]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
re PR c/35235 (struct/union rvalue qualifiers must not propagate to members)
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
66647d44 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
2f83c7d6 4 Free Software Foundation, Inc.
c98f8742 5
188fc5b5 6This file is part of GCC.
c98f8742 7
188fc5b5 8GCC is free software; you can redistribute it and/or modify
c98f8742 9it under the terms of the GNU General Public License as published by
2f83c7d6 10the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
11any later version.
12
188fc5b5 13GCC is distributed in the hope that it will be useful,
c98f8742
JVA
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
2f83c7d6
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
c98f8742 21
ccf8e764
RH
22/* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
0a1c5e55
UB
37/* Redefines for option macros. */
38
39#define TARGET_64BIT OPTION_ISA_64BIT
40#define TARGET_MMX OPTION_ISA_MMX
41#define TARGET_3DNOW OPTION_ISA_3DNOW
42#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
43#define TARGET_SSE OPTION_ISA_SSE
44#define TARGET_SSE2 OPTION_ISA_SSE2
45#define TARGET_SSE3 OPTION_ISA_SSE3
46#define TARGET_SSSE3 OPTION_ISA_SSSE3
47#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
3b8dd071 48#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
95879c72
L
49#define TARGET_AVX OPTION_ISA_AVX
50#define TARGET_FMA OPTION_ISA_FMA
0a1c5e55 51#define TARGET_SSE4A OPTION_ISA_SSE4A
04e1d06b
MM
52#define TARGET_SSE5 OPTION_ISA_SSE5
53#define TARGET_ROUND OPTION_ISA_ROUND
ab442df7
MM
54#define TARGET_ABM OPTION_ISA_ABM
55#define TARGET_POPCNT OPTION_ISA_POPCNT
56#define TARGET_SAHF OPTION_ISA_SAHF
57#define TARGET_AES OPTION_ISA_AES
58#define TARGET_PCLMUL OPTION_ISA_PCLMUL
59#define TARGET_CMPXCHG16B OPTION_ISA_CX16
60
04e1d06b
MM
61
62/* SSE5 and SSE4.1 define the same round instructions */
63#define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
64#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 65
26b5109f
RS
66#include "config/vxworks-dummy.h"
67
8c996513
JH
68/* Algorithm to expand string function with. */
69enum stringop_alg
70{
71 no_stringop,
72 libcall,
73 rep_prefix_1_byte,
74 rep_prefix_4_byte,
75 rep_prefix_8_byte,
76 loop_1_byte,
77 loop,
78 unrolled_loop
79};
ccf8e764 80
8c996513 81#define NAX_STRINGOP_ALGS 4
ccf8e764 82
8c996513
JH
83/* Specify what algorithm to use for stringops on known size.
84 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
85 known at compile time or estimated via feedback, the SIZE array
86 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 87 means infinity). Corresponding ALG is used then.
8c996513 88 For example initializer:
4f3f76e6 89 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 90 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 91 be used otherwise. */
8c996513
JH
92struct stringop_algs
93{
94 const enum stringop_alg unknown_size;
95 const struct stringop_strategy {
96 const int max;
97 const enum stringop_alg alg;
98 } size [NAX_STRINGOP_ALGS];
99};
100
d4ba09c0
SC
101/* Define the specific costs for a given cpu */
102
103struct processor_costs {
8b60264b
KG
104 const int add; /* cost of an add instruction */
105 const int lea; /* cost of a lea instruction */
106 const int shift_var; /* variable shift costs */
107 const int shift_const; /* constant shift costs */
f676971a 108 const int mult_init[5]; /* cost of starting a multiply
4977bab6 109 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 110 const int mult_bit; /* cost of multiply per each bit set */
f676971a 111 const int divide[5]; /* cost of a divide/mod
4977bab6 112 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
113 int movsx; /* The cost of movsx operation. */
114 int movzx; /* The cost of movzx operation. */
8b60264b
KG
115 const int large_insn; /* insns larger than this cost more */
116 const int move_ratio; /* The threshold of number of scalar
ac775968 117 memory-to-memory move insns. */
8b60264b
KG
118 const int movzbl_load; /* cost of loading using movzbl */
119 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
120 in QImode, HImode and SImode relative
121 to reg-reg move (2). */
8b60264b 122 const int int_store[3]; /* cost of storing integer register
96e7ae40 123 in QImode, HImode and SImode */
8b60264b
KG
124 const int fp_move; /* cost of reg,reg fld/fst */
125 const int fp_load[3]; /* cost of loading FP register
96e7ae40 126 in SFmode, DFmode and XFmode */
8b60264b 127 const int fp_store[3]; /* cost of storing FP register
96e7ae40 128 in SFmode, DFmode and XFmode */
8b60264b
KG
129 const int mmx_move; /* cost of moving MMX register. */
130 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 131 in SImode and DImode */
8b60264b 132 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 133 in SImode and DImode */
8b60264b
KG
134 const int sse_move; /* cost of moving SSE register. */
135 const int sse_load[3]; /* cost of loading SSE register
fa79946e 136 in SImode, DImode and TImode*/
8b60264b 137 const int sse_store[3]; /* cost of storing SSE register
fa79946e 138 in SImode, DImode and TImode*/
8b60264b 139 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 140 integer and vice versa. */
46cb0441
ZD
141 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
142 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
143 const int prefetch_block; /* bytes moved to cache for prefetch. */
144 const int simultaneous_prefetches; /* number of parallel prefetch
145 operations. */
4977bab6 146 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
147 const int fadd; /* cost of FADD and FSUB instructions. */
148 const int fmul; /* cost of FMUL instruction. */
149 const int fdiv; /* cost of FDIV instruction. */
150 const int fabs; /* cost of FABS instruction. */
151 const int fchs; /* cost of FCHS instruction. */
152 const int fsqrt; /* cost of FSQRT instruction. */
8c996513
JH
153 /* Specify what algorithm
154 to use for stringops on unknown size. */
155 struct stringop_algs memcpy[2], memset[2];
e70444a8
HJ
156 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
157 load and store. */
158 const int scalar_load_cost; /* Cost of scalar load. */
159 const int scalar_store_cost; /* Cost of scalar store. */
160 const int vec_stmt_cost; /* Cost of any vector operation, excluding
161 load, store, vector-to-scalar and
162 scalar-to-vector operation. */
163 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
164 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 165 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
166 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
167 const int vec_store_cost; /* Cost of vector store. */
168 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
169 cost model. */
170 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
171 vectorizer cost model. */
d4ba09c0
SC
172};
173
8b60264b 174extern const struct processor_costs *ix86_cost;
b2077fd2
JH
175extern const struct processor_costs ix86_size_cost;
176
177#define ix86_cur_cost() \
178 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 179
c98f8742
JVA
180/* Macros used in the machine description to test the flags. */
181
ddd5a7c1 182/* configure can arrange to make this 2, to force a 486. */
e075ae69 183
35b528be 184#ifndef TARGET_CPU_DEFAULT
d326eaf0 185#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 186#endif
35b528be 187
004d3859
GK
188#ifndef TARGET_FPMATH_DEFAULT
189#define TARGET_FPMATH_DEFAULT \
190 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
191#endif
192
6ac49599 193#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 194
5791cc29
JT
195/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
196 compile-time constant. */
197#ifdef IN_LIBGCC2
6ac49599 198#undef TARGET_64BIT
5791cc29
JT
199#ifdef __x86_64__
200#define TARGET_64BIT 1
201#else
202#define TARGET_64BIT 0
203#endif
204#else
6ac49599
RS
205#ifndef TARGET_BI_ARCH
206#undef TARGET_64BIT
67adf6a9 207#if TARGET_64BIT_DEFAULT
0c2dc519
JH
208#define TARGET_64BIT 1
209#else
210#define TARGET_64BIT 0
211#endif
212#endif
5791cc29 213#endif
25f94bb5 214
750054a2
CT
215#define HAS_LONG_COND_BRANCH 1
216#define HAS_LONG_UNCOND_BRANCH 1
217
9e555526
RH
218#define TARGET_386 (ix86_tune == PROCESSOR_I386)
219#define TARGET_486 (ix86_tune == PROCESSOR_I486)
220#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
221#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 222#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
223#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
224#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
225#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
226#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 227#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 228#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
05f85dbb 229#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d326eaf0
JH
230#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
231#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
232#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
21efb4d4 233#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
a269a03c 234
80fd744f
RH
235/* Feature tests against the various tunings. */
236enum ix86_tune_indices {
237 X86_TUNE_USE_LEAVE,
238 X86_TUNE_PUSH_MEMORY,
239 X86_TUNE_ZERO_EXTEND_WITH_AND,
80fd744f
RH
240 X86_TUNE_UNROLL_STRLEN,
241 X86_TUNE_DEEP_BRANCH_PREDICTION,
242 X86_TUNE_BRANCH_PREDICTION_HINTS,
243 X86_TUNE_DOUBLE_WITH_ADD,
3c2d980c 244 X86_TUNE_USE_SAHF,
80fd744f
RH
245 X86_TUNE_MOVX,
246 X86_TUNE_PARTIAL_REG_STALL,
247 X86_TUNE_PARTIAL_FLAG_REG_STALL,
248 X86_TUNE_USE_HIMODE_FIOP,
249 X86_TUNE_USE_SIMODE_FIOP,
250 X86_TUNE_USE_MOV0,
251 X86_TUNE_USE_CLTD,
252 X86_TUNE_USE_XCHGB,
253 X86_TUNE_SPLIT_LONG_MOVES,
254 X86_TUNE_READ_MODIFY_WRITE,
255 X86_TUNE_READ_MODIFY,
256 X86_TUNE_PROMOTE_QIMODE,
257 X86_TUNE_FAST_PREFIX,
258 X86_TUNE_SINGLE_STRINGOP,
259 X86_TUNE_QIMODE_MATH,
260 X86_TUNE_HIMODE_MATH,
261 X86_TUNE_PROMOTE_QI_REGS,
262 X86_TUNE_PROMOTE_HI_REGS,
263 X86_TUNE_ADD_ESP_4,
264 X86_TUNE_ADD_ESP_8,
265 X86_TUNE_SUB_ESP_4,
266 X86_TUNE_SUB_ESP_8,
267 X86_TUNE_INTEGER_DFMODE_MOVES,
268 X86_TUNE_PARTIAL_REG_DEPENDENCY,
269 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
270 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
271 X86_TUNE_SSE_SPLIT_REGS,
272 X86_TUNE_SSE_TYPELESS_STORES,
273 X86_TUNE_SSE_LOAD0_BY_PXOR,
274 X86_TUNE_MEMORY_MISMATCH_STALL,
275 X86_TUNE_PROLOGUE_USING_MOVE,
276 X86_TUNE_EPILOGUE_USING_MOVE,
277 X86_TUNE_SHIFT1,
278 X86_TUNE_USE_FFREEP,
279 X86_TUNE_INTER_UNIT_MOVES,
630ecd8d 280 X86_TUNE_INTER_UNIT_CONVERSIONS,
80fd744f
RH
281 X86_TUNE_FOUR_JUMP_LIMIT,
282 X86_TUNE_SCHEDULE,
283 X86_TUNE_USE_BT,
284 X86_TUNE_USE_INCDEC,
285 X86_TUNE_PAD_RETURNS,
286 X86_TUNE_EXT_80387_CONSTANTS,
ddff69b9
MM
287 X86_TUNE_SHORTEN_X87_SSE,
288 X86_TUNE_AVOID_VECTOR_DECODE,
a646aded 289 X86_TUNE_PROMOTE_HIMODE_IMUL,
ddff69b9
MM
290 X86_TUNE_SLOW_IMUL_IMM32_MEM,
291 X86_TUNE_SLOW_IMUL_IMM8,
292 X86_TUNE_MOVE_M1_VIA_OR,
293 X86_TUNE_NOT_UNPAIRABLE,
294 X86_TUNE_NOT_VECTORMODE,
54723b46 295 X86_TUNE_USE_VECTOR_FP_CONVERTS,
4e9d897d 296 X86_TUNE_USE_VECTOR_CONVERTS,
354f84af 297 X86_TUNE_FUSE_CMP_AND_BRANCH,
80fd744f
RH
298
299 X86_TUNE_LAST
300};
301
ab442df7 302extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
303
304#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
305#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
306#define TARGET_ZERO_EXTEND_WITH_AND \
307 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f
RH
308#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
309#define TARGET_DEEP_BRANCH_PREDICTION \
310 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
