]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
invoke.texi: (-devirtualize-at-ltrans): Document.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
23a5b65a 2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
90922d36 84#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 85#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 86#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 87#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 88#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 89#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 90#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 91#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 92#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 93#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
94#define TARGET_ROUND TARGET_ISA_ROUND
95#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 96#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 97#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 98#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 99#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 100#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 101#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 102#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 103#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 104#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 105#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 106#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 107#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 108#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 109#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 110#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 111#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 112#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 113#define TARGET_AES TARGET_ISA_AES
bf7b5747 114#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
115#define TARGET_SHA TARGET_ISA_SHA
116#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
117#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
118#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
119#define TARGET_XSAVEC TARGET_ISA_XSAVEC
120#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
121#define TARGET_XSAVES TARGET_ISA_XSAVES
122#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 123#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 124#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
125#define TARGET_CMPXCHG16B TARGET_ISA_CX16
126#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 127#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 128#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 129#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 130#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 131#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 132#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
133#define TARGET_RTM TARGET_ISA_RTM
134#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 135#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 136#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 137#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 138#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 139#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 140#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 141#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 142#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 143#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 144#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 145#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 146#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 147#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 148#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
149#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
150#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
d5e254e1
IE
151#define TARGET_MPX TARGET_ISA_MPX
152#define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
36e9b73e
IT
153#define TARGET_PCOMMIT TARGET_ISA_PCOMMIT
154#define TARGET_PCOMMIT_P(x) TARGET_ISA_PCOMMIT_P(x)
9c3bca11
IT
155#define TARGET_CLWB TARGET_ISA_CLWB
156#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
ab442df7 157
90922d36 158#define TARGET_LP64 TARGET_ABI_64
bf7b5747 159#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 160#define TARGET_X32 TARGET_ABI_X32
bf7b5747 161#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
162#define TARGET_16BIT TARGET_CODE16
163#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 164
cbf2e4d4
HJ
165/* SSE4.1 defines round instructions */
166#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 167#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 168
26b5109f
RS
169#include "config/vxworks-dummy.h"
170
7eb68c06 171#include "config/i386/i386-opts.h"
ccf8e764 172
c69fa2d4 173#define MAX_STRINGOP_ALGS 4
ccf8e764 174
8c996513
JH
175/* Specify what algorithm to use for stringops on known size.
176 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
177 known at compile time or estimated via feedback, the SIZE array
178 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 179 means infinity). Corresponding ALG is used then.
340ef734
JH
180 When NOALIGN is true the code guaranting the alignment of the memory
181 block is skipped.
182
8c996513 183 For example initializer:
4f3f76e6 184 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 185 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 186 be used otherwise. */
8c996513
JH
187struct stringop_algs
188{
189 const enum stringop_alg unknown_size;
190 const struct stringop_strategy {
191 const int max;
192 const enum stringop_alg alg;
340ef734 193 int noalign;
c69fa2d4 194 } size [MAX_STRINGOP_ALGS];
8c996513
JH
195};
196
d4ba09c0
SC
197/* Define the specific costs for a given cpu */
198
199struct processor_costs {
8b60264b
KG
200 const int add; /* cost of an add instruction */
201 const int lea; /* cost of a lea instruction */
202 const int shift_var; /* variable shift costs */
203 const int shift_const; /* constant shift costs */
f676971a 204 const int mult_init[5]; /* cost of starting a multiply
4977bab6 205 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 206 const int mult_bit; /* cost of multiply per each bit set */
f676971a 207 const int divide[5]; /* cost of a divide/mod
4977bab6 208 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
209 int movsx; /* The cost of movsx operation. */
210 int movzx; /* The cost of movzx operation. */
8b60264b
KG
211 const int large_insn; /* insns larger than this cost more */
212 const int move_ratio; /* The threshold of number of scalar
ac775968 213 memory-to-memory move insns. */
8b60264b
KG
214 const int movzbl_load; /* cost of loading using movzbl */
215 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
216 in QImode, HImode and SImode relative
217 to reg-reg move (2). */
8b60264b 218 const int int_store[3]; /* cost of storing integer register
96e7ae40 219 in QImode, HImode and SImode */
8b60264b
KG
220 const int fp_move; /* cost of reg,reg fld/fst */
221 const int fp_load[3]; /* cost of loading FP register
96e7ae40 222 in SFmode, DFmode and XFmode */
8b60264b 223 const int fp_store[3]; /* cost of storing FP register
96e7ae40 224 in SFmode, DFmode and XFmode */
8b60264b
KG
225 const int mmx_move; /* cost of moving MMX register. */
226 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 227 in SImode and DImode */
8b60264b 228 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 229 in SImode and DImode */
8b60264b
KG
230 const int sse_move; /* cost of moving SSE register. */
231 const int sse_load[3]; /* cost of loading SSE register
fa79946e 232 in SImode, DImode and TImode*/
8b60264b 233 const int sse_store[3]; /* cost of storing SSE register
fa79946e 234 in SImode, DImode and TImode*/
8b60264b 235 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 236 integer and vice versa. */
46cb0441
ZD
237 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
238 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
239 const int prefetch_block; /* bytes moved to cache for prefetch. */
240 const int simultaneous_prefetches; /* number of parallel prefetch
241 operations. */
4977bab6 242 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
243 const int fadd; /* cost of FADD and FSUB instructions. */
244 const int fmul; /* cost of FMUL instruction. */
245 const int fdiv; /* cost of FDIV instruction. */
246 const int fabs; /* cost of FABS instruction. */
247 const int fchs; /* cost of FCHS instruction. */
248 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 249 /* Specify what algorithm
bee51209 250 to use for stringops on unknown size. */
ad83025e 251 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
252 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
253 load and store. */
254 const int scalar_load_cost; /* Cost of scalar load. */
255 const int scalar_store_cost; /* Cost of scalar store. */
256 const int vec_stmt_cost; /* Cost of any vector operation, excluding
257 load, store, vector-to-scalar and
258 scalar-to-vector operation. */
259 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
260 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 261 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
262 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
263 const int vec_store_cost; /* Cost of vector store. */
264 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
265 cost model. */
266 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
267 vectorizer cost model. */
d4ba09c0
SC
268};
269
8b60264b 270extern const struct processor_costs *ix86_cost;
b2077fd2
JH
271extern const struct processor_costs ix86_size_cost;
272
273#define ix86_cur_cost() \
274 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 275
c98f8742
JVA
276/* Macros used in the machine description to test the flags. */
277
b97de419 278/* configure can arrange to change it. */
e075ae69 279
35b528be 280#ifndef TARGET_CPU_DEFAULT
b97de419 281#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 282#endif
35b528be 283
004d3859
GK
284#ifndef TARGET_FPMATH_DEFAULT
285#define TARGET_FPMATH_DEFAULT \
286 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
287#endif
288
bf7b5747
ST
289#ifndef TARGET_FPMATH_DEFAULT_P
290#define TARGET_FPMATH_DEFAULT_P(x) \
291 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
292#endif
293
6ac49599 294#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 295#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 296
5791cc29
JT
297/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
298 compile-time constant. */
299#ifdef IN_LIBGCC2
6ac49599 300#undef TARGET_64BIT
5791cc29
JT
301#ifdef __x86_64__
302#define TARGET_64BIT 1
303#else
304#define TARGET_64BIT 0
305#endif
306#else
6ac49599
RS
307#ifndef TARGET_BI_ARCH
308#undef TARGET_64BIT
e49080ec 309#undef TARGET_64BIT_P
67adf6a9 310#if TARGET_64BIT_DEFAULT
0c2dc519 311#define TARGET_64BIT 1
e49080ec 312#define TARGET_64BIT_P(x) 1
0c2dc519
JH
313#else
314#define TARGET_64BIT 0
e49080ec 315#define TARGET_64BIT_P(x) 0
0c2dc519
JH
316#endif
317#endif
5791cc29 318#endif
25f94bb5 319
750054a2
CT
320#define HAS_LONG_COND_BRANCH 1
321#define HAS_LONG_UNCOND_BRANCH 1
322
9e555526
RH
323#define TARGET_386 (ix86_tune == PROCESSOR_I386)
324#define TARGET_486 (ix86_tune == PROCESSOR_I486)
325#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
326#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 327#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
328#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
329#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
330#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
331#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 332#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 333#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 334#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
335#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
336#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 337#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
338#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
339#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
9a7f94d7 340#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 341#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 342#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 343#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 344#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 345#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 346#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 347#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 348#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 349
80fd744f
RH
350/* Feature tests against the various tunings. */
351enum ix86_tune_indices {
4b8bc035 352#undef DEF_TUNE
3ad20bd4 353#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
354#include "x86-tune.def"
355#undef DEF_TUNE
356X86_TUNE_LAST
80fd744f
RH
357};
358
ab442df7 359extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
360
361#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
362#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
363#define TARGET_ZERO_EXTEND_WITH_AND \
364 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 365#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
366#define TARGET_BRANCH_PREDICTION_HINTS \
367 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
368#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
369#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
370#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
371#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
372#define TARGET_PARTIAL_FLAG_REG_STALL \
373 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
374#define TARGET_LCP_STALL \
375 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
376#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
377#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
378#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
379#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
380#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
381#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
382#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
383#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
384#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
385#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
386#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
387#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
388 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
389#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
390#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
391#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
392#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
393#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
394#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
395#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
396#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
397#define TARGET_INTEGER_DFMODE_MOVES \
398 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
399#define TARGET_PARTIAL_REG_DEPENDENCY \
400 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
401#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
402 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
403#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
404 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
405#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
406 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
407#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
408 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
409#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
410#define TARGET_SSE_TYPELESS_STORES \
411 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
412#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
413#define TARGET_MEMORY_MISMATCH_STALL \
414 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
415#define TARGET_PROLOGUE_USING_MOVE \
416 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
417#define TARGET_EPILOGUE_USING_MOVE \
418 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
419#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
420#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
421#define TARGET_INTER_UNIT_MOVES_TO_VEC \
422 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
423#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
424 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
425#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 426 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
427#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
428#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
429#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
430#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
431#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
432#define TARGET_PAD_SHORT_FUNCTION \
433 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
434#define TARGET_EXT_80387_CONSTANTS \
435 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
436#define TARGET_AVOID_VECTOR_DECODE \
437 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
438#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
439 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
440#define TARGET_SLOW_IMUL_IMM32_MEM \
441 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
442#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
443#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
444#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
445#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
446#define TARGET_USE_VECTOR_FP_CONVERTS \
447 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
448#define TARGET_USE_VECTOR_CONVERTS \
449 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
450#define TARGET_SLOW_PSHUFB \
451 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
f7917029
ES
452#define TARGET_VECTOR_PARALLEL_EXECUTION \
453 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
0dc41f28
WM
454#define TARGET_FUSE_CMP_AND_BRANCH_32 \
455 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
456#define TARGET_FUSE_CMP_AND_BRANCH_64 \
457 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 458#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
459 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
460 : TARGET_FUSE_CMP_AND_BRANCH_32)
461#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
462 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
463#define TARGET_FUSE_ALU_AND_BRANCH \
464 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 465#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
466#define TARGET_AVOID_LEA_FOR_ADDR \
467 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
e72eba85
L
468#define TARGET_VECTORIZE_DOUBLE \
469 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
470#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
471 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
472#define TARGET_AVX128_OPTIMAL \
473 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
474#define TARGET_REASSOC_INT_TO_PARALLEL \
475 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
476#define TARGET_REASSOC_FP_TO_PARALLEL \
477 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
478#define TARGET_GENERAL_REGS_SSE_SPILL \
479 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
480#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
481 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 482#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 483 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
484#define TARGET_ADJUST_UNROLL \
485 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
486#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
487 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
df7b0cc4 488
80fd744f
RH
489/* Feature tests against the various architecture variations. */
490enum ix86_arch_indices {
cef31f9c 491 X86_ARCH_CMOV,
80fd744f
RH
492 X86_ARCH_CMPXCHG,
493 X86_ARCH_CMPXCHG8B,
494 X86_ARCH_XADD,
495 X86_ARCH_BSWAP,
496
497 X86_ARCH_LAST
498};
4f3f76e6 499
ab442df7 500extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 501
cef31f9c 502#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
503#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
504#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
505#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
506#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
507
cef31f9c
UB
508/* For sane SSE instruction set generation we need fcomi instruction.
