]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
* target.def (class_likely_spilled_p): New hook.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
7d9ae20a 1/* Definitions of target machine for GCC for IA-32.
9526f064 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
cf4f27b5 3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
038d1e19 4 Free Software Foundation, Inc.
43b83681 5
7d9ae20a 6This file is part of GCC.
43b83681 7
7d9ae20a 8GCC is free software; you can redistribute it and/or modify
43b83681 9it under the terms of the GNU General Public License as published by
038d1e19 10the Free Software Foundation; either version 3, or (at your option)
43b83681 11any later version.
12
7d9ae20a 13GCC is distributed in the hope that it will be useful,
43b83681 14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
6bc9506f 18Under Section 7 of GPL version 3, you are granted additional
19permissions described in the GCC Runtime Library Exception, version
203.1, as published by the Free Software Foundation.
21
22You should have received a copy of the GNU General Public License and
23a copy of the GCC Runtime Library Exception along with this program;
24see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
038d1e19 25<http://www.gnu.org/licenses/>. */
43b83681 26
0bbe9142 27/* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
e44348b5 42/* Redefines for option macros. */
43
44#define TARGET_64BIT OPTION_ISA_64BIT
45#define TARGET_MMX OPTION_ISA_MMX
46#define TARGET_3DNOW OPTION_ISA_3DNOW
47#define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48#define TARGET_SSE OPTION_ISA_SSE
49#define TARGET_SSE2 OPTION_ISA_SSE2
50#define TARGET_SSE3 OPTION_ISA_SSE3
51#define TARGET_SSSE3 OPTION_ISA_SSSE3
52#define TARGET_SSE4_1 OPTION_ISA_SSE4_1
f25d51c3 53#define TARGET_SSE4_2 OPTION_ISA_SSE4_2
ed30e0a6 54#define TARGET_AVX OPTION_ISA_AVX
55#define TARGET_FMA OPTION_ISA_FMA
e44348b5 56#define TARGET_SSE4A OPTION_ISA_SSE4A
2f212aae 57#define TARGET_FMA4 OPTION_ISA_FMA4
18525343 58#define TARGET_XOP OPTION_ISA_XOP
048fbb59 59#define TARGET_LWP OPTION_ISA_LWP
448e99f5 60#define TARGET_ROUND OPTION_ISA_ROUND
46f8e3b0 61#define TARGET_ABM OPTION_ISA_ABM
62#define TARGET_POPCNT OPTION_ISA_POPCNT
63#define TARGET_SAHF OPTION_ISA_SAHF
525b61fa 64#define TARGET_MOVBE OPTION_ISA_MOVBE
614b751e 65#define TARGET_CRC32 OPTION_ISA_CRC32
46f8e3b0 66#define TARGET_AES OPTION_ISA_AES
67#define TARGET_PCLMUL OPTION_ISA_PCLMUL
68#define TARGET_CMPXCHG16B OPTION_ISA_CX16
ec113e67 69#define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
70#define TARGET_RDRND OPTION_ISA_RDRND
71#define TARGET_F16C OPTION_ISA_F16C
46f8e3b0 72
448e99f5 73
2f212aae 74/* SSE4.1 defines round instructions */
75#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
448e99f5 76#define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
e44348b5 77
2522d9ea 78#include "config/vxworks-dummy.h"
79
ab608690 80/* Algorithm to expand string function with. */
81enum stringop_alg
82{
83 no_stringop,
84 libcall,
85 rep_prefix_1_byte,
86 rep_prefix_4_byte,
87 rep_prefix_8_byte,
88 loop_1_byte,
89 loop,
90 unrolled_loop
91};
0bbe9142 92
ab608690 93#define NAX_STRINGOP_ALGS 4
0bbe9142 94
ab608690 95/* Specify what algorithm to use for stringops on known size.
96 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
97 known at compile time or estimated via feedback, the SIZE array
98 is walked in order until MAX is greater then the estimate (or -1
009b318f 99 means infinity). Corresponding ALG is used then.
ab608690 100 For example initializer:
009b318f 101 {{256, loop}, {-1, rep_prefix_4_byte}}
ab608690 102 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
0bbe9142 103 be used otherwise. */
ab608690 104struct stringop_algs
105{
106 const enum stringop_alg unknown_size;
107 const struct stringop_strategy {
108 const int max;
109 const enum stringop_alg alg;
110 } size [NAX_STRINGOP_ALGS];
111};
112
9af5c5d1 113/* Define the specific costs for a given cpu */
114
115struct processor_costs {
e99c3a1d 116 const int add; /* cost of an add instruction */
117 const int lea; /* cost of a lea instruction */
118 const int shift_var; /* variable shift costs */
119 const int shift_const; /* constant shift costs */
9e7454d0 120 const int mult_init[5]; /* cost of starting a multiply
805e22b2 121 in QImode, HImode, SImode, DImode, TImode*/
e99c3a1d 122 const int mult_bit; /* cost of multiply per each bit set */
9e7454d0 123 const int divide[5]; /* cost of a divide/mod
805e22b2 124 in QImode, HImode, SImode, DImode, TImode*/
78ac78d9 125 int movsx; /* The cost of movsx operation. */
126 int movzx; /* The cost of movzx operation. */
e99c3a1d 127 const int large_insn; /* insns larger than this cost more */
128 const int move_ratio; /* The threshold of number of scalar
b8e3cf86 129 memory-to-memory move insns. */
e99c3a1d 130 const int movzbl_load; /* cost of loading using movzbl */
131 const int int_load[3]; /* cost of loading integer registers
3ab61a4d 132 in QImode, HImode and SImode relative
133 to reg-reg move (2). */
e99c3a1d 134 const int int_store[3]; /* cost of storing integer register
3ab61a4d 135 in QImode, HImode and SImode */
e99c3a1d 136 const int fp_move; /* cost of reg,reg fld/fst */
137 const int fp_load[3]; /* cost of loading FP register
3ab61a4d 138 in SFmode, DFmode and XFmode */
e99c3a1d 139 const int fp_store[3]; /* cost of storing FP register
3ab61a4d 140 in SFmode, DFmode and XFmode */
e99c3a1d 141 const int mmx_move; /* cost of moving MMX register. */
142 const int mmx_load[2]; /* cost of loading MMX register
4f3e5c20 143 in SImode and DImode */
e99c3a1d 144 const int mmx_store[2]; /* cost of storing MMX register
4f3e5c20 145 in SImode and DImode */
e99c3a1d 146 const int sse_move; /* cost of moving SSE register. */
147 const int sse_load[3]; /* cost of loading SSE register
4f3e5c20 148 in SImode, DImode and TImode*/
e99c3a1d 149 const int sse_store[3]; /* cost of storing SSE register
4f3e5c20 150 in SImode, DImode and TImode*/
e99c3a1d 151 const int mmxsse_to_integer; /* cost of moving mmxsse register to
4f3e5c20 152 integer and vice versa. */
0c916a7b 153 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
154 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
afa6d980 155 const int prefetch_block; /* bytes moved to cache for prefetch. */
156 const int simultaneous_prefetches; /* number of parallel prefetch
157 operations. */
805e22b2 158 const int branch_cost; /* Default value for BRANCH_COST. */
b80ce4a8 159 const int fadd; /* cost of FADD and FSUB instructions. */
160 const int fmul; /* cost of FMUL instruction. */
161 const int fdiv; /* cost of FDIV instruction. */
162 const int fabs; /* cost of FABS instruction. */
163 const int fchs; /* cost of FCHS instruction. */
164 const int fsqrt; /* cost of FSQRT instruction. */
ab608690 165 /* Specify what algorithm
166 to use for stringops on unknown size. */
167 struct stringop_algs memcpy[2], memset[2];
6202d4db 168 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
169 load and store. */
170 const int scalar_load_cost; /* Cost of scalar load. */
171 const int scalar_store_cost; /* Cost of scalar store. */
172 const int vec_stmt_cost; /* Cost of any vector operation, excluding
173 load, store, vector-to-scalar and
174 scalar-to-vector operation. */
175 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
176 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
009b318f 177 const int vec_align_load_cost; /* Cost of aligned vector load. */
6202d4db 178 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
179 const int vec_store_cost; /* Cost of vector store. */
180 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
181 cost model. */
182 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
183 vectorizer cost model. */
9af5c5d1 184};
185
e99c3a1d 186extern const struct processor_costs *ix86_cost;
f08b701c 187extern const struct processor_costs ix86_size_cost;
188
189#define ix86_cur_cost() \
190 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
9af5c5d1 191
43b83681 192/* Macros used in the machine description to test the flags. */
193
01cc3b75 194/* configure can arrange to make this 2, to force a 486. */
ce71a9e6 195
f0c53df0 196#ifndef TARGET_CPU_DEFAULT
9db3d688 197#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
028f8cc7 198#endif
f0c53df0 199
e3f17334 200#ifndef TARGET_FPMATH_DEFAULT
201#define TARGET_FPMATH_DEFAULT \
202 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
203#endif
204
0c44645a 205#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
bfa936ad 206
54113cf5 207/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
208 compile-time constant. */
209#ifdef IN_LIBGCC2
0c44645a 210#undef TARGET_64BIT
54113cf5 211#ifdef __x86_64__
212#define TARGET_64BIT 1
213#else
214#define TARGET_64BIT 0
215#endif
216#else
0c44645a 217#ifndef TARGET_BI_ARCH
218#undef TARGET_64BIT
76b5af68 219#if TARGET_64BIT_DEFAULT
6c52fa55 220#define TARGET_64BIT 1
221#else
222#define TARGET_64BIT 0
223#endif
224#endif
54113cf5 225#endif
bacf1c2a 226
4f18499c 227#define HAS_LONG_COND_BRANCH 1
228#define HAS_LONG_UNCOND_BRANCH 1
229
706b598d 230#define TARGET_386 (ix86_tune == PROCESSOR_I386)
231#define TARGET_486 (ix86_tune == PROCESSOR_I486)
232#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
233#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
5c34451e 234#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
706b598d 235#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
236#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
237#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
238#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
805e22b2 239#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
0fda5f41 240#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
11361ecb 241#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
9db3d688 242#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
243#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
244#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
3d775f8e 245#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
6fc76bb0 246#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
fbfe006e 247#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
f3e2ae00 248
e9f301ea 249/* Feature tests against the various tunings. */
250enum ix86_tune_indices {
251 X86_TUNE_USE_LEAVE,
252 X86_TUNE_PUSH_MEMORY,
253 X86_TUNE_ZERO_EXTEND_WITH_AND,
e9f301ea 254 X86_TUNE_UNROLL_STRLEN,
255 X86_TUNE_DEEP_BRANCH_PREDICTION,
256 X86_TUNE_BRANCH_PREDICTION_HINTS,
257 X86_TUNE_DOUBLE_WITH_ADD,
4d9301a8 258 X86_TUNE_USE_SAHF,
e9f301ea 259 X86_TUNE_MOVX,
260 X86_TUNE_PARTIAL_REG_STALL,
261 X86_TUNE_PARTIAL_FLAG_REG_STALL,
262 X86_TUNE_USE_HIMODE_FIOP,
263 X86_TUNE_USE_SIMODE_FIOP,
264 X86_TUNE_USE_MOV0,
265 X86_TUNE_USE_CLTD,
266 X86_TUNE_USE_XCHGB,
267 X86_TUNE_SPLIT_LONG_MOVES,
268 X86_TUNE_READ_MODIFY_WRITE,
269 X86_TUNE_READ_MODIFY,
270 X86_TUNE_PROMOTE_QIMODE,
271 X86_TUNE_FAST_PREFIX,
272 X86_TUNE_SINGLE_STRINGOP,
273 X86_TUNE_QIMODE_MATH,
274 X86_TUNE_HIMODE_MATH,
275 X86_TUNE_PROMOTE_QI_REGS,
276 X86_TUNE_PROMOTE_HI_REGS,
94a6cc8b 277 X86_TUNE_SINGLE_POP,
278 X86_TUNE_DOUBLE_POP,
279 X86_TUNE_SINGLE_PUSH,
280 X86_TUNE_DOUBLE_PUSH,
e9f301ea 281 X86_TUNE_INTEGER_DFMODE_MOVES,
282 X86_TUNE_PARTIAL_REG_DEPENDENCY,
283 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
6fc76bb0 284 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
285 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
286 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
e9f301ea 287 X86_TUNE_SSE_SPLIT_REGS,
288 X86_TUNE_SSE_TYPELESS_STORES,
289 X86_TUNE_SSE_LOAD0_BY_PXOR,
290 X86_TUNE_MEMORY_MISMATCH_STALL,
291 X86_TUNE_PROLOGUE_USING_MOVE,
292 X86_TUNE_EPILOGUE_USING_MOVE,
293 X86_TUNE_SHIFT1,
294 X86_TUNE_USE_FFREEP,
295 X86_TUNE_INTER_UNIT_MOVES,
ff1f087e 296 X86_TUNE_INTER_UNIT_CONVERSIONS,
e9f301ea 297 X86_TUNE_FOUR_JUMP_LIMIT,
298 X86_TUNE_SCHEDULE,
299 X86_TUNE_USE_BT,
300 X86_TUNE_USE_INCDEC,
301 X86_TUNE_PAD_RETURNS,
302 X86_TUNE_EXT_80387_CONSTANTS,
c6f562ed 303 X86_TUNE_SHORTEN_X87_SSE,
304 X86_TUNE_AVOID_VECTOR_DECODE,
58c9a086 305 X86_TUNE_PROMOTE_HIMODE_IMUL,
c6f562ed 306 X86_TUNE_SLOW_IMUL_IMM32_MEM,
307 X86_TUNE_SLOW_IMUL_IMM8,
308 X86_TUNE_MOVE_M1_VIA_OR,
309 X86_TUNE_NOT_UNPAIRABLE,
310 X86_TUNE_NOT_VECTORMODE,
9fd9e8c3 311 X86_TUNE_USE_VECTOR_FP_CONVERTS,
650269ca 312 X86_TUNE_USE_VECTOR_CONVERTS,
7d709e5f 313 X86_TUNE_FUSE_CMP_AND_BRANCH,
