]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
rs6000: Delete many HAVE_AS_* (PR87149)
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
85ec4feb 2 Copyright (C) 1988-2018 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
fca51879
JK
88#define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
79fc8ffe
AS
90#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
98966963
JK
92#define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
e2a29465
JK
94#define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
90922d36 96#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 97#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 98#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 99#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 100#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 101#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 102#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 103#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 104#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 105#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 106#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 107#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
13b93d4b
OM
108#define TARGET_PCONFIG TARGET_ISA_PCONFIG
109#define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x)
110#define TARGET_WBNOINVD TARGET_ISA_WBNOINVD
111#define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x)
73e32c47
JK
112#define TARGET_SGX TARGET_ISA_SGX
113#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
114#define TARGET_RDPID TARGET_ISA_RDPID
115#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
b8cca31c
JK
116#define TARGET_GFNI TARGET_ISA_GFNI
117#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
b7b0a4fa
JK
118#define TARGET_VAES TARGET_ISA_VAES
119#define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x)
6557be99
JK
120#define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
121#define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
90922d36 122#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 123#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 124#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 125#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 126#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 127#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 128#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 129#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 130#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 131#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 132#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 133#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 134#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 135#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 136#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 137#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 138#define TARGET_AES TARGET_ISA_AES
bf7b5747 139#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
140#define TARGET_SHA TARGET_ISA_SHA
141#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
142#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
143#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
144#define TARGET_CLZERO TARGET_ISA_CLZERO
145#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
146#define TARGET_XSAVEC TARGET_ISA_XSAVEC
147#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
148#define TARGET_XSAVES TARGET_ISA_XSAVES
149#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 150#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 151#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
152#define TARGET_CMPXCHG16B TARGET_ISA_CX16
153#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 154#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 155#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 156#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 157#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 158#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 159#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
160#define TARGET_RTM TARGET_ISA_RTM
161#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 162#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 163#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 164#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 165#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 166#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 167#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 168#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 169#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 170#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 171#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 172#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 173#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 174#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 175#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
176#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
177#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
9c3bca11
IT
178#define TARGET_CLWB TARGET_ISA_CLWB
179#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
180#define TARGET_MWAITX TARGET_ISA_MWAITX
181#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
182#define TARGET_PKU TARGET_ISA_PKU
183#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
184#define TARGET_SHSTK TARGET_ISA_SHSTK
185#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
37d51c75
SP
186#define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
187#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
188#define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B
189#define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
55f31ed1
SP
190#define TARGET_WAITPKG TARGET_ISA_WAITPKG
191#define TARGET_WAITPKG_P(x) TARGET_ISA_WAITPKG_P(x)
f8d9957e
SP
192#define TARGET_CLDEMOTE TARGET_ISA_CLDEMOTE
193#define TARGET_CLDEMOTE_P(x) TARGET_ISA_CLDEMOTE_P(x)
41a4ef22 194
90922d36 195#define TARGET_LP64 TARGET_ABI_64
bf7b5747 196#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 197#define TARGET_X32 TARGET_ABI_X32
bf7b5747 198#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
199#define TARGET_16BIT TARGET_CODE16
200#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 201
26b5109f
RS
202#include "config/vxworks-dummy.h"
203
7eb68c06 204#include "config/i386/i386-opts.h"
ccf8e764 205
c69fa2d4 206#define MAX_STRINGOP_ALGS 4
ccf8e764 207
8c996513
JH
208/* Specify what algorithm to use for stringops on known size.
209 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
210 known at compile time or estimated via feedback, the SIZE array
211 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 212 means infinity). Corresponding ALG is used then.
340ef734
JH
213 When NOALIGN is true the code guaranting the alignment of the memory
214 block is skipped.
215
8c996513 216 For example initializer:
4f3f76e6 217 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 218 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 219 be used otherwise. */
8c996513
JH
220struct stringop_algs
221{
222 const enum stringop_alg unknown_size;
223 const struct stringop_strategy {
224 const int max;
225 const enum stringop_alg alg;
340ef734 226 int noalign;
c69fa2d4 227 } size [MAX_STRINGOP_ALGS];
8c996513
JH
228};
229
d4ba09c0
SC
230/* Define the specific costs for a given cpu */
231
232struct processor_costs {
8b60264b
KG
233 const int add; /* cost of an add instruction */
234 const int lea; /* cost of a lea instruction */
235 const int shift_var; /* variable shift costs */
236 const int shift_const; /* constant shift costs */
f676971a 237 const int mult_init[5]; /* cost of starting a multiply
4977bab6 238 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 239 const int mult_bit; /* cost of multiply per each bit set */
f676971a 240 const int divide[5]; /* cost of a divide/mod
4977bab6 241 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
242 int movsx; /* The cost of movsx operation. */
243 int movzx; /* The cost of movzx operation. */
8b60264b
KG
244 const int large_insn; /* insns larger than this cost more */
245 const int move_ratio; /* The threshold of number of scalar
ac775968 246 memory-to-memory move insns. */
8b60264b
KG
247 const int movzbl_load; /* cost of loading using movzbl */
248 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
249 in QImode, HImode and SImode relative
250 to reg-reg move (2). */
8b60264b 251 const int int_store[3]; /* cost of storing integer register
96e7ae40 252 in QImode, HImode and SImode */
8b60264b
KG
253 const int fp_move; /* cost of reg,reg fld/fst */
254 const int fp_load[3]; /* cost of loading FP register
96e7ae40 255 in SFmode, DFmode and XFmode */
8b60264b 256 const int fp_store[3]; /* cost of storing FP register
96e7ae40 257 in SFmode, DFmode and XFmode */
8b60264b
KG
258 const int mmx_move; /* cost of moving MMX register. */
259 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 260 in SImode and DImode */
8b60264b 261 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 262 in SImode and DImode */
df41dbaf
JH
263 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
264 zmm_move;
265 const int sse_load[5]; /* cost of loading SSE register
266 in 32bit, 64bit, 128bit, 256bit and 512bit */
267 const int sse_unaligned_load[5];/* cost of unaligned load. */
268 const int sse_store[5]; /* cost of storing SSE register
269 in SImode, DImode and TImode. */
270 const int sse_unaligned_store[5];/* cost of unaligned store. */
8b60264b 271 const int mmxsse_to_integer; /* cost of moving mmxsse register to
df41dbaf
JH
272 integer. */
273 const int ssemmx_to_integer; /* cost of moving integer to mmxsse register. */
a4fe6139
JH
274 const int gather_static, gather_per_elt; /* Cost of gather load is computed
275 as static + per_item * nelts. */
276 const int scatter_static, scatter_per_elt; /* Cost of gather store is
277 computed as static + per_item * nelts. */
46cb0441
ZD
278 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
279 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
280 const int prefetch_block; /* bytes moved to cache for prefetch. */
281 const int simultaneous_prefetches; /* number of parallel prefetch
282 operations. */
4977bab6 283 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
284 const int fadd; /* cost of FADD and FSUB instructions. */
285 const int fmul; /* cost of FMUL instruction. */
286 const int fdiv; /* cost of FDIV instruction. */
287 const int fabs; /* cost of FABS instruction. */
288 const int fchs; /* cost of FCHS instruction. */
289 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 290 /* Specify what algorithm
bee51209 291 to use for stringops on unknown size. */
c53c148c 292 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
293 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
294 const int mulss; /* cost of MULSS instructions. */
295 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
296 const int fmass; /* cost of FMASS instructions. */
297 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
298 const int divss; /* cost of DIVSS instructions. */
299 const int divsd; /* cost of DIVSD instructions. */
300 const int sqrtss; /* cost of SQRTSS instructions. */
301 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
302 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
303 /* Specify reassociation width for integer,
304 fp, vector integer and vector fp
305 operations. Generally should correspond
306 to number of instructions executed in
307 parallel. See also
308 ix86_reassociation_width. */
ad83025e 309 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
310 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
311 cost model. */
312 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
313 vectorizer cost model. */
7dc58b50
ML
314
315 /* The "0:0:8" label alignment specified for some processors generates
316 secondary 8-byte alignment only for those label/jump/loop targets
317 which have primary alignment. */
318 const char *const align_loop; /* Loop alignment. */
319 const char *const align_jump; /* Jump alignment. */
320 const char *const align_label; /* Label alignment. */
321 const char *const align_func; /* Function alignment. */
d4ba09c0
SC
322};
323
8b60264b 324extern const struct processor_costs *ix86_cost;
b2077fd2
JH
325extern const struct processor_costs ix86_size_cost;
326
327#define ix86_cur_cost() \
328 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 329
c98f8742
JVA
330/* Macros used in the machine description to test the flags. */
331
b97de419 332/* configure can arrange to change it. */
e075ae69 333
35b528be 334#ifndef TARGET_CPU_DEFAULT
b97de419 335#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 336#endif
35b528be 337
004d3859
GK
338#ifndef TARGET_FPMATH_DEFAULT
339#define TARGET_FPMATH_DEFAULT \
340 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
341#endif
342
bf7b5747
ST
343#ifndef TARGET_FPMATH_DEFAULT_P
344#define TARGET_FPMATH_DEFAULT_P(x) \
345 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
346#endif
347
c207fd99
L
348/* If the i387 is disabled or -miamcu is used , then do not return
349 values in it. */
350#define TARGET_FLOAT_RETURNS_IN_80387 \
351 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
352#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
353 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 354
5791cc29
JT
355/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
356 compile-time constant. */
357#ifdef IN_LIBGCC2
6ac49599 358#undef TARGET_64BIT
5791cc29
JT
359#ifdef __x86_64__
360#define TARGET_64BIT 1
361#else
362#define TARGET_64BIT 0
363#endif
364#else
6ac49599
RS
365#ifndef TARGET_BI_ARCH
366#undef TARGET_64BIT
e49080ec 367#undef TARGET_64BIT_P
67adf6a9 368#if TARGET_64BIT_DEFAULT
0c2dc519 369#define TARGET_64BIT 1
e49080ec 370#define TARGET_64BIT_P(x) 1
0c2dc519
JH
371#else
372#define TARGET_64BIT 0
e49080ec 373#define TARGET_64BIT_P(x) 0
0c2dc519
JH
374#endif
375#endif
5791cc29 376#endif
25f94bb5 377
750054a2
CT
378#define HAS_LONG_COND_BRANCH 1
379#define HAS_LONG_UNCOND_BRANCH 1
380
9e555526
RH
381#define TARGET_386 (ix86_tune == PROCESSOR_I386)
382#define TARGET_486 (ix86_tune == PROCESSOR_I486)
383#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
384#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 385#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
386#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
387#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
388#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
389#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 390#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 391#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 392#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
393#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
394#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 395#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
396#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
397#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
50e461df 398#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
74b2bb19 399#define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
a548a5a1 400#define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
52747219 401#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 402#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
176a3386 403#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
06caf59d 404#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
c234d831 405#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
79ab5364
JK
406#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
407#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
9a7f94d7 408#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 409#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 410#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 411#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 412#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 413#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 414#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 415#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 416#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 417#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
a269a03c 418
80fd744f
RH
419/* Feature tests against the various tunings. */
420enum ix86_tune_indices {
4b8bc035 421#undef DEF_TUNE
3ad20bd4 422#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
423#include "x86-tune.def"
424#undef DEF_TUNE
425X86_TUNE_LAST
80fd744f
RH
426};
427
ab442df7 428extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
429
430#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
431#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
432#define TARGET_ZERO_EXTEND_WITH_AND \
433 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 434#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
435#define TARGET_BRANCH_PREDICTION_HINTS \
436 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
437#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
438#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
439#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
440#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
441#define TARGET_PARTIAL_FLAG_REG_STALL \
442 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
443#define TARGET_LCP_STALL \
444 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
445#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
446#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
447#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
448#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
449#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
450#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
451#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
452#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
453#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
454#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
455#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
456#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
457 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
458#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
459#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
460#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
461#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
462#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
463#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
464#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
465#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
466#define TARGET_INTEGER_DFMODE_MOVES \
467 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
468#define TARGET_PARTIAL_REG_DEPENDENCY \
469 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
470#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
471 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
472#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
473 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
474#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
475 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
476#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
477 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
478#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
479#define TARGET_SSE_TYPELESS_STORES \
480 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
481#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
482#define TARGET_MEMORY_MISMATCH_STALL \
483 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
484#define TARGET_PROLOGUE_USING_MOVE \
485 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
486#define TARGET_EPILOGUE_USING_MOVE \
487 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
488#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
489#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
490#define TARGET_INTER_UNIT_MOVES_TO_VEC \
491 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
492#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
493 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
494#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 495 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
496#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
497#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
498#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
499#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
500#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
501#define TARGET_PAD_SHORT_FUNCTION \
502 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
503#define TARGET_EXT_80387_CONSTANTS \
504 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
505#define TARGET_AVOID_VECTOR_DECODE \
506 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
507#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
508 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
509#define TARGET_SLOW_IMUL_IMM32_MEM \
510 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
511#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
512#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
513#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
514#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
515#define TARGET_USE_VECTOR_FP_CONVERTS \
516 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
517#define TARGET_USE_VECTOR_CONVERTS \
518 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
519#define TARGET_SLOW_PSHUFB \
520 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
521#define TARGET_AVOID_4BYTE_PREFIXES \
522 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
f6aa5171
JH
523#define TARGET_USE_GATHER \
524 ix86_tune_features[X86_TUNE_USE_GATHER]
0dc41f28
WM
525#define TARGET_FUSE_CMP_AND_BRANCH_32 \
526 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
527#define TARGET_FUSE_CMP_AND_BRANCH_64 \
528 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 529#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
530 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
531 : TARGET_FUSE_CMP_AND_BRANCH_32)
532#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
533 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
534#define TARGET_FUSE_ALU_AND_BRANCH \
535 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 536#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
537#define TARGET_AVOID_LEA_FOR_ADDR \
538 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
539#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
540 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
541#define TARGET_AVX128_OPTIMAL \
542 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
543#define TARGET_GENERAL_REGS_SSE_SPILL \
544 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
545#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
546 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 547#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 548 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
549#define TARGET_ADJUST_UNROLL \
550 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
551#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
552 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
553#define TARGET_ONE_IF_CONV_INSN \
554 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
348188bf
L
555#define TARGET_EMIT_VZEROUPPER \
556 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
df7b0cc4 557
80fd744f
RH
558/* Feature tests against the various architecture variations. */
559enum ix86_arch_indices {
cef31f9c 560 X86_ARCH_CMOV,
80fd744f
RH
561 X86_ARCH_CMPXCHG,
562 X86_ARCH_CMPXCHG8B,
563 X86_ARCH_XADD,
564 X86_ARCH_BSWAP,
565
566 X86_ARCH_LAST
567};
4f3f76e6 568
ab442df7 569extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 570
cef31f9c 571#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
572#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
573#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
574#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
575#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
576
cef31f9c
UB
577/* For sane SSE instruction set generation we need fcomi instruction.