509 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
510 expands to a sequence that includes conditional move. */
511#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
512
80fd744f
RH
513#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
514
cb261eb7 515extern unsigned char x86_prefetch_sse;
80fd744f
RH
516#define TARGET_PREFETCH_SSE x86_prefetch_sse
517
80fd744f
RH
518#define ASSEMBLER_DIALECT (ix86_asm_dialect)
519
520#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
521#define TARGET_MIX_SSE_I387 \
522 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
523
524#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
525#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
526#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 527#define TARGET_SUN_TLS 0
1ef45b77 528
67adf6a9
RH
529#ifndef TARGET_64BIT_DEFAULT
530#define TARGET_64BIT_DEFAULT 0
25f94bb5 531#endif
74dc3e94
RH
532#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
533#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
534#endif
25f94bb5 535
e0ea8797
AH
536#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
537#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
538
79f5e442
ZD
539/* Fence to use after loop using storent. */
540
541extern tree x86_mfence;
542#define FENCE_FOLLOWING_MOVNT x86_mfence
543
0ed4a390
JL
544/* Once GDB has been enhanced to deal with functions without frame
545 pointers, we can change this to allow for elimination of
546 the frame pointer in leaf functions. */
547#define TARGET_DEFAULT 0
67adf6a9 548
0a1c5e55
UB
549/* Extra bits to force. */
550#define TARGET_SUBTARGET_DEFAULT 0
551#define TARGET_SUBTARGET_ISA_DEFAULT 0
552
553/* Extra bits to force on w/ 32-bit mode. */
554#define TARGET_SUBTARGET32_DEFAULT 0
555#define TARGET_SUBTARGET32_ISA_DEFAULT 0
556
ccf8e764
RH
557/* Extra bits to force on w/ 64-bit mode. */
558#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 559#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 560
fee3eacd
IS
561/* Replace MACH-O, ifdefs by in-line tests, where possible.
562 (a) Macros defined in config/i386/darwin.h */
b069de3b 563#define TARGET_MACHO 0
9005471b 564#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
565#define MACHOPIC_ATT_STUB 0
566/* (b) Macros defined in config/darwin.h */
567#define MACHO_DYNAMIC_NO_PIC_P 0
568#define MACHOPIC_INDIRECT 0
569#define MACHOPIC_PURE 0
9005471b 570
5a579c3b
LE
571/* For the RDOS */
572#define TARGET_RDOS 0
573
9005471b 574/* For the Windows 64-bit ABI. */
7c800926
KT
575#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
576
6510e8bb
KT
577/* For the Windows 32-bit ABI. */
578#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
579
f81c9774
RH
580/* This is re-defined by cygming.h. */
581#define TARGET_SEH 0
582
a3d7ab92
KT
583/* This is re-defined by cygming.h. */
584#define TARGET_PECOFF 0
585
51212b32 586/* The default abi used by target. */
7c800926 587#define DEFAULT_ABI SYSV_ABI
ccf8e764 588
b8b3f0ca
LE
589/* The default TLS segment register used by target. */
590#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
591
cc69336f
RH
592/* Subtargets may reset this to 1 in order to enable 96-bit long double
593 with the rounding mode forced to 53 bits. */
594#define TARGET_96_ROUND_53_LONG_DOUBLE 0
595
682cd442
GK
596/* -march=native handling only makes sense with compiler running on
597 an x86 or x86_64 chip. If changing this condition, also change
598 the condition in driver-i386.c. */
599#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
600/* In driver-i386.c. */
601extern const char *host_detect_local_cpu (int argc, const char **argv);
602#define EXTRA_SPEC_FUNCTIONS \
603 { "local_cpu_detect", host_detect_local_cpu },
682cd442 604#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
605#endif
606
8981c15b
JM
607#if TARGET_64BIT_DEFAULT
608#define OPT_ARCH64 "!m32"
609#define OPT_ARCH32 "m32"
610#else
f0ea7581
L
611#define OPT_ARCH64 "m64|mx32"
612#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
613#endif
614
1cba2b96
EC
615/* Support for configure-time defaults of some command line options.
616 The order here is important so that -march doesn't squash the
617 tune or cpu values. */
ce998900 618#define OPTION_DEFAULT_SPECS \
da2d4c01 619 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
620 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
621 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 622 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
623 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
624 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
625 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
626 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
627 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 628
241e1a89
SC
629/* Specs for the compiler proper */
630
628714d8 631#ifndef CC1_CPU_SPEC
eb5bb0fd 632#define CC1_CPU_SPEC_1 ""
fa959ce4 633
682cd442 634#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
635#define CC1_CPU_SPEC CC1_CPU_SPEC_1
636#else
637#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
638"%{march=native:%>march=native %:local_cpu_detect(arch) \
639 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
640%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 641#endif
241e1a89 642#endif
c98f8742 643\f
30efe578 644/* Target CPU builtins. */
ab442df7
MM
645#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
646
647/* Target Pragmas. */
648#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 649
628714d8 650#ifndef CC1_SPEC
8015b78d 651#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
652#endif
653
654/* This macro defines names of additional specifications to put in the
655 specs that can be used in various specifications like CC1_SPEC. Its
656 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
657
658 Each subgrouping contains a string constant, that defines the
188fc5b5 659 specification name, and a string constant that used by the GCC driver
bcd86433
SC
660 program.
661
662 Do not define this macro if it does not need to do anything. */
663
664#ifndef SUBTARGET_EXTRA_SPECS
665#define SUBTARGET_EXTRA_SPECS
666#endif
667
668#define EXTRA_SPECS \
628714d8 669 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
670 SUBTARGET_EXTRA_SPECS
671\f
ce998900 672
d57a4b98
RH
673/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
674 FPU, assume that the fpcw is set to extended precision; when using
675 only SSE, rounding is correct; when using both SSE and the FPU,
676 the rounding precision is indeterminate, since either may be chosen
677 apparently at random. */
678#define TARGET_FLT_EVAL_METHOD \
5ccd517a 679 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 680
8ce94e44
JM
681/* Whether to allow x87 floating-point arithmetic on MODE (one of
682 SFmode, DFmode and XFmode) in the current excess precision
683 configuration. */
684#define X87_ENABLE_ARITH(MODE) \
685 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
686
687/* Likewise, whether to allow direct conversions from integer mode
688 IMODE (HImode, SImode or DImode) to MODE. */
689#define X87_ENABLE_FLOAT(MODE, IMODE) \
690 (flag_excess_precision == EXCESS_PRECISION_FAST \
691 || (MODE) == XFmode \
692 || ((MODE) == DFmode && (IMODE) == SImode) \
693 || (IMODE) == HImode)
694
979c67a5
UB
695/* target machine storage layout */
696
65d9c0ab
JH
697#define SHORT_TYPE_SIZE 16
698#define INT_TYPE_SIZE 32
f0ea7581
L
699#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
700#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 701#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 702#define FLOAT_TYPE_SIZE 32
65d9c0ab 703#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
704#define LONG_DOUBLE_TYPE_SIZE \
705 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 706
c637141a 707#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 708
67adf6a9 709#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 710#define MAX_BITS_PER_WORD 64
0c2dc519
JH
711#else
712#define MAX_BITS_PER_WORD 32
0c2dc519
JH
713#endif
714
c98f8742
JVA
715/* Define this if most significant byte of a word is the lowest numbered. */
716/* That is true on the 80386. */
717
718#define BITS_BIG_ENDIAN 0
719
720/* Define this if most significant byte of a word is the lowest numbered. */
721/* That is not true on the 80386. */
722#define BYTES_BIG_ENDIAN 0
723
724/* Define this if most significant word of a multiword number is the lowest
725 numbered. */
726/* Not true for 80386 */
727#define WORDS_BIG_ENDIAN 0
728
c98f8742 729/* Width of a word, in units (bytes). */
4ae8027b 730#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
731
732#ifndef IN_LIBGCC2
2e64c636
JH
733#define MIN_UNITS_PER_WORD 4
734#endif
c98f8742 735
c98f8742 736/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 737#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 738
e075ae69 739/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 740#define STACK_BOUNDARY \
51212b32 741 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 742
2e3f842f
L
743/* Stack boundary of the main function guaranteed by OS. */
744#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
745
de1132d1 746/* Minimum stack boundary. */
5bfb2af2 747#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 748
d1f87653 749/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 750 aligned; the compiler cannot rely on having this alignment. */
e075ae69 751#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 752
de1132d1 753/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
754 both 32bit and 64bit, to support codes that need 128 bit stack
755 alignment for SSE instructions, but can't realign the stack. */
756#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
757
758/* 1 if -mstackrealign should be turned on by default. It will
759 generate an alternate prologue and epilogue that realigns the
760 runtime stack if nessary. This supports mixing codes that keep a
761 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 762 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
763#define STACK_REALIGN_DEFAULT 0
764
765/* Boundary (in *bits*) on which the incoming stack is aligned. */
766#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 767
a2851b75
TG
768/* According to Windows x64 software convention, the maximum stack allocatable
769 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
770 instructions allowed to adjust the stack pointer in the epilog, forcing the
771 use of frame pointer for frames larger than 2 GB. This theorical limit
772 is reduced by 256, an over-estimated upper bound for the stack use by the
773 prologue.
