]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
builtins-43.c: Add -fno-finite-math-only.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
cf011243 2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
5bf5a10b 3 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
c98f8742 4
188fc5b5 5This file is part of GCC.
c98f8742 6
188fc5b5 7GCC is free software; you can redistribute it and/or modify
c98f8742
JVA
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
188fc5b5 12GCC is distributed in the hope that it will be useful,
c98f8742
JVA
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
188fc5b5 18along with GCC; see the file COPYING. If not, write to
39d14dda
KC
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA. */
c98f8742
JVA
21
22/* The purpose of this file is to define the characteristics of the i386,
b4ac57ab 23 independent of assembler syntax or operating system.
c98f8742
JVA
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
e075ae69
RH
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
c98f8742 36
d4ba09c0
SC
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
8b60264b
KG
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
f676971a 44 const int mult_init[5]; /* cost of starting a multiply
4977bab6 45 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 46 const int mult_bit; /* cost of multiply per each bit set */
f676971a 47 const int divide[5]; /* cost of a divide/mod
4977bab6 48 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
8b60264b
KG
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
ac775968 53 memory-to-memory move insns. */
8b60264b
KG
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
8b60264b 58 const int int_store[3]; /* cost of storing integer register
96e7ae40 59 in QImode, HImode and SImode */
8b60264b
KG
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
96e7ae40 62 in SFmode, DFmode and XFmode */
8b60264b 63 const int fp_store[3]; /* cost of storing FP register
96e7ae40 64 in SFmode, DFmode and XFmode */
8b60264b
KG
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 67 in SImode and DImode */
8b60264b 68 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 69 in SImode and DImode */
8b60264b
KG
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
fa79946e 72 in SImode, DImode and TImode*/
8b60264b 73 const int sse_store[3]; /* cost of storing SSE register
fa79946e 74 in SImode, DImode and TImode*/
8b60264b 75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
fa79946e 76 integer and vice versa. */
f4365627
JH
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
4977bab6 80 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
d4ba09c0
SC
87};
88
8b60264b 89extern const struct processor_costs *ix86_cost;
d4ba09c0 90
c98f8742
JVA
91/* Macros used in the machine description to test the flags. */
92
ddd5a7c1 93/* configure can arrange to make this 2, to force a 486. */
e075ae69 94
35b528be 95#ifndef TARGET_CPU_DEFAULT
d326eaf0 96#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
10e9fecc 97#endif
35b528be 98
004d3859
GK
99#ifndef TARGET_FPMATH_DEFAULT
100#define TARGET_FPMATH_DEFAULT \
101 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102#endif
103
6ac49599 104#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
b08de47e 105
5791cc29
JT
106/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
107 compile-time constant. */
108#ifdef IN_LIBGCC2
6ac49599 109#undef TARGET_64BIT
5791cc29
JT
110#ifdef __x86_64__
111#define TARGET_64BIT 1
112#else
113#define TARGET_64BIT 0
114#endif
115#else
6ac49599
RS
116#ifndef TARGET_BI_ARCH
117#undef TARGET_64BIT
67adf6a9 118#if TARGET_64BIT_DEFAULT
0c2dc519
JH
119#define TARGET_64BIT 1
120#else
121#define TARGET_64BIT 0
122#endif
123#endif
5791cc29 124#endif
25f94bb5 125
750054a2
CT
126#define HAS_LONG_COND_BRANCH 1
127#define HAS_LONG_UNCOND_BRANCH 1
128
9e555526
RH
129#define TARGET_386 (ix86_tune == PROCESSOR_I386)
130#define TARGET_486 (ix86_tune == PROCESSOR_I486)
131#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
134#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
135#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
136#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 137#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 138#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
d326eaf0
JH
139#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
140#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
141#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
a269a03c 142
9e555526 143#define TUNEMASK (1 << ix86_tune)
a269a03c 144extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
1e993cb8 145extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
ef6257cd 146extern const int x86_branch_hints, x86_unroll_strlen;
e075ae69 147extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
862e2886 148extern const int x86_use_himode_fiop, x86_use_simode_fiop;
0e8c2b0d 149extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
e075ae69 150extern const int x86_read_modify, x86_split_long_moves;
285464d0 151extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
d9f32422 152extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
0b5107cf 153extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
bdeb029c 154extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
0b5107cf 155extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
c6036a37 156extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
b972dd02 157extern const int x86_epilogue_using_move, x86_decompose_lea;
495333a6 158extern const int x86_arch_always_fancy_math_387, x86_shift1;
41afe4ef 159extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
4977bab6 160extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
41afe4ef 161extern const int x86_use_ffreep;
ad7b96a9 162extern const int x86_inter_unit_moves, x86_schedule;
7cacf53e 163extern const int x86_use_bt;
a0274e3e 164extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
d326eaf0
JH
165extern const int x86_use_incdec;
166extern const int x86_pad_returns;
995cc369 167extern const int x86_partial_flag_reg_stall;
f4365627 168extern int x86_prefetch_sse;
a269a03c 169
9e555526
RH
170#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
171#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
172#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
173#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
174#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
0644b628
JH
175/* For sane SSE instruction set generation we need fcomi instruction. It is
176 safe to enable all CMOVE instructions. */
177#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
1e993cb8 178#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
9e555526
RH
179#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
180#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
181#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
182#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
183#define TARGET_MOVX (x86_movx & TUNEMASK)
184#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
995cc369 185#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
0e8c2b0d
UB
186#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
187#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
9e555526
RH
188#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
189#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
190#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
191#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
192#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
193#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
194#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
195#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
196#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
197#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
198#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
199#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
200#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
201#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
202#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
203#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
204#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
205#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
4977bab6 206#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
9e555526 207 (x86_sse_partial_reg_dependency & TUNEMASK)
41afe4ef 208#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
9e555526 209#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
9e555526
RH
210#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
211#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
212#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
213#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
f4365627 214#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
9e555526
RH
215#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
216#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
217#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
218#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
be04394b 219#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
ad7b96a9 220#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
7cacf53e 221#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
d326eaf0
JH
222#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
223#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
a269a03c 224
c93e80a5 225#define ASSEMBLER_DIALECT (ix86_asm_dialect)
e075ae69 226
965f5423
JH
227#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
228#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
229 && (ix86_fpmath & FPMATH_387))
4977bab6 230
f996902d 231#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
5bf5a10b
AO
232#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
233#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
f996902d
RH
234#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
235
1ef45b77 236#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
a0274e3e
JJ
237#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
238#define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
1ef45b77
RH
239#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
240
67adf6a9
RH
241#ifndef TARGET_64BIT_DEFAULT
242#define TARGET_64BIT_DEFAULT 0
25f94bb5 243#endif
74dc3e94
RH
244#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
245#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
246#endif
25f94bb5 247
0ed4a390
JL
248/* Once GDB has been enhanced to deal with functions without frame
249 pointers, we can change this to allow for elimination of
250 the frame pointer in leaf functions. */
251#define TARGET_DEFAULT 0
67adf6a9 252
b069de3b
SS
253/* This is not really a target flag, but is done this way so that
254 it's analogous to similar code for Mach-O on PowerPC. darwin.h
255 redefines this to 1. */
256#define TARGET_MACHO 0
257
cc69336f
RH
258/* Subtargets may reset this to 1 in order to enable 96-bit long double
259 with the rounding mode forced to 53 bits. */
260#define TARGET_96_ROUND_53_LONG_DOUBLE 0
261
f5316dfe
MM
262/* Sometimes certain combinations of command options do not make
263 sense on a particular target machine. You can define a macro
264 `OVERRIDE_OPTIONS' to take account of this. This macro, if
265 defined, is executed once just after all the command options have
266 been parsed.
267
268 Don't use this macro to turn on various extra optimizations for
269 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
270
271#define OVERRIDE_OPTIONS override_options ()
272
d4ba09c0 273/* Define this to change the optimizations performed by default. */
d9a5f180
GS
274#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
275 optimization_options ((LEVEL), (SIZE))
d4ba09c0 276
682cd442
GK
277/* -march=native handling only makes sense with compiler running on
278 an x86 or x86_64 chip. If changing this condition, also change
279 the condition in driver-i386.c. */
280#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
281/* In driver-i386.c. */
282extern const char *host_detect_local_cpu (int argc, const char **argv);
283#define EXTRA_SPEC_FUNCTIONS \
284 { "local_cpu_detect", host_detect_local_cpu },
682cd442 285#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
286#endif
287
1cba2b96
EC
288/* Support for configure-time defaults of some command line options.
