]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
23a5b65a 2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
90922d36 74#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 75#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 76#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 77#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 78#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 79#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 80#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 81#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 82#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 83#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36
MM
84#define TARGET_ROUND TARGET_ISA_ROUND
85#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 86#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
90922d36 87#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 88#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 89#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 90#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 91#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 92#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 93#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 94#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 95#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 96#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 97#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 98#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 99#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 100#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 101#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 102#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 103#define TARGET_AES TARGET_ISA_AES
bf7b5747 104#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
105#define TARGET_SHA TARGET_ISA_SHA
106#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
90922d36 107#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 108#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
109#define TARGET_CMPXCHG16B TARGET_ISA_CX16
110#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 111#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 112#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 113#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 114#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 115#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 116#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
117#define TARGET_RTM TARGET_ISA_RTM
118#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 119#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 120#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 121#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 122#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 123#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 124#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 125#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 126#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 127#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 128#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 129#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 130#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 131#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 132#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
ab442df7 133
90922d36 134#define TARGET_LP64 TARGET_ABI_64
bf7b5747 135#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 136#define TARGET_X32 TARGET_ABI_X32
bf7b5747 137#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
04e1d06b 138
cbf2e4d4
HJ
139/* SSE4.1 defines round instructions */
140#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
90922d36 141#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
0a1c5e55 142
26b5109f
RS
143#include "config/vxworks-dummy.h"
144
7eb68c06 145#include "config/i386/i386-opts.h"
ccf8e764 146
c69fa2d4 147#define MAX_STRINGOP_ALGS 4
ccf8e764 148
8c996513
JH
149/* Specify what algorithm to use for stringops on known size.
150 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
151 known at compile time or estimated via feedback, the SIZE array
152 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 153 means infinity). Corresponding ALG is used then.
340ef734
JH
154 When NOALIGN is true the code guaranting the alignment of the memory
155 block is skipped.
156
8c996513 157 For example initializer:
4f3f76e6 158 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 159 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 160 be used otherwise. */
8c996513
JH
161struct stringop_algs
162{
163 const enum stringop_alg unknown_size;
164 const struct stringop_strategy {
165 const int max;
166 const enum stringop_alg alg;
340ef734 167 int noalign;
c69fa2d4 168 } size [MAX_STRINGOP_ALGS];
8c996513
JH
169};
170
d4ba09c0
SC
171/* Define the specific costs for a given cpu */
172
173struct processor_costs {
8b60264b
KG
174 const int add; /* cost of an add instruction */
175 const int lea; /* cost of a lea instruction */
176 const int shift_var; /* variable shift costs */
177 const int shift_const; /* constant shift costs */
f676971a 178 const int mult_init[5]; /* cost of starting a multiply
4977bab6 179 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 180 const int mult_bit; /* cost of multiply per each bit set */
f676971a 181 const int divide[5]; /* cost of a divide/mod
4977bab6 182 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
183 int movsx; /* The cost of movsx operation. */
184 int movzx; /* The cost of movzx operation. */
8b60264b
KG
185 const int large_insn; /* insns larger than this cost more */
186 const int move_ratio; /* The threshold of number of scalar
ac775968 187 memory-to-memory move insns. */
8b60264b
KG
188 const int movzbl_load; /* cost of loading using movzbl */
189 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
190 in QImode, HImode and SImode relative
191 to reg-reg move (2). */
8b60264b 192 const int int_store[3]; /* cost of storing integer register
96e7ae40 193 in QImode, HImode and SImode */
8b60264b
KG
194 const int fp_move; /* cost of reg,reg fld/fst */
195 const int fp_load[3]; /* cost of loading FP register
96e7ae40 196 in SFmode, DFmode and XFmode */
8b60264b 197 const int fp_store[3]; /* cost of storing FP register
96e7ae40 198 in SFmode, DFmode and XFmode */
8b60264b
KG
199 const int mmx_move; /* cost of moving MMX register. */
200 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 201 in SImode and DImode */
8b60264b 202 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 203 in SImode and DImode */
8b60264b
KG
204 const int sse_move; /* cost of moving SSE register. */
205 const int sse_load[3]; /* cost of loading SSE register
fa79946e 206 in SImode, DImode and TImode*/
8b60264b 207 const int sse_store[3]; /* cost of storing SSE register
fa79946e 208 in SImode, DImode and TImode*/
8b60264b 209 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 210 integer and vice versa. */
46cb0441
ZD
211 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
212 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
213 const int prefetch_block; /* bytes moved to cache for prefetch. */
214 const int simultaneous_prefetches; /* number of parallel prefetch
215 operations. */
4977bab6 216 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
217 const int fadd; /* cost of FADD and FSUB instructions. */
218 const int fmul; /* cost of FMUL instruction. */
219 const int fdiv; /* cost of FDIV instruction. */
220 const int fabs; /* cost of FABS instruction. */
221 const int fchs; /* cost of FCHS instruction. */
222 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 223 /* Specify what algorithm
bee51209 224 to use for stringops on unknown size. */
ad83025e 225 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
226 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
227 load and store. */
228 const int scalar_load_cost; /* Cost of scalar load. */
229 const int scalar_store_cost; /* Cost of scalar store. */
230 const int vec_stmt_cost; /* Cost of any vector operation, excluding
231 load, store, vector-to-scalar and
232 scalar-to-vector operation. */
233 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
234 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
4f3f76e6 235 const int vec_align_load_cost; /* Cost of aligned vector load. */
e70444a8
HJ
236 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
237 const int vec_store_cost; /* Cost of vector store. */
238 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
239 cost model. */
240 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
241 vectorizer cost model. */
d4ba09c0
SC
242};
243
8b60264b 244extern const struct processor_costs *ix86_cost;
b2077fd2
JH
245extern const struct processor_costs ix86_size_cost;
246
247#define ix86_cur_cost() \
248 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 249
c98f8742
JVA
250/* Macros used in the machine description to test the flags. */
251
b97de419 252/* configure can arrange to change it. */
e075ae69 253
35b528be 254#ifndef TARGET_CPU_DEFAULT
b97de419 255#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 256#endif
35b528be 257
004d3859
GK
258#ifndef TARGET_FPMATH_DEFAULT
259#define TARGET_FPMATH_DEFAULT \
260 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
261#endif
262
bf7b5747
ST
263#ifndef TARGET_FPMATH_DEFAULT_P
264#define TARGET_FPMATH_DEFAULT_P(x) \
265 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
266#endif
267
6ac49599 268#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bf7b5747 269#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
b08de47e 270
5791cc29
JT
271/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
272 compile-time constant. */
273#ifdef IN_LIBGCC2
6ac49599 274#undef TARGET_64BIT
5791cc29
JT
275#ifdef __x86_64__
276#define TARGET_64BIT 1
277#else
278#define TARGET_64BIT 0
279#endif
280#else
6ac49599
RS
281#ifndef TARGET_BI_ARCH
282#undef TARGET_64BIT
67adf6a9 283#if TARGET_64BIT_DEFAULT
0c2dc519
JH
284#define TARGET_64BIT 1
285#else
286#define TARGET_64BIT 0
287#endif
288#endif
5791cc29 289#endif
25f94bb5 290
750054a2
CT
291#define HAS_LONG_COND_BRANCH 1
292#define HAS_LONG_UNCOND_BRANCH 1
293
9e555526
RH
294#define TARGET_386 (ix86_tune == PROCESSOR_I386)
295#define TARGET_486 (ix86_tune == PROCESSOR_I486)
296#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
297#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 298#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
299#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
300#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
301#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
302#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 303#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 304#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 305#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
306#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
307#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 308#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
309#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
310#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
9d532162 311#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 312#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 313#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 314#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 315#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 316#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 317#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 318#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
a269a03c 319
80fd744f
RH
320/* Feature tests against the various tunings. */
321enum ix86_tune_indices {
4b8bc035 322#undef DEF_TUNE
3ad20bd4 323#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
324#include "x86-tune.def"
325#undef DEF_TUNE
326X86_TUNE_LAST
80fd744f
RH
327};
328
ab442df7 329extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
330
331#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
332#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
333#define TARGET_ZERO_EXTEND_WITH_AND \
334 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 335#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
336#define TARGET_BRANCH_PREDICTION_HINTS \
337 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
338#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
339#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
340#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
341#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
342#define TARGET_PARTIAL_FLAG_REG_STALL \
343 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
344#define TARGET_LCP_STALL \
345 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
346#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
347#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
348#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
349#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
350#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
351#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
352#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
353#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
354#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
355#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
356#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
357#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
358 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
359#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
360#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
361#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
362#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
363#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
364#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
365#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
366#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
367#define TARGET_INTEGER_DFMODE_MOVES \
368 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
369#define TARGET_PARTIAL_REG_DEPENDENCY \
370 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
371#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
372 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
373#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
374 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
375#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
376 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
377#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
378 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
379#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
380#define TARGET_SSE_TYPELESS_STORES \
381 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
382#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
383#define TARGET_MEMORY_MISMATCH_STALL \
384 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
385#define TARGET_PROLOGUE_USING_MOVE \
386 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
387#define TARGET_EPILOGUE_USING_MOVE \
388 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
389#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
390#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
391#define TARGET_INTER_UNIT_MOVES_TO_VEC \
392 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
393#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
394 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
395#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 396 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
397#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
398#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
399#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
400#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
401#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
402#define TARGET_PAD_SHORT_FUNCTION \
403 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
404#define TARGET_EXT_80387_CONSTANTS \
405 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
406#define TARGET_AVOID_VECTOR_DECODE \
407 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
408#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
409 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
410#define TARGET_SLOW_IMUL_IMM32_MEM \
411 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
412#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
413#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
414#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
415#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
416#define TARGET_USE_VECTOR_FP_CONVERTS \
417 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
418#define TARGET_USE_VECTOR_CONVERTS \
419 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
0dc41f28
WM
420#define TARGET_FUSE_CMP_AND_BRANCH_32 \
421 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
422#define TARGET_FUSE_CMP_AND_BRANCH_64 \
423 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 424#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
425 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
426 : TARGET_FUSE_CMP_AND_BRANCH_32)
427#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
428 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
429#define TARGET_FUSE_ALU_AND_BRANCH \
430 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 431#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e72eba85
L
432#define TARGET_VECTORIZE_DOUBLE \
433 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
5d0878e7
JH
434#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
435 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
436#define TARGET_AVX128_OPTIMAL \
437 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
df7b0cc4
EI
438#define TARGET_REASSOC_INT_TO_PARALLEL \
439 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
440#define TARGET_REASSOC_FP_TO_PARALLEL \
441 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
55a2c322
VM
442#define TARGET_GENERAL_REGS_SSE_SPILL \
443 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
444#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
445 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 446#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 447 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
448#define TARGET_ADJUST_UNROLL \
449 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
df7b0cc4 450
80fd744f
RH
451/* Feature tests against the various architecture variations. */
452enum ix86_arch_indices {
cef31f9c 453 X86_ARCH_CMOV,
80fd744f
RH
454 X86_ARCH_CMPXCHG,
455 X86_ARCH_CMPXCHG8B,
456 X86_ARCH_XADD,
457 X86_ARCH_BSWAP,
458
459 X86_ARCH_LAST
460};
4f3f76e6 461
ab442df7 462extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 463
cef31f9c 464#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
465#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
466#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
467#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
468#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
469
cef31f9c
UB
470/* For sane SSE instruction set generation we need fcomi instruction.