774 We define only one threshold for both the prolog and the epilog. When the
4e523f33 775 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
776 regs, then save them, and then allocate the remaining. There is no SEH
777 unwind info for this later allocation. */
778#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
779
ebff937c
SH
780/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
781 mandatory for the 64-bit ABI, and may or may not be true for other
782 operating systems. */
783#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
784
f963b5d9
RS
785/* Minimum allocation boundary for the code of a function. */
786#define FUNCTION_BOUNDARY 8
787
788/* C++ stores the virtual bit in the lowest bit of function pointers. */
789#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 790
c98f8742
JVA
791/* Minimum size in bits of the largest boundary to which any
792 and all fundamental data types supported by the hardware
793 might need to be aligned. No data type wants to be aligned
17f24ff0 794 rounder than this.
fce5a9f2 795
d1f87653 796 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
797 and Pentium Pro XFmode values at 128 bit boundaries. */
798
3f97cb0b
AI
799#define BIGGEST_ALIGNMENT \
800 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
17f24ff0 801
2e3f842f
L
802/* Maximum stack alignment. */
803#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
804
6e4f1168
L
805/* Alignment value for attribute ((aligned)). It is a constant since
806 it is the part of the ABI. We shouldn't change it with -mavx. */
807#define ATTRIBUTE_ALIGNED_VALUE 128
808
822eda12 809/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 810#define ALIGN_MODE_128(MODE) \
4501d314 811 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 812
17f24ff0 813/* The published ABIs say that doubles should be aligned on word
d1f87653 814 boundaries, so lower the alignment for structure fields unless
6fc605d8 815 -malign-double is set. */
e932b21b 816
e83f3cff
RH
817/* ??? Blah -- this macro is used directly by libobjc. Since it
818 supports no vector modes, cut out the complexity and fall back
819 on BIGGEST_FIELD_ALIGNMENT. */
820#ifdef IN_TARGET_LIBS
ef49d42e
JH
821#ifdef __x86_64__
822#define BIGGEST_FIELD_ALIGNMENT 128
823#else
e83f3cff 824#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 825#endif
e83f3cff 826#else
e932b21b
JH
827#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
828 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 829#endif
c98f8742 830
e5e8a8bf 831/* If defined, a C expression to compute the alignment given to a
a7180f70 832 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
833 and ALIGN is the alignment that the object would ordinarily have.
834 The value of this macro is used instead of that alignment to align
835 the object.
836
837 If this macro is not defined, then ALIGN is used.
838
839 The typical use of this macro is to increase alignment for string
840 constants to be word aligned so that `strcpy' calls that copy
841 constants can be done inline. */
842
d9a5f180 843#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 844
8a022443
JW
845/* If defined, a C expression to compute the alignment for a static
846 variable. TYPE is the data type, and ALIGN is the alignment that
847 the object would ordinarily have. The value of this macro is used
848 instead of that alignment to align the object.
849
850 If this macro is not defined, then ALIGN is used.
851
852 One use of this macro is to increase alignment of medium-size
853 data to make it all fit in fewer cache lines. Another is to
854 cause character arrays to be word-aligned so that `strcpy' calls
855 that copy constants to character arrays can be done inline. */
856
df8a1d28
JJ
857#define DATA_ALIGNMENT(TYPE, ALIGN) \
858 ix86_data_alignment ((TYPE), (ALIGN), true)
859
860/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
861 some alignment increase, instead of optimization only purposes. E.g.
862 AMD x86-64 psABI says that variables with array type larger than 15 bytes
863 must be aligned to 16 byte boundaries.
864
865 If this macro is not defined, then ALIGN is used. */
866
867#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
868 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
869
870/* If defined, a C expression to compute the alignment for a local
871 variable. TYPE is the data type, and ALIGN is the alignment that
872 the object would ordinarily have. The value of this macro is used
873 instead of that alignment to align the object.
874
875 If this macro is not defined, then ALIGN is used.
876
877 One use of this macro is to increase alignment of medium-size
878 data to make it all fit in fewer cache lines. */
879
76fe54f0
L
880#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
881 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
882
883/* If defined, a C expression to compute the alignment for stack slot.
884 TYPE is the data type, MODE is the widest mode available, and ALIGN
885 is the alignment that the slot would ordinarily have. The value of
886 this macro is used instead of that alignment to align the slot.
887
888 If this macro is not defined, then ALIGN is used when TYPE is NULL,
889 Otherwise, LOCAL_ALIGNMENT will be used.
890
891 One use of this macro is to set alignment of stack slot to the
892 maximum alignment of all possible modes which the slot may have. */
893
894#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
895 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 896
9bfaf89d
JJ
897/* If defined, a C expression to compute the alignment for a local
898 variable DECL.
899
900 If this macro is not defined, then
901 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
902
903 One use of this macro is to increase alignment of medium-size
904 data to make it all fit in fewer cache lines. */
905
906#define LOCAL_DECL_ALIGNMENT(DECL) \
907 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
908
ae58e548
JJ
909/* If defined, a C expression to compute the minimum required alignment
910 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
911 MODE, assuming normal alignment ALIGN.
912
913 If this macro is not defined, then (ALIGN) will be used. */
914
915#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
916 ix86_minimum_alignment (EXP, MODE, ALIGN)
917
9bfaf89d 918
9cd10576 919/* Set this nonzero if move instructions will actually fail to work
c98f8742 920 when given unaligned data. */
b4ac57ab 921#define STRICT_ALIGNMENT 0
c98f8742
JVA
922
923/* If bit field type is int, don't let it cross an int,
924 and give entire struct the alignment of an int. */
43a88a8c 925/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 926#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
927\f
928/* Standard register usage. */
929
930/* This processor has special stack-like registers. See reg-stack.c
892a2d68 931 for details. */
c98f8742
JVA
932
933#define STACK_REGS
ce998900 934
d9a5f180 935#define IS_STACK_MODE(MODE) \
63001560
UB
936 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
937 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 938 || (MODE) == XFmode)
c98f8742
JVA
939
940/* Number of actual hardware registers.
941 The hardware registers are assigned numbers for the compiler
942 from 0 to just below FIRST_PSEUDO_REGISTER.
943 All registers that the compiler knows about must be given numbers,
944 even those that are not normally considered general registers.
945
946 In the 80386 we give the 8 general purpose registers the numbers 0-7.
947 We number the floating point registers 8-15.
948 Note that registers 0-7 can be accessed as a short or int,
949 while only 0-3 may be used with byte `mov' instructions.
950
951 Reg 16 does not correspond to any hardware register, but instead
952 appears in the RTL as an argument pointer prior to reload, and is
953 eliminated during reloading in favor of either the stack or frame
892a2d68 954 pointer. */
c98f8742 955
d5e254e1 956#define FIRST_PSEUDO_REGISTER 81
c98f8742 957
3073d01c
ML
958/* Number of hardware registers that go into the DWARF-2 unwind info.
959 If not defined, equals FIRST_PSEUDO_REGISTER. */
960
961#define DWARF_FRAME_REGISTERS 17
962
c98f8742
JVA
963/* 1 for registers that have pervasive standard uses
964 and are not available for the register allocator.
3f3f2124 965 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 966
621bc046
UB
967 REX registers are disabled for 32bit targets in
968 TARGET_CONDITIONAL_REGISTER_USAGE. */
969
a7180f70
BS
970#define FIXED_REGISTERS \
971/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 972{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
973/*arg,flags,fpsr,fpcr,frame*/ \
974 1, 1, 1, 1, 1, \
a7180f70
BS
975/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
976 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 977/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
978 0, 0, 0, 0, 0, 0, 0, 0, \
979/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 980 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 981/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
982 0, 0, 0, 0, 0, 0, 0, 0, \
983/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
984 0, 0, 0, 0, 0, 0, 0, 0, \
985/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
986 0, 0, 0, 0, 0, 0, 0, 0, \
987/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
988 0, 0, 0, 0, 0, 0, 0, 0, \
989/* b0, b1, b2, b3*/ \
990 0, 0, 0, 0 }
c98f8742
JVA
991
992/* 1 for registers not available across function calls.
993 These must include the FIXED_REGISTERS and also any
994 registers that can be used without being saved.
995 The latter must include the registers where values are returned
996 and the register where structure-value addresses are passed.
fce5a9f2
EC
997 Aside from that, you can include as many other registers as you like.
998
621bc046
UB
999 Value is set to 1 if the register is call used unconditionally.
1000 Bit one is set if the register is call used on TARGET_32BIT ABI.
1001 Bit two is set if the register is call used on TARGET_64BIT ABI.
1002 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1003
1004 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1005
a7180f70
BS
1006#define CALL_USED_REGISTERS \
1007/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1008{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1009/*arg,flags,fpsr,fpcr,frame*/ \
1010 1, 1, 1, 1, 1, \
a7180f70 1011/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1012 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1013/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1014 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1015/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1016 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1017/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1018 6, 6, 6, 6, 6, 6, 6, 6, \
1019/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1020 6, 6, 6, 6, 6, 6, 6, 6, \
1021/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1022 6, 6, 6, 6, 6, 6, 6, 6, \
1023 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
d5e254e1
IE
1024 1, 1, 1, 1, 1, 1, 1, 1, \
1025/* b0, b1, b2, b3*/ \
1026 1, 1, 1, 1 }
c98f8742 1027
3b3c6a3f
MM
1028/* Order in which to allocate registers. Each register must be
1029 listed once, even those in FIXED_REGISTERS. List frame pointer
1030 late and fixed registers last. Note that, in general, we prefer
1031 registers listed in CALL_USED_REGISTERS, keeping the others
1032 available for storage of persistent values.