fbfe006e 314 X86_TUNE_OPT_AGU,
e9f301ea 315
316 X86_TUNE_LAST
317};
318
46f8e3b0 319extern unsigned char ix86_tune_features[X86_TUNE_LAST];
e9f301ea 320
321#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
322#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
323#define TARGET_ZERO_EXTEND_WITH_AND \
324 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
e9f301ea 325#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
326#define TARGET_DEEP_BRANCH_PREDICTION \
327 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
328#define TARGET_BRANCH_PREDICTION_HINTS \
329 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
330#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
331#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
332#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
333#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
334#define TARGET_PARTIAL_FLAG_REG_STALL \
335 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
336#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
337#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
338#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
339#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
340#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
341#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
342#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
343#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
344#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
345#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
346#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
347#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
348#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
349#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
350#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
94a6cc8b 351#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
352#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
353#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
354#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
e9f301ea 355#define TARGET_INTEGER_DFMODE_MOVES \
356 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
357#define TARGET_PARTIAL_REG_DEPENDENCY \
358 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
359#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
360 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
6fc76bb0 361#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
362 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
363#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
364 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
365#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
366 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
e9f301ea 367#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
368#define TARGET_SSE_TYPELESS_STORES \
369 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
370#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
371#define TARGET_MEMORY_MISMATCH_STALL \
372 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
373#define TARGET_PROLOGUE_USING_MOVE \
374 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
375#define TARGET_EPILOGUE_USING_MOVE \
376 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
377#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
378#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
379#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
ff1f087e 380#define TARGET_INTER_UNIT_CONVERSIONS\
381 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
e9f301ea 382#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
383#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
384#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
385#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
386#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
387#define TARGET_EXT_80387_CONSTANTS \
388 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
c6f562ed 389#define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
390#define TARGET_AVOID_VECTOR_DECODE \
391 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
58c9a086 392#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
393 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
c6f562ed 394#define TARGET_SLOW_IMUL_IMM32_MEM \
395 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
396#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
397#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
398#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
399#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
9fd9e8c3 400#define TARGET_USE_VECTOR_FP_CONVERTS \
401 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
7d709e5f 402#define TARGET_USE_VECTOR_CONVERTS \
403 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
404#define TARGET_FUSE_CMP_AND_BRANCH \
405 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
fbfe006e 406#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
e9f301ea 407
408/* Feature tests against the various architecture variations. */
409enum ix86_arch_indices {
410 X86_ARCH_CMOVE, /* || TARGET_SSE */
411 X86_ARCH_CMPXCHG,
412 X86_ARCH_CMPXCHG8B,
413 X86_ARCH_XADD,
414 X86_ARCH_BSWAP,
415
416 X86_ARCH_LAST
417};
009b318f 418
46f8e3b0 419extern unsigned char ix86_arch_features[X86_ARCH_LAST];
e9f301ea 420
421#define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
422#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
423#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
424#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
425#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
426
427#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
428
429extern int x86_prefetch_sse;
e44348b5 430
e9f301ea 431#define TARGET_PREFETCH_SSE x86_prefetch_sse
432
e9f301ea 433#define ASSEMBLER_DIALECT (ix86_asm_dialect)
434
435#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
436#define TARGET_MIX_SSE_I387 \
437 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
438
439#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
440#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
441#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
cf4f27b5 442#define TARGET_SUN_TLS 0
0f0a601a 443
e44348b5 444extern int ix86_isa_flags;
445
76b5af68 446#ifndef TARGET_64BIT_DEFAULT
447#define TARGET_64BIT_DEFAULT 0
bacf1c2a 448#endif
a3a49880 449#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
450#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
451#endif
bacf1c2a 452
5b5037b3 453/* Fence to use after loop using storent. */
454
455extern tree x86_mfence;
456#define FENCE_FOLLOWING_MOVNT x86_mfence
457
39d31f69 458/* Once GDB has been enhanced to deal with functions without frame
459 pointers, we can change this to allow for elimination of
460 the frame pointer in leaf functions. */
461#define TARGET_DEFAULT 0
76b5af68 462
e44348b5 463/* Extra bits to force. */
464#define TARGET_SUBTARGET_DEFAULT 0
465#define TARGET_SUBTARGET_ISA_DEFAULT 0
466
467/* Extra bits to force on w/ 32-bit mode. */
468#define TARGET_SUBTARGET32_DEFAULT 0
469#define TARGET_SUBTARGET32_ISA_DEFAULT 0
470
0bbe9142 471/* Extra bits to force on w/ 64-bit mode. */
472#define TARGET_SUBTARGET64_DEFAULT 0
e44348b5 473#define TARGET_SUBTARGET64_ISA_DEFAULT 0
0bbe9142 474
ffd05090 475/* This is not really a target flag, but is done this way so that
476 it's analogous to similar code for Mach-O on PowerPC. darwin.h
477 redefines this to 1. */
478#define TARGET_MACHO 0
479
3cf7ab3b 480/* Branch island 'stubs' are emitted for earlier versions of darwin.
481 This provides a default (over-ridden in darwin.h.) */
482#ifndef TARGET_MACHO_BRANCH_ISLANDS
483#define TARGET_MACHO_BRANCH_ISLANDS 0
484#endif
485
486/* For the Windows 64-bit ABI. */
d3feb168 487#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
488
489/* Available call abi. */
5f57a8b1 490enum calling_abi
d3feb168 491{
492 SYSV_ABI = 0,
493 MS_ABI = 1
494};
495
0e4d11df 496/* The abi used by target. */
497extern enum calling_abi ix86_abi;
498
499/* The default abi used by target. */
d3feb168 500#define DEFAULT_ABI SYSV_ABI
0bbe9142 501
b2a566d1 502/* Subtargets may reset this to 1 in order to enable 96-bit long double
503 with the rounding mode forced to 53 bits. */
504#define TARGET_96_ROUND_53_LONG_DOUBLE 0
505
0bf9a70a 506/* Sometimes certain combinations of command options do not make
507 sense on a particular target machine. You can define a macro
508 `OVERRIDE_OPTIONS' to take account of this. This macro, if
509 defined, is executed once just after all the command options have
510 been parsed.
511
512 Don't use this macro to turn on various extra optimizations for
513 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
514
46f8e3b0 515#define OVERRIDE_OPTIONS override_options (true)
0bf9a70a 516
9af5c5d1 517/* Define this to change the optimizations performed by default. */
1b12cfd7 518#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
519 optimization_options ((LEVEL), (SIZE))
9af5c5d1 520
852c5acb 521/* -march=native handling only makes sense with compiler running on
522 an x86 or x86_64 chip. If changing this condition, also change
523 the condition in driver-i386.c. */
524#if defined(__i386__) || defined(__x86_64__)
4009b53f 525/* In driver-i386.c. */
526extern const char *host_detect_local_cpu (int argc, const char **argv);
527#define EXTRA_SPEC_FUNCTIONS \
528 { "local_cpu_detect", host_detect_local_cpu },
852c5acb 529#define HAVE_LOCAL_CPU_DETECT
4009b53f 530#endif
531
f067c6b7 532#if TARGET_64BIT_DEFAULT
533#define OPT_ARCH64 "!m32"
534#define OPT_ARCH32 "m32"
535#else
536#define OPT_ARCH64 "m64"
537#define OPT_ARCH32 "!m64"
538#endif
539
3e883b09 540/* Support for configure-time defaults of some command line options.
541 The order here is important so that -march doesn't squash the
542 tune or cpu values. */
c300d1d8 543#define OPTION_DEFAULT_SPECS \
173ac007 544 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
f067c6b7 545 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
546 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
c300d1d8 547 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
f067c6b7 548 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
549 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
550 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
551 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
552 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7dd97ab6 553
8fad0667 554/* Specs for the compiler proper */
555
d17e16d2 556#ifndef CC1_CPU_SPEC
4009b53f 557#define CC1_CPU_SPEC_1 "\
31c1975b 558%{msse5:-mavx \
3b0273a1 559%n'-msse5' was removed.\n}"
4009b53f 560
852c5acb 561#ifndef HAVE_LOCAL_CPU_DETECT
4009b53f 562#define CC1_CPU_SPEC CC1_CPU_SPEC_1
563#else
564#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
10e818c2 565"%{march=native:%<march=native %:local_cpu_detect(arch) \
566 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
4009b53f 567%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
568#endif
8fad0667 569#endif
43b83681 570\f
7dbd6483 571/* Target CPU builtins. */
46f8e3b0 572#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
573
574/* Target Pragmas. */
575#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
7dbd6483 576
2dd515a3 577enum target_cpu_default
578{
579 TARGET_CPU_DEFAULT_generic = 0,
580
581 TARGET_CPU_DEFAULT_i386,
582 TARGET_CPU_DEFAULT_i486,
583 TARGET_CPU_DEFAULT_pentium,
584 TARGET_CPU_DEFAULT_pentium_mmx,
585 TARGET_CPU_DEFAULT_pentiumpro,
586 TARGET_CPU_DEFAULT_pentium2,
587 TARGET_CPU_DEFAULT_pentium3,
588 TARGET_CPU_DEFAULT_pentium4,
589 TARGET_CPU_DEFAULT_pentium_m,
590 TARGET_CPU_DEFAULT_prescott,
591 TARGET_CPU_DEFAULT_nocona,
592 TARGET_CPU_DEFAULT_core2,
fbfe006e 593 TARGET_CPU_DEFAULT_atom,
2dd515a3 594
595 TARGET_CPU_DEFAULT_geode,
596 TARGET_CPU_DEFAULT_k6,
597 TARGET_CPU_DEFAULT_k6_2,
598 TARGET_CPU_DEFAULT_k6_3,
599 TARGET_CPU_DEFAULT_athlon,
600 TARGET_CPU_DEFAULT_athlon_sse,
601 TARGET_CPU_DEFAULT_k8,
602 TARGET_CPU_DEFAULT_amdfam10,
6fc76bb0 603 TARGET_CPU_DEFAULT_bdver1,
2dd515a3 604
605 TARGET_CPU_DEFAULT_max
606};
6c52fa55 607
d17e16d2 608#ifndef CC1_SPEC
18870143 609#define CC1_SPEC "%(cc1_cpu) "
d17e16d2 610#endif
611
612/* This macro defines names of additional specifications to put in the
613 specs that can be used in various specifications like CC1_SPEC. Its
614 definition is an initializer with a subgrouping for each command option.
