396 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
397#define TARGET_EPILOGUE_USING_MOVE \
398 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
399#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
400#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
401#define TARGET_INTER_UNIT_MOVES_TO_VEC \
402 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
403#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
404 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
405#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 406 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
407#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
408#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
409#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
410#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
411#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
412#define TARGET_PAD_SHORT_FUNCTION \
413 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
414#define TARGET_EXT_80387_CONSTANTS \
415 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
416#define TARGET_AVOID_VECTOR_DECODE \
417 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
418#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
419 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
420#define TARGET_SLOW_IMUL_IMM32_MEM \
421 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
422#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
423#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
424#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
425#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
426#define TARGET_USE_VECTOR_FP_CONVERTS \
427 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
428#define TARGET_USE_VECTOR_CONVERTS \
429 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
430#define TARGET_FUSE_CMP_AND_BRANCH \
431 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
b6837b94 432#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
433#define TARGET_VECTORIZE_DOUBLE \
434 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
435#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
436 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
437#define TARGET_AVX128_OPTIMAL \
438 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
439#define TARGET_REASSOC_INT_TO_PARALLEL \
440 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
441#define TARGET_REASSOC_FP_TO_PARALLEL \
442 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
443#define TARGET_GENERAL_REGS_SSE_SPILL \
444 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
445#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
446 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 447#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 448 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
df7b0cc4 449
80fd744f
RH
450/* Feature tests against the various architecture variations. */
451enum ix86_arch_indices {
cef31f9c 452 X86_ARCH_CMOV,
80fd744f
RH
453 X86_ARCH_CMPXCHG,
454 X86_ARCH_CMPXCHG8B,
455 X86_ARCH_XADD,
456 X86_ARCH_BSWAP,
457
458 X86_ARCH_LAST
459};
4f3f76e6 460
ab442df7 461extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 462
cef31f9c 463#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
464#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
465#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
466#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
467#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
468
cef31f9c
UB
469/* For sane SSE instruction set generation we need fcomi instruction.
470 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
471 expands to a sequence that includes conditional move. */
472#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
473
80fd744f
RH
474#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
475
cb261eb7 476extern unsigned char x86_prefetch_sse;
80fd744f
RH
477#define TARGET_PREFETCH_SSE x86_prefetch_sse
478
80fd744f
RH
479#define ASSEMBLER_DIALECT (ix86_asm_dialect)
480
481#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
482#define TARGET_MIX_SSE_I387 \
483 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
484
485#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
486#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
487#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 488#define TARGET_SUN_TLS 0
1ef45b77 489
67adf6a9
RH
490#ifndef TARGET_64BIT_DEFAULT
491#define TARGET_64BIT_DEFAULT 0
25f94bb5 492#endif
74dc3e94
RH
493#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
494#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
495#endif
25f94bb5 496
e0ea8797
AH
497#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
498#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
499
79f5e442
ZD
500/* Fence to use after loop using storent. */
501
502extern tree x86_mfence;
503#define FENCE_FOLLOWING_MOVNT x86_mfence
504
0ed4a390
JL
505/* Once GDB has been enhanced to deal with functions without frame
506 pointers, we can change this to allow for elimination of
507 the frame pointer in leaf functions. */
508#define TARGET_DEFAULT 0
67adf6a9 509
0a1c5e55
UB
510/* Extra bits to force. */
511#define TARGET_SUBTARGET_DEFAULT 0
512#define TARGET_SUBTARGET_ISA_DEFAULT 0
513
514/* Extra bits to force on w/ 32-bit mode. */
515#define TARGET_SUBTARGET32_DEFAULT 0
516#define TARGET_SUBTARGET32_ISA_DEFAULT 0
517
ccf8e764
RH
518/* Extra bits to force on w/ 64-bit mode. */
519#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 520#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 521
fee3eacd
IS
522/* Replace MACH-O, ifdefs by in-line tests, where possible.
523 (a) Macros defined in config/i386/darwin.h */
b069de3b 524#define TARGET_MACHO 0
9005471b 525#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
526#define MACHOPIC_ATT_STUB 0
527/* (b) Macros defined in config/darwin.h */
528#define MACHO_DYNAMIC_NO_PIC_P 0
529#define MACHOPIC_INDIRECT 0
530#define MACHOPIC_PURE 0
9005471b 531
5a579c3b
LE
532/* For the RDOS */
533#define TARGET_RDOS 0
534
9005471b 535/* For the Windows 64-bit ABI. */
7c800926
KT
536#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
537
6510e8bb
KT
538/* For the Windows 32-bit ABI. */
539#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
540
f81c9774
RH
541/* This is re-defined by cygming.h. */
542#define TARGET_SEH 0
543
a3d7ab92
KT
544/* This is re-defined by cygming.h. */
545#define TARGET_PECOFF 0
546
51212b32 547/* The default abi used by target. */
7c800926 548#define DEFAULT_ABI SYSV_ABI
ccf8e764 549
b8b3f0ca
LE
550/* The default TLS segment register used by target. */
551#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
552
cc69336f
RH
553/* Subtargets may reset this to 1 in order to enable 96-bit long double
554 with the rounding mode forced to 53 bits. */
555#define TARGET_96_ROUND_53_LONG_DOUBLE 0
556
682cd442
GK
557/* -march=native handling only makes sense with compiler running on
558 an x86 or x86_64 chip. If changing this condition, also change
559 the condition in driver-i386.c. */
560#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
561/* In driver-i386.c. */
562extern const char *host_detect_local_cpu (int argc, const char **argv);
563#define EXTRA_SPEC_FUNCTIONS \
564 { "local_cpu_detect", host_detect_local_cpu },
682cd442 565#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
566#endif
567
8981c15b
JM
568#if TARGET_64BIT_DEFAULT
569#define OPT_ARCH64 "!m32"
570#define OPT_ARCH32 "m32"
571#else
f0ea7581
L
572#define OPT_ARCH64 "m64|mx32"
573#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
574#endif
575
1cba2b96
EC
576/* Support for configure-time defaults of some command line options.
577 The order here is important so that -march doesn't squash the
578 tune or cpu values. */
ce998900 579#define OPTION_DEFAULT_SPECS \
da2d4c01 580 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
581 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
582 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 583 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
584 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
585 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
586 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
587 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
588 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 589
241e1a89
SC
590/* Specs for the compiler proper */
591
628714d8 592#ifndef CC1_CPU_SPEC
eb5bb0fd 593#define CC1_CPU_SPEC_1 ""
fa959ce4 594
682cd442 595#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
596#define CC1_CPU_SPEC CC1_CPU_SPEC_1
597#else
598#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
599"%{march=native:%>march=native %:local_cpu_detect(arch) \
600 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
601%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 602#endif
241e1a89 603#endif
c98f8742 604\f
30efe578 605/* Target CPU builtins. */
ab442df7
MM
606#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
607
608/* Target Pragmas. */
609#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 610
c2f17e19
UB
611enum target_cpu_default
612{
613 TARGET_CPU_DEFAULT_generic = 0,
614
615 TARGET_CPU_DEFAULT_i386,
616 TARGET_CPU_DEFAULT_i486,
617 TARGET_CPU_DEFAULT_pentium,
618 TARGET_CPU_DEFAULT_pentium_mmx,
619 TARGET_CPU_DEFAULT_pentiumpro,
620 TARGET_CPU_DEFAULT_pentium2,
621 TARGET_CPU_DEFAULT_pentium3,
622 TARGET_CPU_DEFAULT_pentium4,
623 TARGET_CPU_DEFAULT_pentium_m,
624 TARGET_CPU_DEFAULT_prescott,
625 TARGET_CPU_DEFAULT_nocona,
626 TARGET_CPU_DEFAULT_core2,
9d8477b6 627 TARGET_CPU_DEFAULT_corei7,
3a579e09 628 TARGET_CPU_DEFAULT_haswell,
b6837b94 629 TARGET_CPU_DEFAULT_atom,
0b871ccf 630 TARGET_CPU_DEFAULT_slm,
c2f17e19
UB
631
632 TARGET_CPU_DEFAULT_geode,
633 TARGET_CPU_DEFAULT_k6,
634 TARGET_CPU_DEFAULT_k6_2,
635 TARGET_CPU_DEFAULT_k6_3,
636 TARGET_CPU_DEFAULT_athlon,
637 TARGET_CPU_DEFAULT_athlon_sse,
638 TARGET_CPU_DEFAULT_k8,
639 TARGET_CPU_DEFAULT_amdfam10,
1133125e 640 TARGET_CPU_DEFAULT_bdver1,
4d652a18 641 TARGET_CPU_DEFAULT_bdver2,
eb2f2b44 642 TARGET_CPU_DEFAULT_bdver3,
14b52538 643 TARGET_CPU_DEFAULT_btver1,
e32bfc16 644 TARGET_CPU_DEFAULT_btver2,
c2f17e19
UB
645
646 TARGET_CPU_DEFAULT_max
647};
0c2dc519 648
628714d8 649#ifndef CC1_SPEC
8015b78d 650#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
651#endif
652
653/* This macro defines names of additional specifications to put in the
654 specs that can be used in various specifications like CC1_SPEC. Its
655 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
656
657 Each subgrouping contains a string constant, that defines the
188fc5b5 658 specification name, and a string constant that used by the GCC driver
bcd86433
SC
659 program.