289 The order here is important so that -march doesn't squash the
290 tune or cpu values. */
7816bea0 291#define OPTION_DEFAULT_SPECS \
da2d4c01 292 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
1cba2b96
EC
293 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
294 {"arch", "%{!march=*:-march=%(VALUE)}"}
7816bea0 295
241e1a89
SC
296/* Specs for the compiler proper */
297
628714d8 298#ifndef CC1_CPU_SPEC
fa959ce4 299#define CC1_CPU_SPEC_1 "\
9d913bbf
KC
300%{!mtune*: \
301%{m386:mtune=i386 \
302%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
303%{m486:-mtune=i486 \
304%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
305%{mpentium:-mtune=pentium \
306%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
307%{mpentiumpro:-mtune=pentiumpro \
308%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
309%{mcpu=*:-mtune=%* \
310%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
311%<mcpu=* \
c93e80a5
JH
312%{mintel-syntax:-masm=intel \
313%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
314%{mno-intel-syntax:-masm=att \
315%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
fa959ce4 316
682cd442 317#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
318#define CC1_CPU_SPEC CC1_CPU_SPEC_1
319#else
320#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
321"%{march=native:%<march=native %:local_cpu_detect(arch)} \
322%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
323#endif
241e1a89 324#endif
c98f8742 325\f
30efe578 326/* Target CPU builtins. */
1ba7b414
NB
327#define TARGET_CPU_CPP_BUILTINS() \
328 do \
329 { \
330 size_t arch_len = strlen (ix86_arch_string); \
9e555526 331 size_t tune_len = strlen (ix86_tune_string); \
1ba7b414 332 int last_arch_char = ix86_arch_string[arch_len - 1]; \
9e555526 333 int last_tune_char = ix86_tune_string[tune_len - 1]; \
1ba7b414
NB
334 \
335 if (TARGET_64BIT) \
336 { \
337 builtin_assert ("cpu=x86_64"); \
26b0ad13 338 builtin_assert ("machine=x86_64"); \
97242ddc
JH
339 builtin_define ("__amd64"); \
340 builtin_define ("__amd64__"); \
1ba7b414
NB
341 builtin_define ("__x86_64"); \
342 builtin_define ("__x86_64__"); \
343 } \
344 else \
345 { \
346 builtin_assert ("cpu=i386"); \
347 builtin_assert ("machine=i386"); \
348 builtin_define_std ("i386"); \
349 } \
350 \
9d913bbf 351 /* Built-ins based on -mtune= (or -march= if no \
9e555526 352 -mtune= given). */ \
1ba7b414
NB
353 if (TARGET_386) \
354 builtin_define ("__tune_i386__"); \
355 else if (TARGET_486) \
356 builtin_define ("__tune_i486__"); \
357 else if (TARGET_PENTIUM) \
358 { \
359 builtin_define ("__tune_i586__"); \
360 builtin_define ("__tune_pentium__"); \
9e555526 361 if (last_tune_char == 'x') \
1ba7b414
NB
362 builtin_define ("__tune_pentium_mmx__"); \
363 } \
364 else if (TARGET_PENTIUMPRO) \
365 { \
366 builtin_define ("__tune_i686__"); \
367 builtin_define ("__tune_pentiumpro__"); \
9e555526 368 switch (last_tune_char) \
2e37b0ce
RH
369 { \
370 case '3': \
371 builtin_define ("__tune_pentium3__"); \
5efb1046 372 /* FALLTHRU */ \
2e37b0ce
RH
373 case '2': \
374 builtin_define ("__tune_pentium2__"); \
375 break; \
376 } \
1ba7b414
NB
377 } \
378 else if (TARGET_K6) \
379 { \
380 builtin_define ("__tune_k6__"); \
9e555526 381 if (last_tune_char == '2') \
1ba7b414 382 builtin_define ("__tune_k6_2__"); \
9e555526 383 else if (last_tune_char == '3') \
1ba7b414
NB
384 builtin_define ("__tune_k6_3__"); \
385 } \
386 else if (TARGET_ATHLON) \
387 { \
388 builtin_define ("__tune_athlon__"); \
389 /* Only plain "athlon" lacks SSE. */ \
9e555526 390 if (last_tune_char != 'n') \
1ba7b414
NB
391 builtin_define ("__tune_athlon_sse__"); \
392 } \
4977bab6
ZW
393 else if (TARGET_K8) \
394 builtin_define ("__tune_k8__"); \
1ba7b414
NB
395 else if (TARGET_PENTIUM4) \
396 builtin_define ("__tune_pentium4__"); \
89c43c0a
VM
397 else if (TARGET_NOCONA) \
398 builtin_define ("__tune_nocona__"); \
1ba7b414
NB
399 \
400 if (TARGET_MMX) \
401 builtin_define ("__MMX__"); \
402 if (TARGET_3DNOW) \
403 builtin_define ("__3dNOW__"); \
404 if (TARGET_3DNOW_A) \
405 builtin_define ("__3dNOW_A__"); \
406 if (TARGET_SSE) \
407 builtin_define ("__SSE__"); \
408 if (TARGET_SSE2) \
409 builtin_define ("__SSE2__"); \
9e200aaf
KC
410 if (TARGET_SSE3) \
411 builtin_define ("__SSE3__"); \
b1875f52
L
412 if (TARGET_SSSE3) \
413 builtin_define ("__SSSE3__"); \
48ddd46c
JH
414 if (TARGET_SSE_MATH && TARGET_SSE) \
415 builtin_define ("__SSE_MATH__"); \
416 if (TARGET_SSE_MATH && TARGET_SSE2) \
417 builtin_define ("__SSE2_MATH__"); \
1ba7b414
NB
418 \
419 /* Built-ins based on -march=. */ \
420 if (ix86_arch == PROCESSOR_I486) \
421 { \
422 builtin_define ("__i486"); \
423 builtin_define ("__i486__"); \
424 } \
425 else if (ix86_arch == PROCESSOR_PENTIUM) \
426 { \
427 builtin_define ("__i586"); \
428 builtin_define ("__i586__"); \
429 builtin_define ("__pentium"); \
430 builtin_define ("__pentium__"); \
431 if (last_arch_char == 'x') \
432 builtin_define ("__pentium_mmx__"); \
433 } \
434 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
435 { \
436 builtin_define ("__i686"); \
437 builtin_define ("__i686__"); \
438 builtin_define ("__pentiumpro"); \
439 builtin_define ("__pentiumpro__"); \
440 } \
441 else if (ix86_arch == PROCESSOR_K6) \
442 { \
443 \
444 builtin_define ("__k6"); \
445 builtin_define ("__k6__"); \
446 if (last_arch_char == '2') \
447 builtin_define ("__k6_2__"); \
448 else if (last_arch_char == '3') \
449 builtin_define ("__k6_3__"); \
450 } \
451 else if (ix86_arch == PROCESSOR_ATHLON) \
452 { \
453 builtin_define ("__athlon"); \
454 builtin_define ("__athlon__"); \
455 /* Only plain "athlon" lacks SSE. */ \
456 if (last_arch_char != 'n') \
457 builtin_define ("__athlon_sse__"); \
458 } \
4977bab6
ZW
459 else if (ix86_arch == PROCESSOR_K8) \
460 { \
461 builtin_define ("__k8"); \
462 builtin_define ("__k8__"); \
463 } \
1ba7b414
NB
464 else if (ix86_arch == PROCESSOR_PENTIUM4) \
465 { \
466 builtin_define ("__pentium4"); \
467 builtin_define ("__pentium4__"); \
468 } \
89c43c0a
VM
469 else if (ix86_arch == PROCESSOR_NOCONA) \
470 { \
471 builtin_define ("__nocona"); \
472 builtin_define ("__nocona__"); \
473 } \
1ba7b414 474 } \
30efe578
NB
475 while (0)
476
f4365627
JH
477#define TARGET_CPU_DEFAULT_i386 0
478#define TARGET_CPU_DEFAULT_i486 1
479#define TARGET_CPU_DEFAULT_pentium 2
91d2f4ba
JH
480#define TARGET_CPU_DEFAULT_pentium_mmx 3
481#define TARGET_CPU_DEFAULT_pentiumpro 4
482#define TARGET_CPU_DEFAULT_pentium2 5
483#define TARGET_CPU_DEFAULT_pentium3 6
484#define TARGET_CPU_DEFAULT_pentium4 7
485#define TARGET_CPU_DEFAULT_k6 8
486#define TARGET_CPU_DEFAULT_k6_2 9
487#define TARGET_CPU_DEFAULT_k6_3 10
488#define TARGET_CPU_DEFAULT_athlon 11
489#define TARGET_CPU_DEFAULT_athlon_sse 12
4977bab6 490#define TARGET_CPU_DEFAULT_k8 13
5bbeea44
JH
491#define TARGET_CPU_DEFAULT_pentium_m 14
492#define TARGET_CPU_DEFAULT_prescott 15
eb3d7f9d 493#define TARGET_CPU_DEFAULT_nocona 16
d326eaf0 494#define TARGET_CPU_DEFAULT_generic 17
f4365627
JH
495
496#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
497 "pentiumpro", "pentium2", "pentium3", \
498 "pentium4", "k6", "k6-2", "k6-3",\
5bbeea44 499 "athlon", "athlon-4", "k8", \
d326eaf0
JH
500 "pentium-m", "prescott", "nocona", \
501 "generic"}
0c2dc519 502
628714d8 503#ifndef CC1_SPEC
8015b78d 504#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
505#endif
506
507/* This macro defines names of additional specifications to put in the
508 specs that can be used in various specifications like CC1_SPEC. Its
509 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
510
511 Each subgrouping contains a string constant, that defines the
188fc5b5 512 specification name, and a string constant that used by the GCC driver
bcd86433
SC
513 program.
514
515 Do not define this macro if it does not need to do anything. */
516
517#ifndef SUBTARGET_EXTRA_SPECS
518#define SUBTARGET_EXTRA_SPECS
519#endif
520
521#define EXTRA_SPECS \
628714d8 522 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
523 SUBTARGET_EXTRA_SPECS
524\f
c98f8742
JVA
525/* target machine storage layout */
526
968a7562 527#define LONG_DOUBLE_TYPE_SIZE 80
2b589241 528
d57a4b98
RH
529/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
530 FPU, assume that the fpcw is set to extended precision; when using
531 only SSE, rounding is correct; when using both SSE and the FPU,
532 the rounding precision is indeterminate, since either may be chosen
533 apparently at random. */
534#define TARGET_FLT_EVAL_METHOD \
5ccd517a 535 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
0038aea6 536
65d9c0ab
JH
537#define SHORT_TYPE_SIZE 16
538#define INT_TYPE_SIZE 32
539#define FLOAT_TYPE_SIZE 32
540#define LONG_TYPE_SIZE BITS_PER_WORD
65d9c0ab
JH
541#define DOUBLE_TYPE_SIZE 64
542#define LONG_LONG_TYPE_SIZE 64
543
67adf6a9 544#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 545#define MAX_BITS_PER_WORD 64
0c2dc519
JH
546#else
547#define MAX_BITS_PER_WORD 32
0c2dc519
JH
548#endif
549
c98f8742
JVA
550/* Define this if most significant byte of a word is the lowest numbered. */
551/* That is true on the 80386. */
552
553#define BITS_BIG_ENDIAN 0
554
555/* Define this if most significant byte of a word is the lowest numbered. */
556/* That is not true on the 80386. */
557#define BYTES_BIG_ENDIAN 0
558
559/* Define this if most significant word of a multiword number is the lowest
560 numbered. */
561/* Not true for 80386 */
562#define WORDS_BIG_ENDIAN 0
563
c98f8742 564/* Width of a word, in units (bytes). */
65d9c0ab 565#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
2e64c636
JH
566#ifdef IN_LIBGCC2
567#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
568#else
569#define MIN_UNITS_PER_WORD 4
570#endif
c98f8742 571
c98f8742 572/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 573#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 574
e075ae69 575/* Boundary (in *bits*) on which stack pointer should be aligned. */
65d9c0ab 576#define STACK_BOUNDARY BITS_PER_WORD
c98f8742 577
d1f87653 578/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 579 aligned; the compiler cannot rely on having this alignment. */
e075ae69 580#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 581
ead903e9 582/* As of July 2001, many runtimes do not align the stack properly when
d1f87653 583 entering main. This causes expand_main_function to forcibly align
1d482056
RH
584 the stack, which results in aligned frames for functions called from
585 main, though it does nothing for the alignment of main itself. */
586#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
14f73b5a 587 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
1d482056 588
f963b5d9
RS
589/* Minimum allocation boundary for the code of a function. */
590#define FUNCTION_BOUNDARY 8
591
592/* C++ stores the virtual bit in the lowest bit of function pointers. */
593#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 594
892a2d68 595/* Alignment of field after `int : 0' in a structure. */
c98f8742 596
65d9c0ab 597#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
c98f8742
JVA
598
599/* Minimum size in bits of the largest boundary to which any
600 and all fundamental data types supported by the hardware
601 might need to be aligned. No data type wants to be aligned
17f24ff0 602 rounder than this.
fce5a9f2 603
d1f87653 604 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
17f24ff0
JH
605 and Pentium Pro XFmode values at 128 bit boundaries. */
606
607#define BIGGEST_ALIGNMENT 128
608
822eda12 609/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 610#define ALIGN_MODE_128(MODE) \
4501d314 611 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 612
17f24ff0 613/* The published ABIs say that doubles should be aligned on word
d1f87653 614 boundaries, so lower the alignment for structure fields unless
6fc605d8 615 -malign-double is set. */
e932b21b 616
e83f3cff
RH
617/* ??? Blah -- this macro is used directly by libobjc. Since it
618 supports no vector modes, cut out the complexity and fall back
619 on BIGGEST_FIELD_ALIGNMENT. */
620#ifdef IN_TARGET_LIBS
ef49d42e
JH
621#ifdef __x86_64__
622#define BIGGEST_FIELD_ALIGNMENT 128
623#else
e83f3cff 624#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 625#endif
e83f3cff 626#else
e932b21b
JH
627#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
628 x86_field_alignment (FIELD, COMPUTED)
e83f3cff 629#endif
c98f8742 630
e5e8a8bf 631/* If defined, a C expression to compute the alignment given to a
a7180f70 632 constant that is being placed in memory. EXP is the constant
e5e8a8bf
JW
633 and ALIGN is the alignment that the object would ordinarily have.