471 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
472 expands to a sequence that includes conditional move. */
473#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
474
80fd744f
RH
475#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
476
cb261eb7 477extern unsigned char x86_prefetch_sse;
80fd744f
RH
478#define TARGET_PREFETCH_SSE x86_prefetch_sse
479
80fd744f
RH
480#define ASSEMBLER_DIALECT (ix86_asm_dialect)
481
482#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
483#define TARGET_MIX_SSE_I387 \
484 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
485
486#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
487#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
488#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 489#define TARGET_SUN_TLS 0
1ef45b77 490
67adf6a9
RH
491#ifndef TARGET_64BIT_DEFAULT
492#define TARGET_64BIT_DEFAULT 0
25f94bb5 493#endif
74dc3e94
RH
494#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
495#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
496#endif
25f94bb5 497
e0ea8797
AH
498#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
499#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
500
79f5e442
ZD
501/* Fence to use after loop using storent. */
502
503extern tree x86_mfence;
504#define FENCE_FOLLOWING_MOVNT x86_mfence
505
0ed4a390
JL
506/* Once GDB has been enhanced to deal with functions without frame
507 pointers, we can change this to allow for elimination of
508 the frame pointer in leaf functions. */
509#define TARGET_DEFAULT 0
67adf6a9 510
0a1c5e55
UB
511/* Extra bits to force. */
512#define TARGET_SUBTARGET_DEFAULT 0
513#define TARGET_SUBTARGET_ISA_DEFAULT 0
514
515/* Extra bits to force on w/ 32-bit mode. */
516#define TARGET_SUBTARGET32_DEFAULT 0
517#define TARGET_SUBTARGET32_ISA_DEFAULT 0
518
ccf8e764
RH
519/* Extra bits to force on w/ 64-bit mode. */
520#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 521#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 522
fee3eacd
IS
523/* Replace MACH-O, ifdefs by in-line tests, where possible.
524 (a) Macros defined in config/i386/darwin.h */
b069de3b 525#define TARGET_MACHO 0
9005471b 526#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
527#define MACHOPIC_ATT_STUB 0
528/* (b) Macros defined in config/darwin.h */
529#define MACHO_DYNAMIC_NO_PIC_P 0
530#define MACHOPIC_INDIRECT 0
531#define MACHOPIC_PURE 0
9005471b 532
5a579c3b
LE
533/* For the RDOS */
534#define TARGET_RDOS 0
535
9005471b 536/* For the Windows 64-bit ABI. */
7c800926
KT
537#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
538
6510e8bb
KT
539/* For the Windows 32-bit ABI. */
540#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
541
f81c9774
RH
542/* This is re-defined by cygming.h. */
543#define TARGET_SEH 0
544
a3d7ab92
KT
545/* This is re-defined by cygming.h. */
546#define TARGET_PECOFF 0
547
51212b32 548/* The default abi used by target. */
7c800926 549#define DEFAULT_ABI SYSV_ABI
ccf8e764 550
b8b3f0ca
LE
551/* The default TLS segment register used by target. */
552#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
553
cc69336f
RH
554/* Subtargets may reset this to 1 in order to enable 96-bit long double
555 with the rounding mode forced to 53 bits. */
556#define TARGET_96_ROUND_53_LONG_DOUBLE 0
557
682cd442
GK
558/* -march=native handling only makes sense with compiler running on
559 an x86 or x86_64 chip. If changing this condition, also change
560 the condition in driver-i386.c. */
561#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
562/* In driver-i386.c. */
563extern const char *host_detect_local_cpu (int argc, const char **argv);
564#define EXTRA_SPEC_FUNCTIONS \
565 { "local_cpu_detect", host_detect_local_cpu },
682cd442 566#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
567#endif
568
8981c15b
JM
569#if TARGET_64BIT_DEFAULT
570#define OPT_ARCH64 "!m32"
571#define OPT_ARCH32 "m32"
572#else
f0ea7581
L
573#define OPT_ARCH64 "m64|mx32"
574#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
575#endif
576
1cba2b96
EC
577/* Support for configure-time defaults of some command line options.
578 The order here is important so that -march doesn't squash the
579 tune or cpu values. */
ce998900 580#define OPTION_DEFAULT_SPECS \
da2d4c01 581 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
582 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
583 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 584 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
585 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
586 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
587 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
588 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
589 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 590
241e1a89
SC
591/* Specs for the compiler proper */
592
628714d8 593#ifndef CC1_CPU_SPEC
eb5bb0fd 594#define CC1_CPU_SPEC_1 ""
fa959ce4 595
682cd442 596#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
597#define CC1_CPU_SPEC CC1_CPU_SPEC_1
598#else
599#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
600"%{march=native:%>march=native %:local_cpu_detect(arch) \
601 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
602%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 603#endif
241e1a89 604#endif
c98f8742 605\f
30efe578 606/* Target CPU builtins. */
ab442df7
MM
607#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
608
609/* Target Pragmas. */
610#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 611
628714d8 612#ifndef CC1_SPEC
8015b78d 613#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
614#endif
615
616/* This macro defines names of additional specifications to put in the
617 specs that can be used in various specifications like CC1_SPEC. Its
618 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
619
620 Each subgrouping contains a string constant, that defines the
188fc5b5 621 specification name, and a string constant that used by the GCC driver
bcd86433
SC
622 program.
623
624 Do not define this macro if it does not need to do anything. */
625
626#ifndef SUBTARGET_EXTRA_SPECS
627#define SUBTARGET_EXTRA_SPECS
628#endif
629
630#define EXTRA_SPECS \
628714d8 631 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
632 SUBTARGET_EXTRA_SPECS
633\f
ce998900 634
d57a4b98
RH
635/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
636 FPU, assume that the fpcw is set to extended precision; when using
637 only SSE, rounding is correct; when using both SSE and the FPU,
638 the rounding precision is indeterminate, since either may be chosen
639 apparently at random. */
640#define TARGET_FLT_EVAL_METHOD \
5ccd517a 641 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 642
8ce94e44
JM
643/* Whether to allow x87 floating-point arithmetic on MODE (one of
644 SFmode, DFmode and XFmode) in the current excess precision
645 configuration. */
646#define X87_ENABLE_ARITH(MODE) \
647 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
648
649/* Likewise, whether to allow direct conversions from integer mode
650 IMODE (HImode, SImode or DImode) to MODE. */
651#define X87_ENABLE_FLOAT(MODE, IMODE) \
652 (flag_excess_precision == EXCESS_PRECISION_FAST \
653 || (MODE) == XFmode \
654 || ((MODE) == DFmode && (IMODE) == SImode) \
655 || (IMODE) == HImode)
656
979c67a5
UB
657/* target machine storage layout */
658
65d9c0ab
JH
659#define SHORT_TYPE_SIZE 16
660#define INT_TYPE_SIZE 32
f0ea7581
L
661#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
662#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 663#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 664#define FLOAT_TYPE_SIZE 32
65d9c0ab 665#define DOUBLE_TYPE_SIZE 64
c637141a 666#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
979c67a5 667
c637141a
L
668/* Define this to set long double type size to use in libgcc2.c, which can
669 not depend on target_flags. */
670#ifdef __LONG_DOUBLE_64__
671#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
672#else
673#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
674#endif
675
676#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 677
67adf6a9 678#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 679#define MAX_BITS_PER_WORD 64
0c2dc519
JH
680#else
681#define MAX_BITS_PER_WORD 32
0c2dc519
JH
682#endif
683
c98f8742
JVA
684/* Define this if most significant byte of a word is the lowest numbered. */
685/* That is true on the 80386. */
686
687#define BITS_BIG_ENDIAN 0
688
689/* Define this if most significant byte of a word is the lowest numbered. */
690/* That is not true on the 80386. */
691#define BYTES_BIG_ENDIAN 0
692
693/* Define this if most significant word of a multiword number is the lowest
694 numbered. */
695/* Not true for 80386 */
696#define WORDS_BIG_ENDIAN 0
697
c98f8742 698/* Width of a word, in units (bytes). */
4ae8027b 699#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
700
701#ifndef IN_LIBGCC2
2e64c636
JH
702#define MIN_UNITS_PER_WORD 4
703#endif
c98f8742 704
c98f8742 705/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 706#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 707
e075ae69 708/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 709#define STACK_BOUNDARY \
51212b32 710 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 711
2e3f842f
L
712/* Stack boundary of the main function guaranteed by OS. */
713#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
714
de1132d1 715/* Minimum stack boundary. */
5bfb2af2 716#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
2e3f842f 717
d1f87653 718/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 719 aligned; the compiler cannot rely on having this alignment. */
e075ae69 720#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 721
de1132d1 722/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
723 both 32bit and 64bit, to support codes that need 128 bit stack
724 alignment for SSE instructions, but can't realign the stack. */
725#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
726
727/* 1 if -mstackrealign should be turned on by default. It will
728 generate an alternate prologue and epilogue that realigns the
729 runtime stack if nessary. This supports mixing codes that keep a
730 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 731 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
732#define STACK_REALIGN_DEFAULT 0
733
734/* Boundary (in *bits*) on which the incoming stack is aligned. */
735#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 736
a2851b75
TG
737/* According to Windows x64 software convention, the maximum stack allocatable
738 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
739 instructions allowed to adjust the stack pointer in the epilog, forcing the
740 use of frame pointer for frames larger than 2 GB. This theorical limit
741 is reduced by 256, an over-estimated upper bound for the stack use by the
742 prologue.