311#define TARGET_BRANCH_PREDICTION_HINTS \
312 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
313#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
314#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
315#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
316#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
317#define TARGET_PARTIAL_FLAG_REG_STALL \
318 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
319#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
320#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
321#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
322#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
323#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
324#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
325#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
326#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
327#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
328#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
329#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
330#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
331#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
332#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
333#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
334#define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
335#define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
336#define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
337#define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
338#define TARGET_INTEGER_DFMODE_MOVES \
339 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
340#define TARGET_PARTIAL_REG_DEPENDENCY \
341 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
342#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
343 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
344#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
345 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
346#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
347#define TARGET_SSE_TYPELESS_STORES \
348 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
349#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
350#define TARGET_MEMORY_MISMATCH_STALL \
351 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
352#define TARGET_PROLOGUE_USING_MOVE \
353 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
354#define TARGET_EPILOGUE_USING_MOVE \
355 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
356#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
357#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
358#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
630ecd8d
JH
359#define TARGET_INTER_UNIT_CONVERSIONS\
360 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
361#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
362#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
363#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
364#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
365#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
366#define TARGET_EXT_80387_CONSTANTS \
367 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
368#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
369#define TARGET_AVOID_VECTOR_DECODE \
370 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
371#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
372 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
373#define TARGET_SLOW_IMUL_IMM32_MEM \
374 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
375#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
376#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
377#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
378#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
379#define TARGET_USE_VECTOR_FP_CONVERTS \
380 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
381#define TARGET_USE_VECTOR_CONVERTS \
382 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
383#define TARGET_FUSE_CMP_AND_BRANCH \
384 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
80fd744f
RH
385
386/* Feature tests against the various architecture variations. */
387enum ix86_arch_indices {
388 X86_ARCH_CMOVE, /* || TARGET_SSE */
389 X86_ARCH_CMPXCHG,
390 X86_ARCH_CMPXCHG8B,
391 X86_ARCH_XADD,
392 X86_ARCH_BSWAP,
393
394 X86_ARCH_LAST
395};
4f3f76e6 396
ab442df7 397extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f
RH
398
399#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
400#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
401#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
402#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
403#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
404
405#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
406
407extern int x86_prefetch_sse;
0a1c5e55 408
80fd744f
RH
409#define TARGET_PREFETCH_SSE x86_prefetch_sse
410
80fd744f
RH
411#define ASSEMBLER_DIALECT (ix86_asm_dialect)
412
413#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
414#define TARGET_MIX_SSE_I387 \
415 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
416
417#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
418#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
419#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
420#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
1ef45b77 421
0a1c5e55
UB
422extern int ix86_isa_flags;
423
67adf6a9
RH
424#ifndef TARGET_64BIT_DEFAULT
425#define TARGET_64BIT_DEFAULT 0
25f94bb5 426#endif
74dc3e94
RH
427#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
428#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
429#endif
25f94bb5 430
79f5e442
ZD
431/* Fence to use after loop using storent. */
432
433extern tree x86_mfence;
434#define FENCE_FOLLOWING_MOVNT x86_mfence
435
0ed4a390
JL
436/* Once GDB has been enhanced to deal with functions without frame
437 pointers, we can change this to allow for elimination of
438 the frame pointer in leaf functions. */
439#define TARGET_DEFAULT 0
67adf6a9 440
0a1c5e55
UB
441/* Extra bits to force. */
442#define TARGET_SUBTARGET_DEFAULT 0
443#define TARGET_SUBTARGET_ISA_DEFAULT 0
444
445/* Extra bits to force on w/ 32-bit mode. */
446#define TARGET_SUBTARGET32_DEFAULT 0
447#define TARGET_SUBTARGET32_ISA_DEFAULT 0
448
ccf8e764
RH
449/* Extra bits to force on w/ 64-bit mode. */
450#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 451#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 452
b069de3b
SS
453/* This is not really a target flag, but is done this way so that
454 it's analogous to similar code for Mach-O on PowerPC. darwin.h
455 redefines this to 1. */
456#define TARGET_MACHO 0
457
ccf8e764 458/* Likewise, for the Windows 64-bit ABI. */
7c800926
KT
459#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
460
461/* Available call abi. */
35cbb299 462enum calling_abi
7c800926
KT
463{
464 SYSV_ABI = 0,
465 MS_ABI = 1
466};
467
51212b32
L
468/* The abi used by target. */
469extern enum calling_abi ix86_abi;
470
471/* The default abi used by target. */
7c800926 472#define DEFAULT_ABI SYSV_ABI
ccf8e764 473
cc69336f
RH
474/* Subtargets may reset this to 1 in order to enable 96-bit long double
475 with the rounding mode forced to 53 bits. */
476#define TARGET_96_ROUND_53_LONG_DOUBLE 0
477
f5316dfe
MM
478/* Sometimes certain combinations of command options do not make
479 sense on a particular target machine. You can define a macro
480 `OVERRIDE_OPTIONS' to take account of this. This macro, if
481 defined, is executed once just after all the command options have
482 been parsed.
483
484 Don't use this macro to turn on various extra optimizations for
485 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
486
ab442df7 487#define OVERRIDE_OPTIONS override_options (true)
f5316dfe 488
d4ba09c0 489/* Define this to change the optimizations performed by default. */
d9a5f180
GS
490#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
491 optimization_options ((LEVEL), (SIZE))
d4ba09c0 492
682cd442
GK
493/* -march=native handling only makes sense with compiler running on
494 an x86 or x86_64 chip. If changing this condition, also change
495 the condition in driver-i386.c. */
496#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
497/* In driver-i386.c. */
498extern const char *host_detect_local_cpu (int argc, const char **argv);
499#define EXTRA_SPEC_FUNCTIONS \
500 { "local_cpu_detect", host_detect_local_cpu },
682cd442 501#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
502#endif
503
8981c15b
JM
504#if TARGET_64BIT_DEFAULT
505#define OPT_ARCH64 "!m32"
506#define OPT_ARCH32 "m32"
507#else
508#define OPT_ARCH64 "m64"
509#define OPT_ARCH32 "!m64"
510#endif
511
1cba2b96
EC
512/* Support for configure-time defaults of some command line options.
513 The order here is important so that -march doesn't squash the
514 tune or cpu values. */
ce998900 515#define OPTION_DEFAULT_SPECS \
da2d4c01 516 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
517 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
518 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 519 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
520 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
521 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
522 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
523 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
524 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 525
241e1a89
SC
526/* Specs for the compiler proper */
527
628714d8 528#ifndef CC1_CPU_SPEC
fa959ce4 529#define CC1_CPU_SPEC_1 "\
9d913bbf 530%{mcpu=*:-mtune=%* \
d347d4c7 531%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
9d913bbf 532%<mcpu=* \
c93e80a5
JH
533%{mintel-syntax:-masm=intel \
534%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
535%{mno-intel-syntax:-masm=att \
536%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 537
682cd442 538#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
539#define CC1_CPU_SPEC CC1_CPU_SPEC_1
540#else
541#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
edccdcb1
L
542"%{march=native:%<march=native %:local_cpu_detect(arch) \
543 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
fa959ce4
MM
544%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
545#endif
241e1a89 546#endif
c98f8742 547\f
30efe578 548/* Target CPU builtins. */
ab442df7
MM
549#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
550
551/* Target Pragmas. */
552#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 553
c2f17e19
UB
554enum target_cpu_default
555{
556 TARGET_CPU_DEFAULT_generic = 0,
557
558 TARGET_CPU_DEFAULT_i386,
559 TARGET_CPU_DEFAULT_i486,
560 TARGET_CPU_DEFAULT_pentium,
561 TARGET_CPU_DEFAULT_pentium_mmx,
562 TARGET_CPU_DEFAULT_pentiumpro,
563 TARGET_CPU_DEFAULT_pentium2,
564 TARGET_CPU_DEFAULT_pentium3,
565 TARGET_CPU_DEFAULT_pentium4,
566 TARGET_CPU_DEFAULT_pentium_m,
567 TARGET_CPU_DEFAULT_prescott,
568 TARGET_CPU_DEFAULT_nocona,
569 TARGET_CPU_DEFAULT_core2,
570
571 TARGET_CPU_DEFAULT_geode,
572 TARGET_CPU_DEFAULT_k6,
573 TARGET_CPU_DEFAULT_k6_2,
574 TARGET_CPU_DEFAULT_k6_3,
575 TARGET_CPU_DEFAULT_athlon,
576 TARGET_CPU_DEFAULT_athlon_sse,
577 TARGET_CPU_DEFAULT_k8,
578 TARGET_CPU_DEFAULT_amdfam10,
579
580 TARGET_CPU_DEFAULT_max
581};
0c2dc519 582
628714d8 583#ifndef CC1_SPEC
8015b78d 584#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
585#endif
586
587/* This macro defines names of additional specifications to put in the
588 specs that can be used in various specifications like CC1_SPEC. Its
589 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
590
591 Each subgrouping contains a string constant, that defines the
188fc5b5 592 specification name, and a string constant that used by the GCC driver
bcd86433
SC
593 program.
