]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/i386/i386.h
lto-plugin, removed unused variable
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
CommitLineData
188fc5b5 1/* Definitions of target machine for GCC for IA-32.
a5544970 2 Copyright (C) 1988-2019 Free Software Foundation, Inc.
c98f8742 3
188fc5b5 4This file is part of GCC.
c98f8742 5
188fc5b5 6GCC is free software; you can redistribute it and/or modify
c98f8742 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
c98f8742
JVA
9any later version.
10
188fc5b5 11GCC is distributed in the hope that it will be useful,
c98f8742
JVA
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
748086b7
JJ
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
2f83c7d6 23<http://www.gnu.org/licenses/>. */
c98f8742 24
ccf8e764
RH
25/* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
0a1c5e55
UB
40/* Redefines for option macros. */
41
90922d36 42#define TARGET_64BIT TARGET_ISA_64BIT
bf7b5747 43#define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
90922d36 44#define TARGET_MMX TARGET_ISA_MMX
bf7b5747 45#define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
90922d36 46#define TARGET_3DNOW TARGET_ISA_3DNOW
bf7b5747 47#define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
90922d36 48#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
bf7b5747 49#define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
90922d36 50#define TARGET_SSE TARGET_ISA_SSE
bf7b5747 51#define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
90922d36 52#define TARGET_SSE2 TARGET_ISA_SSE2
bf7b5747 53#define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
90922d36 54#define TARGET_SSE3 TARGET_ISA_SSE3
bf7b5747 55#define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
90922d36 56#define TARGET_SSSE3 TARGET_ISA_SSSE3
bf7b5747 57#define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
90922d36 58#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
bf7b5747 59#define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
90922d36 60#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
bf7b5747 61#define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
90922d36 62#define TARGET_AVX TARGET_ISA_AVX
bf7b5747 63#define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
90922d36 64#define TARGET_AVX2 TARGET_ISA_AVX2
bf7b5747 65#define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
cb610367
UB
66#define TARGET_AVX512F TARGET_ISA_AVX512F
67#define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68#define TARGET_AVX512PF TARGET_ISA_AVX512PF
69#define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70#define TARGET_AVX512ER TARGET_ISA_AVX512ER
71#define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72#define TARGET_AVX512CD TARGET_ISA_AVX512CD
73#define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
07165dd7
AI
74#define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75#define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
b525d943
AI
76#define TARGET_AVX512BW TARGET_ISA_AVX512BW
77#define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
f4af595f
AI
78#define TARGET_AVX512VL TARGET_ISA_AVX512VL
79#define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
3dcc8af5
IT
80#define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81#define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
4190ea38
IT
82#define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83#define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
5fbb13a7
KY
84#define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85#define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86#define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87#define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
fca51879
JK
88#define TARGET_AVX512VBMI2 TARGET_ISA_AVX512VBMI2
89#define TARGET_AVX512VBMI2_P(x) TARGET_ISA_AVX512VBMI2_P(x)
79fc8ffe
AS
90#define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
91#define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
98966963
JK
92#define TARGET_AVX512VNNI TARGET_ISA_AVX512VNNI
93#define TARGET_AVX512VNNI_P(x) TARGET_ISA_AVX512VNNI_P(x)
e2a29465
JK
94#define TARGET_AVX512BITALG TARGET_ISA_AVX512BITALG
95#define TARGET_AVX512BITALG_P(x) TARGET_ISA_AVX512BITALG_P(x)
90922d36 96#define TARGET_FMA TARGET_ISA_FMA
bf7b5747 97#define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
90922d36 98#define TARGET_SSE4A TARGET_ISA_SSE4A
bf7b5747 99#define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
90922d36 100#define TARGET_FMA4 TARGET_ISA_FMA4
bf7b5747 101#define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
90922d36 102#define TARGET_XOP TARGET_ISA_XOP
bf7b5747 103#define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
90922d36 104#define TARGET_LWP TARGET_ISA_LWP
bf7b5747 105#define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
90922d36 106#define TARGET_ABM TARGET_ISA_ABM
bf7b5747 107#define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
13b93d4b
OM
108#define TARGET_PCONFIG TARGET_ISA_PCONFIG
109#define TARGET_PCONFIG_P(x) TARGET_ISA_PCONFIG_P(x)
110#define TARGET_WBNOINVD TARGET_ISA_WBNOINVD
111#define TARGET_WBNOINVD_P(x) TARGET_ISA_WBNOINVD_P(x)
73e32c47
JK
112#define TARGET_SGX TARGET_ISA_SGX
113#define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
1d516992
JK
114#define TARGET_RDPID TARGET_ISA_RDPID
115#define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
b8cca31c
JK
116#define TARGET_GFNI TARGET_ISA_GFNI
117#define TARGET_GFNI_P(x) TARGET_ISA_GFNI_P(x)
b7b0a4fa
JK
118#define TARGET_VAES TARGET_ISA_VAES
119#define TARGET_VAES_P(x) TARGET_ISA_VAES_P(x)
6557be99
JK
120#define TARGET_VPCLMULQDQ TARGET_ISA_VPCLMULQDQ
121#define TARGET_VPCLMULQDQ_P(x) TARGET_ISA_VPCLMULQDQ_P(x)
90922d36 122#define TARGET_BMI TARGET_ISA_BMI
bf7b5747 123#define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
90922d36 124#define TARGET_BMI2 TARGET_ISA_BMI2
bf7b5747 125#define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
90922d36 126#define TARGET_LZCNT TARGET_ISA_LZCNT
bf7b5747 127#define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
90922d36 128#define TARGET_TBM TARGET_ISA_TBM
bf7b5747 129#define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
90922d36 130#define TARGET_POPCNT TARGET_ISA_POPCNT
bf7b5747 131#define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
90922d36 132#define TARGET_SAHF TARGET_ISA_SAHF
bf7b5747 133#define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
90922d36 134#define TARGET_MOVBE TARGET_ISA_MOVBE
bf7b5747 135#define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
90922d36 136#define TARGET_CRC32 TARGET_ISA_CRC32
bf7b5747 137#define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
90922d36 138#define TARGET_AES TARGET_ISA_AES
bf7b5747 139#define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
c1618f82
AI
140#define TARGET_SHA TARGET_ISA_SHA
141#define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
9cdea277
IT
142#define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
143#define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
9ce29eb0
VK
144#define TARGET_CLZERO TARGET_ISA_CLZERO
145#define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
9cdea277
IT
146#define TARGET_XSAVEC TARGET_ISA_XSAVEC
147#define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
148#define TARGET_XSAVES TARGET_ISA_XSAVES
149#define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
90922d36 150#define TARGET_PCLMUL TARGET_ISA_PCLMUL
bf7b5747 151#define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
cb610367
UB
152#define TARGET_CMPXCHG16B TARGET_ISA_CX16
153#define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
90922d36 154#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
bf7b5747 155#define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
90922d36 156#define TARGET_RDRND TARGET_ISA_RDRND
bf7b5747 157#define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
90922d36 158#define TARGET_F16C TARGET_ISA_F16C
bf7b5747 159#define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
cb610367
UB
160#define TARGET_RTM TARGET_ISA_RTM
161#define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
90922d36 162#define TARGET_HLE TARGET_ISA_HLE
bf7b5747 163#define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
90922d36 164#define TARGET_RDSEED TARGET_ISA_RDSEED
bf7b5747 165#define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
90922d36 166#define TARGET_PRFCHW TARGET_ISA_PRFCHW
bf7b5747 167#define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
90922d36 168#define TARGET_ADX TARGET_ISA_ADX
bf7b5747 169#define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
3a0d99bb 170#define TARGET_FXSR TARGET_ISA_FXSR
bf7b5747 171#define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
3a0d99bb 172#define TARGET_XSAVE TARGET_ISA_XSAVE
bf7b5747 173#define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
3a0d99bb 174#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
bf7b5747 175#define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
43b3f52f
IT
176#define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
177#define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
9c3bca11
IT
178#define TARGET_CLWB TARGET_ISA_CLWB
179#define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
500a08b2
VK
180#define TARGET_MWAITX TARGET_ISA_MWAITX
181#define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
41a4ef22
KY
182#define TARGET_PKU TARGET_ISA_PKU
183#define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
2a25448c
IT
184#define TARGET_SHSTK TARGET_ISA_SHSTK
185#define TARGET_SHSTK_P(x) TARGET_ISA_SHSTK_P(x)
37d51c75
SP
186#define TARGET_MOVDIRI TARGET_ISA_MOVDIRI
187#define TARGET_MOVDIRI_P(x) TARGET_ISA_MOVDIRI_P(x)
188#define TARGET_MOVDIR64B TARGET_ISA_MOVDIR64B
189#define TARGET_MOVDIR64B_P(x) TARGET_ISA_MOVDIR64B_P(x)
55f31ed1
SP
190#define TARGET_WAITPKG TARGET_ISA_WAITPKG
191#define TARGET_WAITPKG_P(x) TARGET_ISA_WAITPKG_P(x)
f8d9957e
SP
192#define TARGET_CLDEMOTE TARGET_ISA_CLDEMOTE
193#define TARGET_CLDEMOTE_P(x) TARGET_ISA_CLDEMOTE_P(x)
41f8d1fc
AK
194#define TARGET_PTWRITE TARGET_ISA_PTWRITE
195#define TARGET_PTWRITE_P(x) TARGET_ISA_PTWRITE_P(x)
4f0e90fa
HL
196#define TARGET_AVX512BF16 TARGET_ISA_AVX512BF16
197#define TARGET_AVX512BF16_P(x) TARGET_ISA_AVX512BF16_P(x)
41a4ef22 198
90922d36 199#define TARGET_LP64 TARGET_ABI_64
bf7b5747 200#define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
90922d36 201#define TARGET_X32 TARGET_ABI_X32
bf7b5747 202#define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
d5d618b5
L
203#define TARGET_16BIT TARGET_CODE16
204#define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
04e1d06b 205
26b5109f
RS
206#include "config/vxworks-dummy.h"
207
7eb68c06 208#include "config/i386/i386-opts.h"
ccf8e764 209
c69fa2d4 210#define MAX_STRINGOP_ALGS 4
ccf8e764 211
8c996513
JH
212/* Specify what algorithm to use for stringops on known size.
213 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
214 known at compile time or estimated via feedback, the SIZE array
215 is walked in order until MAX is greater then the estimate (or -1
4f3f76e6 216 means infinity). Corresponding ALG is used then.
340ef734
JH
217 When NOALIGN is true the code guaranting the alignment of the memory
218 block is skipped.
219
8c996513 220 For example initializer:
4f3f76e6 221 {{256, loop}, {-1, rep_prefix_4_byte}}
8c996513 222 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
ccf8e764 223 be used otherwise. */
8c996513
JH
224struct stringop_algs
225{
226 const enum stringop_alg unknown_size;
227 const struct stringop_strategy {
228 const int max;
229 const enum stringop_alg alg;
340ef734 230 int noalign;
c69fa2d4 231 } size [MAX_STRINGOP_ALGS];
8c996513
JH
232};
233
d4ba09c0
SC
234/* Define the specific costs for a given cpu */
235
236struct processor_costs {
8b60264b
KG
237 const int add; /* cost of an add instruction */
238 const int lea; /* cost of a lea instruction */
239 const int shift_var; /* variable shift costs */
240 const int shift_const; /* constant shift costs */
f676971a 241 const int mult_init[5]; /* cost of starting a multiply
4977bab6 242 in QImode, HImode, SImode, DImode, TImode*/
8b60264b 243 const int mult_bit; /* cost of multiply per each bit set */
f676971a 244 const int divide[5]; /* cost of a divide/mod
4977bab6 245 in QImode, HImode, SImode, DImode, TImode*/
44cf5b6a
JH
246 int movsx; /* The cost of movsx operation. */
247 int movzx; /* The cost of movzx operation. */
8b60264b
KG
248 const int large_insn; /* insns larger than this cost more */
249 const int move_ratio; /* The threshold of number of scalar
ac775968 250 memory-to-memory move insns. */
8b60264b
KG
251 const int movzbl_load; /* cost of loading using movzbl */
252 const int int_load[3]; /* cost of loading integer registers
96e7ae40
JH
253 in QImode, HImode and SImode relative
254 to reg-reg move (2). */
8b60264b 255 const int int_store[3]; /* cost of storing integer register
96e7ae40 256 in QImode, HImode and SImode */
8b60264b
KG
257 const int fp_move; /* cost of reg,reg fld/fst */
258 const int fp_load[3]; /* cost of loading FP register
96e7ae40 259 in SFmode, DFmode and XFmode */
8b60264b 260 const int fp_store[3]; /* cost of storing FP register
96e7ae40 261 in SFmode, DFmode and XFmode */
8b60264b
KG
262 const int mmx_move; /* cost of moving MMX register. */
263 const int mmx_load[2]; /* cost of loading MMX register
fa79946e 264 in SImode and DImode */
8b60264b 265 const int mmx_store[2]; /* cost of storing MMX register
fa79946e 266 in SImode and DImode */
df41dbaf
JH
267 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
268 zmm_move;
269 const int sse_load[5]; /* cost of loading SSE register
270 in 32bit, 64bit, 128bit, 256bit and 512bit */
271 const int sse_unaligned_load[5];/* cost of unaligned load. */
272 const int sse_store[5]; /* cost of storing SSE register
273 in SImode, DImode and TImode. */
274 const int sse_unaligned_store[5];/* cost of unaligned store. */
8b60264b 275 const int mmxsse_to_integer; /* cost of moving mmxsse register to
df41dbaf
JH
276 integer. */
277 const int ssemmx_to_integer; /* cost of moving integer to mmxsse register. */
a4fe6139
JH
278 const int gather_static, gather_per_elt; /* Cost of gather load is computed
279 as static + per_item * nelts. */
280 const int scatter_static, scatter_per_elt; /* Cost of gather store is
281 computed as static + per_item * nelts. */
46cb0441
ZD
282 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
283 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
f4365627
JH
284 const int prefetch_block; /* bytes moved to cache for prefetch. */
285 const int simultaneous_prefetches; /* number of parallel prefetch
286 operations. */
4977bab6 287 const int branch_cost; /* Default value for BRANCH_COST. */
229b303a
RS
288 const int fadd; /* cost of FADD and FSUB instructions. */
289 const int fmul; /* cost of FMUL instruction. */
290 const int fdiv; /* cost of FDIV instruction. */
291 const int fabs; /* cost of FABS instruction. */
292 const int fchs; /* cost of FCHS instruction. */
293 const int fsqrt; /* cost of FSQRT instruction. */
8c996513 294 /* Specify what algorithm
bee51209 295 to use for stringops on unknown size. */
c53c148c 296 const int sse_op; /* cost of cheap SSE instruction. */
6065f444
JH
297 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
298 const int mulss; /* cost of MULSS instructions. */
299 const int mulsd; /* cost of MULSD instructions. */
c53c148c
JH
300 const int fmass; /* cost of FMASS instructions. */
301 const int fmasd; /* cost of FMASD instructions. */
6065f444
JH
302 const int divss; /* cost of DIVSS instructions. */
303 const int divsd; /* cost of DIVSD instructions. */
304 const int sqrtss; /* cost of SQRTSS instructions. */
305 const int sqrtsd; /* cost of SQRTSD instructions. */
a813c280
JH
306 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
307 /* Specify reassociation width for integer,
308 fp, vector integer and vector fp
309 operations. Generally should correspond
310 to number of instructions executed in
311 parallel. See also
312 ix86_reassociation_width. */
ad83025e 313 struct stringop_algs *memcpy, *memset;
e70444a8
HJ
314 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
315 cost model. */
316 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
317 vectorizer cost model. */
7dc58b50
ML
318
319 /* The "0:0:8" label alignment specified for some processors generates
320 secondary 8-byte alignment only for those label/jump/loop targets
321 which have primary alignment. */
322 const char *const align_loop; /* Loop alignment. */
323 const char *const align_jump; /* Jump alignment. */
324 const char *const align_label; /* Label alignment. */
325 const char *const align_func; /* Function alignment. */
d4ba09c0
SC
326};
327
8b60264b 328extern const struct processor_costs *ix86_cost;
b2077fd2
JH
329extern const struct processor_costs ix86_size_cost;
330
331#define ix86_cur_cost() \
332 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
d4ba09c0 333
c98f8742
JVA
334/* Macros used in the machine description to test the flags. */
335
b97de419 336/* configure can arrange to change it. */
e075ae69 337
35b528be 338#ifndef TARGET_CPU_DEFAULT
b97de419 339#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
10e9fecc 340#endif
35b528be 341
004d3859
GK
342#ifndef TARGET_FPMATH_DEFAULT
343#define TARGET_FPMATH_DEFAULT \
344 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
345#endif
346
bf7b5747
ST
347#ifndef TARGET_FPMATH_DEFAULT_P
348#define TARGET_FPMATH_DEFAULT_P(x) \
349 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
350#endif
351
c207fd99
L
352/* If the i387 is disabled or -miamcu is used , then do not return
353 values in it. */
354#define TARGET_FLOAT_RETURNS_IN_80387 \
355 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
356#define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
357 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
b08de47e 358
5791cc29
JT
359/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