578 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
579 expands to a sequence that includes conditional move. */
580#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
581
80fd744f
RH
582#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
583
cb261eb7 584extern unsigned char x86_prefetch_sse;
80fd744f
RH
585#define TARGET_PREFETCH_SSE x86_prefetch_sse
586
80fd744f
RH
587#define ASSEMBLER_DIALECT (ix86_asm_dialect)
588
589#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
590#define TARGET_MIX_SSE_I387 \
591 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
592
5fa578f0
UB
593#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
594#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
595#define TARGET_HARD_XF_REGS (TARGET_80387)
596
80fd744f
RH
597#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
598#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
599#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 600#define TARGET_SUN_TLS 0
1ef45b77 601
67adf6a9
RH
602#ifndef TARGET_64BIT_DEFAULT
603#define TARGET_64BIT_DEFAULT 0
25f94bb5 604#endif
74dc3e94
RH
605#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
606#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
607#endif
25f94bb5 608
e0ea8797
AH
609#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
610#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
611
79f5e442
ZD
612/* Fence to use after loop using storent. */
613
614extern tree x86_mfence;
615#define FENCE_FOLLOWING_MOVNT x86_mfence
616
0ed4a390
JL
617/* Once GDB has been enhanced to deal with functions without frame
618 pointers, we can change this to allow for elimination of
619 the frame pointer in leaf functions. */
620#define TARGET_DEFAULT 0
67adf6a9 621
0a1c5e55
UB
622/* Extra bits to force. */
623#define TARGET_SUBTARGET_DEFAULT 0
624#define TARGET_SUBTARGET_ISA_DEFAULT 0
625
626/* Extra bits to force on w/ 32-bit mode. */
627#define TARGET_SUBTARGET32_DEFAULT 0
628#define TARGET_SUBTARGET32_ISA_DEFAULT 0
629
ccf8e764
RH
630/* Extra bits to force on w/ 64-bit mode. */
631#define TARGET_SUBTARGET64_DEFAULT 0
0a1c5e55 632#define TARGET_SUBTARGET64_ISA_DEFAULT 0
ccf8e764 633
fee3eacd
IS
634/* Replace MACH-O, ifdefs by in-line tests, where possible.
635 (a) Macros defined in config/i386/darwin.h */
b069de3b 636#define TARGET_MACHO 0
9005471b 637#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
638#define MACHOPIC_ATT_STUB 0
639/* (b) Macros defined in config/darwin.h */
640#define MACHO_DYNAMIC_NO_PIC_P 0
641#define MACHOPIC_INDIRECT 0
642#define MACHOPIC_PURE 0
9005471b 643
5a579c3b
LE
644/* For the RDOS */
645#define TARGET_RDOS 0
646
9005471b 647/* For the Windows 64-bit ABI. */
7c800926
KT
648#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
649
6510e8bb
KT
650/* For the Windows 32-bit ABI. */
651#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
652
f81c9774
RH
653/* This is re-defined by cygming.h. */
654#define TARGET_SEH 0
655
51212b32 656/* The default abi used by target. */
7c800926 657#define DEFAULT_ABI SYSV_ABI
ccf8e764 658
b8b3f0ca 659/* The default TLS segment register used by target. */
00402c94
RH
660#define DEFAULT_TLS_SEG_REG \
661 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 662
cc69336f
RH
663/* Subtargets may reset this to 1 in order to enable 96-bit long double
664 with the rounding mode forced to 53 bits. */
665#define TARGET_96_ROUND_53_LONG_DOUBLE 0
666
682cd442
GK
667/* -march=native handling only makes sense with compiler running on
668 an x86 or x86_64 chip. If changing this condition, also change
669 the condition in driver-i386.c. */
670#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
671/* In driver-i386.c. */
672extern const char *host_detect_local_cpu (int argc, const char **argv);
673#define EXTRA_SPEC_FUNCTIONS \
674 { "local_cpu_detect", host_detect_local_cpu },
682cd442 675#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
676#endif
677
8981c15b
JM
678#if TARGET_64BIT_DEFAULT
679#define OPT_ARCH64 "!m32"
680#define OPT_ARCH32 "m32"
681#else
f0ea7581
L
682#define OPT_ARCH64 "m64|mx32"
683#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
684#endif
685
1cba2b96
EC
686/* Support for configure-time defaults of some command line options.
687 The order here is important so that -march doesn't squash the
688 tune or cpu values. */
ce998900 689#define OPTION_DEFAULT_SPECS \
da2d4c01 690 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
691 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
692 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 693 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
694 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
695 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
696 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
697 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
698 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 699
241e1a89
SC
700/* Specs for the compiler proper */
701
628714d8 702#ifndef CC1_CPU_SPEC
eb5bb0fd 703#define CC1_CPU_SPEC_1 ""
fa959ce4 704
682cd442 705#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
706#define CC1_CPU_SPEC CC1_CPU_SPEC_1
707#else
708#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
709"%{march=native:%>march=native %:local_cpu_detect(arch) \
710 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
711%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 712#endif
241e1a89 713#endif
c98f8742 714\f
30efe578 715/* Target CPU builtins. */
ab442df7
MM
716#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
717
718/* Target Pragmas. */
719#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 720
628714d8 721#ifndef CC1_SPEC
8015b78d 722#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
723#endif
724
725/* This macro defines names of additional specifications to put in the
726 specs that can be used in various specifications like CC1_SPEC. Its
727 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
728
729 Each subgrouping contains a string constant, that defines the
188fc5b5 730 specification name, and a string constant that used by the GCC driver
bcd86433
SC
731 program.
732
733 Do not define this macro if it does not need to do anything. */
734
735#ifndef SUBTARGET_EXTRA_SPECS
736#define SUBTARGET_EXTRA_SPECS
737#endif
738
739#define EXTRA_SPECS \
628714d8 740 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
741 SUBTARGET_EXTRA_SPECS
742\f
ce998900 743
8ce94e44
JM
744/* Whether to allow x87 floating-point arithmetic on MODE (one of
745 SFmode, DFmode and XFmode) in the current excess precision
746 configuration. */
b8cab8a5
UB
747#define X87_ENABLE_ARITH(MODE) \
748 (flag_unsafe_math_optimizations \
749 || flag_excess_precision == EXCESS_PRECISION_FAST \
750 || (MODE) == XFmode)
8ce94e44
JM
751
752/* Likewise, whether to allow direct conversions from integer mode
753 IMODE (HImode, SImode or DImode) to MODE. */
754#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
755 (flag_unsafe_math_optimizations \
756 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
757 || (MODE) == XFmode \
758 || ((MODE) == DFmode && (IMODE) == SImode) \
759 || (IMODE) == HImode)
760
979c67a5
UB
761/* target machine storage layout */
762
65d9c0ab
JH
763#define SHORT_TYPE_SIZE 16
764#define INT_TYPE_SIZE 32
f0ea7581
L
765#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
766#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 767#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 768#define FLOAT_TYPE_SIZE 32
65d9c0ab 769#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
770#define LONG_DOUBLE_TYPE_SIZE \
771 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 772
c637141a 773#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 774
67adf6a9 775#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 776#define MAX_BITS_PER_WORD 64
0c2dc519
JH
777#else
778#define MAX_BITS_PER_WORD 32
0c2dc519
JH
779#endif
780
c98f8742
JVA
781/* Define this if most significant byte of a word is the lowest numbered. */
782/* That is true on the 80386. */
783
784#define BITS_BIG_ENDIAN 0
785
786/* Define this if most significant byte of a word is the lowest numbered. */
787/* That is not true on the 80386. */
788#define BYTES_BIG_ENDIAN 0
789
790/* Define this if most significant word of a multiword number is the lowest
791 numbered. */
792/* Not true for 80386 */
793#define WORDS_BIG_ENDIAN 0
794
c98f8742 795/* Width of a word, in units (bytes). */
4ae8027b 796#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
797
798#ifndef IN_LIBGCC2
2e64c636
JH
799#define MIN_UNITS_PER_WORD 4
800#endif
c98f8742 801
c98f8742 802/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 803#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 804
e075ae69 805/* Boundary (in *bits*) on which stack pointer should be aligned. */
4ae8027b 806#define STACK_BOUNDARY \
51212b32 807 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 808
2e3f842f
L
809/* Stack boundary of the main function guaranteed by OS. */
810#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
811
de1132d1 812/* Minimum stack boundary. */
cba9c789 813#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 814
d1f87653 815/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 816 aligned; the compiler cannot rely on having this alignment. */
e075ae69 817#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 818
de1132d1 819/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
820 both 32bit and 64bit, to support codes that need 128 bit stack
821 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
822#define PREFERRED_STACK_BOUNDARY_DEFAULT \
823 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
824
825/* 1 if -mstackrealign should be turned on by default. It will
826 generate an alternate prologue and epilogue that realigns the
827 runtime stack if nessary. This supports mixing codes that keep a
828 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 829 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
830#define STACK_REALIGN_DEFAULT 0
831
832/* Boundary (in *bits*) on which the incoming stack is aligned. */
833#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 834
a2851b75
TG
835/* According to Windows x64 software convention, the maximum stack allocatable
836 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
837 instructions allowed to adjust the stack pointer in the epilog, forcing the
838 use of frame pointer for frames larger than 2 GB. This theorical limit
839 is reduced by 256, an over-estimated upper bound for the stack use by the
840 prologue.