660
661 Do not define this macro if it does not need to do anything. */
662
663#ifndef SUBTARGET_EXTRA_SPECS
664#define SUBTARGET_EXTRA_SPECS
665#endif
666
667#define EXTRA_SPECS \
628714d8 668 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
669 SUBTARGET_EXTRA_SPECS
670\f
ce998900 671
d57a4b98
RH
672/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
673 FPU, assume that the fpcw is set to extended precision; when using
674 only SSE, rounding is correct; when using both SSE and the FPU,
675 the rounding precision is indeterminate, since either may be chosen
676 apparently at random. */
677#define TARGET_FLT_EVAL_METHOD \
5ccd517a 678 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 679
8ce94e44
JM
680/* Whether to allow x87 floating-point arithmetic on MODE (one of
681 SFmode, DFmode and XFmode) in the current excess precision
682 configuration. */
683#define X87_ENABLE_ARITH(MODE) \
684 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
685
686/* Likewise, whether to allow direct conversions from integer mode
687 IMODE (HImode, SImode or DImode) to MODE. */
688#define X87_ENABLE_FLOAT(MODE, IMODE) \
689 (flag_excess_precision == EXCESS_PRECISION_FAST \
690 || (MODE) == XFmode \
691 || ((MODE) == DFmode && (IMODE) == SImode) \
692 || (IMODE) == HImode)
693
979c67a5
UB
694/* target machine storage layout */
695
65d9c0ab
JH
696#define SHORT_TYPE_SIZE 16
697#define INT_TYPE_SIZE 32
f0ea7581
L
698#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
699#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 700#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 701#define FLOAT_TYPE_SIZE 32
65d9c0ab 702#define DOUBLE_TYPE_SIZE 64
c637141a 703#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
979c67a5 704
c637141a
L
705/* Define this to set long double type size to use in libgcc2.c, which can
706 not depend on target_flags. */
707#ifdef __LONG_DOUBLE_64__
708#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
709#else
710#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
711#endif
712
713#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 714
67adf6a9 715#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 716#define MAX_BITS_PER_WORD 64
0c2dc519
JH
717#else
718#define MAX_BITS_PER_WORD 32
0c2dc519
JH
719#endif
720
c98f8742
JVA
721/* Define this if most significant byte of a word is the lowest numbered. */
722/* That is true on the 80386. */
723
724#define BITS_BIG_ENDIAN 0
725
726/* Define this if most significant byte of a word is the lowest numbered. */
727/* That is not true on the 80386. */
728#define BYTES_BIG_ENDIAN 0
729
730/* Define this if most significant word of a multiword number is the lowest
731 numbered. */
732/* Not true for 80386 */
733#define WORDS_BIG_ENDIAN 0
734
c98f8742 735/* Width of a word, in units (bytes). */
4ae8027b 736#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
737
738#ifndef IN_LIBGCC2
2e64c636
JH
739#define MIN_UNITS_PER_WORD 4
740#endif
c98f8742 741
c98f8742 742/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 743#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 744
e075ae69 745/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 746#define STACK_BOUNDARY \
51212b32 747 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 748
2e3f842f
L
749/* Stack boundary of the main function guaranteed by OS. */
750#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
751
de1132d1 752/* Minimum stack boundary. */
5bfb2af2 753#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 754
d1f87653 755/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 756 aligned; the compiler cannot rely on having this alignment. */
e075ae69 757#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 758
de1132d1 759/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
760 both 32bit and 64bit, to support codes that need 128 bit stack
761 alignment for SSE instructions, but can't realign the stack. */
762#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
763
764/* 1 if -mstackrealign should be turned on by default. It will
765 generate an alternate prologue and epilogue that realigns the
766 runtime stack if nessary. This supports mixing codes that keep a
767 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 768 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
769#define STACK_REALIGN_DEFAULT 0
770
771/* Boundary (in *bits*) on which the incoming stack is aligned. */
772#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 773
a2851b75
TG
774/* According to Windows x64 software convention, the maximum stack allocatable
775 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
776 instructions allowed to adjust the stack pointer in the epilog, forcing the
777 use of frame pointer for frames larger than 2 GB. This theorical limit
778 is reduced by 256, an over-estimated upper bound for the stack use by the
779 prologue.
780 We define only one threshold for both the prolog and the epilog. When the
4e523f33 781 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
782 regs, then save them, and then allocate the remaining. There is no SEH
783 unwind info for this later allocation. */
784#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
785
ebff937c
SH
786/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
787 mandatory for the 64-bit ABI, and may or may not be true for other
788 operating systems. */
789#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
790
f963b5d9
RS
791/* Minimum allocation boundary for the code of a function. */
792#define FUNCTION_BOUNDARY 8
793
794/* C++ stores the virtual bit in the lowest bit of function pointers. */
795#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 796
c98f8742
JVA
797/* Minimum size in bits of the largest boundary to which any
798 and all fundamental data types supported by the hardware
799 might need to be aligned. No data type wants to be aligned
17f24ff0 800 rounder than this.
fce5a9f2 801
d1f87653 802 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
803 and Pentium Pro XFmode values at 128 bit boundaries. */
804
2824d6e5 805#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
17f24ff0 806
2e3f842f
L
807/* Maximum stack alignment. */
808#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
809
6e4f1168
L
810/* Alignment value for attribute ((aligned)). It is a constant since
811 it is the part of the ABI. We shouldn't change it with -mavx. */
812#define ATTRIBUTE_ALIGNED_VALUE 128
813
822eda12 814/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 815#define ALIGN_MODE_128(MODE) \
4501d314 816 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 817
17f24ff0 818/* The published ABIs say that doubles should be aligned on word
d1f87653 819 boundaries, so lower the alignment for structure fields unless
6fc605d8 820 -malign-double is set. */
e932b21b 821
e83f3cff
RH
822/* ??? Blah -- this macro is used directly by libobjc. Since it
823 supports no vector modes, cut out the complexity and fall back
824 on BIGGEST_FIELD_ALIGNMENT. */
825#ifdef IN_TARGET_LIBS
ef49d42e
JH
826#ifdef __x86_64__
827#define BIGGEST_FIELD_ALIGNMENT 128
828#else
e83f3cff 829#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 830#endif
e83f3cff 831#else
e932b21b
JH
832#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
833 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 834#endif
c98f8742 835
e5e8a8bf 836/* If defined, a C expression to compute the alignment given to a
a7180f70 837 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
838 and ALIGN is the alignment that the object would ordinarily have.
839 The value of this macro is used instead of that alignment to align
840 the object.
841
842 If this macro is not defined, then ALIGN is used.
843
844 The typical use of this macro is to increase alignment for string
845 constants to be word aligned so that `strcpy' calls that copy
846 constants can be done inline. */
847
d9a5f180 848#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 849
8a022443
JW
850/* If defined, a C expression to compute the alignment for a static
851 variable. TYPE is the data type, and ALIGN is the alignment that
852 the object would ordinarily have. The value of this macro is used
853 instead of that alignment to align the object.
854
855 If this macro is not defined, then ALIGN is used.
856
857 One use of this macro is to increase alignment of medium-size
858 data to make it all fit in fewer cache lines. Another is to
859 cause character arrays to be word-aligned so that `strcpy' calls
860 that copy constants to character arrays can be done inline. */
861
d9a5f180 862#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
863
864/* If defined, a C expression to compute the alignment for a local
865 variable. TYPE is the data type, and ALIGN is the alignment that
866 the object would ordinarily have. The value of this macro is used
867 instead of that alignment to align the object.
868
869 If this macro is not defined, then ALIGN is used.
870
871 One use of this macro is to increase alignment of medium-size
872 data to make it all fit in fewer cache lines. */
873
76fe54f0
L
874#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
875 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
876
877/* If defined, a C expression to compute the alignment for stack slot.
878 TYPE is the data type, MODE is the widest mode available, and ALIGN
879 is the alignment that the slot would ordinarily have. The value of
880 this macro is used instead of that alignment to align the slot.
881
882 If this macro is not defined, then ALIGN is used when TYPE is NULL,
883 Otherwise, LOCAL_ALIGNMENT will be used.
884
885 One use of this macro is to set alignment of stack slot to the
886 maximum alignment of all possible modes which the slot may have. */
887
888#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
889 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 890
9bfaf89d
JJ
891/* If defined, a C expression to compute the alignment for a local
892 variable DECL.