1033
5a733826 1034 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1035 so this is just empty initializer for array. */
3b3c6a3f 1036
162f023b
JH
1037#define REG_ALLOC_ORDER \
1038{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1039 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1040 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1041 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
d5e254e1
IE
1042 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1043 78, 79, 80 }
3b3c6a3f 1044
5a733826 1045/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1046 to be rearranged based on a particular function. When using sse math,
03c259ad 1047 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1048
5a733826 1049#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1050
f5316dfe 1051
7c800926
KT
1052#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1053
c98f8742
JVA
1054/* Return number of consecutive hard regs needed starting at reg REGNO
1055 to hold something of mode MODE.
1056 This is ordinarily the length in words of a value of mode MODE
1057 but can be less for certain modes in special long registers.
1058
fce5a9f2 1059 Actually there are no two word move instructions for consecutive
c98f8742 1060 registers. And only registers 0-3 may have mov byte instructions
63001560 1061 applied to them. */
c98f8742 1062
ce998900 1063#define HARD_REGNO_NREGS(REGNO, MODE) \
d5e254e1
IE
1064 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1065 || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO) \
92d0fb09 1066 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1067 : ((MODE) == XFmode \
92d0fb09 1068 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1069 : (MODE) == XCmode \
92d0fb09 1070 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1071 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1072
8521c414
JM
1073#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1074 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1075 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1076 ? 0 \
1077 : ((MODE) == XFmode || (MODE) == XCmode)) \
1078 : 0)
1079
1080#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1081
95879c72
L
1082#define VALID_AVX256_REG_MODE(MODE) \
1083 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1084 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1085 || (MODE) == V4DFmode)
95879c72 1086
4ac005ba 1087#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1088 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1089
3f97cb0b
AI
1090#define VALID_AVX512F_SCALAR_MODE(MODE) \
1091 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1092 || (MODE) == SFmode)
1093
1094#define VALID_AVX512F_REG_MODE(MODE) \
1095 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1096 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1097 || (MODE) == V4TImode)
1098
1099#define VALID_AVX512VL_128_REG_MODE(MODE) \
1100 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1101 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
3f97cb0b 1102
ce998900
UB
1103#define VALID_SSE2_REG_MODE(MODE) \
1104 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1105 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1106
d9a5f180 1107#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1108 ((MODE) == V1TImode || (MODE) == TImode \
1109 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1110 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1111
47f339cf 1112#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1113 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1114
d9a5f180 1115#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1116 ((MODE == V1DImode) || (MODE) == DImode \
1117 || (MODE) == V2SImode || (MODE) == SImode \
1118 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1119
d5e254e1
IE
1120#define VALID_BND_REG_MODE(MODE) \
1121 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1122
ce998900
UB
1123#define VALID_DFP_MODE_P(MODE) \
1124 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1125
d9a5f180 1126#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1127 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1128 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1129
d9a5f180 1130#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1131 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1132 || (MODE) == DImode \
1133 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1134 || (MODE) == CDImode \
1135 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1136 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1137
822eda12 1138/* Return true for modes passed in SSE registers. */
ce998900 1139#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1140 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1141 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1142 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1143 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1144 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1145 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1146 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1147 || (MODE) == V16SFmode)
822eda12 1148
85a77221
AI
1149#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1150
9e4a4dd6
AI
1151#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1152
e075ae69 1153/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1154
a946dd00 1155#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1156 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1157
1158/* Value is 1 if it is a good idea to tie two pseudo registers
1159 when one has mode MODE1 and one has mode MODE2.
1160 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1161 for any hard reg, then this must be 0 for correct output. */
1162
c1c5b5e3 1163#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1164
ff25ef99
ZD
1165/* It is possible to write patterns to move flags; but until someone
1166 does it, */
1167#define AVOID_CCMODE_COPIES
c98f8742 1168
e075ae69 1169/* Specify the modes required to caller save a given hard regno.
787dc842 1170 We do this on i386 to prevent flags from being saved at all.
e075ae69 1171
787dc842
JH
1172 Kill any attempts to combine saving of modes. */
1173
d9a5f180
GS
1174#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1175 (CC_REGNO_P (REGNO) ? VOIDmode \
1176 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1177 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1178 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1179 || MASK_REGNO_P (REGNO)) ? SImode \
1180 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1181 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1182 : (MODE))
ce998900 1183
51ba747a
RH
1184/* The only ABI that saves SSE registers across calls is Win64 (thus no
1185 need to check the current ABI here), and with AVX enabled Win64 only
1186 guarantees that the low 16 bytes are saved. */
1187#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1188 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1189
c98f8742
JVA
1190/* Specify the registers used for certain standard purposes.
1191 The values of these macros are register numbers. */
1192
1193/* on the 386 the pc register is %eip, and is not usable as a general
1194 register. The ordinary mov instructions won't work */
1195/* #define PC_REGNUM */
1196
1197/* Register to use for pushing function arguments. */
1198#define STACK_POINTER_REGNUM 7
1199
1200/* Base register for access to local variables of the function. */
564d80f4
JH
1201#define HARD_FRAME_POINTER_REGNUM 6
1202
1203/* Base register for access to local variables of the function. */
b0d95de8 1204#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1205
1206/* First floating point reg */
1207#define FIRST_FLOAT_REG 8
1208
1209/* First & last stack-like regs */
1210#define FIRST_STACK_REG FIRST_FLOAT_REG
1211#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1212
a7180f70
BS
1213#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1214#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1215
3f97cb0b 1216#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
a7180f70
BS
1217#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1218
3f97cb0b 1219#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
3f3f2124
JH
1220#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1221
3f97cb0b 1222#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
3f3f2124
JH
1223#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1224
3f97cb0b
AI
1225#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1226#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1227
85a77221
AI
1228#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1229#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1230
d5e254e1
IE
1231#define FIRST_BND_REG (LAST_MASK_REG + 1) /*77*/
1232#define LAST_BND_REG (FIRST_BND_REG + 3) /*80*/
1233
aabcd309 1234/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1235 requiring a frame pointer. */
1236#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1237#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1238#endif
1239
1240/* Make sure we can access arbitrary call frames. */
1241#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1242
1243/* Base register for access to arguments of the function. */
1244#define ARG_POINTER_REGNUM 16
1245
c98f8742 1246/* Register to hold the addressing base for position independent
5b43fed1
RH
1247 code access to data items. We don't use PIC pointer for 64bit
1248 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1249 pessimizing code dealing with EBX.
bd09bdeb
RH
1250
1251 To avoid clobbering a call-saved register unnecessarily, we renumber
1252 the pic register when possible. The change is visible after the
1253 prologue has been emitted. */
1254
e8b5eb25 1255#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1256
bcb21886
KY
1257#define PIC_OFFSET_TABLE_REGNUM \
1258 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
1259 || TARGET_PECOFF)) \
1260 || !flag_pic \
1261 ? INVALID_REGNUM \
1262 : pic_offset_table_rtx \
1263 ? INVALID_REGNUM \
1264 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1265
5fc0e5df
KW
1266#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1267
c51e6d85 1268/* This is overridden by <cygwin.h>. */
5e062767
DS
1269#define MS_AGGREGATE_RETURN 0
1270
61fec9ff 1271#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1272\f
1273/* Define the classes of registers for register constraints in the
1274 machine description. Also define ranges of constants.
1275
1276 One of the classes must always be named ALL_REGS and include all hard regs.
1277 If there is more than one class, another class must be named NO_REGS
1278 and contain no registers.
1279
1280 The name GENERAL_REGS must be the name of a class (or an alias for
1281 another name such as ALL_REGS). This is the class of registers
1282 that is allowed by "g" or "r" in a register constraint.
1283 Also, registers outside this class are allocated only when
1284 instructions express preferences for them.
1285
1286 The classes must be numbered in nondecreasing order; that is,
1287 a larger-numbered class must never be contained completely
1288 in a smaller-numbered class.
1289
1290 For any two classes, it is very desirable that there be another
ab408a86
JVA
1291 class that represents their union.
1292
1293 It might seem that class BREG is unnecessary, since no useful 386
1294 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1295 and the "b" register constraint is useful in asms for syscalls.