841 We define only one threshold for both the prolog and the epilog. When the
4e523f33 842 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
843 regs, then save them, and then allocate the remaining. There is no SEH
844 unwind info for this later allocation. */
845#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
846
ebff937c
SH
847/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
848 mandatory for the 64-bit ABI, and may or may not be true for other
849 operating systems. */
850#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
851
f963b5d9
RS
852/* Minimum allocation boundary for the code of a function. */
853#define FUNCTION_BOUNDARY 8
854
855/* C++ stores the virtual bit in the lowest bit of function pointers. */
856#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 857
c98f8742
JVA
858/* Minimum size in bits of the largest boundary to which any
859 and all fundamental data types supported by the hardware
860 might need to be aligned. No data type wants to be aligned
17f24ff0 861 rounder than this.
fce5a9f2 862
d1f87653 863 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
864 and Pentium Pro XFmode values at 128 bit boundaries.
865
866 When increasing the maximum, also update
867 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 868
3f97cb0b 869#define BIGGEST_ALIGNMENT \
0076c82f 870 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 871
2e3f842f
L
872/* Maximum stack alignment. */
873#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
874
6e4f1168
L
875/* Alignment value for attribute ((aligned)). It is a constant since
876 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 877#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 878
822eda12 879/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 880#define ALIGN_MODE_128(MODE) \
4501d314 881 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 882
17f24ff0 883/* The published ABIs say that doubles should be aligned on word
d1f87653 884 boundaries, so lower the alignment for structure fields unless
6fc605d8 885 -malign-double is set. */
e932b21b 886
e83f3cff
RH
887/* ??? Blah -- this macro is used directly by libobjc. Since it
888 supports no vector modes, cut out the complexity and fall back
889 on BIGGEST_FIELD_ALIGNMENT. */
890#ifdef IN_TARGET_LIBS
ef49d42e
JH
891#ifdef __x86_64__
892#define BIGGEST_FIELD_ALIGNMENT 128
893#else
e83f3cff 894#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 895#endif
e83f3cff 896#else
a4cf4b64
RB
897#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
898 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 899#endif
c98f8742 900
8a022443
JW
901/* If defined, a C expression to compute the alignment for a static
902 variable. TYPE is the data type, and ALIGN is the alignment that
903 the object would ordinarily have. The value of this macro is used
904 instead of that alignment to align the object.
905
906 If this macro is not defined, then ALIGN is used.
907
908 One use of this macro is to increase alignment of medium-size
909 data to make it all fit in fewer cache lines. Another is to
910 cause character arrays to be word-aligned so that `strcpy' calls
911 that copy constants to character arrays can be done inline. */
912
df8a1d28
JJ
913#define DATA_ALIGNMENT(TYPE, ALIGN) \
914 ix86_data_alignment ((TYPE), (ALIGN), true)
915
916/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
917 some alignment increase, instead of optimization only purposes. E.g.
918 AMD x86-64 psABI says that variables with array type larger than 15 bytes
919 must be aligned to 16 byte boundaries.
920
921 If this macro is not defined, then ALIGN is used. */
922
923#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
924 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
925
926/* If defined, a C expression to compute the alignment for a local
927 variable. TYPE is the data type, and ALIGN is the alignment that
928 the object would ordinarily have. The value of this macro is used
929 instead of that alignment to align the object.
930
931 If this macro is not defined, then ALIGN is used.
932
933 One use of this macro is to increase alignment of medium-size
934 data to make it all fit in fewer cache lines. */
935
76fe54f0
L
936#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
937 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
938
939/* If defined, a C expression to compute the alignment for stack slot.
940 TYPE is the data type, MODE is the widest mode available, and ALIGN
941 is the alignment that the slot would ordinarily have. The value of
942 this macro is used instead of that alignment to align the slot.
943
944 If this macro is not defined, then ALIGN is used when TYPE is NULL,
945 Otherwise, LOCAL_ALIGNMENT will be used.
946
947 One use of this macro is to set alignment of stack slot to the
948 maximum alignment of all possible modes which the slot may have. */
949
950#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
951 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 952
9bfaf89d
JJ
953/* If defined, a C expression to compute the alignment for a local
954 variable DECL.
955
956 If this macro is not defined, then
957 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
958
959 One use of this macro is to increase alignment of medium-size
960 data to make it all fit in fewer cache lines. */
961
962#define LOCAL_DECL_ALIGNMENT(DECL) \
963 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
964
ae58e548
JJ
965/* If defined, a C expression to compute the minimum required alignment
966 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
967 MODE, assuming normal alignment ALIGN.
968
969 If this macro is not defined, then (ALIGN) will be used. */
970
971#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 972 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 973
9bfaf89d 974
9cd10576 975/* Set this nonzero if move instructions will actually fail to work
c98f8742 976 when given unaligned data. */
b4ac57ab 977#define STRICT_ALIGNMENT 0
c98f8742
JVA
978
979/* If bit field type is int, don't let it cross an int,
980 and give entire struct the alignment of an int. */
43a88a8c 981/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 982#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
983\f
984/* Standard register usage. */
985
986/* This processor has special stack-like registers. See reg-stack.c
892a2d68 987 for details. */
c98f8742
JVA
988
989#define STACK_REGS
ce998900 990
f48b4284
UB
991#define IS_STACK_MODE(MODE) \
992 (X87_FLOAT_MODE_P (MODE) \
993 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
994 || TARGET_MIX_SSE_I387))
c98f8742
JVA
995
996/* Number of actual hardware registers.
997 The hardware registers are assigned numbers for the compiler
998 from 0 to just below FIRST_PSEUDO_REGISTER.
999 All registers that the compiler knows about must be given numbers,
1000 even those that are not normally considered general registers.
1001
1002 In the 80386 we give the 8 general purpose registers the numbers 0-7.
1003 We number the floating point registers 8-15.
1004 Note that registers 0-7 can be accessed as a short or int,
1005 while only 0-3 may be used with byte `mov' instructions.
1006
1007 Reg 16 does not correspond to any hardware register, but instead
1008 appears in the RTL as an argument pointer prior to reload, and is
1009 eliminated during reloading in favor of either the stack or frame
892a2d68 1010 pointer. */
c98f8742 1011
05416670 1012#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 1013
3073d01c
ML
1014/* Number of hardware registers that go into the DWARF-2 unwind info.
1015 If not defined, equals FIRST_PSEUDO_REGISTER. */
1016
1017#define DWARF_FRAME_REGISTERS 17
1018
c98f8742
JVA
1019/* 1 for registers that have pervasive standard uses
1020 and are not available for the register allocator.
3f3f2124 1021 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 1022
621bc046
UB
1023 REX registers are disabled for 32bit targets in
1024 TARGET_CONDITIONAL_REGISTER_USAGE. */
1025
a7180f70
BS
1026#define FIXED_REGISTERS \
1027/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1028{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
b0d95de8
UB
1029/*arg,flags,fpsr,fpcr,frame*/ \
1030 1, 1, 1, 1, 1, \
a7180f70
BS
1031/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1032 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1033/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1034 0, 0, 0, 0, 0, 0, 0, 0, \
1035/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1036 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1037/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1038 0, 0, 0, 0, 0, 0, 0, 0, \
1039/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1040 0, 0, 0, 0, 0, 0, 0, 0, \
1041/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1042 0, 0, 0, 0, 0, 0, 0, 0, \
1043/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1044 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
1045
1046/* 1 for registers not available across function calls.
1047 These must include the FIXED_REGISTERS and also any
1048 registers that can be used without being saved.
1049 The latter must include the registers where values are returned
1050 and the register where structure-value addresses are passed.
fce5a9f2
EC
1051 Aside from that, you can include as many other registers as you like.
1052
621bc046
UB
1053 Value is set to 1 if the register is call used unconditionally.
1054 Bit one is set if the register is call used on TARGET_32BIT ABI.
1055 Bit two is set if the register is call used on TARGET_64BIT ABI.
1056 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1057
1058 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1059
1f3ccbc8
L
1060#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1061 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1062
a7180f70
BS
1063#define CALL_USED_REGISTERS \
1064/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1065{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
b0d95de8
UB
1066/*arg,flags,fpsr,fpcr,frame*/ \
1067 1, 1, 1, 1, 1, \
a7180f70 1068/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1069 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1070/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1071 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1072/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1073 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1074/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1075 6, 6, 6, 6, 6, 6, 6, 6, \
1076/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1077 6, 6, 6, 6, 6, 6, 6, 6, \
1078/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1079 6, 6, 6, 6, 6, 6, 6, 6, \
1080 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1081 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1082
3b3c6a3f
MM
1083/* Order in which to allocate registers. Each register must be
1084 listed once, even those in FIXED_REGISTERS. List frame pointer
1085 late and fixed registers last. Note that, in general, we prefer
1086 registers listed in CALL_USED_REGISTERS, keeping the others
1087 available for storage of persistent values.
1088
5a733826 1089 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1090 so this is just empty initializer for array. */
3b3c6a3f 1091
162f023b
JH
1092#define REG_ALLOC_ORDER \
1093{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1094 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1095 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
3f97cb0b 1096 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
eafa30ef 1097 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 }
3b3c6a3f 1098
5a733826 1099/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1100 to be rearranged based on a particular function. When using sse math,
03c259ad 1101 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1102
5a733826 1103#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1104
f5316dfe 1105
7c800926
KT
1106#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1107
8521c414 1108#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1109 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1110 && GENERAL_REGNO_P (REGNO) \
1111 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1112
1113#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1114
95879c72
L
1115#define VALID_AVX256_REG_MODE(MODE) \
1116 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1117 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1118 || (MODE) == V4DFmode)
95879c72 1119
4ac005ba 1120#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1121 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1122
3f97cb0b
AI
1123#define VALID_AVX512F_SCALAR_MODE(MODE) \
1124 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1125 || (MODE) == SFmode)
1126
1127#define VALID_AVX512F_REG_MODE(MODE) \
1128 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1129 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1130 || (MODE) == V4TImode)
1131
e6f146d2
SP
1132#define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1133 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1134
05416670 1135#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1136 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1137 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1138 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1139
ce998900
UB
1140#define VALID_SSE2_REG_MODE(MODE) \
1141 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1142 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1143
d9a5f180 1144#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1145 ((MODE) == V1TImode || (MODE) == TImode \
1146 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1147 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1148
47f339cf 1149#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1150 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1151
d9a5f180 1152#define VALID_MMX_REG_MODE(MODE) \
10a97ae6
UB
1153 ((MODE == V1DImode) || (MODE) == DImode \
1154 || (MODE) == V2SImode || (MODE) == SImode \
1155 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1156
05416670
UB
1157#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1158
1159#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1160
ce998900
UB
1161#define VALID_DFP_MODE_P(MODE) \
1162 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1163
d9a5f180 1164#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1165 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1166 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1167
d9a5f180 1168#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1169 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1170 || (MODE) == DImode \
1171 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1172 || (MODE) == CDImode \
1173 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1174 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1175
822eda12 1176/* Return true for modes passed in SSE registers. */
ce998900 1177#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1178 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1179 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1180 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1181 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1182 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1183 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1184 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1185 || (MODE) == V16SFmode)
822eda12 1186
05416670
UB
1187#define X87_FLOAT_MODE_P(MODE) \
1188 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1189
05416670
UB
1190#define SSE_FLOAT_MODE_P(MODE) \
1191 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1192
1193#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1194 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1195 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1196
ff25ef99
ZD
1197/* It is possible to write patterns to move flags; but until someone
1198 does it, */
1199#define AVOID_CCMODE_COPIES
c98f8742 1200
e075ae69 1201/* Specify the modes required to caller save a given hard regno.