634 The value of this macro is used instead of that alignment to align
635 the object.
636
637 If this macro is not defined, then ALIGN is used.
638
639 The typical use of this macro is to increase alignment for string
640 constants to be word aligned so that `strcpy' calls that copy
641 constants can be done inline. */
642
d9a5f180 643#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
d4ba09c0 644
8a022443
JW
645/* If defined, a C expression to compute the alignment for a static
646 variable. TYPE is the data type, and ALIGN is the alignment that
647 the object would ordinarily have. The value of this macro is used
648 instead of that alignment to align the object.
649
650 If this macro is not defined, then ALIGN is used.
651
652 One use of this macro is to increase alignment of medium-size
653 data to make it all fit in fewer cache lines. Another is to
654 cause character arrays to be word-aligned so that `strcpy' calls
655 that copy constants to character arrays can be done inline. */
656
d9a5f180 657#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
d16790f2
JW
658
659/* If defined, a C expression to compute the alignment for a local
660 variable. TYPE is the data type, and ALIGN is the alignment that
661 the object would ordinarily have. The value of this macro is used
662 instead of that alignment to align the object.
663
664 If this macro is not defined, then ALIGN is used.
665
666 One use of this macro is to increase alignment of medium-size
667 data to make it all fit in fewer cache lines. */
668
d9a5f180 669#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
8a022443 670
53c17031
JH
671/* If defined, a C expression that gives the alignment boundary, in
672 bits, of an argument with the specified mode and type. If it is
673 not defined, `PARM_BOUNDARY' is used for all arguments. */
674
d9a5f180
GS
675#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
676 ix86_function_arg_boundary ((MODE), (TYPE))
53c17031 677
9cd10576 678/* Set this nonzero if move instructions will actually fail to work
c98f8742 679 when given unaligned data. */
b4ac57ab 680#define STRICT_ALIGNMENT 0
c98f8742
JVA
681
682/* If bit field type is int, don't let it cross an int,
683 and give entire struct the alignment of an int. */
43a88a8c 684/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 685#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
686\f
687/* Standard register usage. */
688
689/* This processor has special stack-like registers. See reg-stack.c
892a2d68 690 for details. */
c98f8742
JVA
691
692#define STACK_REGS
d9a5f180 693#define IS_STACK_MODE(MODE) \
b5c82fa1
PB
694 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
695 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
696 || (MODE) == XFmode)
c98f8742
JVA
697
698/* Number of actual hardware registers.
699 The hardware registers are assigned numbers for the compiler
700 from 0 to just below FIRST_PSEUDO_REGISTER.
701 All registers that the compiler knows about must be given numbers,
702 even those that are not normally considered general registers.
703
704 In the 80386 we give the 8 general purpose registers the numbers 0-7.
705 We number the floating point registers 8-15.
706 Note that registers 0-7 can be accessed as a short or int,
707 while only 0-3 may be used with byte `mov' instructions.
708
709 Reg 16 does not correspond to any hardware register, but instead
710 appears in the RTL as an argument pointer prior to reload, and is
711 eliminated during reloading in favor of either the stack or frame
892a2d68 712 pointer. */
c98f8742 713
03c259ad 714#define FIRST_PSEUDO_REGISTER 54
c98f8742 715
3073d01c
ML
716/* Number of hardware registers that go into the DWARF-2 unwind info.
717 If not defined, equals FIRST_PSEUDO_REGISTER. */
718
719#define DWARF_FRAME_REGISTERS 17
720
c98f8742
JVA
721/* 1 for registers that have pervasive standard uses
722 and are not available for the register allocator.
3f3f2124 723 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 724
3a4416fb
RS
725 The value is zero if the register is not fixed on either 32 or
726 64 bit targets, one if the register if fixed on both 32 and 64
727 bit targets, two if it is only fixed on 32bit targets and three
728 if its only fixed on 64bit targets.
729 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 730 */
a7180f70
BS
731#define FIXED_REGISTERS \
732/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 733{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
03c259ad
UB
734/*arg,flags,fpsr,fpcr,dir,frame*/ \
735 1, 1, 1, 1, 1, 1, \
a7180f70
BS
736/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
737 0, 0, 0, 0, 0, 0, 0, 0, \
738/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3f3f2124
JH
739 0, 0, 0, 0, 0, 0, 0, 0, \
740/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 741 2, 2, 2, 2, 2, 2, 2, 2, \
3f3f2124 742/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 743 2, 2, 2, 2, 2, 2, 2, 2}
fce5a9f2 744
c98f8742
JVA
745
746/* 1 for registers not available across function calls.
747 These must include the FIXED_REGISTERS and also any
748 registers that can be used without being saved.
749 The latter must include the registers where values are returned
750 and the register where structure-value addresses are passed.
fce5a9f2
EC
751 Aside from that, you can include as many other registers as you like.
752
9d72d996
JJ
753 The value is zero if the register is not call used on either 32 or
754 64 bit targets, one if the register if call used on both 32 and 64
755 bit targets, two if it is only call used on 32bit targets and three
756 if its only call used on 64bit targets.
3a4416fb 757 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
3f3f2124 758*/
a7180f70
BS
759#define CALL_USED_REGISTERS \
760/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 761{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
03c259ad
UB
762/*arg,flags,fpsr,fpcr,dir,frame*/ \
763 1, 1, 1, 1, 1, 1, \
a7180f70 764/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
03c259ad 765 1, 1, 1, 1, 1, 1, 1, 1, \
a7180f70 766/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
3a4416fb 767 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 768/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 769 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 770/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3a4416fb 771 1, 1, 1, 1, 1, 1, 1, 1} \
c98f8742 772
3b3c6a3f
MM
773/* Order in which to allocate registers. Each register must be
774 listed once, even those in FIXED_REGISTERS. List frame pointer
775 late and fixed registers last. Note that, in general, we prefer
776 registers listed in CALL_USED_REGISTERS, keeping the others
777 available for storage of persistent values.
778
162f023b
JH
779 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
780 so this is just empty initializer for array. */
3b3c6a3f 781
162f023b
JH
782#define REG_ALLOC_ORDER \
783{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
784 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
785 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
03c259ad 786 48, 49, 50, 51, 52, 53 }
3b3c6a3f 787
162f023b
JH
788/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
789 to be rearranged based on a particular function. When using sse math,
03c259ad 790 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 791
162f023b 792#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
3b3c6a3f 793
f5316dfe 794
c98f8742 795/* Macro to conditionally modify fixed_regs/call_used_regs. */
a7180f70 796#define CONDITIONAL_REGISTER_USAGE \
d9a5f180 797do { \
3f3f2124
JH
798 int i; \
799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
800 { \
3a4416fb
RS
801 if (fixed_regs[i] > 1) \
802 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
803 if (call_used_regs[i] > 1) \
804 call_used_regs[i] = (call_used_regs[i] \
805 == (TARGET_64BIT ? 3 : 2)); \
3f3f2124 806 } \
5b43fed1 807 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
a7180f70
BS
808 { \
809 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
810 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
811 } \
812 if (! TARGET_MMX) \
813 { \
814 int i; \
815 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
816 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
33270999 817 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
818 } \
819 if (! TARGET_SSE) \
820 { \
821 int i; \
822 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
823 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
33270999 824 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
a7180f70
BS
825 } \
826 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
827 { \
828 int i; \
829 HARD_REG_SET x; \
830 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
831 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
832 if (TEST_HARD_REG_BIT (x, i)) \
33270999
AO
833 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
834 } \
835 if (! TARGET_64BIT) \
836 { \
837 int i; \
838 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
839 reg_names[i] = ""; \
840 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
841 reg_names[i] = ""; \
a7180f70 842 } \
d9a5f180 843 } while (0)
c98f8742
JVA
844
845/* Return number of consecutive hard regs needed starting at reg REGNO
846 to hold something of mode MODE.
847 This is ordinarily the length in words of a value of mode MODE
848 but can be less for certain modes in special long registers.
849
fce5a9f2 850 Actually there are no two word move instructions for consecutive
c98f8742
JVA
851 registers. And only registers 0-3 may have mov byte instructions
852 applied to them.
853 */
854
855#define HARD_REGNO_NREGS(REGNO, MODE) \
92d0fb09
JH
856 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
857 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6 858 : ((MODE) == XFmode \
92d0fb09 859 ? (TARGET_64BIT ? 2 : 3) \
f8a1ebc6 860 : (MODE) == XCmode \
92d0fb09 861 ? (TARGET_64BIT ? 4 : 6) \
2b589241 862 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
c98f8742 863
fbe5eb6d
BS
864#define VALID_SSE2_REG_MODE(MODE) \
865 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
6c4ccfd8 866 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 867
d9a5f180
GS
868#define VALID_SSE_REG_MODE(MODE) \
869 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
dcbca208 870 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 871
47f339cf
BS
872#define VALID_MMX_REG_MODE_3DNOW(MODE) \
873 ((MODE) == V2SFmode || (MODE) == SFmode)
874
d9a5f180
GS
875#define VALID_MMX_REG_MODE(MODE) \
876 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
a7180f70
BS
877 || (MODE) == V2SImode || (MODE) == SImode)
878
accde4cf
RH
879/* ??? No autovectorization into MMX or 3DNOW until we can reliably
880 place emms and femms instructions. */
c4336539 881#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
0bf43309 882
d9a5f180 883#define VALID_FP_MODE_P(MODE) \
f8a1ebc6
JH
884 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
885 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 886
d9a5f180
GS
887#define VALID_INT_MODE_P(MODE) \
888 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
889 || (MODE) == DImode \
890 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
891 || (MODE) == CDImode \
f8a1ebc6
JH
892 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
893 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 894
822eda12
JH
895/* Return true for modes passed in SSE registers. */
896#define SSE_REG_MODE_P(MODE) \
f8a1ebc6 897 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
822eda12
JH
898 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
899 || (MODE) == V4SFmode || (MODE) == V4SImode)
900
e075ae69 901/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
48227a2c 902
a946dd00 903#define HARD_REGNO_MODE_OK(REGNO, MODE) \
d9a5f180 904 ix86_hard_regno_mode_ok ((REGNO), (MODE))
c98f8742
JVA
905
906/* Value is 1 if it is a good idea to tie two pseudo registers
907 when one has mode MODE1 and one has mode MODE2.