743 We define only one threshold for both the prolog and the epilog. When the
4e523f33 744 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
745 regs, then save them, and then allocate the remaining. There is no SEH
746 unwind info for this later allocation. */
747#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
748
ebff937c
SH
749/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
750 mandatory for the 64-bit ABI, and may or may not be true for other
751 operating systems. */
752#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
753
f963b5d9
RS
754/* Minimum allocation boundary for the code of a function. */
755#define FUNCTION_BOUNDARY 8
756
757/* C++ stores the virtual bit in the lowest bit of function pointers. */
758#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 759
c98f8742
JVA
760/* Minimum size in bits of the largest boundary to which any
761 and all fundamental data types supported by the hardware
762 might need to be aligned. No data type wants to be aligned
17f24ff0 763 rounder than this.
fce5a9f2 764
d1f87653 765 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
766 and Pentium Pro XFmode values at 128 bit boundaries. */
767
3f97cb0b
AI
768#define BIGGEST_ALIGNMENT \
769 (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
17f24ff0 770
2e3f842f
L
771/* Maximum stack alignment. */
772#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
773
6e4f1168
L
774/* Alignment value for attribute ((aligned)). It is a constant since
775 it is the part of the ABI. We shouldn't change it with -mavx. */
776#define ATTRIBUTE_ALIGNED_VALUE 128
777
822eda12 778/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 779#define ALIGN_MODE_128(MODE) \
4501d314 780 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 781
17f24ff0 782/* The published ABIs say that doubles should be aligned on word
d1f87653 783 boundaries, so lower the alignment for structure fields unless
6fc605d8 784 -malign-double is set. */
e932b21b 785
e83f3cff
RH
786/* ??? Blah -- this macro is used directly by libobjc. Since it
787 supports no vector modes, cut out the complexity and fall back
788 on BIGGEST_FIELD_ALIGNMENT. */
789#ifdef IN_TARGET_LIBS
ef49d42e
JH
790#ifdef __x86_64__
791#define BIGGEST_FIELD_ALIGNMENT 128
792#else
e83f3cff 793#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 794#endif
e83f3cff 795#else
e932b21b
JH
796#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
797 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 798#endif
c98f8742 799
e5e8a8bf 800/* If defined, a C expression to compute the alignment given to a
a7180f70 801 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
802 and ALIGN is the alignment that the object would ordinarily have.
803 The value of this macro is used instead of that alignment to align
804 the object.
805
806 If this macro is not defined, then ALIGN is used.
807
808 The typical use of this macro is to increase alignment for string
809 constants to be word aligned so that `strcpy' calls that copy
810 constants can be done inline. */
811
d9a5f180 812#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 813
8a022443
JW
814/* If defined, a C expression to compute the alignment for a static
815 variable. TYPE is the data type, and ALIGN is the alignment that
816 the object would ordinarily have. The value of this macro is used
817 instead of that alignment to align the object.
818
819 If this macro is not defined, then ALIGN is used.
820
821 One use of this macro is to increase alignment of medium-size
822 data to make it all fit in fewer cache lines. Another is to
823 cause character arrays to be word-aligned so that `strcpy' calls
824 that copy constants to character arrays can be done inline. */
825
df8a1d28
JJ
826#define DATA_ALIGNMENT(TYPE, ALIGN) \
827 ix86_data_alignment ((TYPE), (ALIGN), true)
828
829/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
830 some alignment increase, instead of optimization only purposes. E.g.
831 AMD x86-64 psABI says that variables with array type larger than 15 bytes
832 must be aligned to 16 byte boundaries.
833
834 If this macro is not defined, then ALIGN is used. */
835
836#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
837 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
838
839/* If defined, a C expression to compute the alignment for a local
840 variable. TYPE is the data type, and ALIGN is the alignment that
841 the object would ordinarily have. The value of this macro is used
842 instead of that alignment to align the object.
843
844 If this macro is not defined, then ALIGN is used.
845
846 One use of this macro is to increase alignment of medium-size
847 data to make it all fit in fewer cache lines. */
848
76fe54f0
L
849#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
850 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
851
852/* If defined, a C expression to compute the alignment for stack slot.
853 TYPE is the data type, MODE is the widest mode available, and ALIGN
854 is the alignment that the slot would ordinarily have. The value of
855 this macro is used instead of that alignment to align the slot.
856
857 If this macro is not defined, then ALIGN is used when TYPE is NULL,
858 Otherwise, LOCAL_ALIGNMENT will be used.
859
860 One use of this macro is to set alignment of stack slot to the
861 maximum alignment of all possible modes which the slot may have. */
862
863#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
864 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 865
9bfaf89d
JJ
866/* If defined, a C expression to compute the alignment for a local
867 variable DECL.
868
869 If this macro is not defined, then
870 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
871
872 One use of this macro is to increase alignment of medium-size
873 data to make it all fit in fewer cache lines. */
874
875#define LOCAL_DECL_ALIGNMENT(DECL) \
876 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
877
ae58e548
JJ
878/* If defined, a C expression to compute the minimum required alignment
879 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
880 MODE, assuming normal alignment ALIGN.
881
882 If this macro is not defined, then (ALIGN) will be used. */
883
884#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
885 ix86_minimum_alignment (EXP, MODE, ALIGN)
886
9bfaf89d 887
9cd10576 888/* Set this nonzero if move instructions will actually fail to work
c98f8742 889 when given unaligned data. */
b4ac57ab 890#define STRICT_ALIGNMENT 0
c98f8742
JVA
891
892/* If bit field type is int, don't let it cross an int,
893 and give entire struct the alignment of an int. */
43a88a8c 894/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 895#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
896\f
897/* Standard register usage. */
898
899/* This processor has special stack-like registers. See reg-stack.c
892a2d68 900 for details. */
c98f8742
JVA
901
902#define STACK_REGS
ce998900 903
d9a5f180 904#define IS_STACK_MODE(MODE) \
63001560
UB
905 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
906 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
b5c82fa1 907 || (MODE) == XFmode)
c98f8742
JVA
908
909/* Number of actual hardware registers.
910 The hardware registers are assigned numbers for the compiler
911 from 0 to just below FIRST_PSEUDO_REGISTER.
912 All registers that the compiler knows about must be given numbers,
913 even those that are not normally considered general registers.
914
915 In the 80386 we give the 8 general purpose registers the numbers 0-7.
916 We number the floating point registers 8-15.
917 Note that registers 0-7 can be accessed as a short or int,
918 while only 0-3 may be used with byte `mov' instructions.
919
920 Reg 16 does not correspond to any hardware register, but instead
921 appears in the RTL as an argument pointer prior to reload, and is
922 eliminated during reloading in favor of either the stack or frame
892a2d68 923 pointer. */
c98f8742 924
089d1227 925#define FIRST_PSEUDO_REGISTER 77
c98f8742 926
3073d01c
ML
927/* Number of hardware registers that go into the DWARF-2 unwind info.
928 If not defined, equals FIRST_PSEUDO_REGISTER. */
929
930#define DWARF_FRAME_REGISTERS 17
931
c98f8742
JVA
932/* 1 for registers that have pervasive standard uses
933 and are not available for the register allocator.
3f3f2124 934 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 935
621bc046
UB
936 REX registers are disabled for 32bit targets in
937 TARGET_CONDITIONAL_REGISTER_USAGE. */
938
a7180f70
BS
939#define FIXED_REGISTERS \
940/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 941{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
942/*arg,flags,fpsr,fpcr,frame*/ \
943 1, 1, 1, 1, 1, \
a7180f70
BS
944/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
945 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 946/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
947 0, 0, 0, 0, 0, 0, 0, 0, \
948/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 949 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 950/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
951 0, 0, 0, 0, 0, 0, 0, 0, \
952/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
953 0, 0, 0, 0, 0, 0, 0, 0, \
954/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
955 0, 0, 0, 0, 0, 0, 0, 0, \
956/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 957 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
958
959/* 1 for registers not available across function calls.
960 These must include the FIXED_REGISTERS and also any
961 registers that can be used without being saved.
962 The latter must include the registers where values are returned
963 and the register where structure-value addresses are passed.
fce5a9f2
EC
964 Aside from that, you can include as many other registers as you like.
965
621bc046
UB
966 Value is set to 1 if the register is call used unconditionally.
967 Bit one is set if the register is call used on TARGET_32BIT ABI.
968 Bit two is set if the register is call used on TARGET_64BIT ABI.
969 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
970
971 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
972
a7180f70
BS
973#define CALL_USED_REGISTERS \
974/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 975{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
976/*arg,flags,fpsr,fpcr,frame*/ \
977 1, 1, 1, 1, 1, \
a7180f70 978/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 979 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 980/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 981 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 982/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 983 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 984/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
985 6, 6, 6, 6, 6, 6, 6, 6, \
986/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
987 6, 6, 6, 6, 6, 6, 6, 6, \
988/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
989 6, 6, 6, 6, 6, 6, 6, 6, \
990 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
089d1227 991 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 992
3b3c6a3f
MM
993/* Order in which to allocate registers. Each register must be
994 listed once, even those in FIXED_REGISTERS. List frame pointer
995 late and fixed registers last. Note that, in general, we prefer
996 registers listed in CALL_USED_REGISTERS, keeping the others
997 available for storage of persistent values.
998
5a733826 999 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1000 so this is just empty initializer for array. */
3b3c6a3f 1001
162f023b
JH
1002#define REG_ALLOC_ORDER \
1003{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1004 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1005 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1006 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
089d1227 1007 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
3b3c6a3f 1008
5a733826 1009/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1010 to be rearranged based on a particular function. When using sse math,
03c259ad 1011 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1012
5a733826 1013#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1014
f5316dfe 1015
7c800926
KT
1016#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1017
c98f8742
JVA
1018/* Return number of consecutive hard regs needed starting at reg REGNO
1019 to hold something of mode MODE.
1020 This is ordinarily the length in words of a value of mode MODE
1021 but can be less for certain modes in special long registers.