1296
03c259ad 1297 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1298
1299enum reg_class
1300{
1301 NO_REGS,
e075ae69 1302 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1303 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1304 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1305 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1306 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1307 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1308 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1309 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1310 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1311 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1312 FLOAT_REGS,
06f4e35d 1313 SSE_FIRST_REG,
45392c76 1314 NO_REX_SSE_REGS,
a7180f70 1315 SSE_REGS,
3f97cb0b 1316 EVEX_SSE_REGS,
d5e254e1 1317 BND_REGS,
3f97cb0b 1318 ALL_SSE_REGS,
a7180f70 1319 MMX_REGS,
446988df
JH
1320 FP_TOP_SSE_REGS,
1321 FP_SECOND_SSE_REGS,
1322 FLOAT_SSE_REGS,
1323 FLOAT_INT_REGS,
1324 INT_SSE_REGS,
1325 FLOAT_INT_SSE_REGS,
85a77221
AI
1326 MASK_EVEX_REGS,
1327 MASK_REGS,
c98f8742
JVA
1328 ALL_REGS, LIM_REG_CLASSES
1329};
1330
d9a5f180
GS
1331#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1332
1333#define INTEGER_CLASS_P(CLASS) \
1334 reg_class_subset_p ((CLASS), GENERAL_REGS)
1335#define FLOAT_CLASS_P(CLASS) \
1336 reg_class_subset_p ((CLASS), FLOAT_REGS)
1337#define SSE_CLASS_P(CLASS) \
3f97cb0b 1338 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1339#define MMX_CLASS_P(CLASS) \
f75959a6 1340 ((CLASS) == MMX_REGS)
d9a5f180
GS
1341#define MAYBE_INTEGER_CLASS_P(CLASS) \
1342 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1343#define MAYBE_FLOAT_CLASS_P(CLASS) \
1344 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1345#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1346 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1347#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1348 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1349#define MAYBE_MASK_CLASS_P(CLASS) \
1350 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1351
1352#define Q_CLASS_P(CLASS) \
1353 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1354
0bd72901
UB
1355#define MAYBE_NON_Q_CLASS_P(CLASS) \
1356 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1357
43f3a59d 1358/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1359
1360#define REG_CLASS_NAMES \
1361{ "NO_REGS", \
ab408a86 1362 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1363 "SIREG", "DIREG", \
e075ae69
RH
1364 "AD_REGS", \
1365 "Q_REGS", "NON_Q_REGS", \
c98f8742 1366 "INDEX_REGS", \
3f3f2124 1367 "LEGACY_REGS", \
621bc046 1368 "CLOBBERED_REGS", \
c98f8742
JVA
1369 "GENERAL_REGS", \
1370 "FP_TOP_REG", "FP_SECOND_REG", \
1371 "FLOAT_REGS", \
cb482895 1372 "SSE_FIRST_REG", \
45392c76 1373 "NO_REX_SSE_REGS", \
a7180f70 1374 "SSE_REGS", \
3f97cb0b 1375 "EVEX_SSE_REGS", \
d5e254e1 1376 "BND_REGS", \
3f97cb0b 1377 "ALL_SSE_REGS", \
a7180f70 1378 "MMX_REGS", \
446988df
JH
1379 "FP_TOP_SSE_REGS", \
1380 "FP_SECOND_SSE_REGS", \
1381 "FLOAT_SSE_REGS", \
8fcaaa80 1382 "FLOAT_INT_REGS", \
446988df
JH
1383 "INT_SSE_REGS", \
1384 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1385 "MASK_EVEX_REGS", \
1386 "MASK_REGS", \
c98f8742
JVA
1387 "ALL_REGS" }
1388
ac2e563f
RH
1389/* Define which registers fit in which classes. This is an initializer
1390 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1391
621bc046
UB
1392 Note that CLOBBERED_REGS are calculated by
1393 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1394
3f97cb0b 1395#define REG_CLASS_CONTENTS \
d5e254e1
IE
1396{ { 0x00, 0x0, 0x0 }, \
1397 { 0x01, 0x0, 0x0 }, /* AREG */ \
1398 { 0x02, 0x0, 0x0 }, /* DREG */ \
1399 { 0x04, 0x0, 0x0 }, /* CREG */ \
1400 { 0x08, 0x0, 0x0 }, /* BREG */ \
1401 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1402 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1403 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1404 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1405 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1406 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1407 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1408 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1409 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1410 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1411 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1412 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1413 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
45392c76 1414{ 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
d5e254e1
IE
1415{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1416 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1417 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1418{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1419{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1420{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1421{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1422{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1423{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1424{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1425{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1426 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1427 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1428{ 0xffffffff,0xffffffff, 0x1fff } \
e075ae69 1429}
c98f8742
JVA
1430
1431/* The same information, inverted:
1432 Return the class number of the smallest class containing
1433 reg number REGNO. This could be a conditional expression
1434 or could index an array. */
1435
c98f8742
JVA
1436#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1437
42db504c
SB
1438/* When this hook returns true for MODE, the compiler allows
1439 registers explicitly used in the rtl to be used as spill registers
1440 but prevents the compiler from extending the lifetime of these
1441 registers. */
1442#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1443
fc27f749
UB
1444#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1445#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1446
1447#define GENERAL_REG_P(X) \
6189a572 1448 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1449#define GENERAL_REGNO_P(N) \
1450 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1451
fc27f749
UB
1452#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1453#define ANY_QI_REGNO_P(N) \
1454 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1455
fc27f749 1456#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1457#define REX_INT_REGNO_P(N) \
1458 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1459
66aaf16f
UB
1460#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1461#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1462
446988df 1463#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1464#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1465
54a88090 1466#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1467 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1468
fc27f749 1469#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1470#define SSE_REGNO_P(N) \
1471 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1472 || REX_SSE_REGNO_P (N) \
1473 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1474
4977bab6 1475#define REX_SSE_REGNO_P(N) \
fb84c7a0 1476 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1477
3f97cb0b
AI
1478#define EXT_REX_SSE_REGNO_P(N) \
1479 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1480
d9a5f180 1481#define SSE_REGNO(N) \
3f97cb0b
AI
1482 ((N) < 8 ? FIRST_SSE_REG + (N) \
1483 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1484 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1485
9e4a4dd6 1486#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221
AI
1487#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1488#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
446988df 1489
d9a5f180 1490#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1491 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1492
cbf2e4d4
HJ
1493#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1494 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1495 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1496
fc27f749 1497#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1498#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1499
fc27f749 1500#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1501
e075ae69
RH
1502#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1503#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1504
d5e254e1
IE
1505#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1506#define ANY_BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1507
c98f8742
JVA
1508/* The class value for index registers, and the one for base regs. */
1509
1510#define INDEX_REG_CLASS INDEX_REGS
1511#define BASE_REG_CLASS GENERAL_REGS
1512
c98f8742 1513/* Place additional restrictions on the register class to use when it
4cbb525c 1514 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1515 register for which class CLASS would ordinarily be used.
1516
1517 We avoid classes containing registers from multiple units due to
1518 the limitation in ix86_secondary_memory_needed. We limit these
1519 classes to their "natural mode" single unit register class, depending
1520 on the unit availability.
1521
1522 Please note that reg_class_subset_p is not commutative, so these
1523 conditions mean "... if (CLASS) includes ALL registers from the
1524 register set." */
1525
1526#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1527 (((MODE) == QImode && !TARGET_64BIT \
1528 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1529 : (((MODE) == SImode || (MODE) == DImode) \
1530 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1531 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1532 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1533 : (X87_FLOAT_MODE_P (MODE) \
1534 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1535 : (CLASS))
c98f8742 1536
85ff473e 1537/* If we are copying between general and FP registers, we need a memory
f84aa48a 1538 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1539#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1540 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1541
c62b3659
UB
1542/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1543 There is no need to emit full 64 bit move on 64 bit targets
1544 for integral modes that can be moved using 32 bit move. */
1545#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1546 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1547 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1548 : MODE)
1549
1272914c
RH
1550/* Return a class of registers that cannot change FROM mode to TO mode. */
1551
1552#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1553 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1554\f
1555/* Stack layout; function entry, exit and calling. */
1556
1557/* Define this if pushing a word on the stack
1558 makes the stack pointer a smaller address. */
1559#define STACK_GROWS_DOWNWARD
1560
a4d05547 1561/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1562 is at the high-address end of the local variables;
1563 that is, each additional local variable allocated
1564 goes at a more negative offset in the frame. */
f62c8a5c 1565#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1566
1567/* Offset within stack frame to start allocating local variables at.
1568 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1569 first local allocated. Otherwise, it is the offset to the BEGINNING
1570 of the first local allocated. */
1571#define STARTING_FRAME_OFFSET 0
1572
8c2b2fae
UB
1573/* If we generate an insn to push BYTES bytes, this says how many the stack
1574 pointer really advances by. On 386, we have pushw instruction that
1575 decrements by exactly 2 no matter what the position was, there is no pushb.
1576
1577 But as CIE data alignment factor on this arch is -4 for 32bit targets
1578 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1579 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1580
d2836273 1581#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1582 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1583
1584/* If defined, the maximum amount of space required for outgoing arguments
1585 will be computed and placed into the variable `crtl->outgoing_args_size'.
1586 No space will be pushed onto the stack for each call; instead, the
1587 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1588
1589 In 32bit mode enabling argument accumulation results in about 5% code size
1590 growth becuase move instructions are less compact than push. In 64bit
1591 mode the difference is less drastic but visible.
1592
1593 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1594 actually grow with accumulation. Is that because accumulated args
41ee845b 1595 unwind info became unnecesarily bloated?
f830ddc2
RH
1596
1597 With the 64-bit MS ABI, we can generate correct code with or without
1598 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1599 generated without accumulated args is terrible.
41ee845b
JH
1600
1601 If stack probes are required, the space used for large function
1602 arguments on the stack must also be probed, so enable
1603 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1604
6c6094f1 1605#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1606 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1607 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1608
1609/* If defined, a C expression whose value is nonzero when we want to use PUSH
1610 instructions to pass outgoing arguments. */
1611
1612#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1613
2da4124d
L
1614/* We want the stack and args grow in opposite directions, even if
1615 PUSH_ARGS is 0. */
1616#define PUSH_ARGS_REVERSED 1
1617
c98f8742
JVA
1618/* Offset of first parameter from the argument pointer register value. */
1619#define FIRST_PARM_OFFSET(FNDECL) 0
1620
a7180f70
BS
1621/* Define this macro if functions should assume that stack space has been
1622 allocated for arguments even when their values are passed in registers.
1623
1624 The value of this macro is the size, in bytes, of the area reserved for
1625 arguments passed in registers for the function represented by FNDECL.
1626
1627 This space can be allocated by the caller, or be a part of the
1628 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1629 which. */
7c800926
KT
1630#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1631
4ae8027b 1632#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1633 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1634
c98f8742
JVA
1635/* Define how to find the value returned by a library function
1636 assuming the value has mode MODE. */
1637
4ae8027b 1638#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1639
e9125c09
TW
1640/* Define the size of the result block used for communication between
1641 untyped_call and untyped_return. The block contains a DImode value
1642 followed by the block used by fnsave and frstor. */
1643
1644#define APPLY_RESULT_SIZE (8+108)
1645
b08de47e 1646/* 1 if N is a possible register number for function argument passing. */
53c17031 1647#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1648
1649/* Define a data type for recording info about an argument list
1650 during the scan of that argument list. This data type should
1651 hold all necessary information about the function itself
1652 and about the args processed so far, enough to enable macros
b08de47e 1653 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1654
e075ae69 1655typedef struct ix86_args {
fa283935 1656 int words; /* # words passed so far */
b08de47e
MM
1657 int nregs; /* # registers available for passing */
1658 int regno; /* next available register number */
3e65f251
KT
1659 int fastcall; /* fastcall or thiscall calling convention
1660 is used */
fa283935 1661 int sse_words; /* # sse words passed so far */
a7180f70 1662 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1663 int warn_avx512f; /* True when we want to warn
1664 about AVX512F ABI. */
95879c72 1665 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1666 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1667 int warn_mmx; /* True when we want to warn about MMX ABI. */
1668 int sse_regno; /* next available sse register number */
1669 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1670 int mmx_nregs; /* # mmx registers available for passing */
1671 int mmx_regno; /* next available mmx register number */
892a2d68 1672 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1673 int caller; /* true if it is caller. */
2824d6e5
UB
1674 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1675 SFmode/DFmode arguments should be passed
1676 in SSE registers. Otherwise 0. */
d5e254e1
IE
1677 int bnd_regno; /* next available bnd register number */
1678 int bnds_in_bt; /* number of bounds expected in BT. */
1679 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1680 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1681 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1682 MS_ABI for ms abi. */
b08de47e 1683} CUMULATIVE_ARGS;
c98f8742
JVA
1684
1685/* Initialize a variable CUM of type CUMULATIVE_ARGS
1686 for a call to a function whose data type is FNTYPE.
b08de47e 1687 For a library call, FNTYPE is 0. */
c98f8742 1688
0f6937fe 1689#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1690 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1691 (N_NAMED_ARGS) != -1)
c98f8742 1692
c98f8742
JVA
1693/* Output assembler code to FILE to increment profiler label # LABELNO
1694 for profiling a function entry. */
1695
a5fa1ecd
JH
1696#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1697
1698#define MCOUNT_NAME "_mcount"
1699
3c5273a9
KT
1700#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1701
a5fa1ecd 1702#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1703
1704/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1705 the stack pointer does not matter. The value is tested only in
1706 functions that have frame pointers.