360 compile-time constant. */
361#ifdef IN_LIBGCC2
6ac49599 362#undef TARGET_64BIT
5791cc29
JT
363#ifdef __x86_64__
364#define TARGET_64BIT 1
365#else
366#define TARGET_64BIT 0
367#endif
368#else
6ac49599
RS
369#ifndef TARGET_BI_ARCH
370#undef TARGET_64BIT
e49080ec 371#undef TARGET_64BIT_P
67adf6a9 372#if TARGET_64BIT_DEFAULT
0c2dc519 373#define TARGET_64BIT 1
e49080ec 374#define TARGET_64BIT_P(x) 1
0c2dc519
JH
375#else
376#define TARGET_64BIT 0
e49080ec 377#define TARGET_64BIT_P(x) 0
0c2dc519
JH
378#endif
379#endif
5791cc29 380#endif
25f94bb5 381
750054a2
CT
382#define HAS_LONG_COND_BRANCH 1
383#define HAS_LONG_UNCOND_BRANCH 1
384
9e555526
RH
385#define TARGET_386 (ix86_tune == PROCESSOR_I386)
386#define TARGET_486 (ix86_tune == PROCESSOR_I486)
387#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
388#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
cfe1b18f 389#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
9e555526
RH
390#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
391#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
392#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
393#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
4977bab6 394#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
89c43c0a 395#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
340ef734 396#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
d3c11974
L
397#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
398#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
3a579e09 399#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
d3c11974
L
400#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
401#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
50e461df 402#define TARGET_GOLDMONT (ix86_tune == PROCESSOR_GOLDMONT)
74b2bb19 403#define TARGET_GOLDMONT_PLUS (ix86_tune == PROCESSOR_GOLDMONT_PLUS)
a548a5a1 404#define TARGET_TREMONT (ix86_tune == PROCESSOR_TREMONT)
52747219 405#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
cace2309 406#define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
176a3386 407#define TARGET_SKYLAKE (ix86_tune == PROCESSOR_SKYLAKE)
06caf59d 408#define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
c234d831 409#define TARGET_CANNONLAKE (ix86_tune == PROCESSOR_CANNONLAKE)
79ab5364
JK
410#define TARGET_ICELAKE_CLIENT (ix86_tune == PROCESSOR_ICELAKE_CLIENT)
411#define TARGET_ICELAKE_SERVER (ix86_tune == PROCESSOR_ICELAKE_SERVER)
7cab07f0 412#define TARGET_CASCADELAKE (ix86_tune == PROCESSOR_CASCADELAKE)
9a7f94d7 413#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
9d532162 414#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
21efb4d4 415#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
1133125e 416#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
4d652a18 417#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
eb2f2b44 418#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
ed97ad47 419#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
14b52538 420#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
e32bfc16 421#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
9ce29eb0 422#define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
2901f42f 423#define TARGET_ZNVER2 (ix86_tune == PROCESSOR_ZNVER2)
a269a03c 424
80fd744f
RH
425/* Feature tests against the various tunings. */
426enum ix86_tune_indices {
4b8bc035 427#undef DEF_TUNE
3ad20bd4 428#define DEF_TUNE(tune, name, selector) tune,
4b8bc035
XDL
429#include "x86-tune.def"
430#undef DEF_TUNE
431X86_TUNE_LAST
80fd744f
RH
432};
433
ab442df7 434extern unsigned char ix86_tune_features[X86_TUNE_LAST];
80fd744f
RH
435
436#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
437#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
438#define TARGET_ZERO_EXTEND_WITH_AND \
439 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
80fd744f 440#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
80fd744f
RH
441#define TARGET_BRANCH_PREDICTION_HINTS \
442 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
443#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
444#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
445#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
446#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
447#define TARGET_PARTIAL_FLAG_REG_STALL \
448 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
7b38ee83
TJ
449#define TARGET_LCP_STALL \
450 ix86_tune_features[X86_TUNE_LCP_STALL]
80fd744f
RH
451#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
452#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
453#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
454#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
455#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
456#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
457#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
458#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
459#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
460#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
461#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
5783ad0e
UB
462#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
463 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
80fd744f
RH
464#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
465#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
466#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
467#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
d8b08ecd
UB
468#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
469#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
470#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
471#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
80fd744f
RH
472#define TARGET_INTEGER_DFMODE_MOVES \
473 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
474#define TARGET_PARTIAL_REG_DEPENDENCY \
475 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
476#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
477 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
1133125e
HJ
478#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
479 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
480#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
481 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
482#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
483 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
80fd744f
RH
484#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
485#define TARGET_SSE_TYPELESS_STORES \
486 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
487#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
488#define TARGET_MEMORY_MISMATCH_STALL \
489 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
490#define TARGET_PROLOGUE_USING_MOVE \
491 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
492#define TARGET_EPILOGUE_USING_MOVE \
493 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
494#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
495#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
00fcb892
UB
496#define TARGET_INTER_UNIT_MOVES_TO_VEC \
497 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
498#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
499 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
500#define TARGET_INTER_UNIT_CONVERSIONS \
630ecd8d 501 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
80fd744f
RH
502#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
503#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
504#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
505#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
506#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
e7ed95a2
L
507#define TARGET_PAD_SHORT_FUNCTION \
508 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
80fd744f
RH
509#define TARGET_EXT_80387_CONSTANTS \
510 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
ddff69b9
MM
511#define TARGET_AVOID_VECTOR_DECODE \
512 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
a646aded
UB
513#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
514 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
ddff69b9
MM
515#define TARGET_SLOW_IMUL_IMM32_MEM \
516 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
517#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
518#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
519#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
520#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
54723b46
L
521#define TARGET_USE_VECTOR_FP_CONVERTS \
522 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
354f84af
UB
523#define TARGET_USE_VECTOR_CONVERTS \
524 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
a4ef7f3e
ES
525#define TARGET_SLOW_PSHUFB \
526 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
8e0dc054
JJ
527#define TARGET_AVOID_4BYTE_PREFIXES \
528 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
f6aa5171
JH
529#define TARGET_USE_GATHER \
530 ix86_tune_features[X86_TUNE_USE_GATHER]
0dc41f28
WM
531#define TARGET_FUSE_CMP_AND_BRANCH_32 \
532 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
533#define TARGET_FUSE_CMP_AND_BRANCH_64 \
534 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
354f84af 535#define TARGET_FUSE_CMP_AND_BRANCH \
0dc41f28
WM
536 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
537 : TARGET_FUSE_CMP_AND_BRANCH_32)
538#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
539 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
540#define TARGET_FUSE_ALU_AND_BRANCH \
541 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
b6837b94 542#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
9a7f94d7
L
543#define TARGET_AVOID_LEA_FOR_ADDR \
544 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
5d0878e7
JH
545#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
546 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
5c0d88e6
CF
547#define TARGET_AVX128_OPTIMAL \
548 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
55a2c322
VM
549#define TARGET_GENERAL_REGS_SSE_SPILL \
550 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
6c72ea12
UB
551#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
552 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
55805e54 553#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
0f1d3965 554 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
2f62165d
GG
555#define TARGET_ADJUST_UNROLL \
556 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
374f5bf8
UB
557#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
558 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
ca90b1ed
YR
559#define TARGET_ONE_IF_CONV_INSN \
560 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
348188bf
L
561#define TARGET_EMIT_VZEROUPPER \
562 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
df7b0cc4 563
80fd744f
RH
564/* Feature tests against the various architecture variations. */
565enum ix86_arch_indices {
cef31f9c 566 X86_ARCH_CMOV,
80fd744f
RH
567 X86_ARCH_CMPXCHG,
568 X86_ARCH_CMPXCHG8B,
569 X86_ARCH_XADD,
570 X86_ARCH_BSWAP,
571
572 X86_ARCH_LAST
573};
4f3f76e6 574
ab442df7 575extern unsigned char ix86_arch_features[X86_ARCH_LAST];
80fd744f 576
cef31f9c 577#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
80fd744f
RH
578#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
579#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
580#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
581#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
582
cef31f9c
UB
583/* For sane SSE instruction set generation we need fcomi instruction.
584 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
585 expands to a sequence that includes conditional move. */
586#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
587
80fd744f
RH
588#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
589
cb261eb7 590extern unsigned char x86_prefetch_sse;
80fd744f
RH
591#define TARGET_PREFETCH_SSE x86_prefetch_sse
592
80fd744f
RH
593#define ASSEMBLER_DIALECT (ix86_asm_dialect)
594
595#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
596#define TARGET_MIX_SSE_I387 \
597 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
598
5fa578f0
UB
599#define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
600#define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
601#define TARGET_HARD_XF_REGS (TARGET_80387)
602
80fd744f
RH
603#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
604#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
605#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
d2af65b9 606#define TARGET_SUN_TLS 0
1ef45b77 607
67adf6a9
RH
608#ifndef TARGET_64BIT_DEFAULT
609#define TARGET_64BIT_DEFAULT 0
25f94bb5 610#endif
74dc3e94
RH
611#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
612#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
613#endif
25f94bb5 614
e0ea8797
AH
615#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
616#define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
617
79f5e442
ZD
618/* Fence to use after loop using storent. */
619
620extern tree x86_mfence;
621#define FENCE_FOLLOWING_MOVNT x86_mfence
622
0ed4a390
JL
623/* Once GDB has been enhanced to deal with functions without frame
624 pointers, we can change this to allow for elimination of
625 the frame pointer in leaf functions. */
626#define TARGET_DEFAULT 0
67adf6a9 627
0a1c5e55
UB
628/* Extra bits to force. */
629#define TARGET_SUBTARGET_DEFAULT 0
630#define TARGET_SUBTARGET_ISA_DEFAULT 0
631
632/* Extra bits to force on w/ 32-bit mode. */
633#define TARGET_SUBTARGET32_DEFAULT 0
634#define TARGET_SUBTARGET32_ISA_DEFAULT 0
635
ccf8e764
RH
636/* Extra bits to force on w/ 64-bit mode. */
637#define TARGET_SUBTARGET64_DEFAULT 0
8b131a8a
UB
638/* Enable MMX, SSE and SSE2 by default. */
639#define TARGET_SUBTARGET64_ISA_DEFAULT \
640 (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
ccf8e764 641
fee3eacd
IS
642/* Replace MACH-O, ifdefs by in-line tests, where possible.
643 (a) Macros defined in config/i386/darwin.h */
b069de3b 644#define TARGET_MACHO 0
9005471b 645#define TARGET_MACHO_BRANCH_ISLANDS 0
fee3eacd
IS
646#define MACHOPIC_ATT_STUB 0
647/* (b) Macros defined in config/darwin.h */
648#define MACHO_DYNAMIC_NO_PIC_P 0
649#define MACHOPIC_INDIRECT 0
650#define MACHOPIC_PURE 0
9005471b 651
5a579c3b
LE
652/* For the RDOS */
653#define TARGET_RDOS 0
654
9005471b 655/* For the Windows 64-bit ABI. */
7c800926
KT
656#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
657
6510e8bb
KT
658/* For the Windows 32-bit ABI. */
659#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
660
f81c9774
RH
661/* This is re-defined by cygming.h. */
662#define TARGET_SEH 0
663
51212b32 664/* The default abi used by target. */
7c800926 665#define DEFAULT_ABI SYSV_ABI
ccf8e764 666
b8b3f0ca 667/* The default TLS segment register used by target. */
00402c94
RH
668#define DEFAULT_TLS_SEG_REG \
669 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
b8b3f0ca 670
cc69336f
RH
671/* Subtargets may reset this to 1 in order to enable 96-bit long double
672 with the rounding mode forced to 53 bits. */
673#define TARGET_96_ROUND_53_LONG_DOUBLE 0
674
682cd442
GK
675/* -march=native handling only makes sense with compiler running on
676 an x86 or x86_64 chip. If changing this condition, also change
677 the condition in driver-i386.c. */
678#if defined(__i386__) || defined(__x86_64__)
fa959ce4
MM
679/* In driver-i386.c. */
680extern const char *host_detect_local_cpu (int argc, const char **argv);
681#define EXTRA_SPEC_FUNCTIONS \
682 { "local_cpu_detect", host_detect_local_cpu },
682cd442 683#define HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
684#endif
685
8981c15b
JM
686#if TARGET_64BIT_DEFAULT
687#define OPT_ARCH64 "!m32"
688#define OPT_ARCH32 "m32"
689#else
f0ea7581
L
690#define OPT_ARCH64 "m64|mx32"
691#define OPT_ARCH32 "m64|mx32:;"
8981c15b
JM
692#endif
693
1cba2b96
EC
694/* Support for configure-time defaults of some command line options.
695 The order here is important so that -march doesn't squash the
696 tune or cpu values. */
ce998900 697#define OPTION_DEFAULT_SPECS \
da2d4c01 698 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
699 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
700 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
ce998900 701 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
8981c15b
JM
702 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
703 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
704 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
705 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
706 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
7816bea0 707
241e1a89
SC
708/* Specs for the compiler proper */
709
628714d8 710#ifndef CC1_CPU_SPEC
eb5bb0fd 711#define CC1_CPU_SPEC_1 ""
fa959ce4 712
682cd442 713#ifndef HAVE_LOCAL_CPU_DETECT
fa959ce4
MM
714#define CC1_CPU_SPEC CC1_CPU_SPEC_1
715#else
716#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
96f5b137
L
717"%{march=native:%>march=native %:local_cpu_detect(arch) \
718 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
719%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
fa959ce4 720#endif
241e1a89 721#endif
c98f8742 722\f
30efe578 723/* Target CPU builtins. */
ab442df7
MM
724#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
725
726/* Target Pragmas. */
727#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
30efe578 728
b4c522fa
IB
729/* Target CPU versions for D. */
730#define TARGET_D_CPU_VERSIONS ix86_d_target_versions
731
628714d8 732#ifndef CC1_SPEC
8015b78d 733#define CC1_SPEC "%(cc1_cpu) "
628714d8
RK
734#endif
735
736/* This macro defines names of additional specifications to put in the
737 specs that can be used in various specifications like CC1_SPEC. Its
738 definition is an initializer with a subgrouping for each command option.
bcd86433
SC
739
740 Each subgrouping contains a string constant, that defines the
188fc5b5 741 specification name, and a string constant that used by the GCC driver
bcd86433
SC
742 program.