1022
fce5a9f2 1023 Actually there are no two word move instructions for consecutive
c98f8742 1024 registers. And only registers 0-3 may have mov byte instructions
63001560 1025 applied to them. */
c98f8742 1026
ce998900 1027#define HARD_REGNO_NREGS(REGNO, MODE) \
66aaf16f 1028 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
92d0fb09 1029 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 1030 : ((MODE) == XFmode \
92d0fb09 1031 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 1032 : (MODE) == XCmode \
92d0fb09 1033 ? (TARGET_64BIT ? 4 : 6) \
2b589241 1034 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 1035
8521c414
JM
1036#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1037 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
66aaf16f 1038 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
8521c414
JM
1039 ? 0 \
1040 : ((MODE) == XFmode || (MODE) == XCmode)) \
1041 : 0)
1042
1043#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1044
95879c72
L
1045#define VALID_AVX256_REG_MODE(MODE) \
1046 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1047 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1048 || (MODE) == V4DFmode)
95879c72 1049
ff97910d
VY
1050#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1051 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1052
3f97cb0b
AI
1053#define VALID_AVX512F_SCALAR_MODE(MODE) \
1054 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1055 || (MODE) == SFmode)
1056
1057#define VALID_AVX512F_REG_MODE(MODE) \
1058 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1059 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode)
1060
ce998900
UB
1061#define VALID_SSE2_REG_MODE(MODE) \
1062 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1063 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1064
d9a5f180 1065#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1066 ((MODE) == V1TImode || (MODE) == TImode \
1067 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1068 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1069
47f339cf 1070#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1071 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1072
d9a5f180 1073#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1074 ((MODE == V1DImode) || (MODE) == DImode \
1075 || (MODE) == V2SImode || (MODE) == SImode \
1076 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1077
ce998900
UB
1078#define VALID_DFP_MODE_P(MODE) \
1079 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1080
d9a5f180 1081#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1082 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1083 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1084
d9a5f180 1085#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1086 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1087 || (MODE) == DImode \
1088 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1089 || (MODE) == CDImode \
1090 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1091 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1092
822eda12 1093/* Return true for modes passed in SSE registers. */
ce998900 1094#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1095 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1096 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1097 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1098 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1099 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1100 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1101 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1102 || (MODE) == V16SFmode)
822eda12 1103
85a77221
AI
1104#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1105
e075ae69 1106/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 1107
a946dd00 1108#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 1109 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
1110
1111/* Value is 1 if it is a good idea to tie two pseudo registers
1112 when one has mode MODE1 and one has mode MODE2.
1113 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1114 for any hard reg, then this must be 0 for correct output. */
1115
c1c5b5e3 1116#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 1117
ff25ef99
ZD
1118/* It is possible to write patterns to move flags; but until someone
1119 does it, */
1120#define AVOID_CCMODE_COPIES
c98f8742 1121
e075ae69 1122/* Specify the modes required to caller save a given hard regno.
787dc842 1123 We do this on i386 to prevent flags from being saved at all.
e075ae69 1124
787dc842
JH
1125 Kill any attempts to combine saving of modes. */
1126
d9a5f180
GS
1127#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1128 (CC_REGNO_P (REGNO) ? VOIDmode \
1129 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1130 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
85a77221
AI
1131 : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \
1132 || MASK_REGNO_P (REGNO)) ? SImode \
1133 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \
1134 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1135 : (MODE))
ce998900 1136
51ba747a
RH
1137/* The only ABI that saves SSE registers across calls is Win64 (thus no
1138 need to check the current ABI here), and with AVX enabled Win64 only
1139 guarantees that the low 16 bytes are saved. */
1140#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1141 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1142
c98f8742
JVA
1143/* Specify the registers used for certain standard purposes.
1144 The values of these macros are register numbers. */
1145
1146/* on the 386 the pc register is %eip, and is not usable as a general
1147 register. The ordinary mov instructions won't work */
1148/* #define PC_REGNUM */
1149
1150/* Register to use for pushing function arguments. */
1151#define STACK_POINTER_REGNUM 7
1152
1153/* Base register for access to local variables of the function. */
564d80f4
JH
1154#define HARD_FRAME_POINTER_REGNUM 6
1155
1156/* Base register for access to local variables of the function. */
b0d95de8 1157#define FRAME_POINTER_REGNUM 20
c98f8742
JVA
1158
1159/* First floating point reg */
1160#define FIRST_FLOAT_REG 8
1161
1162/* First & last stack-like regs */
1163#define FIRST_STACK_REG FIRST_FLOAT_REG
1164#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1165
a7180f70
BS
1166#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1167#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 1168
3f97cb0b 1169#define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/
a7180f70
BS
1170#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1171
3f97cb0b 1172#define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/
3f3f2124
JH
1173#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1174
3f97cb0b 1175#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/
3f3f2124
JH
1176#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1177
3f97cb0b
AI
1178#define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/
1179#define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1180
85a77221
AI
1181#define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/
1182#define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/
1183
aabcd309 1184/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1185 requiring a frame pointer. */
1186#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1187#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1188#endif
1189
1190/* Make sure we can access arbitrary call frames. */
1191#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
1192
1193/* Base register for access to arguments of the function. */
1194#define ARG_POINTER_REGNUM 16
1195
c98f8742 1196/* Register to hold the addressing base for position independent
5b43fed1
RH
1197 code access to data items. We don't use PIC pointer for 64bit
1198 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1199 pessimizing code dealing with EBX.
bd09bdeb
RH
1200
1201 To avoid clobbering a call-saved register unnecessarily, we renumber
1202 the pic register when possible. The change is visible after the
1203 prologue has been emitted. */
1204
2e3f842f 1205#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
bd09bdeb
RH
1206
1207#define PIC_OFFSET_TABLE_REGNUM \
82c0e1a0 1208 ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \
a3d7ab92 1209 || TARGET_PECOFF)) \
7dcbf659 1210 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1211 : reload_completed ? REGNO (pic_offset_table_rtx) \
1212 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1213
5fc0e5df
KW
1214#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1215
c51e6d85 1216/* This is overridden by <cygwin.h>. */
5e062767
DS
1217#define MS_AGGREGATE_RETURN 0
1218
61fec9ff 1219#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1220\f
1221/* Define the classes of registers for register constraints in the
1222 machine description. Also define ranges of constants.
1223
1224 One of the classes must always be named ALL_REGS and include all hard regs.
1225 If there is more than one class, another class must be named NO_REGS
1226 and contain no registers.
1227
1228 The name GENERAL_REGS must be the name of a class (or an alias for
1229 another name such as ALL_REGS). This is the class of registers
1230 that is allowed by "g" or "r" in a register constraint.
1231 Also, registers outside this class are allocated only when
1232 instructions express preferences for them.
1233
1234 The classes must be numbered in nondecreasing order; that is,
1235 a larger-numbered class must never be contained completely
1236 in a smaller-numbered class.
1237
1238 For any two classes, it is very desirable that there be another
ab408a86
JVA
1239 class that represents their union.
1240
1241 It might seem that class BREG is unnecessary, since no useful 386
1242 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1243 and the "b" register constraint is useful in asms for syscalls.
1244
03c259ad 1245 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1246
1247enum reg_class
1248{
1249 NO_REGS,
e075ae69 1250 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1251 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1252 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1253 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1254 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1255 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
621bc046 1256 CLOBBERED_REGS, /* call-clobbered integer registers */
63001560
UB
1257 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1258 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1259 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1260 FLOAT_REGS,
06f4e35d 1261 SSE_FIRST_REG,
a7180f70 1262 SSE_REGS,
3f97cb0b
AI
1263 EVEX_SSE_REGS,
1264 ALL_SSE_REGS,
a7180f70 1265 MMX_REGS,
446988df
JH
1266 FP_TOP_SSE_REGS,
1267 FP_SECOND_SSE_REGS,
1268 FLOAT_SSE_REGS,
1269 FLOAT_INT_REGS,
1270 INT_SSE_REGS,
1271 FLOAT_INT_SSE_REGS,
85a77221
AI
1272 MASK_EVEX_REGS,
1273 MASK_REGS,
c98f8742
JVA
1274 ALL_REGS, LIM_REG_CLASSES
1275};
1276
d9a5f180
GS
1277#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1278
1279#define INTEGER_CLASS_P(CLASS) \
1280 reg_class_subset_p ((CLASS), GENERAL_REGS)
1281#define FLOAT_CLASS_P(CLASS) \
1282 reg_class_subset_p ((CLASS), FLOAT_REGS)
1283#define SSE_CLASS_P(CLASS) \
3f97cb0b 1284 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1285#define MMX_CLASS_P(CLASS) \
f75959a6 1286 ((CLASS) == MMX_REGS)
d9a5f180
GS
1287#define MAYBE_INTEGER_CLASS_P(CLASS) \
1288 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1289#define MAYBE_FLOAT_CLASS_P(CLASS) \
1290 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1291#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1292 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1293#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1294 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221
AI
1295#define MAYBE_MASK_CLASS_P(CLASS) \
1296 reg_classes_intersect_p ((CLASS), MASK_REGS)
d9a5f180
GS
1297
1298#define Q_CLASS_P(CLASS) \
1299 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1300
0bd72901
UB
1301#define MAYBE_NON_Q_CLASS_P(CLASS) \
1302 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1303
43f3a59d 1304/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1305
1306#define REG_CLASS_NAMES \
1307{ "NO_REGS", \
ab408a86 1308 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1309 "SIREG", "DIREG", \
e075ae69
RH
1310 "AD_REGS", \
1311 "Q_REGS", "NON_Q_REGS", \
c98f8742 1312 "INDEX_REGS", \
3f3f2124 1313 "LEGACY_REGS", \
621bc046 1314 "CLOBBERED_REGS", \
c98f8742
JVA
1315 "GENERAL_REGS", \
1316 "FP_TOP_REG", "FP_SECOND_REG", \
1317 "FLOAT_REGS", \
cb482895 1318 "SSE_FIRST_REG", \
a7180f70 1319 "SSE_REGS", \
3f97cb0b
AI
1320 "EVEX_SSE_REGS", \
1321 "ALL_SSE_REGS", \
a7180f70 1322 "MMX_REGS", \
446988df
JH
1323 "FP_TOP_SSE_REGS", \
1324 "FP_SECOND_SSE_REGS", \
1325 "FLOAT_SSE_REGS", \
8fcaaa80 1326 "FLOAT_INT_REGS", \
446988df
JH
1327 "INT_SSE_REGS", \
1328 "FLOAT_INT_SSE_REGS", \
85a77221
AI
1329 "MASK_EVEX_REGS", \
1330 "MASK_REGS", \
c98f8742
JVA
1331 "ALL_REGS" }
1332
ac2e563f
RH
1333/* Define which registers fit in which classes. This is an initializer
1334 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1335
621bc046
UB
1336 Note that CLOBBERED_REGS are calculated by
1337 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1338
3f97cb0b 1339#define REG_CLASS_CONTENTS \
089d1227
IE
1340{ { 0x00, 0x0, 0x0 }, \
1341 { 0x01, 0x0, 0x0 }, /* AREG */ \
1342 { 0x02, 0x0, 0x0 }, /* DREG */ \
1343 { 0x04, 0x0, 0x0 }, /* CREG */ \
1344 { 0x08, 0x0, 0x0 }, /* BREG */ \