787dc842 1202 We do this on i386 to prevent flags from being saved at all.
e075ae69 1203
787dc842
JH
1204 Kill any attempts to combine saving of modes. */
1205
d9a5f180
GS
1206#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1207 (CC_REGNO_P (REGNO) ? VOIDmode \
1208 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1209 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1210 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1211 && TARGET_PARTIAL_REG_STALL) \
85a77221 1212 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1213 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1214 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1215 : (MODE))
ce998900 1216
c98f8742
JVA
1217/* Specify the registers used for certain standard purposes.
1218 The values of these macros are register numbers. */
1219
1220/* on the 386 the pc register is %eip, and is not usable as a general
1221 register. The ordinary mov instructions won't work */
1222/* #define PC_REGNUM */
1223
05416670
UB
1224/* Base register for access to arguments of the function. */
1225#define ARG_POINTER_REGNUM ARGP_REG
1226
c98f8742 1227/* Register to use for pushing function arguments. */
05416670 1228#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1229
1230/* Base register for access to local variables of the function. */
05416670
UB
1231#define FRAME_POINTER_REGNUM FRAME_REG
1232#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1233
05416670
UB
1234#define FIRST_INT_REG AX_REG
1235#define LAST_INT_REG SP_REG
c98f8742 1236
05416670
UB
1237#define FIRST_QI_REG AX_REG
1238#define LAST_QI_REG BX_REG
c98f8742
JVA
1239
1240/* First & last stack-like regs */
05416670
UB
1241#define FIRST_STACK_REG ST0_REG
1242#define LAST_STACK_REG ST7_REG
c98f8742 1243
05416670
UB
1244#define FIRST_SSE_REG XMM0_REG
1245#define LAST_SSE_REG XMM7_REG
fce5a9f2 1246
05416670
UB
1247#define FIRST_MMX_REG MM0_REG
1248#define LAST_MMX_REG MM7_REG
a7180f70 1249
05416670
UB
1250#define FIRST_REX_INT_REG R8_REG
1251#define LAST_REX_INT_REG R15_REG
3f3f2124 1252
05416670
UB
1253#define FIRST_REX_SSE_REG XMM8_REG
1254#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1255
05416670
UB
1256#define FIRST_EXT_REX_SSE_REG XMM16_REG
1257#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1258
05416670
UB
1259#define FIRST_MASK_REG MASK0_REG
1260#define LAST_MASK_REG MASK7_REG
85a77221 1261
aabcd309 1262/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1263 requiring a frame pointer. */
1264#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1265#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1266#endif
1267
1268/* Make sure we can access arbitrary call frames. */
1269#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1270
c98f8742 1271/* Register to hold the addressing base for position independent
5b43fed1
RH
1272 code access to data items. We don't use PIC pointer for 64bit
1273 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1274 pessimizing code dealing with EBX.
bd09bdeb
RH
1275
1276 To avoid clobbering a call-saved register unnecessarily, we renumber
1277 the pic register when possible. The change is visible after the
1278 prologue has been emitted. */
1279
e8b5eb25 1280#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1281
bcb21886 1282#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1283 (ix86_use_pseudo_pic_reg () \
1284 ? (pic_offset_table_rtx \
1285 ? INVALID_REGNUM \
1286 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1287 : INVALID_REGNUM)
c98f8742 1288
5fc0e5df
KW
1289#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1290
c51e6d85 1291/* This is overridden by <cygwin.h>. */
5e062767
DS
1292#define MS_AGGREGATE_RETURN 0
1293
61fec9ff 1294#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1295\f
1296/* Define the classes of registers for register constraints in the
1297 machine description. Also define ranges of constants.
1298
1299 One of the classes must always be named ALL_REGS and include all hard regs.
1300 If there is more than one class, another class must be named NO_REGS
1301 and contain no registers.
1302
1303 The name GENERAL_REGS must be the name of a class (or an alias for
1304 another name such as ALL_REGS). This is the class of registers
1305 that is allowed by "g" or "r" in a register constraint.
1306 Also, registers outside this class are allocated only when
1307 instructions express preferences for them.
1308
1309 The classes must be numbered in nondecreasing order; that is,
1310 a larger-numbered class must never be contained completely
2e24efd3
AM
1311 in a smaller-numbered class. This is why CLOBBERED_REGS class
1312 is listed early, even though in 64-bit mode it contains more
1313 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1314
1315 For any two classes, it is very desirable that there be another
ab408a86
JVA
1316 class that represents their union.
1317
03c259ad 1318 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1319
1320enum reg_class
1321{
1322 NO_REGS,
e075ae69 1323 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1324 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1325 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1326 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1327 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1328 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1329 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1330 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1331 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1332 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1333 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1334 FLOAT_REGS,
06f4e35d 1335 SSE_FIRST_REG,
45392c76 1336 NO_REX_SSE_REGS,
a7180f70 1337 SSE_REGS,
3f97cb0b 1338 ALL_SSE_REGS,
a7180f70 1339 MMX_REGS,
446988df
JH
1340 FLOAT_SSE_REGS,
1341 FLOAT_INT_REGS,
1342 INT_SSE_REGS,
1343 FLOAT_INT_SSE_REGS,
85a77221 1344 MASK_REGS,
d18cbbf6
UB
1345 ALL_MASK_REGS,
1346 ALL_REGS,
1347 LIM_REG_CLASSES
c98f8742
JVA
1348};
1349
d9a5f180
GS
1350#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1351
1352#define INTEGER_CLASS_P(CLASS) \
1353 reg_class_subset_p ((CLASS), GENERAL_REGS)
1354#define FLOAT_CLASS_P(CLASS) \
1355 reg_class_subset_p ((CLASS), FLOAT_REGS)
1356#define SSE_CLASS_P(CLASS) \
3f97cb0b 1357 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1358#define MMX_CLASS_P(CLASS) \
f75959a6 1359 ((CLASS) == MMX_REGS)
4ed04e93 1360#define MASK_CLASS_P(CLASS) \
d18cbbf6 1361 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1362#define MAYBE_INTEGER_CLASS_P(CLASS) \
1363 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1364#define MAYBE_FLOAT_CLASS_P(CLASS) \
1365 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1366#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1367 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1368#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1369 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221 1370#define MAYBE_MASK_CLASS_P(CLASS) \
d18cbbf6 1371 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1372
1373#define Q_CLASS_P(CLASS) \
1374 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1375
0bd72901
UB
1376#define MAYBE_NON_Q_CLASS_P(CLASS) \
1377 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1378
43f3a59d 1379/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1380
1381#define REG_CLASS_NAMES \
1382{ "NO_REGS", \
ab408a86 1383 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1384 "SIREG", "DIREG", \
e075ae69 1385 "AD_REGS", \
2e24efd3 1386 "CLOBBERED_REGS", \
e075ae69 1387 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1388 "TLS_GOTBASE_REGS", \
c98f8742 1389 "INDEX_REGS", \
3f3f2124 1390 "LEGACY_REGS", \
c98f8742
JVA
1391 "GENERAL_REGS", \
1392 "FP_TOP_REG", "FP_SECOND_REG", \
1393 "FLOAT_REGS", \
cb482895 1394 "SSE_FIRST_REG", \
45392c76 1395 "NO_REX_SSE_REGS", \
a7180f70 1396 "SSE_REGS", \
3f97cb0b 1397 "ALL_SSE_REGS", \
a7180f70 1398 "MMX_REGS", \
446988df 1399 "FLOAT_SSE_REGS", \
8fcaaa80 1400 "FLOAT_INT_REGS", \
446988df
JH
1401 "INT_SSE_REGS", \
1402 "FLOAT_INT_SSE_REGS", \
85a77221 1403 "MASK_REGS", \
d18cbbf6 1404 "ALL_MASK_REGS", \
c98f8742
JVA
1405 "ALL_REGS" }
1406
ac2e563f
RH
1407/* Define which registers fit in which classes. This is an initializer
1408 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1409
621bc046
UB
1410 Note that CLOBBERED_REGS are calculated by
1411 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1412
d18cbbf6
UB
1413#define REG_CLASS_CONTENTS \
1414{ { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1415 { 0x01, 0x0, 0x0 }, /* AREG */ \
1416 { 0x02, 0x0, 0x0 }, /* DREG */ \
1417 { 0x04, 0x0, 0x0 }, /* CREG */ \
1418 { 0x08, 0x0, 0x0 }, /* BREG */ \
1419 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1420 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1421 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1422 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1423 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1424 { 0x1100f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1425 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1426 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1427 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1428 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1429 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1430 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1431 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1432 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1433{ 0x1fe00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1434{ 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1435{ 0x1fe00000, 0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1436{ 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
d18cbbf6
UB
1437{ 0x1fe0ff00, 0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1438{ 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1439{ 0x1ff100ff, 0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1440{ 0x1ff1ffff, 0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1441 { 0x0, 0x0, 0x1fc0 }, /* MASK_REGS */ \
1442 { 0x0, 0x0, 0x1fe0 }, /* ALL_MASK_REGS */ \
1443{ 0xffffffff, 0xffffffff, 0x1fff } /* ALL_REGS */ \
e075ae69 1444}
c98f8742
JVA
1445
1446/* The same information, inverted:
1447 Return the class number of the smallest class containing
1448 reg number REGNO. This could be a conditional expression
1449 or could index an array. */
1450
1a6e82b8 1451#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1452
42db504c
SB
1453/* When this hook returns true for MODE, the compiler allows
1454 registers explicitly used in the rtl to be used as spill registers
1455 but prevents the compiler from extending the lifetime of these
1456 registers. */
1457#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1458
fc27f749 1459#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1460#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1461
1462#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1463#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1464
1465#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1466#define REX_INT_REGNO_P(N) \
1467 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1468
58b0b34c 1469#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1470#define GENERAL_REGNO_P(N) \
58b0b34c 1471 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1472
fc27f749
UB
1473#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1474#define ANY_QI_REGNO_P(N) \
1475 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1476
66aaf16f
UB
1477#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1478#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1479
fc27f749 1480#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1481#define SSE_REGNO_P(N) \
1482 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1483 || REX_SSE_REGNO_P (N) \
1484 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1485
4977bab6 1486#define REX_SSE_REGNO_P(N) \
fb84c7a0 1487 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1488
0a48088a
IT
1489#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1490
3f97cb0b
AI
1491#define EXT_REX_SSE_REGNO_P(N) \
1492 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1493
05416670
UB
1494#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1495#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1496
9e4a4dd6 1497#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1498#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1499
fc27f749 1500#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1501#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1502
e075ae69
RH
1503#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1504#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1505
5fbb13a7
KY
1506#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1507#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1508 || (N) == XMM4_REG \
1509 || (N) == XMM8_REG \
1510 || (N) == XMM12_REG \
1511 || (N) == XMM16_REG \
1512 || (N) == XMM20_REG \
1513 || (N) == XMM24_REG \
1514 || (N) == XMM28_REG)
1515
05416670
UB
1516/* First floating point reg */
1517#define FIRST_FLOAT_REG FIRST_STACK_REG
1518#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1519
1520#define SSE_REGNO(N) \
1521 ((N) < 8 ? FIRST_SSE_REG + (N) \
1522 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1523 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1524
c98f8742
JVA
1525/* The class value for index registers, and the one for base regs. */
1526
1527#define INDEX_REG_CLASS INDEX_REGS
1528#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1529\f
1530/* Stack layout; function entry, exit and calling. */
1531
1532/* Define this if pushing a word on the stack
1533 makes the stack pointer a smaller address. */
62f9f30b 1534#define STACK_GROWS_DOWNWARD 1
c98f8742 1535
a4d05547 1536/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1537 is at the high-address end of the local variables;
1538 that is, each additional local variable allocated
1539 goes at a more negative offset in the frame. */
f62c8a5c 1540#define FRAME_GROWS_DOWNWARD 1
c98f8742 1541
7b4df2bf 1542#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
8c2b2fae
UB
1543
1544/* If defined, the maximum amount of space required for outgoing arguments
1545 will be computed and placed into the variable `crtl->outgoing_args_size'.