743
744 Do not define this macro if it does not need to do anything. */
745
746#ifndef SUBTARGET_EXTRA_SPECS
747#define SUBTARGET_EXTRA_SPECS
748#endif
749
750#define EXTRA_SPECS \
628714d8 751 { "cc1_cpu", CC1_CPU_SPEC }, \
bcd86433
SC
752 SUBTARGET_EXTRA_SPECS
753\f
ce998900 754
8ce94e44
JM
755/* Whether to allow x87 floating-point arithmetic on MODE (one of
756 SFmode, DFmode and XFmode) in the current excess precision
757 configuration. */
b8cab8a5
UB
758#define X87_ENABLE_ARITH(MODE) \
759 (flag_unsafe_math_optimizations \
760 || flag_excess_precision == EXCESS_PRECISION_FAST \
761 || (MODE) == XFmode)
8ce94e44
JM
762
763/* Likewise, whether to allow direct conversions from integer mode
764 IMODE (HImode, SImode or DImode) to MODE. */
765#define X87_ENABLE_FLOAT(MODE, IMODE) \
b8cab8a5
UB
766 (flag_unsafe_math_optimizations \
767 || flag_excess_precision == EXCESS_PRECISION_FAST \
8ce94e44
JM
768 || (MODE) == XFmode \
769 || ((MODE) == DFmode && (IMODE) == SImode) \
770 || (IMODE) == HImode)
771
979c67a5
UB
772/* target machine storage layout */
773
65d9c0ab
JH
774#define SHORT_TYPE_SIZE 16
775#define INT_TYPE_SIZE 32
f0ea7581
L
776#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
777#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
a96ad348 778#define LONG_LONG_TYPE_SIZE 64
65d9c0ab 779#define FLOAT_TYPE_SIZE 32
65d9c0ab 780#define DOUBLE_TYPE_SIZE 64
a2a1ddb5
L
781#define LONG_DOUBLE_TYPE_SIZE \
782 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
979c67a5 783
c637141a 784#define WIDEST_HARDWARE_FP_SIZE 80
65d9c0ab 785
67adf6a9 786#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
0c2dc519 787#define MAX_BITS_PER_WORD 64
0c2dc519
JH
788#else
789#define MAX_BITS_PER_WORD 32
0c2dc519
JH
790#endif
791
c98f8742
JVA
792/* Define this if most significant byte of a word is the lowest numbered. */
793/* That is true on the 80386. */
794
795#define BITS_BIG_ENDIAN 0
796
797/* Define this if most significant byte of a word is the lowest numbered. */
798/* That is not true on the 80386. */
799#define BYTES_BIG_ENDIAN 0
800
801/* Define this if most significant word of a multiword number is the lowest
802 numbered. */
803/* Not true for 80386 */
804#define WORDS_BIG_ENDIAN 0
805
c98f8742 806/* Width of a word, in units (bytes). */
4ae8027b 807#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
63001560
UB
808
809#ifndef IN_LIBGCC2
2e64c636
JH
810#define MIN_UNITS_PER_WORD 4
811#endif
c98f8742 812
c98f8742 813/* Allocation boundary (in *bits*) for storing arguments in argument list. */
65d9c0ab 814#define PARM_BOUNDARY BITS_PER_WORD
c98f8742 815
e075ae69 816/* Boundary (in *bits*) on which stack pointer should be aligned. */
bd5d3961 817#define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
c98f8742 818
2e3f842f
L
819/* Stack boundary of the main function guaranteed by OS. */
820#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
821
de1132d1 822/* Minimum stack boundary. */
cba9c789 823#define MIN_STACK_BOUNDARY BITS_PER_WORD
2e3f842f 824
d1f87653 825/* Boundary (in *bits*) on which the stack pointer prefers to be
3af4bd89 826 aligned; the compiler cannot rely on having this alignment. */
e075ae69 827#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
65954bd8 828
de1132d1 829/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
2e3f842f
L
830 both 32bit and 64bit, to support codes that need 128 bit stack
831 alignment for SSE instructions, but can't realign the stack. */
d9063947
L
832#define PREFERRED_STACK_BOUNDARY_DEFAULT \
833 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
2e3f842f
L
834
835/* 1 if -mstackrealign should be turned on by default. It will
836 generate an alternate prologue and epilogue that realigns the
837 runtime stack if nessary. This supports mixing codes that keep a
838 4-byte aligned stack, as specified by i386 psABI, with codes that
890b9b96 839 need a 16-byte aligned stack, as required by SSE instructions. */
2e3f842f
L
840#define STACK_REALIGN_DEFAULT 0
841
842/* Boundary (in *bits*) on which the incoming stack is aligned. */
843#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
1d482056 844
a2851b75
TG
845/* According to Windows x64 software convention, the maximum stack allocatable
846 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
847 instructions allowed to adjust the stack pointer in the epilog, forcing the
848 use of frame pointer for frames larger than 2 GB. This theorical limit
849 is reduced by 256, an over-estimated upper bound for the stack use by the
850 prologue.
851 We define only one threshold for both the prolog and the epilog. When the
4e523f33 852 frame size is larger than this threshold, we allocate the area to save SSE
a2851b75
TG
853 regs, then save them, and then allocate the remaining. There is no SEH
854 unwind info for this later allocation. */
855#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
856
ebff937c
SH
857/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
858 mandatory for the 64-bit ABI, and may or may not be true for other
859 operating systems. */
860#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
861
f963b5d9
RS
862/* Minimum allocation boundary for the code of a function. */
863#define FUNCTION_BOUNDARY 8
864
865/* C++ stores the virtual bit in the lowest bit of function pointers. */
866#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
c98f8742 867
c98f8742
JVA
868/* Minimum size in bits of the largest boundary to which any
869 and all fundamental data types supported by the hardware
870 might need to be aligned. No data type wants to be aligned
17f24ff0 871 rounder than this.
fce5a9f2 872
d1f87653 873 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
6d2b7199
BS
874 and Pentium Pro XFmode values at 128 bit boundaries.
875
876 When increasing the maximum, also update
877 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
17f24ff0 878
3f97cb0b 879#define BIGGEST_ALIGNMENT \
0076c82f 880 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
17f24ff0 881
2e3f842f
L
882/* Maximum stack alignment. */
883#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
884
6e4f1168
L
885/* Alignment value for attribute ((aligned)). It is a constant since
886 it is the part of the ABI. We shouldn't change it with -mavx. */
e9c9e772 887#define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
6e4f1168 888
822eda12 889/* Decide whether a variable of mode MODE should be 128 bit aligned. */
a7180f70 890#define ALIGN_MODE_128(MODE) \
4501d314 891 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
a7180f70 892
17f24ff0 893/* The published ABIs say that doubles should be aligned on word
d1f87653 894 boundaries, so lower the alignment for structure fields unless
6fc605d8 895 -malign-double is set. */
e932b21b 896
e83f3cff
RH
897/* ??? Blah -- this macro is used directly by libobjc. Since it
898 supports no vector modes, cut out the complexity and fall back
899 on BIGGEST_FIELD_ALIGNMENT. */
900#ifdef IN_TARGET_LIBS
ef49d42e
JH
901#ifdef __x86_64__
902#define BIGGEST_FIELD_ALIGNMENT 128
903#else
e83f3cff 904#define BIGGEST_FIELD_ALIGNMENT 32
ef49d42e 905#endif
e83f3cff 906#else
a4cf4b64
RB
907#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
908 x86_field_alignment ((TYPE), (COMPUTED))
e83f3cff 909#endif
c98f8742 910
8a022443
JW
911/* If defined, a C expression to compute the alignment for a static
912 variable. TYPE is the data type, and ALIGN is the alignment that
913 the object would ordinarily have. The value of this macro is used
914 instead of that alignment to align the object.
915
916 If this macro is not defined, then ALIGN is used.
917
918 One use of this macro is to increase alignment of medium-size
919 data to make it all fit in fewer cache lines. Another is to
920 cause character arrays to be word-aligned so that `strcpy' calls
921 that copy constants to character arrays can be done inline. */
922
df8a1d28
JJ
923#define DATA_ALIGNMENT(TYPE, ALIGN) \
924 ix86_data_alignment ((TYPE), (ALIGN), true)
925
926/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
927 some alignment increase, instead of optimization only purposes. E.g.
928 AMD x86-64 psABI says that variables with array type larger than 15 bytes
929 must be aligned to 16 byte boundaries.
930
931 If this macro is not defined, then ALIGN is used. */
932
933#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
934 ix86_data_alignment ((TYPE), (ALIGN), false)
d16790f2
JW
935
936/* If defined, a C expression to compute the alignment for a local
937 variable. TYPE is the data type, and ALIGN is the alignment that
938 the object would ordinarily have. The value of this macro is used
939 instead of that alignment to align the object.
940
941 If this macro is not defined, then ALIGN is used.
942
943 One use of this macro is to increase alignment of medium-size
944 data to make it all fit in fewer cache lines. */
945
76fe54f0
L
946#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
947 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
948
949/* If defined, a C expression to compute the alignment for stack slot.
950 TYPE is the data type, MODE is the widest mode available, and ALIGN
951 is the alignment that the slot would ordinarily have. The value of
952 this macro is used instead of that alignment to align the slot.
953
954 If this macro is not defined, then ALIGN is used when TYPE is NULL,
955 Otherwise, LOCAL_ALIGNMENT will be used.
956
957 One use of this macro is to set alignment of stack slot to the
958 maximum alignment of all possible modes which the slot may have. */
959
960#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
961 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
8a022443 962
9bfaf89d
JJ
963/* If defined, a C expression to compute the alignment for a local
964 variable DECL.
965
966 If this macro is not defined, then
967 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
968
969 One use of this macro is to increase alignment of medium-size
970 data to make it all fit in fewer cache lines. */
971
972#define LOCAL_DECL_ALIGNMENT(DECL) \
973 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
974
ae58e548
JJ
975/* If defined, a C expression to compute the minimum required alignment
976 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
977 MODE, assuming normal alignment ALIGN.
978
979 If this macro is not defined, then (ALIGN) will be used. */
980
981#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
1a6e82b8 982 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
ae58e548 983
9bfaf89d 984
9cd10576 985/* Set this nonzero if move instructions will actually fail to work
c98f8742 986 when given unaligned data. */
b4ac57ab 987#define STRICT_ALIGNMENT 0
c98f8742
JVA
988
989/* If bit field type is int, don't let it cross an int,
990 and give entire struct the alignment of an int. */
43a88a8c 991/* Required on the 386 since it doesn't have bit-field insns. */
c98f8742 992#define PCC_BITFIELD_TYPE_MATTERS 1
c98f8742
JVA
993\f
994/* Standard register usage. */
995
996/* This processor has special stack-like registers. See reg-stack.c
892a2d68 997 for details. */
c98f8742
JVA
998
999#define STACK_REGS
ce998900 1000
f48b4284
UB
1001#define IS_STACK_MODE(MODE) \
1002 (X87_FLOAT_MODE_P (MODE) \
1003 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
1004 || TARGET_MIX_SSE_I387))
c98f8742
JVA
1005
1006/* Number of actual hardware registers.
1007 The hardware registers are assigned numbers for the compiler
1008 from 0 to just below FIRST_PSEUDO_REGISTER.
1009 All registers that the compiler knows about must be given numbers,
1010 even those that are not normally considered general registers.
1011
1012 In the 80386 we give the 8 general purpose registers the numbers 0-7.
1013 We number the floating point registers 8-15.
1014 Note that registers 0-7 can be accessed as a short or int,
1015 while only 0-3 may be used with byte `mov' instructions.
1016
1017 Reg 16 does not correspond to any hardware register, but instead
1018 appears in the RTL as an argument pointer prior to reload, and is
1019 eliminated during reloading in favor of either the stack or frame
892a2d68 1020 pointer. */
c98f8742 1021
05416670 1022#define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
c98f8742 1023
3073d01c
ML
1024/* Number of hardware registers that go into the DWARF-2 unwind info.
1025 If not defined, equals FIRST_PSEUDO_REGISTER. */
1026
1027#define DWARF_FRAME_REGISTERS 17
1028
c98f8742
JVA
1029/* 1 for registers that have pervasive standard uses
1030 and are not available for the register allocator.
3f3f2124 1031 On the 80386, the stack pointer is such, as is the arg pointer.
fce5a9f2 1032
621bc046
UB
1033 REX registers are disabled for 32bit targets in
1034 TARGET_CONDITIONAL_REGISTER_USAGE. */
1035
a7180f70
BS
1036#define FIXED_REGISTERS \
1037/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
3a4416fb 1038{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
eaa17c21
UB
1039/*arg,flags,fpsr,frame*/ \
1040 1, 1, 1, 1, \
a7180f70
BS
1041/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1042 0, 0, 0, 0, 0, 0, 0, 0, \
78168632 1043/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3f3f2124
JH
1044 0, 0, 0, 0, 0, 0, 0, 0, \
1045/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
621bc046 1046 0, 0, 0, 0, 0, 0, 0, 0, \
3f3f2124 1047/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1048 0, 0, 0, 0, 0, 0, 0, 0, \
1049/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1050 0, 0, 0, 0, 0, 0, 0, 0, \
1051/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1052 0, 0, 0, 0, 0, 0, 0, 0, \
1053/* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1054 0, 0, 0, 0, 0, 0, 0, 0 }
c98f8742
JVA
1055
1056/* 1 for registers not available across function calls.
1057 These must include the FIXED_REGISTERS and also any
1058 registers that can be used without being saved.
1059 The latter must include the registers where values are returned
1060 and the register where structure-value addresses are passed.
fce5a9f2
EC
1061 Aside from that, you can include as many other registers as you like.
1062
621bc046
UB
1063 Value is set to 1 if the register is call used unconditionally.
1064 Bit one is set if the register is call used on TARGET_32BIT ABI.
1065 Bit two is set if the register is call used on TARGET_64BIT ABI.
1066 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1067
1068 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1069
1f3ccbc8
L
1070#define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1071 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1072
a7180f70
BS
1073#define CALL_USED_REGISTERS \
1074/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
621bc046 1075{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
eaa17c21
UB
1076/*arg,flags,fpsr,frame*/ \
1077 1, 1, 1, 1, \
a7180f70 1078/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
621bc046 1079 1, 1, 1, 1, 1, 1, 6, 6, \
78168632 1080/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
3a4416fb 1081 1, 1, 1, 1, 1, 1, 1, 1, \
3f3f2124 1082/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
3a4416fb 1083 1, 1, 1, 1, 2, 2, 2, 2, \
3f3f2124 1084/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
3f97cb0b
AI
1085 6, 6, 6, 6, 6, 6, 6, 6, \
1086/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1087 6, 6, 6, 6, 6, 6, 6, 6, \
1088/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
85a77221
AI
1089 6, 6, 6, 6, 6, 6, 6, 6, \
1090 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
eafa30ef 1091 1, 1, 1, 1, 1, 1, 1, 1 }
c98f8742 1092
3b3c6a3f
MM
1093/* Order in which to allocate registers. Each register must be
1094 listed once, even those in FIXED_REGISTERS. List frame pointer
1095 late and fixed registers last. Note that, in general, we prefer
1096 registers listed in CALL_USED_REGISTERS, keeping the others
1097 available for storage of persistent values.