594
595 Do not define this macro if it does not need to do anything. */
596
597#ifndef SUBTARGET_EXTRA_SPECS
598#define SUBTARGET_EXTRA_SPECS
599#endif
600
601#define EXTRA_SPECS \
628714d8 602 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
603 SUBTARGET_EXTRA_SPECS
604\f
ce998900 605
d57a4b98
RH
606/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
607 FPU, assume that the fpcw is set to extended precision; when using
608 only SSE, rounding is correct; when using both SSE and the FPU,
609 the rounding precision is indeterminate, since either may be chosen
610 apparently at random. */
611#define TARGET_FLT_EVAL_METHOD \
5ccd517a 612 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 613
979c67a5
UB
614/* target machine storage layout */
615
65d9c0ab
JH
616#define SHORT_TYPE_SIZE 16
617#define INT_TYPE_SIZE 32
618#define FLOAT_TYPE_SIZE 32
619#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
620#define DOUBLE_TYPE_SIZE 64
621#define LONG_LONG_TYPE_SIZE 64
979c67a5
UB
622#define LONG_DOUBLE_TYPE_SIZE 80
623
624#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
65d9c0ab 625
67adf6a9 626#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 627#define MAX_BITS_PER_WORD 64
0c2dc519
JH
628#else
629#define MAX_BITS_PER_WORD 32
0c2dc519
JH
630#endif
631
c98f8742
JVA
632/* Define this if most significant byte of a word is the lowest numbered. */
633/* That is true on the 80386. */
634
635#define BITS_BIG_ENDIAN 0
636
637/* Define this if most significant byte of a word is the lowest numbered. */
638/* That is not true on the 80386. */
639#define BYTES_BIG_ENDIAN 0
640
641/* Define this if most significant word of a multiword number is the lowest
642 numbered. */
643/* Not true for 80386 */
644#define WORDS_BIG_ENDIAN 0
645
c98f8742 646/* Width of a word, in units (bytes). */
4ae8027b 647#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
648#ifdef IN_LIBGCC2
649#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
650#else
651#define MIN_UNITS_PER_WORD 4
652#endif
c98f8742 653
c98f8742 654/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 655#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 656
e075ae69 657/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 658#define STACK_BOUNDARY \
51212b32 659 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 660
2e3f842f
L
661/* Stack boundary of the main function guaranteed by OS. */
662#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
663
de1132d1
L
664/* Minimum stack boundary. */
665#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
2e3f842f 666
d1f87653 667/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 668 aligned; the compiler cannot rely on having this alignment. */
e075ae69 669#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 670
de1132d1 671/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
672 both 32bit and 64bit, to support codes that need 128 bit stack
673 alignment for SSE instructions, but can't realign the stack. */
674#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
675
676/* 1 if -mstackrealign should be turned on by default. It will
677 generate an alternate prologue and epilogue that realigns the
678 runtime stack if nessary. This supports mixing codes that keep a
679 4-byte aligned stack, as specified by i386 psABI, with codes that
680 need a 16-byte aligned stack, as required by SSE instructions. If
681 STACK_REALIGN_DEFAULT is 1 and PREFERRED_STACK_BOUNDARY_DEFAULT is
682 128, stacks for all functions may be realigned. */
683#define STACK_REALIGN_DEFAULT 0
684
685/* Boundary (in *bits*) on which the incoming stack is aligned. */
686#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 687
ebff937c
SH
688/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
689 mandatory for the 64-bit ABI, and may or may not be true for other
690 operating systems. */
691#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
692
f963b5d9
RS
693/* Minimum allocation boundary for the code of a function. */
694#define FUNCTION_BOUNDARY 8
695
696/* C++ stores the virtual bit in the lowest bit of function pointers. */
697#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 698
892a2d68 699/* Alignment of field after `int : 0' in a structure. */
c98f8742 700
65d9c0ab 701#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
702
703/* Minimum size in bits of the largest boundary to which any
704 and all fundamental data types supported by the hardware
705 might need to be aligned. No data type wants to be aligned
17f24ff0 706 rounder than this.
fce5a9f2 707
d1f87653 708 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
709 and Pentium Pro XFmode values at 128 bit boundaries. */
710
95879c72 711#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
17f24ff0 712
2e3f842f
L
713/* Maximum stack alignment. */
714#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
715
6e4f1168
L
716/* Alignment value for attribute ((aligned)). It is a constant since
717 it is the part of the ABI. We shouldn't change it with -mavx. */
718#define ATTRIBUTE_ALIGNED_VALUE 128
719
822eda12 720/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 721#define ALIGN_MODE_128(MODE) \
4501d314 722 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 723
17f24ff0 724/* The published ABIs say that doubles should be aligned on word
d1f87653 725 boundaries, so lower the alignment for structure fields unless
6fc605d8 726 -malign-double is set. */
e932b21b 727
e83f3cff
RH
728/* ??? Blah -- this macro is used directly by libobjc. Since it
729 supports no vector modes, cut out the complexity and fall back
730 on BIGGEST_FIELD_ALIGNMENT. */
731#ifdef IN_TARGET_LIBS
ef49d42e
JH
732#ifdef __x86_64__
733#define BIGGEST_FIELD_ALIGNMENT 128
734#else
e83f3cff 735#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 736#endif
e83f3cff 737#else
e932b21b
JH
738#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
739 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 740#endif
c98f8742 741
e5e8a8bf 742/* If defined, a C expression to compute the alignment given to a
a7180f70 743 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
744 and ALIGN is the alignment that the object would ordinarily have.
745 The value of this macro is used instead of that alignment to align
746 the object.
747
748 If this macro is not defined, then ALIGN is used.
749
750 The typical use of this macro is to increase alignment for string
751 constants to be word aligned so that `strcpy' calls that copy
752 constants can be done inline. */
753
d9a5f180 754#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 755
8a022443
JW
756/* If defined, a C expression to compute the alignment for a static
757 variable. TYPE is the data type, and ALIGN is the alignment that
758 the object would ordinarily have. The value of this macro is used
759 instead of that alignment to align the object.
760
761 If this macro is not defined, then ALIGN is used.
762
763 One use of this macro is to increase alignment of medium-size
764 data to make it all fit in fewer cache lines. Another is to
765 cause character arrays to be word-aligned so that `strcpy' calls
766 that copy constants to character arrays can be done inline. */
767
d9a5f180 768#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
769
770/* If defined, a C expression to compute the alignment for a local
771 variable. TYPE is the data type, and ALIGN is the alignment that
772 the object would ordinarily have. The value of this macro is used
773 instead of that alignment to align the object.
774
775 If this macro is not defined, then ALIGN is used.
776
777 One use of this macro is to increase alignment of medium-size
778 data to make it all fit in fewer cache lines. */
779
76fe54f0
L
780#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
781 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
782
783/* If defined, a C expression to compute the alignment for stack slot.
784 TYPE is the data type, MODE is the widest mode available, and ALIGN
785 is the alignment that the slot would ordinarily have. The value of
786 this macro is used instead of that alignment to align the slot.
787
788 If this macro is not defined, then ALIGN is used when TYPE is NULL,
789 Otherwise, LOCAL_ALIGNMENT will be used.
790
791 One use of this macro is to set alignment of stack slot to the
792 maximum alignment of all possible modes which the slot may have. */
793
794#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
795 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 796
9bfaf89d
JJ
797/* If defined, a C expression to compute the alignment for a local
798 variable DECL.
799
800 If this macro is not defined, then
801 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
802
803 One use of this macro is to increase alignment of medium-size
804 data to make it all fit in fewer cache lines. */
805
806#define LOCAL_DECL_ALIGNMENT(DECL) \
807 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
808
809
53c17031
JH
810/* If defined, a C expression that gives the alignment boundary, in
811 bits, of an argument with the specified mode and type. If it is
812 not defined, `PARM_BOUNDARY' is used for all arguments. */
813
d9a5f180
GS
814#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
815 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 816
9cd10576 817/* Set this nonzero if move instructions will actually fail to work
c98f8742 818 when given unaligned data. */
b4ac57ab 819#define STRICT_ALIGNMENT 0
c98f8742
JVA
820
821/* If bit field type is int, don't let it cross an int,
822 and give entire struct the alignment of an int. */
43a88a8c 823/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 824#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
825\f
826/* Standard register usage. */
827
828/* This processor has special stack-like registers. See reg-stack.c
892a2d68 829 for details. */
c98f8742
JVA
830
831#define STACK_REGS
ce998900 832
d9a5f180 833#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
834 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
835 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
836 || (MODE) == XFmode)
c98f8742
JVA
837
838/* Number of actual hardware registers.
839 The hardware registers are assigned numbers for the compiler
840 from 0 to just below FIRST_PSEUDO_REGISTER.
841 All registers that the compiler knows about must be given numbers,
842 even those that are not normally considered general registers.
843
844 In the 80386 we give the 8 general purpose registers the numbers 0-7.
845 We number the floating point registers 8-15.
846 Note that registers 0-7 can be accessed as a short or int,
847 while only 0-3 may be used with byte `mov' instructions.
848
849 Reg 16 does not correspond to any hardware register, but instead
850 appears in the RTL as an argument pointer prior to reload, and is
851 eliminated during reloading in favor of either the stack or frame
892a2d68 852 pointer. */
c98f8742 853
b0d95de8 854#define FIRST_PSEUDO_REGISTER 53
c98f8742 855
3073d01c
ML
856/* Number of hardware registers that go into the DWARF-2 unwind info.
857 If not defined, equals FIRST_PSEUDO_REGISTER. */
858
859#define DWARF_FRAME_REGISTERS 17
860
c98f8742
JVA
861/* 1 for registers that have pervasive standard uses
862 and are not available for the register allocator.
3f3f2124 863 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 864
3a4416fb
RS
865 The value is zero if the register is not fixed on either 32 or
866 64 bit targets, one if the register if fixed on both 32 and 64
867 bit targets, two if it is only fixed on 32bit targets and three
868 if its only fixed on 64bit targets.
869 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 870 */
a7180f70
BS
871#define FIXED_REGISTERS \
872/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 873{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
874/*arg,flags,fpsr,fpcr,frame*/ \
875 1, 1, 1, 1, 1, \
a7180f70
BS
876/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
877 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 878/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
879 0, 0, 0, 0, 0, 0, 0, 0, \
880/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 881 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 882/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 883 2, 2, 2, 2, 2, 2, 2, 2 }
fce5a9f2 884
c98f8742
JVA
885
886/* 1 for registers not available across function calls.
887 These must include the FIXED_REGISTERS and also any
888 registers that can be used without being saved.
889 The latter must include the registers where values are returned
890 and the register where structure-value addresses are passed.
fce5a9f2
EC
891 Aside from that, you can include as many other registers as you like.
892
9d72d996
JJ
893 The value is zero if the register is not call used on either 32 or
894 64 bit targets, one if the register if call used on both 32 and 64
895 bit targets, two if it is only call used on 32bit targets and three
896 if its only call used on 64bit targets.
3a4416fb 897 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 898*/
a7180f70
BS
899#define CALL_USED_REGISTERS \
900/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 901{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
902/*arg,flags,fpsr,fpcr,frame*/ \
903 1, 1, 1, 1, 1, \
a7180f70 904/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 905 1, 1, 1, 1, 1, 1, 1, 1, \
78168632 906/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 907 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 908/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 909 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 910/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
ce998900 911 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 912
3b3c6a3f
MM
913/* Order in which to allocate registers. Each register must be
914 listed once, even those in FIXED_REGISTERS. List frame pointer
915 late and fixed registers last. Note that, in general, we prefer
916 registers listed in CALL_USED_REGISTERS, keeping the others
917 available for storage of persistent values.