1345 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1346 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1347 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1348 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1349 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1350 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1351 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1352 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1353 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1354 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1355 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1356 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1357 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1358{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1359 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1360{ 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1361{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1362{ 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1363{ 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1364{ 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1365{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1366{ 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1367{ 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1368 { 0x0, 0x0,0x1fc0 }, /* MASK_EVEX_REGS */ \
1369 { 0x0, 0x0,0x1fe0 }, /* MASK_REGS */ \
1370{ 0xffffffff,0xffffffff,0x1fff } \
e075ae69 1371}
c98f8742
JVA
1372
1373/* The same information, inverted:
1374 Return the class number of the smallest class containing
1375 reg number REGNO. This could be a conditional expression
1376 or could index an array. */
1377
c98f8742
JVA
1378#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1379
42db504c
SB
1380/* When this hook returns true for MODE, the compiler allows
1381 registers explicitly used in the rtl to be used as spill registers
1382 but prevents the compiler from extending the lifetime of these
1383 registers. */
1384#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1385
fc27f749
UB
1386#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1387#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
3f3f2124
JH
1388
1389#define GENERAL_REG_P(X) \
6189a572 1390 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749
UB
1391#define GENERAL_REGNO_P(N) \
1392 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
3f3f2124 1393
fc27f749
UB
1394#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1395#define ANY_QI_REGNO_P(N) \
1396 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1397
fc27f749 1398#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
fb84c7a0
UB
1399#define REX_INT_REGNO_P(N) \
1400 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1401
66aaf16f
UB
1402#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1403#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1404
446988df 1405#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
66aaf16f 1406#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1407
54a88090 1408#define X87_FLOAT_MODE_P(MODE) \
27ac40e2 1409 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
54a88090 1410
fc27f749 1411#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1412#define SSE_REGNO_P(N) \
1413 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1414 || REX_SSE_REGNO_P (N) \
1415 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1416
4977bab6 1417#define REX_SSE_REGNO_P(N) \
fb84c7a0 1418 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1419
3f97cb0b
AI
1420#define EXT_REX_SSE_REGNO_P(N) \
1421 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1422
d9a5f180 1423#define SSE_REGNO(N) \
3f97cb0b
AI
1424 ((N) < 8 ? FIRST_SSE_REG + (N) \
1425 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1426 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1427
85a77221
AI
1428#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1429#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
446988df 1430
d9a5f180 1431#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1432 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1433
cbf2e4d4
HJ
1434#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1435 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1436 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1437
fc27f749 1438#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1439#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1440
fc27f749 1441#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
c98f8742 1442
e075ae69
RH
1443#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1444#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1445
c98f8742
JVA
1446/* The class value for index registers, and the one for base regs. */
1447
1448#define INDEX_REG_CLASS INDEX_REGS
1449#define BASE_REG_CLASS GENERAL_REGS
1450
c98f8742 1451/* Place additional restrictions on the register class to use when it
4cbb525c 1452 is necessary to be able to hold a value of mode MODE in a reload
b197fc48
UB
1453 register for which class CLASS would ordinarily be used.
1454
1455 We avoid classes containing registers from multiple units due to
1456 the limitation in ix86_secondary_memory_needed. We limit these
1457 classes to their "natural mode" single unit register class, depending
1458 on the unit availability.
1459
1460 Please note that reg_class_subset_p is not commutative, so these
1461 conditions mean "... if (CLASS) includes ALL registers from the
1462 register set." */
1463
1464#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1465 (((MODE) == QImode && !TARGET_64BIT \
1466 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
1467 : (((MODE) == SImode || (MODE) == DImode) \
1468 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
1469 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
1470 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
1471 : (X87_FLOAT_MODE_P (MODE) \
1472 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
1473 : (CLASS))
c98f8742 1474
85ff473e 1475/* If we are copying between general and FP registers, we need a memory
f84aa48a 1476 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1477#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1478 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69 1479
c62b3659
UB
1480/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1481 There is no need to emit full 64 bit move on 64 bit targets
1482 for integral modes that can be moved using 32 bit move. */
1483#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1484 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1485 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1486 : MODE)
1487
1272914c
RH
1488/* Return a class of registers that cannot change FROM mode to TO mode. */
1489
1490#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1491 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1492\f
1493/* Stack layout; function entry, exit and calling. */
1494
1495/* Define this if pushing a word on the stack
1496 makes the stack pointer a smaller address. */
1497#define STACK_GROWS_DOWNWARD
1498
a4d05547 1499/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1500 is at the high-address end of the local variables;
1501 that is, each additional local variable allocated
1502 goes at a more negative offset in the frame. */
f62c8a5c 1503#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1504
1505/* Offset within stack frame to start allocating local variables at.
1506 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1507 first local allocated. Otherwise, it is the offset to the BEGINNING
1508 of the first local allocated. */
1509#define STARTING_FRAME_OFFSET 0
1510
8c2b2fae
UB
1511/* If we generate an insn to push BYTES bytes, this says how many the stack
1512 pointer really advances by. On 386, we have pushw instruction that
1513 decrements by exactly 2 no matter what the position was, there is no pushb.
1514
1515 But as CIE data alignment factor on this arch is -4 for 32bit targets
1516 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1517 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
c98f8742 1518
d2836273 1519#define PUSH_ROUNDING(BYTES) \
8c2b2fae
UB
1520 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1521
1522/* If defined, the maximum amount of space required for outgoing arguments
1523 will be computed and placed into the variable `crtl->outgoing_args_size'.
1524 No space will be pushed onto the stack for each call; instead, the
1525 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1526
1527 In 32bit mode enabling argument accumulation results in about 5% code size
1528 growth becuase move instructions are less compact than push. In 64bit
1529 mode the difference is less drastic but visible.
1530
1531 FIXME: Unlike earlier implementations, the size of unwind info seems to
1532 actually grouw with accumulation. Is that because accumulated args
1533 unwind info became unnecesarily bloated?
9aa5c1b2 1534
6510e8bb 1535 64-bit MS ABI seem to require 16 byte alignment everywhere except for
41ee845b
JH
1536 function prologue and epilogue. This is not possible without
1537 ACCUMULATE_OUTGOING_ARGS.
1538
1539 If stack probes are required, the space used for large function
1540 arguments on the stack must also be probed, so enable
1541 -maccumulate-outgoing-args so this happens in the prologue. */
f73ad30e 1542
6c6094f1 1543#define ACCUMULATE_OUTGOING_ARGS \
41ee845b
JH
1544 ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1545 || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
f73ad30e
JH
1546
1547/* If defined, a C expression whose value is nonzero when we want to use PUSH
1548 instructions to pass outgoing arguments. */
1549
1550#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1551
2da4124d
L
1552/* We want the stack and args grow in opposite directions, even if
1553 PUSH_ARGS is 0. */
1554#define PUSH_ARGS_REVERSED 1
1555
c98f8742
JVA
1556/* Offset of first parameter from the argument pointer register value. */
1557#define FIRST_PARM_OFFSET(FNDECL) 0
1558
a7180f70
BS
1559/* Define this macro if functions should assume that stack space has been
1560 allocated for arguments even when their values are passed in registers.
1561
1562 The value of this macro is the size, in bytes, of the area reserved for
1563 arguments passed in registers for the function represented by FNDECL.
1564
1565 This space can be allocated by the caller, or be a part of the
1566 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1567 which. */
7c800926
KT
1568#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1569
4ae8027b 1570#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1571 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1572
c98f8742
JVA
1573/* Define how to find the value returned by a library function
1574 assuming the value has mode MODE. */
1575
4ae8027b 1576#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1577
e9125c09
TW
1578/* Define the size of the result block used for communication between
1579 untyped_call and untyped_return. The block contains a DImode value
1580 followed by the block used by fnsave and frstor. */
1581
1582#define APPLY_RESULT_SIZE (8+108)
1583
b08de47e 1584/* 1 if N is a possible register number for function argument passing. */
53c17031 1585#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1586
1587/* Define a data type for recording info about an argument list
1588 during the scan of that argument list. This data type should
1589 hold all necessary information about the function itself
1590 and about the args processed so far, enough to enable macros
b08de47e 1591 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1592
e075ae69 1593typedef struct ix86_args {
fa283935 1594 int words; /* # words passed so far */
b08de47e
MM
1595 int nregs; /* # registers available for passing */
1596 int regno; /* next available register number */
3e65f251
KT
1597 int fastcall; /* fastcall or thiscall calling convention
1598 is used */
fa283935 1599 int sse_words; /* # sse words passed so far */
a7180f70 1600 int sse_nregs; /* # sse registers available for passing */
95879c72 1601 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1602 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935
UB
1603 int warn_mmx; /* True when we want to warn about MMX ABI. */
1604 int sse_regno; /* next available sse register number */
1605 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1606 int mmx_nregs; /* # mmx registers available for passing */
1607 int mmx_regno; /* next available mmx register number */
892a2d68 1608 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1609 int caller; /* true if it is caller. */
2824d6e5
UB
1610 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1611 SFmode/DFmode arguments should be passed
1612 in SSE registers. Otherwise 0. */
51212b32 1613 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1614 MS_ABI for ms abi. */
b08de47e 1615} CUMULATIVE_ARGS;
c98f8742
JVA
1616
1617/* Initialize a variable CUM of type CUMULATIVE_ARGS
1618 for a call to a function whose data type is FNTYPE.
b08de47e 1619 For a library call, FNTYPE is 0. */
c98f8742 1620
0f6937fe 1621#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1622 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1623 (N_NAMED_ARGS) != -1)
c98f8742 1624
c98f8742
JVA
1625/* Output assembler code to FILE to increment profiler label # LABELNO
1626 for profiling a function entry. */
1627
a5fa1ecd
JH
1628#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1629
1630#define MCOUNT_NAME "_mcount"
1631
3c5273a9
KT
1632#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1633
a5fa1ecd 1634#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1635
1636/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1637 the stack pointer does not matter. The value is tested only in
1638 functions that have frame pointers.