893
894 If this macro is not defined, then
895 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
896
897 One use of this macro is to increase alignment of medium-size
898 data to make it all fit in fewer cache lines. */
899
900#define LOCAL_DECL_ALIGNMENT(DECL) \
901 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
902
ae58e548
JJ
903/* If defined, a C expression to compute the minimum required alignment
904 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
905 MODE, assuming normal alignment ALIGN.
906
907 If this macro is not defined, then (ALIGN) will be used. */
908
909#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
910 ix86_minimum_alignment (EXP, MODE, ALIGN)
911
9bfaf89d 912
9cd10576 913/* Set this nonzero if move instructions will actually fail to work
c98f8742 914 when given unaligned data. */
b4ac57ab 915#define STRICT_ALIGNMENT 0
c98f8742
JVA
916
917/* If bit field type is int, don't let it cross an int,
918 and give entire struct the alignment of an int. */
43a88a8c 919/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 920#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
921\f
922/* Standard register usage. */
923
924/* This processor has special stack-like registers. See reg-stack.c
892a2d68 925 for details. */
c98f8742
JVA
926
927#define STACK_REGS
ce998900 928
d9a5f180 929#define IS_STACK_MODE(MODE) \
63001560
UB
930 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
931 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 932 || (MODE) == XFmode)
c98f8742
JVA
933
934/* Number of actual hardware registers.
935 The hardware registers are assigned numbers for the compiler
936 from 0 to just below FIRST_PSEUDO_REGISTER.
937 All registers that the compiler knows about must be given numbers,
938 even those that are not normally considered general registers.
939
940 In the 80386 we give the 8 general purpose registers the numbers 0-7.
941 We number the floating point registers 8-15.
942 Note that registers 0-7 can be accessed as a short or int,
943 while only 0-3 may be used with byte `mov' instructions.
944
945 Reg 16 does not correspond to any hardware register, but instead
946 appears in the RTL as an argument pointer prior to reload, and is
947 eliminated during reloading in favor of either the stack or frame
892a2d68 948 pointer. */
c98f8742 949
b0d95de8 950#define FIRST_PSEUDO_REGISTER 53
c98f8742 951
3073d01c
ML
952/* Number of hardware registers that go into the DWARF-2 unwind info.
953 If not defined, equals FIRST_PSEUDO_REGISTER. */
954
955#define DWARF_FRAME_REGISTERS 17
956
c98f8742
JVA
957/* 1 for registers that have pervasive standard uses
958 and are not available for the register allocator.
3f3f2124 959 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 960
621bc046
UB
961 REX registers are disabled for 32bit targets in
962 TARGET_CONDITIONAL_REGISTER_USAGE. */
963
a7180f70
BS
964#define FIXED_REGISTERS \
965/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 966{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
967/*arg,flags,fpsr,fpcr,frame*/ \
968 1, 1, 1, 1, 1, \
a7180f70
BS
969/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
970 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 971/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
972 0, 0, 0, 0, 0, 0, 0, 0, \
973/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 974 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 975/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 976 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
977
978/* 1 for registers not available across function calls.
979 These must include the FIXED_REGISTERS and also any
980 registers that can be used without being saved.
981 The latter must include the registers where values are returned
982 and the register where structure-value addresses are passed.
fce5a9f2
EC
983 Aside from that, you can include as many other registers as you like.
984
621bc046
UB
985 Value is set to 1 if the register is call used unconditionally.
986 Bit one is set if the register is call used on TARGET_32BIT ABI.
987 Bit two is set if the register is call used on TARGET_64BIT ABI.
988 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
989
990 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
991
a7180f70
BS
992#define CALL_USED_REGISTERS \
993/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 994{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
995/*arg,flags,fpsr,fpcr,frame*/ \
996 1, 1, 1, 1, 1, \
a7180f70 997/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 998 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 999/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1000 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1001/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1002 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1003/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
621bc046 1004 6, 6, 6, 6, 6, 6, 6, 6 }
c98f8742 1005
3b3c6a3f
MM
1006/* Order in which to allocate registers. Each register must be
1007 listed once, even those in FIXED_REGISTERS. List frame pointer
1008 late and fixed registers last. Note that, in general, we prefer
1009 registers listed in CALL_USED_REGISTERS, keeping the others
1010 available for storage of persistent values.
1011
5a733826 1012 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1013 so this is just empty initializer for array. */
3b3c6a3f 1014
162f023b
JH
1015#define REG_ALLOC_ORDER \
1016{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1017 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1018 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 1019 48, 49, 50, 51, 52 }
3b3c6a3f 1020
5a733826 1021/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1022 to be rearranged based on a particular function. When using sse math,
03c259ad 1023 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1024
5a733826 1025#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1026
f5316dfe 1027
7c800926
KT
1028#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1029
c98f8742
JVA
1030/* Return number of consecutive hard regs needed starting at reg REGNO
1031 to hold something of mode MODE.
1032 This is ordinarily the length in words of a value of mode MODE
1033 but can be less for certain modes in special long registers.
1034
fce5a9f2 1035 Actually there are no two word move instructions for consecutive
c98f8742 1036 registers. And only registers 0-3 may have mov byte instructions
63001560 1037 applied to them. */
c98f8742 1038
ce998900 1039#define HARD_REGNO_NREGS(REGNO, MODE) \
66aaf16f 1040 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
92d0fb09 1041 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1042 : ((MODE) == XFmode \
92d0fb09 1043 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1044 : (MODE) == XCmode \
92d0fb09 1045 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1046 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1047
8521c414
JM
1048#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1049 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1050 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1051 ? 0 \
1052 : ((MODE) == XFmode || (MODE) == XCmode)) \
1053 : 0)
1054
1055#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1056
95879c72
L
1057#define VALID_AVX256_REG_MODE(MODE) \
1058 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1059 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1060 || (MODE) == V4DFmode)
95879c72 1061
ff97910d
VY
1062#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1063 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1064
ce998900
UB
1065#define VALID_SSE2_REG_MODE(MODE) \
1066 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1067 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1068
d9a5f180 1069#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1070 ((MODE) == V1TImode || (MODE) == TImode \
1071 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1072 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1073
47f339cf 1074#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1075 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1076
d9a5f180 1077#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1078 ((MODE == V1DImode) || (MODE) == DImode \
1079 || (MODE) == V2SImode || (MODE) == SImode \
1080 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1081
ce998900
UB
1082#define VALID_DFP_MODE_P(MODE) \
1083 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1084
d9a5f180 1085#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1086 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1087 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1088
d9a5f180 1089#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1090 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1091 || (MODE) == DImode \
1092 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1093 || (MODE) == CDImode \
1094 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1095 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1096
822eda12 1097/* Return true for modes passed in SSE registers. */
ce998900 1098#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1099 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1100 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1101 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1102 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1103 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1104 || (MODE) == V2TImode)
822eda12 1105
e075ae69 1106/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1107
a946dd00 1108#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1109 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1110
1111/* Value is 1 if it is a good idea to tie two pseudo registers
1112 when one has mode MODE1 and one has mode MODE2.
1113 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1114 for any hard reg, then this must be 0 for correct output. */
1115
c1c5b5e3 1116#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1117
ff25ef99
ZD
1118/* It is possible to write patterns to move flags; but until someone
1119 does it, */
1120#define AVOID_CCMODE_COPIES
c98f8742 1121
e075ae69 1122/* Specify the modes required to caller save a given hard regno.
787dc842 1123 We do this on i386 to prevent flags from being saved at all.
e075ae69 1124
787dc842
JH
1125 Kill any attempts to combine saving of modes. */
1126
d9a5f180
GS
1127#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1128 (CC_REGNO_P (REGNO) ? VOIDmode \
1129 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1130 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1131 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
fc27f749 1132 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
d2836273 1133 : (MODE))
ce998900 1134
51ba747a
RH
1135/* The only ABI that saves SSE registers across calls is Win64 (thus no
1136 need to check the current ABI here), and with AVX enabled Win64 only
1137 guarantees that the low 16 bytes are saved. */
1138#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1139 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1140
c98f8742
JVA
1141/* Specify the registers used for certain standard purposes.