918
162f023b
JH
919 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
920 so this is just empty initializer for array. */
3b3c6a3f 921
162f023b
JH
922#define REG_ALLOC_ORDER \
923{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
924 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
925 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
b0d95de8 926 48, 49, 50, 51, 52 }
3b3c6a3f 927
162f023b
JH
928/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
929 to be rearranged based on a particular function. When using sse math,
03c259ad 930 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 931
162f023b 932#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 933
f5316dfe 934
7c800926
KT
935#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
936
c98f8742 937/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 938#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 939do { \
3f3f2124 940 int i; \
b0fede98 941 unsigned int j; \
3f3f2124
JH
942 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
943 { \
3a4416fb
RS
944 if (fixed_regs[i] > 1) \
945 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
946 if (call_used_regs[i] > 1) \
947 call_used_regs[i] = (call_used_regs[i] \
948 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 949 } \
b0fede98 950 j = PIC_OFFSET_TABLE_REGNUM; \
7706ca5d 951 if (j != INVALID_REGNUM) \
962aae34 952 fixed_regs[j] = call_used_regs[j] = 1; \
0705d3f4 953 if (TARGET_64BIT \
6b5629db 954 && ((cfun && cfun->machine->call_abi == MS_ABI) \
51212b32 955 || (!cfun && ix86_abi == MS_ABI))) \
0705d3f4 956 { \
6c6094f1
UB
957 call_used_regs[SI_REG] = 0; \
958 call_used_regs[DI_REG] = 0; \
959 call_used_regs[XMM6_REG] = 0; \
960 call_used_regs[XMM7_REG] = 0; \
434426d2
UB
961 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
962 call_used_regs[i] = 0; \
0705d3f4 963 } \
a7180f70 964 if (! TARGET_MMX) \
6b5629db
UB
965 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
966 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
967 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70 968 if (! TARGET_SSE) \
6b5629db
UB
969 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
970 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
971 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
972 if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387)) \
962aae34
UB
973 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
974 if (TEST_HARD_REG_BIT (reg_class_contents[(int)FLOAT_REGS], i)) \
975 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
33270999
AO
976 if (! TARGET_64BIT) \
977 { \
33270999
AO
978 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
979 reg_names[i] = ""; \
980 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
981 reg_names[i] = ""; \
a7180f70 982 } \
d9a5f180 983 } while (0)
c98f8742
JVA
984
985/* Return number of consecutive hard regs needed starting at reg REGNO
986 to hold something of mode MODE.
987 This is ordinarily the length in words of a value of mode MODE
988 but can be less for certain modes in special long registers.
989
fce5a9f2 990 Actually there are no two word move instructions for consecutive
c98f8742
JVA
991 registers. And only registers 0-3 may have mov byte instructions
992 applied to them.
993 */
994
ce998900 995#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
996 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
997 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 998 : ((MODE) == XFmode \
92d0fb09 999 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1000 : (MODE) == XCmode \
92d0fb09 1001 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1002 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1003
8521c414
JM
1004#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1005 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1006 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1007 ? 0 \
1008 : ((MODE) == XFmode || (MODE) == XCmode)) \
1009 : 0)
1010
1011#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1012
95879c72
L
1013#define VALID_AVX256_REG_MODE(MODE) \
1014 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1015 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1016
ce998900
UB
1017#define VALID_SSE2_REG_MODE(MODE) \
1018 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1019 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1020
d9a5f180 1021#define VALID_SSE_REG_MODE(MODE) \
ce998900
UB
1022 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1023 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1024
47f339cf 1025#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1026 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1027
d9a5f180 1028#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1029 ((MODE == V1DImode) || (MODE) == DImode \
1030 || (MODE) == V2SImode || (MODE) == SImode \
1031 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1032
accde4cf 1033/* ??? No autovectorization into MMX or 3DNOW until we can reliably
95879c72
L
1034 place emms and femms instructions.
1035 FIXME: AVX has 32byte floating point vector operations and 16byte
1036 integer vector operations. But vectorizer doesn't support
1037 different sizes for integer and floating point vectors. We limit
1038 vector size to 16byte. */
1039#define UNITS_PER_SIMD_WORD(MODE) \
1040 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1041 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
0bf43309 1042
ce998900
UB
1043#define VALID_DFP_MODE_P(MODE) \
1044 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1045
d9a5f180 1046#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1047 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1048 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1049
d9a5f180 1050#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1051 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1052 || (MODE) == DImode \
1053 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1054 || (MODE) == CDImode \
1055 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1056 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1057
822eda12 1058/* Return true for modes passed in SSE registers. */
ce998900
UB
1059#define SSE_REG_MODE_P(MODE) \
1060 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12 1061 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
95879c72
L
1062 || (MODE) == V4SFmode || (MODE) == V4SImode || (MODE) == V32QImode \
1063 || (MODE) == V16HImode || (MODE) == V8SImode || (MODE) == V4DImode \
1064 || (MODE) == V8SFmode || (MODE) == V4DFmode)
822eda12 1065
e075ae69 1066/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1067
a946dd00 1068#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1069 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1070
1071/* Value is 1 if it is a good idea to tie two pseudo registers
1072 when one has mode MODE1 and one has mode MODE2.
1073 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1074 for any hard reg, then this must be 0 for correct output. */
1075
c1c5b5e3 1076#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1077
ff25ef99
ZD
1078/* It is possible to write patterns to move flags; but until someone
1079 does it, */
1080#define AVOID_CCMODE_COPIES
c98f8742 1081
e075ae69 1082/* Specify the modes required to caller save a given hard regno.
787dc842 1083 We do this on i386 to prevent flags from being saved at all.
e075ae69 1084
787dc842
JH
1085 Kill any attempts to combine saving of modes. */
1086
d9a5f180
GS
1087#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1088 (CC_REGNO_P (REGNO) ? VOIDmode \
1089 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1090 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
d9a5f180 1091 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
6c6094f1 1092 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
d2836273 1093 : (MODE))
ce998900 1094
c98f8742
JVA
1095/* Specify the registers used for certain standard purposes.
1096 The values of these macros are register numbers. */
1097
1098/* on the 386 the pc register is %eip, and is not usable as a general
1099 register. The ordinary mov instructions won't work */
1100/* #define PC_REGNUM */
1101
1102/* Register to use for pushing function arguments. */
1103#define STACK_POINTER_REGNUM 7
1104
1105/* Base register for access to local variables of the function. */
564d80f4
JH
1106#define HARD_FRAME_POINTER_REGNUM 6
1107
1108/* Base register for access to local variables of the function. */
b0d95de8 1109#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1110
1111/* First floating point reg */
1112#define FIRST_FLOAT_REG 8
1113
1114/* First & last stack-like regs */
1115#define FIRST_STACK_REG FIRST_FLOAT_REG
1116#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1117
a7180f70
BS
1118#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1119#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1120
a7180f70
BS
1121#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1122#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1123
3f3f2124
JH
1124#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1125#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1126
1127#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1128#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1129
c98f8742
JVA
1130/* Value should be nonzero if functions must have frame pointers.
1131 Zero means the frame pointer need not be set up (and parms
1132 may be accessed via the stack pointer) in functions that seem suitable.
1133 This is computed in `reload', in reload1.c. */
6fca22eb
RH
1134#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1135
aabcd309 1136/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1137 requiring a frame pointer. */
1138#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1139#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1140#endif
1141
1142/* Make sure we can access arbitrary call frames. */
1143#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1144
1145/* Base register for access to arguments of the function. */
1146#define ARG_POINTER_REGNUM 16
1147
d2836273
JH
1148/* Register in which static-chain is passed to a function.
1149 We do use ECX as static chain register for 32 bit ABI. On the
1150 64bit ABI, ECX is an argument register, so we use R10 instead. */
2ff8644d 1151#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
c98f8742
JVA
1152
1153/* Register to hold the addressing base for position independent
5b43fed1
RH
1154 code access to data items. We don't use PIC pointer for 64bit
1155 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1156 pessimizing code dealing with EBX.
bd09bdeb
RH
1157
1158 To avoid clobbering a call-saved register unnecessarily, we renumber
1159 the pic register when possible. The change is visible after the
1160 prologue has been emitted. */
1161
2e3f842f 1162#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1163
1164#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
1165 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1166 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1167 : reload_completed ? REGNO (pic_offset_table_rtx) \
1168 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1169
5fc0e5df
KW
1170#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1171
c51e6d85 1172/* This is overridden by <cygwin.h>. */
5e062767
DS
1173#define MS_AGGREGATE_RETURN 0
1174
61fec9ff
JB
1175/* This is overridden by <netware.h>. */
1176#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1177\f
1178/* Define the classes of registers for register constraints in the
1179 machine description. Also define ranges of constants.
1180
1181 One of the classes must always be named ALL_REGS and include all hard regs.
1182 If there is more than one class, another class must be named NO_REGS
1183 and contain no registers.
1184
1185 The name GENERAL_REGS must be the name of a class (or an alias for
1186 another name such as ALL_REGS). This is the class of registers
1187 that is allowed by "g" or "r" in a register constraint.
1188 Also, registers outside this class are allocated only when
1189 instructions express preferences for them.
1190
1191 The classes must be numbered in nondecreasing order; that is,
1192 a larger-numbered class must never be contained completely
1193 in a smaller-numbered class.
1194
1195 For any two classes, it is very desirable that there be another
ab408a86
JVA
1196 class that represents their union.
1197
1198 It might seem that class BREG is unnecessary, since no useful 386
1199 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1200 and the "b" register constraint is useful in asms for syscalls.
1201
03c259ad 1202 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1203
1204enum reg_class
1205{
1206 NO_REGS,
e075ae69 1207 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1208 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1209 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1210 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1211 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1212 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1213 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1214 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1215 FLOAT_REGS,
06f4e35d 1216 SSE_FIRST_REG,
a7180f70
BS
1217 SSE_REGS,
1218 MMX_REGS,
446988df
JH
1219 FP_TOP_SSE_REGS,
1220 FP_SECOND_SSE_REGS,
1221 FLOAT_SSE_REGS,
1222 FLOAT_INT_REGS,
1223 INT_SSE_REGS,
1224 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1225 ALL_REGS, LIM_REG_CLASSES
1226};
1227
d9a5f180
GS
1228#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1229
1230#define INTEGER_CLASS_P(CLASS) \
1231 reg_class_subset_p ((CLASS), GENERAL_REGS)
1232#define FLOAT_CLASS_P(CLASS) \
1233 reg_class_subset_p ((CLASS), FLOAT_REGS)
1234#define SSE_CLASS_P(CLASS) \
06f4e35d 1235 reg_class_subset_p ((CLASS), SSE_REGS)
d9a5f180 1236#define MMX_CLASS_P(CLASS) \
f75959a6 1237 ((CLASS) == MMX_REGS)
d9a5f180
GS
1238#define MAYBE_INTEGER_CLASS_P(CLASS) \
1239 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1240#define MAYBE_FLOAT_CLASS_P(CLASS) \
1241 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1242#define MAYBE_SSE_CLASS_P(CLASS) \
1243 reg_classes_intersect_p (SSE_REGS, (CLASS))
1244#define MAYBE_MMX_CLASS_P(CLASS) \
1245 reg_classes_intersect_p (MMX_REGS, (CLASS))
1246
1247#define Q_CLASS_P(CLASS) \
1248 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1249
43f3a59d 1250/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1251
1252#define REG_CLASS_NAMES \
1253{ "NO_REGS", \
ab408a86 1254 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1255 "SIREG", "DIREG", \
e075ae69
RH
1256 "AD_REGS", \
1257 "Q_REGS", "NON_Q_REGS", \
c98f8742 1258 "INDEX_REGS", \
3f3f2124 1259 "LEGACY_REGS", \
c98f8742
JVA
1260 "GENERAL_REGS", \
1261 "FP_TOP_REG", "FP_SECOND_REG", \
1262 "FLOAT_REGS", \
cb482895 1263 "SSE_FIRST_REG", \
a7180f70
BS
1264 "SSE_REGS", \
1265 "MMX_REGS", \
446988df
JH
1266 "FP_TOP_SSE_REGS", \
1267 "FP_SECOND_SSE_REGS", \
1268 "FLOAT_SSE_REGS", \
8fcaaa80 1269 "FLOAT_INT_REGS", \
446988df
JH
1270 "INT_SSE_REGS", \
1271 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1272 "ALL_REGS" }
1273
1274/* Define which registers fit in which classes.