1639 No definition is equivalent to always zero. */
fce5a9f2 1640/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1641 we have to restore it ourselves from the frame pointer, in order to
1642 use pop */
1643
1644#define EXIT_IGNORE_STACK 1
1645
c98f8742
JVA
1646/* Output assembler code for a block containing the constant parts
1647 of a trampoline, leaving space for the variable parts. */
1648
a269a03c 1649/* On the 386, the trampoline contains two instructions:
c98f8742 1650 mov #STATIC,ecx
a269a03c
JC
1651 jmp FUNCTION
1652 The trampoline is generated entirely at runtime. The operand of JMP
1653 is the address of FUNCTION relative to the instruction following the
1654 JMP (which is 5 bytes long). */
c98f8742
JVA
1655
1656/* Length in units of the trampoline for entering a nested function. */
1657
3452586b 1658#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
c98f8742
JVA
1659\f
1660/* Definitions for register eliminations.
1661
1662 This is an array of structures. Each structure initializes one pair
1663 of eliminable registers. The "from" register number is given first,
1664 followed by "to". Eliminations of the same "from" register are listed
1665 in order of preference.
1666
afc2cd05
NC
1667 There are two registers that can always be eliminated on the i386.
1668 The frame pointer and the arg pointer can be replaced by either the
1669 hard frame pointer or to the stack pointer, depending upon the
1670 circumstances. The hard frame pointer is not used before reload and
1671 so it is not eligible for elimination. */
c98f8742 1672
564d80f4
JH
1673#define ELIMINABLE_REGS \
1674{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1675 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1676 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1677 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1678
c98f8742
JVA
1679/* Define the offset between two registers, one to be eliminated, and the other
1680 its replacement, at the start of a routine. */
1681
d9a5f180
GS
1682#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1683 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1684\f
1685/* Addressing modes, and classification of registers for them. */
1686
c98f8742
JVA
1687/* Macros to check register numbers against specific register classes. */
1688
1689/* These assume that REGNO is a hard or pseudo reg number.
1690 They give nonzero only if REGNO is a hard reg of the suitable class
1691 or a pseudo reg currently allocated to a suitable hard reg.
1692 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1693 has been allocated, which happens in reginfo.c during register
1694 allocation. */
c98f8742 1695
3f3f2124
JH
1696#define REGNO_OK_FOR_INDEX_P(REGNO) \
1697 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1698 || REX_INT_REGNO_P (REGNO) \
1699 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1700 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1701
3f3f2124 1702#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1703 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1704 || (REGNO) == ARG_POINTER_REGNUM \
1705 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1706 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1707
c98f8742
JVA
1708/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1709 and check its validity for a certain class.
1710 We have two alternate definitions for each of them.
1711 The usual definition accepts all pseudo regs; the other rejects
1712 them unless they have been allocated suitable hard regs.
1713 The symbol REG_OK_STRICT causes the latter definition to be used.
1714
1715 Most source files want to accept pseudo regs in the hope that
1716 they will get allocated to the class that the insn wants them to be in.
1717 Source files for reload pass need to be strict.
1718 After reload, it makes no difference, since pseudo regs have
1719 been eliminated by then. */
1720
c98f8742 1721
ff482c8d 1722/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1723#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1724 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1725 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1726 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1727
3b3c6a3f 1728#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1729 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1730 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1731 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1732 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1733
3b3c6a3f
MM
1734/* Strict versions, hard registers only */
1735#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1736#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1737
3b3c6a3f 1738#ifndef REG_OK_STRICT
d9a5f180
GS
1739#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1740#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1741
1742#else
d9a5f180
GS
1743#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1744#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1745#endif
1746
331d9186 1747/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1748 that is a valid memory address for an instruction.
1749 The MODE argument is the machine mode for the MEM expression
1750 that wants to use this address.
1751
331d9186 1752 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1753 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1754
1755 See legitimize_pic_address in i386.c for details as to what
1756 constitutes a legitimate address when -fpic is used. */
1757
1758#define MAX_REGS_PER_ADDRESS 2
1759
f996902d 1760#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1761
ae1547cc
UB
1762/* Try a machine-dependent way of reloading an illegitimate address
1763 operand. If we find one, push the reload and jump to WIN. This
1764 macro is used in only one place: `find_reloads_address' in reload.c. */
1765
1766#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
1767do { \
1768 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
1769 (int)(TYPE), (INDL))) \
1770 goto WIN; \
1771} while (0)
1772
b949ea8b
JW
1773/* If defined, a C expression to determine the base term of address X.
1774 This macro is used in only one place: `find_base_term' in alias.c.
1775
1776 It is always safe for this macro to not be defined. It exists so
1777 that alias analysis can understand machine-dependent addresses.
1778
1779 The typical use of this macro is to handle addresses containing
1780 a label_ref or symbol_ref within an UNSPEC. */
1781
d9a5f180 1782#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1783
c98f8742 1784/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1785 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1786 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1787
f996902d 1788#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1789
1790#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1791 (GET_CODE (X) == SYMBOL_REF \
1792 || GET_CODE (X) == LABEL_REF \
1793 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1794\f
b08de47e
MM
1795/* Max number of args passed in registers. If this is more than 3, we will
1796 have problems with ebx (register #4), since it is a caller save register and
1797 is also used as the pic register in ELF. So for now, don't allow more than
1798 3 registers to be passed in registers. */
1799
7c800926
KT
1800/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1801#define X86_64_REGPARM_MAX 6
72fa3605 1802#define X86_64_MS_REGPARM_MAX 4
7c800926 1803
72fa3605 1804#define X86_32_REGPARM_MAX 3
7c800926 1805
4ae8027b 1806#define REGPARM_MAX \
2824d6e5
UB
1807 (TARGET_64BIT \
1808 ? (TARGET_64BIT_MS_ABI \
1809 ? X86_64_MS_REGPARM_MAX \
1810 : X86_64_REGPARM_MAX) \
4ae8027b 1811 : X86_32_REGPARM_MAX)
d2836273 1812
72fa3605
UB
1813#define X86_64_SSE_REGPARM_MAX 8
1814#define X86_64_MS_SSE_REGPARM_MAX 4
1815
b6010cab 1816#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1817
4ae8027b 1818#define SSE_REGPARM_MAX \
2824d6e5
UB
1819 (TARGET_64BIT \
1820 ? (TARGET_64BIT_MS_ABI \
1821 ? X86_64_MS_SSE_REGPARM_MAX \
1822 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1823 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1824
1825#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1826\f
1827/* Specify the machine mode that this machine uses
1828 for the index in the tablejump instruction. */
dc4d7240 1829#define CASE_VECTOR_MODE \
6025b127 1830 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1831
c98f8742
JVA
1832/* Define this as 1 if `char' should by default be signed; else as 0. */
1833#define DEFAULT_SIGNED_CHAR 1
1834
1835/* Max number of bytes we can move from memory to memory
1836 in one reasonably fast instruction. */
65d9c0ab
JH
1837#define MOVE_MAX 16
1838
1839/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1840 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1841 number of bytes we can move with a single instruction. */
63001560 1842#define MOVE_MAX_PIECES UNITS_PER_WORD
c98f8742 1843
7e24ffc9 1844/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1845 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1846 Increasing the value will always make code faster, but eventually
1847 incurs high cost in increased code size.
c98f8742 1848
e2e52e1b 1849 If you don't define this, a reasonable default is used. */
c98f8742 1850
e04ad03d 1851#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1852
45d78e7f
JJ
1853/* If a clear memory operation would take CLEAR_RATIO or more simple
1854 move-instruction sequences, we will do a clrmem or libcall instead. */
1855
e04ad03d 1856#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1857
53f00dde
UB
1858/* Define if shifts truncate the shift count which implies one can
1859 omit a sign-extension or zero-extension of a shift count.
1860
1861 On i386, shifts do truncate the count. But bit test instructions
1862 take the modulo of the bit offset operand. */
c98f8742
JVA
1863
1864/* #define SHIFT_COUNT_TRUNCATED */
1865
1866/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1867 is done just by pretending it is already truncated. */
1868#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1869
d9f32422
JH
1870/* A macro to update M and UNSIGNEDP when an object whose type is
1871 TYPE and which has the specified mode and signedness is to be
1872 stored in a register. This macro is only called when TYPE is a
1873 scalar type.
1874
f710504c 1875 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1876 quantities to SImode. The choice depends on target type. */
1877
1878#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1879do { \
d9f32422
JH
1880 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1881 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1882 (MODE) = SImode; \
1883} while (0)
d9f32422 1884
c98f8742
JVA
1885/* Specify the machine mode that pointers have.
1886 After generation of rtl, the compiler makes no further distinction
1887 between pointers and any other objects of this machine mode. */
28968d91 1888#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1889
f0ea7581
L
1890/* A C expression whose value is zero if pointers that need to be extended
1891 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1892 greater then zero if they are zero-extended and less then zero if the
1893 ptr_extend instruction should be used. */
1894
1895#define POINTERS_EXTEND_UNSIGNED 1
1896
c98f8742
JVA
1897/* A function address in a call instruction
1898 is a byte address (for indexing purposes)
1899 so give the MEM rtx a byte's mode. */
1900#define FUNCTION_MODE QImode
d4ba09c0 1901\f
d4ba09c0 1902
d4ba09c0
SC
1903/* A C expression for the cost of a branch instruction. A value of 1
1904 is the default; other values are interpreted relative to that. */
1905
3a4fd356
JH
1906#define BRANCH_COST(speed_p, predictable_p) \
1907 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1908
e327d1a3
L
1909/* An integer expression for the size in bits of the largest integer machine
1910 mode that should actually be used. We allow pairs of registers. */
1911#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1912
d4ba09c0
SC
1913/* Define this macro as a C expression which is nonzero if accessing
1914 less than a word of memory (i.e. a `char' or a `short') is no
1915 faster than accessing a word of memory, i.e., if such access
1916 require more than one instruction or if there is no difference in
1917 cost between byte and (aligned) word loads.