2bc9393a 615
616 Each subgrouping contains a string constant, that defines the
7d9ae20a 617 specification name, and a string constant that used by the GCC driver
2bc9393a 618 program.
619
620 Do not define this macro if it does not need to do anything. */
621
622#ifndef SUBTARGET_EXTRA_SPECS
623#define SUBTARGET_EXTRA_SPECS
624#endif
625
626#define EXTRA_SPECS \
d17e16d2 627 { "cc1_cpu", CC1_CPU_SPEC }, \
2bc9393a 628 SUBTARGET_EXTRA_SPECS
629\f
c300d1d8 630
f3dde807 631/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
632 FPU, assume that the fpcw is set to extended precision; when using
633 only SSE, rounding is correct; when using both SSE and the FPU,
634 the rounding precision is indeterminate, since either may be chosen
635 apparently at random. */
636#define TARGET_FLT_EVAL_METHOD \
d5c660fd 637 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0898f59e 638
c6418a4e 639/* Whether to allow x87 floating-point arithmetic on MODE (one of
640 SFmode, DFmode and XFmode) in the current excess precision
641 configuration. */
642#define X87_ENABLE_ARITH(MODE) \
643 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
644
645/* Likewise, whether to allow direct conversions from integer mode
646 IMODE (HImode, SImode or DImode) to MODE. */
647#define X87_ENABLE_FLOAT(MODE, IMODE) \
648 (flag_excess_precision == EXCESS_PRECISION_FAST \
649 || (MODE) == XFmode \
650 || ((MODE) == DFmode && (IMODE) == SImode) \
651 || (IMODE) == HImode)
652
46de89e7 653/* target machine storage layout */
654
c7f5f345 655#define SHORT_TYPE_SIZE 16
656#define INT_TYPE_SIZE 32
aadb75a7 657#define LONG_LONG_TYPE_SIZE 64
c7f5f345 658#define FLOAT_TYPE_SIZE 32
c7f5f345 659#define DOUBLE_TYPE_SIZE 64
46de89e7 660#define LONG_DOUBLE_TYPE_SIZE 80
661
662#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
c7f5f345 663
76b5af68 664#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
6c52fa55 665#define MAX_BITS_PER_WORD 64
6c52fa55 666#else
667#define MAX_BITS_PER_WORD 32
6c52fa55 668#endif
669
43b83681 670/* Define this if most significant byte of a word is the lowest numbered. */
671/* That is true on the 80386. */
672
673#define BITS_BIG_ENDIAN 0
674
675/* Define this if most significant byte of a word is the lowest numbered. */
676/* That is not true on the 80386. */
677#define BYTES_BIG_ENDIAN 0
678
679/* Define this if most significant word of a multiword number is the lowest
680 numbered. */
681/* Not true for 80386 */
682#define WORDS_BIG_ENDIAN 0
683
43b83681 684/* Width of a word, in units (bytes). */
8b9d7fb5 685#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
52cb7411 686#ifdef IN_LIBGCC2
687#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
688#else
689#define MIN_UNITS_PER_WORD 4
690#endif
43b83681 691
43b83681 692/* Allocation boundary (in *bits*) for storing arguments in argument list. */
c7f5f345 693#define PARM_BOUNDARY BITS_PER_WORD
43b83681 694
ce71a9e6 695/* Boundary (in *bits*) on which stack pointer should be aligned. */
8b9d7fb5 696#define STACK_BOUNDARY \
0e4d11df 697 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
43b83681 698
27a7a23a 699/* Stack boundary of the main function guaranteed by OS. */
700#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
701
0de6a16a 702/* Minimum stack boundary. */
703#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
27a7a23a 704
fcbfedc7 705/* Boundary (in *bits*) on which the stack pointer prefers to be
bc0eb8c6 706 aligned; the compiler cannot rely on having this alignment. */
ce71a9e6 707#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
88451936 708
0de6a16a 709/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
27a7a23a 710 both 32bit and 64bit, to support codes that need 128 bit stack
711 alignment for SSE instructions, but can't realign the stack. */
712#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
713
714/* 1 if -mstackrealign should be turned on by default. It will
715 generate an alternate prologue and epilogue that realigns the
716 runtime stack if nessary. This supports mixing codes that keep a
717 4-byte aligned stack, as specified by i386 psABI, with codes that
c0a05dc0 718 need a 16-byte aligned stack, as required by SSE instructions. */
27a7a23a 719#define STACK_REALIGN_DEFAULT 0
720
721/* Boundary (in *bits*) on which the incoming stack is aligned. */
722#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
3ca5a306 723
751bdb92 724/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
725 mandatory for the 64-bit ABI, and may or may not be true for other
726 operating systems. */
727#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
728
fc5cb4c0 729/* Minimum allocation boundary for the code of a function. */
730#define FUNCTION_BOUNDARY 8
731
732/* C++ stores the virtual bit in the lowest bit of function pointers. */
733#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
43b83681 734
43b83681 735/* Minimum size in bits of the largest boundary to which any
736 and all fundamental data types supported by the hardware
737 might need to be aligned. No data type wants to be aligned
4e17b634 738 rounder than this.
d4983fea 739
fcbfedc7 740 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
4e17b634 741 and Pentium Pro XFmode values at 128 bit boundaries. */
742
ed30e0a6 743#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
4e17b634 744
27a7a23a 745/* Maximum stack alignment. */
746#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
747
02421213 748/* Alignment value for attribute ((aligned)). It is a constant since
749 it is the part of the ABI. We shouldn't change it with -mavx. */
750#define ATTRIBUTE_ALIGNED_VALUE 128
751
2feb8eca 752/* Decide whether a variable of mode MODE should be 128 bit aligned. */
f01b0085 753#define ALIGN_MODE_128(MODE) \
c4e709d6 754 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
f01b0085 755
4e17b634 756/* The published ABIs say that doubles should be aligned on word
fcbfedc7 757 boundaries, so lower the alignment for structure fields unless
040f791a 758 -malign-double is set. */
bd0f3c40 759
6e5d72bd 760/* ??? Blah -- this macro is used directly by libobjc. Since it
761 supports no vector modes, cut out the complexity and fall back
762 on BIGGEST_FIELD_ALIGNMENT. */
763#ifdef IN_TARGET_LIBS
aa867d91 764#ifdef __x86_64__
765#define BIGGEST_FIELD_ALIGNMENT 128
766#else
6e5d72bd 767#define BIGGEST_FIELD_ALIGNMENT 32
aa867d91 768#endif
6e5d72bd 769#else
bd0f3c40 770#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
771 x86_field_alignment (FIELD, COMPUTED)
6e5d72bd 772#endif
43b83681 773
f7d6703c 774/* If defined, a C expression to compute the alignment given to a
f01b0085 775 constant that is being placed in memory. EXP is the constant
f7d6703c 776 and ALIGN is the alignment that the object would ordinarily have.
777 The value of this macro is used instead of that alignment to align
778 the object.
779
780 If this macro is not defined, then ALIGN is used.
781
782 The typical use of this macro is to increase alignment for string
783 constants to be word aligned so that `strcpy' calls that copy
784 constants can be done inline. */
785
1b12cfd7 786#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
9af5c5d1 787
ed45e834 788/* If defined, a C expression to compute the alignment for a static
789 variable. TYPE is the data type, and ALIGN is the alignment that
790 the object would ordinarily have. The value of this macro is used
791 instead of that alignment to align the object.
792
793 If this macro is not defined, then ALIGN is used.
794
795 One use of this macro is to increase alignment of medium-size
796 data to make it all fit in fewer cache lines. Another is to
797 cause character arrays to be word-aligned so that `strcpy' calls
798 that copy constants to character arrays can be done inline. */
799
1b12cfd7 800#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
9bd87fd2 801
802/* If defined, a C expression to compute the alignment for a local
803 variable. TYPE is the data type, and ALIGN is the alignment that
804 the object would ordinarily have. The value of this macro is used
805 instead of that alignment to align the object.
806
807 If this macro is not defined, then ALIGN is used.
808
809 One use of this macro is to increase alignment of medium-size
810 data to make it all fit in fewer cache lines. */
811
ad33891d 812#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
813 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
814
815/* If defined, a C expression to compute the alignment for stack slot.
816 TYPE is the data type, MODE is the widest mode available, and ALIGN
817 is the alignment that the slot would ordinarily have. The value of
818 this macro is used instead of that alignment to align the slot.
819
820 If this macro is not defined, then ALIGN is used when TYPE is NULL,
821 Otherwise, LOCAL_ALIGNMENT will be used.
822
823 One use of this macro is to set alignment of stack slot to the
824 maximum alignment of all possible modes which the slot may have. */
825
826#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
827 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
ed45e834 828
76cbc2a0 829/* If defined, a C expression to compute the alignment for a local
830 variable DECL.
831
832 If this macro is not defined, then
833 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
834
835 One use of this macro is to increase alignment of medium-size
836 data to make it all fit in fewer cache lines. */
837
838#define LOCAL_DECL_ALIGNMENT(DECL) \
839 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
840
8645d3e7 841/* If defined, a C expression to compute the minimum required alignment
842 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
843 MODE, assuming normal alignment ALIGN.
844
845 If this macro is not defined, then (ALIGN) will be used. */
846
847#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
848 ix86_minimum_alignment (EXP, MODE, ALIGN)
849
76cbc2a0 850
e4bf866d 851/* If defined, a C expression that gives the alignment boundary, in
852 bits, of an argument with the specified mode and type. If it is
853 not defined, `PARM_BOUNDARY' is used for all arguments. */
854
1b12cfd7 855#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
856 ix86_function_arg_boundary ((MODE), (TYPE))
e4bf866d 857
c46dc351 858/* Set this nonzero if move instructions will actually fail to work
43b83681 859 when given unaligned data. */
bdf74c8a 860#define STRICT_ALIGNMENT 0
43b83681 861
862/* If bit field type is int, don't let it cross an int,
863 and give entire struct the alignment of an int. */
ceb2fe0f 864/* Required on the 386 since it doesn't have bit-field insns. */
43b83681 865#define PCC_BITFIELD_TYPE_MATTERS 1
43b83681 866\f
867/* Standard register usage. */
868
869/* This processor has special stack-like registers. See reg-stack.c
bb441676 870 for details. */
43b83681 871
872#define STACK_REGS
c300d1d8 873
1b12cfd7 874#define IS_STACK_MODE(MODE) \
897f76b2 875 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
876 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
877 || (MODE) == XFmode)
43b83681 878
e8eed2f8 879/* Cover class containing the stack registers. */
880#define STACK_REG_COVER_CLASS FLOAT_REGS
881
43b83681 882/* Number of actual hardware registers.
883 The hardware registers are assigned numbers for the compiler
884 from 0 to just below FIRST_PSEUDO_REGISTER.
885 All registers that the compiler knows about must be given numbers,
886 even those that are not normally considered general registers.