1275 This is an initializer for a vector of HARD_REG_SET
1276 of length N_REG_CLASSES. */
1277
a7180f70 1278#define REG_CLASS_CONTENTS \
3f3f2124
JH
1279{ { 0x00, 0x0 }, \
1280 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1281 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1282 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1283 { 0x03, 0x0 }, /* AD_REGS */ \
1284 { 0x0f, 0x0 }, /* Q_REGS */ \
b0d95de8
UB
1285 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1286 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1287 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1288 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1289 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1290 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
cb482895 1291 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
b0d95de8
UB
1292{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1293{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1294{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1295{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1296{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1297 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1298{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1299{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1300{ 0xffffffff,0x1fffff } \
e075ae69 1301}
c98f8742 1302
058e97ec
VM
1303/* The following macro defines cover classes for Integrated Register
1304 Allocator. Cover classes is a set of non-intersected register
1305 classes covering all hard registers used for register allocation
1306 purpose. Any move between two registers of a cover class should be
1307 cheaper than load or store of the registers. The macro value is
1308 array of register classes with LIM_REG_CLASSES used as the end
1309 marker. */
1310
1311#define IRA_COVER_CLASSES \
1312{ \
1313 GENERAL_REGS, FLOAT_REGS, MMX_REGS, SSE_REGS, LIM_REG_CLASSES \
1314}
1315
c98f8742
JVA
1316/* The same information, inverted:
1317 Return the class number of the smallest class containing
1318 reg number REGNO. This could be a conditional expression
1319 or could index an array. */
1320
c98f8742
JVA
1321#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1322
1323/* When defined, the compiler allows registers explicitly used in the
1324 rtl to be used as spill registers but prevents the compiler from
892a2d68 1325 extending the lifetime of these registers. */
c98f8742 1326
2922fe9e 1327#define SMALL_REGISTER_CLASSES 1
c98f8742 1328
6c6094f1 1329#define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
3f3f2124 1330
d9a5f180 1331#define GENERAL_REGNO_P(N) \
fb84c7a0 1332 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
3f3f2124
JH
1333
1334#define GENERAL_REG_P(X) \
6189a572 1335 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1336
1337#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1338
fb84c7a0
UB
1339#define REX_INT_REGNO_P(N) \
1340 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124
JH
1341#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1342
c98f8742 1343#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
fb84c7a0 1344#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
446988df 1345#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1346#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1347
54a88090 1348#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1349 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1350
fb84c7a0
UB
1351#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1352#define SSE_REGNO_P(N) \
1353 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1354 || REX_SSE_REGNO_P (N))
3f3f2124 1355
4977bab6 1356#define REX_SSE_REGNO_P(N) \
fb84c7a0 1357 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1358
d9a5f180
GS
1359#define SSE_REGNO(N) \
1360 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
446988df 1361
d9a5f180 1362#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1363 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1364
d6023b50
UB
1365#define SSE_VEC_FLOAT_MODE_P(MODE) \
1366 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1367
95879c72
L
1368#define AVX_FLOAT_MODE_P(MODE) \
1369 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1370
1371#define AVX128_VEC_FLOAT_MODE_P(MODE) \
1372 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1373
1374#define AVX256_VEC_FLOAT_MODE_P(MODE) \
1375 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1376
1377#define AVX_VEC_FLOAT_MODE_P(MODE) \
1378 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1379 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1380
d9a5f180 1381#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fb84c7a0 1382#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1383
fb84c7a0 1384#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
fb84c7a0 1385#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
c98f8742 1386
d9a5f180 1387#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1388
e075ae69
RH
1389#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1390#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1391
c98f8742
JVA
1392/* The class value for index registers, and the one for base regs. */
1393
1394#define INDEX_REG_CLASS INDEX_REGS
1395#define BASE_REG_CLASS GENERAL_REGS
1396
c98f8742 1397/* Place additional restrictions on the register class to use when it
4cbb525c 1398 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1399 register for which class CLASS would ordinarily be used. */
c98f8742 1400
d2836273
JH
1401#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1402 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1403 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1404 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1405 ? Q_REGS : (CLASS))
1406
1407/* Given an rtx X being reloaded into a reg required to be
1408 in class CLASS, return the class of reg to actually use.
1409 In general this is just CLASS; but on some machines
1410 in some cases it is preferable to use a more restrictive class.
1411 On the 80386 series, we prevent floating constants from being
1412 reloaded into floating registers (since no move-insn can do that)
1413 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1414
d398b3b1 1415/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1416 QImode must go into class Q_REGS.
d398b3b1 1417 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1418 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1419
d9a5f180
GS
1420#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1421 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1422
b5c82fa1
PB
1423/* Discourage putting floating-point values in SSE registers unless
1424 SSE math is being used, and likewise for the 387 registers. */
1425
1426#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1427 ix86_preferred_output_reload_class ((X), (CLASS))
1428
85ff473e 1429/* If we are copying between general and FP registers, we need a memory
f84aa48a 1430 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1431#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1432 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1433
c62b3659
UB
1434/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1435 There is no need to emit full 64 bit move on 64 bit targets
1436 for integral modes that can be moved using 32 bit move. */
1437#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1438 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1439 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1440 : MODE)
1441
c98f8742
JVA
1442/* Return the maximum number of consecutive registers
1443 needed to represent mode MODE in a register of class CLASS. */
1444/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1445 except in the FP regs, where a single reg is always enough. */
a7180f70 1446#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1447 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1448 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1449 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1450 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1451
1452/* A C expression whose value is nonzero if pseudos that have been
1453 assigned to registers of class CLASS would likely be spilled
1454 because registers of CLASS are needed for spill registers.
1455
1456 The default value of this macro returns 1 if CLASS has exactly one
1457 register and zero otherwise. On most machines, this default
1458 should be used. Only define this macro to some other expression
1459 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1460 their hard registers were needed for spill registers. If this
f5316dfe
MM
1461 macro returns nonzero for those classes, those pseudos will only
1462 be allocated by `global.c', which knows how to reallocate the
1463 pseudo to another register. If there would not be another
1464 register available for reallocation, you should not change the
1465 definition of this macro since the only effect of such a
1466 definition would be to slow down register allocation. */
1467
1468#define CLASS_LIKELY_SPILLED_P(CLASS) \
1469 (((CLASS) == AREG) \
1470 || ((CLASS) == DREG) \
1471 || ((CLASS) == CREG) \
1472 || ((CLASS) == BREG) \
1473 || ((CLASS) == AD_REGS) \
1474 || ((CLASS) == SIREG) \
b0af5c03
JH
1475 || ((CLASS) == DIREG) \
1476 || ((CLASS) == FP_TOP_REG) \
1477 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1478
1272914c
RH
1479/* Return a class of registers that cannot change FROM mode to TO mode. */
1480
1481#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1482 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1483\f
1484/* Stack layout; function entry, exit and calling. */
1485
1486/* Define this if pushing a word on the stack
1487 makes the stack pointer a smaller address. */
1488#define STACK_GROWS_DOWNWARD
1489
a4d05547 1490/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1491 is at the high-address end of the local variables;
1492 that is, each additional local variable allocated
1493 goes at a more negative offset in the frame. */
f62c8a5c 1494#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1495
1496/* Offset within stack frame to start allocating local variables at.
1497 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1498 first local allocated. Otherwise, it is the offset to the BEGINNING
1499 of the first local allocated. */
1500#define STARTING_FRAME_OFFSET 0
1501
1502/* If we generate an insn to push BYTES bytes,
1503 this says how many the stack pointer really advances by.
6541fe75
JJ
1504 On 386, we have pushw instruction that decrements by exactly 2 no
1505 matter what the position was, there is no pushb.
1506 But as CIE data alignment factor on this arch is -4, we need to make
1507 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1508
d2836273
JH
1509 For 64bit ABI we round up to 8 bytes.
1510 */
c98f8742 1511
d2836273
JH
1512#define PUSH_ROUNDING(BYTES) \
1513 (TARGET_64BIT \
1514 ? (((BYTES) + 7) & (-8)) \
6541fe75 1515 : (((BYTES) + 3) & (-4)))
c98f8742 1516
f73ad30e
JH
1517/* If defined, the maximum amount of space required for outgoing arguments will
1518 be computed and placed into the variable
38173d38 1519 `crtl->outgoing_args_size'. No space will be pushed onto the
f73ad30e 1520 stack for each call; instead, the function prologue should increase the stack
9aa5c1b2
JH
1521 frame size by this amount.
1522
1523 MS ABI seem to require 16 byte alignment everywhere except for function
1524 prologue and apilogue. This is not possible without
1525 ACCUMULATE_OUTGOING_ARGS. */
f73ad30e 1526
6c6094f1
UB
1527#define ACCUMULATE_OUTGOING_ARGS \
1528 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
f73ad30e
JH
1529
1530/* If defined, a C expression whose value is nonzero when we want to use PUSH
1531 instructions to pass outgoing arguments. */
1532
1533#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1534
2da4124d
L
1535/* We want the stack and args grow in opposite directions, even if
1536 PUSH_ARGS is 0. */
1537#define PUSH_ARGS_REVERSED 1
1538
c98f8742
JVA
1539/* Offset of first parameter from the argument pointer register value. */
1540#define FIRST_PARM_OFFSET(FNDECL) 0
1541
a7180f70
BS
1542/* Define this macro if functions should assume that stack space has been
1543 allocated for arguments even when their values are passed in registers.
1544
1545 The value of this macro is the size, in bytes, of the area reserved for
1546 arguments passed in registers for the function represented by FNDECL.