1098
5a733826 1099 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
162f023b 1100 so this is just empty initializer for array. */
3b3c6a3f 1101
eaa17c21
UB
1102#define REG_ALLOC_ORDER \
1103{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1104 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1105 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1106 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1107 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
3b3c6a3f 1108
5a733826 1109/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
162f023b 1110 to be rearranged based on a particular function. When using sse math,
03c259ad 1111 we want to allocate SSE before x87 registers and vice versa. */
3b3c6a3f 1112
5a733826 1113#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
3b3c6a3f 1114
f5316dfe 1115
7c800926
KT
1116#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1117
8521c414 1118#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
7bf65250
UB
1119 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1120 && GENERAL_REGNO_P (REGNO) \
1121 && ((MODE) == XFmode || (MODE) == XCmode))
8521c414
JM
1122
1123#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1124
95879c72
L
1125#define VALID_AVX256_REG_MODE(MODE) \
1126 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb
JJ
1127 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1128 || (MODE) == V4DFmode)
95879c72 1129
4ac005ba 1130#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
ff97910d
VY
1131 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1132
3f97cb0b
AI
1133#define VALID_AVX512F_SCALAR_MODE(MODE) \
1134 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1135 || (MODE) == SFmode)
1136
1137#define VALID_AVX512F_REG_MODE(MODE) \
1138 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
9e4a4dd6
AI
1139 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1140 || (MODE) == V4TImode)
1141
e6f146d2
SP
1142#define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1143 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1144
05416670 1145#define VALID_AVX512VL_128_REG_MODE(MODE) \
9e4a4dd6 1146 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
40bd4bf9
JJ
1147 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1148 || (MODE) == TFmode || (MODE) == V1TImode)
3f97cb0b 1149
ce998900
UB
1150#define VALID_SSE2_REG_MODE(MODE) \
1151 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1152 || (MODE) == V2DImode || (MODE) == DFmode)
fbe5eb6d 1153
d9a5f180 1154#define VALID_SSE_REG_MODE(MODE) \
fe6ae2da
UB
1155 ((MODE) == V1TImode || (MODE) == TImode \
1156 || (MODE) == V4SFmode || (MODE) == V4SImode \
ce998900 1157 || (MODE) == SFmode || (MODE) == TFmode)
a7180f70 1158
47f339cf 1159#define VALID_MMX_REG_MODE_3DNOW(MODE) \
ce998900 1160 ((MODE) == V2SFmode || (MODE) == SFmode)
47f339cf 1161
d9a5f180 1162#define VALID_MMX_REG_MODE(MODE) \
879f9d0b 1163 ((MODE) == V1DImode || (MODE) == DImode \
10a97ae6
UB
1164 || (MODE) == V2SImode || (MODE) == SImode \
1165 || (MODE) == V4HImode || (MODE) == V8QImode)
a7180f70 1166
05416670
UB
1167#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1168
1169#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1170
ce998900
UB
1171#define VALID_DFP_MODE_P(MODE) \
1172 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
62d75179 1173
d9a5f180 1174#define VALID_FP_MODE_P(MODE) \
ce998900
UB
1175 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1176 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
a946dd00 1177
d9a5f180 1178#define VALID_INT_MODE_P(MODE) \
ce998900
UB
1179 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1180 || (MODE) == DImode \
1181 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1182 || (MODE) == CDImode \
1183 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1184 || (MODE) == TFmode || (MODE) == TCmode)))
a946dd00 1185
822eda12 1186/* Return true for modes passed in SSE registers. */
ce998900 1187#define SSE_REG_MODE_P(MODE) \
fe6ae2da
UB
1188 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1189 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1190 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1191 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
8a0436cb 1192 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
3f97cb0b
AI
1193 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1194 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1195 || (MODE) == V16SFmode)
822eda12 1196
05416670
UB
1197#define X87_FLOAT_MODE_P(MODE) \
1198 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
85a77221 1199
05416670
UB
1200#define SSE_FLOAT_MODE_P(MODE) \
1201 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1202
1203#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1204 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1205 || (MODE) == V8SFmode || (MODE) == V4DFmode))
9e4a4dd6 1206
ff25ef99
ZD
1207/* It is possible to write patterns to move flags; but until someone
1208 does it, */
1209#define AVOID_CCMODE_COPIES
c98f8742 1210
e075ae69 1211/* Specify the modes required to caller save a given hard regno.
787dc842 1212 We do this on i386 to prevent flags from being saved at all.
e075ae69 1213
787dc842
JH
1214 Kill any attempts to combine saving of modes. */
1215
d9a5f180
GS
1216#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1217 (CC_REGNO_P (REGNO) ? VOIDmode \
1218 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
ce998900 1219 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
a60c3351
UB
1220 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1221 && TARGET_PARTIAL_REG_STALL) \
85a77221 1222 || MASK_REGNO_P (REGNO)) ? SImode \
a60c3351 1223 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
85a77221 1224 || MASK_REGNO_P (REGNO)) ? SImode \
d2836273 1225 : (MODE))
ce998900 1226
c98f8742
JVA
1227/* Specify the registers used for certain standard purposes.
1228 The values of these macros are register numbers. */
1229
1230/* on the 386 the pc register is %eip, and is not usable as a general
1231 register. The ordinary mov instructions won't work */
1232/* #define PC_REGNUM */
1233
05416670
UB
1234/* Base register for access to arguments of the function. */
1235#define ARG_POINTER_REGNUM ARGP_REG
1236
c98f8742 1237/* Register to use for pushing function arguments. */
05416670 1238#define STACK_POINTER_REGNUM SP_REG
c98f8742
JVA
1239
1240/* Base register for access to local variables of the function. */
05416670
UB
1241#define FRAME_POINTER_REGNUM FRAME_REG
1242#define HARD_FRAME_POINTER_REGNUM BP_REG
564d80f4 1243
05416670
UB
1244#define FIRST_INT_REG AX_REG
1245#define LAST_INT_REG SP_REG
c98f8742 1246
05416670
UB
1247#define FIRST_QI_REG AX_REG
1248#define LAST_QI_REG BX_REG
c98f8742
JVA
1249
1250/* First & last stack-like regs */
05416670
UB
1251#define FIRST_STACK_REG ST0_REG
1252#define LAST_STACK_REG ST7_REG
c98f8742 1253
05416670
UB
1254#define FIRST_SSE_REG XMM0_REG
1255#define LAST_SSE_REG XMM7_REG
fce5a9f2 1256
05416670
UB
1257#define FIRST_MMX_REG MM0_REG
1258#define LAST_MMX_REG MM7_REG
a7180f70 1259
05416670
UB
1260#define FIRST_REX_INT_REG R8_REG
1261#define LAST_REX_INT_REG R15_REG
3f3f2124 1262
05416670
UB
1263#define FIRST_REX_SSE_REG XMM8_REG
1264#define LAST_REX_SSE_REG XMM15_REG
3f3f2124 1265
05416670
UB
1266#define FIRST_EXT_REX_SSE_REG XMM16_REG
1267#define LAST_EXT_REX_SSE_REG XMM31_REG
3f97cb0b 1268
05416670
UB
1269#define FIRST_MASK_REG MASK0_REG
1270#define LAST_MASK_REG MASK7_REG
85a77221 1271
aabcd309 1272/* Override this in other tm.h files to cope with various OS lossage
6fca22eb
RH
1273 requiring a frame pointer. */
1274#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1275#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1276#endif
1277
1278/* Make sure we can access arbitrary call frames. */
1279#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
c98f8742 1280
c98f8742 1281/* Register to hold the addressing base for position independent
5b43fed1
RH
1282 code access to data items. We don't use PIC pointer for 64bit
1283 mode. Define the regnum to dummy value to prevent gcc from
fce5a9f2 1284 pessimizing code dealing with EBX.
bd09bdeb
RH
1285
1286 To avoid clobbering a call-saved register unnecessarily, we renumber
1287 the pic register when possible. The change is visible after the
1288 prologue has been emitted. */
1289
e8b5eb25 1290#define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
bd09bdeb 1291
bcb21886 1292#define PIC_OFFSET_TABLE_REGNUM \
d290bb1d
IE
1293 (ix86_use_pseudo_pic_reg () \
1294 ? (pic_offset_table_rtx \
1295 ? INVALID_REGNUM \
1296 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1297 : INVALID_REGNUM)
c98f8742 1298
5fc0e5df
KW
1299#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1300
c51e6d85 1301/* This is overridden by <cygwin.h>. */
5e062767
DS
1302#define MS_AGGREGATE_RETURN 0
1303
61fec9ff 1304#define KEEP_AGGREGATE_RETURN_POINTER 0
c98f8742
JVA
1305\f
1306/* Define the classes of registers for register constraints in the
1307 machine description. Also define ranges of constants.
1308
1309 One of the classes must always be named ALL_REGS and include all hard regs.
1310 If there is more than one class, another class must be named NO_REGS
1311 and contain no registers.
1312
1313 The name GENERAL_REGS must be the name of a class (or an alias for
1314 another name such as ALL_REGS). This is the class of registers
1315 that is allowed by "g" or "r" in a register constraint.
1316 Also, registers outside this class are allocated only when
1317 instructions express preferences for them.
1318
1319 The classes must be numbered in nondecreasing order; that is,
1320 a larger-numbered class must never be contained completely
2e24efd3
AM
1321 in a smaller-numbered class. This is why CLOBBERED_REGS class
1322 is listed early, even though in 64-bit mode it contains more
1323 registers than just %eax, %ecx, %edx.
c98f8742
JVA
1324
1325 For any two classes, it is very desirable that there be another
ab408a86
JVA
1326 class that represents their union.
1327
eaa17c21 1328 The flags and fpsr registers are in no class. */
c98f8742
JVA
1329
1330enum reg_class
1331{
1332 NO_REGS,
e075ae69 1333 AREG, DREG, CREG, BREG, SIREG, DIREG,
4b71cd6e 1334 AD_REGS, /* %eax/%edx for DImode */
2e24efd3 1335 CLOBBERED_REGS, /* call-clobbered integer registers */
c98f8742 1336 Q_REGS, /* %eax %ebx %ecx %edx */
564d80f4 1337 NON_Q_REGS, /* %esi %edi %ebp %esp */
de86ff8f 1338 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
c98f8742 1339 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
3f3f2124 1340 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
63001560
UB
1341 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1342 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
c98f8742
JVA
1343 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1344 FLOAT_REGS,
06f4e35d 1345 SSE_FIRST_REG,
45392c76 1346 NO_REX_SSE_REGS,
a7180f70 1347 SSE_REGS,
3f97cb0b 1348 ALL_SSE_REGS,
a7180f70 1349 MMX_REGS,
446988df
JH
1350 FLOAT_SSE_REGS,
1351 FLOAT_INT_REGS,
1352 INT_SSE_REGS,
1353 FLOAT_INT_SSE_REGS,
85a77221 1354 MASK_REGS,
d18cbbf6
UB
1355 ALL_MASK_REGS,
1356 ALL_REGS,
1357 LIM_REG_CLASSES
c98f8742
JVA
1358};
1359
d9a5f180
GS
1360#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1361
1362#define INTEGER_CLASS_P(CLASS) \
1363 reg_class_subset_p ((CLASS), GENERAL_REGS)
1364#define FLOAT_CLASS_P(CLASS) \
1365 reg_class_subset_p ((CLASS), FLOAT_REGS)
1366#define SSE_CLASS_P(CLASS) \
3f97cb0b 1367 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1368#define MMX_CLASS_P(CLASS) \
f75959a6 1369 ((CLASS) == MMX_REGS)
4ed04e93 1370#define MASK_CLASS_P(CLASS) \
d18cbbf6 1371 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1372#define MAYBE_INTEGER_CLASS_P(CLASS) \
1373 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1374#define MAYBE_FLOAT_CLASS_P(CLASS) \
1375 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1376#define MAYBE_SSE_CLASS_P(CLASS) \
3f97cb0b 1377 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
d9a5f180 1378#define MAYBE_MMX_CLASS_P(CLASS) \
0bd72901 1379 reg_classes_intersect_p ((CLASS), MMX_REGS)
85a77221 1380#define MAYBE_MASK_CLASS_P(CLASS) \
d18cbbf6 1381 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
d9a5f180
GS
1382
1383#define Q_CLASS_P(CLASS) \
1384 reg_class_subset_p ((CLASS), Q_REGS)
7c6b971d 1385
0bd72901
UB
1386#define MAYBE_NON_Q_CLASS_P(CLASS) \
1387 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1388
43f3a59d 1389/* Give names of register classes as strings for dump file. */
c98f8742
JVA
1390
1391#define REG_CLASS_NAMES \
1392{ "NO_REGS", \
ab408a86 1393 "AREG", "DREG", "CREG", "BREG", \
c98f8742 1394 "SIREG", "DIREG", \
e075ae69 1395 "AD_REGS", \
2e24efd3 1396 "CLOBBERED_REGS", \
e075ae69 1397 "Q_REGS", "NON_Q_REGS", \
de86ff8f 1398 "TLS_GOTBASE_REGS", \
c98f8742 1399 "INDEX_REGS", \
3f3f2124 1400 "LEGACY_REGS", \
c98f8742
JVA
1401 "GENERAL_REGS", \
1402 "FP_TOP_REG", "FP_SECOND_REG", \
1403 "FLOAT_REGS", \
cb482895 1404 "SSE_FIRST_REG", \
45392c76 1405 "NO_REX_SSE_REGS", \
a7180f70 1406 "SSE_REGS", \
3f97cb0b 1407 "ALL_SSE_REGS", \
a7180f70 1408 "MMX_REGS", \
446988df 1409 "FLOAT_SSE_REGS", \
8fcaaa80 1410 "FLOAT_INT_REGS", \
446988df
JH
1411 "INT_SSE_REGS", \
1412 "FLOAT_INT_SSE_REGS", \
85a77221 1413 "MASK_REGS", \
d18cbbf6 1414 "ALL_MASK_REGS", \
c98f8742
JVA
1415 "ALL_REGS" }
1416
ac2e563f
RH
1417/* Define which registers fit in which classes. This is an initializer
1418 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1419
621bc046
UB
1420 Note that CLOBBERED_REGS are calculated by
1421 TARGET_CONDITIONAL_REGISTER_USAGE. */
c98f8742 1422
d18cbbf6 1423#define REG_CLASS_CONTENTS \
eaa17c21
UB
1424{ { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1425 { 0x01, 0x0, 0x0 }, /* AREG */ \
1426 { 0x02, 0x0, 0x0 }, /* DREG */ \
1427 { 0x04, 0x0, 0x0 }, /* CREG */ \
1428 { 0x08, 0x0, 0x0 }, /* BREG */ \
1429 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1430 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1431 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1432 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1433 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1434 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1435 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1436 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1437 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1438 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1439 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1440 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1441 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1442 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1443 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1444 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1445 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1446{ 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1447 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1448 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1449 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1450 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1451 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1452 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
1453{ 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
e075ae69 1454}
c98f8742
JVA
1455
1456/* The same information, inverted:
1457 Return the class number of the smallest class containing
1458 reg number REGNO. This could be a conditional expression
1459 or could index an array. */
1460
1a6e82b8 1461#define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
c98f8742 1462
42db504c
SB
1463/* When this hook returns true for MODE, the compiler allows
1464 registers explicitly used in the rtl to be used as spill registers
1465 but prevents the compiler from extending the lifetime of these
1466 registers. */
1467#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
c98f8742 1468
fc27f749 1469#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
05416670
UB
1470#define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1471
1472#define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1473#define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1474
1475#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1476#define REX_INT_REGNO_P(N) \
1477 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
3f3f2124 1478
58b0b34c 1479#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
fc27f749 1480#define GENERAL_REGNO_P(N) \
58b0b34c 1481 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
3f3f2124 1482
fc27f749
UB
1483#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1484#define ANY_QI_REGNO_P(N) \
1485 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
3f3f2124 1486
66aaf16f
UB
1487#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1488#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
fc27f749 1489
fc27f749 1490#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
fb84c7a0
UB
1491#define SSE_REGNO_P(N) \
1492 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
3f97cb0b
AI
1493 || REX_SSE_REGNO_P (N) \
1494 || EXT_REX_SSE_REGNO_P (N))
3f3f2124 1495
4977bab6 1496#define REX_SSE_REGNO_P(N) \
fb84c7a0 1497 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
4977bab6 1498
0a48088a
IT
1499#define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1500
3f97cb0b
AI
1501#define EXT_REX_SSE_REGNO_P(N) \
1502 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1503
05416670
UB
1504#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1505#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
3f97cb0b 1506
9e4a4dd6 1507#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
85a77221 1508#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
446988df 1509
fc27f749 1510#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
fb84c7a0 1511#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
fce5a9f2 1512
e075ae69 1513#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
adb67ffb 1514#define CC_REGNO_P(X) ((X) == FLAGS_REG)
e075ae69 1515
5fbb13a7
KY
1516#define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1517#define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1518 || (N) == XMM4_REG \
1519 || (N) == XMM8_REG \
1520 || (N) == XMM12_REG \
1521 || (N) == XMM16_REG \
1522 || (N) == XMM20_REG \
1523 || (N) == XMM24_REG \
1524 || (N) == XMM28_REG)
1525
05416670
UB
1526/* First floating point reg */
1527#define FIRST_FLOAT_REG FIRST_STACK_REG
1528#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1529
02469d3a
UB
1530#define GET_SSE_REGNO(N) \
1531 ((N) < 8 ? FIRST_SSE_REG + (N) \
1532 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1533 : FIRST_EXT_REX_SSE_REG + (N) - 16)
05416670 1534
c98f8742
JVA
1535/* The class value for index registers, and the one for base regs. */
1536
1537#define INDEX_REG_CLASS INDEX_REGS
1538#define BASE_REG_CLASS GENERAL_REGS
c98f8742
JVA
1539\f
1540/* Stack layout; function entry, exit and calling. */
1541
1542/* Define this if pushing a word on the stack
1543 makes the stack pointer a smaller address. */
62f9f30b 1544#define STACK_GROWS_DOWNWARD 1
c98f8742 1545
a4d05547 1546/* Define this to nonzero if the nominal address of the stack frame
c98f8742
JVA
1547 is at the high-address end of the local variables;
1548 that is, each additional local variable allocated
1549 goes at a more negative offset in the frame. */
f62c8a5c 1550#define FRAME_GROWS_DOWNWARD 1
c98f8742 1551
7b4df2bf 1552#define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
8c2b2fae
UB
1553
1554/* If defined, the maximum amount of space required for outgoing arguments
1555 will be computed and placed into the variable `crtl->outgoing_args_size'.