1918
1919 When this macro is not defined, the compiler will access a field by
1920 finding the smallest containing object; when it is defined, a
1921 fullword load will be used if alignment permits. Unless bytes
1922 accesses are faster than word accesses, using word accesses is
1923 preferable since it may eliminate subsequent memory access if
1924 subsequent accesses occur to other fields in the same word of the
1925 structure, but to different bytes. */
1926
1927#define SLOW_BYTE_ACCESS 0
1928
1929/* Nonzero if access to memory by shorts is slow and undesirable. */
1930#define SLOW_SHORT_ACCESS 0
1931
d4ba09c0
SC
1932/* Define this macro to be the value 1 if unaligned accesses have a
1933 cost many times greater than aligned accesses, for example if they
1934 are emulated in a trap handler.
1935
9cd10576
KH
1936 When this macro is nonzero, the compiler will act as if
1937 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1938 moves. This can cause significantly more instructions to be
9cd10576 1939 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1940 accesses only add a cycle or two to the time for a memory access.
1941
1942 If the value of this macro is always zero, it need not be defined. */
1943
e1565e65 1944/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1945
d4ba09c0
SC
1946/* Define this macro if it is as good or better to call a constant
1947 function address than to call an address kept in a register.
1948
1949 Desirable on the 386 because a CALL with a constant address is
1950 faster than one with a register address. */
1951
1952#define NO_FUNCTION_CSE
c98f8742 1953\f
c572e5ba
JVA
1954/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1955 return the mode to be used for the comparison.
1956
1957 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1958 VOIDmode should be used in all other cases.
c572e5ba 1959
16189740 1960 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1961 possible, to allow for more combinations. */
c98f8742 1962
d9a5f180 1963#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1964
9cd10576 1965/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1966 reversed. */
1967
1968#define REVERSIBLE_CC_MODE(MODE) 1
1969
1970/* A C expression whose value is reversed condition code of the CODE for
1971 comparison done in CC_MODE mode. */
3c5cb3e4 1972#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1973
c98f8742
JVA
1974\f
1975/* Control the assembler format that we output, to the extent
1976 this does not vary between assemblers. */
1977
1978/* How to refer to registers in assembler output.
892a2d68 1979 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1980
a7b376ee 1981/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
1982 For non floating point regs, the following are the HImode names.
1983
1984 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
1985 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1986 "y" code. */
c98f8742 1987
a7180f70
BS
1988#define HI_REGISTER_NAMES \
1989{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1990 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 1991 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 1992 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1993 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 1994 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
1995 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
1996 "xmm16", "xmm17", "xmm18", "xmm19", \
1997 "xmm20", "xmm21", "xmm22", "xmm23", \
1998 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 1999 "xmm28", "xmm29", "xmm30", "xmm31", \
089d1227 2000 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2001
c98f8742
JVA
2002#define REGISTER_NAMES HI_REGISTER_NAMES
2003
2004/* Table of additional register names to use in user input. */
2005
2006#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
2007{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2008 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
2009 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2010 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 2011 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 2012 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
2013
2014/* Note we are omitting these since currently I don't know how
2015to get gcc to use these, since they want the same but different
2016number as al, and ax.
2017*/
2018
c98f8742 2019#define QI_REGISTER_NAMES \
3f3f2124 2020{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2021
2022/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2023 of regs 0 through 3. */
c98f8742
JVA
2024
2025#define QI_HIGH_REGISTER_NAMES \
2026{"ah", "dh", "ch", "bh", }
2027
2028/* How to renumber registers for dbx and gdb. */
2029
d9a5f180
GS
2030#define DBX_REGISTER_NUMBER(N) \
2031 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2032
9a82e702
MS
2033extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2034extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2035extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2036
780a5b71
UB
2037extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2038
469ac993
JM
2039/* Before the prologue, RA is at 0(%esp). */
2040#define INCOMING_RETURN_ADDR_RTX \
f64cecad 2041 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 2042
e414ab29 2043/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
2044#define RETURN_ADDR_RTX(COUNT, FRAME) \
2045 ((COUNT) == 0 \
0a81f074
RS
2046 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2047 -UNITS_PER_WORD)) \
2048 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
e414ab29 2049
892a2d68 2050/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2051#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2052
a6ab3aad 2053/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 2054#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 2055
1020a5ab 2056/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2057#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2058#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2059
ad919812 2060
e4c4ebeb
RH
2061/* Select a format to encode pointers in exception handling data. CODE
2062 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2063 true if the symbol may be affected by dynamic relocations.
2064
2065 ??? All x86 object file formats are capable of representing this.
2066 After all, the relocation needed is the same as for the call insn.
2067 Whether or not a particular assembler allows us to enter such, I
2068 guess we'll have to see. */
d9a5f180 2069#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2070 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2071
c98f8742
JVA
2072/* This is how to output an insn to push a register on the stack.
2073 It need not be very fast code. */
2074
d9a5f180 2075#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
2076do { \
2077 if (TARGET_64BIT) \
2078 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2079 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2080 else \
2081 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2082} while (0)
c98f8742
JVA
2083
2084/* This is how to output an insn to pop a register from the stack.
2085 It need not be very fast code. */
2086
d9a5f180 2087#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2088do { \
2089 if (TARGET_64BIT) \
2090 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2091 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2092 else \
2093 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2094} while (0)
c98f8742 2095
f88c65f7 2096/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2097
2098#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2099 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2100
f88c65f7 2101/* This is how to output an element of a case-vector that is relative. */
c98f8742 2102
33f7f353 2103#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2104 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2105
63001560 2106/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2107
2108#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2109{ \
2110 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2111 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2112}
2113
2114/* A C statement or statements which output an assembler instruction
2115 opcode to the stdio stream STREAM. The macro-operand PTR is a
2116 variable of type `char *' which points to the opcode name in
2117 its "internal" form--the form that is written in the machine
2118 description. */
2119
2120#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2121 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2122
6a90d232
L
2123/* A C statement to output to the stdio stream FILE an assembler
2124 command to pad the location counter to a multiple of 1<<LOG
2125 bytes if it is within MAX_SKIP bytes. */
2126
2127#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2128#undef ASM_OUTPUT_MAX_SKIP_PAD
2129#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2130 if ((LOG) != 0) \
2131 { \
2132 if ((MAX_SKIP) == 0) \
2133 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2134 else \
2135 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2136 }
2137#endif
2138
135a687e
KT
2139/* Write the extra assembler code needed to declare a function
2140 properly. */
2141
2142#undef ASM_OUTPUT_FUNCTION_LABEL
2143#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2144 ix86_asm_output_function_label (FILE, NAME, DECL)
2145
f7288899
EC
2146/* Under some conditions we need jump tables in the text section,
2147 because the assembler cannot handle label differences between
2148 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2149
2150#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2151 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2152 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2153
cea3bd3e
RH
2154/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2155 and switch back. For x86 we do this only to save a few bytes that
2156 would otherwise be unused in the text section. */
ad211091
KT
2157#define CRT_MKSTR2(VAL) #VAL
2158#define CRT_MKSTR(x) CRT_MKSTR2(x)
2159
2160#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2161 asm (SECTION_OP "\n\t" \
2162 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2163 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2164
2165/* Default threshold for putting data in large sections
2166 with x86-64 medium memory model */
2167#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2168\f
b97de419
L
2169/* Which processor to tune code generation for. These must be in sync
2170 with processor_target_table in i386.c. */
5bf0ebab
RH
2171
2172enum processor_type
2173{
b97de419
L
2174 PROCESSOR_GENERIC = 0,
2175 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2176 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2177 PROCESSOR_PENTIUM,
2178 PROCESSOR_PENTIUMPRO,
5bf0ebab 2179 PROCESSOR_PENTIUM4,
89c43c0a 2180 PROCESSOR_NOCONA,
340ef734 2181 PROCESSOR_CORE2,
d3c11974
L
2182 PROCESSOR_NEHALEM,
2183 PROCESSOR_SANDYBRIDGE,
3a579e09 2184 PROCESSOR_HASWELL,
d3c11974
L
2185 PROCESSOR_BONNELL,
2186 PROCESSOR_SILVERMONT,
b97de419
L
2187 PROCESSOR_GEODE,
2188 PROCESSOR_K6,
2189 PROCESSOR_ATHLON,
2190 PROCESSOR_K8,
21efb4d4 2191 PROCESSOR_AMDFAM10,
1133125e 2192 PROCESSOR_BDVER1,
4d652a18 2193 PROCESSOR_BDVER2,
eb2f2b44 2194 PROCESSOR_BDVER3,
ed97ad47 2195 PROCESSOR_BDVER4,
14b52538 2196 PROCESSOR_BTVER1,
e32bfc16 2197 PROCESSOR_BTVER2,
5bf0ebab
RH
2198 PROCESSOR_max
2199};
2200
9e555526 2201extern enum processor_type ix86_tune;
5bf0ebab 2202extern enum processor_type ix86_arch;
5bf0ebab 2203
8362f420
JH
2204/* Size of the RED_ZONE area. */
2205#define RED_ZONE_SIZE 128
2206/* Reserved area of the red zone for temporaries. */
2207#define RED_ZONE_RESERVE 8
c93e80a5 2208
95899b34 2209extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2210extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2211
2212/* Smallest class containing REGNO. */
2213extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2214
0948ccb2
PB
2215enum ix86_fpcmp_strategy {
2216 IX86_FPCMP_SAHF,
2217 IX86_FPCMP_COMI,
2218 IX86_FPCMP_ARITH
2219};
22fb740d
JH
2220\f
2221/* To properly truncate FP values into integers, we need to set i387 control
2222 word. We can't emit proper mode switching code before reload, as spills
2223 generated by reload may truncate values incorrectly, but we still can avoid
2224 redundant computation of new control word by the mode switching pass.
2225 The fldcw instructions are still emitted redundantly, but this is probably
2226 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2227 the sequence.