887
888 In the 80386 we give the 8 general purpose registers the numbers 0-7.
889 We number the floating point registers 8-15.
890 Note that registers 0-7 can be accessed as a short or int,
891 while only 0-3 may be used with byte `mov' instructions.
892
893 Reg 16 does not correspond to any hardware register, but instead
894 appears in the RTL as an argument pointer prior to reload, and is
895 eliminated during reloading in favor of either the stack or frame
bb441676 896 pointer. */
43b83681 897
0a9ae7b1 898#define FIRST_PSEUDO_REGISTER 53
43b83681 899
55de61ac 900/* Number of hardware registers that go into the DWARF-2 unwind info.
901 If not defined, equals FIRST_PSEUDO_REGISTER. */
902
903#define DWARF_FRAME_REGISTERS 17
904
43b83681 905/* 1 for registers that have pervasive standard uses
906 and are not available for the register allocator.
c6d93f09 907 On the 80386, the stack pointer is such, as is the arg pointer.
d4983fea 908
78d46568 909 The value is zero if the register is not fixed on either 32 or
910 64 bit targets, one if the register if fixed on both 32 and 64
911 bit targets, two if it is only fixed on 32bit targets and three
912 if its only fixed on 64bit targets.
913 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
c6d93f09 914 */
f01b0085 915#define FIXED_REGISTERS \
916/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
78d46568 917{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
0a9ae7b1 918/*arg,flags,fpsr,fpcr,frame*/ \
919 1, 1, 1, 1, 1, \
f01b0085 920/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
921 0, 0, 0, 0, 0, 0, 0, 0, \
32096e82 922/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
c6d93f09 923 0, 0, 0, 0, 0, 0, 0, 0, \
924/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
78d46568 925 2, 2, 2, 2, 2, 2, 2, 2, \
c6d93f09 926/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
c300d1d8 927 2, 2, 2, 2, 2, 2, 2, 2 }
d4983fea 928
43b83681 929
930/* 1 for registers not available across function calls.
931 These must include the FIXED_REGISTERS and also any
932 registers that can be used without being saved.
933 The latter must include the registers where values are returned
934 and the register where structure-value addresses are passed.
d4983fea 935 Aside from that, you can include as many other registers as you like.
936
abf198ab 937 The value is zero if the register is not call used on either 32 or
938 64 bit targets, one if the register if call used on both 32 and 64
939 bit targets, two if it is only call used on 32bit targets and three
940 if its only call used on 64bit targets.
78d46568 941 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
c6d93f09 942*/
f01b0085 943#define CALL_USED_REGISTERS \
944/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
78d46568 945{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0a9ae7b1 946/*arg,flags,fpsr,fpcr,frame*/ \
947 1, 1, 1, 1, 1, \
f01b0085 948/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
d1918706 949 1, 1, 1, 1, 1, 1, 1, 1, \
32096e82 950/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
78d46568 951 1, 1, 1, 1, 1, 1, 1, 1, \
c6d93f09 952/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
78d46568 953 1, 1, 1, 1, 2, 2, 2, 2, \
c6d93f09 954/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
c300d1d8 955 1, 1, 1, 1, 1, 1, 1, 1 }
43b83681 956
60206704 957/* Order in which to allocate registers. Each register must be
958 listed once, even those in FIXED_REGISTERS. List frame pointer
959 late and fixed registers last. Note that, in general, we prefer
960 registers listed in CALL_USED_REGISTERS, keeping the others
961 available for storage of persistent values.
962
dedfd669 963 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
717db2f5 964 so this is just empty initializer for array. */
60206704 965
717db2f5 966#define REG_ALLOC_ORDER \
967{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
968 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
969 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
0a9ae7b1 970 48, 49, 50, 51, 52 }
60206704 971
dedfd669 972/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
717db2f5 973 to be rearranged based on a particular function. When using sse math,
d1918706 974 we want to allocate SSE before x87 registers and vice versa. */
60206704 975
dedfd669 976#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
60206704 977
0bf9a70a 978
d3feb168 979#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
980
43b83681 981/* Macro to conditionally modify fixed_regs/call_used_regs. */
fd0652b1 982#define CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage ()
43b83681 983
984/* Return number of consecutive hard regs needed starting at reg REGNO
985 to hold something of mode MODE.
986 This is ordinarily the length in words of a value of mode MODE
987 but can be less for certain modes in special long registers.
988
d4983fea 989 Actually there are no two word move instructions for consecutive
43b83681 990 registers. And only registers 0-3 may have mov byte instructions
991 applied to them.
992 */
993
c300d1d8 994#define HARD_REGNO_NREGS(REGNO, MODE) \
699a9fea 995 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
996 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
e07e720e 997 : ((MODE) == XFmode \
699a9fea 998 ? (TARGET_64BIT ? 2 : 3) \
e07e720e 999 : (MODE) == XCmode \
699a9fea 1000 ? (TARGET_64BIT ? 4 : 6) \
0cd8258d 1001 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
43b83681 1002
695595bc 1003#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1004 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1005 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1006 ? 0 \
1007 : ((MODE) == XFmode || (MODE) == XCmode)) \
1008 : 0)
1009
1010#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1011
ed30e0a6 1012#define VALID_AVX256_REG_MODE(MODE) \
1013 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1014 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1015
c300d1d8 1016#define VALID_SSE2_REG_MODE(MODE) \
1017 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1018 || (MODE) == V2DImode || (MODE) == DFmode)
b0556a84 1019
1b12cfd7 1020#define VALID_SSE_REG_MODE(MODE) \
c98fd3f6 1021 ((MODE) == V1TImode || (MODE) == TImode \
1022 || (MODE) == V4SFmode || (MODE) == V4SImode \
c300d1d8 1023 || (MODE) == SFmode || (MODE) == TFmode)
f01b0085 1024
d5e0afe2 1025#define VALID_MMX_REG_MODE_3DNOW(MODE) \
c300d1d8 1026 ((MODE) == V2SFmode || (MODE) == SFmode)
d5e0afe2 1027
1b12cfd7 1028#define VALID_MMX_REG_MODE(MODE) \
7916ca8a 1029 ((MODE == V1DImode) || (MODE) == DImode \
1030 || (MODE) == V2SImode || (MODE) == SImode \
1031 || (MODE) == V4HImode || (MODE) == V8QImode)
f01b0085 1032
0017aae3 1033/* ??? No autovectorization into MMX or 3DNOW until we can reliably
ed30e0a6 1034 place emms and femms instructions.
1035 FIXME: AVX has 32byte floating point vector operations and 16byte
1036 integer vector operations. But vectorizer doesn't support
1037 different sizes for integer and floating point vectors. We limit
1038 vector size to 16byte. */
1039#define UNITS_PER_SIMD_WORD(MODE) \
1040 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1041 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
697bc112 1042
c300d1d8 1043#define VALID_DFP_MODE_P(MODE) \
1044 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
26042839 1045
1b12cfd7 1046#define VALID_FP_MODE_P(MODE) \
c300d1d8 1047 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1048 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
0698f0cc 1049
1b12cfd7 1050#define VALID_INT_MODE_P(MODE) \
c300d1d8 1051 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1052 || (MODE) == DImode \
1053 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1054 || (MODE) == CDImode \
1055 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1056 || (MODE) == TFmode || (MODE) == TCmode)))
0698f0cc 1057
2feb8eca 1058/* Return true for modes passed in SSE registers. */
c300d1d8 1059#define SSE_REG_MODE_P(MODE) \
c98fd3f6 1060 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1061 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1062 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1063 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1064 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
2feb8eca 1065
ce71a9e6 1066/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
5dd8ee04 1067
0698f0cc 1068#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1b12cfd7 1069 ix86_hard_regno_mode_ok ((REGNO), (MODE))
43b83681 1070
1071/* Value is 1 if it is a good idea to tie two pseudo registers
1072 when one has mode MODE1 and one has mode MODE2.
1073 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1074 for any hard reg, then this must be 0 for correct output. */
1075
deac3726 1076#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
2ede69f5 1077
804e497b 1078/* It is possible to write patterns to move flags; but until someone
1079 does it, */
1080#define AVOID_CCMODE_COPIES
43b83681 1081
ce71a9e6 1082/* Specify the modes required to caller save a given hard regno.
301652e2 1083 We do this on i386 to prevent flags from being saved at all.
ce71a9e6 1084
301652e2 1085 Kill any attempts to combine saving of modes. */
1086
1b12cfd7 1087#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1088 (CC_REGNO_P (REGNO) ? VOIDmode \
1089 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
c300d1d8 1090 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1b12cfd7 1091 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
a6ccab35 1092 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
2ede69f5 1093 : (MODE))
c300d1d8 1094
65ca6482 1095/* The only ABI that saves SSE registers across calls is Win64 (thus no
1096 need to check the current ABI here), and with AVX enabled Win64 only
1097 guarantees that the low 16 bytes are saved. */
1098#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1099 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1100
43b83681 1101/* Specify the registers used for certain standard purposes.
1102 The values of these macros are register numbers. */
1103
1104/* on the 386 the pc register is %eip, and is not usable as a general
1105 register. The ordinary mov instructions won't work */
1106/* #define PC_REGNUM */
1107
1108/* Register to use for pushing function arguments. */
1109#define STACK_POINTER_REGNUM 7
1110
1111/* Base register for access to local variables of the function. */
8c5dc77f 1112#define HARD_FRAME_POINTER_REGNUM 6
1113
1114/* Base register for access to local variables of the function. */
0a9ae7b1 1115#define FRAME_POINTER_REGNUM 20
43b83681 1116
1117/* First floating point reg */
1118#define FIRST_FLOAT_REG 8
1119
1120/* First & last stack-like regs */
1121#define FIRST_STACK_REG FIRST_FLOAT_REG
1122#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1123
f01b0085 1124#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1125#define LAST_SSE_REG (FIRST_SSE_REG + 7)
d4983fea 1126
f01b0085 1127#define FIRST_MMX_REG (LAST_SSE_REG + 1)
1128#define LAST_MMX_REG (FIRST_MMX_REG + 7)
1129
c6d93f09 1130#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1131#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1132
1133#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1134#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1135
06b27565 1136/* Override this in other tm.h files to cope with various OS lossage
15b10465 1137 requiring a frame pointer. */
1138#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1139#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1140#endif
1141
1142/* Make sure we can access arbitrary call frames. */
1143#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
43b83681 1144
1145/* Base register for access to arguments of the function. */
1146#define ARG_POINTER_REGNUM 16
1147
43b83681 1148/* Register to hold the addressing base for position independent
df9f5cf8 1149 code access to data items. We don't use PIC pointer for 64bit
1150 mode. Define the regnum to dummy value to prevent gcc from
d4983fea 1151 pessimizing code dealing with EBX.
e3abf694 1152
1153 To avoid clobbering a call-saved register unnecessarily, we renumber
1154 the pic register when possible. The change is visible after the
1155 prologue has been emitted. */
1156
27a7a23a 1157#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
e3abf694 1158
1159#define PIC_OFFSET_TABLE_REGNUM \
43e4a084 1160 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1161 || !flag_pic ? INVALID_REGNUM \
e3abf694 1162 : reload_completed ? REGNO (pic_offset_table_rtx) \
1163 : REAL_PIC_OFFSET_TABLE_REGNUM)
43b83681 1164
c4797f24 1165#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1166
f52eff0c 1167/* This is overridden by <cygwin.h>. */
32512c79 1168#define MS_AGGREGATE_RETURN 0
1169
634f7a13 1170/* This is overridden by <netware.h>. */
1171#define KEEP_AGGREGATE_RETURN_POINTER 0
43b83681 1172\f
1173/* Define the classes of registers for register constraints in the
1174 machine description. Also define ranges of constants.
1175
1176 One of the classes must always be named ALL_REGS and include all hard regs.
1177 If there is more than one class, another class must be named NO_REGS
1178 and contain no registers.