1556 No space will be pushed onto the stack for each call; instead, the
1557 function prologue should increase the stack frame size by this amount.
41ee845b
JH
1558
1559 In 32bit mode enabling argument accumulation results in about 5% code size
56aae4b7 1560 growth because move instructions are less compact than push. In 64bit
41ee845b
JH
1561 mode the difference is less drastic but visible.
1562
1563 FIXME: Unlike earlier implementations, the size of unwind info seems to
f830ddc2 1564 actually grow with accumulation. Is that because accumulated args
41ee845b 1565 unwind info became unnecesarily bloated?
f830ddc2
RH
1566
1567 With the 64-bit MS ABI, we can generate correct code with or without
1568 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1569 generated without accumulated args is terrible.
41ee845b
JH
1570
1571 If stack probes are required, the space used for large function
1572 arguments on the stack must also be probed, so enable
f8071c05
L
1573 -maccumulate-outgoing-args so this happens in the prologue.
1574
1575 We must use argument accumulation in interrupt function if stack
1576 may be realigned to avoid DRAP. */
f73ad30e 1577
6c6094f1 1578#define ACCUMULATE_OUTGOING_ARGS \
f8071c05
L
1579 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1580 && optimize_function_for_speed_p (cfun)) \
1581 || (cfun->machine->func_type != TYPE_NORMAL \
1582 && crtl->stack_realign_needed) \
1583 || TARGET_STACK_PROBE \
1584 || TARGET_64BIT_MS_ABI \
ff734e26 1585 || (TARGET_MACHO && crtl->profile))
f73ad30e
JH
1586
1587/* If defined, a C expression whose value is nonzero when we want to use PUSH
1588 instructions to pass outgoing arguments. */
1589
1590#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1591
2da4124d
L
1592/* We want the stack and args grow in opposite directions, even if
1593 PUSH_ARGS is 0. */
1594#define PUSH_ARGS_REVERSED 1
1595
c98f8742
JVA
1596/* Offset of first parameter from the argument pointer register value. */
1597#define FIRST_PARM_OFFSET(FNDECL) 0
1598
a7180f70
BS
1599/* Define this macro if functions should assume that stack space has been
1600 allocated for arguments even when their values are passed in registers.
1601
1602 The value of this macro is the size, in bytes, of the area reserved for
1603 arguments passed in registers for the function represented by FNDECL.
1604
1605 This space can be allocated by the caller, or be a part of the
1606 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1607 which. */
7c800926
KT
1608#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1609
4ae8027b 1610#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
6510e8bb 1611 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
7c800926 1612
c98f8742
JVA
1613/* Define how to find the value returned by a library function
1614 assuming the value has mode MODE. */
1615
4ae8027b 1616#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
c98f8742 1617
e9125c09
TW
1618/* Define the size of the result block used for communication between
1619 untyped_call and untyped_return. The block contains a DImode value
1620 followed by the block used by fnsave and frstor. */
1621
1622#define APPLY_RESULT_SIZE (8+108)
1623
b08de47e 1624/* 1 if N is a possible register number for function argument passing. */
53c17031 1625#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
c98f8742
JVA
1626
1627/* Define a data type for recording info about an argument list
1628 during the scan of that argument list. This data type should
1629 hold all necessary information about the function itself
1630 and about the args processed so far, enough to enable macros
b08de47e 1631 such as FUNCTION_ARG to determine where the next arg should go. */
c98f8742 1632
e075ae69 1633typedef struct ix86_args {
fa283935 1634 int words; /* # words passed so far */
b08de47e
MM
1635 int nregs; /* # registers available for passing */
1636 int regno; /* next available register number */
3e65f251
KT
1637 int fastcall; /* fastcall or thiscall calling convention
1638 is used */
fa283935 1639 int sse_words; /* # sse words passed so far */
a7180f70 1640 int sse_nregs; /* # sse registers available for passing */
223cdd15
UB
1641 int warn_avx512f; /* True when we want to warn
1642 about AVX512F ABI. */
95879c72 1643 int warn_avx; /* True when we want to warn about AVX ABI. */
47a37ce4 1644 int warn_sse; /* True when we want to warn about SSE ABI. */
fa283935 1645 int warn_mmx; /* True when we want to warn about MMX ABI. */
974aedcc
MP
1646 int warn_empty; /* True when we want to warn about empty classes
1647 passing ABI change. */
fa283935
UB
1648 int sse_regno; /* next available sse register number */
1649 int mmx_words; /* # mmx words passed so far */
bcf17554
JH
1650 int mmx_nregs; /* # mmx registers available for passing */
1651 int mmx_regno; /* next available mmx register number */
892a2d68 1652 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
2767a7f2 1653 int caller; /* true if it is caller. */
2824d6e5
UB
1654 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1655 SFmode/DFmode arguments should be passed
1656 in SSE registers. Otherwise 0. */
d5e254e1 1657 int stdarg; /* Set to 1 if function is stdarg. */
51212b32 1658 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
7c800926 1659 MS_ABI for ms abi. */
e66fc623 1660 tree decl; /* Callee decl. */
b08de47e 1661} CUMULATIVE_ARGS;
c98f8742
JVA
1662
1663/* Initialize a variable CUM of type CUMULATIVE_ARGS
1664 for a call to a function whose data type is FNTYPE.
b08de47e 1665 For a library call, FNTYPE is 0. */
c98f8742 1666
0f6937fe 1667#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
2767a7f2
L
1668 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1669 (N_NAMED_ARGS) != -1)
c98f8742 1670
c98f8742
JVA
1671/* Output assembler code to FILE to increment profiler label # LABELNO
1672 for profiling a function entry. */
1673
1a6e82b8
UB
1674#define FUNCTION_PROFILER(FILE, LABELNO) \
1675 x86_function_profiler ((FILE), (LABELNO))
a5fa1ecd
JH
1676
1677#define MCOUNT_NAME "_mcount"
1678
3c5273a9
KT
1679#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1680
a5fa1ecd 1681#define PROFILE_COUNT_REGISTER "edx"
c98f8742
JVA
1682
1683/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1684 the stack pointer does not matter. The value is tested only in
1685 functions that have frame pointers.
1686 No definition is equivalent to always zero. */
fce5a9f2 1687/* Note on the 386 it might be more efficient not to define this since
c98f8742
JVA
1688 we have to restore it ourselves from the frame pointer, in order to
1689 use pop */
1690
1691#define EXIT_IGNORE_STACK 1
1692
f8071c05
L
1693/* Define this macro as a C expression that is nonzero for registers
1694 used by the epilogue or the `return' pattern. */
1695
1696#define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1697
c98f8742
JVA
1698/* Output assembler code for a block containing the constant parts
1699 of a trampoline, leaving space for the variable parts. */
1700
a269a03c 1701/* On the 386, the trampoline contains two instructions:
c98f8742 1702 mov #STATIC,ecx
a269a03c
JC
1703 jmp FUNCTION
1704 The trampoline is generated entirely at runtime. The operand of JMP
1705 is the address of FUNCTION relative to the instruction following the
1706 JMP (which is 5 bytes long). */
c98f8742
JVA
1707
1708/* Length in units of the trampoline for entering a nested function. */
1709
6514899f 1710#define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
c98f8742
JVA
1711\f
1712/* Definitions for register eliminations.
1713
1714 This is an array of structures. Each structure initializes one pair
1715 of eliminable registers. The "from" register number is given first,
1716 followed by "to". Eliminations of the same "from" register are listed
1717 in order of preference.
1718
afc2cd05
NC
1719 There are two registers that can always be eliminated on the i386.
1720 The frame pointer and the arg pointer can be replaced by either the
1721 hard frame pointer or to the stack pointer, depending upon the
1722 circumstances. The hard frame pointer is not used before reload and
1723 so it is not eligible for elimination. */
c98f8742 1724
564d80f4
JH
1725#define ELIMINABLE_REGS \
1726{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1727 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1728 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1729 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
c98f8742 1730
c98f8742
JVA
1731/* Define the offset between two registers, one to be eliminated, and the other
1732 its replacement, at the start of a routine. */
1733
d9a5f180
GS
1734#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1735 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
c98f8742
JVA
1736\f
1737/* Addressing modes, and classification of registers for them. */
1738
c98f8742
JVA
1739/* Macros to check register numbers against specific register classes. */
1740
1741/* These assume that REGNO is a hard or pseudo reg number.
1742 They give nonzero only if REGNO is a hard reg of the suitable class
1743 or a pseudo reg currently allocated to a suitable hard reg.
1744 Since they use reg_renumber, they are safe only once reg_renumber
aeb9f7cf
SB
1745 has been allocated, which happens in reginfo.c during register
1746 allocation. */
c98f8742 1747
3f3f2124
JH
1748#define REGNO_OK_FOR_INDEX_P(REGNO) \
1749 ((REGNO) < STACK_POINTER_REGNUM \
fb84c7a0
UB
1750 || REX_INT_REGNO_P (REGNO) \
1751 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1752 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1753
3f3f2124 1754#define REGNO_OK_FOR_BASE_P(REGNO) \
fb84c7a0 1755 (GENERAL_REGNO_P (REGNO) \
3f3f2124
JH
1756 || (REGNO) == ARG_POINTER_REGNUM \
1757 || (REGNO) == FRAME_POINTER_REGNUM \
fb84c7a0 1758 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
c98f8742 1759
c98f8742
JVA
1760/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1761 and check its validity for a certain class.
1762 We have two alternate definitions for each of them.
1763 The usual definition accepts all pseudo regs; the other rejects
1764 them unless they have been allocated suitable hard regs.
1765 The symbol REG_OK_STRICT causes the latter definition to be used.
1766
1767 Most source files want to accept pseudo regs in the hope that
1768 they will get allocated to the class that the insn wants them to be in.
1769 Source files for reload pass need to be strict.
1770 After reload, it makes no difference, since pseudo regs have
1771 been eliminated by then. */
1772
c98f8742 1773
ff482c8d 1774/* Non strict versions, pseudos are ok. */
3b3c6a3f
MM
1775#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1776 (REGNO (X) < STACK_POINTER_REGNUM \
fb84c7a0 1777 || REX_INT_REGNO_P (REGNO (X)) \
c98f8742
JVA
1778 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1779
3b3c6a3f 1780#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
fb84c7a0 1781 (GENERAL_REGNO_P (REGNO (X)) \
3b3c6a3f 1782 || REGNO (X) == ARG_POINTER_REGNUM \
3f3f2124 1783 || REGNO (X) == FRAME_POINTER_REGNUM \
3b3c6a3f 1784 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
c98f8742 1785
3b3c6a3f
MM
1786/* Strict versions, hard registers only */
1787#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1788#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
c98f8742 1789
3b3c6a3f 1790#ifndef REG_OK_STRICT
d9a5f180
GS
1791#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1792#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
3b3c6a3f
MM
1793
1794#else
d9a5f180
GS
1795#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1796#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
c98f8742
JVA
1797#endif
1798
331d9186 1799/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
c98f8742
JVA
1800 that is a valid memory address for an instruction.
1801 The MODE argument is the machine mode for the MEM expression
1802 that wants to use this address.
1803
331d9186 1804 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
c98f8742
JVA
1805 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1806
1807 See legitimize_pic_address in i386.c for details as to what
1808 constitutes a legitimate address when -fpic is used. */
1809
1810#define MAX_REGS_PER_ADDRESS 2
1811
f996902d 1812#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
c98f8742 1813
b949ea8b
JW
1814/* If defined, a C expression to determine the base term of address X.
1815 This macro is used in only one place: `find_base_term' in alias.c.
1816
1817 It is always safe for this macro to not be defined. It exists so
1818 that alias analysis can understand machine-dependent addresses.