1547
1548 This space can be allocated by the caller, or be a part of the
1549 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1550 which. */
7c800926
KT
1551#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1552
4ae8027b
UB
1553#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1554 (ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1555
c98f8742
JVA
1556/* Value is the number of bytes of arguments automatically
1557 popped when returning from a subroutine call.
8b109b37 1558 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1559 FUNTYPE is the data type of the function (as a tree),
1560 or for a library call it is an identifier node for the subroutine name.
1561 SIZE is the number of bytes of arguments passed on the stack.
1562
1563 On the 80386, the RTD insn may be used to pop them if the number
1564 of args is fixed, but if the number is variable then the caller
1565 must pop them all. RTD can't be used for library calls now
1566 because the library is compiled with the Unix compiler.
1567 Use of RTD is a selectable option, since it is incompatible with
1568 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1569 the caller must always pop the args.
1570
1571 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1572
d9a5f180
GS
1573#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1574 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1575
4ae8027b 1576#define FUNCTION_VALUE_REGNO_P(N) ix86_function_value_regno_p (N)
c98f8742
JVA
1577
1578/* Define how to find the value returned by a library function
1579 assuming the value has mode MODE. */
1580
4ae8027b 1581#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1582
e9125c09
TW
1583/* Define the size of the result block used for communication between
1584 untyped_call and untyped_return. The block contains a DImode value
1585 followed by the block used by fnsave and frstor. */
1586
1587#define APPLY_RESULT_SIZE (8+108)
1588
b08de47e 1589/* 1 if N is a possible register number for function argument passing. */
53c17031 1590#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1591
1592/* Define a data type for recording info about an argument list
1593 during the scan of that argument list. This data type should
1594 hold all necessary information about the function itself
1595 and about the args processed so far, enough to enable macros
b08de47e 1596 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1597
e075ae69 1598typedef struct ix86_args {
fa283935 1599 int words; /* # words passed so far */
b08de47e
MM
1600 int nregs; /* # registers available for passing */
1601 int regno; /* next available register number */
9d72d996 1602 int fastcall; /* fastcall calling convention is used */
fa283935 1603 int sse_words; /* # sse words passed so far */
a7180f70 1604 int sse_nregs; /* # sse registers available for passing */
95879c72 1605 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1606 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1607 int warn_mmx; /* True when we want to warn about MMX ABI. */
1608 int sse_regno; /* next available sse register number */
1609 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1610 int mmx_nregs; /* # mmx registers available for passing */
1611 int mmx_regno; /* next available mmx register number */
892a2d68 1612 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1613 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1614 be passed in SSE registers. Otherwise 0. */
51212b32 1615 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1616 MS_ABI for ms abi. */
b08de47e 1617} CUMULATIVE_ARGS;
c98f8742
JVA
1618
1619/* Initialize a variable CUM of type CUMULATIVE_ARGS
1620 for a call to a function whose data type is FNTYPE.
b08de47e 1621 For a library call, FNTYPE is 0. */
c98f8742 1622
0f6937fe 1623#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1624 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1625
1626/* Update the data in CUM to advance over an argument
1627 of mode MODE and data type TYPE.
1628 (TYPE is null for libcalls where that information may not be available.) */
1629
d9a5f180
GS
1630#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1631 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1632
1633/* Define where to put the arguments to a function.
1634 Value is zero to push the argument on the stack,
1635 or a hard register in which to store the argument.
1636
1637 MODE is the argument's machine mode.
1638 TYPE is the data type of the argument (as a tree).
1639 This is null for libcalls where that information may
1640 not be available.
1641 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1642 the preceding args and about the function being called.
1643 NAMED is nonzero if this argument is a named parameter
1644 (otherwise it is an extra parameter matching an ellipsis). */
1645
c98f8742 1646#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1647 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1648
a5fe455b
ZW
1649#define TARGET_ASM_FILE_END ix86_file_end
1650#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1651
c98f8742
JVA
1652/* Output assembler code to FILE to increment profiler label # LABELNO
1653 for profiling a function entry. */
1654
a5fa1ecd
JH
1655#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1656
1657#define MCOUNT_NAME "_mcount"
1658
1659#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1660
1661/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1662 the stack pointer does not matter. The value is tested only in
1663 functions that have frame pointers.
1664 No definition is equivalent to always zero. */
fce5a9f2 1665/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1666 we have to restore it ourselves from the frame pointer, in order to
1667 use pop */
1668
1669#define EXIT_IGNORE_STACK 1
1670
c98f8742
JVA
1671/* Output assembler code for a block containing the constant parts
1672 of a trampoline, leaving space for the variable parts. */
1673
a269a03c 1674/* On the 386, the trampoline contains two instructions:
c98f8742 1675 mov #STATIC,ecx
a269a03c
JC
1676 jmp FUNCTION
1677 The trampoline is generated entirely at runtime. The operand of JMP
1678 is the address of FUNCTION relative to the instruction following the
1679 JMP (which is 5 bytes long). */
c98f8742
JVA
1680
1681/* Length in units of the trampoline for entering a nested function. */
1682
39d04363 1683#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1684
1685/* Emit RTL insns to initialize the variable parts of a trampoline.
1686 FNADDR is an RTX for the address of the function's pure code.
1687 CXT is an RTX for the static chain value for the function. */
1688
d9a5f180
GS
1689#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1690 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1691\f
1692/* Definitions for register eliminations.
1693
1694 This is an array of structures. Each structure initializes one pair
1695 of eliminable registers. The "from" register number is given first,
1696 followed by "to". Eliminations of the same "from" register are listed
1697 in order of preference.
1698
afc2cd05
NC
1699 There are two registers that can always be eliminated on the i386.
1700 The frame pointer and the arg pointer can be replaced by either the
1701 hard frame pointer or to the stack pointer, depending upon the
1702 circumstances. The hard frame pointer is not used before reload and
1703 so it is not eligible for elimination. */
c98f8742 1704
564d80f4
JH
1705#define ELIMINABLE_REGS \
1706{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1707 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1708 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1709 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1710
2c5a510c 1711/* Given FROM and TO register numbers, say whether this elimination is
2e3f842f 1712 allowed. */
c98f8742 1713
2e3f842f 1714#define CAN_ELIMINATE(FROM, TO) ix86_can_eliminate ((FROM), (TO))
c98f8742
JVA
1715
1716/* Define the offset between two registers, one to be eliminated, and the other
1717 its replacement, at the start of a routine. */
1718
d9a5f180
GS
1719#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1720 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1721\f
1722/* Addressing modes, and classification of registers for them. */
1723
c98f8742
JVA
1724/* Macros to check register numbers against specific register classes. */
1725
1726/* These assume that REGNO is a hard or pseudo reg number.
1727 They give nonzero only if REGNO is a hard reg of the suitable class
1728 or a pseudo reg currently allocated to a suitable hard reg.
1729 Since they use reg_renumber, they are safe only once reg_renumber
1730 has been allocated, which happens in local-alloc.c. */
1731
3f3f2124
JH
1732#define REGNO_OK_FOR_INDEX_P(REGNO) \
1733 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1734 || REX_INT_REGNO_P (REGNO) \
1735 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1736 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1737
3f3f2124 1738#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1739 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1740 || (REGNO) == ARG_POINTER_REGNUM \
1741 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1742 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1743
c98f8742
JVA
1744/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1745 and check its validity for a certain class.
1746 We have two alternate definitions for each of them.
1747 The usual definition accepts all pseudo regs; the other rejects
1748 them unless they have been allocated suitable hard regs.
1749 The symbol REG_OK_STRICT causes the latter definition to be used.
1750
1751 Most source files want to accept pseudo regs in the hope that
1752 they will get allocated to the class that the insn wants them to be in.
1753 Source files for reload pass need to be strict.
1754 After reload, it makes no difference, since pseudo regs have
1755 been eliminated by then. */
1756
c98f8742 1757
ff482c8d 1758/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1759#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1760 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1761 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1762 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1763
3b3c6a3f 1764#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1765 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1766 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1767 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1768 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1769
3b3c6a3f
MM
1770/* Strict versions, hard registers only */
1771#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1772#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1773
3b3c6a3f 1774#ifndef REG_OK_STRICT
d9a5f180
GS
1775#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1776#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1777
1778#else
d9a5f180
GS
1779#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1780#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1781#endif
1782
1783/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1784 that is a valid memory address for an instruction.
1785 The MODE argument is the machine mode for the MEM expression
1786 that wants to use this address.
1787
1788 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1789 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1790
1791 See legitimize_pic_address in i386.c for details as to what
1792 constitutes a legitimate address when -fpic is used. */
1793
1794#define MAX_REGS_PER_ADDRESS 2
1795
f996902d 1796#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1797
1798/* Nonzero if the constant value X is a legitimate general operand.
1799 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1800
f996902d 1801#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1802
3b3c6a3f
MM
1803#ifdef REG_OK_STRICT
1804#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1805do { \
1806 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1807 goto ADDR; \
d9a5f180 1808} while (0)
c98f8742 1809
3b3c6a3f
MM
1810#else
1811#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1812do { \
1813 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1814 goto ADDR; \
d9a5f180 1815} while (0)
c98f8742 1816
3b3c6a3f
MM
1817#endif
1818
b949ea8b
JW
1819/* If defined, a C expression to determine the base term of address X.
1820 This macro is used in only one place: `find_base_term' in alias.c.
1821
1822 It is always safe for this macro to not be defined. It exists so
1823 that alias analysis can understand machine-dependent addresses.
1824
1825 The typical use of this macro is to handle addresses containing
1826 a label_ref or symbol_ref within an UNSPEC. */
1827
d9a5f180 1828#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1829
c98f8742
JVA
1830/* Try machine-dependent ways of modifying an illegitimate address
1831 to be legitimate. If we find one, return the new, valid address.
1832 This macro is used in only one place: `memory_address' in explow.c.
1833
1834 OLDX is the address as it was before break_out_memory_refs was called.
1835 In some cases it is useful to look at this to decide what needs to be done.
1836
1837 MODE and WIN are passed so that this macro can use
1838 GO_IF_LEGITIMATE_ADDRESS.
1839
1840 It is always safe for this macro to do nothing. It exists to recognize
1841 opportunities to optimize the output.
1842
1843 For the 80386, we handle X+REG by loading X into a register R and
1844 using R+REG. R will go in a general reg and indexing will be used.
1845 However, if REG is a broken-out memory address or multiplication,
1846 nothing needs to be done because REG can certainly go in a general reg.
1847
1848 When -fpic is used, special handling is needed for symbolic references.
1849 See comments by legitimize_pic_address in i386.c for details. */
1850
3b3c6a3f 1851#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1852do { \
1853 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1854 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1855 goto WIN; \
d9a5f180 1856} while (0)
c98f8742
JVA
1857
1858/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1859 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1860 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1861
f996902d 1862#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1863
1864#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1865 (GET_CODE (X) == SYMBOL_REF \
1866 || GET_CODE (X) == LABEL_REF \
1867 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1868
1869/* Go to LABEL if ADDR (a legitimate address expression)
1870 has an effect that depends on the machine mode it is used for.