1179
1180 The name GENERAL_REGS must be the name of a class (or an alias for
1181 another name such as ALL_REGS). This is the class of registers
1182 that is allowed by "g" or "r" in a register constraint.
1183 Also, registers outside this class are allocated only when
1184 instructions express preferences for them.
1185
1186 The classes must be numbered in nondecreasing order; that is,
1187 a larger-numbered class must never be contained completely
1188 in a smaller-numbered class.
1189
1190 For any two classes, it is very desirable that there be another
5d70629f 1191 class that represents their union.
1192
1193 It might seem that class BREG is unnecessary, since no useful 386
1194 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
ce71a9e6 1195 and the "b" register constraint is useful in asms for syscalls.
1196
d1918706 1197 The flags, fpsr and fpcr registers are in no class. */
43b83681 1198
1199enum reg_class
1200{
1201 NO_REGS,
ce71a9e6 1202 AREG, DREG, CREG, BREG, SIREG, DIREG,
7f6a3ac8 1203 AD_REGS, /* %eax/%edx for DImode */
fd0652b1 1204 CLOBBERED_REGS, /* call-clobbered integers */
43b83681 1205 Q_REGS, /* %eax %ebx %ecx %edx */
8c5dc77f 1206 NON_Q_REGS, /* %esi %edi %ebp %esp */
43b83681 1207 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
c6d93f09 1208 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1209 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
43b83681 1210 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1211 FLOAT_REGS,
f0dd3deb 1212 SSE_FIRST_REG,
f01b0085 1213 SSE_REGS,
1214 MMX_REGS,
394c6a4a 1215 FP_TOP_SSE_REGS,
1216 FP_SECOND_SSE_REGS,
1217 FLOAT_SSE_REGS,
1218 FLOAT_INT_REGS,
1219 INT_SSE_REGS,
1220 FLOAT_INT_SSE_REGS,
43b83681 1221 ALL_REGS, LIM_REG_CLASSES
1222};
1223
1b12cfd7 1224#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1225
1226#define INTEGER_CLASS_P(CLASS) \
1227 reg_class_subset_p ((CLASS), GENERAL_REGS)
1228#define FLOAT_CLASS_P(CLASS) \
1229 reg_class_subset_p ((CLASS), FLOAT_REGS)
1230#define SSE_CLASS_P(CLASS) \
f0dd3deb 1231 reg_class_subset_p ((CLASS), SSE_REGS)
1b12cfd7 1232#define MMX_CLASS_P(CLASS) \
279495ad 1233 ((CLASS) == MMX_REGS)
1b12cfd7 1234#define MAYBE_INTEGER_CLASS_P(CLASS) \
1235 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1236#define MAYBE_FLOAT_CLASS_P(CLASS) \
1237 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1238#define MAYBE_SSE_CLASS_P(CLASS) \
1239 reg_classes_intersect_p (SSE_REGS, (CLASS))
1240#define MAYBE_MMX_CLASS_P(CLASS) \
1241 reg_classes_intersect_p (MMX_REGS, (CLASS))
1242
1243#define Q_CLASS_P(CLASS) \
1244 reg_class_subset_p ((CLASS), Q_REGS)
8dc6dd95 1245
d697f1db 1246/* Give names of register classes as strings for dump file. */
43b83681 1247
1248#define REG_CLASS_NAMES \
1249{ "NO_REGS", \
5d70629f 1250 "AREG", "DREG", "CREG", "BREG", \
43b83681 1251 "SIREG", "DIREG", \
ce71a9e6 1252 "AD_REGS", \
fd0652b1 1253 "CLOBBERED_REGS", \
ce71a9e6 1254 "Q_REGS", "NON_Q_REGS", \
43b83681 1255 "INDEX_REGS", \
c6d93f09 1256 "LEGACY_REGS", \
43b83681 1257 "GENERAL_REGS", \
1258 "FP_TOP_REG", "FP_SECOND_REG", \
1259 "FLOAT_REGS", \
d3ec8b3b 1260 "SSE_FIRST_REG", \
f01b0085 1261 "SSE_REGS", \
1262 "MMX_REGS", \
394c6a4a 1263 "FP_TOP_SSE_REGS", \
1264 "FP_SECOND_SSE_REGS", \
1265 "FLOAT_SSE_REGS", \
a648dfa9 1266 "FLOAT_INT_REGS", \
394c6a4a 1267 "INT_SSE_REGS", \
1268 "FLOAT_INT_SSE_REGS", \
43b83681 1269 "ALL_REGS" }
1270
fd0652b1 1271/* Define which registers fit in which classes. This is an initializer
1272 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1273
1274 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1275 is adjusted by CONDITIONAL_REGISTER_USAGE for the 64-bit ABI in effect. */
43b83681 1276
f01b0085 1277#define REG_CLASS_CONTENTS \
c6d93f09 1278{ { 0x00, 0x0 }, \
1279 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1280 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1281 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1282 { 0x03, 0x0 }, /* AD_REGS */ \
fd0652b1 1283 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
c6d93f09 1284 { 0x0f, 0x0 }, /* Q_REGS */ \
0a9ae7b1 1285 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1286 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1287 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1288 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
c6d93f09 1289 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1290 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
d3ec8b3b 1291 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
0a9ae7b1 1292{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1293{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
1294{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1295{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1296{ 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1297 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1298{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1299{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1300{ 0xffffffff,0x1fffff } \
ce71a9e6 1301}
43b83681 1302
1303/* The same information, inverted:
1304 Return the class number of the smallest class containing
1305 reg number REGNO. This could be a conditional expression
1306 or could index an array. */
1307
43b83681 1308#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1309
ed5527ca 1310/* When this hook returns true for MODE, the compiler allows
1311 registers explicitly used in the rtl to be used as spill registers
1312 but prevents the compiler from extending the lifetime of these
1313 registers. */
1314#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
43b83681 1315
a6ccab35 1316#define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
c6d93f09 1317
1b12cfd7 1318#define GENERAL_REGNO_P(N) \
3cc68209 1319 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
c6d93f09 1320
1321#define GENERAL_REG_P(X) \
cbf58688 1322 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
c6d93f09 1323
1324#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1325
3cc68209 1326#define REX_INT_REGNO_P(N) \
1327 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
c6d93f09 1328#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1329
43b83681 1330#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
3cc68209 1331#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
394c6a4a 1332#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1b12cfd7 1333#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
f01b0085 1334
ed01e173 1335#define X87_FLOAT_MODE_P(MODE) \
d26e00d8 1336 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
ed01e173 1337
3cc68209 1338#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1339#define SSE_REGNO_P(N) \
1340 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1341 || REX_SSE_REGNO_P (N))
c6d93f09 1342
805e22b2 1343#define REX_SSE_REGNO_P(N) \
3cc68209 1344 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
805e22b2 1345
1b12cfd7 1346#define SSE_REGNO(N) \
1347 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
394c6a4a 1348
1b12cfd7 1349#define SSE_FLOAT_MODE_P(MODE) \
780f86b7 1350 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
f01b0085 1351
2a466fea 1352#define SSE_VEC_FLOAT_MODE_P(MODE) \
1353 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1354
ed30e0a6 1355#define AVX_FLOAT_MODE_P(MODE) \
1356 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1357
1358#define AVX128_VEC_FLOAT_MODE_P(MODE) \
1359 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1360
1361#define AVX256_VEC_FLOAT_MODE_P(MODE) \
1362 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1363
1364#define AVX_VEC_FLOAT_MODE_P(MODE) \
1365 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1366 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1367
2f212aae 1368#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1369 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1370 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1371
1b12cfd7 1372#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
3cc68209 1373#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
d4983fea 1374
3cc68209 1375#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
3cc68209 1376#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
43b83681 1377
1b12cfd7 1378#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
43b83681 1379
ce71a9e6 1380#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1381#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1382
43b83681 1383/* The class value for index registers, and the one for base regs. */
1384
1385#define INDEX_REG_CLASS INDEX_REGS
1386#define BASE_REG_CLASS GENERAL_REGS
1387
43b83681 1388/* Place additional restrictions on the register class to use when it
76170098 1389 is necessary to be able to hold a value of mode MODE in a reload
bb441676 1390 register for which class CLASS would ordinarily be used. */
43b83681 1391
2ede69f5 1392#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1393 ((MODE) == QImode && !TARGET_64BIT \
c0a5a33a 1394 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1395 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
43b83681 1396 ? Q_REGS : (CLASS))
1397
1398/* Given an rtx X being reloaded into a reg required to be
1399 in class CLASS, return the class of reg to actually use.
1400 In general this is just CLASS; but on some machines
1401 in some cases it is preferable to use a more restrictive class.
1402 On the 80386 series, we prevent floating constants from being
1403 reloaded into floating registers (since no move-insn can do that)
1404 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1405
3eba6fa0 1406/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
43b83681 1407 QImode must go into class Q_REGS.
3eba6fa0 1408 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
bb441676 1409 movdf to do mem-to-mem moves through integer regs. */
43b83681 1410
1b12cfd7 1411#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1412 ix86_preferred_reload_class ((X), (CLASS))
9a0e8e92 1413
897f76b2 1414/* Discourage putting floating-point values in SSE registers unless
1415 SSE math is being used, and likewise for the 387 registers. */
1416
1417#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1418 ix86_preferred_output_reload_class ((X), (CLASS))
1419
9a0e8e92 1420/* If we are copying between general and FP registers, we need a memory
ea073cb0 1421 location. The same is true for SSE and MMX registers. */
1b12cfd7 1422#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1423 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
ce71a9e6 1424
296a3469 1425/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1426 There is no need to emit full 64 bit move on 64 bit targets
1427 for integral modes that can be moved using 32 bit move. */
1428#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1429 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1430 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1431 : MODE)
1432
43b83681 1433/* Return the maximum number of consecutive registers
1434 needed to represent mode MODE in a register of class CLASS. */
1435/* On the 80386, this is the size of MODE in words,
e07e720e 1436 except in the FP regs, where a single reg is always enough. */
f01b0085 1437#define CLASS_MAX_NREGS(CLASS, MODE) \
699a9fea 1438 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1439 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
e07e720e 1440 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1441 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
0bf9a70a 1442
5d258b81 1443/* Return a class of registers that cannot change FROM mode to TO mode. */
1444
1445#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1446 ix86_cannot_change_mode_class (FROM, TO, CLASS)
43b83681 1447\f
1448/* Stack layout; function entry, exit and calling. */
1449
1450/* Define this if pushing a word on the stack
1451 makes the stack pointer a smaller address. */
1452#define STACK_GROWS_DOWNWARD
1453
3ce7ff97 1454/* Define this to nonzero if the nominal address of the stack frame
43b83681 1455 is at the high-address end of the local variables;
1456 that is, each additional local variable allocated
1457 goes at a more negative offset in the frame. */
d28d5017 1458#define FRAME_GROWS_DOWNWARD 1
43b83681 1459
1460/* Offset within stack frame to start allocating local variables at.
1461 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1462 first local allocated. Otherwise, it is the offset to the BEGINNING
1463 of the first local allocated. */
1464#define STARTING_FRAME_OFFSET 0
1465
1466/* If we generate an insn to push BYTES bytes,
1467 this says how many the stack pointer really advances by.
3cb7a129 1468 On 386, we have pushw instruction that decrements by exactly 2 no
1469 matter what the position was, there is no pushb.
1470 But as CIE data alignment factor on this arch is -4, we need to make
1471 sure all stack pointer adjustments are in multiple of 4.
d4983fea 1472
2ede69f5 1473 For 64bit ABI we round up to 8 bytes.