1546 No space will be pushed onto the stack for each call; instead, the
1547 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1548
1549 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1550 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1551 mode the difference is less drastic but visible.
1552
1553 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1554 actually grow with accumulation. Is that because accumulated args
41ee845b 1555 unwind info became unnecesarily bloated?
f830ddc2
RH
1556
1557 With the 64-bit MS ABI, we can generate correct code with or without
1558 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1559 generated without accumulated args is terrible.
41ee845b
JH
1560
1561 If stack probes are required, the space used for large function
1562 arguments on the stack must also be probed, so enable
f8071c05
L
1563 -maccumulate-outgoing-args so this happens in the prologue.
1564
1565 We must use argument accumulation in interrupt function if stack
1566 may be realigned to avoid DRAP. */
f73ad30e 1567
6c6094f1 1568#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1569 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1570 && optimize_function_for_speed_p (cfun)) \
1571 || (cfun->machine->func_type != TYPE_NORMAL \
1572 && crtl->stack_realign_needed) \
1573 || TARGET_STACK_PROBE \
1574 || TARGET_64BIT_MS_ABI \
ff734e26 1575 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1576
1577/* If defined, a C expression whose value is nonzero when we want to use PUSH
1578 instructions to pass outgoing arguments. */
1579
1580#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1581
2da4124d
L
1582/* We want the stack and args grow in opposite directions, even if
1583 PUSH_ARGS is 0. */
1584#define PUSH_ARGS_REVERSED 1
1585
c98f8742
JVA
1586/* Offset of first parameter from the argument pointer register value. */
1587#define FIRST_PARM_OFFSET(FNDECL) 0
1588
a7180f70
BS
1589/* Define this macro if functions should assume that stack space has been
1590 allocated for arguments even when their values are passed in registers.
1591
1592 The value of this macro is the size, in bytes, of the area reserved for
1593 arguments passed in registers for the function represented by FNDECL.
1594
1595 This space can be allocated by the caller, or be a part of the
1596 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1597 which. */
7c800926
KT
1598#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1599
4ae8027b 1600#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1601 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1602
c98f8742
JVA
1603/* Define how to find the value returned by a library function
1604 assuming the value has mode MODE. */
1605
4ae8027b 1606#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1607
e9125c09
TW
1608/* Define the size of the result block used for communication between
1609 untyped_call and untyped_return. The block contains a DImode value
1610 followed by the block used by fnsave and frstor. */
1611
1612#define APPLY_RESULT_SIZE (8+108)
1613
b08de47e 1614/* 1 if N is a possible register number for function argument passing. */
53c17031 1615#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1616
1617/* Define a data type for recording info about an argument list
1618 during the scan of that argument list. This data type should
1619 hold all necessary information about the function itself
1620 and about the args processed so far, enough to enable macros
b08de47e 1621 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1622
e075ae69 1623typedef struct ix86_args {
fa283935 1624 int words; /* # words passed so far */
b08de47e
MM
1625 int nregs; /* # registers available for passing */
1626 int regno; /* next available register number */
3e65f251
KT
1627 int fastcall; /* fastcall or thiscall calling convention
1628 is used */
fa283935 1629 int sse_words; /* # sse words passed so far */
a7180f70 1630 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1631 int warn_avx512f; /* True when we want to warn
1632 about AVX512F ABI. */
95879c72 1633 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1634 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935 1635 int warn_mmx; /* True when we want to warn about MMX ABI. */
974aedcc
MP
1636 int warn_empty; /* True when we want to warn about empty classes
1637 passing ABI change. */
fa283935
UB
1638 int sse_regno; /* next available sse register number */
1639 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1640 int mmx_nregs; /* # mmx registers available for passing */
1641 int mmx_regno; /* next available mmx register number */
892a2d68 1642 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1643 int caller; /* true if it is caller. */
2824d6e5
UB
1644 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1645 SFmode/DFmode arguments should be passed
1646 in SSE registers. Otherwise 0. */
d5e254e1 1647 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1648 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1649 MS_ABI for ms abi. */
e66fc623 1650 tree decl; /* Callee decl. */
b08de47e 1651} CUMULATIVE_ARGS;
c98f8742
JVA
1652
1653/* Initialize a variable CUM of type CUMULATIVE_ARGS
1654 for a call to a function whose data type is FNTYPE.
b08de47e 1655 For a library call, FNTYPE is 0. */
c98f8742 1656
0f6937fe 1657#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1658 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1659 (N_NAMED_ARGS) != -1)
c98f8742 1660
c98f8742
JVA
1661/* Output assembler code to FILE to increment profiler label # LABELNO
1662 for profiling a function entry. */
1663
1a6e82b8
UB
1664#define FUNCTION_PROFILER(FILE, LABELNO) \
1665 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1666
1667#define MCOUNT_NAME "_mcount"
1668
3c5273a9
KT
1669#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1670
a5fa1ecd 1671#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1672
1673/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1674 the stack pointer does not matter. The value is tested only in
1675 functions that have frame pointers.
1676 No definition is equivalent to always zero. */
fce5a9f2 1677/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1678 we have to restore it ourselves from the frame pointer, in order to
1679 use pop */
1680
1681#define EXIT_IGNORE_STACK 1
1682
f8071c05
L
1683/* Define this macro as a C expression that is nonzero for registers
1684 used by the epilogue or the `return' pattern. */
1685
1686#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1687
c98f8742
JVA
1688/* Output assembler code for a block containing the constant parts
1689 of a trampoline, leaving space for the variable parts. */
1690
a269a03c 1691/* On the 386, the trampoline contains two instructions:
c98f8742 1692 mov #STATIC,ecx
a269a03c
JC
1693 jmp FUNCTION
1694 The trampoline is generated entirely at runtime. The operand of JMP
1695 is the address of FUNCTION relative to the instruction following the
1696 JMP (which is 5 bytes long). */
c98f8742
JVA
1697
1698/* Length in units of the trampoline for entering a nested function. */
1699
6514899f 1700#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
c98f8742
JVA
1701\f
1702/* Definitions for register eliminations.
1703
1704 This is an array of structures. Each structure initializes one pair
1705 of eliminable registers. The "from" register number is given first,
1706 followed by "to". Eliminations of the same "from" register are listed
1707 in order of preference.
1708
afc2cd05
NC
1709 There are two registers that can always be eliminated on the i386.
1710 The frame pointer and the arg pointer can be replaced by either the
1711 hard frame pointer or to the stack pointer, depending upon the
1712 circumstances. The hard frame pointer is not used before reload and
1713 so it is not eligible for elimination. */
c98f8742 1714
564d80f4
JH
1715#define ELIMINABLE_REGS \
1716{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1717 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1718 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1719 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1720
c98f8742
JVA
1721/* Define the offset between two registers, one to be eliminated, and the other
1722 its replacement, at the start of a routine. */
1723
d9a5f180
GS
1724#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1725 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1726\f
1727/* Addressing modes, and classification of registers for them. */
1728
c98f8742
JVA
1729/* Macros to check register numbers against specific register classes. */
1730
1731/* These assume that REGNO is a hard or pseudo reg number.
1732 They give nonzero only if REGNO is a hard reg of the suitable class
1733 or a pseudo reg currently allocated to a suitable hard reg.
1734 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1735 has been allocated, which happens in reginfo.c during register
1736 allocation. */
c98f8742 1737
3f3f2124
JH
1738#define REGNO_OK_FOR_INDEX_P(REGNO) \
1739 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1740 || REX_INT_REGNO_P (REGNO) \
1741 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1742 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1743
3f3f2124 1744#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1745 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1746 || (REGNO) == ARG_POINTER_REGNUM \
1747 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1748 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1749
c98f8742
JVA
1750/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1751 and check its validity for a certain class.
1752 We have two alternate definitions for each of them.
1753 The usual definition accepts all pseudo regs; the other rejects
1754 them unless they have been allocated suitable hard regs.
1755 The symbol REG_OK_STRICT causes the latter definition to be used.
1756
1757 Most source files want to accept pseudo regs in the hope that
1758 they will get allocated to the class that the insn wants them to be in.
1759 Source files for reload pass need to be strict.
1760 After reload, it makes no difference, since pseudo regs have
1761 been eliminated by then. */
1762
c98f8742 1763
ff482c8d 1764/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1765#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1766 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1767 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1768 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1769
3b3c6a3f 1770#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1771 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1772 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1773 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1774 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1775
3b3c6a3f
MM
1776/* Strict versions, hard registers only */
1777#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1778#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1779
3b3c6a3f 1780#ifndef REG_OK_STRICT
d9a5f180
GS
1781#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1782#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1783
1784#else
d9a5f180
GS
1785#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1786#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1787#endif
1788
331d9186 1789/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1790 that is a valid memory address for an instruction.
1791 The MODE argument is the machine mode for the MEM expression
1792 that wants to use this address.
1793
331d9186 1794 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1795 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1796
1797 See legitimize_pic_address in i386.c for details as to what
1798 constitutes a legitimate address when -fpic is used. */
1799
1800#define MAX_REGS_PER_ADDRESS 2
1801
f996902d 1802#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1803
b949ea8b
JW
1804/* If defined, a C expression to determine the base term of address X.
1805 This macro is used in only one place: `find_base_term' in alias.c.
1806
1807 It is always safe for this macro to not be defined. It exists so
1808 that alias analysis can understand machine-dependent addresses.