1819
1820 The typical use of this macro is to handle addresses containing
1821 a label_ref or symbol_ref within an UNSPEC. */
1822
d9a5f180 1823#define FIND_BASE_TERM(X) ix86_find_base_term (X)
b949ea8b 1824
c98f8742 1825/* Nonzero if the constant value X is a legitimate general operand
fce5a9f2 1826 when generating PIC code. It is given that flag_pic is on and
c98f8742
JVA
1827 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1828
f996902d 1829#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
c98f8742
JVA
1830
1831#define SYMBOLIC_CONST(X) \
d9a5f180
GS
1832 (GET_CODE (X) == SYMBOL_REF \
1833 || GET_CODE (X) == LABEL_REF \
1834 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
c98f8742 1835\f
b08de47e
MM
1836/* Max number of args passed in registers. If this is more than 3, we will
1837 have problems with ebx (register #4), since it is a caller save register and
1838 is also used as the pic register in ELF. So for now, don't allow more than
1839 3 registers to be passed in registers. */
1840
7c800926
KT
1841/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1842#define X86_64_REGPARM_MAX 6
72fa3605 1843#define X86_64_MS_REGPARM_MAX 4
7c800926 1844
72fa3605 1845#define X86_32_REGPARM_MAX 3
7c800926 1846
4ae8027b 1847#define REGPARM_MAX \
2824d6e5
UB
1848 (TARGET_64BIT \
1849 ? (TARGET_64BIT_MS_ABI \
1850 ? X86_64_MS_REGPARM_MAX \
1851 : X86_64_REGPARM_MAX) \
4ae8027b 1852 : X86_32_REGPARM_MAX)
d2836273 1853
72fa3605
UB
1854#define X86_64_SSE_REGPARM_MAX 8
1855#define X86_64_MS_SSE_REGPARM_MAX 4
1856
b6010cab 1857#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
72fa3605 1858
4ae8027b 1859#define SSE_REGPARM_MAX \
2824d6e5
UB
1860 (TARGET_64BIT \
1861 ? (TARGET_64BIT_MS_ABI \
1862 ? X86_64_MS_SSE_REGPARM_MAX \
1863 : X86_64_SSE_REGPARM_MAX) \
4ae8027b 1864 : X86_32_SSE_REGPARM_MAX)
bcf17554
JH
1865
1866#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
c98f8742
JVA
1867\f
1868/* Specify the machine mode that this machine uses
1869 for the index in the tablejump instruction. */
dc4d7240 1870#define CASE_VECTOR_MODE \
6025b127 1871 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
c98f8742 1872
c98f8742
JVA
1873/* Define this as 1 if `char' should by default be signed; else as 0. */
1874#define DEFAULT_SIGNED_CHAR 1
1875
1876/* Max number of bytes we can move from memory to memory
1877 in one reasonably fast instruction. */
65d9c0ab
JH
1878#define MOVE_MAX 16
1879
1880/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1881 move efficiently, as opposed to MOVE_MAX which is the maximum
df7ec09f
L
1882 number of bytes we can move with a single instruction.
1883
1884 ??? We should use TImode in 32-bit mode and use OImode or XImode
1885 if they are available. But since by_pieces_ninsns determines the
1886 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1887 64-bit mode. */
1888#define MOVE_MAX_PIECES \
1889 ((TARGET_64BIT \
1890 && TARGET_SSE2 \
1891 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1892 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1893 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
c98f8742 1894
7e24ffc9 1895/* If a memory-to-memory move would take MOVE_RATIO or more simple
70128ad9 1896 move-instruction pairs, we will do a movmem or libcall instead.
7e24ffc9
HPN
1897 Increasing the value will always make code faster, but eventually
1898 incurs high cost in increased code size.
c98f8742 1899
e2e52e1b 1900 If you don't define this, a reasonable default is used. */
c98f8742 1901
e04ad03d 1902#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
c98f8742 1903
45d78e7f
JJ
1904/* If a clear memory operation would take CLEAR_RATIO or more simple
1905 move-instruction sequences, we will do a clrmem or libcall instead. */
1906
e04ad03d 1907#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
45d78e7f 1908
53f00dde
UB
1909/* Define if shifts truncate the shift count which implies one can
1910 omit a sign-extension or zero-extension of a shift count.
1911
1912 On i386, shifts do truncate the count. But bit test instructions
1913 take the modulo of the bit offset operand. */
c98f8742
JVA
1914
1915/* #define SHIFT_COUNT_TRUNCATED */
1916
d9f32422
JH
1917/* A macro to update M and UNSIGNEDP when an object whose type is
1918 TYPE and which has the specified mode and signedness is to be
1919 stored in a register. This macro is only called when TYPE is a
1920 scalar type.
1921
f710504c 1922 On i386 it is sometimes useful to promote HImode and QImode
d9f32422
JH
1923 quantities to SImode. The choice depends on target type. */
1924
1925#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
d9a5f180 1926do { \
d9f32422
JH
1927 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1928 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
d9a5f180
GS
1929 (MODE) = SImode; \
1930} while (0)
d9f32422 1931
c98f8742
JVA
1932/* Specify the machine mode that pointers have.
1933 After generation of rtl, the compiler makes no further distinction
1934 between pointers and any other objects of this machine mode. */
28968d91 1935#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
c98f8742 1936
5e1e91c4
L
1937/* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1938 NONLOCAL needs space to save both shadow stack and stack pointers.
1939
1940 FIXME: We only need to save and restore stack pointer in ptr_mode.
1941 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1942 to save and restore stack pointer. See
1943 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1944 */
1945#define STACK_SAVEAREA_MODE(LEVEL) \
1946 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1947
f0ea7581
L
1948/* A C expression whose value is zero if pointers that need to be extended
1949 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1950 greater then zero if they are zero-extended and less then zero if the
1951 ptr_extend instruction should be used. */
1952
1953#define POINTERS_EXTEND_UNSIGNED 1
1954
c98f8742
JVA
1955/* A function address in a call instruction
1956 is a byte address (for indexing purposes)
1957 so give the MEM rtx a byte's mode. */
1958#define FUNCTION_MODE QImode
d4ba09c0 1959\f
d4ba09c0 1960
d4ba09c0
SC
1961/* A C expression for the cost of a branch instruction. A value of 1
1962 is the default; other values are interpreted relative to that. */
1963
3a4fd356
JH
1964#define BRANCH_COST(speed_p, predictable_p) \
1965 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
d4ba09c0 1966
e327d1a3
L
1967/* An integer expression for the size in bits of the largest integer machine
1968 mode that should actually be used. We allow pairs of registers. */
1969#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1970
d4ba09c0
SC
1971/* Define this macro as a C expression which is nonzero if accessing
1972 less than a word of memory (i.e. a `char' or a `short') is no
1973 faster than accessing a word of memory, i.e., if such access
1974 require more than one instruction or if there is no difference in
1975 cost between byte and (aligned) word loads.
1976
1977 When this macro is not defined, the compiler will access a field by
1978 finding the smallest containing object; when it is defined, a
1979 fullword load will be used if alignment permits. Unless bytes
1980 accesses are faster than word accesses, using word accesses is
1981 preferable since it may eliminate subsequent memory access if
1982 subsequent accesses occur to other fields in the same word of the
1983 structure, but to different bytes. */
1984
1985#define SLOW_BYTE_ACCESS 0
1986
1987/* Nonzero if access to memory by shorts is slow and undesirable. */
1988#define SLOW_SHORT_ACCESS 0
1989
d4ba09c0
SC
1990/* Define this macro if it is as good or better to call a constant
1991 function address than to call an address kept in a register.
1992
1993 Desirable on the 386 because a CALL with a constant address is
1994 faster than one with a register address. */
1995
1e8552c2 1996#define NO_FUNCTION_CSE 1
c98f8742 1997\f
c572e5ba
JVA
1998/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1999 return the mode to be used for the comparison.
2000
2001 For floating-point equality comparisons, CCFPEQmode should be used.
e075ae69 2002 VOIDmode should be used in all other cases.
c572e5ba 2003
16189740 2004 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
e075ae69 2005 possible, to allow for more combinations. */
c98f8742 2006
d9a5f180 2007#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
9e7adcb3 2008
9cd10576 2009/* Return nonzero if MODE implies a floating point inequality can be
9e7adcb3
JH
2010 reversed. */
2011
2012#define REVERSIBLE_CC_MODE(MODE) 1
2013
2014/* A C expression whose value is reversed condition code of the CODE for
2015 comparison done in CC_MODE mode. */
3c5cb3e4 2016#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
9e7adcb3 2017
c98f8742
JVA
2018\f
2019/* Control the assembler format that we output, to the extent
2020 this does not vary between assemblers. */
2021
2022/* How to refer to registers in assembler output.
892a2d68 2023 This sequence is indexed by compiler's hard-register-number (see above). */
c98f8742 2024
a7b376ee 2025/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
c98f8742
JVA
2026 For non floating point regs, the following are the HImode names.
2027
2028 For float regs, the stack top is sometimes referred to as "%st(0)"
6e2188e0
NF
2029 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2030 "y" code. */
c98f8742 2031
a7180f70
BS
2032#define HI_REGISTER_NAMES \
2033{"ax","dx","cx","bx","si","di","bp","sp", \
480feac0 2034 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
eaa17c21 2035 "argp", "flags", "fpsr", "frame", \
a7180f70 2036 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
03c259ad 2037 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
3f3f2124 2038 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
3f97cb0b
AI
2039 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2040 "xmm16", "xmm17", "xmm18", "xmm19", \
2041 "xmm20", "xmm21", "xmm22", "xmm23", \
2042 "xmm24", "xmm25", "xmm26", "xmm27", \
85a77221 2043 "xmm28", "xmm29", "xmm30", "xmm31", \
eafa30ef 2044 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
a7180f70 2045
c98f8742
JVA
2046#define REGISTER_NAMES HI_REGISTER_NAMES
2047
50bec228
UB
2048#define QI_REGISTER_NAMES \
2049{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2050
2051#define QI_HIGH_REGISTER_NAMES \
2052{"ah", "dh", "ch", "bh"}
2053
c98f8742
JVA
2054/* Table of additional register names to use in user input. */
2055
eaa17c21
UB
2056#define ADDITIONAL_REGISTER_NAMES \
2057{ \
2058 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
2059 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
2060 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
2061 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
2062 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
50bec228 2063 { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG }, \
eaa17c21
UB
2064 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
2065 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2066 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2067 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2068 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2069 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2070 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2071 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2072 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2073 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2074 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2075 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2076 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2077 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2078 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2079 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2080 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
2081}
c98f8742 2082
c98f8742
JVA
2083/* How to renumber registers for dbx and gdb. */
2084
d9a5f180
GS
2085#define DBX_REGISTER_NUMBER(N) \
2086 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
83774849 2087
9a82e702
MS
2088extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2089extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2090extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
c98f8742 2091
469ac993
JM
2092/* Before the prologue, RA is at 0(%esp). */
2093#define INCOMING_RETURN_ADDR_RTX \
2efb4214 2094 gen_rtx_MEM (Pmode, stack_pointer_rtx)
fce5a9f2 2095
e414ab29 2096/* After the prologue, RA is at -4(AP) in the current frame. */
1a6e82b8
UB
2097#define RETURN_ADDR_RTX(COUNT, FRAME) \
2098 ((COUNT) == 0 \
2099 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2100 -UNITS_PER_WORD)) \
2101 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
e414ab29 2102
892a2d68 2103/* PC is dbx register 8; let's use that column for RA. */
0f7fa3d0 2104#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
469ac993 2105
a10b3cf1
L
2106/* Before the prologue, there are return address and error code for
2107 exception handler on the top of the frame. */
2108#define INCOMING_FRAME_SP_OFFSET \
2109 (cfun->machine->func_type == TYPE_EXCEPTION \
2110 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
a6ab3aad 2111
26fc730d
JJ
2112/* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2113 .cfi_startproc. */
2114#define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2115
1020a5ab 2116/* Describe how we implement __builtin_eh_return. */
2824d6e5
UB
2117#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2118#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1020a5ab 2119
ad919812 2120
e4c4ebeb
RH
2121/* Select a format to encode pointers in exception handling data. CODE
2122 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2123 true if the symbol may be affected by dynamic relocations.
2124
2125 ??? All x86 object file formats are capable of representing this.