908 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
909 for any hard reg, then this must be 0 for correct output. */
910
c1c5b5e3 911#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
d2836273 912
ff25ef99
ZD
913/* It is possible to write patterns to move flags; but until someone
914 does it, */
915#define AVOID_CCMODE_COPIES
c98f8742 916
e075ae69 917/* Specify the modes required to caller save a given hard regno.
787dc842 918 We do this on i386 to prevent flags from being saved at all.
e075ae69 919
787dc842
JH
920 Kill any attempts to combine saving of modes. */
921
d9a5f180
GS
922#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
923 (CC_REGNO_P (REGNO) ? VOIDmode \
924 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
fee226d2 925 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
d9a5f180
GS
926 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
927 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
d2836273 928 : (MODE))
c98f8742
JVA
929/* Specify the registers used for certain standard purposes.
930 The values of these macros are register numbers. */
931
932/* on the 386 the pc register is %eip, and is not usable as a general
933 register. The ordinary mov instructions won't work */
934/* #define PC_REGNUM */
935
936/* Register to use for pushing function arguments. */
937#define STACK_POINTER_REGNUM 7
938
939/* Base register for access to local variables of the function. */
564d80f4
JH
940#define HARD_FRAME_POINTER_REGNUM 6
941
942/* Base register for access to local variables of the function. */
03c259ad 943#define FRAME_POINTER_REGNUM 21
c98f8742
JVA
944
945/* First floating point reg */
946#define FIRST_FLOAT_REG 8
947
948/* First & last stack-like regs */
949#define FIRST_STACK_REG FIRST_FLOAT_REG
950#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
951
a7180f70
BS
952#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
953#define LAST_SSE_REG (FIRST_SSE_REG + 7)
fce5a9f2 954
a7180f70
BS
955#define FIRST_MMX_REG (LAST_SSE_REG + 1)
956#define LAST_MMX_REG (FIRST_MMX_REG + 7)
957
3f3f2124
JH
958#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
959#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
960
961#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
962#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
963
c98f8742
JVA
964/* Value should be nonzero if functions must have frame pointers.
965 Zero means the frame pointer need not be set up (and parms
966 may be accessed via the stack pointer) in functions that seem suitable.
967 This is computed in `reload', in reload1.c. */
6fca22eb
RH
968#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
969
aabcd309 970/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
971 requiring a frame pointer. */
972#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
973#define SUBTARGET_FRAME_POINTER_REQUIRED 0
974#endif
975
976/* Make sure we can access arbitrary call frames. */
977#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742
JVA
978
979/* Base register for access to arguments of the function. */
980#define ARG_POINTER_REGNUM 16
981
d2836273
JH
982/* Register in which static-chain is passed to a function.
983 We do use ECX as static chain register for 32 bit ABI. On the
984 64bit ABI, ECX is an argument register, so we use R10 instead. */
985#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
c98f8742
JVA
986
987/* Register to hold the addressing base for position independent
5b43fed1
RH
988 code access to data items. We don't use PIC pointer for 64bit
989 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 990 pessimizing code dealing with EBX.
bd09bdeb
RH
991
992 To avoid clobbering a call-saved register unnecessarily, we renumber
993 the pic register when possible. The change is visible after the
994 prologue has been emitted. */
995
996#define REAL_PIC_OFFSET_TABLE_REGNUM 3
997
998#define PIC_OFFSET_TABLE_REGNUM \
7dcbf659
JH
999 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1000 || !flag_pic ? INVALID_REGNUM \
bd09bdeb
RH
1001 : reload_completed ? REGNO (pic_offset_table_rtx) \
1002 : REAL_PIC_OFFSET_TABLE_REGNUM)
c98f8742 1003
5fc0e5df
KW
1004#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1005
713225d4
MM
1006/* A C expression which can inhibit the returning of certain function
1007 values in registers, based on the type of value. A nonzero value
1008 says to return the function value in memory, just as large
1009 structures are always returned. Here TYPE will be a C expression
1010 of type `tree', representing the data type of the value.
1011
1012 Note that values of mode `BLKmode' must be explicitly handled by
1013 this macro. Also, the option `-fpcc-struct-return' takes effect
1014 regardless of this macro. On most systems, it is possible to
1015 leave the macro undefined; this causes a default definition to be
1016 used, whose value is the constant 1 for `BLKmode' values, and 0
1017 otherwise.
1018
1019 Do not use this macro to indicate that structures and unions
1020 should always be returned in memory. You should instead use
1021 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1022
d9a5f180 1023#define RETURN_IN_MEMORY(TYPE) \
53c17031 1024 ix86_return_in_memory (TYPE)
713225d4 1025
c51e6d85 1026/* This is overridden by <cygwin.h>. */
5e062767
DS
1027#define MS_AGGREGATE_RETURN 0
1028
61fec9ff
JB
1029/* This is overridden by <netware.h>. */
1030#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1031\f
1032/* Define the classes of registers for register constraints in the
1033 machine description. Also define ranges of constants.
1034
1035 One of the classes must always be named ALL_REGS and include all hard regs.
1036 If there is more than one class, another class must be named NO_REGS
1037 and contain no registers.
1038
1039 The name GENERAL_REGS must be the name of a class (or an alias for
1040 another name such as ALL_REGS). This is the class of registers
1041 that is allowed by "g" or "r" in a register constraint.
1042 Also, registers outside this class are allocated only when
1043 instructions express preferences for them.
1044
1045 The classes must be numbered in nondecreasing order; that is,
1046 a larger-numbered class must never be contained completely
1047 in a smaller-numbered class.
1048
1049 For any two classes, it is very desirable that there be another
ab408a86
JVA
1050 class that represents their union.
1051
1052 It might seem that class BREG is unnecessary, since no useful 386
1053 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
e075ae69
RH
1054 and the "b" register constraint is useful in asms for syscalls.
1055
03c259ad 1056 The flags, fpsr and fpcr registers are in no class. */
c98f8742
JVA
1057
1058enum reg_class
1059{
1060 NO_REGS,
e075ae69 1061 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1062 AD_REGS, /* %eax/%edx for DImode */
c98f8742 1063 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1064 NON_Q_REGS, /* %esi %edi %ebp %esp */
c98f8742 1065 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124
JH
1066 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1067 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
c98f8742
JVA
1068 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1069 FLOAT_REGS,
a7180f70
BS
1070 SSE_REGS,
1071 MMX_REGS,
446988df
JH
1072 FP_TOP_SSE_REGS,
1073 FP_SECOND_SSE_REGS,
1074 FLOAT_SSE_REGS,
1075 FLOAT_INT_REGS,
1076 INT_SSE_REGS,
1077 FLOAT_INT_SSE_REGS,
c98f8742
JVA
1078 ALL_REGS, LIM_REG_CLASSES
1079};
1080
d9a5f180
GS
1081#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1082
1083#define INTEGER_CLASS_P(CLASS) \
1084 reg_class_subset_p ((CLASS), GENERAL_REGS)
1085#define FLOAT_CLASS_P(CLASS) \
1086 reg_class_subset_p ((CLASS), FLOAT_REGS)
1087#define SSE_CLASS_P(CLASS) \
f75959a6 1088 ((CLASS) == SSE_REGS)
d9a5f180 1089#define MMX_CLASS_P(CLASS) \
f75959a6 1090 ((CLASS) == MMX_REGS)
d9a5f180
GS
1091#define MAYBE_INTEGER_CLASS_P(CLASS) \
1092 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1093#define MAYBE_FLOAT_CLASS_P(CLASS) \
1094 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1095#define MAYBE_SSE_CLASS_P(CLASS) \
1096 reg_classes_intersect_p (SSE_REGS, (CLASS))
1097#define MAYBE_MMX_CLASS_P(CLASS) \
1098 reg_classes_intersect_p (MMX_REGS, (CLASS))
1099
1100#define Q_CLASS_P(CLASS) \
1101 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1102
43f3a59d 1103/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1104
1105#define REG_CLASS_NAMES \
1106{ "NO_REGS", \
ab408a86 1107 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1108 "SIREG", "DIREG", \
e075ae69
RH
1109 "AD_REGS", \
1110 "Q_REGS", "NON_Q_REGS", \
c98f8742 1111 "INDEX_REGS", \
3f3f2124 1112 "LEGACY_REGS", \
c98f8742
JVA
1113 "GENERAL_REGS", \
1114 "FP_TOP_REG", "FP_SECOND_REG", \
1115 "FLOAT_REGS", \
a7180f70
BS
1116 "SSE_REGS", \
1117 "MMX_REGS", \
446988df
JH
1118 "FP_TOP_SSE_REGS", \
1119 "FP_SECOND_SSE_REGS", \
1120 "FLOAT_SSE_REGS", \
8fcaaa80 1121 "FLOAT_INT_REGS", \
446988df
JH
1122 "INT_SSE_REGS", \
1123 "FLOAT_INT_SSE_REGS", \
c98f8742
JVA
1124 "ALL_REGS" }
1125
1126/* Define which registers fit in which classes.