1142 The values of these macros are register numbers. */
1143
1144/* on the 386 the pc register is %eip, and is not usable as a general
1145 register. The ordinary mov instructions won't work */
1146/* #define PC_REGNUM */
1147
1148/* Register to use for pushing function arguments. */
1149#define STACK_POINTER_REGNUM 7
1150
1151/* Base register for access to local variables of the function. */
564d80f4
JH
1152#define HARD_FRAME_POINTER_REGNUM 6
1153
1154/* Base register for access to local variables of the function. */
b0d95de8 1155#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1156
1157/* First floating point reg */
1158#define FIRST_FLOAT_REG 8
1159
1160/* First & last stack-like regs */
1161#define FIRST_STACK_REG FIRST_FLOAT_REG
1162#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1163
a7180f70
BS
1164#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1165#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1166
a7180f70
BS
1167#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1168#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1169
3f3f2124
JH
1170#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1171#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1172
1173#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1174#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1175
aabcd309 1176/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1177 requiring a frame pointer. */
1178#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1179#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1180#endif
1181
1182/* Make sure we can access arbitrary call frames. */
1183#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1184
1185/* Base register for access to arguments of the function. */
1186#define ARG_POINTER_REGNUM 16
1187
c98f8742 1188/* Register to hold the addressing base for position independent
5b43fed1
RH
1189 code access to data items. We don't use PIC pointer for 64bit
1190 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1191 pessimizing code dealing with EBX.
bd09bdeb
RH
1192
1193 To avoid clobbering a call-saved register unnecessarily, we renumber
1194 the pic register when possible. The change is visible after the
1195 prologue has been emitted. */
1196
2e3f842f 1197#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1198
1199#define PIC_OFFSET_TABLE_REGNUM \
82c0e1a0 1200 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
a3d7ab92 1201 || TARGET_PECOFF)) \
7dcbf659 1202 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1203 : reload_completed ? REGNO (pic_offset_table_rtx) \
1204 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1205
5fc0e5df
KW
1206#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1207
c51e6d85 1208/* This is overridden by <cygwin.h>. */
5e062767
DS
1209#define MS_AGGREGATE_RETURN 0
1210
61fec9ff 1211#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1212\f
1213/* Define the classes of registers for register constraints in the
1214 machine description. Also define ranges of constants.
1215
1216 One of the classes must always be named ALL_REGS and include all hard regs.
1217 If there is more than one class, another class must be named NO_REGS
1218 and contain no registers.
1219
1220 The name GENERAL_REGS must be the name of a class (or an alias for
1221 another name such as ALL_REGS). This is the class of registers
1222 that is allowed by "g" or "r" in a register constraint.
1223 Also, registers outside this class are allocated only when
1224 instructions express preferences for them.
1225
1226 The classes must be numbered in nondecreasing order; that is,
1227 a larger-numbered class must never be contained completely
1228 in a smaller-numbered class.
1229
1230 For any two classes, it is very desirable that there be another
ab408a86
JVA
1231 class that represents their union.
1232
1233 It might seem that class BREG is unnecessary, since no useful 386
1234 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1235 and the "b" register constraint is useful in asms for syscalls.
1236
03c259ad 1237 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1238
1239enum reg_class
1240{
1241 NO_REGS,
e075ae69 1242 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1243 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1244 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1245 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1246 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1247 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1248 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1249 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1250 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1251 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1252 FLOAT_REGS,
06f4e35d 1253 SSE_FIRST_REG,
a7180f70
BS
1254 SSE_REGS,
1255 MMX_REGS,
446988df
JH
1256 FP_TOP_SSE_REGS,
1257 FP_SECOND_SSE_REGS,
1258 FLOAT_SSE_REGS,
1259 FLOAT_INT_REGS,
1260 INT_SSE_REGS,
1261 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1262 ALL_REGS, LIM_REG_CLASSES
1263};
1264
d9a5f180
GS
1265#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1266
1267#define INTEGER_CLASS_P(CLASS) \
1268 reg_class_subset_p ((CLASS), GENERAL_REGS)
1269#define FLOAT_CLASS_P(CLASS) \
1270 reg_class_subset_p ((CLASS), FLOAT_REGS)
1271#define SSE_CLASS_P(CLASS) \
06f4e35d 1272 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1273#define MMX_CLASS_P(CLASS) \
f75959a6 1274 ((CLASS) == MMX_REGS)
d9a5f180
GS
1275#define MAYBE_INTEGER_CLASS_P(CLASS) \
1276 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1277#define MAYBE_FLOAT_CLASS_P(CLASS) \
1278 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1279#define MAYBE_SSE_CLASS_P(CLASS) \
1280 reg_classes_intersect_p (SSE_REGS, (CLASS))
1281#define MAYBE_MMX_CLASS_P(CLASS) \
1282 reg_classes_intersect_p (MMX_REGS, (CLASS))
1283
1284#define Q_CLASS_P(CLASS) \
1285 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1286
43f3a59d 1287/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1288
1289#define REG_CLASS_NAMES \
1290{ "NO_REGS", \
ab408a86 1291 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1292 "SIREG", "DIREG", \
e075ae69
RH
1293 "AD_REGS", \
1294 "Q_REGS", "NON_Q_REGS", \
c98f8742 1295 "INDEX_REGS", \
3f3f2124 1296 "LEGACY_REGS", \
621bc046 1297 "CLOBBERED_REGS", \
c98f8742
JVA
1298 "GENERAL_REGS", \
1299 "FP_TOP_REG", "FP_SECOND_REG", \
1300 "FLOAT_REGS", \
cb482895 1301 "SSE_FIRST_REG", \
a7180f70
BS
1302 "SSE_REGS", \
1303 "MMX_REGS", \
446988df
JH
1304 "FP_TOP_SSE_REGS", \
1305 "FP_SECOND_SSE_REGS", \
1306 "FLOAT_SSE_REGS", \
8fcaaa80 1307 "FLOAT_INT_REGS", \
446988df
JH
1308 "INT_SSE_REGS", \
1309 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1310 "ALL_REGS" }
1311
ac2e563f
RH
1312/* Define which registers fit in which classes. This is an initializer
1313 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1314
621bc046
UB
1315 Note that CLOBBERED_REGS are calculated by
1316 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1317
a7180f70 1318#define REG_CLASS_CONTENTS \
3f3f2124
JH
1319{ { 0x00, 0x0 }, \
1320 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1321 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1322 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1323 { 0x03, 0x0 }, /* AD_REGS */ \
1324 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1325 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1326 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1327 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
621bc046 1328 { 0x00, 0x0 }, /* CLOBBERED_REGS */ \
b0d95de8 1329 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1330 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1331 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1332 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1333{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1334{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1335{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1336{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
0b99eef6 1337{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
b197fc48
UB
1338 { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1339{ 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1340{ 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
b0d95de8 1341{ 0xffffffff,0x1fffff } \
e075ae69 1342}
c98f8742
JVA
1343
1344/* The same information, inverted:
1345 Return the class number of the smallest class containing
1346 reg number REGNO. This could be a conditional expression
1347 or could index an array. */
1348
c98f8742
JVA
1349#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1350
42db504c
SB
1351/* When this hook returns true for MODE, the compiler allows
1352 registers explicitly used in the rtl to be used as spill registers
1353 but prevents the compiler from extending the lifetime of these
1354 registers. */
1355#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1356
fc27f749
UB
1357#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1358#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1359
1360#define GENERAL_REG_P(X) \
6189a572 1361 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1362#define GENERAL_REGNO_P(N) \
1363 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1364
fc27f749
UB
1365#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1366#define ANY_QI_REGNO_P(N) \
1367 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1368
fc27f749 1369#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1370#define REX_INT_REGNO_P(N) \
1371 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1372
66aaf16f
UB
1373#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1374#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1375
446988df 1376#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1377#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1378
54a88090 1379#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1380 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1381
fc27f749 1382#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1383#define SSE_REGNO_P(N) \
1384 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1385 || REX_SSE_REGNO_P (N))
3f3f2124 1386
4977bab6 1387#define REX_SSE_REGNO_P(N) \
fb84c7a0 1388 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1389
d9a5f180
GS
1390#define SSE_REGNO(N) \
1391 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1392
d9a5f180 1393#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1394 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1395
cbf2e4d4
HJ
1396#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1397 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1398 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1399
fc27f749 1400#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1401#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1402
fc27f749 1403#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1404
e075ae69
RH
1405#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1406#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1407
c98f8742
JVA
1408/* The class value for index registers, and the one for base regs. */
1409
1410#define INDEX_REG_CLASS INDEX_REGS
1411#define BASE_REG_CLASS GENERAL_REGS
1412
c98f8742 1413/* Place additional restrictions on the register class to use when it
4cbb525c 1414 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1415 register for which class CLASS would ordinarily be used.
1416
1417 We avoid classes containing registers from multiple units due to
1418 the limitation in ix86_secondary_memory_needed. We limit these
1419 classes to their "natural mode" single unit register class, depending
1420 on the unit availability.