22fb740d
JH
2228
2229 The machinery is to emit simple truncation instructions and split them
2230 before reload to instructions having USEs of two memory locations that
2231 are filled by this code to old and new control word.
fce5a9f2 2232
22fb740d
JH
2233 Post-reload pass may be later used to eliminate the redundant fildcw if
2234 needed. */
2235
ff680eb1
UB
2236enum ix86_entity
2237{
ff97910d
VY
2238 AVX_U128 = 0,
2239 I387_TRUNC,
ff680eb1
UB
2240 I387_FLOOR,
2241 I387_CEIL,
2242 I387_MASK_PM,
2243 MAX_386_ENTITIES
2244};
2245
1cba2b96 2246enum ix86_stack_slot
ff680eb1 2247{
443ca5fc 2248 SLOT_TEMP = 0,
ff680eb1
UB
2249 SLOT_CW_STORED,
2250 SLOT_CW_TRUNC,
2251 SLOT_CW_FLOOR,
2252 SLOT_CW_CEIL,
2253 SLOT_CW_MASK_PM,
2254 MAX_386_STACK_LOCALS
2255};
22fb740d 2256
ff97910d
VY
2257enum avx_u128_state
2258{
2259 AVX_U128_CLEAN,
2260 AVX_U128_DIRTY,
2261 AVX_U128_ANY
2262};
2263
22fb740d
JH
2264/* Define this macro if the port needs extra instructions inserted
2265 for mode switching in an optimizing compilation. */
2266
ff680eb1
UB
2267#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2268 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2269
2270/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2271 initializer for an array of integers. Each initializer element N
2272 refers to an entity that needs mode switching, and specifies the
2273 number of different modes that might need to be set for this
2274 entity. The position of the initializer in the initializer -
2275 starting counting at zero - determines the integer that is used to
2276 refer to the mode-switched entity in question. */
2277
ff680eb1 2278#define NUM_MODES_FOR_MODE_SWITCHING \
ff97910d 2279 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2280
2281/* ENTITY is an integer specifying a mode-switched entity. If
2282 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2283 return an integer value not larger than the corresponding element
2284 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff97910d 2285 must be switched into prior to the execution of INSN. */
ff680eb1
UB
2286
2287#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d 2288
ff97910d
VY
2289/* If this macro is defined, it is evaluated for every INSN during
2290 mode switching. It determines the mode that an insn results in (if
2291 different from the incoming mode). */
2292
2293#define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
2294
2295/* If this macro is defined, it is evaluated for every ENTITY that
2296 needs mode switching. It should evaluate to an integer, which is
2297 a mode that ENTITY is assumed to be switched to at function entry. */
2298
2299#define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
2300
2301/* If this macro is defined, it is evaluated for every ENTITY that
2302 needs mode switching. It should evaluate to an integer, which is
2303 a mode that ENTITY is assumed to be switched to at function exit. */
2304
2305#define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
2306
22fb740d
JH
2307/* This macro specifies the order in which modes for ENTITY are
2308 processed. 0 is the highest priority. */
2309
d9a5f180 2310#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2311
2312/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2313 is the set of hard registers live at the point where the insn(s)
2314 are to be inserted. */
2315
ff97910d 2316#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
5756eff7 2317 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
0f0138b6
JH
2318\f
2319/* Avoid renaming of stack registers, as doing so in combination with
2320 scheduling just increases amount of live registers at time and in
2321 the turn amount of fxch instructions needed.
2322
3f97cb0b
AI
2323 ??? Maybe Pentium chips benefits from renaming, someone can try....
2324
2325 Don't rename evex to non-evex sse registers. */
0f0138b6 2326
3f97cb0b
AI
2327#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) && \
2328 (EXT_REX_SSE_REGNO_P (SRC) == \
2329 EXT_REX_SSE_REGNO_P (TARGET)))
22fb740d 2330
3b3c6a3f 2331\f
e91f04de 2332#define FASTCALL_PREFIX '@'
fa1a0d02 2333\f
ec7ded37 2334/* Machine specific frame tracking during prologue/epilogue generation. */
cd9c1ca8 2335
604a6be9 2336#ifndef USED_FOR_TARGET
ec7ded37 2337struct GTY(()) machine_frame_state
cd9c1ca8 2338{
ec7ded37
RH
2339 /* This pair tracks the currently active CFA as reg+offset. When reg
2340 is drap_reg, we don't bother trying to record here the real CFA when
2341 it might really be a DW_CFA_def_cfa_expression. */
2342 rtx cfa_reg;
2343 HOST_WIDE_INT cfa_offset;
2344
2345 /* The current offset (canonically from the CFA) of ESP and EBP.
2346 When stack frame re-alignment is active, these may not be relative
2347 to the CFA. However, in all cases they are relative to the offsets
2348 of the saved registers stored in ix86_frame. */
2349 HOST_WIDE_INT sp_offset;
2350 HOST_WIDE_INT fp_offset;
2351
2352 /* The size of the red-zone that may be assumed for the purposes of
2353 eliding register restore notes in the epilogue. This may be zero
2354 if no red-zone is in effect, or may be reduced from the real
2355 red-zone value by a maximum runtime stack re-alignment value. */
2356 int red_zone_offset;
2357
2358 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2359 value within the frame. If false then the offset above should be
2360 ignored. Note that DRAP, if valid, *always* points to the CFA and
2361 thus has an offset of zero. */
2362 BOOL_BITFIELD sp_valid : 1;
2363 BOOL_BITFIELD fp_valid : 1;
2364 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2365
2366 /* Indicate whether the local stack frame has been re-aligned. When
2367 set, the SP/FP offsets above are relative to the aligned frame
2368 and not the CFA. */
2369 BOOL_BITFIELD realigned : 1;
cd9c1ca8
RH
2370};
2371
f81c9774
RH
2372/* Private to winnt.c. */
2373struct seh_frame_state;
2374
d1b38208 2375struct GTY(()) machine_function {
fa1a0d02
JH
2376 struct stack_local_entry *stack_locals;
2377 const char *some_ld_name;
4aab97f9
L
2378 int varargs_gpr_size;
2379 int varargs_fpr_size;
ff680eb1 2380 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b
RH
2381
2382 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2383 has been computed for. */
2384 int use_fast_prologue_epilogue_nregs;
2385
7458026b
ILT
2386 /* For -fsplit-stack support: A stack local which holds a pointer to
2387 the stack arguments for a function with a variable number of
2388 arguments. This is set at the start of the function and is used
2389 to initialize the overflow_arg_area field of the va_list
2390 structure. */
2391 rtx split_stack_varargs_pointer;
2392
3452586b
RH
2393 /* This value is used for amd64 targets and specifies the current abi
2394 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2395 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2396
2397 /* Nonzero if the function accesses a previous frame. */
2398 BOOL_BITFIELD accesses_prev_frame : 1;
2399
2400 /* Nonzero if the function requires a CLD in the prologue. */
2401 BOOL_BITFIELD needs_cld : 1;
2402
922e3e33
UB
2403 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2404 expander to determine the style used. */
3452586b
RH
2405 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2406
5bf5a10b
AO
2407 /* If true, the current function needs the default PIC register, not
2408 an alternate register (on x86) and must not use the red zone (on
2409 x86_64), even if it's a leaf function. We don't want the
2410 function to be regarded as non-leaf because TLS calls need not
2411 affect register allocation. This flag is set when a TLS call
2412 instruction is expanded within a function, and never reset, even
2413 if all such instructions are optimized away. Use the
2414 ix86_current_function_calls_tls_descriptor macro for a better
2415 approximation. */
3452586b
RH
2416 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2417
2418 /* If true, the current function has a STATIC_CHAIN is placed on the
2419 stack below the return address. */
2420 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2421
ec7ded37
RH
2422 /* During prologue/epilogue generation, the current frame state.
2423 Otherwise, the frame state at the end of the prologue. */
2424 struct machine_frame_state fs;
f81c9774
RH
2425
2426 /* During SEH output, this is non-null. */
2427 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2428};
cd9c1ca8 2429#endif
fa1a0d02
JH
2430
2431#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2432#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2433#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2434#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
922e3e33 2435#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
5bf5a10b
AO
2436#define ix86_tls_descriptor_calls_expanded_in_cfun \
2437 (cfun->machine->tls_descriptor_call_expanded_p)
2438/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2439 calls are optimized away, we try to detect cases in which it was
2440 optimized away. Since such instructions (use (reg REG_SP)), we can
2441 verify whether there's any such instruction live by testing that
2442 REG_SP is live. */
2443#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2444 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2445#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
249e6b63 2446
1bc7c5b6
ZW
2447/* Control behavior of x86_file_start. */
2448#define X86_FILE_START_VERSION_DIRECTIVE false
2449#define X86_FILE_START_FLTUSED false
2450
7dcbf659
JH
2451/* Flag to mark data that is in the large address area. */
2452#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2453#define SYMBOL_REF_FAR_ADDR_P(X) \
2454 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2455
2456/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2457 have defined always, to avoid ifdefing. */
2458#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2459#define SYMBOL_REF_DLLIMPORT_P(X) \
2460 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2461
2462#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2463#define SYMBOL_REF_DLLEXPORT_P(X) \
2464 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2465
82c0e1a0
KT
2466#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2467#define SYMBOL_REF_STUBVAR_P(X) \
2468 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2469
7942e47e
RY
2470extern void debug_ready_dispatch (void);
2471extern void debug_dispatch_window (int);
2472
91afcfa3
QN
2473/* The value at zero is only defined for the BMI instructions
2474 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2475#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2476 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2477#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
5fcafa60 2478 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
91afcfa3
QN
2479
2480
b8ce4e94
KT
2481/* Flags returned by ix86_get_callcvt (). */
2482#define IX86_CALLCVT_CDECL 0x1
2483#define IX86_CALLCVT_STDCALL 0x2
2484#define IX86_CALLCVT_FASTCALL 0x4
2485#define IX86_CALLCVT_THISCALL 0x8
2486#define IX86_CALLCVT_REGPARM 0x10
2487#define IX86_CALLCVT_SSEREGPARM 0x20
2488
2489#define IX86_BASE_CALLCVT(FLAGS) \
2490 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2491 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2492
b86b9f44
MM
2493#define RECIP_MASK_NONE 0x00
2494#define RECIP_MASK_DIV 0x01
2495#define RECIP_MASK_SQRT 0x02
2496#define RECIP_MASK_VEC_DIV 0x04
2497#define RECIP_MASK_VEC_SQRT 0x08
2498#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2499 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2500#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2501
2502#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2503#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2504#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2505#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2506
5dcfdccd
KY
2507#define IX86_HLE_ACQUIRE (1 << 16)
2508#define IX86_HLE_RELEASE (1 << 17)
2509
c98f8742
JVA
2510/*
2511Local variables:
2512version-control: t
2513End:
2514*/