1871 On the 80386, only postdecrement and postincrement address depend thus
b9a76028
MS
1872 (the amount of decrement or increment being the length of the operand).
1873 These are now caught in recog.c. */
1874#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
c98f8742 1875\f
b08de47e
MM
1876/* Max number of args passed in registers. If this is more than 3, we will
1877 have problems with ebx (register #4), since it is a caller save register and
1878 is also used as the pic register in ELF. So for now, don't allow more than
1879 3 registers to be passed in registers. */
1880
7c800926
KT
1881/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1882#define X86_64_REGPARM_MAX 6
1883#define X64_REGPARM_MAX 4
1884#define X86_32_REGPARM_MAX 3
1885
1886#define X86_64_SSE_REGPARM_MAX 8
1887#define X64_SSE_REGPARM_MAX 4
1888#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? 3 : 0)
1889
4ae8027b
UB
1890#define REGPARM_MAX \
1891 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_REGPARM_MAX \
1892 : X86_64_REGPARM_MAX) \
1893 : X86_32_REGPARM_MAX)
d2836273 1894
4ae8027b
UB
1895#define SSE_REGPARM_MAX \
1896 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_SSE_REGPARM_MAX \
1897 : X86_64_SSE_REGPARM_MAX) \
1898 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1899
1900#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1901
c98f8742
JVA
1902\f
1903/* Specify the machine mode that this machine uses
1904 for the index in the tablejump instruction. */
dc4d7240
JH
1905#define CASE_VECTOR_MODE \
1906 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1907
c98f8742
JVA
1908/* Define this as 1 if `char' should by default be signed; else as 0. */
1909#define DEFAULT_SIGNED_CHAR 1
1910
1911/* Max number of bytes we can move from memory to memory
1912 in one reasonably fast instruction. */
65d9c0ab
JH
1913#define MOVE_MAX 16
1914
1915/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1916 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1917 number of bytes we can move with a single instruction. */
65d9c0ab 1918#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1919
7e24ffc9 1920/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1921 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1922 Increasing the value will always make code faster, but eventually
1923 incurs high cost in increased code size.
c98f8742 1924
e2e52e1b 1925 If you don't define this, a reasonable default is used. */
c98f8742 1926
e04ad03d 1927#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1928
45d78e7f
JJ
1929/* If a clear memory operation would take CLEAR_RATIO or more simple
1930 move-instruction sequences, we will do a clrmem or libcall instead. */
1931
e04ad03d 1932#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1933
c98f8742
JVA
1934/* Define if shifts truncate the shift count
1935 which implies one can omit a sign-extension or zero-extension
1936 of a shift count. */
892a2d68 1937/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1938
1939/* #define SHIFT_COUNT_TRUNCATED */
1940
1941/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1942 is done just by pretending it is already truncated. */
1943#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1944
d9f32422
JH
1945/* A macro to update M and UNSIGNEDP when an object whose type is
1946 TYPE and which has the specified mode and signedness is to be
1947 stored in a register. This macro is only called when TYPE is a
1948 scalar type.
1949
f710504c 1950 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1951 quantities to SImode. The choice depends on target type. */
1952
1953#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1954do { \
d9f32422
JH
1955 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1956 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1957 (MODE) = SImode; \
1958} while (0)
d9f32422 1959
c98f8742
JVA
1960/* Specify the machine mode that pointers have.
1961 After generation of rtl, the compiler makes no further distinction
1962 between pointers and any other objects of this machine mode. */
65d9c0ab 1963#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1964
1965/* A function address in a call instruction
1966 is a byte address (for indexing purposes)
1967 so give the MEM rtx a byte's mode. */
1968#define FUNCTION_MODE QImode
d4ba09c0 1969\f
96e7ae40
JH
1970/* A C expression for the cost of moving data from a register in class FROM to
1971 one in class TO. The classes are expressed using the enumeration values
1972 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1973 interpreted relative to that.
d4ba09c0 1974
96e7ae40
JH
1975 It is not required that the cost always equal 2 when FROM is the same as TO;
1976 on some machines it is expensive to move between registers if they are not
f84aa48a 1977 general registers. */
d4ba09c0 1978
f84aa48a 1979#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1980 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1981
1982/* A C expression for the cost of moving data of mode M between a
1983 register and memory. A value of 2 is the default; this cost is
1984 relative to those in `REGISTER_MOVE_COST'.
1985
1986 If moving between registers and memory is more expensive than
1987 between two registers, you should define this macro to express the
fa79946e 1988 relative cost. */
d4ba09c0 1989
d9a5f180
GS
1990#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1991 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
1992
1993/* A C expression for the cost of a branch instruction. A value of 1
1994 is the default; other values are interpreted relative to that. */
1995
3a4fd356
JH
1996#define BRANCH_COST(speed_p, predictable_p) \
1997 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0
SC
1998
1999/* Define this macro as a C expression which is nonzero if accessing
2000 less than a word of memory (i.e. a `char' or a `short') is no
2001 faster than accessing a word of memory, i.e., if such access
2002 require more than one instruction or if there is no difference in
2003 cost between byte and (aligned) word loads.
2004
2005 When this macro is not defined, the compiler will access a field by
2006 finding the smallest containing object; when it is defined, a
2007 fullword load will be used if alignment permits. Unless bytes
2008 accesses are faster than word accesses, using word accesses is
2009 preferable since it may eliminate subsequent memory access if
2010 subsequent accesses occur to other fields in the same word of the
2011 structure, but to different bytes. */
2012
2013#define SLOW_BYTE_ACCESS 0
2014
2015/* Nonzero if access to memory by shorts is slow and undesirable. */
2016#define SLOW_SHORT_ACCESS 0
2017
d4ba09c0
SC
2018/* Define this macro to be the value 1 if unaligned accesses have a
2019 cost many times greater than aligned accesses, for example if they
2020 are emulated in a trap handler.
2021
9cd10576
KH
2022 When this macro is nonzero, the compiler will act as if
2023 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 2024 moves. This can cause significantly more instructions to be
9cd10576 2025 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
2026 accesses only add a cycle or two to the time for a memory access.
2027
2028 If the value of this macro is always zero, it need not be defined. */
2029
e1565e65 2030/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 2031
d4ba09c0
SC
2032/* Define this macro if it is as good or better to call a constant
2033 function address than to call an address kept in a register.
2034
2035 Desirable on the 386 because a CALL with a constant address is
2036 faster than one with a register address. */
2037
2038#define NO_FUNCTION_CSE
c98f8742 2039\f
c572e5ba
JVA
2040/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2041 return the mode to be used for the comparison.
2042
2043 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2044 VOIDmode should be used in all other cases.
c572e5ba 2045
16189740 2046 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2047 possible, to allow for more combinations. */
c98f8742 2048
d9a5f180 2049#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2050
9cd10576 2051/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2052 reversed. */
2053
2054#define REVERSIBLE_CC_MODE(MODE) 1
2055
2056/* A C expression whose value is reversed condition code of the CODE for
2057 comparison done in CC_MODE mode. */
3c5cb3e4 2058#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2059
c98f8742
JVA
2060\f
2061/* Control the assembler format that we output, to the extent
2062 this does not vary between assemblers. */
2063
2064/* How to refer to registers in assembler output.
892a2d68 2065 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2066
a7b376ee 2067/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2068 For non floating point regs, the following are the HImode names.
2069
2070 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 2071 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 2072
a7180f70
BS
2073#define HI_REGISTER_NAMES \
2074{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2075 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2076 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2077 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2078 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
2079 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2080 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 2081
c98f8742
JVA
2082#define REGISTER_NAMES HI_REGISTER_NAMES
2083
2084/* Table of additional register names to use in user input. */
2085
2086#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2087{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2088 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2089 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2090 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2091 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2092 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2093
2094/* Note we are omitting these since currently I don't know how
2095to get gcc to use these, since they want the same but different
2096number as al, and ax.
2097*/
2098
c98f8742 2099#define QI_REGISTER_NAMES \
3f3f2124 2100{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2101
2102/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2103 of regs 0 through 3. */
c98f8742
JVA
2104
2105#define QI_HIGH_REGISTER_NAMES \
2106{"ah", "dh", "ch", "bh", }
2107
2108/* How to renumber registers for dbx and gdb. */
2109
d9a5f180
GS
2110#define DBX_REGISTER_NUMBER(N) \
2111 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2112
9a82e702
MS
2113extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2114extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2115extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2116
469ac993
JM
2117/* Before the prologue, RA is at 0(%esp). */
2118#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2119 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2120
e414ab29 2121/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2122#define RETURN_ADDR_RTX(COUNT, FRAME) \
2123 ((COUNT) == 0 \
2124 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2125 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 2126
892a2d68 2127/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2128#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2129
a6ab3aad 2130/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2131#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2132
1020a5ab
RH
2133/* Describe how we implement __builtin_eh_return. */
2134#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2135#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2136
ad919812 2137
e4c4ebeb
RH
2138/* Select a format to encode pointers in exception handling data. CODE
2139 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2140 true if the symbol may be affected by dynamic relocations.
2141
2142 ??? All x86 object file formats are capable of representing this.
2143 After all, the relocation needed is the same as for the call insn.
2144 Whether or not a particular assembler allows us to enter such, I
2145 guess we'll have to see. */
d9a5f180 2146#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2147 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2148
c98f8742
JVA
2149/* This is how to output an insn to push a register on the stack.
2150 It need not be very fast code. */
2151
d9a5f180 2152#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2153do { \
2154 if (TARGET_64BIT) \
2155 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2156 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2157 else \
2158 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2159} while (0)
c98f8742
JVA
2160
2161/* This is how to output an insn to pop a register from the stack.
2162 It need not be very fast code. */
2163
d9a5f180 2164#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2165do { \
2166 if (TARGET_64BIT) \
2167 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2168 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2169 else \
2170 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2171} while (0)
c98f8742 2172
f88c65f7 2173/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2174
2175#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2176 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2177
f88c65f7 2178/* This is how to output an element of a case-vector that is relative. */
c98f8742 2179
33f7f353 2180#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2181 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2182
95879c72
L
2183/* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2184 true. */
2185
2186#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2187{ \
2188 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2189 { \
2190 if (TARGET_AVX) \
2191 (PTR) += 1; \
2192 else \
2193 (PTR) += 2; \
2194 } \
2195}
2196
2197/* A C statement or statements which output an assembler instruction
2198 opcode to the stdio stream STREAM. The macro-operand PTR is a
2199 variable of type `char *' which points to the opcode name in
2200 its "internal" form--the form that is written in the machine
2201 description. */
2202
2203#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2204 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2205
f7288899
EC
2206/* Under some conditions we need jump tables in the text section,
2207 because the assembler cannot handle label differences between
2208 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2209
2210#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2211 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2212 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2213
cea3bd3e
RH
2214/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2215 and switch back. For x86 we do this only to save a few bytes that
2216 would otherwise be unused in the text section. */
2217#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2218 asm (SECTION_OP "\n\t" \
2219 "call " USER_LABEL_PREFIX #FUNC "\n" \
2220 TEXT_SECTION_ASM_OP);
74b42c8b 2221\f
c98f8742
JVA
2222/* Print operand X (an rtx) in assembler syntax to file FILE.