1707 No definition is equivalent to always zero. */
fce5a9f2 1708/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1709 we have to restore it ourselves from the frame pointer, in order to
1710 use pop */
1711
1712#define EXIT_IGNORE_STACK 1
1713
c98f8742
JVA
1714/* Output assembler code for a block containing the constant parts
1715 of a trampoline, leaving space for the variable parts. */
1716
a269a03c 1717/* On the 386, the trampoline contains two instructions:
c98f8742 1718 mov #STATIC,ecx
a269a03c
JC
1719 jmp FUNCTION
1720 The trampoline is generated entirely at runtime. The operand of JMP
1721 is the address of FUNCTION relative to the instruction following the
1722 JMP (which is 5 bytes long). */
c98f8742
JVA
1723
1724/* Length in units of the trampoline for entering a nested function. */
1725
3452586b 1726#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1727\f
1728/* Definitions for register eliminations.
1729
1730 This is an array of structures. Each structure initializes one pair
1731 of eliminable registers. The "from" register number is given first,
1732 followed by "to". Eliminations of the same "from" register are listed
1733 in order of preference.
1734
afc2cd05
NC
1735 There are two registers that can always be eliminated on the i386.
1736 The frame pointer and the arg pointer can be replaced by either the
1737 hard frame pointer or to the stack pointer, depending upon the
1738 circumstances. The hard frame pointer is not used before reload and
1739 so it is not eligible for elimination. */
c98f8742 1740
564d80f4
JH
1741#define ELIMINABLE_REGS \
1742{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1743 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1744 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1745 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1746
c98f8742
JVA
1747/* Define the offset between two registers, one to be eliminated, and the other
1748 its replacement, at the start of a routine. */
1749
d9a5f180
GS
1750#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1751 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1752\f
1753/* Addressing modes, and classification of registers for them. */
1754
c98f8742
JVA
1755/* Macros to check register numbers against specific register classes. */
1756
1757/* These assume that REGNO is a hard or pseudo reg number.
1758 They give nonzero only if REGNO is a hard reg of the suitable class
1759 or a pseudo reg currently allocated to a suitable hard reg.
1760 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1761 has been allocated, which happens in reginfo.c during register
1762 allocation. */
c98f8742 1763
3f3f2124
JH
1764#define REGNO_OK_FOR_INDEX_P(REGNO) \
1765 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1766 || REX_INT_REGNO_P (REGNO) \
1767 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1768 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1769
3f3f2124 1770#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1771 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1772 || (REGNO) == ARG_POINTER_REGNUM \
1773 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1774 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1775
c98f8742
JVA
1776/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1777 and check its validity for a certain class.
1778 We have two alternate definitions for each of them.
1779 The usual definition accepts all pseudo regs; the other rejects
1780 them unless they have been allocated suitable hard regs.
1781 The symbol REG_OK_STRICT causes the latter definition to be used.
1782
1783 Most source files want to accept pseudo regs in the hope that
1784 they will get allocated to the class that the insn wants them to be in.
1785 Source files for reload pass need to be strict.
1786 After reload, it makes no difference, since pseudo regs have
1787 been eliminated by then. */
1788
c98f8742 1789
ff482c8d 1790/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1791#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1792 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1793 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1794 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1795
3b3c6a3f 1796#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1797 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1798 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1799 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1800 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1801
3b3c6a3f
MM
1802/* Strict versions, hard registers only */
1803#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1804#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1805
3b3c6a3f 1806#ifndef REG_OK_STRICT
d9a5f180
GS
1807#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1808#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1809
1810#else
d9a5f180
GS
1811#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1812#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1813#endif
1814
331d9186 1815/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1816 that is a valid memory address for an instruction.
1817 The MODE argument is the machine mode for the MEM expression
1818 that wants to use this address.
1819
331d9186 1820 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1821 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1822
1823 See legitimize_pic_address in i386.c for details as to what
1824 constitutes a legitimate address when -fpic is used. */
1825
1826#define MAX_REGS_PER_ADDRESS 2
1827
f996902d 1828#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1829
ae1547cc
UB
1830/* Try a machine-dependent way of reloading an illegitimate address
1831 operand. If we find one, push the reload and jump to WIN. This
1832 macro is used in only one place: `find_reloads_address' in reload.c. */
1833
1834#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1835do { \
1836 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1837 (int)(TYPE), (INDL))) \
1838 goto WIN; \
1839} while (0)
1840
b949ea8b
JW
1841/* If defined, a C expression to determine the base term of address X.
1842 This macro is used in only one place: `find_base_term' in alias.c.
1843
1844 It is always safe for this macro to not be defined. It exists so
1845 that alias analysis can understand machine-dependent addresses.
1846
1847 The typical use of this macro is to handle addresses containing
1848 a label_ref or symbol_ref within an UNSPEC. */
1849
d9a5f180 1850#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1851
c98f8742 1852/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1853 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1854 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1855
f996902d 1856#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1857
1858#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1859 (GET_CODE (X) == SYMBOL_REF \
1860 || GET_CODE (X) == LABEL_REF \
1861 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1862\f
b08de47e
MM
1863/* Max number of args passed in registers. If this is more than 3, we will
1864 have problems with ebx (register #4), since it is a caller save register and
1865 is also used as the pic register in ELF. So for now, don't allow more than
1866 3 registers to be passed in registers. */
1867
7c800926
KT
1868/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1869#define X86_64_REGPARM_MAX 6
72fa3605 1870#define X86_64_MS_REGPARM_MAX 4
7c800926 1871
72fa3605 1872#define X86_32_REGPARM_MAX 3
7c800926 1873
4ae8027b 1874#define REGPARM_MAX \
2824d6e5
UB
1875 (TARGET_64BIT \
1876 ? (TARGET_64BIT_MS_ABI \
1877 ? X86_64_MS_REGPARM_MAX \
1878 : X86_64_REGPARM_MAX) \
4ae8027b 1879 : X86_32_REGPARM_MAX)
d2836273 1880
72fa3605
UB
1881#define X86_64_SSE_REGPARM_MAX 8
1882#define X86_64_MS_SSE_REGPARM_MAX 4
1883
b6010cab 1884#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1885
4ae8027b 1886#define SSE_REGPARM_MAX \
2824d6e5
UB
1887 (TARGET_64BIT \
1888 ? (TARGET_64BIT_MS_ABI \
1889 ? X86_64_MS_SSE_REGPARM_MAX \
1890 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1891 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1892
1893#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1894\f
1895/* Specify the machine mode that this machine uses
1896 for the index in the tablejump instruction. */
dc4d7240 1897#define CASE_VECTOR_MODE \
6025b127 1898 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1899
c98f8742
JVA
1900/* Define this as 1 if `char' should by default be signed; else as 0. */
1901#define DEFAULT_SIGNED_CHAR 1
1902
1903/* Max number of bytes we can move from memory to memory
1904 in one reasonably fast instruction. */
65d9c0ab
JH
1905#define MOVE_MAX 16
1906
1907/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1908 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1909 number of bytes we can move with a single instruction. */
63001560 1910#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1911
7e24ffc9 1912/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1913 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1914 Increasing the value will always make code faster, but eventually
1915 incurs high cost in increased code size.
c98f8742 1916
e2e52e1b 1917 If you don't define this, a reasonable default is used. */
c98f8742 1918
e04ad03d 1919#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1920
45d78e7f
JJ
1921/* If a clear memory operation would take CLEAR_RATIO or more simple
1922 move-instruction sequences, we will do a clrmem or libcall instead. */
1923
e04ad03d 1924#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1925
53f00dde
UB
1926/* Define if shifts truncate the shift count which implies one can
1927 omit a sign-extension or zero-extension of a shift count.
1928
1929 On i386, shifts do truncate the count. But bit test instructions
1930 take the modulo of the bit offset operand. */
c98f8742
JVA
1931
1932/* #define SHIFT_COUNT_TRUNCATED */
1933
1934/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1935 is done just by pretending it is already truncated. */
1936#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1937
d9f32422
JH
1938/* A macro to update M and UNSIGNEDP when an object whose type is
1939 TYPE and which has the specified mode and signedness is to be
1940 stored in a register. This macro is only called when TYPE is a
1941 scalar type.
1942
f710504c 1943 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1944 quantities to SImode. The choice depends on target type. */
1945
1946#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1947do { \
d9f32422
JH
1948 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1949 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1950 (MODE) = SImode; \
1951} while (0)
d9f32422 1952
c98f8742
JVA
1953/* Specify the machine mode that pointers have.