2126 After all, the relocation needed is the same as for the call insn.
2127 Whether or not a particular assembler allows us to enter such, I
2128 guess we'll have to see. */
d9a5f180 2129#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
72ce3d4a 2130 asm_preferred_eh_data_format ((CODE), (GLOBAL))
e4c4ebeb 2131
ec1895c1
UB
2132/* These are a couple of extensions to the formats accepted
2133 by asm_fprintf:
2134 %z prints out opcode suffix for word-mode instruction
2135 %r prints out word-mode name for reg_names[arg] */
2136#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2137 case 'z': \
2138 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2139 break; \
2140 \
2141 case 'r': \
2142 { \
2143 unsigned int regno = va_arg ((ARGS), int); \
2144 if (LEGACY_INT_REGNO_P (regno)) \
2145 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2146 fputs (reg_names[regno], (FILE)); \
2147 break; \
2148 }
2149
2150/* This is how to output an insn to push a register on the stack. */
2151
2152#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2153 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2154
2155/* This is how to output an insn to pop a register from the stack. */
c98f8742 2156
d9a5f180 2157#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
ec1895c1 2158 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
c98f8742 2159
f88c65f7 2160/* This is how to output an element of a case-vector that is absolute. */
c98f8742
JVA
2161
2162#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
d9a5f180 2163 ix86_output_addr_vec_elt ((FILE), (VALUE))
c98f8742 2164
f88c65f7 2165/* This is how to output an element of a case-vector that is relative. */
c98f8742 2166
33f7f353 2167#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
d9a5f180 2168 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
f88c65f7 2169
63001560 2170/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
95879c72
L
2171
2172#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2173{ \
2174 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
63001560 2175 (PTR) += TARGET_AVX ? 1 : 2; \
95879c72
L
2176}
2177
2178/* A C statement or statements which output an assembler instruction
2179 opcode to the stdio stream STREAM. The macro-operand PTR is a
2180 variable of type `char *' which points to the opcode name in
2181 its "internal" form--the form that is written in the machine
2182 description. */
2183
2184#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2185 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2186
6a90d232
L
2187/* A C statement to output to the stdio stream FILE an assembler
2188 command to pad the location counter to a multiple of 1<<LOG
2189 bytes if it is within MAX_SKIP bytes. */
2190
2191#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2192#undef ASM_OUTPUT_MAX_SKIP_PAD
2193#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2194 if ((LOG) != 0) \
2195 { \
dd047c67 2196 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
6a90d232
L
2197 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2198 else \
2199 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2200 }
2201#endif
2202
135a687e
KT
2203/* Write the extra assembler code needed to declare a function
2204 properly. */
2205
2206#undef ASM_OUTPUT_FUNCTION_LABEL
2207#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1a6e82b8 2208 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
135a687e 2209
f7288899
EC
2210/* Under some conditions we need jump tables in the text section,
2211 because the assembler cannot handle label differences between
2212 sections. This is the case for x86_64 on Mach-O for example. */
f88c65f7
RH
2213
2214#define JUMP_TABLES_IN_TEXT_SECTION \
f7288899
EC
2215 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2216 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
c98f8742 2217
cea3bd3e
RH
2218/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2219 and switch back. For x86 we do this only to save a few bytes that
2220 would otherwise be unused in the text section. */
ad211091
KT
2221#define CRT_MKSTR2(VAL) #VAL
2222#define CRT_MKSTR(x) CRT_MKSTR2(x)
2223
2224#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2225 asm (SECTION_OP "\n\t" \
2226 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
cea3bd3e 2227 TEXT_SECTION_ASM_OP);
5a579c3b
LE
2228
2229/* Default threshold for putting data in large sections
2230 with x86-64 medium memory model */
2231#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
74b42c8b 2232\f
b97de419
L
2233/* Which processor to tune code generation for. These must be in sync
2234 with processor_target_table in i386.c. */
5bf0ebab
RH
2235
2236enum processor_type
2237{
b97de419
L
2238 PROCESSOR_GENERIC = 0,
2239 PROCESSOR_I386, /* 80386 */
5bf0ebab
RH
2240 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2241 PROCESSOR_PENTIUM,
2d6b2e28 2242 PROCESSOR_LAKEMONT,
5bf0ebab 2243 PROCESSOR_PENTIUMPRO,
5bf0ebab 2244 PROCESSOR_PENTIUM4,
89c43c0a 2245 PROCESSOR_NOCONA,
340ef734 2246 PROCESSOR_CORE2,
d3c11974
L
2247 PROCESSOR_NEHALEM,
2248 PROCESSOR_SANDYBRIDGE,
3a579e09 2249 PROCESSOR_HASWELL,
d3c11974
L
2250 PROCESSOR_BONNELL,
2251 PROCESSOR_SILVERMONT,
50e461df 2252 PROCESSOR_GOLDMONT,
74b2bb19 2253 PROCESSOR_GOLDMONT_PLUS,
a548a5a1 2254 PROCESSOR_TREMONT,
52747219 2255 PROCESSOR_KNL,
cace2309 2256 PROCESSOR_KNM,
176a3386 2257 PROCESSOR_SKYLAKE,
06caf59d 2258 PROCESSOR_SKYLAKE_AVX512,
c234d831 2259 PROCESSOR_CANNONLAKE,
79ab5364
JK
2260 PROCESSOR_ICELAKE_CLIENT,
2261 PROCESSOR_ICELAKE_SERVER,
7cab07f0 2262 PROCESSOR_CASCADELAKE,
9a7f94d7 2263 PROCESSOR_INTEL,
b97de419
L
2264 PROCESSOR_GEODE,
2265 PROCESSOR_K6,
2266 PROCESSOR_ATHLON,
2267 PROCESSOR_K8,
21efb4d4 2268 PROCESSOR_AMDFAM10,
1133125e 2269 PROCESSOR_BDVER1,
4d652a18 2270 PROCESSOR_BDVER2,
eb2f2b44 2271 PROCESSOR_BDVER3,
ed97ad47 2272 PROCESSOR_BDVER4,
14b52538 2273 PROCESSOR_BTVER1,
e32bfc16 2274 PROCESSOR_BTVER2,
9ce29eb0 2275 PROCESSOR_ZNVER1,
2901f42f 2276 PROCESSOR_ZNVER2,
5bf0ebab
RH
2277 PROCESSOR_max
2278};
2279
c98c2430 2280#if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2559ef9f 2281extern const char *const processor_names[];
c98c2430
ML
2282
2283#include "wide-int-bitmask.h"
2284
2285const wide_int_bitmask PTA_3DNOW (HOST_WIDE_INT_1U << 0);
2286const wide_int_bitmask PTA_3DNOW_A (HOST_WIDE_INT_1U << 1);
2287const wide_int_bitmask PTA_64BIT (HOST_WIDE_INT_1U << 2);
2288const wide_int_bitmask PTA_ABM (HOST_WIDE_INT_1U << 3);
2289const wide_int_bitmask PTA_AES (HOST_WIDE_INT_1U << 4);
2290const wide_int_bitmask PTA_AVX (HOST_WIDE_INT_1U << 5);
2291const wide_int_bitmask PTA_BMI (HOST_WIDE_INT_1U << 6);
2292const wide_int_bitmask PTA_CX16 (HOST_WIDE_INT_1U << 7);
2293const wide_int_bitmask PTA_F16C (HOST_WIDE_INT_1U << 8);
2294const wide_int_bitmask PTA_FMA (HOST_WIDE_INT_1U << 9);
2295const wide_int_bitmask PTA_FMA4 (HOST_WIDE_INT_1U << 10);
2296const wide_int_bitmask PTA_FSGSBASE (HOST_WIDE_INT_1U << 11);
2297const wide_int_bitmask PTA_LWP (HOST_WIDE_INT_1U << 12);
2298const wide_int_bitmask PTA_LZCNT (HOST_WIDE_INT_1U << 13);
2299const wide_int_bitmask PTA_MMX (HOST_WIDE_INT_1U << 14);
2300const wide_int_bitmask PTA_MOVBE (HOST_WIDE_INT_1U << 15);
2301const wide_int_bitmask PTA_NO_SAHF (HOST_WIDE_INT_1U << 16);
2302const wide_int_bitmask PTA_PCLMUL (HOST_WIDE_INT_1U << 17);
2303const wide_int_bitmask PTA_POPCNT (HOST_WIDE_INT_1U << 18);
2304const wide_int_bitmask PTA_PREFETCH_SSE (HOST_WIDE_INT_1U << 19);
2305const wide_int_bitmask PTA_RDRND (HOST_WIDE_INT_1U << 20);
2306const wide_int_bitmask PTA_SSE (HOST_WIDE_INT_1U << 21);
2307const wide_int_bitmask PTA_SSE2 (HOST_WIDE_INT_1U << 22);
2308const wide_int_bitmask PTA_SSE3 (HOST_WIDE_INT_1U << 23);
2309const wide_int_bitmask PTA_SSE4_1 (HOST_WIDE_INT_1U << 24);
2310const wide_int_bitmask PTA_SSE4_2 (HOST_WIDE_INT_1U << 25);
2311const wide_int_bitmask PTA_SSE4A (HOST_WIDE_INT_1U << 26);
2312const wide_int_bitmask PTA_SSSE3 (HOST_WIDE_INT_1U << 27);
2313const wide_int_bitmask PTA_TBM (HOST_WIDE_INT_1U << 28);
2314const wide_int_bitmask PTA_XOP (HOST_WIDE_INT_1U << 29);
2315const wide_int_bitmask PTA_AVX2 (HOST_WIDE_INT_1U << 30);
2316const wide_int_bitmask PTA_BMI2 (HOST_WIDE_INT_1U << 31);
2317const wide_int_bitmask PTA_RTM (HOST_WIDE_INT_1U << 32);
2318const wide_int_bitmask PTA_HLE (HOST_WIDE_INT_1U << 33);
2319const wide_int_bitmask PTA_PRFCHW (HOST_WIDE_INT_1U << 34);
2320const wide_int_bitmask PTA_RDSEED (HOST_WIDE_INT_1U << 35);
2321const wide_int_bitmask PTA_ADX (HOST_WIDE_INT_1U << 36);
2322const wide_int_bitmask PTA_FXSR (HOST_WIDE_INT_1U << 37);
2323const wide_int_bitmask PTA_XSAVE (HOST_WIDE_INT_1U << 38);
2324const wide_int_bitmask PTA_XSAVEOPT (HOST_WIDE_INT_1U << 39);
2325const wide_int_bitmask PTA_AVX512F (HOST_WIDE_INT_1U << 40);
2326const wide_int_bitmask PTA_AVX512ER (HOST_WIDE_INT_1U << 41);
2327const wide_int_bitmask PTA_AVX512PF (HOST_WIDE_INT_1U << 42);
2328const wide_int_bitmask PTA_AVX512CD (HOST_WIDE_INT_1U << 43);
2329/* Hole after PTA_MPX was removed. */
2330const wide_int_bitmask PTA_SHA (HOST_WIDE_INT_1U << 45);
2331const wide_int_bitmask PTA_PREFETCHWT1 (HOST_WIDE_INT_1U << 46);
2332const wide_int_bitmask PTA_CLFLUSHOPT (HOST_WIDE_INT_1U << 47);
2333const wide_int_bitmask PTA_XSAVEC (HOST_WIDE_INT_1U << 48);
2334const wide_int_bitmask PTA_XSAVES (HOST_WIDE_INT_1U << 49);
2335const wide_int_bitmask PTA_AVX512DQ (HOST_WIDE_INT_1U << 50);
2336const wide_int_bitmask PTA_AVX512BW (HOST_WIDE_INT_1U << 51);
2337const wide_int_bitmask PTA_AVX512VL (HOST_WIDE_INT_1U << 52);
2338const wide_int_bitmask PTA_AVX512IFMA (HOST_WIDE_INT_1U << 53);
2339const wide_int_bitmask PTA_AVX512VBMI (HOST_WIDE_INT_1U << 54);
2340const wide_int_bitmask PTA_CLWB (HOST_WIDE_INT_1U << 55);
2341const wide_int_bitmask PTA_MWAITX (HOST_WIDE_INT_1U << 56);
2342const wide_int_bitmask PTA_CLZERO (HOST_WIDE_INT_1U << 57);
2343const wide_int_bitmask PTA_NO_80387 (HOST_WIDE_INT_1U << 58);
2344const wide_int_bitmask PTA_PKU (HOST_WIDE_INT_1U << 59);
2345const wide_int_bitmask PTA_AVX5124VNNIW (HOST_WIDE_INT_1U << 60);
2346const wide_int_bitmask PTA_AVX5124FMAPS (HOST_WIDE_INT_1U << 61);
2347const wide_int_bitmask PTA_AVX512VPOPCNTDQ (HOST_WIDE_INT_1U << 62);
2348const wide_int_bitmask PTA_SGX (HOST_WIDE_INT_1U << 63);
2349const wide_int_bitmask PTA_AVX512VNNI (0, HOST_WIDE_INT_1U);
2350const wide_int_bitmask PTA_GFNI (0, HOST_WIDE_INT_1U << 1);
2351const wide_int_bitmask PTA_VAES (0, HOST_WIDE_INT_1U << 2);
2352const wide_int_bitmask PTA_AVX512VBMI2 (0, HOST_WIDE_INT_1U << 3);
2353const wide_int_bitmask PTA_VPCLMULQDQ (0, HOST_WIDE_INT_1U << 4);
2354const wide_int_bitmask PTA_AVX512BITALG (0, HOST_WIDE_INT_1U << 5);
2355const wide_int_bitmask PTA_RDPID (0, HOST_WIDE_INT_1U << 6);
2356const wide_int_bitmask PTA_PCONFIG (0, HOST_WIDE_INT_1U << 7);
2357const wide_int_bitmask PTA_WBNOINVD (0, HOST_WIDE_INT_1U << 8);
2358const wide_int_bitmask PTA_WAITPKG (0, HOST_WIDE_INT_1U << 9);
41f8d1fc 2359const wide_int_bitmask PTA_PTWRITE (0, HOST_WIDE_INT_1U << 10);
4f0e90fa 2360const wide_int_bitmask PTA_AVX512BF16 (0, HOST_WIDE_INT_1U << 11);
c98c2430
ML
2361
2362const wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2363 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2364const wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2365 | PTA_POPCNT;
c9450033 2366const wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
c98c2430
ML
2367const wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2368 | PTA_XSAVEOPT;
2369const wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2370 | PTA_RDRND | PTA_F16C;
2371const wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2372 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2373const wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_PRFCHW
2374 | PTA_RDSEED;
c9450033 2375const wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES | PTA_CLFLUSHOPT
c98c2430
ML
2376 | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2377const wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2378 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2379 | PTA_CLWB;
7cab07f0 2380const wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512 | PTA_AVX512VNNI;
c98c2430
ML
2381const wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2382 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2383 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2384const wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2385 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2386 | PTA_RDPID | PTA_CLWB;
2387const wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT | PTA_PCONFIG
2388 | PTA_WBNOINVD;
2389const wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF | PTA_AVX512ER
2390 | PTA_AVX512F | PTA_AVX512CD;
2391const wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2392const wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE | PTA_RDRND;
c9450033 2393const wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA | PTA_XSAVE
c98c2430
ML
2394 | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT | PTA_XSAVEOPT
2395 | PTA_FSGSBASE;
2396const wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
41f8d1fc 2397 | PTA_SGX | PTA_PTWRITE;
c98c2430
ML
2398const wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2399 | PTA_GFNI;
2400const wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2401 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2402
2403#ifndef GENERATOR_FILE
2404
2405#include "insn-attr-common.h"
2406
2407struct pta
2408{
2409 const char *const name; /* processor name or nickname. */
2410 const enum processor_type processor;
2411 const enum attr_cpu schedule;
2412 const wide_int_bitmask flags;
2413};
2414
2415extern const pta processor_alias_table[];
2416extern int const pta_size;
2417#endif
2418
2419#endif
2420
9e555526 2421extern enum processor_type ix86_tune;
5bf0ebab 2422extern enum processor_type ix86_arch;
5bf0ebab 2423
8362f420
JH
2424/* Size of the RED_ZONE area. */
2425#define RED_ZONE_SIZE 128
2426/* Reserved area of the red zone for temporaries. */
2427#define RED_ZONE_RESERVE 8
c93e80a5 2428
95899b34 2429extern unsigned int ix86_preferred_stack_boundary;
2e3f842f 2430extern unsigned int ix86_incoming_stack_boundary;
5bf0ebab
RH
2431
2432/* Smallest class containing REGNO. */
2433extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2434
0948ccb2
PB
2435enum ix86_fpcmp_strategy {
2436 IX86_FPCMP_SAHF,
2437 IX86_FPCMP_COMI,
2438 IX86_FPCMP_ARITH
2439};
22fb740d
JH
2440\f
2441/* To properly truncate FP values into integers, we need to set i387 control
2442 word. We can't emit proper mode switching code before reload, as spills
2443 generated by reload may truncate values incorrectly, but we still can avoid
2444 redundant computation of new control word by the mode switching pass.
2445 The fldcw instructions are still emitted redundantly, but this is probably
2446 not going to be noticeable problem, as most CPUs do have fast path for
fce5a9f2 2447 the sequence.
22fb740d
JH
2448
2449 The machinery is to emit simple truncation instructions and split them
2450 before reload to instructions having USEs of two memory locations that
2451 are filled by this code to old and new control word.
fce5a9f2 2452
22fb740d
JH
2453 Post-reload pass may be later used to eliminate the redundant fildcw if
2454 needed. */
2455
c7ca8ef8
UB
2456enum ix86_stack_slot
2457{
2458 SLOT_TEMP = 0,
2459 SLOT_CW_STORED,
2460 SLOT_CW_TRUNC,
2461 SLOT_CW_FLOOR,
2462 SLOT_CW_CEIL,
80008279 2463 SLOT_STV_TEMP,
c7ca8ef8
UB
2464 MAX_386_STACK_LOCALS
2465};
2466
ff680eb1
UB
2467enum ix86_entity
2468{
c7ca8ef8
UB
2469 X86_DIRFLAG = 0,
2470 AVX_U128,
ff97910d 2471 I387_TRUNC,
ff680eb1
UB
2472 I387_FLOOR,
2473 I387_CEIL,
ff680eb1
UB
2474 MAX_386_ENTITIES
2475};
2476
c7ca8ef8 2477enum x86_dirflag_state
ff680eb1 2478{
c7ca8ef8
UB
2479 X86_DIRFLAG_RESET,
2480 X86_DIRFLAG_ANY
ff680eb1 2481};
22fb740d 2482
ff97910d
VY
2483enum avx_u128_state
2484{
2485 AVX_U128_CLEAN,
2486 AVX_U128_DIRTY,
2487 AVX_U128_ANY
2488};
2489
22fb740d
JH
2490/* Define this macro if the port needs extra instructions inserted
2491 for mode switching in an optimizing compilation. */
2492
ff680eb1
UB
2493#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2494 ix86_optimize_mode_switching[(ENTITY)]
22fb740d
JH
2495
2496/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2497 initializer for an array of integers. Each initializer element N
2498 refers to an entity that needs mode switching, and specifies the
2499 number of different modes that might need to be set for this
2500 entity. The position of the initializer in the initializer -
2501 starting counting at zero - determines the integer that is used to
2502 refer to the mode-switched entity in question. */
2503
c7ca8ef8
UB
2504#define NUM_MODES_FOR_MODE_SWITCHING \
2505 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
8c097065 2506 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
22fb740d 2507
0f0138b6
JH
2508\f
2509/* Avoid renaming of stack registers, as doing so in combination with
2510 scheduling just increases amount of live registers at time and in
2511 the turn amount of fxch instructions needed.