2223 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2224 Effect of various CODE letters is described in i386.c near
2225 print_operand function. */
c98f8742 2226
d9a5f180 2227#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c9d259cb 2228 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
c98f8742
JVA
2229
2230#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2231 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2232
2233#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2234 print_operand_address ((FILE), (ADDR))
c98f8742 2235
f996902d
RH
2236#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2237do { \
2238 if (! output_addr_const_extra (FILE, (X))) \
2239 goto FAIL; \
2240} while (0);
d4ba09c0 2241\f
5bf0ebab
RH
2242/* Which processor to schedule for. The cpu attribute defines a list that
2243 mirrors this list, so changes to i386.md must be made at the same time. */
2244
2245enum processor_type
2246{
8383d43c 2247 PROCESSOR_I386 = 0, /* 80386 */
5bf0ebab
RH
2248 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2249 PROCESSOR_PENTIUM,
2250 PROCESSOR_PENTIUMPRO,
cfe1b18f 2251 PROCESSOR_GEODE,
5bf0ebab
RH
2252 PROCESSOR_K6,
2253 PROCESSOR_ATHLON,
2254 PROCESSOR_PENTIUM4,
4977bab6 2255 PROCESSOR_K8,
89c43c0a 2256 PROCESSOR_NOCONA,
05f85dbb 2257 PROCESSOR_CORE2,
d326eaf0
JH
2258 PROCESSOR_GENERIC32,
2259 PROCESSOR_GENERIC64,
21efb4d4 2260 PROCESSOR_AMDFAM10,
5bf0ebab
RH
2261 PROCESSOR_max
2262};
2263
9e555526 2264extern enum processor_type ix86_tune;
5bf0ebab 2265extern enum processor_type ix86_arch;
5bf0ebab
RH
2266
2267enum fpmath_unit
2268{
2269 FPMATH_387 = 1,
2270 FPMATH_SSE = 2
2271};
2272
2273extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2274
f996902d
RH
2275enum tls_dialect
2276{
2277 TLS_DIALECT_GNU,
5bf5a10b 2278 TLS_DIALECT_GNU2,
f996902d
RH
2279 TLS_DIALECT_SUN
2280};
2281
2282extern enum tls_dialect ix86_tls_dialect;
f996902d 2283
6189a572 2284enum cmodel {
5bf0ebab
RH
2285 CM_32, /* The traditional 32-bit ABI. */
2286 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2287 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2288 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2289 CM_LARGE, /* No assumptions. */
7dcbf659 2290 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
dc4d7240
JH
2291 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2292 CM_LARGE_PIC /* No assumptions. */
6189a572
JH
2293};
2294
5bf0ebab 2295extern enum cmodel ix86_cmodel;
5bf0ebab 2296
8362f420
JH
2297/* Size of the RED_ZONE area. */
2298#define RED_ZONE_SIZE 128
2299/* Reserved area of the red zone for temporaries. */
2300#define RED_ZONE_RESERVE 8
c93e80a5
JH
2301
2302enum asm_dialect {
2303 ASM_ATT,
2304 ASM_INTEL
2305};
5bf0ebab 2306
80f33d06 2307extern enum asm_dialect ix86_asm_dialect;
95899b34 2308extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2309extern unsigned int ix86_incoming_stack_boundary;
7dcbf659 2310extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2311
2312/* Smallest class containing REGNO. */
2313extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2314
d9a5f180
GS
2315extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2316extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2317extern rtx ix86_compare_emitted;
22fb740d
JH
2318\f
2319/* To properly truncate FP values into integers, we need to set i387 control
2320 word. We can't emit proper mode switching code before reload, as spills
2321 generated by reload may truncate values incorrectly, but we still can avoid
2322 redundant computation of new control word by the mode switching pass.
2323 The fldcw instructions are still emitted redundantly, but this is probably
2324 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2325 the sequence.
22fb740d
JH
2326
2327 The machinery is to emit simple truncation instructions and split them
2328 before reload to instructions having USEs of two memory locations that
2329 are filled by this code to old and new control word.
fce5a9f2 2330
22fb740d
JH
2331 Post-reload pass may be later used to eliminate the redundant fildcw if
2332 needed. */
2333
ff680eb1
UB
2334enum ix86_entity
2335{
2336 I387_TRUNC = 0,
2337 I387_FLOOR,
2338 I387_CEIL,
2339 I387_MASK_PM,
2340 MAX_386_ENTITIES
2341};
2342
1cba2b96 2343enum ix86_stack_slot
ff680eb1 2344{
80dcd3aa
UB
2345 SLOT_VIRTUAL = 0,
2346 SLOT_TEMP,
ff680eb1
UB
2347 SLOT_CW_STORED,
2348 SLOT_CW_TRUNC,
2349 SLOT_CW_FLOOR,
2350 SLOT_CW_CEIL,
2351 SLOT_CW_MASK_PM,
2352 MAX_386_STACK_LOCALS
2353};
22fb740d
JH
2354
2355/* Define this macro if the port needs extra instructions inserted
2356 for mode switching in an optimizing compilation. */
2357
ff680eb1
UB
2358#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2359 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2360
2361/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2362 initializer for an array of integers. Each initializer element N
2363 refers to an entity that needs mode switching, and specifies the
2364 number of different modes that might need to be set for this
2365 entity. The position of the initializer in the initializer -
2366 starting counting at zero - determines the integer that is used to
2367 refer to the mode-switched entity in question. */
2368
ff680eb1
UB
2369#define NUM_MODES_FOR_MODE_SWITCHING \
2370 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2371
2372/* ENTITY is an integer specifying a mode-switched entity. If
2373 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2374 return an integer value not larger than the corresponding element
2375 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2376 must be switched into prior to the execution of INSN. */
2377
2378#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2379
2380/* This macro specifies the order in which modes for ENTITY are
2381 processed. 0 is the highest priority. */
2382
d9a5f180 2383#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2384
2385/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2386 is the set of hard registers live at the point where the insn(s)
2387 are to be inserted. */
2388
2389#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2390 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2391 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2392 : 0)
ff680eb1 2393
0f0138b6
JH
2394\f
2395/* Avoid renaming of stack registers, as doing so in combination with
2396 scheduling just increases amount of live registers at time and in
2397 the turn amount of fxch instructions needed.
2398
43f3a59d 2399 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2400
d9a5f180 2401#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
fb84c7a0 2402 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
22fb740d 2403
3b3c6a3f 2404\f
e91f04de 2405#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2406\f
2407struct machine_function GTY(())
2408{
2409 struct stack_local_entry *stack_locals;
2410 const char *some_ld_name;
4aab97f9
L
2411 int varargs_gpr_size;
2412 int varargs_fpr_size;
fa1a0d02 2413 int accesses_prev_frame;
ff680eb1 2414 int optimize_mode_switching[MAX_386_ENTITIES];
922e3e33
UB
2415 int needs_cld;
2416 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2417 expander to determine the style used. */
d9b40e8d 2418 int use_fast_prologue_epilogue;
d7394366
JH
2419 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2420 for. */
2421 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2422 /* If true, the current function needs the default PIC register, not
2423 an alternate register (on x86) and must not use the red zone (on
2424 x86_64), even if it's a leaf function. We don't want the
2425 function to be regarded as non-leaf because TLS calls need not
2426 affect register allocation. This flag is set when a TLS call
2427 instruction is expanded within a function, and never reset, even
2428 if all such instructions are optimized away. Use the
2429 ix86_current_function_calls_tls_descriptor macro for a better
2430 approximation. */
2431 int tls_descriptor_call_expanded_p;
7c800926
KT
2432 /* This value is used for amd64 targets and specifies the current abi
2433 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
51212b32 2434 enum calling_abi call_abi;
fa1a0d02
JH
2435};
2436
2437#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2438#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2439#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2440#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2441#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2442#define ix86_tls_descriptor_calls_expanded_in_cfun \
2443 (cfun->machine->tls_descriptor_call_expanded_p)
2444/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2445 calls are optimized away, we try to detect cases in which it was
2446 optimized away. Since such instructions (use (reg REG_SP)), we can
2447 verify whether there's any such instruction live by testing that
2448 REG_SP is live. */
2449#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2450 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
249e6b63 2451
1bc7c5b6
ZW
2452/* Control behavior of x86_file_start. */
2453#define X86_FILE_START_VERSION_DIRECTIVE false
2454#define X86_FILE_START_FLTUSED false
2455
7dcbf659
JH
2456/* Flag to mark data that is in the large address area. */
2457#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2458#define SYMBOL_REF_FAR_ADDR_P(X) \
2459 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2460
2461/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2462 have defined always, to avoid ifdefing. */
2463#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2464#define SYMBOL_REF_DLLIMPORT_P(X) \
2465 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2466
2467#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2468#define SYMBOL_REF_DLLEXPORT_P(X) \
2469 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2470
e70444a8
HJ
2471/* Model costs for vectorizer. */
2472
2473/* Cost of conditional branch. */
2474#undef TARG_COND_BRANCH_COST
2475#define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2476
4ae8027b
UB
2477/* Enum through the target specific extra va_list types.
2478 Please, do not iterate the base va_list type name. */
35cbb299 2479#define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
4ae8027b 2480 (TARGET_64BIT ? ix86_enum_va_list (IDX, PNAME, PTYPE) : 0)
35cbb299 2481
e70444a8
HJ
2482/* Cost of any scalar operation, excluding load and store. */
2483#undef TARG_SCALAR_STMT_COST
2484#define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2485
2486/* Cost of scalar load. */
2487#undef TARG_SCALAR_LOAD_COST
2488#define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2489
2490/* Cost of scalar store. */
2491#undef TARG_SCALAR_STORE_COST
2492#define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2493
2494/* Cost of any vector operation, excluding load, store or vector to scalar
4f3f76e6 2495 operation. */
e70444a8
HJ
2496#undef TARG_VEC_STMT_COST
2497#define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2498
2499/* Cost of vector to scalar operation. */
2500#undef TARG_VEC_TO_SCALAR_COST
2501#define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2502
2503/* Cost of scalar to vector operation. */
2504#undef TARG_SCALAR_TO_VEC_COST
2505#define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2506
2507/* Cost of aligned vector load. */
2508#undef TARG_VEC_LOAD_COST
2509#define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2510
2511/* Cost of misaligned vector load. */
2512#undef TARG_VEC_UNALIGNED_LOAD_COST
2513#define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2514
2515/* Cost of vector store. */
2516#undef TARG_VEC_STORE_COST
2517#define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2518
2519/* Cost of conditional taken branch for vectorizer cost model. */
2520#undef TARG_COND_TAKEN_BRANCH_COST
2521#define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2522
2523/* Cost of conditional not taken branch for vectorizer cost model. */
2524#undef TARG_COND_NOT_TAKEN_BRANCH_COST
2525#define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2526
c98f8742
JVA
2527/*
2528Local variables:
2529version-control: t
2530End:
2531*/