1127 This is an initializer for a vector of HARD_REG_SET
1128 of length N_REG_CLASSES. */
1129
a7180f70 1130#define REG_CLASS_CONTENTS \
3f3f2124
JH
1131{ { 0x00, 0x0 }, \
1132 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1133 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1134 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1135 { 0x03, 0x0 }, /* AD_REGS */ \
1136 { 0x0f, 0x0 }, /* Q_REGS */ \
03c259ad
UB
1137 { 0x2100f0, 0x3fc0 }, /* NON_Q_REGS */ \
1138 { 0x7f, 0x3fc0 }, /* INDEX_REGS */ \
1139 { 0x2100ff, 0x0 }, /* LEGACY_REGS */ \
1140 { 0x2100ff, 0x3fc0 }, /* GENERAL_REGS */ \
3f3f2124
JH
1141 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1142 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
03c259ad
UB
1143{ 0x3fc00000,0x3fc000 }, /* SSE_REGS */ \
1144{ 0xc0000000, 0x3f }, /* MMX_REGS */ \
1145{ 0x3fc00100,0x3fc000 }, /* FP_TOP_SSE_REG */ \
1146{ 0x3fc00200,0x3fc000 }, /* FP_SECOND_SSE_REG */ \
1147{ 0x3fc0ff00,0x3fc000 }, /* FLOAT_SSE_REGS */ \
1148 { 0x1ffff, 0x3fc0 }, /* FLOAT_INT_REGS */ \
1149{ 0x3fc100ff,0x3fffc0 }, /* INT_SSE_REGS */ \
1150{ 0x3fc1ffff,0x3fffc0 }, /* FLOAT_INT_SSE_REGS */ \
1151{ 0xffffffff,0x3fffff } \
e075ae69 1152}
c98f8742
JVA
1153
1154/* The same information, inverted:
1155 Return the class number of the smallest class containing
1156 reg number REGNO. This could be a conditional expression
1157 or could index an array. */
1158
c98f8742
JVA
1159#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1160
1161/* When defined, the compiler allows registers explicitly used in the
1162 rtl to be used as spill registers but prevents the compiler from
892a2d68 1163 extending the lifetime of these registers. */
c98f8742 1164
2922fe9e 1165#define SMALL_REGISTER_CLASSES 1
c98f8742
JVA
1166
1167#define QI_REG_P(X) \
1168 (REG_P (X) && REGNO (X) < 4)
3f3f2124 1169
d9a5f180
GS
1170#define GENERAL_REGNO_P(N) \
1171 ((N) < 8 || REX_INT_REGNO_P (N))
3f3f2124
JH
1172
1173#define GENERAL_REG_P(X) \
6189a572 1174 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
3f3f2124
JH
1175
1176#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1177
c98f8742
JVA
1178#define NON_QI_REG_P(X) \
1179 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1180
d9a5f180 1181#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
3f3f2124
JH
1182#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1183
c98f8742 1184#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
d9a5f180 1185#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
446988df 1186#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
d9a5f180 1187#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
a7180f70 1188
d9a5f180
GS
1189#define SSE_REGNO_P(N) \
1190 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1191 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
3f3f2124 1192
4977bab6
ZW
1193#define REX_SSE_REGNO_P(N) \
1194 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1195
d9a5f180
GS
1196#define SSE_REGNO(N) \
1197 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1198#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
446988df 1199
d9a5f180 1200#define SSE_FLOAT_MODE_P(MODE) \
91da27c5 1201 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
a7180f70 1202
d9a5f180
GS
1203#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1204#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
fce5a9f2 1205
d9a5f180
GS
1206#define STACK_REG_P(XOP) \
1207 (REG_P (XOP) && \
1208 REGNO (XOP) >= FIRST_STACK_REG && \
1209 REGNO (XOP) <= LAST_STACK_REG)
c98f8742 1210
d9a5f180 1211#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
c98f8742 1212
d9a5f180 1213#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
c98f8742 1214
e075ae69
RH
1215#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1216#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1217
c98f8742
JVA
1218/* The class value for index registers, and the one for base regs. */
1219
1220#define INDEX_REG_CLASS INDEX_REGS
1221#define BASE_REG_CLASS GENERAL_REGS
1222
c98f8742 1223/* Place additional restrictions on the register class to use when it
4cbb525c 1224 is necessary to be able to hold a value of mode MODE in a reload
892a2d68 1225 register for which class CLASS would ordinarily be used. */
c98f8742 1226
d2836273
JH
1227#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1228 ((MODE) == QImode && !TARGET_64BIT \
3b8d200e
JJ
1229 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1230 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
c98f8742
JVA
1231 ? Q_REGS : (CLASS))
1232
1233/* Given an rtx X being reloaded into a reg required to be
1234 in class CLASS, return the class of reg to actually use.
1235 In general this is just CLASS; but on some machines
1236 in some cases it is preferable to use a more restrictive class.
1237 On the 80386 series, we prevent floating constants from being
1238 reloaded into floating registers (since no move-insn can do that)
1239 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1240
d398b3b1 1241/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
c98f8742 1242 QImode must go into class Q_REGS.
d398b3b1 1243 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
892a2d68 1244 movdf to do mem-to-mem moves through integer regs. */
c98f8742 1245
d9a5f180
GS
1246#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1247 ix86_preferred_reload_class ((X), (CLASS))
85ff473e 1248
b5c82fa1
PB
1249/* Discourage putting floating-point values in SSE registers unless
1250 SSE math is being used, and likewise for the 387 registers. */
1251
1252#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1253 ix86_preferred_output_reload_class ((X), (CLASS))
1254
85ff473e 1255/* If we are copying between general and FP registers, we need a memory
f84aa48a 1256 location. The same is true for SSE and MMX registers. */
d9a5f180
GS
1257#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1258 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
e075ae69
RH
1259
1260/* QImode spills from non-QI registers need a scratch. This does not
fce5a9f2 1261 happen often -- the only example so far requires an uninitialized
e075ae69
RH
1262 pseudo. */
1263
d9a5f180 1264#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
3b8d200e
JJ
1265 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1266 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
d2836273 1267 ? Q_REGS : NO_REGS)
c98f8742
JVA
1268
1269/* Return the maximum number of consecutive registers
1270 needed to represent mode MODE in a register of class CLASS. */
1271/* On the 80386, this is the size of MODE in words,
f8a1ebc6 1272 except in the FP regs, where a single reg is always enough. */
a7180f70 1273#define CLASS_MAX_NREGS(CLASS, MODE) \
92d0fb09
JH
1274 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1275 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
f8a1ebc6
JH
1276 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1277 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
f5316dfe
MM
1278
1279/* A C expression whose value is nonzero if pseudos that have been
1280 assigned to registers of class CLASS would likely be spilled
1281 because registers of CLASS are needed for spill registers.
1282
1283 The default value of this macro returns 1 if CLASS has exactly one
1284 register and zero otherwise. On most machines, this default
1285 should be used. Only define this macro to some other expression
1286 if pseudo allocated by `local-alloc.c' end up in memory because
ddd5a7c1 1287 their hard registers were needed for spill registers. If this
f5316dfe
MM
1288 macro returns nonzero for those classes, those pseudos will only
1289 be allocated by `global.c', which knows how to reallocate the
1290 pseudo to another register. If there would not be another
1291 register available for reallocation, you should not change the
1292 definition of this macro since the only effect of such a
1293 definition would be to slow down register allocation. */
1294
1295#define CLASS_LIKELY_SPILLED_P(CLASS) \
1296 (((CLASS) == AREG) \
1297 || ((CLASS) == DREG) \
1298 || ((CLASS) == CREG) \
1299 || ((CLASS) == BREG) \
1300 || ((CLASS) == AD_REGS) \
1301 || ((CLASS) == SIREG) \
b0af5c03
JH
1302 || ((CLASS) == DIREG) \
1303 || ((CLASS) == FP_TOP_REG) \
1304 || ((CLASS) == FP_SECOND_REG))
f5316dfe 1305
1272914c
RH
1306/* Return a class of registers that cannot change FROM mode to TO mode. */
1307
1308#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1309 ix86_cannot_change_mode_class (FROM, TO, CLASS)
c98f8742
JVA
1310\f
1311/* Stack layout; function entry, exit and calling. */
1312
1313/* Define this if pushing a word on the stack
1314 makes the stack pointer a smaller address. */
1315#define STACK_GROWS_DOWNWARD
1316
a4d05547 1317/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1318 is at the high-address end of the local variables;
1319 that is, each additional local variable allocated
1320 goes at a more negative offset in the frame. */
f62c8a5c 1321#define FRAME_GROWS_DOWNWARD 1
c98f8742
JVA
1322
1323/* Offset within stack frame to start allocating local variables at.
1324 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1325 first local allocated. Otherwise, it is the offset to the BEGINNING
1326 of the first local allocated. */
1327#define STARTING_FRAME_OFFSET 0
1328
1329/* If we generate an insn to push BYTES bytes,
1330 this says how many the stack pointer really advances by.
6541fe75
JJ
1331 On 386, we have pushw instruction that decrements by exactly 2 no
1332 matter what the position was, there is no pushb.
1333 But as CIE data alignment factor on this arch is -4, we need to make
1334 sure all stack pointer adjustments are in multiple of 4.
fce5a9f2 1335
d2836273
JH
1336 For 64bit ABI we round up to 8 bytes.
1337 */
c98f8742 1338
d2836273
JH
1339#define PUSH_ROUNDING(BYTES) \
1340 (TARGET_64BIT \
1341 ? (((BYTES) + 7) & (-8)) \
6541fe75 1342 : (((BYTES) + 3) & (-4)))
c98f8742 1343
f73ad30e
JH
1344/* If defined, the maximum amount of space required for outgoing arguments will
1345 be computed and placed into the variable
1346 `current_function_outgoing_args_size'. No space will be pushed onto the
1347 stack for each call; instead, the function prologue should increase the stack
1348 frame size by this amount. */
1349
1350#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1351
1352/* If defined, a C expression whose value is nonzero when we want to use PUSH
1353 instructions to pass outgoing arguments. */
1354
1355#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1356
2da4124d
L
1357/* We want the stack and args grow in opposite directions, even if
1358 PUSH_ARGS is 0. */
1359#define PUSH_ARGS_REVERSED 1
1360
c98f8742
JVA
1361/* Offset of first parameter from the argument pointer register value. */
1362#define FIRST_PARM_OFFSET(FNDECL) 0
1363
a7180f70
BS
1364/* Define this macro if functions should assume that stack space has been
1365 allocated for arguments even when their values are passed in registers.
1366
1367 The value of this macro is the size, in bytes, of the area reserved for
1368 arguments passed in registers for the function represented by FNDECL.
1369
1370 This space can be allocated by the caller, or be a part of the
1371 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1372 which. */
1373#define REG_PARM_STACK_SPACE(FNDECL) 0
1374
c98f8742
JVA
1375/* Value is the number of bytes of arguments automatically
1376 popped when returning from a subroutine call.
8b109b37 1377 FUNDECL is the declaration node of the function (as a tree),
c98f8742
JVA
1378 FUNTYPE is the data type of the function (as a tree),
1379 or for a library call it is an identifier node for the subroutine name.
1380 SIZE is the number of bytes of arguments passed on the stack.
1381
1382 On the 80386, the RTD insn may be used to pop them if the number
1383 of args is fixed, but if the number is variable then the caller
1384 must pop them all. RTD can't be used for library calls now
1385 because the library is compiled with the Unix compiler.
1386 Use of RTD is a selectable option, since it is incompatible with
1387 standard Unix calling sequences. If the option is not selected,
b08de47e
MM
1388 the caller must always pop the args.