1474 */
43b83681 1475
2ede69f5 1476#define PUSH_ROUNDING(BYTES) \
1477 (TARGET_64BIT \
1478 ? (((BYTES) + 7) & (-8)) \
3cb7a129 1479 : (((BYTES) + 3) & (-4)))
43b83681 1480
4448f543 1481/* If defined, the maximum amount of space required for outgoing arguments will
1482 be computed and placed into the variable
abe32cce 1483 `crtl->outgoing_args_size'. No space will be pushed onto the
4448f543 1484 stack for each call; instead, the function prologue should increase the stack
90a81a4b 1485 frame size by this amount.
1486
1487 MS ABI seem to require 16 byte alignment everywhere except for function
1488 prologue and apilogue. This is not possible without
1489 ACCUMULATE_OUTGOING_ARGS. */
4448f543 1490
a6ccab35 1491#define ACCUMULATE_OUTGOING_ARGS \
1492 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
4448f543 1493
1494/* If defined, a C expression whose value is nonzero when we want to use PUSH
1495 instructions to pass outgoing arguments. */
1496
1497#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1498
2a8e54a4 1499/* We want the stack and args grow in opposite directions, even if
1500 PUSH_ARGS is 0. */
1501#define PUSH_ARGS_REVERSED 1
1502
43b83681 1503/* Offset of first parameter from the argument pointer register value. */
1504#define FIRST_PARM_OFFSET(FNDECL) 0
1505
f01b0085 1506/* Define this macro if functions should assume that stack space has been
1507 allocated for arguments even when their values are passed in registers.
1508
1509 The value of this macro is the size, in bytes, of the area reserved for
1510 arguments passed in registers for the function represented by FNDECL.
1511
1512 This space can be allocated by the caller, or be a part of the
1513 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1514 which. */
d3feb168 1515#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1516
8b9d7fb5 1517#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1518 (ix86_function_type_abi (FNTYPE) == MS_ABI)
d3feb168 1519
43b83681 1520/* Define how to find the value returned by a library function
1521 assuming the value has mode MODE. */
1522
8b9d7fb5 1523#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
43b83681 1524
f202941c 1525/* Define the size of the result block used for communication between
1526 untyped_call and untyped_return. The block contains a DImode value
1527 followed by the block used by fnsave and frstor. */
1528
1529#define APPLY_RESULT_SIZE (8+108)
1530
bfa936ad 1531/* 1 if N is a possible register number for function argument passing. */
e4bf866d 1532#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
43b83681 1533
1534/* Define a data type for recording info about an argument list
1535 during the scan of that argument list. This data type should
1536 hold all necessary information about the function itself
1537 and about the args processed so far, enough to enable macros
bfa936ad 1538 such as FUNCTION_ARG to determine where the next arg should go. */
43b83681 1539
ce71a9e6 1540typedef struct ix86_args {
bae5345b 1541 int words; /* # words passed so far */
bfa936ad 1542 int nregs; /* # registers available for passing */
1543 int regno; /* next available register number */
538adab1 1544 int fastcall; /* fastcall or thiscall calling convention
1545 is used */
bae5345b 1546 int sse_words; /* # sse words passed so far */
f01b0085 1547 int sse_nregs; /* # sse registers available for passing */
ed30e0a6 1548 int warn_avx; /* True when we want to warn about AVX ABI. */
e92554cb 1549 int warn_sse; /* True when we want to warn about SSE ABI. */
bae5345b 1550 int warn_mmx; /* True when we want to warn about MMX ABI. */
1551 int sse_regno; /* next available sse register number */
1552 int mmx_words; /* # mmx words passed so far */
6ef4a624 1553 int mmx_nregs; /* # mmx registers available for passing */
1554 int mmx_regno; /* next available mmx register number */
bb441676 1555 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
3524624e 1556 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1557 be passed in SSE registers. Otherwise 0. */
0e4d11df 1558 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
d3feb168 1559 MS_ABI for ms abi. */
bfa936ad 1560} CUMULATIVE_ARGS;
43b83681 1561
1562/* Initialize a variable CUM of type CUMULATIVE_ARGS
1563 for a call to a function whose data type is FNTYPE.
bfa936ad 1564 For a library call, FNTYPE is 0. */
43b83681 1565
30c70355 1566#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
80a85d8a 1567 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
43b83681 1568
43b83681 1569/* Output assembler code to FILE to increment profiler label # LABELNO
1570 for profiling a function entry. */
1571
af23924f 1572#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1573
1574#define MCOUNT_NAME "_mcount"
1575
8637d6a2 1576#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1577
af23924f 1578#define PROFILE_COUNT_REGISTER "edx"
43b83681 1579
1580/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1581 the stack pointer does not matter. The value is tested only in
1582 functions that have frame pointers.
1583 No definition is equivalent to always zero. */
d4983fea 1584/* Note on the 386 it might be more efficient not to define this since
43b83681 1585 we have to restore it ourselves from the frame pointer, in order to
1586 use pop */
1587
1588#define EXIT_IGNORE_STACK 1
1589
43b83681 1590/* Output assembler code for a block containing the constant parts
1591 of a trampoline, leaving space for the variable parts. */
1592
f3e2ae00 1593/* On the 386, the trampoline contains two instructions:
43b83681 1594 mov #STATIC,ecx
f3e2ae00 1595 jmp FUNCTION
1596 The trampoline is generated entirely at runtime. The operand of JMP
1597 is the address of FUNCTION relative to the instruction following the
1598 JMP (which is 5 bytes long). */
43b83681 1599
1600/* Length in units of the trampoline for entering a nested function. */
1601
2b340659 1602#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
43b83681 1603\f
1604/* Definitions for register eliminations.
1605
1606 This is an array of structures. Each structure initializes one pair
1607 of eliminable registers. The "from" register number is given first,
1608 followed by "to". Eliminations of the same "from" register are listed
1609 in order of preference.
1610
0be394dd 1611 There are two registers that can always be eliminated on the i386.
1612 The frame pointer and the arg pointer can be replaced by either the
1613 hard frame pointer or to the stack pointer, depending upon the
1614 circumstances. The hard frame pointer is not used before reload and
1615 so it is not eligible for elimination. */
43b83681 1616
8c5dc77f 1617#define ELIMINABLE_REGS \
1618{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1619 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1620 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1621 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
43b83681 1622
43b83681 1623/* Define the offset between two registers, one to be eliminated, and the other
1624 its replacement, at the start of a routine. */
1625
1b12cfd7 1626#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1627 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
43b83681 1628\f
1629/* Addressing modes, and classification of registers for them. */
1630
43b83681 1631/* Macros to check register numbers against specific register classes. */
1632
1633/* These assume that REGNO is a hard or pseudo reg number.
1634 They give nonzero only if REGNO is a hard reg of the suitable class
1635 or a pseudo reg currently allocated to a suitable hard reg.
1636 Since they use reg_renumber, they are safe only once reg_renumber
1637 has been allocated, which happens in local-alloc.c. */
1638
c6d93f09 1639#define REGNO_OK_FOR_INDEX_P(REGNO) \
1640 ((REGNO) < STACK_POINTER_REGNUM \
3cc68209 1641 || REX_INT_REGNO_P (REGNO) \
1642 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1643 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
43b83681 1644
c6d93f09 1645#define REGNO_OK_FOR_BASE_P(REGNO) \
3cc68209 1646 (GENERAL_REGNO_P (REGNO) \
c6d93f09 1647 || (REGNO) == ARG_POINTER_REGNUM \
1648 || (REGNO) == FRAME_POINTER_REGNUM \
3cc68209 1649 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
43b83681 1650
43b83681 1651/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1652 and check its validity for a certain class.
1653 We have two alternate definitions for each of them.
1654 The usual definition accepts all pseudo regs; the other rejects
1655 them unless they have been allocated suitable hard regs.
1656 The symbol REG_OK_STRICT causes the latter definition to be used.
1657
1658 Most source files want to accept pseudo regs in the hope that
1659 they will get allocated to the class that the insn wants them to be in.
1660 Source files for reload pass need to be strict.
1661 After reload, it makes no difference, since pseudo regs have
1662 been eliminated by then. */
1663
43b83681 1664
1d60d981 1665/* Non strict versions, pseudos are ok. */
60206704 1666#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1667 (REGNO (X) < STACK_POINTER_REGNUM \
3cc68209 1668 || REX_INT_REGNO_P (REGNO (X)) \
43b83681 1669 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1670
60206704 1671#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
3cc68209 1672 (GENERAL_REGNO_P (REGNO (X)) \
60206704 1673 || REGNO (X) == ARG_POINTER_REGNUM \
c6d93f09 1674 || REGNO (X) == FRAME_POINTER_REGNUM \
60206704 1675 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
43b83681 1676
60206704 1677/* Strict versions, hard registers only */
1678#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1679#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
43b83681 1680
60206704 1681#ifndef REG_OK_STRICT
1b12cfd7 1682#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1683#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
60206704 1684
1685#else
1b12cfd7 1686#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1687#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
43b83681 1688#endif
1689
bc409cb4 1690/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
43b83681 1691 that is a valid memory address for an instruction.
1692 The MODE argument is the machine mode for the MEM expression
1693 that wants to use this address.
1694
bc409cb4 1695 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
43b83681 1696 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1697
1698 See legitimize_pic_address in i386.c for details as to what
1699 constitutes a legitimate address when -fpic is used. */
1700
1701#define MAX_REGS_PER_ADDRESS 2
1702
2d6788fe 1703#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
43b83681 1704
1705/* Nonzero if the constant value X is a legitimate general operand.
1706 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1707
2d6788fe 1708#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
43b83681 1709
15750b1e 1710/* If defined, a C expression to determine the base term of address X.
1711 This macro is used in only one place: `find_base_term' in alias.c.
1712
1713 It is always safe for this macro to not be defined. It exists so
1714 that alias analysis can understand machine-dependent addresses.
1715
1716 The typical use of this macro is to handle addresses containing
1717 a label_ref or symbol_ref within an UNSPEC. */
1718
1b12cfd7 1719#define FIND_BASE_TERM(X) ix86_find_base_term (X)
15750b1e 1720
43b83681 1721/* Nonzero if the constant value X is a legitimate general operand
d4983fea 1722 when generating PIC code. It is given that flag_pic is on and
43b83681 1723 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1724
2d6788fe 1725#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
43b83681 1726
1727#define SYMBOLIC_CONST(X) \
1b12cfd7 1728 (GET_CODE (X) == SYMBOL_REF \
1729 || GET_CODE (X) == LABEL_REF \
1730 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
43b83681 1731\f
bfa936ad 1732/* Max number of args passed in registers. If this is more than 3, we will
1733 have problems with ebx (register #4), since it is a caller save register and
1734 is also used as the pic register in ELF. So for now, don't allow more than
1735 3 registers to be passed in registers. */
1736
d3feb168 1737/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1738#define X86_64_REGPARM_MAX 6
b51058a6 1739#define X86_64_MS_REGPARM_MAX 4
d3feb168 1740
b51058a6 1741#define X86_32_REGPARM_MAX 3
d3feb168 1742
8b9d7fb5 1743#define REGPARM_MAX \
b51058a6 1744 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_REGPARM_MAX \
8b9d7fb5 1745 : X86_64_REGPARM_MAX) \
1746 : X86_32_REGPARM_MAX)
2ede69f5 1747
b51058a6 1748#define X86_64_SSE_REGPARM_MAX 8
1749#define X86_64_MS_SSE_REGPARM_MAX 4
1750
16f043b0 1751#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
b51058a6 1752
8b9d7fb5 1753#define SSE_REGPARM_MAX \
b51058a6 1754 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_SSE_REGPARM_MAX \
8b9d7fb5 1755 : X86_64_SSE_REGPARM_MAX) \
1756 : X86_32_SSE_REGPARM_MAX)
6ef4a624 1757
1758#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
bfa936ad 1759
43b83681 1760\f
1761/* Specify the machine mode that this machine uses
1762 for the index in the tablejump instruction. */
5fe80ef0 1763#define CASE_VECTOR_MODE \
1764 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
43b83681 1765
43b83681 1766/* Define this as 1 if `char' should by default be signed; else as 0. */
1767#define DEFAULT_SIGNED_CHAR 1
1768
1769/* Max number of bytes we can move from memory to memory
1770 in one reasonably fast instruction. */
c7f5f345 1771#define MOVE_MAX 16
1772
1773/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1774 move efficiently, as opposed to MOVE_MAX which is the maximum
bb441676 1775 number of bytes we can move with a single instruction. */
c7f5f345 1776#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
43b83681 1777
cbdc0179 1778/* If a memory-to-memory move would take MOVE_RATIO or more simple
008c057d 1779 move-instruction pairs, we will do a movmem or libcall instead.
cbdc0179 1780 Increasing the value will always make code faster, but eventually
1781 incurs high cost in increased code size.