1954 After generation of rtl, the compiler makes no further distinction
1955 between pointers and any other objects of this machine mode. */
28968d91 1956#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1957
d5e254e1
IE
1958/* Specify the machine mode that bounds have. */
1959#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1960
f0ea7581
L
1961/* A C expression whose value is zero if pointers that need to be extended
1962 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1963 greater then zero if they are zero-extended and less then zero if the
1964 ptr_extend instruction should be used. */
1965
1966#define POINTERS_EXTEND_UNSIGNED 1
1967
c98f8742
JVA
1968/* A function address in a call instruction
1969 is a byte address (for indexing purposes)
1970 so give the MEM rtx a byte's mode. */
1971#define FUNCTION_MODE QImode
d4ba09c0 1972\f
d4ba09c0 1973
d4ba09c0
SC
1974/* A C expression for the cost of a branch instruction. A value of 1
1975 is the default; other values are interpreted relative to that. */
1976
3a4fd356
JH
1977#define BRANCH_COST(speed_p, predictable_p) \
1978 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1979
e327d1a3
L
1980/* An integer expression for the size in bits of the largest integer machine
1981 mode that should actually be used. We allow pairs of registers. */
1982#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1983
d4ba09c0
SC
1984/* Define this macro as a C expression which is nonzero if accessing
1985 less than a word of memory (i.e. a `char' or a `short') is no
1986 faster than accessing a word of memory, i.e., if such access
1987 require more than one instruction or if there is no difference in
1988 cost between byte and (aligned) word loads.
1989
1990 When this macro is not defined, the compiler will access a field by
1991 finding the smallest containing object; when it is defined, a
1992 fullword load will be used if alignment permits. Unless bytes
1993 accesses are faster than word accesses, using word accesses is
1994 preferable since it may eliminate subsequent memory access if
1995 subsequent accesses occur to other fields in the same word of the
1996 structure, but to different bytes. */
1997
1998#define SLOW_BYTE_ACCESS 0
1999
2000/* Nonzero if access to memory by shorts is slow and undesirable. */
2001#define SLOW_SHORT_ACCESS 0
2002
d4ba09c0
SC
2003/* Define this macro to be the value 1 if unaligned accesses have a
2004 cost many times greater than aligned accesses, for example if they
2005 are emulated in a trap handler.
2006
9cd10576
KH
2007 When this macro is nonzero, the compiler will act as if
2008 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2009 moves. This can cause significantly more instructions to be
9cd10576 2010 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2011 accesses only add a cycle or two to the time for a memory access.
2012
2013 If the value of this macro is always zero, it need not be defined. */
2014
e1565e65 2015/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2016
d4ba09c0
SC
2017/* Define this macro if it is as good or better to call a constant
2018 function address than to call an address kept in a register.
2019
2020 Desirable on the 386 because a CALL with a constant address is
2021 faster than one with a register address. */
2022
2023#define NO_FUNCTION_CSE
c98f8742 2024\f
c572e5ba
JVA
2025/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2026 return the mode to be used for the comparison.
2027
2028 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2029 VOIDmode should be used in all other cases.
c572e5ba 2030
16189740 2031 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2032 possible, to allow for more combinations. */
c98f8742 2033
d9a5f180 2034#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2035
9cd10576 2036/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2037 reversed. */
2038
2039#define REVERSIBLE_CC_MODE(MODE) 1
2040
2041/* A C expression whose value is reversed condition code of the CODE for
2042 comparison done in CC_MODE mode. */
3c5cb3e4 2043#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2044
c98f8742
JVA
2045\f
2046/* Control the assembler format that we output, to the extent
2047 this does not vary between assemblers. */
2048
2049/* How to refer to registers in assembler output.
892a2d68 2050 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2051
a7b376ee 2052/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2053 For non floating point regs, the following are the HImode names.
2054
2055 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2056 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2057 "y" code. */
c98f8742 2058
a7180f70
BS
2059#define HI_REGISTER_NAMES \
2060{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2061 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2062 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2063 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2064 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2065 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2066 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2067 "xmm16", "xmm17", "xmm18", "xmm19", \
2068 "xmm20", "xmm21", "xmm22", "xmm23", \
2069 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2070 "xmm28", "xmm29", "xmm30", "xmm31", \
d5e254e1
IE
2071 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2072 "bnd0", "bnd1", "bnd2", "bnd3" }
a7180f70 2073
c98f8742
JVA
2074#define REGISTER_NAMES HI_REGISTER_NAMES
2075
2076/* Table of additional register names to use in user input. */
2077
2078#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2079{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2080 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2081 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2082 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2083 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2084 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2085 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2086 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2087 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2088 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2089 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2090 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2091 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2092 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2093 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2094 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2095 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2096 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2097 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2098 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2099 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2100 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2101
2102/* Note we are omitting these since currently I don't know how
2103to get gcc to use these, since they want the same but different
2104number as al, and ax.
2105*/
2106
c98f8742 2107#define QI_REGISTER_NAMES \
3f3f2124 2108{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2109
2110/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2111 of regs 0 through 3. */
c98f8742
JVA
2112
2113#define QI_HIGH_REGISTER_NAMES \
2114{"ah", "dh", "ch", "bh", }
2115
2116/* How to renumber registers for dbx and gdb. */
2117
d9a5f180
GS
2118#define DBX_REGISTER_NUMBER(N) \
2119 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2120
9a82e702
MS
2121extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2122extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2123extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2124
780a5b71
UB
2125extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2126
469ac993
JM
2127/* Before the prologue, RA is at 0(%esp). */
2128#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2129 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2130
e414ab29 2131/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2132#define RETURN_ADDR_RTX(COUNT, FRAME) \
2133 ((COUNT) == 0 \
0a81f074
RS
2134 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2135 -UNITS_PER_WORD)) \
2136 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2137
892a2d68 2138/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2139#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2140
a6ab3aad 2141/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2142#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2143
1020a5ab 2144/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2145#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2146#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2147
ad919812 2148
e4c4ebeb
RH
2149/* Select a format to encode pointers in exception handling data. CODE
2150 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2151 true if the symbol may be affected by dynamic relocations.
2152
2153 ??? All x86 object file formats are capable of representing this.
2154 After all, the relocation needed is the same as for the call insn.
2155 Whether or not a particular assembler allows us to enter such, I
2156 guess we'll have to see. */
d9a5f180 2157#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2158 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2159
c98f8742
JVA
2160/* This is how to output an insn to push a register on the stack.
2161 It need not be very fast code. */
2162
d9a5f180 2163#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2164do { \
2165 if (TARGET_64BIT) \
2166 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2167 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2168 else \
2169 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2170} while (0)
c98f8742
JVA
2171
2172/* This is how to output an insn to pop a register from the stack.
2173 It need not be very fast code. */
2174
d9a5f180 2175#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2176do { \
2177 if (TARGET_64BIT) \
2178 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2179 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2180 else \
2181 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2182} while (0)
c98f8742 2183
f88c65f7 2184/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2185
2186#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2187 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2188
f88c65f7 2189/* This is how to output an element of a case-vector that is relative. */
c98f8742 2190
33f7f353 2191#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2192 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2193
63001560 2194/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2195
2196#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2197{ \
2198 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2199 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2200}
2201
2202/* A C statement or statements which output an assembler instruction
2203 opcode to the stdio stream STREAM. The macro-operand PTR is a
2204 variable of type `char *' which points to the opcode name in
2205 its "internal" form--the form that is written in the machine
2206 description. */
2207
2208#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2209 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2210
6a90d232
L
2211/* A C statement to output to the stdio stream FILE an assembler
2212 command to pad the location counter to a multiple of 1<<LOG
2213 bytes if it is within MAX_SKIP bytes. */
2214
2215#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2216#undef ASM_OUTPUT_MAX_SKIP_PAD
2217#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2218 if ((LOG) != 0) \
2219 { \
2220 if ((MAX_SKIP) == 0) \
2221 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2222 else \
2223 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2224 }
2225#endif
2226
135a687e
KT
2227/* Write the extra assembler code needed to declare a function
2228 properly. */
2229
2230#undef ASM_OUTPUT_FUNCTION_LABEL
2231#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2232 ix86_asm_output_function_label (FILE, NAME, DECL)
2233
f7288899
EC
2234/* Under some conditions we need jump tables in the text section,
2235 because the assembler cannot handle label differences between
2236 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2237
2238#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2239 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2240 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2241
cea3bd3e
RH
2242/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2243 and switch back. For x86 we do this only to save a few bytes that
2244 would otherwise be unused in the text section. */
ad211091
KT
2245#define CRT_MKSTR2(VAL) #VAL
2246#define CRT_MKSTR(x) CRT_MKSTR2(x)
2247
2248#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2249 asm (SECTION_OP "\n\t" \
2250 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2251 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2252
2253/* Default threshold for putting data in large sections
2254 with x86-64 medium memory model */
2255#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2256\f
b97de419
L
2257/* Which processor to tune code generation for. These must be in sync
2258 with processor_target_table in i386.c. */
5bf0ebab
RH
2259
2260enum processor_type
2261{
b97de419
L
2262 PROCESSOR_GENERIC = 0,
2263 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2264 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2265 PROCESSOR_PENTIUM,
2266 PROCESSOR_PENTIUMPRO,
5bf0ebab 2267 PROCESSOR_PENTIUM4,
89c43c0a 2268 PROCESSOR_NOCONA,
340ef734 2269 PROCESSOR_CORE2,
d3c11974
L
2270 PROCESSOR_NEHALEM,
2271 PROCESSOR_SANDYBRIDGE,
3a579e09 2272 PROCESSOR_HASWELL,
d3c11974
L
2273 PROCESSOR_BONNELL,
2274 PROCESSOR_SILVERMONT,
9a7f94d7 2275 PROCESSOR_INTEL,
b97de419
L
2276 PROCESSOR_GEODE,
2277 PROCESSOR_K6,
2278 PROCESSOR_ATHLON,
2279 PROCESSOR_K8,
21efb4d4 2280 PROCESSOR_AMDFAM10,
1133125e 2281 PROCESSOR_BDVER1,
4d652a18 2282 PROCESSOR_BDVER2,
eb2f2b44 2283 PROCESSOR_BDVER3,
ed97ad47 2284 PROCESSOR_BDVER4,
14b52538 2285 PROCESSOR_BTVER1,
e32bfc16 2286 PROCESSOR_BTVER2,
5bf0ebab
RH
2287 PROCESSOR_max
2288};
2289
9e555526 2290extern enum processor_type ix86_tune;
5bf0ebab 2291extern enum processor_type ix86_arch;
5bf0ebab 2292
8362f420
JH
2293/* Size of the RED_ZONE area. */
2294#define RED_ZONE_SIZE 128
2295/* Reserved area of the red zone for temporaries. */
2296#define RED_ZONE_RESERVE 8
c93e80a5 2297
95899b34 2298extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2299extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2300
2301/* Smallest class containing REGNO. */
2302extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2303
0948ccb2
PB
2304enum ix86_fpcmp_strategy {
2305 IX86_FPCMP_SAHF,
2306 IX86_FPCMP_COMI,
2307 IX86_FPCMP_ARITH
2308};
22fb740d
JH
2309\f
2310/* To properly truncate FP values into integers, we need to set i387 control
2311 word. We can't emit proper mode switching code before reload, as spills
2312 generated by reload may truncate values incorrectly, but we still can avoid
2313 redundant computation of new control word by the mode switching pass.