1809
1810 The typical use of this macro is to handle addresses containing
1811 a label_ref or symbol_ref within an UNSPEC. */
1812
d9a5f180 1813#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1814
c98f8742 1815/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1816 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1817 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1818
f996902d 1819#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1820
1821#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1822 (GET_CODE (X) == SYMBOL_REF \
1823 || GET_CODE (X) == LABEL_REF \
1824 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1825\f
b08de47e
MM
1826/* Max number of args passed in registers. If this is more than 3, we will
1827 have problems with ebx (register #4), since it is a caller save register and
1828 is also used as the pic register in ELF. So for now, don't allow more than
1829 3 registers to be passed in registers. */
1830
7c800926
KT
1831/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1832#define X86_64_REGPARM_MAX 6
72fa3605 1833#define X86_64_MS_REGPARM_MAX 4
7c800926 1834
72fa3605 1835#define X86_32_REGPARM_MAX 3
7c800926 1836
4ae8027b 1837#define REGPARM_MAX \
2824d6e5
UB
1838 (TARGET_64BIT \
1839 ? (TARGET_64BIT_MS_ABI \
1840 ? X86_64_MS_REGPARM_MAX \
1841 : X86_64_REGPARM_MAX) \
4ae8027b 1842 : X86_32_REGPARM_MAX)
d2836273 1843
72fa3605
UB
1844#define X86_64_SSE_REGPARM_MAX 8
1845#define X86_64_MS_SSE_REGPARM_MAX 4
1846
b6010cab 1847#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1848
4ae8027b 1849#define SSE_REGPARM_MAX \
2824d6e5
UB
1850 (TARGET_64BIT \
1851 ? (TARGET_64BIT_MS_ABI \
1852 ? X86_64_MS_SSE_REGPARM_MAX \
1853 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1854 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1855
1856#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1857\f
1858/* Specify the machine mode that this machine uses
1859 for the index in the tablejump instruction. */
dc4d7240 1860#define CASE_VECTOR_MODE \
6025b127 1861 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1862
c98f8742
JVA
1863/* Define this as 1 if `char' should by default be signed; else as 0. */
1864#define DEFAULT_SIGNED_CHAR 1
1865
1866/* Max number of bytes we can move from memory to memory
1867 in one reasonably fast instruction. */
65d9c0ab
JH
1868#define MOVE_MAX 16
1869
1870/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1871 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1872 number of bytes we can move with a single instruction.
1873
1874 ??? We should use TImode in 32-bit mode and use OImode or XImode
1875 if they are available. But since by_pieces_ninsns determines the
1876 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1877 64-bit mode. */
1878#define MOVE_MAX_PIECES \
1879 ((TARGET_64BIT \
1880 && TARGET_SSE2 \
1881 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1882 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1883 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1884
7e24ffc9 1885/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1886 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1887 Increasing the value will always make code faster, but eventually
1888 incurs high cost in increased code size.
c98f8742 1889
e2e52e1b 1890 If you don't define this, a reasonable default is used. */
c98f8742 1891
e04ad03d 1892#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1893
45d78e7f
JJ
1894/* If a clear memory operation would take CLEAR_RATIO or more simple
1895 move-instruction sequences, we will do a clrmem or libcall instead. */
1896
e04ad03d 1897#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1898
53f00dde
UB
1899/* Define if shifts truncate the shift count which implies one can
1900 omit a sign-extension or zero-extension of a shift count.
1901
1902 On i386, shifts do truncate the count. But bit test instructions
1903 take the modulo of the bit offset operand. */
c98f8742
JVA
1904
1905/* #define SHIFT_COUNT_TRUNCATED */
1906
d9f32422
JH
1907/* A macro to update M and UNSIGNEDP when an object whose type is
1908 TYPE and which has the specified mode and signedness is to be
1909 stored in a register. This macro is only called when TYPE is a
1910 scalar type.
1911
f710504c 1912 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1913 quantities to SImode. The choice depends on target type. */
1914
1915#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1916do { \
d9f32422
JH
1917 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1918 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1919 (MODE) = SImode; \
1920} while (0)
d9f32422 1921
c98f8742
JVA
1922/* Specify the machine mode that pointers have.
1923 After generation of rtl, the compiler makes no further distinction
1924 between pointers and any other objects of this machine mode. */
28968d91 1925#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1926
5e1e91c4
L
1927/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1928 NONLOCAL needs space to save both shadow stack and stack pointers.
1929
1930 FIXME: We only need to save and restore stack pointer in ptr_mode.
1931 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1932 to save and restore stack pointer. See
1933 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1934 */
1935#define STACK_SAVEAREA_MODE(LEVEL) \
1936 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1937
f0ea7581
L
1938/* A C expression whose value is zero if pointers that need to be extended
1939 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1940 greater then zero if they are zero-extended and less then zero if the
1941 ptr_extend instruction should be used. */
1942
1943#define POINTERS_EXTEND_UNSIGNED 1
1944
c98f8742
JVA
1945/* A function address in a call instruction
1946 is a byte address (for indexing purposes)
1947 so give the MEM rtx a byte's mode. */
1948#define FUNCTION_MODE QImode
d4ba09c0 1949\f
d4ba09c0 1950
d4ba09c0
SC
1951/* A C expression for the cost of a branch instruction. A value of 1
1952 is the default; other values are interpreted relative to that. */
1953
3a4fd356
JH
1954#define BRANCH_COST(speed_p, predictable_p) \
1955 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1956
e327d1a3
L
1957/* An integer expression for the size in bits of the largest integer machine
1958 mode that should actually be used. We allow pairs of registers. */
1959#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1960
d4ba09c0
SC
1961/* Define this macro as a C expression which is nonzero if accessing
1962 less than a word of memory (i.e. a `char' or a `short') is no
1963 faster than accessing a word of memory, i.e., if such access
1964 require more than one instruction or if there is no difference in
1965 cost between byte and (aligned) word loads.
1966
1967 When this macro is not defined, the compiler will access a field by
1968 finding the smallest containing object; when it is defined, a
1969 fullword load will be used if alignment permits. Unless bytes
1970 accesses are faster than word accesses, using word accesses is
1971 preferable since it may eliminate subsequent memory access if
1972 subsequent accesses occur to other fields in the same word of the
1973 structure, but to different bytes. */
1974
1975#define SLOW_BYTE_ACCESS 0
1976
1977/* Nonzero if access to memory by shorts is slow and undesirable. */
1978#define SLOW_SHORT_ACCESS 0
1979
d4ba09c0
SC
1980/* Define this macro if it is as good or better to call a constant
1981 function address than to call an address kept in a register.
1982
1983 Desirable on the 386 because a CALL with a constant address is
1984 faster than one with a register address. */
1985
1e8552c2 1986#define NO_FUNCTION_CSE 1
c98f8742 1987\f
c572e5ba
JVA
1988/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1989 return the mode to be used for the comparison.
1990
1991 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1992 VOIDmode should be used in all other cases.
c572e5ba 1993
16189740 1994 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1995 possible, to allow for more combinations. */
c98f8742 1996
d9a5f180 1997#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1998
9cd10576 1999/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2000 reversed. */
2001
2002#define REVERSIBLE_CC_MODE(MODE) 1
2003
2004/* A C expression whose value is reversed condition code of the CODE for
2005 comparison done in CC_MODE mode. */
3c5cb3e4 2006#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2007
c98f8742
JVA
2008\f
2009/* Control the assembler format that we output, to the extent
2010 this does not vary between assemblers. */
2011
2012/* How to refer to registers in assembler output.
892a2d68 2013 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2014
a7b376ee 2015/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2016 For non floating point regs, the following are the HImode names.
2017
2018 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2019 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2020 "y" code. */
c98f8742 2021
a7180f70
BS
2022#define HI_REGISTER_NAMES \
2023{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2024 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
b0d95de8 2025 "argp", "flags", "fpsr", "fpcr", "frame", \
a7180f70 2026 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2027 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2028 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2029 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2030 "xmm16", "xmm17", "xmm18", "xmm19", \
2031 "xmm20", "xmm21", "xmm22", "xmm23", \
2032 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2033 "xmm28", "xmm29", "xmm30", "xmm31", \
eafa30ef 2034 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2035
c98f8742
JVA
2036#define REGISTER_NAMES HI_REGISTER_NAMES
2037
2038/* Table of additional register names to use in user input. */
2039
2040#define ADDITIONAL_REGISTER_NAMES \
7c831c4d
KY
2041{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2042 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2043 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2044 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2045 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2046 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2047 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2048 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2049 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2050 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2051 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2052 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2053 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2054 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2055 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2056 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2057 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2058 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2059 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2060 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2061 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2062 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
c98f8742
JVA
2063
2064/* Note we are omitting these since currently I don't know how
2065to get gcc to use these, since they want the same but different
2066number as al, and ax.
2067*/
2068
c98f8742 2069#define QI_REGISTER_NAMES \
3f3f2124 2070{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
2071
2072/* These parallel the array above, and can be used to access bits 8:15
892a2d68 2073 of regs 0 through 3. */
c98f8742
JVA
2074
2075#define QI_HIGH_REGISTER_NAMES \
2076{"ah", "dh", "ch", "bh", }
2077
2078/* How to renumber registers for dbx and gdb. */
2079
d9a5f180
GS
2080#define DBX_REGISTER_NUMBER(N) \
2081 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2082
9a82e702
MS
2083extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2084extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2085extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2086
469ac993
JM
2087/* Before the prologue, RA is at 0(%esp). */
2088#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2089 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2090
e414ab29 2091/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2092#define RETURN_ADDR_RTX(COUNT, FRAME) \
2093 ((COUNT) == 0 \
2094 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2095 -UNITS_PER_WORD)) \
2096 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2097
892a2d68 2098/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2099#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2100
a10b3cf1
L
2101/* Before the prologue, there are return address and error code for
2102 exception handler on the top of the frame. */
2103#define INCOMING_FRAME_SP_OFFSET \
2104 (cfun->machine->func_type == TYPE_EXCEPTION \
2105 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2106
26fc730d
JJ
2107/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2108 .cfi_startproc. */
2109#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2110
1020a5ab 2111/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2112#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2113#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2114
ad919812 2115
e4c4ebeb
RH
2116/* Select a format to encode pointers in exception handling data. CODE
2117 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2118 true if the symbol may be affected by dynamic relocations.
2119
2120 ??? All x86 object file formats are capable of representing this.