1421
1422 Please note that reg_class_subset_p is not commutative, so these
1423 conditions mean "... if (CLASS) includes ALL registers from the
1424 register set." */
1425
1426#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1427 (((MODE) == QImode && !TARGET_64BIT \
1428 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1429 : (((MODE) == SImode || (MODE) == DImode) \
1430 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1431 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1432 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1433 : (X87_FLOAT_MODE_P (MODE) \
1434 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1435 : (CLASS))
c98f8742 1436
85ff473e 1437/* If we are copying between general and FP registers, we need a memory
f84aa48a 1438 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1439#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1440 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1441
c62b3659
UB
1442/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1443 There is no need to emit full 64 bit move on 64 bit targets
1444 for integral modes that can be moved using 32 bit move. */
1445#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1446 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1447 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1448 : MODE)
1449
1272914c
RH
1450/* Return a class of registers that cannot change FROM mode to TO mode. */
1451
1452#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1453 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1454\f
1455/* Stack layout; function entry, exit and calling. */
1456
1457/* Define this if pushing a word on the stack
1458 makes the stack pointer a smaller address. */
1459#define STACK_GROWS_DOWNWARD
1460
a4d05547 1461/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1462 is at the high-address end of the local variables;
1463 that is, each additional local variable allocated
1464 goes at a more negative offset in the frame. */
f62c8a5c 1465#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1466
1467/* Offset within stack frame to start allocating local variables at.
1468 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1469 first local allocated. Otherwise, it is the offset to the BEGINNING
1470 of the first local allocated. */
1471#define STARTING_FRAME_OFFSET 0
1472
8c2b2fae
UB
1473/* If we generate an insn to push BYTES bytes, this says how many the stack
1474 pointer really advances by. On 386, we have pushw instruction that
1475 decrements by exactly 2 no matter what the position was, there is no pushb.
1476
1477 But as CIE data alignment factor on this arch is -4 for 32bit targets
1478 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1479 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1480
d2836273 1481#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1482 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1483
1484/* If defined, the maximum amount of space required for outgoing arguments
1485 will be computed and placed into the variable `crtl->outgoing_args_size'.
1486 No space will be pushed onto the stack for each call; instead, the
1487 function prologue should increase the stack frame size by this amount.
9aa5c1b2 1488
6510e8bb
KT
1489 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1490 function prologue and apilogue. This is not possible without
9aa5c1b2 1491 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1492
6c6094f1 1493#define ACCUMULATE_OUTGOING_ARGS \
6510e8bb 1494 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1495
1496/* If defined, a C expression whose value is nonzero when we want to use PUSH
1497 instructions to pass outgoing arguments. */
1498
1499#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1500
2da4124d
L
1501/* We want the stack and args grow in opposite directions, even if
1502 PUSH_ARGS is 0. */
1503#define PUSH_ARGS_REVERSED 1
1504
c98f8742
JVA
1505/* Offset of first parameter from the argument pointer register value. */
1506#define FIRST_PARM_OFFSET(FNDECL) 0
1507
a7180f70
BS
1508/* Define this macro if functions should assume that stack space has been
1509 allocated for arguments even when their values are passed in registers.
1510
1511 The value of this macro is the size, in bytes, of the area reserved for
1512 arguments passed in registers for the function represented by FNDECL.
1513
1514 This space can be allocated by the caller, or be a part of the
1515 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1516 which. */
7c800926
KT
1517#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1518
4ae8027b 1519#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1520 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1521
c98f8742
JVA
1522/* Define how to find the value returned by a library function
1523 assuming the value has mode MODE. */
1524
4ae8027b 1525#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1526
e9125c09
TW
1527/* Define the size of the result block used for communication between
1528 untyped_call and untyped_return. The block contains a DImode value
1529 followed by the block used by fnsave and frstor. */
1530
1531#define APPLY_RESULT_SIZE (8+108)
1532
b08de47e 1533/* 1 if N is a possible register number for function argument passing. */
53c17031 1534#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1535
1536/* Define a data type for recording info about an argument list
1537 during the scan of that argument list. This data type should
1538 hold all necessary information about the function itself
1539 and about the args processed so far, enough to enable macros
b08de47e 1540 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1541
e075ae69 1542typedef struct ix86_args {
fa283935 1543 int words; /* # words passed so far */
b08de47e
MM
1544 int nregs; /* # registers available for passing */
1545 int regno; /* next available register number */
3e65f251
KT
1546 int fastcall; /* fastcall or thiscall calling convention
1547 is used */
fa283935 1548 int sse_words; /* # sse words passed so far */
a7180f70 1549 int sse_nregs; /* # sse registers available for passing */
95879c72 1550 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1551 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1552 int warn_mmx; /* True when we want to warn about MMX ABI. */
1553 int sse_regno; /* next available sse register number */
1554 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1555 int mmx_nregs; /* # mmx registers available for passing */
1556 int mmx_regno; /* next available mmx register number */
892a2d68 1557 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1558 int caller; /* true if it is caller. */
2824d6e5
UB
1559 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1560 SFmode/DFmode arguments should be passed
1561 in SSE registers. Otherwise 0. */
51212b32 1562 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1563 MS_ABI for ms abi. */
b08de47e 1564} CUMULATIVE_ARGS;
c98f8742
JVA
1565
1566/* Initialize a variable CUM of type CUMULATIVE_ARGS
1567 for a call to a function whose data type is FNTYPE.
b08de47e 1568 For a library call, FNTYPE is 0. */
c98f8742 1569
0f6937fe 1570#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1571 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1572 (N_NAMED_ARGS) != -1)
c98f8742 1573
c98f8742
JVA
1574/* Output assembler code to FILE to increment profiler label # LABELNO
1575 for profiling a function entry. */
1576
a5fa1ecd
JH
1577#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1578
1579#define MCOUNT_NAME "_mcount"
1580
3c5273a9
KT
1581#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1582
a5fa1ecd 1583#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1584
1585/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1586 the stack pointer does not matter. The value is tested only in
1587 functions that have frame pointers.
1588 No definition is equivalent to always zero. */
fce5a9f2 1589/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1590 we have to restore it ourselves from the frame pointer, in order to
1591 use pop */
1592
1593#define EXIT_IGNORE_STACK 1
1594
c98f8742
JVA
1595/* Output assembler code for a block containing the constant parts
1596 of a trampoline, leaving space for the variable parts. */
1597
a269a03c 1598/* On the 386, the trampoline contains two instructions:
c98f8742 1599 mov #STATIC,ecx
a269a03c
JC
1600 jmp FUNCTION
1601 The trampoline is generated entirely at runtime. The operand of JMP
1602 is the address of FUNCTION relative to the instruction following the
1603 JMP (which is 5 bytes long). */
c98f8742
JVA
1604
1605/* Length in units of the trampoline for entering a nested function. */
1606
3452586b 1607#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1608\f
1609/* Definitions for register eliminations.
1610
1611 This is an array of structures. Each structure initializes one pair
1612 of eliminable registers. The "from" register number is given first,
1613 followed by "to". Eliminations of the same "from" register are listed
1614 in order of preference.
1615
afc2cd05
NC
1616 There are two registers that can always be eliminated on the i386.
1617 The frame pointer and the arg pointer can be replaced by either the
1618 hard frame pointer or to the stack pointer, depending upon the
1619 circumstances. The hard frame pointer is not used before reload and
1620 so it is not eligible for elimination. */
c98f8742 1621
564d80f4
JH
1622#define ELIMINABLE_REGS \
1623{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1624 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1625 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1626 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1627
c98f8742
JVA
1628/* Define the offset between two registers, one to be eliminated, and the other
1629 its replacement, at the start of a routine. */
1630
d9a5f180
GS
1631#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1632 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1633\f
1634/* Addressing modes, and classification of registers for them. */
1635
c98f8742
JVA
1636/* Macros to check register numbers against specific register classes. */
1637
1638/* These assume that REGNO is a hard or pseudo reg number.
1639 They give nonzero only if REGNO is a hard reg of the suitable class
1640 or a pseudo reg currently allocated to a suitable hard reg.
1641 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1642 has been allocated, which happens in reginfo.c during register
1643 allocation. */
c98f8742 1644
3f3f2124
JH
1645#define REGNO_OK_FOR_INDEX_P(REGNO) \
1646 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1647 || REX_INT_REGNO_P (REGNO) \
1648 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1649 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1650
3f3f2124 1651#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1652 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1653 || (REGNO) == ARG_POINTER_REGNUM \
1654 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1655 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1656
c98f8742
JVA
1657/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1658 and check its validity for a certain class.
1659 We have two alternate definitions for each of them.
1660 The usual definition accepts all pseudo regs; the other rejects
1661 them unless they have been allocated suitable hard regs.
1662 The symbol REG_OK_STRICT causes the latter definition to be used.
1663
1664 Most source files want to accept pseudo regs in the hope that
1665 they will get allocated to the class that the insn wants them to be in.