1389
1390 The attribute stdcall is equivalent to RTD on a per module basis. */
c98f8742 1391
d9a5f180
GS
1392#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1393 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
c98f8742 1394
53c17031
JH
1395#define FUNCTION_VALUE_REGNO_P(N) \
1396 ix86_function_value_regno_p (N)
c98f8742
JVA
1397
1398/* Define how to find the value returned by a library function
1399 assuming the value has mode MODE. */
1400
1401#define LIBCALL_VALUE(MODE) \
53c17031 1402 ix86_libcall_value (MODE)
c98f8742 1403
e9125c09
TW
1404/* Define the size of the result block used for communication between
1405 untyped_call and untyped_return. The block contains a DImode value
1406 followed by the block used by fnsave and frstor. */
1407
1408#define APPLY_RESULT_SIZE (8+108)
1409
b08de47e 1410/* 1 if N is a possible register number for function argument passing. */
53c17031 1411#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1412
1413/* Define a data type for recording info about an argument list
1414 during the scan of that argument list. This data type should
1415 hold all necessary information about the function itself
1416 and about the args processed so far, enough to enable macros
b08de47e 1417 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1418
e075ae69 1419typedef struct ix86_args {
b08de47e
MM
1420 int words; /* # words passed so far */
1421 int nregs; /* # registers available for passing */
1422 int regno; /* next available register number */
9d72d996 1423 int fastcall; /* fastcall calling convention is used */
a7180f70
BS
1424 int sse_words; /* # sse words passed so far */
1425 int sse_nregs; /* # sse registers available for passing */
e1be55d0
JH
1426 int warn_sse; /* True when we want to warn about SSE ABI. */
1427 int warn_mmx; /* True when we want to warn about MMX ABI. */
a7180f70 1428 int sse_regno; /* next available sse register number */
bcf17554
JH
1429 int mmx_words; /* # mmx words passed so far */
1430 int mmx_nregs; /* # mmx registers available for passing */
1431 int mmx_regno; /* next available mmx register number */
892a2d68 1432 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2f84b963
RG
1433 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1434 be passed in SSE registers. Otherwise 0. */
b08de47e 1435} CUMULATIVE_ARGS;
c98f8742
JVA
1436
1437/* Initialize a variable CUM of type CUMULATIVE_ARGS
1438 for a call to a function whose data type is FNTYPE.
b08de47e 1439 For a library call, FNTYPE is 0. */
c98f8742 1440
0f6937fe 1441#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
dafc5b82 1442 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
c98f8742
JVA
1443
1444/* Update the data in CUM to advance over an argument
1445 of mode MODE and data type TYPE.
1446 (TYPE is null for libcalls where that information may not be available.) */
1447
d9a5f180
GS
1448#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1449 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742
JVA
1450
1451/* Define where to put the arguments to a function.
1452 Value is zero to push the argument on the stack,
1453 or a hard register in which to store the argument.
1454
1455 MODE is the argument's machine mode.
1456 TYPE is the data type of the argument (as a tree).
1457 This is null for libcalls where that information may
1458 not be available.
1459 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1460 the preceding args and about the function being called.
1461 NAMED is nonzero if this argument is a named parameter
1462 (otherwise it is an extra parameter matching an ellipsis). */
1463
c98f8742 1464#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
d9a5f180 1465 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
c98f8742 1466
ad919812 1467/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1468#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1469 ix86_va_start (VALIST, NEXTARG)
ad919812 1470
a5fe455b
ZW
1471#define TARGET_ASM_FILE_END ix86_file_end
1472#define NEED_INDICATE_EXEC_STACK 0
3a0433fd 1473
c98f8742
JVA
1474/* Output assembler code to FILE to increment profiler label # LABELNO
1475 for profiling a function entry. */
1476
a5fa1ecd
JH
1477#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1478
1479#define MCOUNT_NAME "_mcount"
1480
1481#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1482
1483/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1484 the stack pointer does not matter. The value is tested only in
1485 functions that have frame pointers.
1486 No definition is equivalent to always zero. */
fce5a9f2 1487/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1488 we have to restore it ourselves from the frame pointer, in order to
1489 use pop */
1490
1491#define EXIT_IGNORE_STACK 1
1492
c98f8742
JVA
1493/* Output assembler code for a block containing the constant parts
1494 of a trampoline, leaving space for the variable parts. */
1495
a269a03c 1496/* On the 386, the trampoline contains two instructions:
c98f8742 1497 mov #STATIC,ecx
a269a03c
JC
1498 jmp FUNCTION
1499 The trampoline is generated entirely at runtime. The operand of JMP
1500 is the address of FUNCTION relative to the instruction following the
1501 JMP (which is 5 bytes long). */
c98f8742
JVA
1502
1503/* Length in units of the trampoline for entering a nested function. */
1504
39d04363 1505#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
c98f8742
JVA
1506
1507/* Emit RTL insns to initialize the variable parts of a trampoline.
1508 FNADDR is an RTX for the address of the function's pure code.
1509 CXT is an RTX for the static chain value for the function. */
1510
d9a5f180
GS
1511#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1512 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
c98f8742
JVA
1513\f
1514/* Definitions for register eliminations.
1515
1516 This is an array of structures. Each structure initializes one pair
1517 of eliminable registers. The "from" register number is given first,
1518 followed by "to". Eliminations of the same "from" register are listed
1519 in order of preference.
1520
afc2cd05
NC
1521 There are two registers that can always be eliminated on the i386.
1522 The frame pointer and the arg pointer can be replaced by either the
1523 hard frame pointer or to the stack pointer, depending upon the
1524 circumstances. The hard frame pointer is not used before reload and
1525 so it is not eligible for elimination. */
c98f8742 1526
564d80f4
JH
1527#define ELIMINABLE_REGS \
1528{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1529 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1530 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1531 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1532
2c5a510c
RH
1533/* Given FROM and TO register numbers, say whether this elimination is
1534 allowed. Frame pointer elimination is automatically handled.
c98f8742
JVA
1535
1536 All other eliminations are valid. */
1537
2c5a510c
RH
1538#define CAN_ELIMINATE(FROM, TO) \
1539 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
c98f8742
JVA
1540
1541/* Define the offset between two registers, one to be eliminated, and the other
1542 its replacement, at the start of a routine. */
1543
d9a5f180
GS
1544#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1545 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1546\f
1547/* Addressing modes, and classification of registers for them. */
1548
c98f8742
JVA
1549/* Macros to check register numbers against specific register classes. */
1550
1551/* These assume that REGNO is a hard or pseudo reg number.
1552 They give nonzero only if REGNO is a hard reg of the suitable class
1553 or a pseudo reg currently allocated to a suitable hard reg.
1554 Since they use reg_renumber, they are safe only once reg_renumber
1555 has been allocated, which happens in local-alloc.c. */
1556
3f3f2124
JH
1557#define REGNO_OK_FOR_INDEX_P(REGNO) \
1558 ((REGNO) < STACK_POINTER_REGNUM \
1559 || (REGNO >= FIRST_REX_INT_REG \
1560 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1561 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1562 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1563 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
c98f8742 1564
3f3f2124
JH
1565#define REGNO_OK_FOR_BASE_P(REGNO) \
1566 ((REGNO) <= STACK_POINTER_REGNUM \
1567 || (REGNO) == ARG_POINTER_REGNUM \
1568 || (REGNO) == FRAME_POINTER_REGNUM \
1569 || (REGNO >= FIRST_REX_INT_REG \
1570 && (REGNO) <= LAST_REX_INT_REG) \
d9a5f180
GS
1571 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1572 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1573 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
c98f8742 1574
d9a5f180
GS
1575#define REGNO_OK_FOR_SIREG_P(REGNO) \
1576 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1577#define REGNO_OK_FOR_DIREG_P(REGNO) \
1578 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
c98f8742
JVA
1579
1580/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1581 and check its validity for a certain class.
1582 We have two alternate definitions for each of them.
1583 The usual definition accepts all pseudo regs; the other rejects
1584 them unless they have been allocated suitable hard regs.
1585 The symbol REG_OK_STRICT causes the latter definition to be used.
1586
1587 Most source files want to accept pseudo regs in the hope that
1588 they will get allocated to the class that the insn wants them to be in.
1589 Source files for reload pass need to be strict.
1590 After reload, it makes no difference, since pseudo regs have
1591 been eliminated by then. */
1592
c98f8742 1593
ff482c8d 1594/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1595#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1596 (REGNO (X) < STACK_POINTER_REGNUM \
3f3f2124
JH
1597 || (REGNO (X) >= FIRST_REX_INT_REG \
1598 && REGNO (X) <= LAST_REX_INT_REG) \
c98f8742
JVA
1599 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1600
3b3c6a3f
MM
1601#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1602 (REGNO (X) <= STACK_POINTER_REGNUM \
1603 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124
JH
1604 || REGNO (X) == FRAME_POINTER_REGNUM \
1605 || (REGNO (X) >= FIRST_REX_INT_REG \
1606 && REGNO (X) <= LAST_REX_INT_REG) \
3b3c6a3f 1607 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1608
3b3c6a3f
MM
1609/* Strict versions, hard registers only */
1610#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1611#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1612
3b3c6a3f 1613#ifndef REG_OK_STRICT
d9a5f180
GS
1614#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1615#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1616
1617#else
d9a5f180
GS
1618#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1619#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1620#endif
1621
1622/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1623 that is a valid memory address for an instruction.
1624 The MODE argument is the machine mode for the MEM expression
1625 that wants to use this address.
1626
1627 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1628 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1629
1630 See legitimize_pic_address in i386.c for details as to what
1631 constitutes a legitimate address when -fpic is used. */
1632
1633#define MAX_REGS_PER_ADDRESS 2
1634
f996902d 1635#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742
JVA
1636
1637/* Nonzero if the constant value X is a legitimate general operand.
1638 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1639
f996902d 1640#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
c98f8742 1641
3b3c6a3f
MM
1642#ifdef REG_OK_STRICT
1643#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1644do { \
1645 if (legitimate_address_p ((MODE), (X), 1)) \
3b3c6a3f 1646 goto ADDR; \
d9a5f180 1647} while (0)
c98f8742 1648
3b3c6a3f
MM
1649#else
1650#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
d9a5f180
GS
1651do { \
1652 if (legitimate_address_p ((MODE), (X), 0)) \
c98f8742 1653 goto ADDR; \
d9a5f180 1654} while (0)
c98f8742 1655
3b3c6a3f
MM
1656#endif
1657
b949ea8b
JW
1658/* If defined, a C expression to determine the base term of address X.
1659 This macro is used in only one place: `find_base_term' in alias.c.
1660
1661 It is always safe for this macro to not be defined. It exists so
1662 that alias analysis can understand machine-dependent addresses.
1663
1664 The typical use of this macro is to handle addresses containing
1665 a label_ref or symbol_ref within an UNSPEC. */
1666
d9a5f180 1667#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1668
c98f8742
JVA
1669/* Try machine-dependent ways of modifying an illegitimate address
1670 to be legitimate. If we find one, return the new, valid address.
1671 This macro is used in only one place: `memory_address' in explow.c.
1672
1673 OLDX is the address as it was before break_out_memory_refs was called.
1674 In some cases it is useful to look at this to decide what needs to be done.
1675
1676 MODE and WIN are passed so that this macro can use
1677 GO_IF_LEGITIMATE_ADDRESS.
1678
1679 It is always safe for this macro to do nothing. It exists to recognize
1680 opportunities to optimize the output.
1681
1682 For the 80386, we handle X+REG by loading X into a register R and
1683 using R+REG. R will go in a general reg and indexing will be used.
1684 However, if REG is a broken-out memory address or multiplication,
1685 nothing needs to be done because REG can certainly go in a general reg.