43b83681 1782
a746fd01 1783 If you don't define this, a reasonable default is used. */
43b83681 1784
f5733e7c 1785#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
43b83681 1786
025d4f81 1787/* If a clear memory operation would take CLEAR_RATIO or more simple
1788 move-instruction sequences, we will do a clrmem or libcall instead. */
1789
f5733e7c 1790#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
025d4f81 1791
fb127c49 1792/* Define if shifts truncate the shift count which implies one can
1793 omit a sign-extension or zero-extension of a shift count.
1794
1795 On i386, shifts do truncate the count. But bit test instructions
1796 take the modulo of the bit offset operand. */
43b83681 1797
1798/* #define SHIFT_COUNT_TRUNCATED */
1799
1800/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1801 is done just by pretending it is already truncated. */
1802#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1803
c41f04da 1804/* A macro to update M and UNSIGNEDP when an object whose type is
1805 TYPE and which has the specified mode and signedness is to be
1806 stored in a register. This macro is only called when TYPE is a
1807 scalar type.
1808
8ef587dc 1809 On i386 it is sometimes useful to promote HImode and QImode
c41f04da 1810 quantities to SImode. The choice depends on target type. */
1811
1812#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1b12cfd7 1813do { \
c41f04da 1814 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1815 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1b12cfd7 1816 (MODE) = SImode; \
1817} while (0)
c41f04da 1818
43b83681 1819/* Specify the machine mode that pointers have.
1820 After generation of rtl, the compiler makes no further distinction
1821 between pointers and any other objects of this machine mode. */
c7f5f345 1822#define Pmode (TARGET_64BIT ? DImode : SImode)
43b83681 1823
1824/* A function address in a call instruction
1825 is a byte address (for indexing purposes)
1826 so give the MEM rtx a byte's mode. */
1827#define FUNCTION_MODE QImode
9af5c5d1 1828\f
9af5c5d1 1829
9af5c5d1 1830/* A C expression for the cost of a branch instruction. A value of 1
1831 is the default; other values are interpreted relative to that. */
1832
4a9d7ef7 1833#define BRANCH_COST(speed_p, predictable_p) \
1834 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
9af5c5d1 1835
1836/* Define this macro as a C expression which is nonzero if accessing
1837 less than a word of memory (i.e. a `char' or a `short') is no
1838 faster than accessing a word of memory, i.e., if such access
1839 require more than one instruction or if there is no difference in
1840 cost between byte and (aligned) word loads.
1841
1842 When this macro is not defined, the compiler will access a field by
1843 finding the smallest containing object; when it is defined, a
1844 fullword load will be used if alignment permits. Unless bytes
1845 accesses are faster than word accesses, using word accesses is
1846 preferable since it may eliminate subsequent memory access if
1847 subsequent accesses occur to other fields in the same word of the
1848 structure, but to different bytes. */
1849
1850#define SLOW_BYTE_ACCESS 0
1851
1852/* Nonzero if access to memory by shorts is slow and undesirable. */
1853#define SLOW_SHORT_ACCESS 0
1854
9af5c5d1 1855/* Define this macro to be the value 1 if unaligned accesses have a
1856 cost many times greater than aligned accesses, for example if they
1857 are emulated in a trap handler.
1858
c46dc351 1859 When this macro is nonzero, the compiler will act as if
1860 `STRICT_ALIGNMENT' were nonzero when generating code for block
9af5c5d1 1861 moves. This can cause significantly more instructions to be
c46dc351 1862 produced. Therefore, do not set this macro nonzero if unaligned
9af5c5d1 1863 accesses only add a cycle or two to the time for a memory access.
1864
1865 If the value of this macro is always zero, it need not be defined. */
1866
9439ebf7 1867/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
9af5c5d1 1868
9af5c5d1 1869/* Define this macro if it is as good or better to call a constant
1870 function address than to call an address kept in a register.
1871
1872 Desirable on the 386 because a CALL with a constant address is
1873 faster than one with a register address. */
1874
1875#define NO_FUNCTION_CSE
43b83681 1876\f
b15e0bba 1877/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1878 return the mode to be used for the comparison.
1879
1880 For floating-point equality comparisons, CCFPEQmode should be used.
ce71a9e6 1881 VOIDmode should be used in all other cases.
b15e0bba 1882
979a64df 1883 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
ce71a9e6 1884 possible, to allow for more combinations. */
43b83681 1885
1b12cfd7 1886#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
59112222 1887
c46dc351 1888/* Return nonzero if MODE implies a floating point inequality can be
59112222 1889 reversed. */
1890
1891#define REVERSIBLE_CC_MODE(MODE) 1
1892
1893/* A C expression whose value is reversed condition code of the CODE for
1894 comparison done in CC_MODE mode. */
41252d26 1895#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
59112222 1896
43b83681 1897\f
1898/* Control the assembler format that we output, to the extent
1899 this does not vary between assemblers. */
1900
1901/* How to refer to registers in assembler output.
bb441676 1902 This sequence is indexed by compiler's hard-register-number (see above). */
43b83681 1903
5b865faf 1904/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
43b83681 1905 For non floating point regs, the following are the HImode names.
1906
1907 For float regs, the stack top is sometimes referred to as "%st(0)"
182e98f4 1908 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1909 "y" code. */
43b83681 1910
f01b0085 1911#define HI_REGISTER_NAMES \
1912{"ax","dx","cx","bx","si","di","bp","sp", \
d535f7e3 1913 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
0a9ae7b1 1914 "argp", "flags", "fpsr", "fpcr", "frame", \
f01b0085 1915 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
d1918706 1916 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
c6d93f09 1917 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1918 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
f01b0085 1919
43b83681 1920#define REGISTER_NAMES HI_REGISTER_NAMES
1921
1922/* Table of additional register names to use in user input. */
1923
1924#define ADDITIONAL_REGISTER_NAMES \
ebf7b427 1925{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1926 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
c6d93f09 1927 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1928 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
ebf7b427 1929 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
126a70bb 1930 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
43b83681 1931
1932/* Note we are omitting these since currently I don't know how
1933to get gcc to use these, since they want the same but different
1934number as al, and ax.
1935*/
1936
43b83681 1937#define QI_REGISTER_NAMES \
c6d93f09 1938{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
43b83681 1939
1940/* These parallel the array above, and can be used to access bits 8:15
bb441676 1941 of regs 0 through 3. */
43b83681 1942
1943#define QI_HIGH_REGISTER_NAMES \
1944{"ah", "dh", "ch", "bh", }
1945
1946/* How to renumber registers for dbx and gdb. */
1947
1b12cfd7 1948#define DBX_REGISTER_NUMBER(N) \
1949 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
eb26ca2c 1950
92df0d3c 1951extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1952extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1953extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
43b83681 1954
df78b73b 1955/* Before the prologue, RA is at 0(%esp). */
1956#define INCOMING_RETURN_ADDR_RTX \
5c6cf936 1957 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
d4983fea 1958
0870676d 1959/* After the prologue, RA is at -4(AP) in the current frame. */
287edcbf 1960#define RETURN_ADDR_RTX(COUNT, FRAME) \
1961 ((COUNT) == 0 \
1962 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1963 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
0870676d 1964
bb441676 1965/* PC is dbx register 8; let's use that column for RA. */
62c74046 1966#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
df78b73b 1967
19bce576 1968/* Before the prologue, the top of the frame is at 4(%esp). */
62c74046 1969#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
19bce576 1970
287edcbf 1971/* Describe how we implement __builtin_eh_return. */
1972#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
1973#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
1974
9532742b 1975
038bfd6b 1976/* Select a format to encode pointers in exception handling data. CODE
1977 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1978 true if the symbol may be affected by dynamic relocations.
1979
1980 ??? All x86 object file formats are capable of representing this.
1981 After all, the relocation needed is the same as for the call insn.
1982 Whether or not a particular assembler allows us to enter such, I
1983 guess we'll have to see. */
1b12cfd7 1984#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
5e6d8953 1985 asm_preferred_eh_data_format ((CODE), (GLOBAL))
038bfd6b 1986
43b83681 1987/* This is how to output an insn to push a register on the stack.
1988 It need not be very fast code. */
1989
1b12cfd7 1990#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
44c0bfa7 1991do { \
1992 if (TARGET_64BIT) \
1993 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1994 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1995 else \
1996 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1997} while (0)
43b83681 1998
1999/* This is how to output an insn to pop a register from the stack.