1666 Source files for reload pass need to be strict.
1667 After reload, it makes no difference, since pseudo regs have
1668 been eliminated by then. */
1669
c98f8742 1670
ff482c8d 1671/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1672#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1673 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1674 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1675 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1676
3b3c6a3f 1677#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1678 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1679 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1680 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1681 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1682
3b3c6a3f
MM
1683/* Strict versions, hard registers only */
1684#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1685#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1686
3b3c6a3f 1687#ifndef REG_OK_STRICT
d9a5f180
GS
1688#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1689#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1690
1691#else
d9a5f180
GS
1692#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1693#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1694#endif
1695
331d9186 1696/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1697 that is a valid memory address for an instruction.
1698 The MODE argument is the machine mode for the MEM expression
1699 that wants to use this address.
1700
331d9186 1701 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1702 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1703
1704 See legitimize_pic_address in i386.c for details as to what
1705 constitutes a legitimate address when -fpic is used. */
1706
1707#define MAX_REGS_PER_ADDRESS 2
1708
f996902d 1709#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1710
ae1547cc
UB
1711/* Try a machine-dependent way of reloading an illegitimate address
1712 operand. If we find one, push the reload and jump to WIN. This
1713 macro is used in only one place: `find_reloads_address' in reload.c. */
1714
1715#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1716do { \
1717 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1718 (int)(TYPE), (INDL))) \
1719 goto WIN; \
1720} while (0)
1721
b949ea8b
JW
1722/* If defined, a C expression to determine the base term of address X.
1723 This macro is used in only one place: `find_base_term' in alias.c.
1724
1725 It is always safe for this macro to not be defined. It exists so
1726 that alias analysis can understand machine-dependent addresses.
1727
1728 The typical use of this macro is to handle addresses containing
1729 a label_ref or symbol_ref within an UNSPEC. */
1730
d9a5f180 1731#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1732
c98f8742 1733/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1734 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1735 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1736
f996902d 1737#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1738
1739#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1740 (GET_CODE (X) == SYMBOL_REF \
1741 || GET_CODE (X) == LABEL_REF \
1742 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1743\f
b08de47e
MM
1744/* Max number of args passed in registers. If this is more than 3, we will
1745 have problems with ebx (register #4), since it is a caller save register and
1746 is also used as the pic register in ELF. So for now, don't allow more than
1747 3 registers to be passed in registers. */
1748
7c800926
KT
1749/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1750#define X86_64_REGPARM_MAX 6
72fa3605 1751#define X86_64_MS_REGPARM_MAX 4
7c800926 1752
72fa3605 1753#define X86_32_REGPARM_MAX 3
7c800926 1754
4ae8027b 1755#define REGPARM_MAX \
2824d6e5
UB
1756 (TARGET_64BIT \
1757 ? (TARGET_64BIT_MS_ABI \
1758 ? X86_64_MS_REGPARM_MAX \
1759 : X86_64_REGPARM_MAX) \
4ae8027b 1760 : X86_32_REGPARM_MAX)
d2836273 1761
72fa3605
UB
1762#define X86_64_SSE_REGPARM_MAX 8
1763#define X86_64_MS_SSE_REGPARM_MAX 4
1764
b6010cab 1765#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1766
4ae8027b 1767#define SSE_REGPARM_MAX \
2824d6e5
UB
1768 (TARGET_64BIT \
1769 ? (TARGET_64BIT_MS_ABI \
1770 ? X86_64_MS_SSE_REGPARM_MAX \
1771 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1772 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1773
1774#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1775\f
1776/* Specify the machine mode that this machine uses
1777 for the index in the tablejump instruction. */
dc4d7240 1778#define CASE_VECTOR_MODE \
6025b127 1779 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1780
c98f8742
JVA
1781/* Define this as 1 if `char' should by default be signed; else as 0. */
1782#define DEFAULT_SIGNED_CHAR 1
1783
1784/* Max number of bytes we can move from memory to memory
1785 in one reasonably fast instruction. */
65d9c0ab
JH
1786#define MOVE_MAX 16
1787
1788/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1789 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1790 number of bytes we can move with a single instruction. */
63001560 1791#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1792
7e24ffc9 1793/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1794 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1795 Increasing the value will always make code faster, but eventually
1796 incurs high cost in increased code size.
c98f8742 1797
e2e52e1b 1798 If you don't define this, a reasonable default is used. */
c98f8742 1799
e04ad03d 1800#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1801
45d78e7f
JJ
1802/* If a clear memory operation would take CLEAR_RATIO or more simple
1803 move-instruction sequences, we will do a clrmem or libcall instead. */
1804
e04ad03d 1805#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1806
53f00dde
UB
1807/* Define if shifts truncate the shift count which implies one can
1808 omit a sign-extension or zero-extension of a shift count.
1809
1810 On i386, shifts do truncate the count. But bit test instructions
1811 take the modulo of the bit offset operand. */
c98f8742
JVA
1812
1813/* #define SHIFT_COUNT_TRUNCATED */
1814
1815/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1816 is done just by pretending it is already truncated. */
1817#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1818
d9f32422
JH
1819/* A macro to update M and UNSIGNEDP when an object whose type is
1820 TYPE and which has the specified mode and signedness is to be
1821 stored in a register. This macro is only called when TYPE is a
1822 scalar type.
1823
f710504c 1824 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1825 quantities to SImode. The choice depends on target type. */
1826
1827#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1828do { \
d9f32422
JH
1829 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1830 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1831 (MODE) = SImode; \
1832} while (0)
d9f32422 1833
c98f8742
JVA
1834/* Specify the machine mode that pointers have.
1835 After generation of rtl, the compiler makes no further distinction
1836 between pointers and any other objects of this machine mode. */
28968d91 1837#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1838
f0ea7581
L
1839/* A C expression whose value is zero if pointers that need to be extended
1840 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1841 greater then zero if they are zero-extended and less then zero if the
1842 ptr_extend instruction should be used. */
1843
1844#define POINTERS_EXTEND_UNSIGNED 1
1845
c98f8742
JVA
1846/* A function address in a call instruction
1847 is a byte address (for indexing purposes)
1848 so give the MEM rtx a byte's mode. */
1849#define FUNCTION_MODE QImode
d4ba09c0 1850\f
d4ba09c0 1851
d4ba09c0
SC
1852/* A C expression for the cost of a branch instruction. A value of 1
1853 is the default; other values are interpreted relative to that. */
1854
3a4fd356
JH
1855#define BRANCH_COST(speed_p, predictable_p) \
1856 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1857
e327d1a3
L
1858/* An integer expression for the size in bits of the largest integer machine
1859 mode that should actually be used. We allow pairs of registers. */
1860#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1861
d4ba09c0
SC
1862/* Define this macro as a C expression which is nonzero if accessing
1863 less than a word of memory (i.e. a `char' or a `short') is no
1864 faster than accessing a word of memory, i.e., if such access
1865 require more than one instruction or if there is no difference in
1866 cost between byte and (aligned) word loads.
1867
1868 When this macro is not defined, the compiler will access a field by
1869 finding the smallest containing object; when it is defined, a
1870 fullword load will be used if alignment permits. Unless bytes
1871 accesses are faster than word accesses, using word accesses is
1872 preferable since it may eliminate subsequent memory access if
1873 subsequent accesses occur to other fields in the same word of the
1874 structure, but to different bytes. */
1875
1876#define SLOW_BYTE_ACCESS 0
1877
1878/* Nonzero if access to memory by shorts is slow and undesirable. */
1879#define SLOW_SHORT_ACCESS 0
1880
d4ba09c0
SC
1881/* Define this macro to be the value 1 if unaligned accesses have a
1882 cost many times greater than aligned accesses, for example if they
1883 are emulated in a trap handler.
1884
9cd10576
KH
1885 When this macro is nonzero, the compiler will act as if
1886 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1887 moves. This can cause significantly more instructions to be
9cd10576 1888 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1889 accesses only add a cycle or two to the time for a memory access.
1890
1891 If the value of this macro is always zero, it need not be defined. */
1892
e1565e65 1893/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1894
d4ba09c0
SC
1895/* Define this macro if it is as good or better to call a constant
1896 function address than to call an address kept in a register.
1897
1898 Desirable on the 386 because a CALL with a constant address is
1899 faster than one with a register address. */
1900
1901#define NO_FUNCTION_CSE
c98f8742 1902\f
c572e5ba
JVA
1903/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1904 return the mode to be used for the comparison.
1905
1906 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1907 VOIDmode should be used in all other cases.
c572e5ba 1908
16189740 1909 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1910 possible, to allow for more combinations. */
c98f8742 1911
d9a5f180 1912#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1913
9cd10576 1914/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1915 reversed. */
1916
1917#define REVERSIBLE_CC_MODE(MODE) 1
1918
1919/* A C expression whose value is reversed condition code of the CODE for
1920 comparison done in CC_MODE mode. */
3c5cb3e4 1921#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1922
c98f8742
JVA
1923\f
1924/* Control the assembler format that we output, to the extent
1925 this does not vary between assemblers. */
1926
1927/* How to refer to registers in assembler output.