2512
3f97cb0b
AI
2513 ??? Maybe Pentium chips benefits from renaming, someone can try....
2514
2515 Don't rename evex to non-evex sse registers. */
0f0138b6 2516
1a6e82b8
UB
2517#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2518 (!STACK_REGNO_P (SRC) \
2519 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
22fb740d 2520
3b3c6a3f 2521\f
e91f04de 2522#define FASTCALL_PREFIX '@'
fa1a0d02 2523\f
77560086
BE
2524#ifndef USED_FOR_TARGET
2525/* Structure describing stack frame layout.
2526 Stack grows downward:
2527
2528 [arguments]
2529 <- ARG_POINTER
2530 saved pc
2531
2532 saved static chain if ix86_static_chain_on_stack
2533
2534 saved frame pointer if frame_pointer_needed
2535 <- HARD_FRAME_POINTER
2536 [saved regs]
2537 <- reg_save_offset
2538 [padding0]
2539 <- stack_realign_offset
2540 [saved SSE regs]
2541 OR
2542 [stub-saved registers for ms x64 --> sysv clobbers
2543 <- Start of out-of-line, stub-saved/restored regs
2544 (see libgcc/config/i386/(sav|res)ms64*.S)
2545 [XMM6-15]
2546 [RSI]
2547 [RDI]
2548 [?RBX] only if RBX is clobbered
2549 [?RBP] only if RBP and RBX are clobbered
2550 [?R12] only if R12 and all previous regs are clobbered
2551 [?R13] only if R13 and all previous regs are clobbered
2552 [?R14] only if R14 and all previous regs are clobbered
2553 [?R15] only if R15 and all previous regs are clobbered
2554 <- end of stub-saved/restored regs
2555 [padding1]
2556 ]
5d9d834d 2557 <- sse_reg_save_offset
77560086
BE
2558 [padding2]
2559 | <- FRAME_POINTER
2560 [va_arg registers] |
2561 |
2562 [frame] |
2563 |
2564 [padding2] | = to_allocate
2565 <- STACK_POINTER
2566 */
2567struct GTY(()) ix86_frame
2568{
2569 int nsseregs;
2570 int nregs;
2571 int va_arg_size;
2572 int red_zone_size;
2573 int outgoing_arguments_size;
2574
2575 /* The offsets relative to ARG_POINTER. */
2576 HOST_WIDE_INT frame_pointer_offset;
2577 HOST_WIDE_INT hard_frame_pointer_offset;
2578 HOST_WIDE_INT stack_pointer_offset;
2579 HOST_WIDE_INT hfp_save_offset;
2580 HOST_WIDE_INT reg_save_offset;
122f9da1 2581 HOST_WIDE_INT stack_realign_allocate;
77560086 2582 HOST_WIDE_INT stack_realign_offset;
77560086
BE
2583 HOST_WIDE_INT sse_reg_save_offset;
2584
2585 /* When save_regs_using_mov is set, emit prologue using
2586 move instead of push instructions. */
2587 bool save_regs_using_mov;
2588};
2589
122f9da1
DS
2590/* Machine specific frame tracking during prologue/epilogue generation. All
2591 values are positive, but since the x86 stack grows downward, are subtratced
2592 from the CFA to produce a valid address. */
cd9c1ca8 2593
ec7ded37 2594struct GTY(()) machine_frame_state
cd9c1ca8 2595{
ec7ded37
RH
2596 /* This pair tracks the currently active CFA as reg+offset. When reg
2597 is drap_reg, we don't bother trying to record here the real CFA when
2598 it might really be a DW_CFA_def_cfa_expression. */
2599 rtx cfa_reg;
2600 HOST_WIDE_INT cfa_offset;
2601
2602 /* The current offset (canonically from the CFA) of ESP and EBP.
2603 When stack frame re-alignment is active, these may not be relative
2604 to the CFA. However, in all cases they are relative to the offsets
2605 of the saved registers stored in ix86_frame. */
2606 HOST_WIDE_INT sp_offset;
2607 HOST_WIDE_INT fp_offset;
2608
2609 /* The size of the red-zone that may be assumed for the purposes of
2610 eliding register restore notes in the epilogue. This may be zero
2611 if no red-zone is in effect, or may be reduced from the real
2612 red-zone value by a maximum runtime stack re-alignment value. */
2613 int red_zone_offset;
2614
2615 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2616 value within the frame. If false then the offset above should be
2617 ignored. Note that DRAP, if valid, *always* points to the CFA and
2618 thus has an offset of zero. */
2619 BOOL_BITFIELD sp_valid : 1;
2620 BOOL_BITFIELD fp_valid : 1;
2621 BOOL_BITFIELD drap_valid : 1;
c9f4c451
RH
2622
2623 /* Indicate whether the local stack frame has been re-aligned. When
2624 set, the SP/FP offsets above are relative to the aligned frame
2625 and not the CFA. */
2626 BOOL_BITFIELD realigned : 1;
d6d4d770
DS
2627
2628 /* Indicates whether the stack pointer has been re-aligned. When set,
2629 SP/FP continue to be relative to the CFA, but the stack pointer
122f9da1
DS
2630 should only be used for offsets > sp_realigned_offset, while
2631 the frame pointer should be used for offsets <= sp_realigned_fp_last.
d6d4d770
DS
2632 The flags realigned and sp_realigned are mutually exclusive. */
2633 BOOL_BITFIELD sp_realigned : 1;
2634
122f9da1
DS
2635 /* If sp_realigned is set, this is the last valid offset from the CFA
2636 that can be used for access with the frame pointer. */
2637 HOST_WIDE_INT sp_realigned_fp_last;
2638
2639 /* If sp_realigned is set, this is the offset from the CFA that the stack
2640 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2641 Access via the stack pointer is only valid for offsets that are greater than
2642 this value. */
d6d4d770 2643 HOST_WIDE_INT sp_realigned_offset;
cd9c1ca8
RH
2644};
2645
f81c9774
RH
2646/* Private to winnt.c. */
2647struct seh_frame_state;
2648
f8071c05
L
2649enum function_type
2650{
2651 TYPE_UNKNOWN = 0,
2652 TYPE_NORMAL,
2653 /* The current function is an interrupt service routine with a
2654 pointer argument as specified by the "interrupt" attribute. */
2655 TYPE_INTERRUPT,
2656 /* The current function is an interrupt service routine with a
2657 pointer argument and an integer argument as specified by the
2658 "interrupt" attribute. */
2659 TYPE_EXCEPTION
2660};
2661
d1b38208 2662struct GTY(()) machine_function {
fa1a0d02 2663 struct stack_local_entry *stack_locals;
4aab97f9
L
2664 int varargs_gpr_size;
2665 int varargs_fpr_size;
ff680eb1 2666 int optimize_mode_switching[MAX_386_ENTITIES];
3452586b 2667
77560086
BE
2668 /* Cached initial frame layout for the current function. */
2669 struct ix86_frame frame;
3452586b 2670
7458026b
ILT
2671 /* For -fsplit-stack support: A stack local which holds a pointer to
2672 the stack arguments for a function with a variable number of
2673 arguments. This is set at the start of the function and is used
2674 to initialize the overflow_arg_area field of the va_list
2675 structure. */
2676 rtx split_stack_varargs_pointer;
2677
3452586b
RH
2678 /* This value is used for amd64 targets and specifies the current abi
2679 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
25efe060 2680 ENUM_BITFIELD(calling_abi) call_abi : 8;
3452586b
RH
2681
2682 /* Nonzero if the function accesses a previous frame. */
2683 BOOL_BITFIELD accesses_prev_frame : 1;
2684
922e3e33
UB
2685 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2686 expander to determine the style used. */
3452586b
RH
2687 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2688
1e4490dc
UB
2689 /* Nonzero if the current function calls pc thunk and
2690 must not use the red zone. */
2691 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2692
5bf5a10b
AO
2693 /* If true, the current function needs the default PIC register, not
2694 an alternate register (on x86) and must not use the red zone (on
2695 x86_64), even if it's a leaf function. We don't want the
2696 function to be regarded as non-leaf because TLS calls need not
2697 affect register allocation. This flag is set when a TLS call
2698 instruction is expanded within a function, and never reset, even
2699 if all such instructions are optimized away. Use the
2700 ix86_current_function_calls_tls_descriptor macro for a better
2701 approximation. */
3452586b
RH
2702 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2703
2704 /* If true, the current function has a STATIC_CHAIN is placed on the
2705 stack below the return address. */
2706 BOOL_BITFIELD static_chain_on_stack : 1;
25efe060 2707
529a6471
JJ
2708 /* If true, it is safe to not save/restore DRAP register. */
2709 BOOL_BITFIELD no_drap_save_restore : 1;
2710
f8071c05
L
2711 /* Function type. */
2712 ENUM_BITFIELD(function_type) func_type : 2;
2713
da99fd4a
L
2714 /* How to generate indirec branch. */
2715 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2716
2717 /* If true, the current function has local indirect jumps, like
2718 "indirect_jump" or "tablejump". */
2719 BOOL_BITFIELD has_local_indirect_jump : 1;
2720
45e14019
L
2721 /* How to generate function return. */
2722 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2723
f8071c05
L
2724 /* If true, the current function is a function specified with
2725 the "interrupt" or "no_caller_saved_registers" attribute. */
2726 BOOL_BITFIELD no_caller_saved_registers : 1;
2727
a0ff7835
L
2728 /* If true, there is register available for argument passing. This
2729 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2730 if there is scratch register available for indirect sibcall. In
2731 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2732 pass arguments and can be used for indirect sibcall. */
2733 BOOL_BITFIELD arg_reg_available : 1;
2734
d6d4d770 2735 /* If true, we're out-of-lining reg save/restore for regs clobbered
5d9d834d 2736 by 64-bit ms_abi functions calling a sysv_abi function. */
d6d4d770
DS
2737 BOOL_BITFIELD call_ms2sysv : 1;
2738
2739 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
5d9d834d 2740 needs padding prior to out-of-line stub save/restore area. */
d6d4d770
DS
2741 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2742
d6d4d770
DS
2743 /* This is the number of extra registers saved by stub (valid range is
2744 0-6). Each additional register is only saved/restored by the stubs
2745 if all successive ones are. (Will always be zero when using a hard
2746 frame pointer.) */
2747 unsigned int call_ms2sysv_extra_regs:3;
2748
35c95658
L
2749 /* Nonzero if the function places outgoing arguments on stack. */
2750 BOOL_BITFIELD outgoing_args_on_stack : 1;
2751
708c728d
L
2752 /* If true, ENDBR is queued at function entrance. */
2753 BOOL_BITFIELD endbr_queued_at_entrance : 1;
2754
cd3410cc
L
2755 /* The largest alignment, in bytes, of stack slot actually used. */
2756 unsigned int max_used_stack_alignment;
2757
ec7ded37
RH
2758 /* During prologue/epilogue generation, the current frame state.
2759 Otherwise, the frame state at the end of the prologue. */
2760 struct machine_frame_state fs;
f81c9774
RH
2761
2762 /* During SEH output, this is non-null. */
2763 struct seh_frame_state * GTY((skip(""))) seh;
fa1a0d02 2764};
2bf6d935
ML
2765
2766extern GTY(()) tree sysv_va_list_type_node;
2767extern GTY(()) tree ms_va_list_type_node;
cd9c1ca8 2768#endif
fa1a0d02
JH
2769
2770#define ix86_stack_locals (cfun->machine->stack_locals)
4aab97f9
L
2771#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2772#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
fa1a0d02 2773#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
1e4490dc 2774#define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
5bf5a10b
AO
2775#define ix86_tls_descriptor_calls_expanded_in_cfun \
2776 (cfun->machine->tls_descriptor_call_expanded_p)
2777/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2778 calls are optimized away, we try to detect cases in which it was
2779 optimized away. Since such instructions (use (reg REG_SP)), we can
2780 verify whether there's any such instruction live by testing that
2781 REG_SP is live. */
2782#define ix86_current_function_calls_tls_descriptor \
6fb5fa3c 2783 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
3452586b 2784#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2ecf9ac7 2785#define ix86_red_zone_size (cfun->machine->frame.red_zone_size)
249e6b63 2786
1bc7c5b6
ZW
2787/* Control behavior of x86_file_start. */
2788#define X86_FILE_START_VERSION_DIRECTIVE false
2789#define X86_FILE_START_FLTUSED false
2790
7dcbf659
JH
2791/* Flag to mark data that is in the large address area. */
2792#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2793#define SYMBOL_REF_FAR_ADDR_P(X) \
2794 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
da489f73
RH
2795
2796/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2797 have defined always, to avoid ifdefing. */
2798#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2799#define SYMBOL_REF_DLLIMPORT_P(X) \
2800 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2801
2802#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2803#define SYMBOL_REF_DLLEXPORT_P(X) \
2804 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2805
82c0e1a0
KT
2806#define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2807#define SYMBOL_REF_STUBVAR_P(X) \
2808 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2809
7942e47e
RY
2810extern void debug_ready_dispatch (void);
2811extern void debug_dispatch_window (int);
2812
91afcfa3
QN
2813/* The value at zero is only defined for the BMI instructions
2814 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2815#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2816 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
91afcfa3 2817#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1068ced5 2818 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
91afcfa3
QN
2819
2820
b8ce4e94
KT
2821/* Flags returned by ix86_get_callcvt (). */
2822#define IX86_CALLCVT_CDECL 0x1
2823#define IX86_CALLCVT_STDCALL 0x2
2824#define IX86_CALLCVT_FASTCALL 0x4
2825#define IX86_CALLCVT_THISCALL 0x8
2826#define IX86_CALLCVT_REGPARM 0x10
2827#define IX86_CALLCVT_SSEREGPARM 0x20
2828
2829#define IX86_BASE_CALLCVT(FLAGS) \
2830 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2831 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2832
b86b9f44
MM
2833#define RECIP_MASK_NONE 0x00
2834#define RECIP_MASK_DIV 0x01
2835#define RECIP_MASK_SQRT 0x02
2836#define RECIP_MASK_VEC_DIV 0x04
2837#define RECIP_MASK_VEC_SQRT 0x08
2838#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2839 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
bbe996ec 2840#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
b86b9f44
MM
2841
2842#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2843#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2844#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2845#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2846
ab2c4ec8
SS
2847/* Use 128-bit AVX instructions in the auto-vectorizer. */
2848#define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2849/* Use 256-bit AVX instructions in the auto-vectorizer. */
02a70367
SS
2850#define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2851 || prefer_vector_width_type == PVW_AVX256)
ab2c4ec8 2852
c2c601b2
L
2853#define TARGET_INDIRECT_BRANCH_REGISTER \
2854 (ix86_indirect_branch_register \
2855 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2856
5dcfdccd
KY
2857#define IX86_HLE_ACQUIRE (1 << 16)
2858#define IX86_HLE_RELEASE (1 << 17)
2859
e83b8e2e
JJ
2860/* For switching between functions with different target attributes. */
2861#define SWITCHABLE_TARGET 1
2862
44d0de8d
UB
2863#define TARGET_SUPPORTS_WIDE_INT 1
2864
2bf6d935
ML
2865#if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
2866extern enum attr_cpu ix86_schedule;
2867
2868#define NUM_X86_64_MS_CLOBBERED_REGS 12
2869#endif
2870
c98f8742
JVA
2871/*
2872Local variables:
2873version-control: t
2874End:
2875*/