2000 It need not be very fast code. */
2001
1b12cfd7 2002#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
44c0bfa7 2003do { \
2004 if (TARGET_64BIT) \
2005 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2006 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2007 else \
2008 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2009} while (0)
43b83681 2010
bb006a84 2011/* This is how to output an element of a case-vector that is absolute. */
43b83681 2012
2013#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1b12cfd7 2014 ix86_output_addr_vec_elt ((FILE), (VALUE))
43b83681 2015
bb006a84 2016/* This is how to output an element of a case-vector that is relative. */
43b83681 2017
9eaab178 2018#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1b12cfd7 2019 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
bb006a84 2020
ed30e0a6 2021/* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2022 true. */
2023
2024#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2025{ \
2026 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2027 { \
2028 if (TARGET_AVX) \
2029 (PTR) += 1; \
2030 else \
2031 (PTR) += 2; \
2032 } \
2033}
2034
2035/* A C statement or statements which output an assembler instruction
2036 opcode to the stdio stream STREAM. The macro-operand PTR is a
2037 variable of type `char *' which points to the opcode name in
2038 its "internal" form--the form that is written in the machine
2039 description. */
2040
2041#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2042 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2043
3559347d 2044/* A C statement to output to the stdio stream FILE an assembler
2045 command to pad the location counter to a multiple of 1<<LOG
2046 bytes if it is within MAX_SKIP bytes. */
2047
2048#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2049#undef ASM_OUTPUT_MAX_SKIP_PAD
2050#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2051 if ((LOG) != 0) \
2052 { \
2053 if ((MAX_SKIP) == 0) \
2054 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2055 else \
2056 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2057 }
2058#endif
2059
2761b7cb 2060/* Write the extra assembler code needed to declare a function
2061 properly. */
2062
2063#undef ASM_OUTPUT_FUNCTION_LABEL
2064#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2065 ix86_asm_output_function_label (FILE, NAME, DECL)
2066
3ebc7dec 2067/* Under some conditions we need jump tables in the text section,
2068 because the assembler cannot handle label differences between
2069 sections. This is the case for x86_64 on Mach-O for example. */
bb006a84 2070
2071#define JUMP_TABLES_IN_TEXT_SECTION \
3ebc7dec 2072 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2073 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
43b83681 2074
e1ff7102 2075/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2076 and switch back. For x86 we do this only to save a few bytes that
2077 would otherwise be unused in the text section. */
a2beb429 2078#define CRT_MKSTR2(VAL) #VAL
2079#define CRT_MKSTR(x) CRT_MKSTR2(x)
2080
2081#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2082 asm (SECTION_OP "\n\t" \
2083 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
e1ff7102 2084 TEXT_SECTION_ASM_OP);
a40a0ed3 2085\f
d25a2a8c 2086/* Which processor to schedule for. The cpu attribute defines a list that
2087 mirrors this list, so changes to i386.md must be made at the same time. */
2088
2089enum processor_type
2090{
8ba8ec53 2091 PROCESSOR_I386 = 0, /* 80386 */
d25a2a8c 2092 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2093 PROCESSOR_PENTIUM,
2094 PROCESSOR_PENTIUMPRO,
5c34451e 2095 PROCESSOR_GEODE,
d25a2a8c 2096 PROCESSOR_K6,
2097 PROCESSOR_ATHLON,
2098 PROCESSOR_PENTIUM4,
805e22b2 2099 PROCESSOR_K8,
0fda5f41 2100 PROCESSOR_NOCONA,
11361ecb 2101 PROCESSOR_CORE2,
9db3d688 2102 PROCESSOR_GENERIC32,
2103 PROCESSOR_GENERIC64,
3d775f8e 2104 PROCESSOR_AMDFAM10,
6fc76bb0 2105 PROCESSOR_BDVER1,
fbfe006e 2106 PROCESSOR_ATOM,
d25a2a8c 2107 PROCESSOR_max
2108};
2109
706b598d 2110extern enum processor_type ix86_tune;
d25a2a8c 2111extern enum processor_type ix86_arch;
d25a2a8c 2112
2113enum fpmath_unit
2114{
2115 FPMATH_387 = 1,
2116 FPMATH_SSE = 2
2117};
2118
2119extern enum fpmath_unit ix86_fpmath;
d25a2a8c 2120
2d6788fe 2121enum tls_dialect
2122{
2123 TLS_DIALECT_GNU,
4a55687c 2124 TLS_DIALECT_GNU2,
2d6788fe 2125 TLS_DIALECT_SUN
2126};
2127
2128extern enum tls_dialect ix86_tls_dialect;
2d6788fe 2129
cbf58688 2130enum cmodel {
d25a2a8c 2131 CM_32, /* The traditional 32-bit ABI. */
2132 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2133 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2134 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2135 CM_LARGE, /* No assumptions. */
43e4a084 2136 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
5fe80ef0 2137 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2138 CM_LARGE_PIC /* No assumptions. */
cbf58688 2139};
2140
d25a2a8c 2141extern enum cmodel ix86_cmodel;
d25a2a8c 2142
8eafd985 2143/* Size of the RED_ZONE area. */
2144#define RED_ZONE_SIZE 128
2145/* Reserved area of the red zone for temporaries. */
2146#define RED_ZONE_RESERVE 8
25b31391 2147
2148enum asm_dialect {
2149 ASM_ATT,
2150 ASM_INTEL
2151};
d25a2a8c 2152
60b0f8fb 2153extern enum asm_dialect ix86_asm_dialect;
38413c80 2154extern unsigned int ix86_preferred_stack_boundary;
27a7a23a 2155extern unsigned int ix86_incoming_stack_boundary;
43e4a084 2156extern int ix86_branch_cost, ix86_section_threshold;
d25a2a8c 2157
2158/* Smallest class containing REGNO. */
2159extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2160
e6a0a4a3 2161enum ix86_fpcmp_strategy {
2162 IX86_FPCMP_SAHF,
2163 IX86_FPCMP_COMI,
2164 IX86_FPCMP_ARITH
2165};
be0c5fcb 2166\f
2167/* To properly truncate FP values into integers, we need to set i387 control
2168 word. We can't emit proper mode switching code before reload, as spills
2169 generated by reload may truncate values incorrectly, but we still can avoid
2170 redundant computation of new control word by the mode switching pass.
2171 The fldcw instructions are still emitted redundantly, but this is probably
2172 not going to be noticeable problem, as most CPUs do have fast path for
d4983fea 2173 the sequence.
be0c5fcb 2174
2175 The machinery is to emit simple truncation instructions and split them
2176 before reload to instructions having USEs of two memory locations that
2177 are filled by this code to old and new control word.
d4983fea 2178
be0c5fcb 2179 Post-reload pass may be later used to eliminate the redundant fildcw if
2180 needed. */
2181
19cd29a7 2182enum ix86_entity
2183{
2184 I387_TRUNC = 0,
2185 I387_FLOOR,
2186 I387_CEIL,
2187 I387_MASK_PM,
2188 MAX_386_ENTITIES
2189};
2190
3e883b09 2191enum ix86_stack_slot
19cd29a7 2192{
69ddc71a 2193 SLOT_VIRTUAL = 0,
2194 SLOT_TEMP,
19cd29a7 2195 SLOT_CW_STORED,
2196 SLOT_CW_TRUNC,
2197 SLOT_CW_FLOOR,
2198 SLOT_CW_CEIL,
2199 SLOT_CW_MASK_PM,
2200 MAX_386_STACK_LOCALS
2201};
be0c5fcb 2202
2203/* Define this macro if the port needs extra instructions inserted
2204 for mode switching in an optimizing compilation. */
2205
19cd29a7 2206#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2207 ix86_optimize_mode_switching[(ENTITY)]
be0c5fcb 2208
2209/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2210 initializer for an array of integers. Each initializer element N
2211 refers to an entity that needs mode switching, and specifies the
2212 number of different modes that might need to be set for this
2213 entity. The position of the initializer in the initializer -
2214 starting counting at zero - determines the integer that is used to
2215 refer to the mode-switched entity in question. */
2216
19cd29a7 2217#define NUM_MODES_FOR_MODE_SWITCHING \
2218 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
be0c5fcb 2219
2220/* ENTITY is an integer specifying a mode-switched entity. If
2221 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2222 return an integer value not larger than the corresponding element
2223 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
19cd29a7 2224 must be switched into prior to the execution of INSN. */
2225
2226#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
be0c5fcb 2227
2228/* This macro specifies the order in which modes for ENTITY are
2229 processed. 0 is the highest priority. */
2230
1b12cfd7 2231#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
be0c5fcb 2232
2233/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2234 is the set of hard registers live at the point where the insn(s)
2235 are to be inserted. */
2236
2237#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
4cf2e75a 2238 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
19cd29a7 2239 ? emit_i387_cw_initialization (MODE), 0 \
be0c5fcb 2240 : 0)
19cd29a7 2241
483f30d9 2242\f
2243/* Avoid renaming of stack registers, as doing so in combination with
2244 scheduling just increases amount of live registers at time and in
2245 the turn amount of fxch instructions needed.
2246
d697f1db 2247 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
483f30d9 2248
1b12cfd7 2249#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3cc68209 2250 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
be0c5fcb 2251
60206704 2252\f
54f917d1 2253#define FASTCALL_PREFIX '@'
6ce54148 2254\f
2c22c775 2255/* Machine specific frame tracking during prologue/epilogue generation. */
25e880b1 2256
e3b9403e 2257#ifndef USED_FOR_TARGET
2c22c775 2258struct GTY(()) machine_frame_state
25e880b1 2259{
2c22c775 2260 /* This pair tracks the currently active CFA as reg+offset. When reg
2261 is drap_reg, we don't bother trying to record here the real CFA when
2262 it might really be a DW_CFA_def_cfa_expression. */
2263 rtx cfa_reg;
2264 HOST_WIDE_INT cfa_offset;
2265
2266 /* The current offset (canonically from the CFA) of ESP and EBP.
2267 When stack frame re-alignment is active, these may not be relative
2268 to the CFA. However, in all cases they are relative to the offsets
2269 of the saved registers stored in ix86_frame. */
2270 HOST_WIDE_INT sp_offset;
2271 HOST_WIDE_INT fp_offset;
2272
2273 /* The size of the red-zone that may be assumed for the purposes of
2274 eliding register restore notes in the epilogue. This may be zero
2275 if no red-zone is in effect, or may be reduced from the real
2276 red-zone value by a maximum runtime stack re-alignment value. */
2277 int red_zone_offset;
2278
2279 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2280 value within the frame. If false then the offset above should be
2281 ignored. Note that DRAP, if valid, *always* points to the CFA and
2282 thus has an offset of zero. */
2283 BOOL_BITFIELD sp_valid : 1;
2284 BOOL_BITFIELD fp_valid : 1;
2285 BOOL_BITFIELD drap_valid : 1;
3c347ca5 2286
2287 /* Indicate whether the local stack frame has been re-aligned. When
2288 set, the SP/FP offsets above are relative to the aligned frame
2289 and not the CFA. */
2290 BOOL_BITFIELD realigned : 1;
25e880b1 2291};
2292
fb1e4f4a 2293struct GTY(()) machine_function {
6ce54148 2294 struct stack_local_entry *stack_locals;
2295 const char *some_ld_name;
d5d9458a 2296 int varargs_gpr_size;
2297 int varargs_fpr_size;
19cd29a7 2298 int optimize_mode_switching[MAX_386_ENTITIES];
2b340659 2299
2300 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2301 has been computed for. */
2302 int use_fast_prologue_epilogue_nregs;
2303
2b340659 2304 /* This value is used for amd64 targets and specifies the current abi
2305 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
b7834994 2306 ENUM_BITFIELD(calling_abi) call_abi : 8;
2b340659 2307
2308 /* Nonzero if the function accesses a previous frame. */
2309 BOOL_BITFIELD accesses_prev_frame : 1;
2310
2311 /* Nonzero if the function requires a CLD in the prologue. */
2312 BOOL_BITFIELD needs_cld : 1;
2313
144c3e90 2314 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2315 expander to determine the style used. */
2b340659 2316 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2317
4a55687c 2318 /* If true, the current function needs the default PIC register, not
2319 an alternate register (on x86) and must not use the red zone (on
2320 x86_64), even if it's a leaf function. We don't want the
2321 function to be regarded as non-leaf because TLS calls need not
2322 affect register allocation. This flag is set when a TLS call
2323 instruction is expanded within a function, and never reset, even
2324 if all such instructions are optimized away. Use the
2325 ix86_current_function_calls_tls_descriptor macro for a better
2326 approximation. */
2b340659 2327 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2328
2329 /* If true, the current function has a STATIC_CHAIN is placed on the
2330 stack below the return address. */
2331 BOOL_BITFIELD static_chain_on_stack : 1;
b7834994 2332
2c22c775 2333 /* During prologue/epilogue generation, the current frame state.
2334 Otherwise, the frame state at the end of the prologue. */
2335 struct machine_frame_state fs;
6ce54148 2336};
25e880b1 2337#endif
6ce54148 2338
2339#define ix86_stack_locals (cfun->machine->stack_locals)
d5d9458a 2340#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2341#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
6ce54148 2342#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
144c3e90 2343#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
4a55687c 2344#define ix86_tls_descriptor_calls_expanded_in_cfun \
2345 (cfun->machine->tls_descriptor_call_expanded_p)
2346/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2347 calls are optimized away, we try to detect cases in which it was
2348 optimized away. Since such instructions (use (reg REG_SP)), we can
2349 verify whether there's any such instruction live by testing that
2350 REG_SP is live. */
2351#define ix86_current_function_calls_tls_descriptor \
3072d30e 2352 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2b340659 2353#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
78177281 2354
92c473b8 2355/* Control behavior of x86_file_start. */
2356#define X86_FILE_START_VERSION_DIRECTIVE false
2357#define X86_FILE_START_FLTUSED false
2358
43e4a084 2359/* Flag to mark data that is in the large address area. */
2360#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2361#define SYMBOL_REF_FAR_ADDR_P(X) \
2362 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
dd1a226e 2363
2364/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2365 have defined always, to avoid ifdefing. */
2366#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2367#define SYMBOL_REF_DLLIMPORT_P(X) \
2368 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2369
2370#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2371#define SYMBOL_REF_DLLEXPORT_P(X) \
2372 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2373
43b83681 2374/*
2375Local variables:
2376version-control: t
2377End:
2378*/