892a2d68 1928 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1929
a7b376ee 1930/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1931 For non floating point regs, the following are the HImode names.
1932
1933 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1934 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1935 "y" code. */
c98f8742 1936
a7180f70
BS
1937#define HI_REGISTER_NAMES \
1938{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1939 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1940 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1941 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1942 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1943 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1944 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1945
c98f8742
JVA
1946#define REGISTER_NAMES HI_REGISTER_NAMES
1947
1948/* Table of additional register names to use in user input. */
1949
1950#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1951{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1952 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1953 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1954 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1955 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1956 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1957
1958/* Note we are omitting these since currently I don't know how
1959to get gcc to use these, since they want the same but different
1960number as al, and ax.
1961*/
1962
c98f8742 1963#define QI_REGISTER_NAMES \
3f3f2124 1964{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1965
1966/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1967 of regs 0 through 3. */
c98f8742
JVA
1968
1969#define QI_HIGH_REGISTER_NAMES \
1970{"ah", "dh", "ch", "bh", }
1971
1972/* How to renumber registers for dbx and gdb. */
1973
d9a5f180
GS
1974#define DBX_REGISTER_NUMBER(N) \
1975 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1976
9a82e702
MS
1977extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1978extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1979extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1980
780a5b71
UB
1981extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
1982
469ac993
JM
1983/* Before the prologue, RA is at 0(%esp). */
1984#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1985 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1986
e414ab29 1987/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1988#define RETURN_ADDR_RTX(COUNT, FRAME) \
1989 ((COUNT) == 0 \
0a81f074
RS
1990 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
1991 -UNITS_PER_WORD)) \
1992 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 1993
892a2d68 1994/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1995#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1996
a6ab3aad 1997/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1998#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1999
1020a5ab 2000/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2001#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2002#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2003
ad919812 2004
e4c4ebeb
RH
2005/* Select a format to encode pointers in exception handling data. CODE
2006 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2007 true if the symbol may be affected by dynamic relocations.
2008
2009 ??? All x86 object file formats are capable of representing this.
2010 After all, the relocation needed is the same as for the call insn.
2011 Whether or not a particular assembler allows us to enter such, I
2012 guess we'll have to see. */
d9a5f180 2013#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2014 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2015
c98f8742
JVA
2016/* This is how to output an insn to push a register on the stack.
2017 It need not be very fast code. */
2018
d9a5f180 2019#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2020do { \
2021 if (TARGET_64BIT) \
2022 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2023 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2024 else \
2025 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2026} while (0)
c98f8742
JVA
2027
2028/* This is how to output an insn to pop a register from the stack.
2029 It need not be very fast code. */
2030
d9a5f180 2031#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2032do { \
2033 if (TARGET_64BIT) \
2034 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2035 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2036 else \
2037 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2038} while (0)
c98f8742 2039
f88c65f7 2040/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2041
2042#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2043 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2044
f88c65f7 2045/* This is how to output an element of a case-vector that is relative. */
c98f8742 2046
33f7f353 2047#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2048 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2049
63001560 2050/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2051
2052#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2053{ \
2054 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2055 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2056}
2057
2058/* A C statement or statements which output an assembler instruction
2059 opcode to the stdio stream STREAM. The macro-operand PTR is a
2060 variable of type `char *' which points to the opcode name in
2061 its "internal" form--the form that is written in the machine
2062 description. */
2063
2064#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2065 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2066
6a90d232
L
2067/* A C statement to output to the stdio stream FILE an assembler
2068 command to pad the location counter to a multiple of 1<<LOG
2069 bytes if it is within MAX_SKIP bytes. */
2070
2071#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2072#undef ASM_OUTPUT_MAX_SKIP_PAD
2073#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2074 if ((LOG) != 0) \
2075 { \
2076 if ((MAX_SKIP) == 0) \
2077 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2078 else \
2079 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2080 }
2081#endif
2082
135a687e
KT
2083/* Write the extra assembler code needed to declare a function
2084 properly. */
2085
2086#undef ASM_OUTPUT_FUNCTION_LABEL
2087#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2088 ix86_asm_output_function_label (FILE, NAME, DECL)
2089
f7288899
EC
2090/* Under some conditions we need jump tables in the text section,
2091 because the assembler cannot handle label differences between
2092 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2093
2094#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2095 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2096 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2097
cea3bd3e
RH
2098/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2099 and switch back. For x86 we do this only to save a few bytes that
2100 would otherwise be unused in the text section. */
ad211091
KT
2101#define CRT_MKSTR2(VAL) #VAL
2102#define CRT_MKSTR(x) CRT_MKSTR2(x)
2103
2104#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2105 asm (SECTION_OP "\n\t" \
2106 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2107 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2108
2109/* Default threshold for putting data in large sections
2110 with x86-64 medium memory model */
2111#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2112\f
b2b01543 2113/* Which processor to tune code generation for. */
5bf0ebab
RH
2114
2115enum processor_type
2116{
8383d43c 2117 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2118 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2119 PROCESSOR_PENTIUM,
2120 PROCESSOR_PENTIUMPRO,
cfe1b18f 2121 PROCESSOR_GEODE,
5bf0ebab
RH
2122 PROCESSOR_K6,
2123 PROCESSOR_ATHLON,
2124 PROCESSOR_PENTIUM4,
4977bab6 2125 PROCESSOR_K8,
89c43c0a 2126 PROCESSOR_NOCONA,
340ef734
JH
2127 PROCESSOR_CORE2,
2128 PROCESSOR_COREI7,
3a579e09 2129 PROCESSOR_HASWELL,
d326eaf0
JH
2130 PROCESSOR_GENERIC32,
2131 PROCESSOR_GENERIC64,
21efb4d4 2132 PROCESSOR_AMDFAM10,
1133125e 2133 PROCESSOR_BDVER1,
4d652a18 2134 PROCESSOR_BDVER2,
eb2f2b44 2135 PROCESSOR_BDVER3,
14b52538 2136 PROCESSOR_BTVER1,
e32bfc16 2137 PROCESSOR_BTVER2,
b6837b94 2138 PROCESSOR_ATOM,
0b871ccf 2139 PROCESSOR_SLM,
5bf0ebab
RH
2140 PROCESSOR_max
2141};
2142
9e555526 2143extern enum processor_type ix86_tune;
5bf0ebab 2144extern enum processor_type ix86_arch;
5bf0ebab 2145
8362f420
JH
2146/* Size of the RED_ZONE area. */
2147#define RED_ZONE_SIZE 128
2148/* Reserved area of the red zone for temporaries. */
2149#define RED_ZONE_RESERVE 8
c93e80a5 2150
95899b34 2151extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2152extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2153
2154/* Smallest class containing REGNO. */
2155extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2156
0948ccb2
PB
2157enum ix86_fpcmp_strategy {
2158 IX86_FPCMP_SAHF,
2159 IX86_FPCMP_COMI,
2160 IX86_FPCMP_ARITH
2161};
22fb740d
JH
2162\f
2163/* To properly truncate FP values into integers, we need to set i387 control
2164 word. We can't emit proper mode switching code before reload, as spills
2165 generated by reload may truncate values incorrectly, but we still can avoid
2166 redundant computation of new control word by the mode switching pass.
2167 The fldcw instructions are still emitted redundantly, but this is probably
2168 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2169 the sequence.
22fb740d
JH
2170
2171 The machinery is to emit simple truncation instructions and split them
2172 before reload to instructions having USEs of two memory locations that
2173 are filled by this code to old and new control word.