1686
1687 When -fpic is used, special handling is needed for symbolic references.
1688 See comments by legitimize_pic_address in i386.c for details. */
1689
3b3c6a3f 1690#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
d9a5f180
GS
1691do { \
1692 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1693 if (memory_address_p ((MODE), (X))) \
3b3c6a3f 1694 goto WIN; \
d9a5f180 1695} while (0)
c98f8742 1696
d9a5f180 1697#define REWRITE_ADDRESS(X) rewrite_address (X)
d4ba09c0 1698
c98f8742 1699/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1700 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1701 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1702
f996902d 1703#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1704
1705#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1706 (GET_CODE (X) == SYMBOL_REF \
1707 || GET_CODE (X) == LABEL_REF \
1708 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742
JVA
1709
1710/* Go to LABEL if ADDR (a legitimate address expression)
1711 has an effect that depends on the machine mode it is used for.
1712 On the 80386, only postdecrement and postincrement address depend thus
1713 (the amount of decrement or increment being the length of the operand). */
d9a5f180
GS
1714#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1715do { \
1716 if (GET_CODE (ADDR) == POST_INC \
1717 || GET_CODE (ADDR) == POST_DEC) \
1718 goto LABEL; \
1719} while (0)
c98f8742 1720\f
b08de47e
MM
1721/* Max number of args passed in registers. If this is more than 3, we will
1722 have problems with ebx (register #4), since it is a caller save register and
1723 is also used as the pic register in ELF. So for now, don't allow more than
1724 3 registers to be passed in registers. */
1725
d2836273
JH
1726#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1727
bcf17554
JH
1728#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1729
1730#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
b08de47e 1731
c98f8742
JVA
1732\f
1733/* Specify the machine mode that this machine uses
1734 for the index in the tablejump instruction. */
6eb791fc 1735#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
c98f8742 1736
c98f8742
JVA
1737/* Define this as 1 if `char' should by default be signed; else as 0. */
1738#define DEFAULT_SIGNED_CHAR 1
1739
f4365627
JH
1740/* Number of bytes moved into a data cache for a single prefetch operation. */
1741#define PREFETCH_BLOCK ix86_cost->prefetch_block
1742
1743/* Number of prefetch operations that can be done in parallel. */
1744#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1745
c98f8742
JVA
1746/* Max number of bytes we can move from memory to memory
1747 in one reasonably fast instruction. */
65d9c0ab
JH
1748#define MOVE_MAX 16
1749
1750/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1751 move efficiently, as opposed to MOVE_MAX which is the maximum
892a2d68 1752 number of bytes we can move with a single instruction. */
65d9c0ab 1753#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
c98f8742 1754
7e24ffc9 1755/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1756 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1757 Increasing the value will always make code faster, but eventually
1758 incurs high cost in increased code size.
c98f8742 1759
e2e52e1b 1760 If you don't define this, a reasonable default is used. */
c98f8742 1761
e2e52e1b 1762#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
c98f8742 1763
45d78e7f
JJ
1764/* If a clear memory operation would take CLEAR_RATIO or more simple
1765 move-instruction sequences, we will do a clrmem or libcall instead. */
1766
1767#define CLEAR_RATIO (optimize_size ? 2 \
1768 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1769
c98f8742
JVA
1770/* Define if shifts truncate the shift count
1771 which implies one can omit a sign-extension or zero-extension
1772 of a shift count. */
892a2d68 1773/* On i386, shifts do truncate the count. But bit opcodes don't. */
c98f8742
JVA
1774
1775/* #define SHIFT_COUNT_TRUNCATED */
1776
1777/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1778 is done just by pretending it is already truncated. */
1779#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1780
d9f32422
JH
1781/* A macro to update M and UNSIGNEDP when an object whose type is
1782 TYPE and which has the specified mode and signedness is to be
1783 stored in a register. This macro is only called when TYPE is a
1784 scalar type.
1785
f710504c 1786 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1787 quantities to SImode. The choice depends on target type. */
1788
1789#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1790do { \
d9f32422
JH
1791 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1792 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1793 (MODE) = SImode; \
1794} while (0)
d9f32422 1795
c98f8742
JVA
1796/* Specify the machine mode that pointers have.
1797 After generation of rtl, the compiler makes no further distinction
1798 between pointers and any other objects of this machine mode. */
65d9c0ab 1799#define Pmode (TARGET_64BIT ? DImode : SImode)
c98f8742
JVA
1800
1801/* A function address in a call instruction
1802 is a byte address (for indexing purposes)
1803 so give the MEM rtx a byte's mode. */
1804#define FUNCTION_MODE QImode
d4ba09c0 1805\f
96e7ae40
JH
1806/* A C expression for the cost of moving data from a register in class FROM to
1807 one in class TO. The classes are expressed using the enumeration values
1808 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1809 interpreted relative to that.
d4ba09c0 1810
96e7ae40
JH
1811 It is not required that the cost always equal 2 when FROM is the same as TO;
1812 on some machines it is expensive to move between registers if they are not
f84aa48a 1813 general registers. */
d4ba09c0 1814
f84aa48a 1815#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
d9a5f180 1816 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
d4ba09c0
SC
1817
1818/* A C expression for the cost of moving data of mode M between a
1819 register and memory. A value of 2 is the default; this cost is
1820 relative to those in `REGISTER_MOVE_COST'.
1821
1822 If moving between registers and memory is more expensive than
1823 between two registers, you should define this macro to express the
fa79946e 1824 relative cost. */
d4ba09c0 1825
d9a5f180
GS
1826#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1827 ix86_memory_move_cost ((MODE), (CLASS), (IN))
d4ba09c0
SC
1828
1829/* A C expression for the cost of a branch instruction. A value of 1
1830 is the default; other values are interpreted relative to that. */
1831
e075ae69 1832#define BRANCH_COST ix86_branch_cost
d4ba09c0
SC
1833
1834/* Define this macro as a C expression which is nonzero if accessing
1835 less than a word of memory (i.e. a `char' or a `short') is no
1836 faster than accessing a word of memory, i.e., if such access
1837 require more than one instruction or if there is no difference in
1838 cost between byte and (aligned) word loads.
1839
1840 When this macro is not defined, the compiler will access a field by
1841 finding the smallest containing object; when it is defined, a
1842 fullword load will be used if alignment permits. Unless bytes
1843 accesses are faster than word accesses, using word accesses is
1844 preferable since it may eliminate subsequent memory access if
1845 subsequent accesses occur to other fields in the same word of the
1846 structure, but to different bytes. */
1847
1848#define SLOW_BYTE_ACCESS 0
1849
1850/* Nonzero if access to memory by shorts is slow and undesirable. */
1851#define SLOW_SHORT_ACCESS 0
1852
d4ba09c0
SC
1853/* Define this macro to be the value 1 if unaligned accesses have a
1854 cost many times greater than aligned accesses, for example if they
1855 are emulated in a trap handler.
1856
9cd10576
KH
1857 When this macro is nonzero, the compiler will act as if
1858 `STRICT_ALIGNMENT' were nonzero when generating code for block
d4ba09c0 1859 moves. This can cause significantly more instructions to be
9cd10576 1860 produced. Therefore, do not set this macro nonzero if unaligned
d4ba09c0
SC
1861 accesses only add a cycle or two to the time for a memory access.
1862
1863 If the value of this macro is always zero, it need not be defined. */
1864
e1565e65 1865/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
d4ba09c0 1866
d4ba09c0
SC
1867/* Define this macro if it is as good or better to call a constant
1868 function address than to call an address kept in a register.
1869
1870 Desirable on the 386 because a CALL with a constant address is
1871 faster than one with a register address. */
1872
1873#define NO_FUNCTION_CSE
c98f8742 1874\f
c572e5ba
JVA
1875/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1876 return the mode to be used for the comparison.
1877
1878 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 1879 VOIDmode should be used in all other cases.
c572e5ba 1880
16189740 1881 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 1882 possible, to allow for more combinations. */
c98f8742 1883
d9a5f180 1884#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 1885
9cd10576 1886/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
1887 reversed. */
1888
1889#define REVERSIBLE_CC_MODE(MODE) 1
1890
1891/* A C expression whose value is reversed condition code of the CODE for
1892 comparison done in CC_MODE mode. */
3c5cb3e4 1893#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 1894
c98f8742
JVA
1895\f
1896/* Control the assembler format that we output, to the extent
1897 this does not vary between assemblers. */
1898
1899/* How to refer to registers in assembler output.
892a2d68 1900 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 1901
21bf822e 1902/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
c98f8742
JVA
1903 For non floating point regs, the following are the HImode names.
1904
1905 For float regs, the stack top is sometimes referred to as "%st(0)"
a55f4481 1906 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
c98f8742 1907
a7180f70
BS
1908#define HI_REGISTER_NAMES \
1909{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 1910 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
03c259ad 1911 "argp", "flags", "fpsr", "fpcr", "dirflag", "frame", \
a7180f70 1912 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 1913 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124
JH
1914 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1915 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
a7180f70 1916
c98f8742
JVA
1917#define REGISTER_NAMES HI_REGISTER_NAMES
1918
1919/* Table of additional register names to use in user input. */
1920
1921#define ADDITIONAL_REGISTER_NAMES \
54d26233
MH
1922{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1923 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
3f3f2124
JH
1924 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1925 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
54d26233 1926 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
21bf822e 1927 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
c98f8742
JVA
1928
1929/* Note we are omitting these since currently I don't know how
1930to get gcc to use these, since they want the same but different
1931number as al, and ax.
1932*/
1933
c98f8742 1934#define QI_REGISTER_NAMES \
3f3f2124 1935{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
c98f8742
JVA
1936
1937/* These parallel the array above, and can be used to access bits 8:15
892a2d68 1938 of regs 0 through 3. */
c98f8742
JVA
1939
1940#define QI_HIGH_REGISTER_NAMES \
1941{"ah", "dh", "ch", "bh", }
1942
1943/* How to renumber registers for dbx and gdb. */
1944
d9a5f180
GS
1945#define DBX_REGISTER_NUMBER(N) \
1946 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 1947
9a82e702
MS
1948extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1949extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1950extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 1951
469ac993
JM
1952/* Before the prologue, RA is at 0(%esp). */
1953#define INCOMING_RETURN_ADDR_RTX \
f64cecad 1954 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
fce5a9f2 1955
e414ab29 1956/* After the prologue, RA is at -4(AP) in the current frame. */
1020a5ab
RH
1957#define RETURN_ADDR_RTX(COUNT, FRAME) \
1958 ((COUNT) == 0 \
1959 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1960 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
e414ab29 1961
892a2d68 1962/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 1963#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 1964
a6ab3aad 1965/* Before the prologue, the top of the frame is at 4(%esp). */
0f7fa3d0 1966#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
a6ab3aad 1967
1020a5ab
RH
1968/* Describe how we implement __builtin_eh_return. */
1969#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
1970#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
1971
ad919812 1972
e4c4ebeb
RH
1973/* Select a format to encode pointers in exception handling data. CODE
1974 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1975 true if the symbol may be affected by dynamic relocations.