2121 After all, the relocation needed is the same as for the call insn.
2122 Whether or not a particular assembler allows us to enter such, I
2123 guess we'll have to see. */
d9a5f180 2124#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2125 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2126
ec1895c1
UB
2127/* These are a couple of extensions to the formats accepted
2128 by asm_fprintf:
2129 %z prints out opcode suffix for word-mode instruction
2130 %r prints out word-mode name for reg_names[arg] */
2131#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2132 case 'z': \
2133 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2134 break; \
2135 \
2136 case 'r': \
2137 { \
2138 unsigned int regno = va_arg ((ARGS), int); \
2139 if (LEGACY_INT_REGNO_P (regno)) \
2140 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2141 fputs (reg_names[regno], (FILE)); \
2142 break; \
2143 }
2144
2145/* This is how to output an insn to push a register on the stack. */
2146
2147#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2148 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2149
2150/* This is how to output an insn to pop a register from the stack. */
c98f8742 2151
d9a5f180 2152#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2153 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2154
f88c65f7 2155/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2156
2157#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2158 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2159
f88c65f7 2160/* This is how to output an element of a case-vector that is relative. */
c98f8742 2161
33f7f353 2162#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2163 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2164
63001560 2165/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2166
2167#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2168{ \
2169 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2170 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2171}
2172
2173/* A C statement or statements which output an assembler instruction
2174 opcode to the stdio stream STREAM. The macro-operand PTR is a
2175 variable of type `char *' which points to the opcode name in
2176 its "internal" form--the form that is written in the machine
2177 description. */
2178
2179#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2180 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2181
6a90d232
L
2182/* A C statement to output to the stdio stream FILE an assembler
2183 command to pad the location counter to a multiple of 1<<LOG
2184 bytes if it is within MAX_SKIP bytes. */
2185
2186#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2187#undef ASM_OUTPUT_MAX_SKIP_PAD
2188#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2189 if ((LOG) != 0) \
2190 { \
dd047c67 2191 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
6a90d232
L
2192 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2193 else \
2194 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2195 }
2196#endif
2197
135a687e
KT
2198/* Write the extra assembler code needed to declare a function
2199 properly. */
2200
2201#undef ASM_OUTPUT_FUNCTION_LABEL
2202#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2203 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2204
f7288899
EC
2205/* Under some conditions we need jump tables in the text section,
2206 because the assembler cannot handle label differences between
2207 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2208
2209#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2210 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2211 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2212
cea3bd3e
RH
2213/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2214 and switch back. For x86 we do this only to save a few bytes that
2215 would otherwise be unused in the text section. */
ad211091
KT
2216#define CRT_MKSTR2(VAL) #VAL
2217#define CRT_MKSTR(x) CRT_MKSTR2(x)
2218
2219#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2220 asm (SECTION_OP "\n\t" \
2221 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2222 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2223
2224/* Default threshold for putting data in large sections
2225 with x86-64 medium memory model */
2226#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2227\f
b97de419
L
2228/* Which processor to tune code generation for. These must be in sync
2229 with processor_target_table in i386.c. */
5bf0ebab
RH
2230
2231enum processor_type
2232{
b97de419
L
2233 PROCESSOR_GENERIC = 0,
2234 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2235 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2236 PROCESSOR_PENTIUM,
2d6b2e28 2237 PROCESSOR_LAKEMONT,
5bf0ebab 2238 PROCESSOR_PENTIUMPRO,
5bf0ebab 2239 PROCESSOR_PENTIUM4,
89c43c0a 2240 PROCESSOR_NOCONA,
340ef734 2241 PROCESSOR_CORE2,
d3c11974
L
2242 PROCESSOR_NEHALEM,
2243 PROCESSOR_SANDYBRIDGE,
3a579e09 2244 PROCESSOR_HASWELL,
d3c11974
L
2245 PROCESSOR_BONNELL,
2246 PROCESSOR_SILVERMONT,
50e461df 2247 PROCESSOR_GOLDMONT,
74b2bb19 2248 PROCESSOR_GOLDMONT_PLUS,
a548a5a1 2249 PROCESSOR_TREMONT,
52747219 2250 PROCESSOR_KNL,
cace2309 2251 PROCESSOR_KNM,
176a3386 2252 PROCESSOR_SKYLAKE,
06caf59d 2253 PROCESSOR_SKYLAKE_AVX512,
c234d831 2254 PROCESSOR_CANNONLAKE,
79ab5364
JK
2255 PROCESSOR_ICELAKE_CLIENT,
2256 PROCESSOR_ICELAKE_SERVER,
9a7f94d7 2257 PROCESSOR_INTEL,
b97de419
L
2258 PROCESSOR_GEODE,
2259 PROCESSOR_K6,
2260 PROCESSOR_ATHLON,
2261 PROCESSOR_K8,
21efb4d4 2262 PROCESSOR_AMDFAM10,
1133125e 2263 PROCESSOR_BDVER1,
4d652a18 2264 PROCESSOR_BDVER2,
eb2f2b44 2265 PROCESSOR_BDVER3,
ed97ad47 2266 PROCESSOR_BDVER4,
14b52538 2267 PROCESSOR_BTVER1,
e32bfc16 2268 PROCESSOR_BTVER2,
9ce29eb0 2269 PROCESSOR_ZNVER1,
5bf0ebab
RH
2270 PROCESSOR_max
2271};
2272
c98c2430 2273#if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
7dc58b50 2274extern const char *const processor_names[PROCESSOR_max];
c98c2430
ML
2275
2276#include "wide-int-bitmask.h"
2277
2278const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2279const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2280const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2281const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2282const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2283const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2284const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2285const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2286const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2287const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2288const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2289const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2290const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2291const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2292const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2293const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2294const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2295const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2296const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2297const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2298const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2299const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2300const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2301const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2302const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2303const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2304const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2305const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2306const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2307const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2308const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2309const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2310const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2311const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2312const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2313const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2314const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2315const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2316const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2317const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2318const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2319const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2320const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2321const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
2322/* Hole after PTA_MPX was removed. */
2323const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2324const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2325const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2326const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2327const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2328const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2329const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2330const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2331const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2332const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2333const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2334const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2335const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2336const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2337const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2338const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2339const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2340const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2341const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2342const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2343const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2344const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2345const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2346const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2347const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2348const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2349const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2350const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
2351const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 9);
2352
2353const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2354 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2355const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2356 | PTA_POPCNT;
2357const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_AES | PTA_PCLMUL;
2358const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2359 | PTA_XSAVEOPT;
2360const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2361 | PTA_RDRND | PTA_F16C;
2362const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2363 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2364const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_PRFCHW
2365 | PTA_RDSEED;
2366const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_CLFLUSHOPT
2367 | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2368const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2369 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2370 | PTA_CLWB;
2371const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2372 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2373 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2374const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2375 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2376 | PTA_RDPID | PTA_CLWB;
2377const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
2378 | PTA_WBNOINVD;
2379const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
2380 | PTA_AVX512F | PTA_AVX512CD;
2381const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2382const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND;
2383const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_SHA | PTA_XSAVE
2384 | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2385 | PTA_FSGSBASE;
2386const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
2387 | PTA_SGX;
2388const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2389 | PTA_GFNI;
2390const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2391 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2392
2393#ifndef GENERATOR_FILE
2394
2395#include "insn-attr-common.h"
2396
2397struct pta
2398{
2399 const char *const name; /* processor name or nickname. */
2400 const enum processor_type processor;
2401 const enum attr_cpu schedule;
2402 const wide_int_bitmask flags;
2403};
2404
2405extern const pta processor_alias_table[];
2406extern int const pta_size;
2407#endif
2408
2409#endif
2410
9e555526 2411extern enum processor_type ix86_tune;
5bf0ebab 2412extern enum processor_type ix86_arch;
5bf0ebab 2413
8362f420
JH
2414/* Size of the RED_ZONE area. */
2415#define RED_ZONE_SIZE 128
2416/* Reserved area of the red zone for temporaries. */
2417#define RED_ZONE_RESERVE 8
c93e80a5 2418
95899b34 2419extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2420extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2421
2422/* Smallest class containing REGNO. */
2423extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2424
0948ccb2
PB
2425enum ix86_fpcmp_strategy {
2426 IX86_FPCMP_SAHF,
2427 IX86_FPCMP_COMI,
2428 IX86_FPCMP_ARITH
2429};
22fb740d
JH
2430\f
2431/* To properly truncate FP values into integers, we need to set i387 control
2432 word. We can't emit proper mode switching code before reload, as spills
2433 generated by reload may truncate values incorrectly, but we still can avoid
2434 redundant computation of new control word by the mode switching pass.
2435 The fldcw instructions are still emitted redundantly, but this is probably
2436 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2437 the sequence.
22fb740d
JH
2438
2439 The machinery is to emit simple truncation instructions and split them
2440 before reload to instructions having USEs of two memory locations that
2441 are filled by this code to old and new control word.
fce5a9f2 2442
22fb740d
JH
2443 Post-reload pass may be later used to eliminate the redundant fildcw if
2444 needed. */
2445
c7ca8ef8
UB
2446enum ix86_stack_slot
2447{
2448 SLOT_TEMP = 0,
2449 SLOT_CW_STORED,
2450 SLOT_CW_TRUNC,
2451 SLOT_CW_FLOOR,
2452 SLOT_CW_CEIL,
80008279 2453 SLOT_STV_TEMP,
c7ca8ef8
UB
2454 MAX_386_STACK_LOCALS
2455};
2456
ff680eb1
UB
2457enum ix86_entity
2458{
c7ca8ef8
UB
2459 X86_DIRFLAG = 0,
2460 AVX_U128,
ff97910d 2461 I387_TRUNC,
ff680eb1
UB
2462 I387_FLOOR,
2463 I387_CEIL,
ff680eb1
UB
2464 MAX_386_ENTITIES
2465};
2466
c7ca8ef8 2467enum x86_dirflag_state
ff680eb1 2468{
c7ca8ef8
UB
2469 X86_DIRFLAG_RESET,
2470 X86_DIRFLAG_ANY
ff680eb1 2471};
22fb740d 2472
ff97910d
VY
2473enum avx_u128_state
2474{
2475 AVX_U128_CLEAN,
2476 AVX_U128_DIRTY,
2477 AVX_U128_ANY
2478};
2479
22fb740d
JH
2480/* Define this macro if the port needs extra instructions inserted
2481 for mode switching in an optimizing compilation. */
2482
ff680eb1
UB
2483#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2484 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2485
2486/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2487 initializer for an array of integers. Each initializer element N
2488 refers to an entity that needs mode switching, and specifies the
2489 number of different modes that might need to be set for this
2490 entity. The position of the initializer in the initializer -
2491 starting counting at zero - determines the integer that is used to
2492 refer to the mode-switched entity in question. */
2493
c7ca8ef8
UB
2494#define NUM_MODES_FOR_MODE_SWITCHING \
2495 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
8c097065 2496 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2497
0f0138b6
JH
2498\f
2499/* Avoid renaming of stack registers, as doing so in combination with
2500 scheduling just increases amount of live registers at time and in
2501 the turn amount of fxch instructions needed.
2502
3f97cb0b
AI
2503 ??? Maybe Pentium chips benefits from renaming, someone can try....
2504
2505 Don't rename evex to non-evex sse registers. */
0f0138b6 2506
1a6e82b8
UB
2507#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2508 (!STACK_REGNO_P (SRC) \
2509 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2510
3b3c6a3f 2511\f
e91f04de 2512#define FASTCALL_PREFIX '@'
fa1a0d02 2513\f
77560086
BE
2514#ifndef USED_FOR_TARGET
2515/* Structure describing stack frame layout.