fce5a9f2 2174
22fb740d
JH
2175 Post-reload pass may be later used to eliminate the redundant fildcw if
2176 needed. */
2177
ff680eb1
UB
2178enum ix86_entity
2179{
ff97910d
VY
2180 AVX_U128 = 0,
2181 I387_TRUNC,
ff680eb1
UB
2182 I387_FLOOR,
2183 I387_CEIL,
2184 I387_MASK_PM,
2185 MAX_386_ENTITIES
2186};
2187
1cba2b96 2188enum ix86_stack_slot
ff680eb1 2189{
443ca5fc 2190 SLOT_TEMP = 0,
ff680eb1
UB
2191 SLOT_CW_STORED,
2192 SLOT_CW_TRUNC,
2193 SLOT_CW_FLOOR,
2194 SLOT_CW_CEIL,
2195 SLOT_CW_MASK_PM,
2196 MAX_386_STACK_LOCALS
2197};
22fb740d 2198
ff97910d
VY
2199enum avx_u128_state
2200{
2201 AVX_U128_CLEAN,
2202 AVX_U128_DIRTY,
2203 AVX_U128_ANY
2204};
2205
22fb740d
JH
2206/* Define this macro if the port needs extra instructions inserted
2207 for mode switching in an optimizing compilation. */
2208
ff680eb1
UB
2209#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2210 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2211
2212/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2213 initializer for an array of integers. Each initializer element N
2214 refers to an entity that needs mode switching, and specifies the
2215 number of different modes that might need to be set for this
2216 entity. The position of the initializer in the initializer -
2217 starting counting at zero - determines the integer that is used to
2218 refer to the mode-switched entity in question. */
2219
ff680eb1 2220#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2221 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2222
2223/* ENTITY is an integer specifying a mode-switched entity. If
2224 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2225 return an integer value not larger than the corresponding element
2226 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff97910d 2227 must be switched into prior to the execution of INSN. */
ff680eb1
UB
2228
2229#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d 2230
ff97910d
VY
2231/* If this macro is defined, it is evaluated for every INSN during
2232 mode switching. It determines the mode that an insn results in (if
2233 different from the incoming mode). */
2234
2235#define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
2236
2237/* If this macro is defined, it is evaluated for every ENTITY that
2238 needs mode switching. It should evaluate to an integer, which is
2239 a mode that ENTITY is assumed to be switched to at function entry. */
2240
2241#define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
2242
2243/* If this macro is defined, it is evaluated for every ENTITY that
2244 needs mode switching. It should evaluate to an integer, which is
2245 a mode that ENTITY is assumed to be switched to at function exit. */
2246
2247#define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
2248
22fb740d
JH
2249/* This macro specifies the order in which modes for ENTITY are
2250 processed. 0 is the highest priority. */
2251
d9a5f180 2252#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2253
2254/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2255 is the set of hard registers live at the point where the insn(s)
2256 are to be inserted. */
2257
ff97910d 2258#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
5756eff7 2259 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
0f0138b6
JH
2260\f
2261/* Avoid renaming of stack registers, as doing so in combination with
2262 scheduling just increases amount of live registers at time and in
2263 the turn amount of fxch instructions needed.
2264
43f3a59d 2265 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2266
66aaf16f 2267#define HARD_REGNO_RENAME_OK(SRC, TARGET) !STACK_REGNO_P (SRC)
22fb740d 2268
3b3c6a3f 2269\f
e91f04de 2270#define FASTCALL_PREFIX '@'
fa1a0d02 2271\f
ec7ded37 2272/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2273
604a6be9 2274#ifndef USED_FOR_TARGET
ec7ded37 2275struct GTY(()) machine_frame_state
cd9c1ca8 2276{
ec7ded37
RH
2277 /* This pair tracks the currently active CFA as reg+offset. When reg
2278 is drap_reg, we don't bother trying to record here the real CFA when
2279 it might really be a DW_CFA_def_cfa_expression. */
2280 rtx cfa_reg;
2281 HOST_WIDE_INT cfa_offset;
2282
2283 /* The current offset (canonically from the CFA) of ESP and EBP.
2284 When stack frame re-alignment is active, these may not be relative
2285 to the CFA. However, in all cases they are relative to the offsets
2286 of the saved registers stored in ix86_frame. */
2287 HOST_WIDE_INT sp_offset;
2288 HOST_WIDE_INT fp_offset;
2289
2290 /* The size of the red-zone that may be assumed for the purposes of
2291 eliding register restore notes in the epilogue. This may be zero
2292 if no red-zone is in effect, or may be reduced from the real
2293 red-zone value by a maximum runtime stack re-alignment value. */
2294 int red_zone_offset;
2295
2296 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2297 value within the frame. If false then the offset above should be
2298 ignored. Note that DRAP, if valid, *always* points to the CFA and
2299 thus has an offset of zero. */
2300 BOOL_BITFIELD sp_valid : 1;
2301 BOOL_BITFIELD fp_valid : 1;
2302 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2303
2304 /* Indicate whether the local stack frame has been re-aligned. When
2305 set, the SP/FP offsets above are relative to the aligned frame
2306 and not the CFA. */
2307 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2308};
2309
f81c9774
RH
2310/* Private to winnt.c. */
2311struct seh_frame_state;
2312
d1b38208 2313struct GTY(()) machine_function {
fa1a0d02
JH
2314 struct stack_local_entry *stack_locals;
2315 const char *some_ld_name;
4aab97f9
L
2316 int varargs_gpr_size;
2317 int varargs_fpr_size;
ff680eb1 2318 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2319
2320 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2321 has been computed for. */
2322 int use_fast_prologue_epilogue_nregs;
2323
7458026b
ILT
2324 /* For -fsplit-stack support: A stack local which holds a pointer to
2325 the stack arguments for a function with a variable number of
2326 arguments. This is set at the start of the function and is used
2327 to initialize the overflow_arg_area field of the va_list
2328 structure. */
2329 rtx split_stack_varargs_pointer;
2330
3452586b
RH
2331 /* This value is used for amd64 targets and specifies the current abi
2332 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2333 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2334
2335 /* Nonzero if the function accesses a previous frame. */
2336 BOOL_BITFIELD accesses_prev_frame : 1;
2337
2338 /* Nonzero if the function requires a CLD in the prologue. */
2339 BOOL_BITFIELD needs_cld : 1;
2340
922e3e33
UB
2341 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2342 expander to determine the style used. */
3452586b
RH
2343 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2344
5bf5a10b
AO
2345 /* If true, the current function needs the default PIC register, not
2346 an alternate register (on x86) and must not use the red zone (on
2347 x86_64), even if it's a leaf function. We don't want the
2348 function to be regarded as non-leaf because TLS calls need not
2349 affect register allocation. This flag is set when a TLS call
2350 instruction is expanded within a function, and never reset, even
2351 if all such instructions are optimized away. Use the
2352 ix86_current_function_calls_tls_descriptor macro for a better
2353 approximation. */
3452586b
RH
2354 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2355
2356 /* If true, the current function has a STATIC_CHAIN is placed on the
2357 stack below the return address. */
2358 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2359
ec7ded37
RH
2360 /* During prologue/epilogue generation, the current frame state.
2361 Otherwise, the frame state at the end of the prologue. */
2362 struct machine_frame_state fs;
f81c9774
RH
2363
2364 /* During SEH output, this is non-null. */
2365 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2366};
cd9c1ca8 2367#endif
fa1a0d02
JH
2368
2369#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2370#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2371#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2372#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2373#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2374#define ix86_tls_descriptor_calls_expanded_in_cfun \
2375 (cfun->machine->tls_descriptor_call_expanded_p)
2376/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2377 calls are optimized away, we try to detect cases in which it was
2378 optimized away. Since such instructions (use (reg REG_SP)), we can
2379 verify whether there's any such instruction live by testing that
2380 REG_SP is live. */
2381#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2382 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2383#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2384
1bc7c5b6
ZW
2385/* Control behavior of x86_file_start. */
2386#define X86_FILE_START_VERSION_DIRECTIVE false
2387#define X86_FILE_START_FLTUSED false
2388
7dcbf659
JH
2389/* Flag to mark data that is in the large address area. */
2390#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2391#define SYMBOL_REF_FAR_ADDR_P(X) \
2392 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2393
2394/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2395 have defined always, to avoid ifdefing. */
2396#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2397#define SYMBOL_REF_DLLIMPORT_P(X) \
2398 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2399
2400#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2401#define SYMBOL_REF_DLLEXPORT_P(X) \
2402 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2403
82c0e1a0
KT
2404#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2405#define SYMBOL_REF_STUBVAR_P(X) \
2406 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2407
7942e47e
RY
2408extern void debug_ready_dispatch (void);
2409extern void debug_dispatch_window (int);
2410
91afcfa3
QN
2411/* The value at zero is only defined for the BMI instructions
2412 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2413#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2414 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2415#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2416 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2417
2418
b8ce4e94
KT
2419/* Flags returned by ix86_get_callcvt (). */
2420#define IX86_CALLCVT_CDECL 0x1
2421#define IX86_CALLCVT_STDCALL 0x2
2422#define IX86_CALLCVT_FASTCALL 0x4
2423#define IX86_CALLCVT_THISCALL 0x8
2424#define IX86_CALLCVT_REGPARM 0x10
2425#define IX86_CALLCVT_SSEREGPARM 0x20
2426
2427#define IX86_BASE_CALLCVT(FLAGS) \
2428 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2429 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2430
b86b9f44
MM
2431#define RECIP_MASK_NONE 0x00
2432#define RECIP_MASK_DIV 0x01
2433#define RECIP_MASK_SQRT 0x02
2434#define RECIP_MASK_VEC_DIV 0x04
2435#define RECIP_MASK_VEC_SQRT 0x08
2436#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2437 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2438#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2439
2440#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2441#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2442#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2443#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2444
5dcfdccd
KY
2445#define IX86_HLE_ACQUIRE (1 << 16)
2446#define IX86_HLE_RELEASE (1 << 17)
2447
c98f8742
JVA
2448/*
2449Local variables:
2450version-control: t
2451End:
2452*/