1976
1977 ??? All x86 object file formats are capable of representing this.
1978 After all, the relocation needed is the same as for the call insn.
1979 Whether or not a particular assembler allows us to enter such, I
1980 guess we'll have to see. */
d9a5f180 1981#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 1982 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 1983
c98f8742
JVA
1984/* This is how to output an insn to push a register on the stack.
1985 It need not be very fast code. */
1986
d9a5f180 1987#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
0d1c5774
JJ
1988do { \
1989 if (TARGET_64BIT) \
1990 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1991 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1992 else \
1993 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1994} while (0)
c98f8742
JVA
1995
1996/* This is how to output an insn to pop a register from the stack.
1997 It need not be very fast code. */
1998
d9a5f180 1999#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
0d1c5774
JJ
2000do { \
2001 if (TARGET_64BIT) \
2002 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2003 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2004 else \
2005 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2006} while (0)
c98f8742 2007
f88c65f7 2008/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2009
2010#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2011 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2012
f88c65f7 2013/* This is how to output an element of a case-vector that is relative. */
c98f8742 2014
33f7f353 2015#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2016 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2017
f7288899
EC
2018/* Under some conditions we need jump tables in the text section,
2019 because the assembler cannot handle label differences between
2020 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2021
2022#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2023 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2024 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2025
cea3bd3e
RH
2026/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2027 and switch back. For x86 we do this only to save a few bytes that
2028 would otherwise be unused in the text section. */
2029#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2030 asm (SECTION_OP "\n\t" \
2031 "call " USER_LABEL_PREFIX #FUNC "\n" \
2032 TEXT_SECTION_ASM_OP);
74b42c8b 2033\f
c98f8742
JVA
2034/* Print operand X (an rtx) in assembler syntax to file FILE.
2035 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
ef6257cd
JH
2036 Effect of various CODE letters is described in i386.c near
2037 print_operand function. */
c98f8742 2038
d9a5f180 2039#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
f996902d 2040 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
c98f8742
JVA
2041
2042#define PRINT_OPERAND(FILE, X, CODE) \
d9a5f180 2043 print_operand ((FILE), (X), (CODE))
c98f8742
JVA
2044
2045#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
d9a5f180 2046 print_operand_address ((FILE), (ADDR))
c98f8742 2047
f996902d
RH
2048#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2049do { \
2050 if (! output_addr_const_extra (FILE, (X))) \
2051 goto FAIL; \
2052} while (0);
2053
c98f8742
JVA
2054/* a letter which is not needed by the normal asm syntax, which
2055 we can use for operand syntax in the extended asm */
2056
2057#define ASM_OPERAND_LETTER '#'
c98f8742 2058#define RET return ""
d9a5f180 2059#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
d4ba09c0 2060\f
5bf0ebab
RH
2061/* Which processor to schedule for. The cpu attribute defines a list that
2062 mirrors this list, so changes to i386.md must be made at the same time. */
2063
2064enum processor_type
2065{
2066 PROCESSOR_I386, /* 80386 */
2067 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2068 PROCESSOR_PENTIUM,
2069 PROCESSOR_PENTIUMPRO,
2070 PROCESSOR_K6,
2071 PROCESSOR_ATHLON,
2072 PROCESSOR_PENTIUM4,
4977bab6 2073 PROCESSOR_K8,
89c43c0a 2074 PROCESSOR_NOCONA,
d326eaf0
JH
2075 PROCESSOR_GENERIC32,
2076 PROCESSOR_GENERIC64,
5bf0ebab
RH
2077 PROCESSOR_max
2078};
2079
9e555526 2080extern enum processor_type ix86_tune;
5bf0ebab 2081extern enum processor_type ix86_arch;
5bf0ebab
RH
2082
2083enum fpmath_unit
2084{
2085 FPMATH_387 = 1,
2086 FPMATH_SSE = 2
2087};
2088
2089extern enum fpmath_unit ix86_fpmath;
5bf0ebab 2090
f996902d
RH
2091enum tls_dialect
2092{
2093 TLS_DIALECT_GNU,
5bf5a10b 2094 TLS_DIALECT_GNU2,
f996902d
RH
2095 TLS_DIALECT_SUN
2096};
2097
2098extern enum tls_dialect ix86_tls_dialect;
f996902d 2099
6189a572 2100enum cmodel {
5bf0ebab
RH
2101 CM_32, /* The traditional 32-bit ABI. */
2102 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2103 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2104 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2105 CM_LARGE, /* No assumptions. */
7dcbf659
JH
2106 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2107 CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region. */
6189a572
JH
2108};
2109
5bf0ebab 2110extern enum cmodel ix86_cmodel;
5bf0ebab 2111
8362f420
JH
2112/* Size of the RED_ZONE area. */
2113#define RED_ZONE_SIZE 128
2114/* Reserved area of the red zone for temporaries. */
2115#define RED_ZONE_RESERVE 8
c93e80a5
JH
2116
2117enum asm_dialect {
2118 ASM_ATT,
2119 ASM_INTEL
2120};
5bf0ebab 2121
80f33d06 2122extern enum asm_dialect ix86_asm_dialect;
95899b34 2123extern unsigned int ix86_preferred_stack_boundary;
7dcbf659 2124extern int ix86_branch_cost, ix86_section_threshold;
5bf0ebab
RH
2125
2126/* Smallest class containing REGNO. */
2127extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2128
d9a5f180
GS
2129extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2130extern rtx ix86_compare_op1; /* operand 1 for comparisons */
1ef45b77 2131extern rtx ix86_compare_emitted;
22fb740d
JH
2132\f
2133/* To properly truncate FP values into integers, we need to set i387 control
2134 word. We can't emit proper mode switching code before reload, as spills
2135 generated by reload may truncate values incorrectly, but we still can avoid
2136 redundant computation of new control word by the mode switching pass.
2137 The fldcw instructions are still emitted redundantly, but this is probably
2138 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2139 the sequence.
22fb740d
JH
2140
2141 The machinery is to emit simple truncation instructions and split them
2142 before reload to instructions having USEs of two memory locations that
2143 are filled by this code to old and new control word.
fce5a9f2 2144
22fb740d
JH
2145 Post-reload pass may be later used to eliminate the redundant fildcw if
2146 needed. */
2147
ff680eb1
UB
2148enum ix86_entity
2149{
2150 I387_TRUNC = 0,
2151 I387_FLOOR,
2152 I387_CEIL,
2153 I387_MASK_PM,
2154 MAX_386_ENTITIES
2155};
2156
1cba2b96 2157enum ix86_stack_slot
ff680eb1
UB
2158{
2159 SLOT_TEMP = 0,
2160 SLOT_CW_STORED,
2161 SLOT_CW_TRUNC,
2162 SLOT_CW_FLOOR,
2163 SLOT_CW_CEIL,
2164 SLOT_CW_MASK_PM,
2165 MAX_386_STACK_LOCALS
2166};
22fb740d
JH
2167
2168/* Define this macro if the port needs extra instructions inserted
2169 for mode switching in an optimizing compilation. */
2170
ff680eb1
UB
2171#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2172 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2173
2174/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2175 initializer for an array of integers. Each initializer element N
2176 refers to an entity that needs mode switching, and specifies the
2177 number of different modes that might need to be set for this
2178 entity. The position of the initializer in the initializer -
2179 starting counting at zero - determines the integer that is used to
2180 refer to the mode-switched entity in question. */
2181
ff680eb1
UB
2182#define NUM_MODES_FOR_MODE_SWITCHING \
2183 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d
JH
2184
2185/* ENTITY is an integer specifying a mode-switched entity. If
2186 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2187 return an integer value not larger than the corresponding element
2188 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
ff680eb1
UB
2189 must be switched into prior to the execution of INSN. */
2190
2191#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
22fb740d
JH
2192
2193/* This macro specifies the order in which modes for ENTITY are
2194 processed. 0 is the highest priority. */
2195
d9a5f180 2196#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
22fb740d
JH
2197
2198/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2199 is the set of hard registers live at the point where the insn(s)
2200 are to be inserted. */
2201
2202#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
1d1df0df 2203 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
ff680eb1 2204 ? emit_i387_cw_initialization (MODE), 0 \
22fb740d 2205 : 0)
ff680eb1 2206
0f0138b6
JH
2207\f
2208/* Avoid renaming of stack registers, as doing so in combination with
2209 scheduling just increases amount of live registers at time and in
2210 the turn amount of fxch instructions needed.
2211
43f3a59d 2212 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
0f0138b6 2213
d9a5f180
GS
2214#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2215 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
22fb740d 2216
3b3c6a3f 2217\f
e91f04de
CH
2218#define DLL_IMPORT_EXPORT_PREFIX '#'
2219
2220#define FASTCALL_PREFIX '@'
fa1a0d02
JH
2221\f
2222struct machine_function GTY(())
2223{
2224 struct stack_local_entry *stack_locals;
2225 const char *some_ld_name;
150cdc9e 2226 rtx force_align_arg_pointer;
fa1a0d02
JH
2227 int save_varrargs_registers;
2228 int accesses_prev_frame;
ff680eb1 2229 int optimize_mode_switching[MAX_386_ENTITIES];
d9b40e8d
JH
2230 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2231 determine the style used. */
2232 int use_fast_prologue_epilogue;
d7394366
JH
2233 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2234 for. */
2235 int use_fast_prologue_epilogue_nregs;
5bf5a10b
AO
2236 /* If true, the current function needs the default PIC register, not
2237 an alternate register (on x86) and must not use the red zone (on
2238 x86_64), even if it's a leaf function. We don't want the
2239 function to be regarded as non-leaf because TLS calls need not
2240 affect register allocation. This flag is set when a TLS call
2241 instruction is expanded within a function, and never reset, even
2242 if all such instructions are optimized away. Use the
2243 ix86_current_function_calls_tls_descriptor macro for a better
2244 approximation. */
2245 int tls_descriptor_call_expanded_p;
fa1a0d02
JH
2246};
2247
2248#define ix86_stack_locals (cfun->machine->stack_locals)
2249#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2250#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
5bf5a10b
AO
2251#define ix86_tls_descriptor_calls_expanded_in_cfun \
2252 (cfun->machine->tls_descriptor_call_expanded_p)
2253/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2254 calls are optimized away, we try to detect cases in which it was
2255 optimized away. Since such instructions (use (reg REG_SP)), we can
2256 verify whether there's any such instruction live by testing that
2257 REG_SP is live. */
2258#define ix86_current_function_calls_tls_descriptor \
2259 (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
249e6b63 2260
1bc7c5b6
ZW
2261/* Control behavior of x86_file_start. */
2262#define X86_FILE_START_VERSION_DIRECTIVE false
2263#define X86_FILE_START_FLTUSED false
2264
7dcbf659
JH
2265/* Flag to mark data that is in the large address area. */
2266#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2267#define SYMBOL_REF_FAR_ADDR_P(X) \
2268 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
c98f8742
JVA
2269/*
2270Local variables:
2271version-control: t
2272End:
2273*/