2516 Stack grows downward:
2517
2518 [arguments]
2519 <- ARG_POINTER
2520 saved pc
2521
2522 saved static chain if ix86_static_chain_on_stack
2523
2524 saved frame pointer if frame_pointer_needed
2525 <- HARD_FRAME_POINTER
2526 [saved regs]
2527 <- reg_save_offset
2528 [padding0]
2529 <- stack_realign_offset
2530 [saved SSE regs]
2531 OR
2532 [stub-saved registers for ms x64 --> sysv clobbers
2533 <- Start of out-of-line, stub-saved/restored regs
2534 (see libgcc/config/i386/(sav|res)ms64*.S)
2535 [XMM6-15]
2536 [RSI]
2537 [RDI]
2538 [?RBX] only if RBX is clobbered
2539 [?RBP] only if RBP and RBX are clobbered
2540 [?R12] only if R12 and all previous regs are clobbered
2541 [?R13] only if R13 and all previous regs are clobbered
2542 [?R14] only if R14 and all previous regs are clobbered
2543 [?R15] only if R15 and all previous regs are clobbered
2544 <- end of stub-saved/restored regs
2545 [padding1]
2546 ]
5d9d834d 2547 <- sse_reg_save_offset
77560086
BE
2548 [padding2]
2549 | <- FRAME_POINTER
2550 [va_arg registers] |
2551 |
2552 [frame] |
2553 |
2554 [padding2] | = to_allocate
2555 <- STACK_POINTER
2556 */
2557struct GTY(()) ix86_frame
2558{
2559 int nsseregs;
2560 int nregs;
2561 int va_arg_size;
2562 int red_zone_size;
2563 int outgoing_arguments_size;
2564
2565 /* The offsets relative to ARG_POINTER. */
2566 HOST_WIDE_INT frame_pointer_offset;
2567 HOST_WIDE_INT hard_frame_pointer_offset;
2568 HOST_WIDE_INT stack_pointer_offset;
2569 HOST_WIDE_INT hfp_save_offset;
2570 HOST_WIDE_INT reg_save_offset;
122f9da1 2571 HOST_WIDE_INT stack_realign_allocate;
77560086 2572 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2573 HOST_WIDE_INT sse_reg_save_offset;
2574
2575 /* When save_regs_using_mov is set, emit prologue using
2576 move instead of push instructions. */
2577 bool save_regs_using_mov;
2578};
2579
122f9da1
DS
2580/* Machine specific frame tracking during prologue/epilogue generation. All
2581 values are positive, but since the x86 stack grows downward, are subtratced
2582 from the CFA to produce a valid address. */
cd9c1ca8 2583
ec7ded37 2584struct GTY(()) machine_frame_state
cd9c1ca8 2585{
ec7ded37
RH
2586 /* This pair tracks the currently active CFA as reg+offset. When reg
2587 is drap_reg, we don't bother trying to record here the real CFA when
2588 it might really be a DW_CFA_def_cfa_expression. */
2589 rtx cfa_reg;
2590 HOST_WIDE_INT cfa_offset;
2591
2592 /* The current offset (canonically from the CFA) of ESP and EBP.
2593 When stack frame re-alignment is active, these may not be relative
2594 to the CFA. However, in all cases they are relative to the offsets
2595 of the saved registers stored in ix86_frame. */
2596 HOST_WIDE_INT sp_offset;
2597 HOST_WIDE_INT fp_offset;
2598
2599 /* The size of the red-zone that may be assumed for the purposes of
2600 eliding register restore notes in the epilogue. This may be zero
2601 if no red-zone is in effect, or may be reduced from the real
2602 red-zone value by a maximum runtime stack re-alignment value. */
2603 int red_zone_offset;
2604
2605 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2606 value within the frame. If false then the offset above should be
2607 ignored. Note that DRAP, if valid, *always* points to the CFA and
2608 thus has an offset of zero. */
2609 BOOL_BITFIELD sp_valid : 1;
2610 BOOL_BITFIELD fp_valid : 1;
2611 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2612
2613 /* Indicate whether the local stack frame has been re-aligned. When
2614 set, the SP/FP offsets above are relative to the aligned frame
2615 and not the CFA. */
2616 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2617
2618 /* Indicates whether the stack pointer has been re-aligned. When set,
2619 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2620 should only be used for offsets > sp_realigned_offset, while
2621 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2622 The flags realigned and sp_realigned are mutually exclusive. */
2623 BOOL_BITFIELD sp_realigned : 1;
2624
122f9da1
DS
2625 /* If sp_realigned is set, this is the last valid offset from the CFA
2626 that can be used for access with the frame pointer. */
2627 HOST_WIDE_INT sp_realigned_fp_last;
2628
2629 /* If sp_realigned is set, this is the offset from the CFA that the stack
2630 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2631 Access via the stack pointer is only valid for offsets that are greater than
2632 this value. */
d6d4d770 2633 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2634};
2635
f81c9774
RH
2636/* Private to winnt.c. */
2637struct seh_frame_state;
2638
f8071c05
L
2639enum function_type
2640{
2641 TYPE_UNKNOWN = 0,
2642 TYPE_NORMAL,
2643 /* The current function is an interrupt service routine with a
2644 pointer argument as specified by the "interrupt" attribute. */
2645 TYPE_INTERRUPT,
2646 /* The current function is an interrupt service routine with a
2647 pointer argument and an integer argument as specified by the
2648 "interrupt" attribute. */
2649 TYPE_EXCEPTION
2650};
2651
d1b38208 2652struct GTY(()) machine_function {
fa1a0d02 2653 struct stack_local_entry *stack_locals;
4aab97f9
L
2654 int varargs_gpr_size;
2655 int varargs_fpr_size;
ff680eb1 2656 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2657
77560086
BE
2658 /* Cached initial frame layout for the current function. */
2659 struct ix86_frame frame;
3452586b 2660
7458026b
ILT
2661 /* For -fsplit-stack support: A stack local which holds a pointer to
2662 the stack arguments for a function with a variable number of
2663 arguments. This is set at the start of the function and is used
2664 to initialize the overflow_arg_area field of the va_list
2665 structure. */
2666 rtx split_stack_varargs_pointer;
2667
3452586b
RH
2668 /* This value is used for amd64 targets and specifies the current abi
2669 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2670 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2671
2672 /* Nonzero if the function accesses a previous frame. */
2673 BOOL_BITFIELD accesses_prev_frame : 1;
2674
922e3e33
UB
2675 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2676 expander to determine the style used. */
3452586b
RH
2677 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2678
1e4490dc
UB
2679 /* Nonzero if the current function calls pc thunk and
2680 must not use the red zone. */
2681 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2682
5bf5a10b
AO
2683 /* If true, the current function needs the default PIC register, not
2684 an alternate register (on x86) and must not use the red zone (on
2685 x86_64), even if it's a leaf function. We don't want the
2686 function to be regarded as non-leaf because TLS calls need not
2687 affect register allocation. This flag is set when a TLS call
2688 instruction is expanded within a function, and never reset, even
2689 if all such instructions are optimized away. Use the
2690 ix86_current_function_calls_tls_descriptor macro for a better
2691 approximation. */
3452586b
RH
2692 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2693
2694 /* If true, the current function has a STATIC_CHAIN is placed on the
2695 stack below the return address. */
2696 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2697
529a6471
JJ
2698 /* If true, it is safe to not save/restore DRAP register. */
2699 BOOL_BITFIELD no_drap_save_restore : 1;
2700
f8071c05
L
2701 /* Function type. */
2702 ENUM_BITFIELD(function_type) func_type : 2;
2703
da99fd4a
L
2704 /* How to generate indirec branch. */
2705 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2706
2707 /* If true, the current function has local indirect jumps, like
2708 "indirect_jump" or "tablejump". */
2709 BOOL_BITFIELD has_local_indirect_jump : 1;
2710
45e14019
L
2711 /* How to generate function return. */
2712 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2713
f8071c05
L
2714 /* If true, the current function is a function specified with
2715 the "interrupt" or "no_caller_saved_registers" attribute. */
2716 BOOL_BITFIELD no_caller_saved_registers : 1;
2717
a0ff7835
L
2718 /* If true, there is register available for argument passing. This
2719 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2720 if there is scratch register available for indirect sibcall. In
2721 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2722 pass arguments and can be used for indirect sibcall. */
2723 BOOL_BITFIELD arg_reg_available : 1;
2724
d6d4d770 2725 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2726 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2727 BOOL_BITFIELD call_ms2sysv : 1;
2728
2729 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2730 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2731 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2732
d6d4d770
DS
2733 /* This is the number of extra registers saved by stub (valid range is
2734 0-6). Each additional register is only saved/restored by the stubs
2735 if all successive ones are. (Will always be zero when using a hard
2736 frame pointer.) */
2737 unsigned int call_ms2sysv_extra_regs:3;
2738
35c95658
L
2739 /* Nonzero if the function places outgoing arguments on stack. */
2740 BOOL_BITFIELD outgoing_args_on_stack : 1;
2741
708c728d
L
2742 /* If true, ENDBR is queued at function entrance. */
2743 BOOL_BITFIELD endbr_queued_at_entrance : 1;
2744
cd3410cc
L
2745 /* The largest alignment, in bytes, of stack slot actually used. */
2746 unsigned int max_used_stack_alignment;
2747
ec7ded37
RH
2748 /* During prologue/epilogue generation, the current frame state.
2749 Otherwise, the frame state at the end of the prologue. */
2750 struct machine_frame_state fs;
f81c9774
RH
2751
2752 /* During SEH output, this is non-null. */
2753 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2754};
cd9c1ca8 2755#endif
fa1a0d02
JH
2756
2757#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2758#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2759#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2760#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2761#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2762#define ix86_tls_descriptor_calls_expanded_in_cfun \
2763 (cfun->machine->tls_descriptor_call_expanded_p)
2764/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2765 calls are optimized away, we try to detect cases in which it was
2766 optimized away. Since such instructions (use (reg REG_SP)), we can
2767 verify whether there's any such instruction live by testing that
2768 REG_SP is live. */
2769#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2770 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2771#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2772#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2773
1bc7c5b6
ZW
2774/* Control behavior of x86_file_start. */
2775#define X86_FILE_START_VERSION_DIRECTIVE false
2776#define X86_FILE_START_FLTUSED false
2777
7dcbf659
JH
2778/* Flag to mark data that is in the large address area. */
2779#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2780#define SYMBOL_REF_FAR_ADDR_P(X) \
2781 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2782
2783/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2784 have defined always, to avoid ifdefing. */
2785#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2786#define SYMBOL_REF_DLLIMPORT_P(X) \
2787 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2788
2789#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2790#define SYMBOL_REF_DLLEXPORT_P(X) \
2791 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2792
82c0e1a0
KT
2793#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2794#define SYMBOL_REF_STUBVAR_P(X) \
2795 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2796
7942e47e
RY
2797extern void debug_ready_dispatch (void);
2798extern void debug_dispatch_window (int);
2799
91afcfa3
QN
2800/* The value at zero is only defined for the BMI instructions
2801 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2802#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2803 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2804#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2805 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2806
2807
b8ce4e94
KT
2808/* Flags returned by ix86_get_callcvt (). */
2809#define IX86_CALLCVT_CDECL 0x1
2810#define IX86_CALLCVT_STDCALL 0x2
2811#define IX86_CALLCVT_FASTCALL 0x4
2812#define IX86_CALLCVT_THISCALL 0x8
2813#define IX86_CALLCVT_REGPARM 0x10
2814#define IX86_CALLCVT_SSEREGPARM 0x20
2815
2816#define IX86_BASE_CALLCVT(FLAGS) \
2817 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2818 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2819
b86b9f44
MM
2820#define RECIP_MASK_NONE 0x00
2821#define RECIP_MASK_DIV 0x01
2822#define RECIP_MASK_SQRT 0x02
2823#define RECIP_MASK_VEC_DIV 0x04
2824#define RECIP_MASK_VEC_SQRT 0x08
2825#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2826 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2827#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2828
2829#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2830#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2831#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2832#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2833
ab2c4ec8
SS
2834/* Use 128-bit AVX instructions in the auto-vectorizer. */
2835#define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2836/* Use 256-bit AVX instructions in the auto-vectorizer. */
02a70367
SS
2837#define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2838 || prefer_vector_width_type == PVW_AVX256)
ab2c4ec8 2839
c2c601b2
L
2840#define TARGET_INDIRECT_BRANCH_REGISTER \
2841 (ix86_indirect_branch_register \
2842 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2843
5dcfdccd
KY
2844#define IX86_HLE_ACQUIRE (1 << 16)
2845#define IX86_HLE_RELEASE (1 << 17)
2846
e83b8e2e
JJ
2847/* For switching between functions with different target attributes. */
2848#define SWITCHABLE_TARGET 1
2849
44d0de8d
UB
2850#define TARGET_SUPPORTS_WIDE_INT 1
2851
c98f8742
JVA
2852/*
2853Local variables:
2854version-control: t
2855End:
2856*/