2314 The fldcw instructions are still emitted redundantly, but this is probably
2315 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2316 the sequence.
22fb740d
JH
2317
2318 The machinery is to emit simple truncation instructions and split them
2319 before reload to instructions having USEs of two memory locations that
2320 are filled by this code to old and new control word.
fce5a9f2 2321
22fb740d
JH
2322 Post-reload pass may be later used to eliminate the redundant fildcw if
2323 needed. */
2324
ff680eb1
UB
2325enum ix86_entity
2326{
ff97910d
VY
2327 AVX_U128 = 0,
2328 I387_TRUNC,
ff680eb1
UB
2329 I387_FLOOR,
2330 I387_CEIL,
2331 I387_MASK_PM,
2332 MAX_386_ENTITIES
2333};
2334
1cba2b96 2335enum ix86_stack_slot
ff680eb1 2336{
443ca5fc 2337 SLOT_TEMP = 0,
ff680eb1
UB
2338 SLOT_CW_STORED,
2339 SLOT_CW_TRUNC,
2340 SLOT_CW_FLOOR,
2341 SLOT_CW_CEIL,
2342 SLOT_CW_MASK_PM,
2343 MAX_386_STACK_LOCALS
2344};
22fb740d 2345
ff97910d
VY
2346enum avx_u128_state
2347{
2348 AVX_U128_CLEAN,
2349 AVX_U128_DIRTY,
2350 AVX_U128_ANY
2351};
2352
22fb740d
JH
2353/* Define this macro if the port needs extra instructions inserted
2354 for mode switching in an optimizing compilation. */
2355
ff680eb1
UB
2356#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2357 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2358
2359/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2360 initializer for an array of integers. Each initializer element N
2361 refers to an entity that needs mode switching, and specifies the
2362 number of different modes that might need to be set for this
2363 entity. The position of the initializer in the initializer -
2364 starting counting at zero - determines the integer that is used to
2365 refer to the mode-switched entity in question. */
2366
ff680eb1 2367#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2368 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2369
0f0138b6
JH
2370\f
2371/* Avoid renaming of stack registers, as doing so in combination with
2372 scheduling just increases amount of live registers at time and in
2373 the turn amount of fxch instructions needed.
2374
3f97cb0b
AI
2375 ??? Maybe Pentium chips benefits from renaming, someone can try....
2376
2377 Don't rename evex to non-evex sse registers. */
0f0138b6 2378
3f97cb0b
AI
2379#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2380 (EXT_REX_SSE_REGNO_P (SRC) == \
2381 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2382
3b3c6a3f 2383\f
e91f04de 2384#define FASTCALL_PREFIX '@'
fa1a0d02 2385\f
ec7ded37 2386/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2387
604a6be9 2388#ifndef USED_FOR_TARGET
ec7ded37 2389struct GTY(()) machine_frame_state
cd9c1ca8 2390{
ec7ded37
RH
2391 /* This pair tracks the currently active CFA as reg+offset. When reg
2392 is drap_reg, we don't bother trying to record here the real CFA when
2393 it might really be a DW_CFA_def_cfa_expression. */
2394 rtx cfa_reg;
2395 HOST_WIDE_INT cfa_offset;
2396
2397 /* The current offset (canonically from the CFA) of ESP and EBP.
2398 When stack frame re-alignment is active, these may not be relative
2399 to the CFA. However, in all cases they are relative to the offsets
2400 of the saved registers stored in ix86_frame. */
2401 HOST_WIDE_INT sp_offset;
2402 HOST_WIDE_INT fp_offset;
2403
2404 /* The size of the red-zone that may be assumed for the purposes of
2405 eliding register restore notes in the epilogue. This may be zero
2406 if no red-zone is in effect, or may be reduced from the real
2407 red-zone value by a maximum runtime stack re-alignment value. */
2408 int red_zone_offset;
2409
2410 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2411 value within the frame. If false then the offset above should be
2412 ignored. Note that DRAP, if valid, *always* points to the CFA and
2413 thus has an offset of zero. */
2414 BOOL_BITFIELD sp_valid : 1;
2415 BOOL_BITFIELD fp_valid : 1;
2416 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2417
2418 /* Indicate whether the local stack frame has been re-aligned. When
2419 set, the SP/FP offsets above are relative to the aligned frame
2420 and not the CFA. */
2421 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2422};
2423
f81c9774
RH
2424/* Private to winnt.c. */
2425struct seh_frame_state;
2426
d1b38208 2427struct GTY(()) machine_function {
fa1a0d02
JH
2428 struct stack_local_entry *stack_locals;
2429 const char *some_ld_name;
4aab97f9
L
2430 int varargs_gpr_size;
2431 int varargs_fpr_size;
ff680eb1 2432 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2433
2434 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2435 has been computed for. */
2436 int use_fast_prologue_epilogue_nregs;
2437
7458026b
ILT
2438 /* For -fsplit-stack support: A stack local which holds a pointer to
2439 the stack arguments for a function with a variable number of
2440 arguments. This is set at the start of the function and is used
2441 to initialize the overflow_arg_area field of the va_list
2442 structure. */
2443 rtx split_stack_varargs_pointer;
2444
3452586b
RH
2445 /* This value is used for amd64 targets and specifies the current abi
2446 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2447 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2448
2449 /* Nonzero if the function accesses a previous frame. */
2450 BOOL_BITFIELD accesses_prev_frame : 1;
2451
2452 /* Nonzero if the function requires a CLD in the prologue. */
2453 BOOL_BITFIELD needs_cld : 1;
2454
922e3e33
UB
2455 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2456 expander to determine the style used. */
3452586b
RH
2457 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2458
5bf5a10b
AO
2459 /* If true, the current function needs the default PIC register, not
2460 an alternate register (on x86) and must not use the red zone (on
2461 x86_64), even if it's a leaf function. We don't want the
2462 function to be regarded as non-leaf because TLS calls need not
2463 affect register allocation. This flag is set when a TLS call
2464 instruction is expanded within a function, and never reset, even
2465 if all such instructions are optimized away. Use the
2466 ix86_current_function_calls_tls_descriptor macro for a better
2467 approximation. */
3452586b
RH
2468 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2469
2470 /* If true, the current function has a STATIC_CHAIN is placed on the
2471 stack below the return address. */
2472 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2473
529a6471
JJ
2474 /* If true, it is safe to not save/restore DRAP register. */
2475 BOOL_BITFIELD no_drap_save_restore : 1;
2476
ec7ded37
RH
2477 /* During prologue/epilogue generation, the current frame state.
2478 Otherwise, the frame state at the end of the prologue. */
2479 struct machine_frame_state fs;
f81c9774
RH
2480
2481 /* During SEH output, this is non-null. */
2482 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2483};
cd9c1ca8 2484#endif
fa1a0d02
JH
2485
2486#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2487#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2488#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2489#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2490#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2491#define ix86_tls_descriptor_calls_expanded_in_cfun \
2492 (cfun->machine->tls_descriptor_call_expanded_p)
2493/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2494 calls are optimized away, we try to detect cases in which it was
2495 optimized away. Since such instructions (use (reg REG_SP)), we can
2496 verify whether there's any such instruction live by testing that
2497 REG_SP is live. */
2498#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2499 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2500#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2501
1bc7c5b6
ZW
2502/* Control behavior of x86_file_start. */
2503#define X86_FILE_START_VERSION_DIRECTIVE false
2504#define X86_FILE_START_FLTUSED false
2505
7dcbf659
JH
2506/* Flag to mark data that is in the large address area. */
2507#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2508#define SYMBOL_REF_FAR_ADDR_P(X) \
2509 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2510
2511/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2512 have defined always, to avoid ifdefing. */
2513#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2514#define SYMBOL_REF_DLLIMPORT_P(X) \
2515 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2516
2517#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2518#define SYMBOL_REF_DLLEXPORT_P(X) \
2519 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2520
82c0e1a0
KT
2521#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2522#define SYMBOL_REF_STUBVAR_P(X) \
2523 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2524
7942e47e
RY
2525extern void debug_ready_dispatch (void);
2526extern void debug_dispatch_window (int);
2527
91afcfa3
QN
2528/* The value at zero is only defined for the BMI instructions
2529 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2530#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2531 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2532#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2533 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2534
2535
b8ce4e94
KT
2536/* Flags returned by ix86_get_callcvt (). */
2537#define IX86_CALLCVT_CDECL 0x1
2538#define IX86_CALLCVT_STDCALL 0x2
2539#define IX86_CALLCVT_FASTCALL 0x4
2540#define IX86_CALLCVT_THISCALL 0x8
2541#define IX86_CALLCVT_REGPARM 0x10
2542#define IX86_CALLCVT_SSEREGPARM 0x20
2543
2544#define IX86_BASE_CALLCVT(FLAGS) \
2545 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2546 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2547
b86b9f44
MM
2548#define RECIP_MASK_NONE 0x00
2549#define RECIP_MASK_DIV 0x01
2550#define RECIP_MASK_SQRT 0x02
2551#define RECIP_MASK_VEC_DIV 0x04
2552#define RECIP_MASK_VEC_SQRT 0x08
2553#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2554 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2555#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2556
2557#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2558#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2559#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2560#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2561
5dcfdccd
KY
2562#define IX86_HLE_ACQUIRE (1 << 16)
2563#define IX86_HLE_RELEASE (1 << 17)
2564
e83b8e2e
JJ
2565/* For switching between functions with different target attributes. */
2566#define SWITCHABLE_TARGET 1
2567
c98f8742
JVA
2568/*
2569Local variables:
2570version-control: t
2571End:
2572*/